
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2013

MSc THESIS

GPU-BASED SIMULATION OF BRAIN
NEURON MODELS

DU NGUYEN HOANG ANH

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2013-10

The human brain is an incredible system which can process, store,
and transfer information with high speed and volume. Inspired by
such system, engineers and scientists are cooperating to construct
a digital brain with these characteristics. The brain is composed
by billions of neurons which can be modeled by mathematical equa-
tions. The first step to reach that goal is to be able to construct
these neuron models in real time. The Inferior Olive (IO) model
is a selected model to achieve the real time simulation of a large
neuron network. The model is quite complex with three compart-
ments which are based on the Hodgkin Huxley model. Although the
Hodgkin Huxley model is considered as the most biological plausible
model, it has quite high complexity. The three compartments also
make the model become even more computationally intensive. A
CPU platform takes a long time to simulate such a complex model.
Besides, FPGA platform does not handle effectively floating point
operations. With GPU’s capability of high performance computing
and floating point operations, GPU platform promises to facilitate
computational intensive applications successfully. In this thesis, two
GPU platforms of the two latest Nvidia GPU architectures are used
to simulate the IO model in a network setting. The performance is

improved significantly on both platforms in comparison with that on the CPU platform. The speed-up of
double precision simulation is 68.1 and 21.0 on Tesla C2075 and GeForce GT640, respectively. The single
precision simulation is nearly twice faster than the double precision simulation. The performance of the
GeForce GT640 platform is 67% less than that on the Tesla C2075 platform, while the cost efficiency on
the GeForce GT640 is eight times higher than that on the Tesla C2075 platform. The real time execution
is achieved with approximately 256 neural cells. In conclusion, the Tesla C2075 platform is essential for
double precision simulation and the GeForce GT640 platform is more suitable for reducing execution time
of single precision simulation.

GPU-BASED SIMULATION OF BRAIN
NEURON MODELS

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

DU NGUYEN HOANG ANH
born in DANANG, VIETNAM

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

GPU-BASED SIMULATION OF BRAIN
NEURON MODELS

by DU NGUYEN HOANG ANH

Abstract

T
he human brain is an incredible system which can process, store, and transfer information
with high speed and volume. Inspired by such system, engineers and scientists are coop-
erating to construct a digital brain with these characteristics. The brain is composed by

billions of neurons which can be modeled by mathematical equations. The first step to reach
that goal is to be able to construct these neuron models in real time. The Inferior Olive (IO)
model is a selected model to achieve the real time simulation of a large neuron network. The
model is quite complex with three compartments which are based on the Hodgkin Huxley model.
Although the Hodgkin Huxley model is considered as the most biological plausible model, it has
quite high complexity. The three compartments also make the model become even more com-
putationally intensive. A CPU platform takes a long time to simulate such a complex model.
Besides, FPGA platform does not handle effectively floating point operations. With GPU’s ca-
pability of high performance computing and floating point operations, GPU platform promises to
facilitate computational intensive applications successfully. In this thesis, two GPU platforms of
the two latest Nvidia GPU architectures are used to simulate the IO model in a network setting.
The performance is improved significantly on both platforms in comparison with that on the
CPU platform. The speed-up of double precision simulation is 68.1 and 21.0 on Tesla C2075
and GeForce GT640, respectively. The single precision simulation is nearly twice faster than
the double precision simulation. The performance of the GeForce GT640 platform is 67% less
than that on the Tesla C2075 platform, while the cost efficiency on the GeForce GT640 is eight
times higher than that on the Tesla C2075 platform. The real time execution is achieved with
approximately 256 neural cells. In conclusion, the Tesla C2075 platform is essential for double
precision simulation and the GeForce GT640 platform is more suitable for reducing execution
time of single precision simulation.

Laboratory : Computer Engineering
Codenumber : CE-MS-2013-10

Committee Members :

Advisor: Zaid Al-Ars, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Said Hamdioui, CE, TU Delft

Member: Jeroen de Ridder, CE, TU Delft

i

ii

Dedicated to my parents, who gave me a dream
and my love, who encourages me fulfill it

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Problem statement . 1
1.2 Thesis objectives . 2
1.3 Thesis outline . 3

2 Model for brain simulation 5
2.1 Brain, neural networks and neurons . 5
2.2 Modeling neuron behavior . 7

2.2.1 Formal models . 8
2.2.2 Biophysical models . 9
2.2.3 Extended models . 14

2.3 Comparison of models . 15

3 Platform analysis 19
3.1 GPU architecture . 19

3.1.1 Fermi architecture . 20
3.1.2 Kepler architecture . 24

3.2 CUDA framework . 25
3.2.1 CUDA program . 26
3.2.2 CUDA memory hierarchy and manipulation 28
3.2.3 Exploit parallelism using CUDA . 30
3.2.4 Synchronization . 30

3.3 Model mapping on GPU . 31

4 Implementation 33
4.1 Inferior Olive model in a network setting . 33

4.1.1 Inferior Olive cell . 33
4.1.2 IO model . 34
4.1.3 Model implementation in C programming language 35

4.2 CUDA implementation . 37
4.3 Optimization . 40

5 Results and discussion 45
5.1 Simulation setup . 45

5.1.1 Platforms . 45
5.1.2 Simulation characteristics . 45

5.2 Evaluation of platform configuration . 49
5.2.1 Thread block size . 50
5.2.2 L1 cache usage . 52

v

5.3 Performance on Tesla C2075 platform . 57
5.3.1 Speed-up . 57
5.3.2 Execution time per time step . 59

5.4 Performance on GeForce platform . 60
5.4.1 Speed-up . 60
5.4.2 Execution time per time step . 63

5.5 Discussion of results . 64
5.5.1 Speed-up comparison . 64
5.5.2 Cost efficiency . 65
5.5.3 Platform comparison . 65
5.5.4 Application bottlenecks . 65

6 Conclusions and recommendations 67
6.1 Conclusions . 67
6.2 Contribution of the results . 67

6.2.1 To neural science . 67
6.2.2 To high performance computing . 68

6.3 Limitations . 68
6.4 Recommendation for further research . 68

Bibliography 72

A Implementation variations 73
A.1 GPU implementation for small thread block sizes 73
A.2 GPU implementation on Tesla C2075 platform 74
A.3 GPU implementation on GeForce GT640 platform 74

vi

List of Figures

2.1 The central nervous system can be divided into seven main parts [7] 6
2.2 Structure of a neuron [7] . 7
2.3 An integrate-and-fire unit [8] . 10
2.4 Leaky integrate-and-fire model [8] . 10
2.5 Schematic of ionic channel and neuronal membrane of Hodgkin-Huxley Model [8] 12
2.6 Multi-compartment neuron model [2] . 15
2.7 Spiking rate of neuron models [15] . 16
2.8 The approximate number of floating point operations needed to simulate the

model during 1ms time span [1] . 17
2.9 The biological significance of biophysical models [1] 18

3.1 The GPU devotes more transistors to data processing [16] 19
3.2 Architecture of Fermis 16 SM [17] . 20
3.3 Fermi streaming multiprocessor (SM) [17] . 21
3.4 Fermi FMA [17] . 21
3.5 NVIDIA GigaThread engine [17] . 22
3.6 Two warp scheduler in Fermi architecture [17] 22
3.7 Memory hierarchy in Fermi architecture [17] . 23
3.8 Unified Address Space in Fermi architecture [17] 23
3.9 The novel SMX design of Kepler architecture [18] 25
3.10 The HyperQ scheduling scheme in Kepler architecture [18] 25
3.11 Dynamic parallelism in Kepler architecture [19] 26
3.12 The sequence of a CUDA program in host side and device side [20] 27
3.13 A 2D division of a CUDA grid [20] . 28
3.14 Overview of CUDA memories [20] . 29
3.15 Loading pattern of texture memory . 30
3.16 Mapping kernel to GPU while the rest of program is still executed on CPU . . 31

4.1 Diagram of the cerebellar circuit (GC: Granule Cells; PC: Purkinje Cells; CN:
deep Cerebellar Nuclei; IO: Inferior Olive) . 33

4.2 Three-compartment dynamics of the IO cell [28] 34
4.3 The network of IO cell . 35
4.4 Data structures used in the implementation . 36
4.5 The C implementation of the IO model . 37
4.6 Data flow of the ”main” function of the C code of the model 38
4.7 Data flow of the subprogram to compute single cell’s parameters 38
4.8 Original CUDA implementation . 39
4.9 Optimized CUDA implementation . 41
4.10 Texture memory help eliminate border conditions 42

5.1 Execution flow of the GPU implementation . 49
5.2 Comparison of execution time of different thread block sizes (double precision

simulation on Tesla C2075) . 51
5.3 Comparison of execution time of different thread block sizes (single precision

simulation on Tesla C2075) . 51
5.4 Comparison of execution time of different thread block sizes (double precision

simulation on Tesla GT640) . 53

vii

5.5 Comparison of execution time of different thread block sizes (single precision
simulation on Tesla GT640) . 53

5.6 Comparison of execution time with/out L1 cache usage (double precision simu-
lation on Tesla C2075) . 55

5.7 Comparison of execution time with/out L1 cache usage (single precision simula-
tion on GeForce GT640) . 56

5.8 Representation of speed-up (single precision simulation on Tesla C2075 58
5.9 Representation of speed-up (double precision simulation on Tesla C2075) 59
5.10 Representation of execution time per time step on Tesla C2075 60
5.11 Representation of speed-up (single precision simulation on GeForce GT640) . . 61
5.12 Representation of speed-up (double precision simulation on GeForce GT640) . . 62
5.13 Representation of execution time per time step on GeForce GT640 63
5.14 Performance comparison between Tesla C2075 and GeForce GT640 64

A.1 GPU implementation for small thread block sizes 73
A.2 GPU implementation on Tesla C2075 platform 74
A.3 GPU implementation on GeForce GT640 platform 75

viii

List of Tables

2.1 Model comparison . 17

5.1 Properties of GPU platforms . 46
5.2 Theoretical characteristics of the GPU implementation based on platform analysis 48
5.3 Execution time varies by different thread block sizes (double precision simulation

on Tesla C2075) . 50
5.4 Execution time varies by different thread block sizes (single precision simulation

on Tesla C2075) . 52
5.5 Execution time varies by different thread block sizes (double precision simulation

on GeForce GT640) . 54
5.6 Execution time varies by different thread block sizes (single precision simulation

on GeForce GT640) . 54
5.7 Execution time without L1 cache usage varies by different thread block sizes

(double precision simulation on Tesla C2075) 55
5.8 Execution time without L1 cache usage varies by different thread block sizes

(single precision simulation on GeForce GT640) 56
5.9 Speed-up of single precision simulation on Tesla C2075 57
5.10 Speed-up of double precision simulation on Tesla C2075 58
5.11 Execution time per time step of double precision simulation on Tesla C2075.

The (*) is the execution time achieved by another implementation which is only
robust for small input sizes (64 and 256 cells). 60

5.12 Speed-up of single precision simulation on GeForce GT640 61
5.13 Speed-up of double precision simulation on GeForce GT640 62
5.14 Execution time per time step of double precision simulation on GeForce GT640 63

ix

x

Acknowledgements

I would like to thank Dr. Zaid Al-Ars for his supervision to my work and patience in improving
my analyzing and writing skill. I would like to thank Georgios Smaragdos for his enthusiastic help
on neural science knowledge. I would like to thank Eef Hartman for his support on simulation
platforms. I would like to thank Josje Kuenen for improving my English presentation skill and
my confidence in general. I would like to thank Dr. Koen Bertels, Dr. Said Hamdioui, and Dr.
Jeroen de Ridder for being on my graduation committee.

DU NGUYEN HOANG ANH
Delft, The Netherlands
August 26, 2013

xi

xii

Introduction 1
For hundreds of years, neural sciences have been accumulating huge amount of detailed knowl-
edge to support researchers understand brain activity. The human brain has plenty of desirable
characteristics such as rapid processing, low energy consumption, large memory storage etc.
Hence, engineers are interested to mimic a system which can function as efficiently as the human
brain. However, to carry out experiments on human brain is difficult and sometimes immoral.
Therefore, it is essential to build a brain simulation system for research purposes. Constructing a
digital brain starts from simulating successfully spiking neural network (SNN) models. The SNN
model is the neuron model in a network setting. Despite its complexity, SNN models have been
well-developed so that simulation on those models is providing plenty of insight on brain opera-
tions. Depending on the information needed to extract from the simulation, a different model of
neuron should be employed [1]. Simulations based on those models could have a large impact on
society such as the repair of damaged part of the human brain. However, this simulation is costly
because of the high-demanding requirements of a large-scale SNN. A meaningful simulation does
require to be performed on a sufficient number of neurons. Moreover, the simulation time should
be fast enough to represent real time brain processing. With the above reasons, research on how
to simulate neural networks efficiently has both practical and scientific impact.

1.1 Problem statement

Recently, neural science research has shifted from Artificial Neural Networks to Spiking Neural
Networks (SNN). SNN was inspired by the idea that neuronal signals are short electrical pulses
and the frequency of those electrical pulses carries biological meanings on brain activity [2]. Based
on this idea, various models have been developed from simplified forms to complex computational
ones. It is intuitive to say that the complex models which carry more biological meanings often
requires large computational resources, hence simulating activities of thousands of nerve cells
in real time is inefficient even with the help of supercomputers. In addition to the fact that
a large-scale and real-time neural network simulation is necessary to bring out useful biology
information, the huge supercomputer system has enormous power consumption, while the whole
brain activity seems to consume a very small amount of power. This reveals the need of suitable
platforms to carry out simulation on neuron models.

Due to the computational intensiveness and high-speed interconnectivity of neural networks,
simulations on platforms such as supercomputers or FPGA have been carried out successfully
but for a limited number of neurons. Experiments performed on models such as Hodgkin-Huxley
model have shown that with only tens of coupled spiking neurons in real time, some significant
results were able to be drawn on neuron behavior [1]. However, the simulation on the full
operation of brain activity, which has not yet been performed successfully, and promises to clear
out much more on brain activities, triggers the interest of researchers in the field.

In the mean time, the recent trend is performing complex scientific applications on Graphics
Processing Units (GPU). In a system with GPUs, the operations which are computationally
expensive can be processed by GPUs instead of CPUs. GPUs have been developed to utilize
cores in order to run multiple threads in parallel while these threads can perform operations
on streaming data. Hence, GPUs are able to execute computationally intensive programs much
faster than CPUs. Along with GPU, Open Computing Language (OpenCL) and the CUDA

1

2 CHAPTER 1. INTRODUCTION

framework have been introduced to fully support GPU programming. Those frameworks allow
general application programmers to exploit GPU without the concern of graphical operations.
Both Nvidia’s GPU with CUDA and AMD’s GPU with OpenCL [3] have been proposed to
suit the computationally demanding needs of high performance systems. With the portability,
OpenCL is preferably used in comparison of different implementations on different platforms [4].

Since SNN simulation is considered as a complex computational application, the combination
of GPU and neural network simulation will be promising to produce an efficient simulation.
Several projects have been carried out following this idea with the purpose of evaluating GPU
performance on computationally expensive applications in general and on SNN simulation in
particular. Even though the SNN models used in previous projects are single neuron models
without a network setting, the results showed that implementations on GPU have significant
improvements in performance over the other platforms [5], [6]. The achieved performance came
up to 857.3 times for Nvidia’s Tesla C2050 over the serial implementation on Intel CPU Core 2
Quad [4]. These results encourage similar research on a more complex SNN model, for example
an SNN model in a network setting.

In this thesis, simulation of a neuron model in a network setting is performed in order to
generate an efficient implementation on a GPU platform which provides significant biological
meanings. The purpose of this thesis is to find out the answers for the following questions:

• How much speed-up can be achieved when implementing a particular SNN model on a
GPU platform?

• Does the implementation on different platforms provide different performance results?
What is the reason for these differences?

• Is it more beneficial to implement IO model on a particular platform?

• Does the application performance depend on the precision accuracy of the simulation, eg.
single precision and double precision?

• What is the upper bound of the number of neurons which can be simulated on a particular
GPU platform?

1.2 Thesis objectives

This thesis is aimed to achieve the following objectives:

• Neural model selection: A number of models should be studied and evaluated with respect
to their computational complexity, biological significance and suitability to map on a GPU
platform. Then one model is chosen to be implemented.

• Model implementation on GPU platform: A selected model should be implemented using
CUDA on Nvidia’s Tesla C2075 and Nvidia’s GeForce GT640. The implementation is
supposed to have a considerable number of neural cells and a fast simulation to approach
real time functions of the SNN.

• Comparison with the corresponding implementation on CPU: The results will be evaluated
in comparison with similar model implementations on other platforms such as CPU using
the C language.

• Comparison between two GPU platforms: The performance of the implementation on
the two chosen platforms is compared to evaluate the difference between the two latest
architectures of Nvidia’s GPUs.

build 0.18

1.3. THESIS OUTLINE 3

1.3 Thesis outline

This thesis is organized as follows:

• Chapter 2 presents the theoretical neuron models to simulate SNN.

• Chapter 3 performs analysis on the GPU platforms as well as the programming language
CUDA to suit the selected model.

• In Chapter 4, the detailed neuron model of the Inferior Olive cell in a network setting,
investigation of the implementation on CPU and its implementation on the GPU platform
will be discussed.

• The simulation setup, achieved results and discussions on those results will be covered in
Chapter 5.

• Finally, Chapter 6 concludes the thesis and proposes further research on the topic.

build 0.18

4 CHAPTER 1. INTRODUCTION

build 0.18

Model for brain simulation 2
A biological neuron model is the properties of nerve cell in the form of mathematical represen-
tation. To understand the importance and behaviors of a neuron model in general, fundamental
knowledge on the human brain, central nervous system, neuron dynamics and various neuron
models are introduced in this chapter. The comparison among different neuron models at the
end of this chapter shows the importance of Hodgkin-Huxley model in the field.

2.1 Brain, neural networks and neurons

Human brain is considered as the most important and sophisticated organ of the human body
because it is the irreplaceable physical structure to generate mind. It is capable of processing
information at a very high speed, low power consumption and control different peripheries simul-
taneously. Inspired by its special abilities, artificial intelligent and robotic control concepts have
been developing endlessly. However, a system that is able to perform the same functions is still
a challenge to scientists in the field. Therefore, more and more research is being carried out to
further understand the human brain. To explain the operations of the human brain, many ideas
were proposed and tested using various experiments. Franz Joseph Gall - a German physician
and neuron-anatomist proposed that different regions in the brain are responsible for different
function. His idea is currently approved as a cornerstone of modern brain science.

By performing various experiments to monitor the activity of the brain in while it is engaging
a specific task, three main regions of the brain can be distinguished as the hindbrain, midbrain,
and forebrain. The brain together with the spinal cord are called the central nervous system. The
central nervous system is a broader concept which contains seven parts: the spinal cord, medulla
oblongata, pons, cerebellum, midbrain, diencephalon and the cerebral hemispheres, as illustrated
in Figurge 2.1. The central nervous system has bilateral symmetry which means that it consists of
two symmetrical parts. Each of these parts is working together or individually to construct human
behaviors and perceptions. The spinal cord is a system spreading out to get information from
skin, joints and muscles to control movements of limbs and trunk. The spinal cord and the brain
are connected through the brain stem to regulate levels of arousal and awareness. The brain stem
consists of the medulla, pons and midbrain. The medulla oblongata takes over vital autonomic
functions such as digestion, breathing and heart beating. The pons is the information transmitter
of movement from the cerebral hemisphere to the cerebellum. The midbrain is responsible for
sensory and motor functions such as eye movements and the cooperation of visual and auditory
reflexes. The cerebellum regulates the force and range of movement and is related to the learning
of motor skills. The diencephalon contains the thalamus (which processes information reaching
the cerebral cortex from the other part of the central nervous system) and the hypothalamus
(which controls autonomic, endocrine and visceral functions). The largest part of the brain is
represented by the cerebral hemispheres which are a wrinkled outer layer (the cerebral cortex
and the basal ganglia), the hippocampus and the amygdaloid nuclei. The basal ganglia controls
motor performance, the hippocampus is responsible for memory storage, and the amygdaloid
nuclei coordinate the autonomic and endocrine responses of emotional states.

Along with the central nervous system, there is a peripheral nervous system which contains
receptors and effectors. Neurons communicate intimately with receptors and effectors to form
a working network. Receptors provide inputs for the network of neurons by continuously moni-

5

6 CHAPTER 2. MODEL FOR BRAIN SIMULATION

Figure 2.1: The central nervous system can be divided into seven main parts [7]

toring the external and internal environment. Neurons combine those signals from the receptors
with signal encoding experiences to barrage the neurons with signals that will create adaptive
interactions with the environment. Effectors receive control signals from neurons and produce
appropriate activity by comparing the current and target state of the system.

The largest part of the central nervous system is the brain. The human brain contains more
than 100 billion individual nerve cells which are interconnected in a system called the neural
network. The neural network is a network of cells, but it is not only a chain to carry signals from
input to output. It is an enormous network of interconnected cells in loops and tangled skeins.
Those connections provide interactions among the input signals in addition to interactions with
residues of billions of signals which already occurred in the system in the past. Therefore, not
only the output signals are generated but the properties of the network are changed. Hence the
prior experience will be reflected in the future behavior.

The cell in the nervous system is called the neuron. It is important to mention that there are
quite a lot variations of neuron types. However, the structure and properties of different neuron
types are similar.

A neuron has four elements: the cell body (soma), dendrites, axon and presynaptic terminals
as shown in Figure 2.2. All those elements contribute to the generation and communication of
signals among neurons. The center of the cell is called the soma, which contains the genes of the
cell and the endoplasmic reticulum (an extension of the nucleus). From the soma, two types of
branches reach out to create a set of short dendrites and one long axon. Dendrites have a form of
tree and are responsible of receiving incoming signals from other cells, while the axon conducts
signals for various distances to other neurons. The signals mentioned here are electrical signals

build 0.18

2.2. MODELING NEURON BEHAVIOR 7

which are defined as action potentials. A special part of the axon is the axon hillock which
is located at the initial segment of the axon or at the connection between the soma and the
axon. The axon hillock handles the signal initiation and transmission without loss or distortion
at rates of 1-100 m per second; hence the action potential is conducted robustly to a presynaptic
terminal regardless of the length of the axon cable. A synapse is a connection point between two
neurons. There are presynapses and postsynapses, which are related to the transmitting neurons
and receiving neurons, respectively.

Figure 2.2: Structure of a neuron [7]

In addition to neurons, there is another class of cell in the nervous system called glial cells to
support neuron’s functions. Although glial cells have been shown not to be involved in information
processing in neural network, they have other vital roles to neurons. In a vertebrates nervous
system, the number of glial cells is between 10 and 50 times more than neurons number. Glials
surround neurons but do not hold neurons together or play the role of transmitting information.

2.2 Modeling neuron behavior

Neurons are enclosed by a liquid called the membrane. The membrane has a concentration of ions
which might be different from that in the surrounding environment. This difference generates
the electrical potential which is the dominant idea of neuronal dynamics.

As mentioned in the previous section, input signals of a neuron are collected by neuron’s
dendrites. The potential of the dendrites and the soma is combined to generate the neuron’s
potential. The difference between the neuron’s potential and membrane’s potential yields an
electrical potential at the axon hillock. If the potential at the axon hillock exceeds a certain
threshold, a regenerative process takes place. The result of this process is a spike action potential
propagating in the axon. After this process, there occurs a short refractory period in which no
new impulse can be created at axon hillock.

The change in potential propagation along the axon could be described using the following
equation [8]:

∂V

∂t
=
∂2V

∂x2
(2.1)

In which, the starting voltage at a point on axon is V0, and in this case, the potential will
decay exponentially, which means the voltage at distance x from the starting point is described
as: V (x) = V0e

−x

build 0.18

8 CHAPTER 2. MODEL FOR BRAIN SIMULATION

Each axon has its own specific length constant, which is defined as the distance at which the
potential is reduced by a factor of 1/e. However, the cable equation seems to raise a problem.
For a short axon, the propagating signal might be large enough to travel from one end to the
other, but it does not apply correctly to a long axon, as the signal might fade off before reaching
the other end. Therefore, most models have an assumption that in case the change in potential
exceeds the threshold, a pulse can be generated will preserve full amplitude when propagating in
axon. Hence, action potential is defined as an undiminished impulse of potential difference.

The propagation of action potentials is caused by flows of ions, which are mostly sodium and
potassium in the membrane. For example, Hodgkin and Huxley assumed that the conductance
of the membrane to sodium and potassium ions depends on the transmembrane voltage which is
the potential difference between the interior and exterior of a neuron. Hence the realistic cellular
equation is the one in which the conductance of sodium and potassium are varied by voltage and
time.

Although the signal exchange happens between two neurons, there is still a space called the
synaptic cleft between the presynapse of one cell to the postsynapse of another cell. The synaptic
cleft acts like a capacitor. The transmission of action potential in this area is not electrical transfer
but a chemical reaction. At the presynaptic terminal, an incoming impulse causes the release
of transmitter molecules, which are stored in vesicles. The transmitter will bind to receptors on
the postsynaptic membrane after traveling through a very small synaptic cleft. The transmitter
might cause two types of effect which are excitatory and inhibitory. Excitatory is moving the
potential difference across the postsynaptic membrane higher, while inhibitory is moving the
potential below the threshold. The excitatory or inhibitory effect of the transmitters causes
subthreshold changes in the postsynaptic membrane. This change may result in a generation of
a new pulse in an axon of another cell if the two following conditions are fulfilled: The potential
change at the axon hillock exceeds the threshold; The axon has passed the refractory period of
its preceding firing.

Most neural modeling nowadays is built on excitatory and inhibitory interactions on a fast
time scale. The assumption mostly used in those models is that the average rate of pulses carries
most of the information. A simple neuron model is a mathematical function which takes single
or many real-valued inputs and produces single or many real-value outputs. Other properties
of neuron models such as linear or non-linear, static or adaptive are different from models to
models. In the following section, we will present several single-cell models of neuron.

2.2.1 Formal models

A formal model [8] is a model that is the least similar to real neurons. In this model, the
excitatory and inhibitory effects are combined into a single input. The neuron itself has one or
more state variables which will be added to the input to produce output. The common point
among formal model is that it only takes into account the excitatory, inhibitory and state variable
of real neurons.

2.2.1.1 McCulloch-Pitts Model

McCulloch-Pitts Model [8] is also called binary model as it uses binary pulses to represent the
value of output. Any of the active neuron’s inhibitory inputs cause the output to shut off, while
all the active excitatory inputs xi are multiplied by their synaptic weights wi and then added
up. The output is set active when the total exceeds a threshold θ of the neuron.

Y =

{
1 if

∑
i wixi >θ and no inhibition

0 otherwise
(2.2)

build 0.18

2.2. MODELING NEURON BEHAVIOR 9

2.2.1.2 Perceptron Model

Perceptron Model [8] has an improvement in comparison with the McCulloch-Pitts model as the
model can produce the real-valued output. This real-valued output represents the average firing
rate of the cell. The output is calculated by the function g of the subtraction value of threshold θ
from V. The function g is sigmoidal: it asymptotes zero at V<<θ and saturates at 1 for V>>θ.
The advantages of this model are: the output is non-negative real-valued, and the firing rate has
an upper bound.

V =
∑
i

wixi (2.3)

Y = g(V − θ) (2.4)

2.2.1.3 Hopfield neurons

There are two version of the Hopfield model: binary model and continuous-valued model [8]. In
the binary model, the output of a neuron is the comparison of V and θ. However, the update of
one neuron’s state is carried out at a random time and independently of other neurons.

Y =

{
1 if Vi <θ
0 if Vi >θ

(2.5)

2.2.1.4 Polynomial neurons

Polynomial neurons [8] is a model which provides information on individual output contribution
of inputs. Therefore, each input is correlated to other input in pairs or groups by including a
multiplicative term. The output is still a sum of those products. The state variable V could be
used in a usual nonlinear function g afterward.

V = a1 + b1x1 + b2x2 + c1x
2
1 + c2x1x2 + . . . (2.6)

2.2.2 Biophysical models

Biophysical models take neuron properties into consideration and produce spikes instead of
continuous-value outputs; hence they are more similar to real neurons.

2.2.2.1 Integrate-and-fire models

Integrate-and-fire models [8] is a family of models that is based on the concept of dividing
membrane behavior into 2 distinct phases. The first phase is integration which performs addition
on the inputs. Then, a sudden firing is carried out in the second phase. The cell voltage is assumed
to be zero at the beginning, and raised or lowered by the input signals. If the voltage exceeds a
certain threshold θ, the cell immediately fires an output and resets the voltage. After firing, the
cell goes into the refractory period.

The simplest form of this model is a leak-free capacitance model as shown in the Figure 2.3.
DC current is the input of the capacitance, which acts like a relaxation oscillator or a current-
to-frequency converter. The output is produced as periodic pulses at a rate determined by the
input current.

Another form of this model is leaky integrate-and-fire model which adds the leaky resistance
in parallel to the capacitance as shown in Figure 2.4. In this model, the firing only occurs when
the excitatory input is strong enough to overcome the leak. The time constant τ=RC divides the
model’s operations into two qualitatively distinct regimes: temporal integration and fluctuation

build 0.18

10 CHAPTER 2. MODEL FOR BRAIN SIMULATION

Figure 2.3: An integrate-and-fire unit [8]

detection. When τ is larger than the mean time between output spikes, the model is temporally
integrating the inputs. When τ is smaller than the average intervals of output spikes, the output
voltage is brought toward threshold by the rare fluctuation of the input. Therefore, the binary
output is a function of the timed threshold-crossing computation. In the following section, a
number of equations for several types of integrate-and-fire model are explained.

Figure 2.4: Leaky integrate-and-fire model [8]

• Leaky integrate-and-fire {
dv
dt = I(t) + a− bv if v <vthresh
v = c if v ≥ vthresh

(2.7)

where v is the membrane potential, I is the input current, and a, b, c and vthresh are the
parameters [1].

• Integrate-and-Fire with Adaptation

v′ = I + a− bv + g(d− v) (2.8)

g =
eδ(t)− g)

τ

where v is the membrane potential, I is the input current, g is activation gate, and a, b
are the parameters [1].

• Integrate-and-Fire-or-Burst

v′ = I + a− bv + gH(v − vh)h(vT − v) if v = vthresh, then v ← c (2.9)

h′ =

{ −h
τ− if v >vh
(1−h)
τ+ if v <vh

build 0.18

2.2. MODELING NEURON BEHAVIOR 11

where v is the membrane potential, I is the input current, h is inactivation of the calcium
T-current, g, vh, vT , τ−, τ+ are the parameters describing dynamics of the T-current, and
H is the Heaviside step function [1].

• Reasonate-and-Fire

z = I + (b+ ıω)z if Imz = athresh, then z ← z0(z) (2.10)

where z is the membrane potential, z0(z) is an arbitrary function describing activity-
dependent after spike reset, and b, ω and athresh are the parameters [1].

• Quadratic Integrate-and-Fire

v′ = I + a(v − vrest)(v − vthresh) if v = vpeak, then v ← vreset (2.11)

where v is the membrane potential, I is the input current, vrest and vthresh are the resting
and threshold values of the membrane potential [1].

2.2.2.2 The Hodgkin-Huxley Model [9]

Hodgkin-Huxley model is based on the idea of ion flow from the membrane to the extra-cellular
fluid. The concentration gradient gives rise to a tendency for sodium ions, which have a higher
concentration in the extra-cellular fluid, to flow into the cell. If there is electrical gradient which
is large enough to cancel the concentration gradient, a reversal potential effect occurs, where the
net flow of sodium ions will be zero.

Hodgkin-Huxley used an equivalent electrical circuit to model the membrane. At the qui-
escent state, a negative voltage is maintained inside the neuron. The cell membrane acts like
a capacitor. Ionic channels of electrical charge carriers such as Na+, K+, Cl− and Ca2+ are
described by continuous, deterministic equations. There are two models of ion channel in these
equations. The nonlinear channel is described by a conductor. The ohmic channel is represented
as a resistor coupled with a capacitor creating a time constant τ to represent the model. An
action potential is produced when the membrane is depolarized enough to open the sodium chan-
nels. This process triggers the fast positive feedback event of a spike. After that, the refractory
period occurs.

In the circuit shown in Figure 2.5, the membrane potential depends on 3 conductances: a
voltage-independent (passive) leak conductance gL, a voltage-dependent (active) sodium conduc-
tance gNa, and an active potassium conductance gK . Each conductance is connected in serial
with the respective reversal potentials of the ionic currents EL, ENa and EK . As the resistivity
of the external medium is assumed to be negligible, the circuit is connected to ground. Based on
Figure 2.5, the Hodgkin-Huxley model can be represented by the following equations:

−C dE
dt

= m3hg−Na(E − ENa) + n4g−K(E − EK) + g−L (E − EL)− I (2.12)

dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− hn)− βhh

where I is the total ionic current across the membrane, m is the probability that one of
the three required activation particles contributed to the activation of the Na gate (m3 is the

build 0.18

12 CHAPTER 2. MODEL FOR BRAIN SIMULATION

C

E I

gK

EK

g L

E L

gNa

ENa

Figure 2.5: Schematic of ionic channel and neuronal membrane of Hodgkin-Huxley
Model [8]

probability that all three activation particles have produced an open channel), h is the probability
that the one inactivation particle has not caused the Na gate to close, gNa is the maximum
possible Na conductance, E is the total membrane potential, ENa is the Na membrane potential,
n is the probability that one of four activation particles has influenced the state of the K gate, gK
is the maximum possible K conductance, EK is the K membrane potential, GL is the maximum
possible leakage conductance, EL is the leakage membrane potential, αn, αm, αh are the constant
rate for particle not activating a gate, βn, βm, βh is the constant rate for particle activating
gate [10].

2.2.2.3 FitzHugh-Nagunmo

The model is a simplification of Hodgkin-Huxley model. It describes the same kind of sub-
threshold behavior and limit cycle oscillations but uses only two equations instead of four equa-
tions. The reduction is done by isolating the mathematical properties of excitation and propa-
gation from the electrochemical properties of Sodium and Potassium ion flow.

v′ = a+ bv + cv2 + dv3 − u (2.13)

u′ = ε(ev − u)

where v is the membrane potential, u is the membrane recovery variable, and a, b, c, d,
and e are parameters which can be tuned so that the model describes spiking dynamics of many
resonator neurons.

2.2.2.4 Hindmarsh-Rose [10]

Hindmarsh-Rose is another simplification of the Hodgkin-Huxley model. They figured out that
there are some variables which could be replaced by constants. This led to the two first equations
in a simpler form. Then they added the third equation in order to represent the movements of

build 0.18

2.2. MODELING NEURON BEHAVIOR 13

neurons more accurately.

v′ = u− F (v) + I − w (2.14)

u′ = G(v)− u

u′ =
(H(v)− w)

τ
where v is the membrane potential, u is the membrane recovery variable, F, G, H are some

functions, and a, b, c, d, e are parameters [1].

2.2.2.5 Morris-Lecar [11]

Morris-Lecar is an efficient model for systems which have two non-inactivating voltage-sensitive
conductances. It is a two-equation model:

CV̇ = I − gL(V − VL)− gCam∞(V)(V − VCa)− gKn(V − VK) (2.15)

ṅ = λ(V)(n∞(V)− n)

where

m∞(V) =
1

2
(1 + tanh

(V − V 1)

V2
)

n∞(V) =
1

2
(1 + tanh

(V − V 3)

V4
)

λ(V) = λ̄ cosh
(V − V 3)

2V4
with parameters C = 20 µF/cm2, gL = 2 mmho/cm2, VL = -50 mV, gCa = 4 mmho/cm2,

VCa = 100 mV, gK = 8 mmho/cm2, VK = -70 mV, V1 = 0 mV, V2 = 15 mV, V3 = 10 mV, V1
= 10 mV, λ = 0.1 s−1, and applied current I (µA/cm2) [1].

2.2.2.6 Wilson Polymonial Neurons [12], [13]

Wilson Polynomial neuron is a model whose equation simplification is not based on biological
properties but mathematical methods. Efficient numerical algorithm was used to calculate the
voltage and current in the Hodgkin-Huxley equations. By some approximations, Wilson acquired
the following equations [12]:

C
dV

dt
= −m∞(V − 0.5)− 26R(V + 0.95)− gTT (V − 1.2)− gH(V + 0.95) + I (2.16)

dR

dt
=

1

τR
(−R+R∞(V))

dT

dt
=

1

14
(−T + T∞(V))

dH

dt
=

1

45
(−H + 3T)

where V is membrane potential, R is recovery variable, T and H are the model conductance
variables, m is Sodium activation, gT , gH , and τ are parameters.

build 0.18

14 CHAPTER 2. MODEL FOR BRAIN SIMULATION

2.2.2.7 Spiking Model by Izhikevich [14]

Izhikevich used a bifurcation methodologies to reduce Hodgkin-Huxley model to a two dimen-
sional models:

v′ = 0.04v2 + 5v + 140− u+ I (2.17)

u′ = a(bv − u)

with the auxiliary after-spike resetting

if v ≥ + 30 mV then

{
v ← c
u← u+ d

where v is the membrane potential, u is the membrane recovery variable, and a, b, c, d are
parameters given in [1].

2.2.3 Extended models

Extended models take more information on the properties of axon and dendrite into consideration.
Those additional elements complicate the model and calculations. Besides, the information of
dendrite, axon and even neuron properties have not been investigated fully. Therefore, those
models are not employed frequently.

2.2.3.1 Modified Single-Point Models

In order to get a more realistic model, additional variables and ionic currents should be taken into
account. Those additional parameters could be the concentration of free, intra-cellular calcium
and slow positive feedback currents, respectively.

2.2.3.2 Compartmental Models

In the preceding models, the spatial extent of a neuron is not taken into consideration. However,
the complex dendrite and axon branches have certain effects on the cell properties. For example,
signal propagation in axon is described by the cable equation 2.1, which is not accurate in the
case of attenuating signals. In the compartmental model, those elements are used as a parameter
in computation. To be more detailed, an equation of voltage along a passive cable is used with
an assumption that the geometrical and electrical properties of the cable is uniform. In fact,
by neglecting the active conductance, the non-linear ion channels are only locally uniform, but
not uniform for a long distance of cable. In order to make this analytic solution more accurate,
the dendritic tree is split into small cylindrical compartments which can be considered as an
approximately uniform membrane potential. Adjacent compartments can be coupled by the
longitudinal resistance which is determined by the compartment’s geometrical properties [2].

For instance, Figure 2.6 is a model of dendritic compartment µ with membrane capacitance

Cµ and transversal resistance Rµ. A longitudinal resistance rvµ which has value of
RvL +RµL

2
is coupled with these elements. Iµ is the external input to the compartment. If the compartment
is a non-linear ion channel, an extra variable resistor is used to represent these characteristics as
in the leftmost compartment.

build 0.18

2.3. COMPARISON OF MODELS 15

Figure 2.6: Multi-compartment neuron model [2]

2.3 Comparison of models

The comparison of neuron models can be viewed from different points of view. In this thesis, it
is limited to several main factors which are related to biological significance and implementation
cost of biophysical models. Based on those factors, the effectiveness of GPU implementation is
evaluated in comparison with other implementations such as CPU or FPGA.

The first factor is the spiking rate under sustained currents. The real neuron’s spiking rate is
around 10-120 Hz, hence the ability to produce spiking frequencies in that range is very important
to simulate biologically plausible neuron model. The simulation results from Figure 2.7a shows
that Hodgkin-Huxley model can only produce spiking rate larger than 50 Hz and the frequency
graph is non-linear. In the other words, there are some specific frequencies which Hodgkin-Huxley
cannot produce. Wilson Polynomial Neurons model (Figure 2.7d) produces the same non-linear
spiking rate as Hodgkin-Huxley model but in a smaller scale and range, which means that more
frequencies in the range 70-120 Hz can be produced by Wilson Polynomial Neurons model as
compared to the Hodgkin-Huxley model. Frequency range of the regular Spiking Model by
Izhikevich (Figure 2.7b) and Leaky Integrate-and-Fire (Figure 2.7f) are similar. They can produce
spikes in a frequency range of 1-120 Hz but the frequency of the Spiking Model by Izhikevich
follows linear pattern while Leaky Integrate-and-Fire is non-linear. FritzHugh-Nagumo model
(Figure 2.7e) is considered as the weakest model in this aspect as its highest possible frequency
is less than 9 Hz.

In term of implementation cost, formal models are the most simple. Although they have
little few biological significance for real neuron activities, they are useful to build artificial neural
networks and also help to understand the fundamental neuron’s functions without spending the
complex hardware implementation. Biophysical models have a higher cost as the number of
parameters and variables used in mathematical equations increases. According to Table 2.1,
the number of register to store variables of the Hodgkin-Huxley model and Wilson Polynomial
Neurons are two times bigger than that of other models. The storage requirement of the integrate-
and-fire model family is the most modest as each model has only one variable.

In term of complexity, Table 2.1 is included here to summarize the complexity of all the
models which are represented in the form of an Ordinary Differential Equation (ODE). Those
equations are solved by a fixed-step first order Euler method x(t+τ) = x(t) + τ f(x(t)) with
the integration time step τ so that a reasonable numerical accuracy is achieved. All models are
simulated in the time step τ of 1ms. The result number of Floating point Operations (FLOPs)
is referenced from [1]. The Hodgkin-Huxley model is again the most complex as it requires 1200
FLOPs for 1ms of simulation. In comparison with Integrate-and-Fire which needs only 5 FLOPs
for the same simulation, there is a large gap between them in both biological significance and

build 0.18

16 CHAPTER 2. MODEL FOR BRAIN SIMULATION

0
0 10 20 30 40 50

20

40

60

80

100

120

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

(a)

0
0 10 20 30 40 50

20

40

60

80

100

120

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

(b)

0
0 1

20

40

60

80

100

120

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

2 3 4 5 6 7 8 9

(c)

0
0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

(d)

0

0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

9

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

1.2

7

5

3

1

(e)

0
0 5

20

40

60

80

100

120

Fr
e

q
u

e
n

cy
 (

H
z)

Current (uA/cm2)

10 15 20 25 30 35 40 45

(f)

Figure 2.7: Spiking rate of neuron models [15]

complexity. The Morris-Lecar model is also very expensive with 600 FLOPs for 1ms of simulation
as it is related to hyperbolic tangents and exponents.

The paper [1] also evaluated the computational cost of different models over the ability of

build 0.18

2.3. COMPARISON OF MODELS 17

Model No. of variable Complexity (FLOPs)

Integrate-and-Fire 1 5

Integrate-and-Fire with Adaptation 1 10

Integrate-and-Fire-or-Burst 1 between 9 and 13

Resonate-and-Fire 1 10

Quadratic Integrate-and-Fire 1 7

Spiking Model by Izhikevich 2 13

FritzHugh-Nagumo 2 72

Hindmarsh-Rose 2 120

Morris-Lecar 2 600

Wilson Polynomial Neurons 4 180

Hodgkin-Huxley 4 1200

Table 2.1: Model comparison

the model in representing different properties of neurons. All the models are evaluated on the
number of neuronal properties that they can express. Empty box means that the model can
express those properties in theory, however the author failed to tune the parameters to achieve
the properties in the limited amount of time. Some properties are mutually exclusive such as
resonator and integrator, hence it is impossible for a model to have them both. According
to Table 2.1, Hodgkin-Huxley and Wilson can express almost all biological features. In the
meantime, the integrated-and-fire model can only exhibits 3/22 properties.1066 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004

Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating point
operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the model should
exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period of time.

III. SPIKING MODELS

Below we review some widely used models of spiking and
bursting neurons that can be expressed in the form of ordinary
differential equations (ODE) (thus, we exclude the spike re-
sponse model [5]). In addition to the 20 neuro-computational
features reviewed above, we also consider whether the models
have biophysically meaningful and measurable parameters, and
whether they can exhibit autonomous chaotic activity. We start
with the simplest models first. The summary of our comparison
is in Fig. 2.

Throughout this section, denotes the membrane potential
and denotes its derivative with respect to time. All the param-
eters in the models are chosen so that has mV scale and the
time has ms scale. To compare computational cost, we assume
that each model, written as a dynamical system , is

implemented using a fixed-step first-order Euler method
with the integration time step chosen

to achieve a reasonable numerical accuracy.

A. I&F

One of the most widely used models in computational neuro-
science is the leaky integrate-and-fire (I&F) neuron

if then

where is the membrane potential, is the input current, and
, , , and are the parameters. When the membrane po-

tential reaches the threshold value , the neuron is said
to fire a spike, and is reset to .

The I&F neuron is Class 1 excitable; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest

Figure 2.8: The approximate number of floating point operations needed to simulate the
model during 1ms time span [1]

The overall comparison of all models in term of complexity and biological significance is
described in Figure 2.8. The model of Izhikevich is the most efficient model with the lowest
implementation cost and high biological plausibility. One conclusion could be drawn for other
models on the curve in Figure 2.8: The more a model costs, the more biologically plausible it
is. This observation is understandable as the more neuron properties are considered, the more
operations of the model are needed.

build 0.18

18 CHAPTER 2. MODEL FOR BRAIN SIMULATION

1066 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004

Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating point
operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the model should
exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period of time.

III. SPIKING MODELS

Below we review some widely used models of spiking and
bursting neurons that can be expressed in the form of ordinary
differential equations (ODE) (thus, we exclude the spike re-
sponse model [5]). In addition to the 20 neuro-computational
features reviewed above, we also consider whether the models
have biophysically meaningful and measurable parameters, and
whether they can exhibit autonomous chaotic activity. We start
with the simplest models first. The summary of our comparison
is in Fig. 2.

Throughout this section, denotes the membrane potential
and denotes its derivative with respect to time. All the param-
eters in the models are chosen so that has mV scale and the
time has ms scale. To compare computational cost, we assume
that each model, written as a dynamical system , is

implemented using a fixed-step first-order Euler method
with the integration time step chosen

to achieve a reasonable numerical accuracy.

A. I&F

One of the most widely used models in computational neuro-
science is the leaky integrate-and-fire (I&F) neuron

if then

where is the membrane potential, is the input current, and
, , , and are the parameters. When the membrane po-

tential reaches the threshold value , the neuron is said
to fire a spike, and is reset to .

The I&F neuron is Class 1 excitable; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest

Figure 2.9: The biological significance of biophysical models [1]

In conclusion, it is very expensive to simulate complex models with as many neurons and
interconnection as in the brain. Axons and dendrites also play important roles in neuron mod-
eling. None of the aforementioned models, except for extended models, considers the shape and
properties of axons and dendrites. For this thesis, GPUs are used to evaluate the performance
of a biophysical model on a high performance computing platform. Hence, the chosen model is
allowed to be quite complex and has a large biological significance. Besides, Hodgkin-Huxley is
considered as the most successful model of all of computational neuron-science models [8]. How-
ever, it is extremely expensive to simulate the model; hence only a small number of neurons could
be simulated in real time. This encourages the GPU implementation of the neural network with
a large number of neurons to get detailed information on neuron activities and their interactions.
Therefore, the Hodgkin-Huxley model is the model of choice to simulate in an increasing number
of cells to figure out the upper bound number of cell while still ensuring real-time execution.

build 0.18

Platform analysis 3
Graphic Processing Units (GPUs) were introduced initially to support the graphical function of
a computer. In the previous years, increasing the number of cores and clock frequency have been
the main solution to build faster computing systems, however it is becoming harder and harder to
enhance CPU’s performance using this technique. In the meantime, GPUs have been developing
dramatically to be able to fulfill the requirements of high performance graphic applications as
well as intensive computational applications. The usage of GPU in non-graphics applications
started in 2003. With its high performance on floating point operations and programmabil-
ity, GPUs emerged as an ideal processor to accelerate data parallel applications. However, the
GPU architecture also had many drawbacks in parallel programming. OpenGL and DirectX,
which were the only programming languages for GPU at the time, were not used widely by gen-
eral applications’ programmers. Moreover, mapping computational programs onto GPUs with
the awareness of graphics calculations increases program complexity significantly. To solve these
problems and utilize GPU performance, firstly, the CUDA framework and afterward, the OpenCL
framework were introduced in 2006 to blur the difference between GPU and CPU programming
and abstract the graphics processing from programmers. The following NVIDIA CUDA archi-
tecture (code-named Fermi) was developed with a better double precision performance, parallel
data cache technology, a GigaThread engine and full Error Checking and Correction (ECC)
support. The newest architecture (Kepler) was released in 2012 with a completely new stream-
ing processor design SMX, dynamic parallelism and an idle time utilization Hyper-Q. For each
architecture, NVIDIA developed three families of product to target different application areas:
GeForce, Quadro and Tesla. While GeForce and Quadro products target consumer graphics and
professional visualization, the Tesla family is designed for parallel computing and programming,
and offers exclusive high performance computing features.

3.1 GPU architecture

Figure 3.1: The GPU devotes more transistors to data processing [16]

A CPU exploits more and more complex control logic to achieve a high performance in
executing a sequential program. Even though the program could be executed in parallel, the
code appears to the programmer as sequential. On the other hand, GPU utilizes most of its

19

20 CHAPTER 3. PLATFORM ANALYSIS

transistors to do calculations of an already parallelized program. In other words, complex control
management hardware is sacrificed for more cores to be able to do more computations at the
same time as illustrated in Figure 3.1.

The general idea in GPU architecture is that multiple cores are organized into multiple
streaming multiprocessors (SMs). An SM has a number of computing cores, control logic and a
memory system. The number of cores per SM depends on each generation of GPU. Each core in
an SM is called a streaming processor (SP). GPUs employ Graphics Double Data Rate (GDDR)
DRAM which has a high bandwidth because if the high bandwidth requirements of graphics
applications. Modern GPUs are also connected to the front-side bus to communicate directly
with the CPU.

The parallel model which is used in GPUs is single-instruction, multiple-thread (SIMT).
The scheduling is carried out by a scheme of multiple threads called a warp. A warp collects
multiple individual threads which are of the same type and able to start together by a single
instruction. The parallel threads in a warp should be free to branch and execute independently.
The scheduling scheme in the SIMT model is done by firstly selecting a ready warp to execute
and then executing the instructions of that warp’s active threads. Each warp thread is mapped
to an SP and executed independently with its own instruction address and register state. Since
warps are independent from each other, the model is considered more flexible and efficient than
the SIMD model because SIMD has to execute every single instruction on different data.

3.1.1 Fermi architecture

Figure 3.2: Architecture of Fermis 16 SM [17]

Fermi architecture has up to 512 CUDA cores which are organized into 16 SMs. These 16

build 0.18

3.1. GPU ARCHITECTURE 21

Figure 3.3: Fermi streaming multiprocessor (SM) [17]

Figure 3.4: Fermi FMA [17]

SMs are located surrounding a L2 cache. Each SM has its own scheduler and dispatch, execution
units, register files and a L1 cache (as shown in Figure 3.2). Fermi architecture can hold up to
6 GB of GDDR5 DRAM which is divided into six 64-bit memory interfaces or a 384-bit memory

build 0.18

22 CHAPTER 3. PLATFORM ANALYSIS

Figure 3.5: NVIDIA GigaThread engine [17]

Figure 3.6: Two warp scheduler in Fermi architecture [17]

interface.

Fermi architecture shown in Figure 3.3 uses the third generation of NVIDIA SM which is
more programmable and efficient than previous architectures.

The computing units of Fermi architecture include the following:

• Each SM has 32 SPs which consist of a fully pipelined ALU and a floating point unit (FPU).
The ALU supports 32-bit precision for all instructions. 64-bit precision is supported for
several instructions such as shift, move, convert, compare, etc. The FPU is implemented
following the new IEEE 754-2008 floating point standard. It uses the fused multiply-
add (FMA) instruction for both single and double precision arithmetic. The FMA is more

build 0.18

3.1. GPU ARCHITECTURE 23

Figure 3.7: Memory hierarchy in Fermi architecture [17]

Figure 3.8: Unified Address Space in Fermi architecture [17]

accurate than mutiply-add (MAD) instruction because the multiplication and addition has
no loss of precision in the addition. In the FMA, the multiplication result is not truncated
its ending digits before performing addition as explained in Figure 3.4. One improvement
of Fermi architecture is that 16 double precision FMAs can be executed per clock, hence
the performance of the double precision calculation is 4.2 times faster than the preceding
generation of GPUs. 32 cores in a SM share 16 load/store (LD/ST) units, and four special

build 0.18

24 CHAPTER 3. PLATFORM ANALYSIS

function units (SFUs).

• 16 LD/ST units permit data from 16 threads to be loaded or stored from a cache or DRAM
at the same time.

• The SFU performs one of transcendental instructions such as sin, cosine, reciprocal and
square root in one clock cycle. It is decoupled from the dispatch unit so that the dispatch
unit can still be used even when the SFU is occupied.

About control logic, Fermi architecture has a novel technology called GigaThread Thread
Scheduler as shown in Figure 3.5. It is a two-level, distributed scheduler which supports faster
context switching and concurrent execution. At the chip level, a global work distribution en-
gine forwards thread blocks to different SMs, while at the SM level, each warp scheduler does
scheduling again to increase the speed of scheduling. The Fermi context switching was optimized
to reduce the cost of context switching to below 25 microsecond. Besides, multiple kernels of the
same application can be executed in parallel to utilize fully resources in Fermi architecture. Each
SM has two warp schedulers and two instruction dispatch units, which means two warps can be
issued and executed in parallel as illustrated in Figure 3.6. Therefore, Fermi scheduler is called
dual warp scheduler which controls 32 threads per warp.

Fermi architecture implements a memory hierarchy as shown in Figure 3.7 with a register
file, a L1 cache, a L2 cache, a shared memory and a global DRAM memory. The register file
consists of 32768 32-bit registers. Fermi architecture is the first GPU architecture with true
memory hierarchy and a unified load/store path. This feature ensures the coherency of data in
the memory hierarchy and also eases difficulties of programmer in dealing with memory. Besides,
the memory accessing time decrease dramatically if the data is cached efficiently. Furthermore,
the size of shared memory and L1 cache in the total 64 KB on-chip memory can be configured
depending on the requirement of an application. If the application needs a large shared memory,
up to 48 KB can be used for shared data. On the other hand, when the amount of shared
memory is unknown, up to 48 KB can be used as L1 cache to enhance the speed of memory
access. All Fermi memories, from cache to DRAM, are equipped with Error Correcting Code
(ECC) which is able to correct single-bit soft error in every data access. Besides, Single-Error
Correct Double Error Detect (SECDED) ECC is also provided to detect and report all double
bit errors and many multi-bit errors early to increase its reliability. Together with ECC, Fermi
architecture also unifies the address space of these memories as shown in Figure 3.8. This feature
makes Fermi architecture be able to support true C++ program which has variables passing via
pointers.

3.1.2 Kepler architecture

Kepler architecture is the newest NVIDIA GPU architecture which targets optimal performance
per watt. It was designed with three important features SMX, HyperQ and dynamic parallelism.
These innovations improve performance with higher energy efficiency.

The SMs in Kepler architecture are called SMXs which aim to achieve power efficiency. The
new SMX unit contains 192 CUDA cores, 32 Special Function Units (SFU), 32 load/store units.
The SMX has more cores than the SM of Fermi (Figure 3.9). Each core can support more threads.
Each thread has more registers. All of those characteristics result in more powerful computing
units. Although more cores are employed, the new SMX consumes three times less energy than
the SM of Fermi architecture. This improvement is achieved thanks to the energy-efficient design
of the micro-architecture, software and system level.

To further improve the performance of Kepler architecture, HyperQ is designed to have a
”smarter” queuing scheme than that of the Fermi architecture. The difference between those two
architectures is illustrated in Figure 3.10. If the Fermi architecture has a single work queue which
might not able to keep the GPU busy all the time, the Kepler architecture has 32 concurrent

build 0.18

3.2. CUDA FRAMEWORK 25

Figure 3.9: The novel SMX design of Kepler architecture [18]

Figure 3.10: The HyperQ scheduling scheme in Kepler architecture [18]

work queues to fulfill 32 processors on GPU at the same time. This improvement decreases the
idle time of the GPU cores, hence increases the throughput of executing instructions.

Another innovation technology of Kepler architecture is the dynamic parallelism. Figure 3.11
explains how this makes the Kepler architecture more efficient. In the dynamic parallelism
protocol, kernels can be launched directly from the GPU side, which means nested kernels on
the GPU side are allowed. This eliminates the unnecessary switch between CPU and GPU to
execute kernels. Furthermore, various applications can be mapped on GPU.

3.2 CUDA framework

As GPU is designed to target data parallel applications such as graphical applications, parallelism
is handled by GPUs with less effort than by CPU. However, CPU has more complex control logic,

build 0.18

26 CHAPTER 3. PLATFORM ANALYSIS

Figure 3.11: Dynamic parallelism in Kepler architecture [19]

hence the program with conditional commands is handled much better by CPU. In other words,
there are tasks which are more suitable to run on CPU and vice versa. Hence, it would be
beneficial to combine GPU and CPU into an unique platform where they can cooperate for
better performance. The CUDA framework was introduced with this purpose.

3.2.1 CUDA program

In a CUDA framework, CPU is considered as a host which will cooperate with one or more
devices called CUDA devices. CUDA devices consist of numerous arithmetic execution units
which could produce massively parallel processing ability.

A CUDA program contains one or more parts which can be mapped on a host or a device.
The tasks which have little or no data parallelism will be executed on a host, while parallel tasks
will be performed on devices as shown in Figure 3.12. A CUDA program is a unified source
code which combine both host and device code. The program is executed from host side and
invoke kernels which are device code. The kernel should be able to operated in parallel on a large
number of threads which are assigned to multiple cores.

CUDA device is equipped with its own memories which are separate from CPU memory in
the same platform. Therefore, devices have to allocate memory and transfer data from the host
memory to the device memory. After executing a kernel, device transfers the data back to the
host memory and frees up the memory for further usage.

A kernel is a function which specifies the program to execute simultaneously by all threads.
The kernel program should be the same for all threads but operates on different data to produce
massively results for a particular computation.

The execution of kernel on GPU is assigned to multiple threads. Threads are organized into
multiple equal size blocks. Multiple blocks create a grid. Figure 3.13 is an example of how
threads are organized in a grid. Blocks and threads live in a 3-dimensional space, hence they are
identified by an x, y, z coordinated index.

The programmer specifies the number of block per grid and the number of thread per block
by using a predefined variable in a kernel call <<<...>>>. Those parameters affects the ef-

build 0.18

3.2. CUDA FRAMEWORK 27

Figure 3.12: The sequence of a CUDA program in host side and device side [20]

fectiveness of the CUDA program. The block ID and thread ID are also accessible by built-in
variables.

build 0.18

28 CHAPTER 3. PLATFORM ANALYSIS

Figure 3.13: A 2D division of a CUDA grid [20]

3.2.2 CUDA memory hierarchy and manipulation

Memory hierarchy

The device memory hierarchy includes constant memory, global memory, registers and shared
memory as described in Figure 3.14. The global and constant memory are used to communicate
with the host memory and among devices. Each thread has its own registers (local memory)
which are inaccessible by other threads. The shared memory is used by several threads within
a block. It is expected to be accessed much faster than the global memory, therefore as much
data as possible should be allocated on the shared memory first. However, the shared memory
size is limited to only maximum 48KB per block, not all the data could be allocated on shared
memory. Those memory is classified as linear memory, to be distinguished with other memory
types such as texture memory or surface memory.

Memory manipulation

The memory access in a CUDA program is handled by API functions. Apart from those APIs,
the new version of CUDA is equipped with more flexible operations with the device memory.

In order to control the L1 and L2 cache which can affect seriously application performance,
CUDA functions are provided to allow programmers control the usage of those caches. A cache
line is 128 byte long. If the data is cached both in L1 and L2 cache, the memory access is
transferred with 128 byte per transaction. Whereas, memory access which is cached in L2 only
is transferred with 32 bytes per transaction. By default, all data is cached through both L1 and
L2 cache. For some cases, L1 cache is helpful to increase program performance. However, if the
access pattern is scatter, L1 cache becomes a bottleneck for data accessing time. To disable L1

build 0.18

3.2. CUDA FRAMEWORK 29

Figure 3.14: Overview of CUDA memories [20]

cache, a programmer can use the compiler option Xptxasdlcm = cg [21].

Access to shared memory is much faster than global/local memory, hence more shared mem-
ory per block can be favored in some cases. In addition to the default shared memory size, the
amount of extra shared memory per block can be determined inside the kernel call. Besides, the
L1 cache which shares the same on-chip memory space with shared memory.

Texture memory

As GPU is designed for graphical applications which involves operations on image pixels. The
environment of a pixel is highly relevant to its properties. This characteristic is also necessary
for many computing applications. To exploit this ability, the texture memory accessibility is
preserved in the CUDA framework. Texture memory is a read-only memory which could be
considered as a read-only pointer to a global memory location. Texture memory is useful in
some cases where caching principles limits the memory access pattern and bounds performance
enhancement. The cache line is considered as a set of consecutive memory locations. In order to
load neighboring memory locations as shown in Figure 3.15, a normal cache line needs at least
three loads. However, the texture memory could use the two-dimensional coordination system to
load those memory locations in one load. In CUDA framework, texture memory is provided with
1D and 2D management. The supported data type includes integer and float (single-precision
floating point). Double precision floating point is also possible by using a type int2 together with
the function hiloint2double() which converts a variable of type int2 to type double.

build 0.18

30 CHAPTER 3. PLATFORM ANALYSIS

5

10

15

1

6

11

16 17 17 19 20

Texture memory cache line

2 3 4

7 8 9

12 13 14

Normal cache line

Figure 3.15: Loading pattern of texture memory

3.2.3 Exploit parallelism using CUDA

Concurrent execution

In a CUDA program, there are several methods to execute kernels concurrently. At device level,
CUDA provides syntax to invoke different kernels from one host program. If the platform has
multiple GPU devices, multiple kernels could run on those devices in parallel and combine results
in the host program at the end.

At the task level, different CUDA kernel with different stream ID can execute on the same
device in parallel. This configuration is done intentionally by programmer. This configuration
increases the utilization of GPU resources if there is enough parallelism in an application.

Overlapped execution

In addition to concurrent execution, CUDA also provides overlapped execution. Overlapped exe-
cution is done between memory transactions and kernel execution using asynchronous operations.

3.2.4 Synchronization

The synchronization in a computing application program is very essential. However, CUDA is
designed to target high throughput in execution, which means that as many tasks as possible
are mapped to run on CUDA devices regardless of the program robustness. Although CUDA
has some synchronizations among threads in a block, it has no specific method for global syn-
chronization of all running threads. Some new APIs have been recently introduced to bring
more powerful synchronization to kernel execution. However, those APIs only ensure that all the

build 0.18

3.3. MODEL MAPPING ON GPU 31

global memory allocations and shared variables are consistently written or prevent RAW (Read
After Write) hazard. Up to the newest release, there is no provided global synchronization for
all the threads in kernel execution.

At kernel level, an execution is synchronized when the kernel stops executing, which means
no command of the kernel needs progressing anymore. This is called implicitly synchroniza-
tion which might costs the kernel initialization time for one synchronization, hence it may or
may not suitable to some specific applications. However, with the new ability to execute two
kernels at the same time, this synchronization is not always reliable. In addition to that, the
explicit synchronization using APIs such as cudaDeviceSynchronize(), cuCtxSynchronize(),
cudaStreamSynchronize(), cuStreamSynchronize(), cudaEventSynchronize(), etc. can be
used in some cases. This synchronization forces all the commands of the previous kernel execu-
tion to finish before launching a new kernel. It costs more synchronization time than the implicit
synchronization because of the APIs execution time.

In many computing applications, the above synchronizations are indeed not enough. Hence,
some research have been carried to figure out more synchronization method in a CUDA pro-
gram [22], [23]. Those methods exploited some properties of special operations in CUDA such as
atomicAdd() or the principle that synchronization is done by exhausting all the CUDA resources.
However, those synchronization methods are very costly to many real time applications.

3.3 Model mapping on GPU

+

CPU GPU

Rest of Sequential

CPU Code

Use CUDA to Parallelize

 Libraries
 Templates

 Code Kernels

Compute-Intensive Functions

Application Code

Figure 3.16: Mapping kernel to GPU while the rest of program is still executed on CPU

A neuron model is a set of equations which represents the internal dynamics of each neuron.
The neuron model in a network setting represents activities among multiple neurons whose prop-
erties change according to their inputs and interactions among each other. Simulation of neural
network is computationally expensive because of the number of neurons at one simulation step is
up to thousands of neuron. Besides, if we target real-time simulation the output is required to be
available after a short period of time which is about several microseconds. Moreover, the number
of steps to simulate a neural network is enormous, up to hundreds thousand steps depending on
the scale of each time step.

build 0.18

32 CHAPTER 3. PLATFORM ANALYSIS

Fortunately, the simulation of neural network is an embarrassingly parallel problem because
each neuron could be considered as a single computing element which does its own computation
and communicates to others by memory accesses. Hence, the application is suitable to be mapped
on a GPU platform. In comparison with simulation on costly server machine, a GPU platform
can offer a cheaper and simpler platform for such problem with high efficiency.

In order to do that, a kernel which is an intrinsic calculation of neuronal properties should
be extracted as illustrated in Figure 3.16. This kernel would be mapped on multiple individual
CUDA threads to be executed in parallel. The kernel is spotted at the part of code which contains
big iterative loops. The code in the kernel should avoid any conditional instruction so that the
execution is straightforward for all kernels and avoids any delay to read updated values among
kernels.

The kernel extraction should also take care of the amount of data needed to transfer to
device side. If a large amount of data needs transferring to the device, the limited memory size
and long memory accessing time on the device side could be the bottleneck to increase parallel
program performance. Moreover, the overlapped execution between memory transactions and
kernel execution could be considered as an option to reduce the execution time. In case the
memory transactions is not the bottleneck of the application performance, optimizing memory
usage is not helpful.

The efficiency of mapping a model on the GPU platform also includes optimizing the band-
width of memory access. All the data on the device should be analyzed to be assigned correctly
to registers, the shared or global memory. As global memory access cost is 300-400 times slower
than shared memory access, the device data pattern should be allocated efficiently to utilize effi-
ciently caching. Fortunately, the GPU platform offers multiple read and exclusive write protocol,
which allows multiple kernels to read from the same memory location with high bandwidth. This
eases the difficulty of implementation partly and also reveals a promising performance result.
Texture memory is also suitable to reduce memory accessing time. This memory is a read-only
memory, however this drawback can be overcome by synchronizing explicitly. Every time a kernel
is loaded, the texture memory will be cached again.

The Tesla C2075 platform has 4GBs of global memory and 48KBs of shared memory per
block. Hence, for a double precision calculation (which means that a variable of type double -
8 bytes is used), the shared memory and global memory could hold up to 6144 variables and
524288 variables, respectively. For single precision, this number increases twice. The global data
used by both host and device, and the shared data used among threads per block should be less
than this amount. The optimum solution for memory bandwidth can be only achieved when
the transaction segment is aligned of 1, 2, 4, 8 or 16 bytes. Moreover, a L1 cache line is 128
bytes which determined the memory pitch to allocate data in global memory. Otherwise, a single
access will be compiled into multiple instructions with the interleaved access pattern without
coalescing. Besides, the usage of L1 and L2 cache could be also considered in the case that the
data is scattered and cannot be cached in a more efficient way. In some cases, L1 cache could
be disable to decrease memory accessing time. The platform has a warp of 32 threads with a
dual warp scheduler, therefore the number of threads in a block should be a multiple of 32 to
exploit fully the resources of a SM. Some researches show that the optimum block size in Fermi
architecture is 2x128 or 2x256 where provides the minimum cache misses and the maximum
occupancy [24], [25].

The GeForce GT640 platform has 2GBs of global memory and 48KBs of shared memory per
block. Hence, the data mapped to global memory should be more compact in comparison with
the Tesla platform. However, the number of register per block is 65536, which is twice bigger
than the Tesla platform. Therefore, more local memory could be used, or more threads could be
initialized in parallel.

build 0.18

Implementation 4
This chapter represents the GPU implementation of Inferior Olive cell in a network setting. The
implementation in C language is investigated to spot its critical part which directly impacts the
simulation on a computer platform. After that, the parallel implementation in CUDA is discussed
step by step from constructing the implementation to optimizing its performance.

4.1 Inferior Olive model in a network setting

4.1.1 Inferior Olive cell

The cerebellum, as mentioned in Chapter 2, is the brain region which ensures the force and
timing of motor activities, and related to the learning of motor skills.

PC

CN

IO

GC

mossy fiber

climbing fiber

parallel fiber

Cerebellum

To pre-motor
area

Figure 4.1: Diagram of the cerebellar circuit (GC: Granule Cells; PC: Purkinje Cells;
CN: deep Cerebellar Nuclei; IO: Inferior Olive)

The cerebellum [26] has two main input channels: the Mossy Fiber (MF) and the Climbing
Fiber (CF) (as shown in Figure 4.1). The MF collects all the contextual information from other
regions of the brain. The MF, through the Parallel Fiber (PF), together with CF feed signals
into Purkinje Cell (PC). The PC is the only cell which inhibits unwanted activities in the deep

33

34 CHAPTER 4. IMPLEMENTATION

cerebellar nucleus neuron so that the appropriate output could be produced. The action of
”turning off” the deep cerebellar nucleus is akin to sculpture, where unwanted pieces should be
removed to create wanted pattern. That’s how the motor learning process happens in order to
perform more accurate movements [27]. The Inferior Olive (IO) is the only neural cell which
provides input to the CF, making it vital to the cerebellum’s function. As the CF is responsible
for timing of motor commands and motor learning, IO lesions (disconnection between IO and
the cerebellum) lead to motor problems such as nystagmus, ataxia and dystonia.

4.1.2 IO model

Figure 4.2: Three-compartment dynamics of the IO cell [28]

The model simulated in this thesis is the IO model, which has been developed by Jornt R.
de Gruijl from earlier work [28]. In this model, the Hodgkin-Huxley model is applied on three
compartments: a dendrite, a soma and an axon hillock. Each compartment is modeled based
on three parameters of conductance: leak conductance, sodium conductance and potassium con-
ductance. Each conductance depends on a number of current parameters. The dendrite conduc-

build 0.18

4.1. INFERIOR OLIVE MODEL IN A NETWORK SETTING 35

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

D
e

n
d

ri
te

So
m

a

A
xo

n

Gap junction

G
ap

 ju
n

ct
io

n

G
ap

 ju
n

ct
io

n

Gap junction

Gap junction

Gap junctionGap junction

Gap junction

IO_NETWORK_DIM2

IO
_N

ET
W

O
R

K
_D

IM
1

IOIO

IO IO IO

IO

IOIOIO

IN
P

U
T

FR
O

M
 C

N

V
O

LT
A

G
E

O
F

TH
E

A
X

O
N

IO

Figure 4.3: The network of IO cell

tance depends on a high-threshold calcium current (ICaH), h current (Ih), and calcium-dependent
potassium current (IK,Ca). The soma conductance depends on a low-threshold calcium current
(ICaL), potassium currents (IK,s, IK,f) and sodium current (INa). The axon hillock conductance
depends on a sodium current (INa,ax) and a potassium current (IK,f). Each compartment also
include a passive leak current, Ild, Ils, Ila, respectively. The above dynamics of the IO cell model
are shown in Figure 4.2. Inside an IO model, the three compartments interact with each other.

Multiple IO cells are connected to create an IO network. In order to simplify the cal-
culation on the IO network, the network is considered as a 2D mesh with two dimensions
IO NETWORK DIM1 and IO NETWORK DIM2. The calculation of each IO is involved in
computing the three compartments’ properties such as currents and voltages. Figure 4.3 is an
illustration of the IO network. An external input voltage is fed into the dendrite compartment
of every IO, which represents the input from the CN. The interconnection among cells in an IO
network is via a so-called the gap junction where each cell is connected to 8 neighbors.

The interconnection among cells is represented by getting all the dendrite’s voltages of neigh-
bor cells to compute the dendritic voltage. The equation for the gap junction is discussed in [28].
As the IO network is an 2D cell mesh, cells at the corner have only 3 real neighbors, and other
cells at the border have 5 real neighbors.

4.1.3 Model implementation in C programming language

In order to simulate the model on computer, the model is originally implemented in Matlab, then
converted into C programming language by Sebastian Isaza.

In the C source code, the data flow of the ”main” function is shown in Figure 4.6, which
allocates essential memories, initializes the state of the cell network, and executes different pa-
rameters calculations.

The program employs ”struct” to implement two main data structures in the code, as shown

build 0.18

36 CHAPTER 4. IMPLEMENTATION

CellState

Data type: struct of 19 double variables

dendrite:
- V_dend
- Hcurrent_q
- Calcium_r
- Potassium_s
- I_CaH
- Ca2Plus

soma:
- g_CaL
- V_soma
- Sodium_m
- Sodium_h
- Calcium_k
- Calcium_l
- Potassium_n
- Potassium_p
- Potassium_x_s

CellCompParams

Data type: Struct of 54 double variables

Included: cell’s
V_DEND
V_NEIGHBOUR (1-15)
PREV_CELLSTATE (of type CellState)
NEXT_CELLSTATE (of type CellState)

axon:
- V_axon
- Sodium_m_a
- Sodium_h_a
- Potassium_x_a

Figure 4.4: Data structures used in the implementation

in Figure 4.4. The structure called CellState contains 19 variables of type double. These vari-
ables are the currents and voltages of three compartments which are explained in [28]. Another
structure type is the CellCompParams which contains 54 variables. The CellCompParams type
is used for arguments which are passed to functions to compute repeatedly updated values of the
three compartments. Since we need to store both the previous and next state of each cell, the
amount of data stored for type CellState is double the size of the input size.

In the C implementation, there are two main variables in the form of an array (CellStatePtr
and CellCompParamsPtr as shown in Figure 4.5). As the CellStatePtr variable should be large
enough to store one previous cell state and one next state, the variable has size of double the IO
network size. Each cell needs one variable of type struct CellCompParams to calculate properties
of cell at each time step, hence the number of the variables of type CellCompParamsPtr needed
is the same as the size of the IO network.

The main function in Figure 4.6 starts with assigning predefined values to all cell states,
which are the array variable CellStatePtr. As explained earlier, the external current is fed into
the dendrite compartment at the beginning of every time step. Those values are sampling values
of a spike which is equal to 6 in a specific range and 0 at the rest. There are 120000 values
of external input which is corresponding to 120000 time steps. Therefore, the external input is
defined as an array of 120000 elements. Therefore, the time step index is needed to locate the
correct value of the external input. After initializing all cell’s states and feeding inputs, every IO
is computed one by one and gets updated new states after each time-step.

As explained above, each cell is connected to eight neighbors. In this implementation, the

build 0.18

4.2. CUDA IMPLEMENTATION 37

Initialize cells

1st For loop: t from 0 to timesteps

2nd For loop: j from 0 to IO_NETWORK_DIM1

3rd For loop: k from 0 to IO_NETWORK_DIM2

Compute cells’ parameters:
V_DEND, V_SOMA, V_AXON

Print output to file

Program structure Variables

CellStatePtr

Data type: an array of typed cellState

Size: 2xIO_NETWORK_DIM1xIO_NETWORK_DIM2

Represented by

CellCompParamsPtr

Using

Data type: an array of typed cellCompParams

Size: IO_NETWORK_DIM1xIO_NETWORK_DIM2

Intensive
computational

Figure 4.5: The C implementation of the IO model

connection is represented by getting dendrite’s voltage of neighbors to store in a specific array.
However, to ease the task of filling those values in an array, the number of neighbors should be all
equal to each other. Therefore, each cell is considered as always having eight neighbors. Missing
neighbors of cells at the corner and border is filled with the values of the cell itself.

The C implementation in Figure 4.5 includes one loop of 120000 time steps and two loops of
visiting two dimensions of the IO network (IO NETWORK DIM1 and IO NETWORK DIM2).
The compute intensive part of the program is located at these three loops of simulation. This
information is necessary to parallelize the program later.

The function ComputeOneCell (as shown in Figure 4.7) computes all parameters of den-
drite, soma and axon. This function calls three sub-functions to do arithmetic calculation using
equations in [28]. Three functions operate on the previous states of IO and the external input,
hence they can be executed in parallel. Details on these three functions, which are not related
to parallelizing the implementation, are not discussed thoroughly in this thesis.

4.2 CUDA implementation

As the compute intensive part is located at the three loops where the calculation and update of the
three compartments are carried out, the CUDA implementation (as shown in Figure 4.8) focuses
on resolving this critical part. Firstly, the two inner loops are mapped onto a 2-dimensional grid
of CUDA threads. With this setting, every CUDA thread corresponds to an IO cell. Each thread
computes parameters of the dendrite, soma and axon for every time steps. In other words, the
kernel is actually the function ComputeOneCell. Each time step is one iteration of the outermost
loop. As the three compartments are highly associated with each other, the output of one
compartment’s function is the input for other compartment’s functions for the next iteration,
hence the three compartments can be computed in parallel.

build 0.18

38 CHAPTER 4. IMPLEMENTATION

Initialize
cell states

Get
dendrites input

Get
simulation
timestep

Compute one cell

All cells visited?

Enough simulation
timesteps?

EndStart

Yes

Yes

No

No

Select another cell

Increase timestep

Input size

SIMTIME/DELTA

Intensive computing partition

Kernel

Figure 4.6: Data flow of the ”main” function of the C code of the model

Compute Dendrite’s
parameters

End

Compute one cell

Compute Soma’s
parameters

Compute Axon
hillock’s parameters

Figure 4.7: Data flow of the subprogram to compute single cell’s parameters

Needed code synchronization

In each iteration, the new cell state is computed based on the external input and the previous
cell state, hence the results of every iteration must be preserved for the next calculation step. In
order to ensure the synchronization requirement of every time step, the outermost loop, which
controls the time step index, is still carried out on the host side. The synchronization in this
case is explicit because it is forced to happen by initializing new kernels at the beginning of every
iteration. However, the data on the GPU is preserved for all the iterations and avoid unnecessary
host-device communication.

Another synchronization is required at the updating stage of the dendrite voltage. As different

build 0.18

4.2. CUDA IMPLEMENTATION 39

Copy data from
host to device

Copy data from
device to host

Program structure Variables

dev_cellStateTmp

· Data type: array of set of 19 double

· Size: 2xIO_NETWORK_DIM1xIO_NETWORK_DIM2

Using

dev_cellCompParamsTmp

Using
· Data type: array of set of 54 double
· Size:
timestepxIO_NETWORK_DIM1xIO_NETWORK_DIM2

Initialize cells

cellStatePtr

· Data type: cellState

· Size:2xIO_NETWORK_DIM1xIO_NETWORK_DIM2

Represented by

Copied to

1st For loop: t from 0 to timesteps

GPU kernel invoke
No. of thread:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

Print output to file

Get V_DEND of 8 neighbors
Compute cells’ parameters:
V_DEND, V_SOMA, V_AXON

Copied to

2nd For loop: j from 0 to IO_NETWORK_DIM1

3rd For loop: k from 0 to IO_NETWORK_DIM2

Reduce 2 loops:

Transfer input (iApp)

Transfer index t

Memory bottleneck

4 GBs global memory is not enough for larger input size
(max: 89x89 cells)

Shared memory: 48 KBs is only sufficient for 6144 double variables
(not enough for input size of 80x80)

Figure 4.8: Original CUDA implementation

threads perform calculation in parallel, a thread might overwrite its dendrite voltage before
another thread gets that value. Hence, the variable dev cellCompParamsPtr has to be defined
separately for every time step and for each different IO. However, this leads to large memory
consumption for this variable.

build 0.18

40 CHAPTER 4. IMPLEMENTATION

Needed data communication

The initialized data in dev cellStatePtr, which is a copy of CellStatePtr from the CPU side,
is transferred once from memory of the host (CPU) to the device (GPU) before kernel starts.
Besides, there are two type of data need transferring at every time step. The first data is the
external input of dendrite (iApp) which is one variable of typed double. The second one is the
index of time step t which is required to locate which variable to update the newly calculating
data. After finishing calculation, the final state of every IO cell is transferred back to the host
memory and output to a file for further usage.

Needed CUDA data structures

About data structure, as CUDA does not support the data type ”struct”, an organization of data
based on array and index by constants is used. Instead of using a data struct of 19 variables,
an array of many sets of 19 variables is used instead and indexed by predefined constants. An
initialized array of IO network is allocated on host side, then copied to a temporary array to be
transferred to the device memory. In short, an array cellStatePtr of typed cellState is located
with the size of inputs on the host memory. On the device memory, an array dev cellStateTmp
and dev cellCompParamTmp are used with the size of the input size.

Limitations

This implementation reveals a memory bottleneck of the model as the device’s memory is not
sufficient for the large input size which might be up to billion neuron cells. Besides, the bigger
the amount of memory used, the more consuming the memory access time is. Hence, various
optimization should be applied on the implementation to reduce memory usage and access time.

4.3 Optimization

Optimization is implemented in such a way which ensures the robustness of computation, and
reduces execution time of each time step. As the number of time steps is fixed, the total execution
time of the program depends mostly on the execution time of each time step. In the following,
we discuss the optimization steps used to reduce execution time.

Combining data transmission

The dendrite’s input voltage for each time step is transferred as the whole array whose size equals
to the number of time step. As the whole array is transferred, this host-device communication
can be moved outside of the first loop as shown in Figure 4.9, hence reduce vastly the time of
transferring, avoid unnecessary initializing transmission every time step and also help increase
the global memory coalesce.

Using global variable

The index of time step is replaced by a global variable which is controlled by a specific thread on
the device side. This global variable is updated by only one thread at the end of each iteration
to make sure that the index is increased by one according to each iteration. The correctness of
this index is used to determine the proper access to the external input array.

build 0.18

4.3. OPTIMIZATION 41

Copy data from
host to device

Compute cells’ parameters:
V_DEND, V_SOMA, V_AXON

Copy data from
device to host

Program structure Variables

dev_cellStatePtr

· Data type: array of set of 27 double

· Size of array:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

dev_cellCompParamsPtrUsing

· Data type: Array of set of 54 double
· Size of array:

IO_NETWORK_DIM1xIO_NETWORK_DIM2

Initialize cells

cellStatePtr

· Data type: array of cellState

· Size: 2xIO_NETWORK_DIM1xIO_NETWORK_DIM2

Represented by

Copied to

1st For loop: t from 0 to timesteps

GPU kernel invoke
No. of thread:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

Print output to file

Get V_DEND of 8 neighbors

Copied to

Only transfer
The final values of

 DEND, SOMA, AXON

Using
local variables

dev_iApp

· Data type: array of double

· Size: timesteps

Using global index
and transfer iApp as whole

Using efficient
organizing of

global variables

Using

Using

dev_cellVDendPtr

· Data type: array of double
· Size:

IO_NETWORK_DIM1xIO_NETWORK_DIM2

Using efficient
organizing of neighbor

V_DEND

Memory bottleneck removal

Increase the input size up to more than 1 billion cells (1024x1024)

Reduce host-device communication time

Reduce kernel execution time by reducing global memory access

Using

Efficient block size

Using
texture
memory

No. of Thread per Block: Multiple of warp size

Warp size: 32

Based on:

No. of Block per Grid: Input size/Block size

Device memory coalesce and aligned access

Transfer multiples of 8 bytes each

Aligned data for each thread access

Efficient global memory pattern and BW

Figure 4.9: Optimized CUDA implementation

Reorganizing shared-data set

The value of dendrite’s voltage is stored in a separate array which contains only one reserved
variable per thread. This optimization reduces the memory accessing time because more useful
data is loaded within a cache line. Furthermore, this optimization allows texture memory to be
exploited later.

Reorganizing CUDA data structure

The global memory which is used to stored cell’s states is reorganized into an array of multiple
sets of 27 double variables. A set of 27 double variables includes 19 variables corresponding to the
struct cellState, together with 8 variables reserved for 8 values of neighbors. With this organiza-
tion of data, the kernel can be split into two separate kernels and allows explicit synchronization
without affecting the robustness of the program. This optimization also permits the array vari-
able dev cellCompParamPtr to be defined as local variables with the size of one array element
per thread. Furthermore, the local memory is handled by the compiler, hence more systematic

build 0.18

42 CHAPTER 4. IMPLEMENTATION

optimization is done automatically by the compiler such as coalescing, dynamic allocating, etc.
One disadvantage of CUDA memory is that the indexed array is allocated on global memory,
therefore, the accessing time does not decrease as wanted. However, this optimization make the
memory size bottleneck no longer problematic.

Using texture memory

5

10

15

1

6

11

16 17 17 19 20

2 3 4

7 8 9

12 13 14

Neighbors of cell 1

-1-1-1

-1

-1

Neighbors of cell 1

Figure 4.10: Texture memory help eliminate border conditions

Another optimization is to use the texture memory. As the array of neighbor dendrite
voltage only changes across time steps. In the other words, the array is considered as read-only
in one time step. Besides, the kernel is reloaded every time step, hence the texture memory is
also reloaded every kernel. These conditions allow the texture memory to be used to load the
neighbor dendrite voltage. The texture memory is useful in this situation because it is cached by
the geographic allocation of memory instead of by standard cache line. For the implementation
of this IO network, every cell needs its 8 neighbor voltages which fit the caching style of the
texture memory. Therefore, the texture memory is effective to reduce the execution time.

Besides, the texture memory help remove the branch divergence. In the original source code,
all cells need to check if it is at the border. In that case, some neighbor values might be missing,
hence it has to take its voltage value instead of the neighbor voltage values.For example, in
Figure 4.10, the cell number 1 has to take 3 neighbors voltage values from cell 2, 5, and 6. As
it is at the border, the voltage value of the neighbors marked -1 are invalid. Therefore, the cell
uses its own voltage value to fill in those missing values. Using this scheme, all the cells has eight
neighbor voltage values and avoid the complexity of dealing with different number of neighbors.

Using efficient block size

The last optimization is an efficient block size. According to the specification of the Tesla
platform, the warp size is 32 threads. Hence, the number of threads per block should be a
multiple of this warp size to exploit the most the efficient transferring of memory and fine-grain
execution of all the threads. Hence the size of the grid is defined based on the input size and the
block size.

build 0.18

4.3. OPTIMIZATION 43

Implementation variations

The above mentioned optimization is applied on the original GPU implementation. To adapt to
different platforms and targets, three variations of the implementation are used. The details of
those implementation variations are discussed in Appendix A.

Limitations

The implementation cannot exploit efficiently overlapped of the communication and kernel exe-
cution since all the data must be available before the kernel starts. Besides, the shared memory
cannot be used as it is not suitable for any type of application data, since we either need to be
broadcast the data to all the threads in the grid or since the data is too large to be allocated
on the shared memory. Lastly, the application only allows for spacial parallelism but not for
temporal parallelism across multiple iterations, which also limits parallelizing the application.

build 0.18

44 CHAPTER 4. IMPLEMENTATION

build 0.18

Results and discussion 5
This chapter discusses the achieved results of the implementation in the previous chapter. In
order to verify the final results, characteristics of simulation platforms and application implemen-
tation, together with the prediction on its performance are included to provide solid base for the
simulation result. Finally, the performance and bottlenecks of the application implementation is
discussed in detail to evaluate the success of the project.

5.1 Simulation setup

5.1.1 Platforms

The simulation model implementation and the optimization discussed in Chapter 4 are evaluated
in various ways. There are three platforms used for this evaluation. Properties of these platforms
are discussed below.

Baseline CPU platform

A CPU platform is used as the baseline platform to run the simulation of the sequential imple-
mentation. The performance of the implementation is used to compare with that of the parallel
implementation on GPU platforms. The baseline platform is an Intel Core i5-2450M (2.5 GHz)
with 4 GBs of RAM.

GPU platforms

The parallel implementation is executed on two GPU platforms: Tesla C2075 and GeForce GT640
(referred as Tesla and GeForce, respectively). The characteristics of the two GPU platforms are
described in Table 5.1.

5.1.2 Simulation characteristics

Simulation requirements

The implementation is simulated with two versions in single and double precision floating point
operations (referred as single and double precision simulation, respectively). The single and
double precision are evaluated to identify the impact on performance and accuracy for neuron
science applications. Even though most of simulations in the field require double precision accu-
racy, single precision is useful in determining overall behavior of a neuron model in some cases.
Hence, the simulation is benchmarked to determine:

• whether it is more effective to use a particular platform for single or double precision
implementation, and

• in which cases, it is necessary to use a particular platform for double precision, and

• what is the cost efficiency of both platforms Tesla C2075 and GeForce GT640 for the
implementation.

45

46 CHAPTER 5. RESULTS AND DISCUSSION

Tesla C2075 GeForce GT640

GPU Clock rate 1147 MHz 928 MHz

CUDA Cores 448 384

No. of SM 14 2

No. of cores per SM 32 192

Memory Clock rate 1566 Mhz 891 Mhz

Global memory 4096 MBytes 2047 MBytes

Shared memory per block 49152 bytes 49152 bytes

L2 Cache Size 786432 bytes 262144 bytes

Max Layered Texture Size (dim) x layers 1D=(65536),
2D=(65536,65535),
3D=(2048,2048,2048)

1D=(16384) x 2048,
2D=(16384,16384) x
2048

Texture alignment 512 bytes 512 bytes

Registers available per block 32768 65536

Registers available per thread 63 256

Warp size 32 32

Maximum number of threads per SM 1536 2048

Maximum number of threads per block 1024 1024

Maximum number of blocks per SM 8 16

Maximum sizes of each dimension of a grid 65535 x 65535 x 65535 2147483647 x 65535 x
65535

CUDA Capability 2.0 3.0

Table 5.1: Properties of GPU platforms

Besides, multiple impacts on the performance such as L1 cache usage and GPU thread block
size (also referred as block size) are evaluated. The results are required to answer the following
questions:

• Does the usage of L1 cache improve the performance of the implementation?

• How does the thread block size affect the performance of the implementation? What is
the best block size?

• How is the block size related to the usage of other resources, for example the number of
registers?

A square thread block is preferably used with equal x and y block dimension. In the same
way, a simulation model with the same x and y dimension input size is used for code simplicity.
The simulation is carried out with the block sizes of 16 (4x4), 32 (4x8), 64 (8x8), 256 (16x16), and
1024 (32x32) threads per block. Those numbers are chosen so that the block size is a multiple
of 32 as explained in Chapter 3. Block size of 16 is chosen to prove the inefficient block size.
Moreover, the block is also limited by architecture, 1024 threads per block for both Tesla C2050
and GeForce GT640.

Theoretical parameters

• Occupancy

build 0.18

5.1. SIMULATION SETUP 47

Occupancy or multiprocessor occupancy is the ratio of active warps to the maximum
number of warps supported on a multiprocessor of the GPU. The theoretical occupancy is
needed to pre-evaluate the platform performance before simulation. With the above block
size configurations, the GPU implementation characteristics and theoretical occupancy are
described in Table 5.2.

The theoretical occupancy shows that the performance of the simulation with a block size
64 is limited by the number of blocks per SM for both platforms (8 blocks and 16 blocks
for Tesla C2075 and GeForce GT640, respectively, as shown in Table 5.1). While the
performance of the block size 256 is restrained by the number of registers per SM as 51
registers per thread, or 13056 registers per block are required. Hence, for Tesla C2075,
two blocks per SM require 26112 registers per SM, while three blocks per SM require
39168 registers per SM (larger than the maximum number of register per SM which is
32768 registers). The same explanation is applied for GeForce GT640, but the maximum
number of register per SM of Kepler architecture is 65536. Therefore, GeForce GT640 is
still able to increase the block size up to 1024 threads.

The maximum threads per SM of Tesla C2075 is 1536, which means the simulation with
the block size of 64 threads needs 1536/64=24 blocks in a SM to reach the maximum
occupancy. However, the architectural limit of 8 blocks per SM prevents us from reaching
the maximum occupancy. For the block size 256, the simulation needs 1536/256=6 blocks
in a SM to reach the maximum occupancy. However, the number of register per block
prevents this. In short, for both block sizes, the theoretical occupancy shows that the
Tesla C2075 platform is not utilized fully. With the same explanation, the occupancy
of GeForce GT640 only reaches 63%, which means only 63% computing resources of the
platform is utilized. The maximum thread per SM of GeForce GT640 is 2048 threads.
Hence, the block size of 64 or 256 or 1024 threads reaches the maximum occupancy at
2048/64=32 or 2048/256=8 or 2048/1024=2 blocks per SM, respectively. Those number
of blocks per SM are also restricted by the number of register, which leads to less efficient
occupancy.

The performance reaches saturation point when the occupancy reaches its maximum. The
larger the thread block size is, the fewer thread block per SM it needs to fill in.

• Bandwidth

The theoretical memory bandwidth of a GPU platform is calculated using the hardware
specifications with the equation 5.1. This parameter is compared with the effective memory
bandwidth to evaluate how much the hardware (memory) is utilized by the application.

Bandwidth = (mem speed ∗ (bus width/8) ∗ 2)/10243[GB/s] (5.1)

Hence, the theoretical memory bandwidth of the Tesla C2075 and GeForce GT640 are 140
and 27 GB/s, respectively.

Target metrics

For each simulation, the total execution time and the execution-time-per-time-step are monitored.
The total execution time is the most important metric as it indicates whether the imple-

mentation is feasible to serve as a neuron simulator or not. This metric is used to evaluate the
speed-up of the implementation over the simulation on CPU platform. The speed-up is achieved
by comparing the execution time on GPU platform with the corresponding execution time on
CPU platform.

The execution-time-per-time-step is another metric to evaluate the feasibility of the neuron
model in real time. As the output from the computation for each time step is required to be

build 0.18

48 CHAPTER 5. RESULTS AND DISCUSSION

Tesla C2075 GeForce GT640
Single Double Single Double

No. of registers per thread 51 63 48 62

Block size 16

Active thread blocks per SM 8 8 16 16

Active warps per SM 8 8 16 16

Occupancy 17% 17% 25% 25%

Occupancy limited by blocks/SM blocks/SM blocks/SM blocks/SM

Block size 32

Active thread blocks per SM 8 8 16 16

Active warps per SM 8 8 16 16

Occupancy 17% 17% 25% 25%

Occupancy limited by blocks/SM blocks/SM blocks/SM blocks/SM

Block size 64

Active thread blocks per SM 8 8 16 16

Active warps per SM 16 16 32 32

Occupancy 33% 33% 50% 50%

Occupancy limited by blocks/SM blocks/SM blocks/SM blocks/SM

Block size 128

Active thread blocks per SM 4 4 10 8

Active warps per SM 16 16 40 32

Occupancy 33% 33% 63% 50%

Occupancy limited by registers/SM registers/SM registers/SM registers/SM

Block size 256

Active thread blocks per SM 2 2 5 4

Active warps per SM 16 16 40 32

Occupancy 33% 33% 63% 50%

Occupancy limited by registers/SM registers/SM registers/SM registers/SM

Block size 512

Active thread blocks per SM 1 1 3 2

Active warps per SM 16 16 32 32

Occupancy 33% 33% 50% 50%

Occupancy limited by registers/SM registers/SM registers/SM registers/SM

Block size 1024

Active thread blocks per SM x x 1 1

Active warps per SM x x 32 32

Occupancy x x 50% 50%

Occupancy limited by registers/SM registers/SM registers/SM registers/SM

Table 5.2: Theoretical characteristics of the GPU implementation based on platform
analysis

build 0.18

5.2. EVALUATION OF PLATFORM CONFIGURATION 49

available after 50us, the metric execution-time-per-time-step is used to evaluate this characteristic
of the implementation. The execution time per time step is evaluated with the double precision
as real time execution is valid for double precision only.

The communication between host and device is not the critical part in this implementation
since the amount and number of time of data transfer are limited. However, this metric is
included for completeness in Appendix A.

Measuring methods

Iteration 1 2 3 120000

Communication
From CPU to GPU

Communication
From GPU to CPU

Initialization
time

Compute time
...

Initialization
time

Compute time
...

Execution time

Execution time
per time step

Communication time
GPU->CPU

Communication time
CPU->GPU

Figure 5.1: Execution flow of the GPU implementation

Most of the measurements in this simulation are time measurements. The function gettime-
ofday() is used to determine those metrics. Although this function is accurate on the CPU side,
it should be used in companion with a synchronization APIs of GPU to ensure the robustness of
time measurement.

Another method in GPU time measurement is using the CUDA event record. In this simu-
lation, both methods are used to verify the measurements robustness.

The measurement can only be performed on the CPU side. Hence, the measuring functions
are placed before and after the loop of controlling time step to measure the total execution
time, inside the loop to measure the execution time per time step and in between the two main
communications to measure the communication time (as shown in Figure 5.1).

5.2 Evaluation of platform configuration

In this section, the impact of thread block size and L1 cache on application performance is
evaluated by comparing performance of different block size and with/out the usage of L1 cache.
The results are recorded from various simulations of selected block size. The results help prove
the theoretical anaylis which is made in Section 5.1.2.

build 0.18

50 CHAPTER 5. RESULTS AND DISCUSSION

5.2.1 Thread block size

Optimizing block size is one of tuning techniques on GPU platform to achieve the higher per-
formance of an application [29]. The choice of thread block size affects significantly application
performance. The idea of choosing thread block size is to maximize the SM occupancy when
executing the application. The performance of different thread block sizes is measured to figure
out the best thread block size which suits our application.

To fulfill that goal, we measure execution time of the application with double precision
accuracy and 48 KB L1 cache on the Tesla platform. Each measurement is carried out with
different thread block sizes and input sizes. The chosen thread block size is 16 (4x4), 32 (4x8),
64 (8x8), 128 (8x16), and 256 (16x16) for Tesla platform.

Table 5.3 shows the performance of the double precision simulation. The graphical form is
shown in Figure 5.2.

Input size
(cells)

Block size (threads/block) (s)
16 32 64 128 256

64 9 9 9

256 9 9 9, 9 10

1,024 10 9 10 10 12

4,096 32 26 19 19 21

9,216 64 45 61 52 54

16,384 106 73 91 84 96

36,864 224 158 189 179 203

65,536 393 253 303 287 354

102,400 611 393 463 463 587

262,144 1,558 999 1,184 1,222 1,495

409,600 2,431 1,560 1,904 2,089 2,309

802,816 4,821 3,185 3,897 4,227 4,843

1,048,576 6,195 3,966 4,849 5,483 5,927

Table 5.3: Execution time varies by different thread block sizes (double precision simu-
lation on Tesla C2075)

The result shows that the block size of 32 has the lowest execution time, which implies the
highest performance. With the same input size, the execution time increases with the increasing
of the block size. Particularly, the block size 16 also has the highest execution time, which is
nearly equal to the execution time of the thread block size of 256.

At the small input size, the difference among the results of different thread block size is small.
The difference increases with the increasing input size. This happens because the occupancy of
the small input sizes is low for all the block sizes since the number of inputs is not large enough
to fill in all SMs.

The results of the larger input sizes reflect the theoretical occupancy in Section 5.1.2. All
the thread block size performance is bounded by the inefficient block size, which is restricted
by the number of registers per SM. However, the bigger block size is, the higher occupancy the
application should get. This expectation is not shown in the results, which means that there
should be a limitation in the platform resource.

For the double precision, the memory throughput is very low at about 1% of the available
bandwidth of the Tesla platform.

To evaluate the application performance with single precision on the Tesla platform, we

build 0.18

5.2. EVALUATION OF PLATFORM CONFIGURATION 51

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

7,000,000,000

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Ex
ec

ut
io

n
tim

e
(u

s)

Input size (cells)

256 threads/block
16 threads/block
128 threads/block
64 threads/block
32 threads/block

Figure 5.2: Comparison of execution time of different thread block sizes (double precision
simulation on Tesla C2075)

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000

5,000,000,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
 (u

s)

Input size (cells)

With cache - Block size 16

With cache - Block size 256

With cache - Block size 128

With cache - Block size 32

With cache - Block size 64

Figure 5.3: Comparison of execution time of different thread block sizes (single precision
simulation on Tesla C2075)

build 0.18

52 CHAPTER 5. RESULTS AND DISCUSSION

Input size
(cells)

Block size (threads/block) (s)
16 32 64 128 256

64 7 9 9

256 7 9 9 9 10

1,024 7 9 9 9 10

4,096 22 19 11 13 15

9,216 46 31 37 37 31

16,384 77 52 57 66 57

36,864 162 114 107 130 123

65,536 284 198 179 227 220

102,400 441 305 268 343 358

262,144 1,122 779 664 837 906

409,600 1,752 1,228 1,061 1,348 1,420

802,816 3,463 2,549 2,302 2,840 2,872

1,048,576 4,487 3,168 2,716 3,450 3,636

Table 5.4: Execution time varies by different thread block sizes (single precision simula-
tion on Tesla C2075)

measure the execution time of the application with single precision for various block sizes. The
simulation is carried out with the support of L1 cache. Table 5.4 shows the performance of the
application with single precision. The graphical representation of this table is shown in Figure 5.3.
With the single precision, the same memory throughput can facilitate double amount of data
because one single precision variable (of type float) needs only 4 bytes of data instead of 8 bytes
of data like one double precision variable (of type double). Besides, the instruction throughput
for single precision operations is also increased since it requires only half of computing units
of the double precision. Hence, the block size can increase up to 64 to get the best acquired
performance of the application with single precision.

In order to evaluate the performance variation on GeForce platform, the double precision
simulation with different block sizes and with L1 cache support is carried out on the platform.
The best achieved speed-up on GeForce platform belongs to the block size of 64 as shown in
Table 5.5 and Figure 5.4. For single precision simulation, the same block size of 64 has the best
performance among the four selected block sizes. The result for single precision simulation on
GeForce platform is shown in Table 5.6 and Figure 5.5.

5.2.2 L1 cache usage

The usage of cache is useful for application which has a data organization pattern which is suitable
for caching. Hence, some applications which have scatter location of data will not benefit from
cache. In that case, the application performance might be improved when the cache is removed.
To verify this assumption, we measure the execution time of the application with the double
precision and without L1 cache usage to compare with the same simulation with the maximum
size of L1 cache (48KB). The Table 5.7 shows the execution time of the application with different
block sizes and without L1 cache usage. The graphical form of this Table compared with the
corresponding results from Table 5.3 is included in Figure 5.6.

It is observed that all the simulations without L1 cache usage have the execution time much
higher than those with L1 cache. Even though, the simulation without L1 cache has performance
which increases with the increasing of the thread block size. The distance among those results are

build 0.18

5.2. EVALUATION OF PLATFORM CONFIGURATION 53

0

5,000,000,000

10,000,000,000

15,000,000,000

20,000,000,000

25,000,000,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
 (u

s)

Input size (cells)

With cache -
Block size 1024

With cache -
Block size 32

With cache -
Block size 256

With cache -
Block size 128

With cache -
Block size 64

Figure 5.4: Comparison of execution time of different thread block sizes (double precision
simulation on Tesla GT640)

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000

14,000,000,000

16,000,000,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
 (u

s)

Input size (cells)

With cache -
Block size 1024

With cache -
Block size 256

With cache -
Block size 128

With cache -
Block size 64

Figure 5.5: Comparison of execution time of different thread block sizes (single precision
simulation on Tesla GT640)

build 0.18

54 CHAPTER 5. RESULTS AND DISCUSSION

Input size
(cells)

Block size (threads/block) (s)
32 64 128 256 1024

64 19 16

256 19 16 16 17

1,024 26 22 22 21 35

4,096 88 66 80 81 82

9,216 191 127 175 185 202

16,384 331 211 286 293 345

36,864 736 458 608 633 787

65,536 1,302 800 1,099 1,143 1,463

147,456 2,935 1,826 2,474 2,490 3,225

262,144 5,149 3,240 4,366 4,536 5,734

409,600 7,703 5,027 6,876 6,771 9,013

802,816 13,559 9,829 13,245 2,840 17,590

1,048,576 17,710 12,842 17,708 3,450 23,224

Table 5.5: Execution time varies by different thread block sizes (double precision simu-
lation on GeForce GT640)

Input size
(cells)

Block size (threads/block) (s)
64 128 256 1024

64 13

256 13 13 14

1,024 16 16 16 24

4,096 42 50 51 53

9,216 78 95 95 127

16,384 128 148 155 205

36,864 272 300 336 470

65,536 476 518 590 842

123,904 900 966 1,176 1,617

262,144 1,939 2,067 2,589 3,564

409,600 3,053 3,221 3,774 5,364

802,816 5,997 6,318 7,437 10,469

1,048,576 7,904 8,228 10,688 13,925

Table 5.6: Execution time varies by different thread block sizes (single precision simula-
tion on GeForce GT640)

less than that among the result of the simulations with L1 cache. Hence, L1 cache has significant
impact on the application performance. Moreover, the tuning technique related to the thread
block size is also strongly supported by L1 cache.

Besides, the improvement in performance of the application simulation with L1 cache also
partly shows that the global memory pattern is suitable for caching. If the data in the global
memory is scatter, L1 cache cannot helps increase the application performance.

The performance of the application with single precision without L1 cache has the same

build 0.18

5.2. EVALUATION OF PLATFORM CONFIGURATION 55

Input size
(cells)

Block size (threads/block) (s)
16 32 64 128 256

64 9 9 9

256 9 9 9 10 14

1,024 11 10 10 10 14

4,096 38 30 21 21 24

9,216 76 54 74 65 62

16,384 126 94 124 112 116

36,864 267 202 254 24 252

65,536 469 339 441 432 435

102,400 731 538 684 673 695

262,144 1,875 1,439 1,757 1,741 1,785

409,600 2,919 2,260 2,731 2,774, 2,852

802,816 5,956 4,868 5,527 5,667 6,023

1,048,576 7,525 5,884 7,047 7,103 7,412

Table 5.7: Execution time without L1 cache usage varies by different thread block sizes
(double precision simulation on Tesla C2075)

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

7,000,000,000

8,000,000,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
(u

s)

Input size (cells)

No cache - Block size 256
No cache - Block size 16
No cache - Block size 128
No cache - Block size 64
No cache - Block size 32
With cache - Block size 256
With cache - Block size 16
With cache - Block size 128
With cache - Block size 64
With cache - Block size 32

Figure 5.6: Comparison of execution time with/out L1 cache usage (double precision
simulation on Tesla C2075)

build 0.18

56 CHAPTER 5. RESULTS AND DISCUSSION

Input size
(cells)

Block size (s)
64 256 1024

64 13

256 13 14

1,024 16 16 24

4,096 42 51 54

9,216 78 95 128

16,384 128 154 207

36,864 272 329 474

65,536 476 575 851

123,904 900 1,134 1,649

262,144 1,940 2,482 3,637

409,600 3,055 3,663 5,438

802,816 6,000 7,217 10,647

1,048,576 7,909 10,266 14,281

Table 5.8: Execution time without L1 cache usage varies by different thread block sizes
(single precision simulation on GeForce GT640)

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000

14,000,000,000

16,000,000,000

0 500,000 1,000,000

Ex
e

cu
ti

o
n
 ti

m
e
 (

u
s)

Input size (cells)

With cache ‐ Block size 1024

No cache ‐ Block size 1024

With cache ‐ Block size 256

No cache ‐ Block size 256

With cache ‐ Block size 64

No cache ‐ Block size 64

Figure 5.7: Comparison of execution time with/out L1 cache usage (single precision
simulation on GeForce GT640)

characteristics as that of the double precision.

For GeForce platform, an interesting phenomenon is observed. The performance of the
application with and without L1 cache is not very different from each other. Table 5.8 and
Figure 5.7 represent this observation. The behavior of cache is hard to predict. However, the
explanation might be that the L1 cache in the latest architecture Kepler is specialized for local
memory accesses such as register spills and stack data. The global memory are cached in L2

build 0.18

5.3. PERFORMANCE ON TESLA C2075 PLATFORM 57

only. The simulated application depends on global memory considerably, hence L1 cache is only
useful, in case it is used for reducing global memory accessing time.

Conclusion

In this section, the two tuning techniques which include the thread block size and cache usage
are evaluated thoroughly. Using both techniques, the best achieved performance of double pre-
cision simulation on Tesla platform is the execution with the block size of 32 and with L1 cache
usage. While GeForce platform and single precision simulation on Tesla platform achieve the
best performance with the block size of 64 and with L1 cache usage.

5.3 Performance on Tesla C2075 platform

In this section, the performance of the application on Tesla platform is discussed in the follow-
ing targets: speed-up and execution time per time step. In each part, the best corresponding
performance on Tesla platform is selected to observe its characteristics.

5.3.1 Speed-up

• Single precision

Input size
(cells)

CPU (us) GPU - Block size 64 (us) Speed-up

64 15 9 1.7

256 61 9 6.6

1,024 242 9 25.6

4,096 973 11 81.9

9,216 2,2415 37 59.1

16,384 3,921 57 67.6

36,864 8,822 107 81.9

65,536 16,064 179 89.6

10,400 26,269 268 98.0

262,144 66,046 664 99.4

409,600 103,321 106 97.4

802,816 202,391 2,302 87.9

1,048,576 268,915 2,716 99.0

Table 5.9: Speed-up of single precision simulation on Tesla C2075

Table 5.9 and Figure 5.8 show the accurate number and graphical representation for the
highest achieved performance of the application with single precision. The best achieved
speed-up which is obtained with the block size of 64 is 99.4 with the input size of 262,144.

• Double precision

Table 5.10 and Figure 5.9 show the performance of the application with double precision
on Tesla platform. The best achieved speed-up is 68.1 at the input size 1,048,576 cells.
This performance is obtained with the block size of 32 as explained in Section 5.2.1.

build 0.18

58 CHAPTER 5. RESULTS AND DISCUSSION

0.0

50.0

100.0

150.0

0 500,000 1,000,000Sp
e

e
d
‐u

p
 (t

im
e

s)

Input size (cells)

Speed up

With cache ‐
Block size 64

1

100

10,000

1,000,000

100,000,000

10,000,000,000

1,000,000,000,000

0 500,000 1,000,000

Ex
e

cu
ti

o
n
 ti

m
e
 in

 lo
g

sc
al

e

(u
s)

Input size (cells)

Execution time

With cache ‐ Block
size 64

CPU ‐ float

Figure 5.8: Representation of speed-up (single precision simulation on Tesla C2075

Input size
(cells)

CPU (us) GPU - Block size 32 (us) Speed-up

64 16 9 1.7

256 65 9 6.9

1,024 263 9 27.2

4,096 1,054 26 40.0

9,216 2,372 45 52.5

16,384 4,217 73 57.7

36,864 9,489 158 59.8

65,536 16,870 253 66.9

10,400 26,359 393 67.5

262,144 67,480 999 67.6

409,600 105,438 1,560 67.6

802,816 205,861 3,185 64.6

1,048,576 269,922 3,966 68.1

Table 5.10: Speed-up of double precision simulation on Tesla C2075

It is observed that the speed-up is low at the small input sizes because the computing units are
not fully occupied. The result from the profiler also proves this assumption. With the increasing
input size, the speed-up is also increased by logarithmic scale. Up to the input size of 65,536
cells, the utilization rate of the application on the platform does not reach 100% (according

build 0.18

5.3. PERFORMANCE ON TESLA C2075 PLATFORM 59

0.0

20.0

40.0

60.0

80.0

0 500,000 1,000,000Sp
e

e
d
‐u

p
 (t

im
e

s)

Input size (cells)

Speed up

With cache ‐
Block size 32

1

100

10,000

1,000,000

100,000,000

10,000,000,000

1,000,000,000,000

0 500,000 1,000,000

Ex
e

cu
ti

o
n
 ti

m
e
 in

 lo
g

sc
al

e
 (u

s)

Input size (cells)

Execution time

32
threads/block

CPU ‐ double

Figure 5.9: Representation of speed-up (double precision simulation on Tesla C2075)

to profiler results). However, from the input size of 262,144 cells, the utilization rate reaches
maximum. This means that the computing resources in the GPU platform is fully occupied,
or the saturation point is reached. From this saturation point, the execution time increases
linearly with increasing input size. Besides, the execution time on CPU also increases linearly.
In Figure 5.9 and Figure 5.8, it is observed that the two line in logarithmic scale is parallel to
each other from the input size of about 100,000 cells. Therefore, the speed-up stays constantly.

The single precision has nearly two times higher speed-up than the double precision because
of several reasons. Firstly, Fermi architecture uses two single precision computing units to do
one calculation of a double precision operation. Secondly, the CPU performance on single and
double precision is nearly the same. Thirdly, the single precision simulation has higher memory
throughput because of a variable involved in the single precision required half of the size of that
in the double precision.

5.3.2 Execution time per time step

As mentioned before, the execution time is necessary to evaluate the feasibility of the model
simulation in real time. In order to estimate the real time performance, the fastest double
precision simulation (with the block size of 32 and cache support) is taken into consideration.
With this configuration, the initialization time for kernel launch which is measured by removing
the computational part is 14us per time step. Table 5.11 shows the execution time per time step
of several input size. The result indicates that the real time simulation can be achieved with the
input size of 256 cells because the initialized time can be considered as the necessary setup time
of the system and can be deducted from the kernel execution time.

Figure 5.10 shows that even though the real time execution is only achieved with input size,
the Tesla platform still performs better than the CPU platform for all input sizes. With the input
size smaller than 1000 cells, the execution time per time step on Tesla platform only increase
slightly. Moreover, the larger input sizes on Tesla platform also have the execution time per time
step which is much lower than that on CPU platform.

build 0.18

60 CHAPTER 5. RESULTS AND DISCUSSION

Input size
(cells)

CPU (us) GPU - Block size 32 (us)

64 137 57*

256 549 65*

1,024 2,197 80

4,096 8,787 229

9,216 19,770 383

16,384 35,146 601

36,864 79,079 1,263

65,536 140,585 2,078

10,400 219,664 3,320

262,144 562,339 8,347

409,600 878,655 13,009

802,816 1,715,512 26,613

1,048,576 2,249,358 33,146

Table 5.11: Execution time per time step of double precision simulation on Tesla C2075.
The (*) is the execution time achieved by another implementation which is only robust
for small input sizes (64 and 256 cells).

1

100

10,000

1,000,000

1 100 10,000 1,000,000Ex
ec

ut
io

n
tim

e
in

 lo
g

sc
al

e
(u

s)

Input size in log scale (cells)

Execution time per time step in log scale

CPU - double

With cache -
Block size 32

0
1,000,000
2,000,000
3,000,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
(u

s)

Input size (cells)

Execution time per time step

CPU - double

With cache -
Block size 32

Figure 5.10: Representation of execution time per time step on Tesla C2075

5.4 Performance on GeForce platform

5.4.1 Speed-up

• Single precision

build 0.18

5.4. PERFORMANCE ON GEFORCE PLATFORM 61

Input size
(cells)

CPU (s) GPU - Block size 64 (s) Speed-up

64 15 13 1.1

256 61 13 4.5

1,024 242 16 14.4

4,096 973 42 22.8

9,216 2,241 78 28.5

16,384 3,921 128 30.6

36,864 8,822 272 32.4

65,536 16,064 476 33.7

10,400 26,269 900 33.7

262,144 66,046 1,939 34.1

409,600 103,321 3,053 33.8

802,816 202,391 5,997 33.7

1,048,576 268,915 7,904 34.0

Table 5.12: Speed-up of single precision simulation on GeForce GT640

0.0
10.0
20.0
30.0
40.0

0 500,000 1,000,000Sp
ee

d-
up

 (t
im

es
)

Input size (cells)

Speed up

With cache -
Block size 64

1

100

10,000

1,000,000

100,000,000

10,000,000,000

1,000,000,000,000

0 500,000 1,000,000Ex
ec

ut
io

n
tim

e
in

 lo
g

sc
al

e

(u
s)

Input size (cells)

Execution time

CPU - float

With cache -
Block size 64

Figure 5.11: Representation of speed-up (single precision simulation on GeForce GT640)

The chosen speed-up for single precision simulation obtained on GeForce platform is shown
in Table 5.9 and represents in graphical form in Figure 5.11. The result is achieved with

build 0.18

62 CHAPTER 5. RESULTS AND DISCUSSION

the block size of 64, with L1 cache support. The best speed-up is 34.1, which belongs to
the input size 262,144 cells.

• Double precision

Input size
(cells)

CPU (us) GPU - Block size 64 (us) Speed-up

64 16 16 1.0

256 65 16 4.0

1,024 263 22 12.0

4,096 1,054 66 15.9

9,216 2,372 127 18.6

16,384 4,217 211 20.0

36,864 9,489 458 20.7

65,536 16,870 800 21.1

10,400 26,359 1,826 20.7

262,144 67,480 3,240 20.8

409,600 105,438 5,027 21.0

802,816 205,861 9,829 20.9

1,048,576 269,922 12,842 21.0

Table 5.13: Speed-up of double precision simulation on GeForce GT640

0.0
10.0
20.0
30.0

0 500,000 1,000,000

Sp
ee

d-
up

 (t
im

es
)

Input size (cells)

Speed up

With cache -
Block size 64

1
100

10,000
1,000,000

100,000,000
10,000,000,000

1,000,000,000,000

0 500,000 1,000,000Ex
ec

ut
io

n
tim

e
in

 lo
g

sc
al

e
(u

s)

Input size (cells)

Execution time

CPU - double

With cache -
Block size 64

Figure 5.12: Representation of speed-up (double precision simulation on GeForce GT640)

The speed-up of double precision simulation on GeForce platform is shown in Table 5.13.
The graphical form of the Table is illustrated in Figure 5.12. The best speed-up for double

build 0.18

5.4. PERFORMANCE ON GEFORCE PLATFORM 63

precision simulation is 21.1, which is 40% less than that for single precision simulation.

5.4.2 Execution time per time step

Input size
(cells)

CPU (us) GPU - Block size 64 (us)

64 128 136

256 511 136

1,024 2,025 181

4,096 8,111 546

9,216 18,675 1,054

16,384 32,677 1,763

36,864 73,524 3,810

65,536 133,871 6,636

10,400 218,912 15,228

262,144 550,384 26,905

409,600 816,017 41,899

802,816 1,686,593 81,895

1,048,576 2,240,962 107,022

Table 5.14: Execution time per time step of double precision simulation on GeForce
GT640

1
100

10,000
1,000,000

1 100 10,000 1,000,000

Ex
ec

ut
io

n
tim

e
in

 lo
g

sc
al

e
(u

s)

Input size in log scale (cells)

Execution time per time step in log scale

CPU - double

With cache -
Block size 64

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000

0 500,000 1,000,000

Ex
ec

ut
io

n
tim

e
(u

s)

Input size (cells)

Execution time per time step

CPU - double

With cache -
Block size 64

Figure 5.13: Representation of execution time per time step on GeForce GT640

build 0.18

64 CHAPTER 5. RESULTS AND DISCUSSION

As from the Table 5.14, the best performance of the simulation on GeForce has the smallest
execution time per step as 136us. Whereas, the initialization time of the kernel on this platform is
27us per time step. Hence, even with the smallest input size of 64 cells, the real time performance
cannot be achieved.

5.5 Discussion of results

5.5.1 Speed-up comparison

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 500,000 1,000,000

Sp
ee

d-
up

 (t
im

es
)

Input size (cells)

Speed up
Tesla - Single
precision - Block
size 64

Tesla - Double
precision - Block
size 32

GeForce - Single
precision - Block
size 64

GeForce -
Double
precision - Block
size 64

Figure 5.14: Performance comparison between Tesla C2075 and GeForce GT640

From the results of Section 5.3 and 5.4, it can be observed that the speed-up of the simulation
on Tesla C2075 platform is approximately three times higher than that on the GeForce GT640.
Figure 5.14 shows the comparison between the maximum speed up on the two platforms. This
result is achieved by comparing both the best simulation results on the two platforms with the
simulation results on the same CPU platform. The figure shows that speed-up is low for small
input size and increases with increasing input size until it reaches a saturation point beyond
input size of 50,000 cells. The performance of the application reaches a saturation point and
stays constant for all the bigger input sizes. The performance stays high with the very large
input size, hence is considered suitable to simulate large networks of neurons.

In theory, the performance on a Kepler architecture platform should be higher than that
on a Fermi architecture platform if the application has enough parallelism. In this case, the
application performance is bounded by one of the resource limits, which leads to the fact that
both platforms have not fully utilized their other resources. Even though the application has
more parallelism, the performance cannot be improved on either platform. Besides, GeForce
has lower processor frequency and lower memory frequency, which also restrict its performance
partially.

build 0.18

5.5. DISCUSSION OF RESULTS 65

Real time execution per step

As explained in Section 5.3 and 5.4, the execution time per time step is discussed for some
input sizes on both platforms. The performance of GeForce is not considered as a possible real
time execution per time step because even with the smallest input size of 64 cells, the simulation
on this platform takes much more time than 50us. Hence, the real time execution per step is
achieved only on Tesla platform.

5.5.2 Cost efficiency

The purpose of executing simulation on the GeForce is to evaluate the possibility of using a low
cost graphics card for a high performance computing application. The Tesla card costs 1789 US
dollars, while the GeForce costs only 79 US dollars.

Single precision

Consider that the maximum speed-up on the Tesla platform and GeForce platform is 99 and
34, respectively. The cost-per-unit of the speed-up on the two platforms is 1789/99.4=18 and
79/34.1=2.3 (US dollars/unit), respectively. Hence, the cost efficiency of the Tesla platform is
7.8 times less than the GeForce platform.

Double precision

Consider that the maximum speed-up on the Tesla platform and GeForce platform is 68 and 21
times, respectively. The cost-per-unit of the speed-up on the two platforms is 1789/68.1=26.3
and 79/21.1=3.7 (US dollars/unit), respectively. Hence, the cost efficiency of the Tesla platform
is 7.1 times less than the GeForce platform.

5.5.3 Platform comparison

On the one hand, the Tesla platform has the better application performance on both single and
double precision simulation. On the other hand, the cost efficiency of the Tesla platform is much
smaller than that of the GeForce platform. As both platforms have not been utilized fully, it is
hard to conclude which platform is better in absolute value. The real time execution cannot be
obtained on GeForce platform. Besides, the application is difficult to be split to map on different
platform because of the correlation among the application data at every iteration. Hence, due
to the high overhead of splitting the problem, even with multiple separate GeForce platforms,
we might not achieve the performance that can be achieved on Tesla platform. However, the
GeForce platform might be more suitable for the application in single precision. In case, the real
time execution is not required, GeForce platform offers a cheap, compact and flexible host in
order to reduce the simulation time in neural science.

5.5.4 Application bottlenecks

A GPU kernel might have the following bottlenecks: memory bandwidth, instruction throughput
and latency (the execution time of the slowest thread). With this application, the parallelism is
huge as each cell could be considered as an independent computing unit to map onto a thread.
Besides, the branching divergence in the application (due to “if“ condition) is nearly zero as a
result of using the texture memory. Besides, the memory bandwidth usage is rather low (about
2.4GB/s or 1% of available bandwidth), hence, it cannot be the bottleneck of this application.

Indeed, the NVIDIA visual profiler (nvvp [30]) shows that both platforms have maximum
instruction throughput of 0.86 for double precision simulation even with the large input sizes.

build 0.18

66 CHAPTER 5. RESULTS AND DISCUSSION

For single precision simulation, the maximum instruction throughput is reaching 1.74. For both
platforms, the double precision and single precision can execute up to 1.0 and 2.0 instructions per
cycle, respectively [31]. Hence, instruction throughput is not the bottleneck of this application.

Moreover, the occupancy is low and limited by the lack of registers per SM, hence, both
platforms theoretically cannot reach 100% occupancy. The overlap between memory access and
arithmetic operations is low. Hence, we can conclude that the latency is the bottleneck of this
application. Theoretically, latency bottleneck might be caused by two main reasons. Firstly, the
occupancy is low due to the limitation in the number of register per SM. Hence, there are too
little concurrent threads to hide latency. Secondly, the synchronization method is used in every
kernel execution, which reduces the overlap between math and memory within the same thread
block. For this application, the reason is the latter one since the synchronization is absolutely
required to make sure that all the cells update correctly their neighbor values at each time step.

Unfortunately, this bottleneck can only be solved by increasing the occupancy, increasing the
parallelism, or removing the synchronization barriers. All of those solutions are mainly related
to the application characteristics, which are defined by the neural science problem. Therefore,
few optimization methods can help improve the application performance.

build 0.18

Conclusions and
recommendations 6
This thesis aimed to implement a neuron model in a network setting on a GPU platform. The
GPU implementation was expected to have improved performance over the CPU platform. The
selected model is the Inferior Olive model which is originally implemented in Matlab. The imple-
mentation in C language is available for investigation. The model is quite complex in comparison
with other neuron model implementations which were simulated successfully on GPU platforms
before. The complexity stems from the three compartment model in which each compartment
uses the Hodgkin Huxley model. Furthermore, the model is considered in a network setting,
which means multiple neurons are connected to each other and exchange their information at
every simulation iteration.

6.1 Conclusions

The selected model was implemented successfully to simulate on a GPU platform. Our imple-
mentation was simulated on two platforms Tesla C2075 and GeForce GT640. On Tesla platform,
our double precision and single precision speed-up is 68.1 and 99.4 times faster than that on
CPU platform, respectively. The speed-up of double precision simulation and single precision
simulation on GeForce platform is 21.1 and 34.1, respectively. On GeForce platform which is
20 times less expensive than the Tesla platform, the performance reduces to 67% of the perfor-
mance on Tesla platform. Therefore, the GeForce platform has higher cost efficiency than the
Tesla platform.

The execution time per time step of the model is fast enough to be considered for real time
simulation with the simulation of up to 256 cells. However, without the requirement of real
time execution, the simulation on Tesla platform can afford up to 18,939,904 cells with double
precision simulation. Single precision simulation doubles this number. The upper bound of the
number of cells is defined by the global memory size of the platform. Hence, with a platform
which has bigger global memory, the number of simulated cells would increase.

It is observed that the performance of the GPU implementation depends significantly on the
thread block size and L1 cache support. The best performance regarding the thread block size
is of 32 threads for the Tesla platform and of 64 threads for the GeForce platform. Besides, the
performance is higher with the availability of a larger L1 cache.

The occupancy is low mostly because of the limitation on the number of registers per SM.
Furthermore, the performance results also show that the implementation has a latency bottle-
neck due to low occupancy. Unfortunately, the number of registers required for the application
calculation cannot be optimized further due to the large number of parameters which represents
detailed neural cell’s properties.

6.2 Contribution of the results

6.2.1 To neural science

Although a lot of neuron models have been implemented on a GPU platform, the IO model in
a network setting is considered as a more complex model with much more details on biophysical

67

68 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

properties of neuron cell. The successful implementation of such a complex neuron model would
bring us closer to construct the digital brain.

Moreover, the implementation is helpful in decreasing significantly the total time to run
simulation in neural science. With the Tesla platform, the double precision simulation can
be reduced by nearly 70 times. With the low cost platform such as GeForce platform, the
simulation time can also be reduce by 20 times. In comparison with a costly platform such as a
supercomputer platform, GPU platform is more portable, affordable and flexible. This inspires
and provides the technical support for neural scientists to put more efforts into detailed neuron
models reflecting insight activities of the human brain.

6.2.2 To high performance computing

The result shows the variation of the application performance depending on the thread block
size and L1 cache of the two platforms. The simulation was executed on the two latest Nvidia
GPU architecture Fermi and Kepler, which offer the characteristic comparison between the two
platforms. Furthermore, it shows the feasibility and efficiency of implementing an intensive
computational application on a GPU platforms.

6.3 Limitations

The implementation is still a fresh start on a very complex neuron model. Two limitations
emerges from the implementation are:

• The number of registers: Due to the large amount of properties needed to represent in
the IO model, the large number of registers are required to use in the implementation.
This requirement exposes the difficulty in efficiently increasing the thread block size as the
number of registers per SM is limited (63 for Tesla platform and 255 for GeForce platform).

• Synchronization: The IO model in a network setting requires to transfer updated results
from one cell to its neighbor at every iterations. Hence, it is difficult to split the IO network
into multiple partitions to be mapped on multiple platforms. Besides, the synchronization
causes problems in utilizing resources among multiple threads.

6.4 Recommendation for further research

As the computing resource and memory bandwidth of the two platforms have not been used
completely, more optimization to increase occupancy could be applied to enhance the model
simulation performance.

• The main problem of limited occupancy is due to the limit number of registers per SM.
In detail, the number of variables used as register/local memory could be reallocated on
global or shared memory to reduce the number of needed registers [32]. Besides, the
model itself could be reworked to limit the number of variables required. Together with
the development of GPU technology, a new GPU generation with a large register file
also helps increase the application performance. Otherwise, an explicitly compiling option
which limits the register number can also be exploited, however, this optimization might
lead to other problems such as memory bandwidth bottlenecks.

• As the synchronization among parallel threads is the main bottleneck of the application,
reducing the number of registers used and re-organizing the data distribution will not
help eliminate this bottleneck. However, increasing the occupancy will also increase the
application performance in general. The synchronization bottleneck can be lifted only when

build 0.18

6.4. RECOMMENDATION FOR FURTHER RESEARCH 69

the synchronization among threads is removed. This requires a better parallel algorithm
which can suggest a ”smarter” scheme to communicate among cells.

build 0.18

70 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

build 0.18

Bibliography

[1] E. Izhikevich, “Which model to use for cortical spiking neurons,” Neural Networks, IEEE
Transactions on, vol. 15, no. 5, pp. 1063 –1070, sept. 2004.

[2] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press.

[3] Khronos, “Opencl-open standard for parallel programming of heterugeneous systems,”
December 2012. [Online]. Available: http://www.khronos.org/opencl/

[4] V. Pallipuram, M. Bhuiyan, and M. Smith, “Evaluation of gpu architectures using spiking
neural networks,” in Application Accelerators in High-Performance Computing (SAAHPC),
2011 Symposium on, july 2011, pp. 93 –102.

[5] A. Fidjeland and M. Shanahan, “Accelerated simulation of spiking neural networks using
gpus,” in Neural Networks (IJCNN), The 2010 International Joint Conference on, july 2010,
pp. 1 –8.

[6] D. Yudanov, M. Shaaban, R. Melton, and L. Reznik, “Gpu-based simulation of spiking neural
networks with real-time performance amp; high accuracy,” in Neural Networks (IJCNN),
The 2010 International Joint Conference on, july 2010, pp. 1 –8.

[7] T. J. Eric Kandel, James Schwartz, Principles of Neural Science. McGraw-Hill Companies,
Incorporated.

[8] M. A.Arbib, The Handbook of Brain Theory and Neural Networks. The MIT Press.

[9] A. L. HODGKIN and A. F. HUXLEY, “A quantitative description of membrane
current and its application to conduction and excitation in nerve.” The Journal
of physiology, vol. 117, no. 4, pp. 500–544, Aug. 1952. [Online]. Available:
http://jp.physoc.org/content/117/4/500.abstract

[10] N. Corson and M. Aziz-Alaoui, “Dynamics and complexity of hindmarsh-rose neuronal sys-
tems.”

[11] H. Lecar, “Morris-lecar model,” February 2013. [Online]. Available: http://www.
scholarpedia.org/article/Morris-Lecar model

[12] H. R. Wilson, “Simplified dynamics of human and mammalian neocortical neurons,” J.
Theo: Biol, vol. 200, pp. 375 – 388, 1999.

[13] R. B. Wells, “The wilson model of cortical neurons.”

[14] E. Izhikevich, “Simple model of spiking neurons,” Neural Networks, IEEE Transactions on,
vol. 14, no. 6, pp. 1569 – 1572, nov. 2003.

[15] G. F. Lyle N.Long, “A review of biologically plausible neuron models for spiking neural
networks,” Aerospace Conference, Apr. 2010.

[16] Nvidia, OpenCL Programming Guide for CUDA Architecture. Nvidia.

[17] NVIDIA Fermi Compute Architecture Whitepaper.

[18] NVIDIA, “Kepler white paper,” 2012. [Online]. Available: http://www.nvidia.com/object/
nvidia-kepler.html

[19] ——, “Dynamic parallelism white paper,” 2012. [Online]. Available: http://developer.
download.nvidia.com/assets/cuda/docs/TechBrief Dynamic Parallelism in CUDA v2.pdf

71

http://www.khronos.org/opencl/
http://jp.physoc.org/content/117/4/500.abstract
http://www.scholarpedia.org/article/Morris-Lecar_model
http://www.scholarpedia.org/article/Morris-Lecar_model
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
http://developer.download.nvidia.com/assets/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf
http://developer.download.nvidia.com/assets/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf

72 BIBLIOGRAPHY

[20] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel Processors: A Hands on
Approach. Morgan Kaufmann.

[21] NVIDIA CUDA Compiler Driver NVCC.

[22] W. chun Feng and S. Xiao, “To gpu synchronize or not gpu synchronize?” in Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, 2010, pp.
3801–3804.

[23] S. Xiao and W. chun Feng, “Inter-block gpu communication via fast barrier synchroniza-
tion,” in Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1–12.

[24] D.-K. Lee and S.-J. Oh, “Variable block size motion estimation implementation on compute
unified device architecture (cuda),” in Consumer Electronics (ICCE), 2013 IEEE Interna-
tional Conference on, 2013, pp. 633–634.

[25] Y. Torres, A. Gonzalez-Escribano, and D. Llanos, “Understanding the impact of cuda tun-
ing techniques for fermi,” in High Performance Computing and Simulation (HPCS), 2011
International Conference on, 2011, pp. 631–639.

[26] Wikipedia, “Cerebellum,” November 2011. [Online]. Available: http://en.wikipedia.org/
wiki/Cerebellum

[27] R. Swenson, “Cerebellar systems,” 2006. [Online]. Available: http://www.dartmouth.edu/
∼rswenson/NeuroSci/chapter 8B.html

[28] J. R. De Gruijl, P. Bazzigaluppi, M. T. G. de Jeu, and C. I. De Zeeuw,
“Climbing fiber burst size and olivary sub-threshold oscillations in a network setting,”
PLoS Comput Biol, vol. 8, no. 12, p. e1002814, 12 2012. [Online]. Available:
http://dx.doi.org/10.1371%2Fjournal.pcbi.1002814

[29] NVIDIA, “Tuning cuda applications for kepler,” July 2013. [Online]. Available:
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

[30] ——, “Profiler user’s guide,” July 2013. [Online]. Available: http://docs.nvidia.com/cuda/
profiler-users-guide/index.html

[31] Instruction Limited Kernels - CUDA Optimization Webinar.

[32] Local Memory and Register Spilling.

build 0.18

http://en.wikipedia.org/wiki/Cerebellum
http://en.wikipedia.org/wiki/Cerebellum
http://www.dartmouth.edu/~rswenson/NeuroSci/chapter_8B.html
http://www.dartmouth.edu/~rswenson/NeuroSci/chapter_8B.html
http://dx.doi.org/10.1371%2Fjournal.pcbi.1002814
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

Implementation variations A
In this appendix, three GPU implementations are discussed. The reason for having multiple
GPU implementations is that the performance of an application on a GPU platform is varied by
configurations.

A.1 GPU implementation for small thread block sizes

Copy data from
host to device

Copy data from
device to host

Initialize cells

Print output to file

· Get V_DEND of 8 neighbors
· Compute cells’ parameters:

V_DEND, V_SOMA, V_AXON

1st For loop: t from 0 to timesteps

GPU kernel invoke
No. of thread:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

Figure A.1: GPU implementation for small thread block sizes

The first implementation is shown in Figure A.1. This implementation works correctly for
small input sizes which are equal to the thread block size.

73

74 APPENDIX A. IMPLEMENTATION VARIATIONS

A.2 GPU implementation on Tesla C2075 platform

Copy data from
host to device

Copy data from
device to host

Initialize cells

Print output to file

1st For loop: t from 0 to timesteps

GPU kernel invoke
No. of thread:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

Kernel 2:
· Compute cells’ parameters:

V_DEND, V_SOMA, V_AXON
· Increase iteration index

Kernel 1: Get V_DEND of 8 neighbors

Figure A.2: GPU implementation on Tesla C2075 platform

The second implementation (as shown in Figure A.2) is an improved version of the first imple-
mentation for all input sizes. As the IO model needs synchronization among neural cells during
execution, the input sizes which are equal to the thread block size use the API syncthread()
to do synchronization. Whereas, the input sizes larger than the thread block sizes need explicit
synchronization because the API syncthread() is not applied on different thread blocks. This
implementation is used for simulation on Tesla C2075 platform.

A.3 GPU implementation on GeForce GT640 platform

The third implementation is used for simulation on GeForce GT640 platform (as shown in Fig-
ure A.3. GeForce GT640 platform belongs to the Kepler architecture which has a better scheduler.
The scheduling scheme on Kepler architecture allows inter-warp scheduling, where the compiler
can determine when instruction will be ready to issue. Hence the increasing of the iteration index
might occur Read-After-Write hazards because one thread is used to update a variable in the

build 0.18

A.3. GPU IMPLEMENTATION ON GEFORCE GT640 PLATFORM 75

Copy data from
host to device

Copy data from
device to host

Initialize cells

Print output to file

1st For loop: t from 0 to timesteps

GPU kernel invoke
No. of thread:
IO_NETWORK_DIM1xIO_NETWORK_DIM2

Kernel 2:
Compute cells’ parameters: V_DEND,
V_SOMA, V_AXON

Transfer iteration index

Kernel 1: Get V_DEND of 8 neighbors

Figure A.3: GPU implementation on GeForce GT640 platform

global memory. Hence, this update is replaced by a transfer of one index variable from host to
device at every iterations.

build 0.18

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem statement
	Thesis objectives
	Thesis outline

	Model for brain simulation
	Brain, neural networks and neurons
	Modeling neuron behavior
	Formal models
	Biophysical models
	Extended models

	Comparison of models

	Platform analysis
	GPU architecture
	Fermi architecture
	Kepler architecture

	CUDA framework
	CUDA program
	CUDA memory hierarchy and manipulation
	Exploit parallelism using CUDA
	Synchronization

	Model mapping on GPU

	Implementation
	Inferior Olive model in a network setting
	Inferior Olive cell
	IO model
	Model implementation in C programming language

	CUDA implementation
	Optimization

	Results and discussion
	Simulation setup
	Platforms
	Simulation characteristics

	Evaluation of platform configuration
	Thread block size
	L1 cache usage

	Performance on Tesla C2075 platform
	Speed-up
	Execution time per time step

	Performance on GeForce platform
	Speed-up
	Execution time per time step

	Discussion of results
	Speed-up comparison
	Cost efficiency
	Platform comparison
	Application bottlenecks

	Conclusions and recommendations
	Conclusions
	Contribution of the results
	To neural science
	To high performance computing

	Limitations
	Recommendation for further research

	Bibliography
	Implementation variations
	GPU implementation for small thread block sizes
	GPU implementation on Tesla C2075 platform
	GPU implementation on GeForce GT640 platform

