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Abstract
Image registration is the process that overlays two
or more images from different sources taken at
different times and angles. Art conservators take
various scans of paintings and then register them
against the original in order to learn more about
the working style of the artist, materials used and
physical changes throughout time. This paper de-
scribes how scale space theory could be applied
with a variant of cross-correlation to find the right
scale at which to register the input images. From
there, the standard state-of-the-art approach is used
to register the images. This added step allows auto-
matically registering a wider range of images.

1 Introduction
Art conservators use various imaging techniques to improve
the condition, find insights into the working process of an
artist and analyze changes throughout time. Some of these in-
sights are only apparent when overlaying the scanned image
on top of the regular image of the painting. Manual inspec-
tion and alignment is costly and error-prone, which raises the
question: Can this be done automatically?

The task of registering images is not particularly new, but
in the multimodal context, solutions are quite recent and of-
ten lack a common feature, namely scale invariance. This is
the main focus of this research. This invariance would en-
able automatically registering partial scans of images, which
might then be used for mosaicking a fully registered image.
The scale invariance has been achieved in the unimodal con-
text - SIFT being a prominent algorithm [4]. However, these
scale invariant approaches do not extend well in situations
where intensity, features and information highly vary across
modalities. A new robust approach is outlined which solves
the aforementioned concerns.

Manual scaling might become inefficient and error-prone
when dealing with a lot of image patches. Using well estab-
lished algorithms for automatic scaling, such as SIFT, do not
always produce an optimal result. This approach allows au-
tomatic scaling to take place and then register images with an
approach developed by Conover et al. [1].

Phase correlation has proven to be very effective in stitch-
ing and mosaicking images across various modalities [1,3,5].
Our method extends the idea of cross-correlation of images
to the three dimensional domain. This is done through build-
ing a scale space of the phase image for both images and
then computing cross-correlation of the 3D signals as shown
in Figure 1. Peak selection is conducted to find the largest
corresponding scale of each image. Our algorithm estimates
the optimal scale of the template image. The method relies
on the premise that a good correlation between two image
sections would be apparent at multiple scales and the over-
all peak would be achieved where the input images are at the
same size.

2 Related Work
Conover et al., propose an algorithm for registering multi-
modal images of paintings based on phase correlation [1].

Figure 1: Cross-correlation of three dimensional signals

It first computes the wavelet transform of the template im-
age and uses local maximums to distinguish feature points.
Based on a variant of phase correlation, it computes the lo-
cations of the feature points in the reference image to form
pairs of matches. After that, the points are filtered to remove
false matches. The remaining pairs are used to define a spatial
transform for aligning the two images. Conover’s approach
relies on the premise that the input images have more or less
the same size and orientation. The scale variance is what the
proposed algorithm aims to remove.

Lowe proposed robust scale and rotation invariant ap-
proach for registering images called SIFT [4]. Based on
scale-space theory [2], it first constructs a Gaussian scale
space in order to calculate a difference of Gaussian (DoG)
pyramid. Key points are then found by searching for local ex-
treme points in the DoG pyramid. The description of the key-
points is done via statistical gradient histograms. Keypoints
are extracted for both images and then matches are computed.
One of the biggest drawbacks of SIFT is that it was designed
for regular RGB and generally does not extend well to the
multimodal domain, i.e. images taken from different sensors.
The proposed algorithm takes the idea of scale space, but un-
like SIFT, uses phase transformation and cross-correlation to
compute the transformation function.

Phase correlation is an efficient way to estimate the trans-
lation change between a pair of similar images. A limitation
to the phase correlation is that the rotation and scale differ-
ences affect accuracy tremendously. A log-polar transform
could be used to recover the differences in scale and rota-
tion because of its properties - scaling in Cartesian space is
equivalent to translation along the radial coordinate, rotation
in Cartesian space is equivalent to translation along the an-
gular coordinate of log-polar space, translation differences in
the spatial domain do not impact the magnitude spectrum in
the frequency domain. Two algorithms build on top of this
idea [6, 7]. The scale factor up to which they reliably register
images is 2.0, which is sufficient in the domain of medical im-
agery. In the context of art conservation - where an increasing
effort is made to capture paintings at larger and larger scale
with an immense amount of detail - there is no guarantee that
the input images will not differ by a scale factor larger than
2.0.

3 Background
This section elaborates on some of the terminology used, go-
ing formally into the mathematical equations that the ideas
are based on and some assumptions that were made during
the crafting of the algorithm.



3.1 Cross correlation
Cross correlation is a similarity measure of two signals as a
function of the translation of one relative to the other. For-
mally, when dealing with discrete finite signals f, g ∈ CN ,
such as images, the cross-correlation is defined through the
following equation:

(f ⋆ g)[n] ≜
N−1∑
m=1

f [m]g[(m+ n)mod N ]

where f [n] is the value of f at location n. The bar operator,
the vertical line above f [m], denotes the complex conjugate
of that number. The complex conjugate is the number that has
the same real value, the complex value has the same magni-
tude, but an opposite sign. Because images comprise of only
real valued numbers, in our case f [m] = f [m].

In practice, the cross-correlation does not use modulus
when the index is out of bounds, but relies on padding. If
the padding is circular, then effectively the result would be
the same. Padding could also be constant, where the same
number is used to pad everywhere, and if the signals are nor-
malized a zero padding would be a reasonable choice. We
avoid using padding by ensuring that the size of the template
is smaller than the reference at all times.

3.2 Phase correlation
Phase correlation is a variant of the cross-correlation tech-
nique. It operates in the frequency domain, usually by doing
fast Fourier transforms of the images. Phase correlation is
used to estimate the translative offset of two similar images.
It is widely used in the context of image registration.

3.3 Scale space
Scale space theory has advanced the notion of object repre-
sentation, more specifically allowing an object to be present
at multiple scales to deal with the fact that objects are only
meaningful entities over certain ranges of scale [2].

The typical structure for constructing scale space is repre-
sented by a pyramid where two terms play an important role -
layers and octaves. Different layers are achieved through re-
peatedly applying a Gaussian filter on the image, i.e., blurring
it. The octaves are produced by repeatedly downsampling the
image by a given factor. Such a Gaussian pyramid is depicted
in Figure 2.

The algorithm deviates from the standard approach in two
major ways. Firstly, the three dimensional geometrical ob-
ject that represents the images is a rectangular cuboid, here-
inafter referred to as just cuboid, in contrast with the pyramid.
Secondly, the approach combines layers and octaves into one
variable - levels. The levels are built by repeatedly apply-
ing the following: 1) downscale by a given factor, 2) apply
a Gaussian filter with sigma value of 2 * downscale factor
/ 6.0, which covers more than 99% of the Gaussian distribu-
tion.

3.4 Assumptions
In order to perform cross-correlation without relying on
padding, the size of the template image must be less than

Figure 2: Gaussian pyramid where each octave represents a different
scale and each layer - a different resolution

or equal to the size of the reference image. This imposes
an upper bound on the estimated size of the template image.
More specifically, the estimated size will always be less than
or equal to the size of the reference image. This essentially
means that the template image should not depict a bigger sec-
tion of the painting than what the reference has captured. If
that is not the case, then the maximum size of the template
image is equal to a subsection of the image itself, resulting in
a mismatch between the optimal and the estimated value.

4 Method
The goal of the algorithm is to rescale the template image to
the size of the reference image, to within 5 % margin of error
in order to register images using Conover’s algorithm [1].

Initial transform of template image
The template image is repeatedly downscaled by a factor of
2 until the size of the template is smaller than the size of
the reference. The argumentation for this step is that cross-
correlation that does not rely on padding requires the template
signal to be smaller or equal to the reference signal. The
choice of factor 2 does not affect the end result as the later
stages of the algorithm correct any misalignment.

Core part of algorithm : greedy optimization
Given a downscale scale factor dfn and upsale factor ufn
where 1 ≤ n ≤ factors:

• build a cuboid from the phase image of the reference
image with the downscale factor dsn : cref

• build a cuboid from the phase image of the unchanged
template image with a downscale factor dsn : ctemp

• downscale template image with downscale factor dsn
and calculate phase image, build cuboid from it with dsn
: cdtemp

• If upscaling template by a factor of ufn does not make
the width and height bigger than the ones of the refer-
ence, upscale template by a scale factor of ufn. Build



scale space from the phase image of the upscaled tem-
plate with downscale factor of dsn : cutemp

After the 3D signals have been obtained, cross-correlation is
performed between each of ctemp, cdtemp, cutemp and cref .
The peaks of the cross correlations are computed and their
respective scores are yielded - stemp, sdtemp, sutemp. The
one with the highest value corresponds to the best cross-
correlation so far. The highest score is picked and the tem-
plate is updated with the corresponding version of the tem-
plate: stemp corresponds to unchanged, sdtemp corresponds
to downscaled template, sutemp corresponds to upscaled tem-
plate. The process is repeated a predefined number of times
- steps, until the scale factors are changed to the next from
their respective list of scale factors - factors. As the scale
factors are becoming closer and closer to one, the change is
becoming increasingly smaller, eventually converging to the
optimal scale.

Peak selection
The peak selection is based on the following formula:

peak =
max(xs)− µ(xs)

σ(xs)

where xs is the input array, µ is the mean of xs after the
maximum has been removed and σ is the standard deviation
of xs after the maximum has been removed.

Normalizing the value is necessary to ensure that we find a
unique peak. For example, if cross-correlation is performed
on two images, the smaller one being completely white, the
peak would be the maximum possible peak achievable, but it
does not necessarily mean that the two images are very sim-
ilar. Subtracting the mean and dividing by the standard devi-
ation addresses this problem. When computing the mean and
standard deviation of the input array, the peak is removed as
it is presumed to be an outlier.

Informal algorithm overview
In order to perform cross correlation over cuboids, down-
scaled images need to be consistently placed at the same
place, in our case top-left. For example, the eye region from
the template image is always compared to the same region
in the reference image, regardless of the level of the cuboid.
The different levels emphasize features at different frequen-
cies - the lower levels of the cuboid, where the image has
been less altered, contain more detail in contrast to the higher
levels of the cuboid, where downsampling and blurring are
applied repeatedly. Two distinct cuboids with the same num-
ber of levels are built for comparison, one for the template and
one for the reference image. The two cuboids are then cross-
correlated. Essentially, 2D cross-correlation is performed on
all levels and then the results are summed per pixel. By tak-
ing into account all levels of the cuboid, the algorithm is more
robust to small changes in scans and noise - apparent in the
high frequency domain, while not being too coarse - compar-
ing practically the same thing in the low frequency domain.
Figure 4 depicts a cuboid with three levels.

Figure 3 depicts the first few iterations of the algorithm.
The dashed lines show when the scale factors are changed

and what values they are changed to. The levels of the tree
represent each time the algorithm estimates the scale of the
template image. On each level, excluding the start node,
three nodes are present. The left one denotes the downscaled
template image, the middle node represents the unchanged
template image, the right node represents the upscaled tem-
plate image. The numbers inside the node show the nor-
malized peak obtained when cross-correlating the cuboids of
the given template and reference images. The highlighted in
green nodes are the highest values per level and they denote
which direction the algorithm takes, hence the tree expands
under the highlighted nodes. A little optimization was used
for performance reasons, which is to immediately update the
scale factors if the highest cross-correlation was achieved by
the unchanged template image because the computations are
deterministic and the results would repeat if the scale factors
remain unchanged. Consequently, only one level corresponds
to the scale factors of 2.

Figure 3: Tree-like structure of an instance of the algorithm

Comparison to algorithmic paradigms

The algorithm follows the Greedy algorithm paradigm. Fun-
damentally, at each step the algorithm makes the best local
choice.



Figure 4: A three level cuboid with downscale factor of 1.33 of Girl
with a pearl earring by Johannes Vermeer (c. 1665, Mauritshuis).
Photography by René Gerritsen Technical Art & Research Photog-
raphy.

5 Experimental Setup and Results
The goal of the experiments is to show that the method re-
liably finds a scale of the template image that could be used
to register the rescaled template image against the reference
through the use of Conover’s algorithm [1]. Although, the
desirable margin of error in that paper is described as within
5-10% size difference, we stick to a more strict bound of 5%
in order to ensure that registering works flawlessly. If the er-
ror is within 5-10%, the output is labeled as ’maybe’ as in
these scenarios the algorithm works on a per case basis. If
the size difference is more than 10% , the output is labeled as
’reject’ and our algorithm has failed. The function that labels
the result is as follows:

f(x, opt) =


Accept, if 0.95 ∗ opt ≤ x ≤ 1.05 ∗ opt
Reject, if x < 0.9 ∗ opt ∨ x > 1.1 ∗ opt
Maybe, otherwise

where x is the estimated scale relative to the original size
of the template and opt is the optimal value.

We define the downscaling operation as dividing the tem-
plate image by a given factor. In contrast, our definition of
upscaling is multiplying the template image by a factor. As
long as the use is consistent, the different types of operation
do not yield a different result, i.e., we could have equivalently
defined both operations with multiplication only.

Figure 5: Instance of our method, margin of error is 1.44%

We use two sequences to define these factors, for down-
scaling the sequence of elements is defined by the following
equation:

dfn =
2n

2n − 1

and the upscaling factors are defined by:

ufn =
2n−1 + 1

2n−1

Both sequences are monotonically decreasing and converg-
ing to one. This is desirable because we want to limit the
search space of scales with with the advancement of the algo-
rithm.

Figure 5 shows a single instance of our method in a good
case where the result is accepted. On the x-axis the scale rel-
ative to the original size of the template image is shown. The
y-axis is the corresponding cross-correlation peak of the two
cuboids. It is worth noting that the start of the algorithm is at
scale of 0.5 as the template image is larger than the reference.
Our method explores values and makes a decision based on
the peaks of the cross correlation. In an ideal case, the num-
ber of values considered will increase as they get closer to
the optimal value because the scaling factor decreases, as is
the depicted case. The bounds are set to 5% deviation from
the optimal value and the estimated value is well within the
bounds and is considered as success.

Independent parameters
A small empirical study is done to see how the choice of in-
dependent variables - steps, dims, factors, affected the end
result. The study is conducted based on the same template
and reference image. The two images remain the same in or-
der to focus only on how the different choice of parameters
affects the end result. By rescaling the template image from
the ground truth size, the best result is known beforehand.
The algorithm estimates the size of the template and outputs
a number. From this number two metrics are computed - the
margin of error in percentages, and the status of the result,



Exp Est MoE status dims steps factors
1.901 0.437 77% R 3 2 6
1.901 1.216 36% R 3 3 6
1.901 1.216 36% R 3 3 8
1.901 1.874 1.42% A 4 2 6
1.901 1.899 0.11% A 4 2 8
1.901 1.874 1.42% A 5 2 6
1.416 1.406 0.71% A 3 2 6
1.416 1.406 0.71% A 4 2 6
1.416 1.406 0.71% A 5 2 6
0.556 0.545 1.98% A 3 2 6
0.556 0.545 1.98% A 4 2 6
0.556 0.486 12.6% R 5 2 6
0.556 0.503 9.53% M 5 2 8
0.556 0.507 8.81% M 5 3 8

Table 1: Independent variable analysis

which can either be accept, reject or maybe. Table 1 shows
how the different choices of independent variables affect the
end result. Three different scales are approximated - 1.901,
1.416 and 0.556. The choice for these three cases is random
and aims to be representative.

The dims parameter corresponds to the number of levels
the cuboids have. The higher the number, the more the algo-
rithm values well matching features in the low frequency do-
main. It is a thin balance between coarseness and strictness.
In the first case the 3 levels of the cuboid are not enough to
calculate a good estimate of the scale. Contrary, in the third
case the 5 levels are too many and the algorithm is empha-
sizing the low-frequency features too much. The value of 4
empirically shows the best results of balancing out the low
and high frequency feature matching. This intricate balance
point is not uniform across all pairs of images. Consequently,
individual cases might require adjusting the dims parameter.

The factors variable expresses how many elements we
take from the aforementioned infinite sequences dsn, usn.
The changes that might occur from the given scale factors are
increasingly smaller. If our bounds were stricter, we would
increase the value to a larger one, but in the experiments the
value of 6 sufficed.

The steps parameter defines how many times the algorithm
is going to estimate the size based on a given downscale and
upscale factor. This variable is affected by the choice of scal-
ing factors, which motivates us to use the value of 2. The
experiment does not show a significant difference between
the value of 2 and 3.

6 Discussion
The algorithm is designed for estimating the size of the tem-
plate image based on a reference image in the multimodal
context. It works best if the template and reference image
depict similar sections of the painting.

Naturally, as a greedy algorithm our approach has certain
limitations. It heavily relies on the premise that the best local
choice would lead to the global optimal. We have not proven
that this strong assumption always holds. Our assumption

could be expressed by the following sentence: When cross-
correlating two cuboids of differently sized template image
against the cuboid of the reference image, the better peak of
the two would be achieved through the cuboid of the tem-
plate image that has a size closer to the optimal value. This
assumes that for a given scale factor the function describing
the template size/peak of cross-correlation relationship is first
monotonically increasing until it reaches the absolute peak,
afterwards it is monotonically decreasing. This is quite sim-
ilar to the behaviour of a quadratic function, but no analysis
is done to show if it is a good approximation of the real func-
tion. We note that our algorithm does not analyze the whole
spectrum of the function, but does two estimations per scale
factor, which is at most 4 distinct points of that function be-
cause some will get repeated.

From the tested scenarios, the assumption does not hold
when trying to match a subsection of a painting to the entire
painting. The differences in modalities also play a significant
role in how well the scale is going to be approximated. Our
approach relies on cross-correlation of phase images at dif-
ferent scales, but these phase images might vary significantly
across certain modalities and there our approach comes short.

7 Responsible Research
Ethical implications of this research area are estimated to be
relatively low. All computations are run against images of
paintings, targeting the art conservators community. The pro-
posed algorithm does not make any decisions that impose the
need of morality.

Reproducibility of the results is high given the right access
of resources, namely code and images. Although the code
is not publicly available, the steps we took are documented
in this paper and replication of the results is possible. Small
deviations in performance are expected because of implemen-
tation details and/or hardware differences.

The major problem for accurate reproducibility is the ac-
cess to all imagery. The access to various scans of paintings is
limited for many reasons. Usually, the scans are conducted by
researchers in museums and their active work involves these
images. Moreover, these images are property of the museum,
which makes distribution an intricate task.

8 Conclusions and Future Work
We have proposed an alternative algorithm that could be
used to approximate the size of an image relative to a ref-
erence image through the use of scale space theory and cross-
correlation. The algorithm has been tested in multiple modal-
ity pairs and has proven its effectiveness.

A limitation of the current approach is that it is highly de-
pendent on the assumption that the input images have the
same orientation. This might or might not be desirable and
future work could be done to remove this assumption, possi-
bly through the use of histogram of orientated gradients as a
feature descriptor.

Further work could be done to analyze the behaviour of
the relationship between template size and peak of cross-
correlation of the cuboids. More specifically, this paper as-



sumed a quadratic behaviour, but this is not always a good
approximation of the real function.
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