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A comparison of two Kalman-type filters for robust extrapolation of 
offshore wind turbine support structure response

K. Tatsis & E. Lourens
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

ABSTRACT: Quasi-periodic loading resulting from waves and a rotationally sampled wind field often leads to fatigue-
driven designs for offshore wind turbine support structures. The uncertainty on wind and wave loading, together with
large modelling uncertainties, lead to large discrepancies between the observed and predicted dynamic behaviour of these
structures. Among many recent-developed techniques for monitoring of true fatigue damage development, two promising
Kalman-type filters are compared, namely the recently proposed Dual Kalman filter (DKF) and the Gillijns and De Moor
filter (GDF). The filters are applied to synthetic vibration data in order to predict the global response of a lattice support
structure assuming large modelling uncertainties and no knowledge of the input forces. A critical assessment of both filters
with regard to requirements on the available data and tuning of the filter parameters is presented.

1 INTRODUCTION

With strict targets in place for the reduction of the levelized
cost-of-energy of offshore wind, a diverse range of possible
cost reduction schemes is being investigated. Among them
are the life-time extension of offshore wind turbines/farms,
and the accompanying investigation into the fatigue life of
offshore wind support structures. Fatigue life predictions
are based on processed historical metocean data applied to
a numerical model of the offshore turbine in aeroelastic
simulations where different operating conditions are taken
into account.

The true accumulated fatigue damage during the operat-
ing life of the turbine will differ from the predicted damage
due to metocean conditions deviating from those assumed,
errors in the numerical model (e.g. foundation stiffness),
various turbine faults (e.g. blade pitch errors), etc. There
is thus a need for monitoring systems capable of tracking
accumulated fatigue damage at all critical locations in a
support structure based on actual observations. Since the
critical locations are mostly located underneath the wa-
ter line, some form of downward extrapolation of the re-
sponse measured above the sea level is required. Given that
the first natural frequency of installed turbines can deviate
from the design value with up to 10%, it is not sufficient to
base this extrapolation on the numerical model only.

Instead, algorithms capable of jointly estimating the
states (displacements/velocities) and input forces can be
used. Response prediction on the basis of jointly estimated
states and input was first proposed in Lourens, Papadim-
itriou, Gillijns, Reynders, de Roeck, & Lombaert 2012,
where additionally it was shown that the identification of
a set of (equivalent) forces can to some extent compensate
for inaccuracies in the extrapolated response due to mod-
eling errors. The concept was later applied to an offshore
wind turbine lattice support structure by Van der Male &

Lourens (2015), where the capability to compensate for
modelling errors was again illustrated using a numerical
example.

The algorithm used in Van der Male & Lourens (2015)
suffers, however, from an important drawback, namely that
the state estimates are affected by spurious low-frequency
components in situations where displacement and/or strain
data are not available. A number of related methods has
since been suggested, one of them being the Dual Kalman
filter (Azam, Chatzi, & Papadimitriou 2015). For a state-
of-the-art review, the reader is referred to Azam, Chatzi,
Papadimitriou, & Smyth 2015.

In this contribution, a comparison is made between two
of those promising Kalman-type filters capable of robustly
extrapolating the response of a wind turbine support struc-
ture. Synthetic measurement data is generated by applying
aero- and hydrodynamic loading to an offshore wind tur-
bine supported on a lattice support structure. The response
extrapolation is performed assuming large modelling un-
certainties and no prior knowledge of the input forces. Fi-
nally, a critical assessment of both filters is presented, with
the focus on tuning of the filter parameters and require-
ments on the available data.

2 MATHEMATICAL FORMULATION

The continuous-time equations of motion for a space-
discretized linear system are written as:

Mü(t) + Cu̇(t) + Ku(t) = Sp p(t) (1)

where u(t) ∈ Rndof is the displacement vector and M, C
and K ∈ Rndof×ndof are the mass, damping and stiffness
matrices, respectively. The excitation vector on the right-
hand side is factorized into the force selection matrix Sp ∈
Rndof×np and the input force vector p(t) ∈ Rnp with np
denoting the number of input forces.
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Upon introduction of the coordinate transformation
u(t) = Φz(t) and premultiplication by ΦT, the equation
of motion is transformed to:

z̈(t) + Γż(t) + Ω2z(t) = ΦTSp p(t) (2)

in which z(t) ∈ Rnm represents the vector of modal co-
ordinates and Φ ∈ Rndof×nm contains the mass-normalized
mode shapes. The diagonal matrix Ω ∈ Rnm×nm contains
the natural frequencies ωi and the modal damping matrix
Γ ∈ Rnm×nm , which is also diagonal, collects the terms
2ξiωi with ξ denoting the modal damping ratio.

Introducing now the state vector x(t) ∈ Rns×ns , where
x(t) = [u(t) u̇(t) ]T and ns = 2ndof, Eq. (1) can be rewrit-
ten in the following form:

ẋ(t) = Ac x(t) + Bc p(t) (3)

where the system matrices Ac ∈ Rns×ns and Bc ∈ Rns×np

are defined as:

Ac =

[
0 I

−M−1K −M−1C

]
, Bc =

[
0

M−1Sp

]

The measurement vector d(t) ∈ Rnd , with nd the num-
ber of measured quantities, reads

d(t) =




Sd,d 0 0
0 Sd,v 0
0 0 Sd,a






u(t)
u̇(t)
ü(t)


 (4)

where Sd,d, Sd,v and Sd,a are the selection matrices for dis-
placements, velocities and accelerations respectively. Mak-
ing use of the equation of motion and the definition of the
state vector x(t), the measurement vector can be rewritten
into state-space form:

d(t) = Gc x(t) + Jc p(t) (5)

where the output influence matrix Gc ∈ Rnd×ns and the
direct transmission matrix Jc ∈ Rnd×np are defined as:

Gc =




Sd,d 0
0 Sd,v

Sd,aM
−1K Sd,aM

−1C


 , Jc =




0
0

Sd,aM
−1Sp




Eqs. (3) and (5) together constitute the full-order state-
space equations in the continuous-time domain. In the case
of a reduced order model, the dynamics of the system may
be represented by a reduced number nm of modal coordi-
nates z(t), so that the state vector can be written as

x(t) =

[
Φ 0
0 Φ

]
ζ(t) (6)

in which ζ(t) ∈ R2nm is the modal state vector: ζ(t) =

[z(t) ż(t) ]T. Accordingly, the full order state-space model
is transformed to the modal state-space model of reduced
order:

ζ̇(t) = Ac ζ(t) + Bc p(t) (7)

d(t) = Gc ζ(t) + Jc p(t) (8)

where the corresponding system matrices Ac ∈ R2nm×2nm ,
Bc ∈ R2nm×np , Gc ∈ Rnd×2nm and Jc ∈ Rnd×np are now
defined as:

Ac =

[
0 I
−Ω2 −Γ

]
, Bc =

[
0

ΦTSp

]

Gc =




Sd,d Φ 0
0 Sd,v Φ

Sd,aΦΩ2 Sd,aΦΓ


 , Jc =




0
0

Sd,aΦΦTSp




The equivalent discrete-time state-space model is then
obtained after discretization of Eqs. (7) and (8) with a sam-
pling rate of 1/∆t:

ζ k+1 = Aζ k + Bp k (9)

d k = Gζ k + Jp k (10)

where ζ k = ζ(k∆t), p k = p(k∆t), d k = d(k∆t) for k =
1, ...,Nt and

A = eAc∆t, B = [A− I]A−1
c Bc, G = Gc, J = Jc.

3 JOINT INPUT-STATE ESTIMATION

Consider the discrete-time state-space equations supple-
mented with the random variables w ζ

k ∈ R 2nm and v k ∈
R nd respectively, in order to account for process (mod-
elling) and measurement noise:

ζ k+1 = Aζ k + Bp k + w ζ
k (11)

d k = Gζ k + Jp k + v k (12)

The noise processes are assumed to be mutually un-
correlated, zero-mean, white noise signals with known
covariance matrices Q ζ = E

{
w kwT

l

}
≥ 0 and R =

E
{
v k vT

l

}
> 0 for k, l = 1, ...,Nt with zero off-diagonal

entries. Assuming no knowledge of the driving forces, the
problem at hand is to estimate the input p k and the state
ζ k of the above system, relying on the noisy observations
d k. To this end, two Kalman-type filters are implemented,
the Dual Kalman fiter (DKF) and the Gillijns and De Moor
filter (GDF).

3.1 Dual Kalman Filter

Within the context of this first algorithm a dual implemen-
tation of the Kalman filter is performed for estimating both
the states and the input of linear time-invariant systems.
This is accomplished by introducing a fictitious process for
the unknown input:

p k+1 = p k + w
p
k (13)

in which w
p
k is a zero mean white Gaussian noise whose

associated covariance matrix is denoted by Qp. The joint
input-state estimation is then enabled by combining the
two processes represented by Eqs. (11)-(12) and Eq. (13)
respectively, upon proper tuning of the noise covariances
Q ζ , Qp, and R and initialization of the expected value
and the covariance of the state and the input. The general
scheme is summarized in Table 1.



Table 1: The general scheme for the DKF algorithm

Initialization at time t0:

p̂ 0 = E [p 0 ]

P p
0 = E

[
(p 0 − p̂ 0) (p 0 − p̂ 0)

T
]

ζ̂ 0 = E [ζ 0 ]

P ζ
0 = E

[(
ζ 0 − ζ̂ 0

)(
ζ 0 − ζ̂ 0

)T
]

At time tk, for k = 1, ...,Nt:

• Input prediction

p−
k = p k−1

P p−
k = P p

k−1 + Q p

• Input update

K p
k = P p−

k JT
(
JP p−

k JT + R
)−1

p̂ k = p−
k + K p

k

(
d k −Gζ̂ k−1 − Jp−

k

)

P p
k = P p−

k −K p
kJP p−

k

• State prediction

ζ −
k = A ζ̂ k−1 + Bp̂ k

P ζ−
k = AP ζ

k−1A
T + Q ζ

• State update

K ζ
k = P ζ−

k GT
(
GP ζ−

k GT + R
)−1

ζ̂ k = ζ −
k + K ζ

k

(
d k −Gζ −

k − Jp̂ k

)

P ζ
k = P ζ−

k −K ζ
kGP ζ−

k

3.2 Gillijns and De Moor Filter

The second algorithm to be assessed is the GDF, devel-
oped by Gillijns & De Moor 2007. Unlike the DKF, the
GDF does not require any assumption on the input, and it is
merely initialized using the initial state ζ 0 and its variance
P ζ

0. Analogous to the DKF, the covariances Q ζ and R,
of the process and measurement noise, respectively, must
be properly chosen in order for the filter to furnish accu-
rate estimates. Hereafter, the joint force and state estima-
tion is done recursively in three steps: the input estimation,
the measurement update and the time update. The general
scheme of this algorithm is outlined in Table 2.

4 SIMULATED EXAMPLE

For the comparative study between the two algorithms, an
offshore wind turbine support structure is considered, with
properties as introduced by De Vries et al. (2011). The
characteristics of the supported 5 MW reference turbine
can be found in Jonkman et al. (2009). The entire structure
is modelled with three-dimensional Euler-Bernoulli beam
elements while the concrete transition piece between the

Table 2: The general scheme for the GDF algorithm

Initialization at time t0:

ζ 0 = E [ζ 0 ]

P ζ
0 = E

[(
ζ 0 − ζ̂ 0

)(
ζ 0 − ζ̂ 0

)T
]

At time tk, for k = 1, ...,Nt:

• Input prediction

R̃ k = GP ζ−
k GT + R

M k =
(
JTR̃

−1

k J
)

JTR̃
−1

k

p̂ k = M k

(
d k −Gζ −

k

)

P p
k =

(
JTR̃

−1

k J
)−1

• Measurement update

L k = P ζ−
k GTR̃

−1

k

ζ̂ k = ζ̂ −
k + L k

(
d k −Gζ̂ −

k − Jp̂ k

)

P ζ
k = P ζ−

k −L k

(
R̃ k − JP p

kJ
T
)

LT
k

P ζp
k =

(
P p ζ
k

)T
= −L kJP p

k

• Time update

ζ̂ −
k+1 = Aζ̂ k + Bp̂ k

P ζ−
k+1 = [A B]

[
P ζ
k P ζp

k

P pζ
k P p

k

]
[A B]

T
+ Q ζ

lattice structure and the tower is modelled as a rigid body.
The rotor-nacelle assembly is reduced to a lumped mass
on top of the tower and an additional point mass is placed
in the middle of the tower in order to account for flanges,
bolts and equipment installed in the tower. Soil-structure
interaction is taken into account by means of vertically ori-
ented linear spring elements at the base of the jacket legs
whose stiffness is calibrated so that the first natural fre-
quency of the model shows good agreement with that de-
scribed by De Vries et al. (2011).

The implementation of the identification algorithms is
based on a set of artificial vibration data generated by sub-
jecting the full-order finite element model to a pair of en-
vironmental loads: a thrust force due to wind acting on the
rotor disc and a wave load acting on the lattice structure.

For the modelling of the wind turbulence in the plane of
the rotor disc, a von Karman wind spectrum is considered
(Fig. 1):

Suu(f) = σ2
u

4L/U
(

1 + 70.8
(
fL/U

)2)5/6

where σu is the standard deviation of the turbulence veloc-
ity equal to 0.1, L is the isotropic integral length scale of
wind turbulence equal to 150 m and U is the mean wind
velocity chosen to be 12 m/s. The spatial variation of the
wind speed seen by a rotating point on the blades of the
wind turbine is taken into account by means of rotational



10−2 10−1 100 101
0

10

20

30

Frequency [Hz]

Sp
ec

tr
al

D
en

si
ty

[m
2
/s

]

Figure 1: Von Karman wind spectrum for a mean wind speed of
12 m/s, turbulence intensity of 10% and turbulence length scale
of 150 m

sampling of the wind field for a certain number, namely 10,
of annular rings on the rotor disc, as elaborated by Burton
et al. (2011). The resulting periodic excitation (Figure 2)
exerted on the support structure is then obtained on the ba-
sis of the actuator disc concept (Burton, Jenkins, Sharpe, &
Bossanyi 2011) and is assumed to act as a point load along
the x-axis at the rotor nacelle assembly at the top of the
tower. An 80 sec time frame of the obtained wind force is
illustrated in Figure 5(a).
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Figure 2: Aerodynamic force signal for NREL5 offshore wind
turbine

The mean sea level in the examined location is assumed
to be 50 m and the sea surface elevation is derived from a
Pierson-Moskowitz spectrum (Fig. 3):

Shh(f) = α
g2

(2πf)
5 e

−β

 g

2πfU

4

The simulation is performed according to Shinozuka & De-
odatis (1991) with an upper cut-off frequency of 3 Hz, for a
mean wind speed U of 12 m/s and coefficients α = 0.0081
and β = 0.74. Based on this distribution for the wave el-
evation, the water particle kinematics are determined us-
ing linear wave theory and the hydrodynamic loads on the
members of the lattice structure are calculated with Mori-
son’s equation. The total wave force, for which a 80 sec
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Figure 3: Pierson-Moskowitz wave spectrum for mean wind
speed of 12 m/s

time frame is presented in Fig. 4, is assumed to act in the

form of concentrated loads, along x-axis, on the legs of the
jacket at the upper K-joints, as depicted in Fig. 5(a).
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Figure 4: Hydrodynamic force signal on the jacket structure

Application of the force time signals on the finite ele-
ment model at the positions presented in Fig. 5(a) yields the
artificial measurement data, at the chosen sensor locations.
Subsequently, the vector of measurement data d k ∈ Rnd

is polluted with Gaussian white noise, in order to gener-
ate the noisy output vector d̃ k ∈ Rnd at each time step k
according to:

d̃ k = d k + δσd r k (14)

where δ is the noise level, σd ∈ Rnd×nd is a diagonal ma-
trix composed of the standard deviations of the measure-
ment signals and r k ∈ Rnd is a vector containing random
values drawn independently from the standard normal dis-
tribution. For a measurement noise of 5%, corresponding
to a δ value of 0.05, the measurement covariance matrix
can be obtained analytically from:

R = δσ 2
d (15)

To perform the joint input-state estimation, a modal rep-
resentation of the wind support structure is required. Fig. 5
illustrates the first three mode shapes of the modelled struc-
ture while the corresponding natural frequencies, along
with a brief description, are reported in Table 3. It should
be noticed at this point that higher frequencies are signif-
icantly out of the range of the frequency content of the ex-
citation and therefore, their corresponding modes are not
included in the reduced-order representation of the model.
Moreover, mode shapes in the y direction are neglected due
to their null contribution in the response. Finally, according
to Jonkman et al. (2009), a uniform value of 1% structural
damping is adopted for all modes under consideration.

Once the reduced order model is established, it is essen-
tial to investigate the identifiability and stability conditions
of system inversion, as underlined by Maes et al. (2014),
before the sensor configuration is determined. In order for
the system to be controllable, all states should be controlled
by the input or in terms of the modal characteristics, matrix
ST

p Φ should not contain zero columns. Similarly, observ-
ability of the system is ensured when all states are observ-
able in the system output. This condition is satisfied if and
only if the matrix SdΦ does not contain zero columns.

Table 3: Natural frequencies of the FE model

No. Frequency [Hz] Description

1 0.290 First global lateral (fore-aft)
2 1.133 Second global lateral (fore-aft)
3 1.511 Third global lateral (fore-aft)
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Figure 5: (a) Finite element model of the wind turbine support structure and (b)-(d) First three mode shapes

Finally, direct invertibility ensures that estimation of the
system input can be performed without time delay. Should
a modally reduced order model be used, this condition
is satisfied when both the order of the model nm and
the number of acceleration measurements nd,a is greater
than or equal to the number of forces np, or equivalently
when rank

(
ST

p Φ
)

= np and rank (Sd,aΦ) ≥ np respec-
tively. Moreover, in order to avoid unstable or marginally
stable transmission zeros and ensure stability of the system
inversion, the number of displacement or strain measure-
ments nd,d should be greater than or equal to the number
of forces np.
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Figure 6: Graphical representation of the matrix ST
p Φ

Considering the difficulty to obtain reliable and robust
measurements at locations on the jacket structure, the es-
timation algorithms will be based on a sensor network at-
tached to the tower only. Figure 5(a) presents the FE model
of the structure along with a set of possible sensor locations
on the tower. Since state identification is aimed at, observ-
ability should be ensured and the measurement locations
will be selected so as to achieve a strong coupling between
observed and excited modes. A graphical representation of
the matrix SdΦ is showed in Figure 7, pointing out the
contribution of the modes to each one of the possible out-
puts. It is seen through the latter that observability may be
achieved from all sensor locations under consideration.

To avoid using any a-priori information on the spatial
distribution of the input, a single driving force acting at
the top of the tower is identified. In so doing, it should be
ensured that all states can be controlled by such an equiv-
alent force, able to compensate for the absence of the real
driving forces. From the modal projetions of the force lo-
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Figure 7: Graphical representation of the matrix SdΦ

cations ST
p Φ as depicted in Figure (6), it is concluded that

controllability of the system can be indeed achieved by the
aforementioned force.

Dealing now with a reduced order model which com-
prises three mode shapes and is driven by a single in-
put force, at least one acceleration measurement should be
available in order to enable direct invertibility. Moreover,
to stabilize the instantaneous system inversion, at least
np = 1 displacement or strain observations are required.
Noting that the scope of this work does not encompass the
optimization of the spatial distribution of the sensors and
considering all the above-mentioned conditions, the sensor
setup is chosen to consist of one accelerometer at the top
of the tower (node 121) and a displacement sensor at node
65 (Fig. 5(a)).

5 RESULTS

In what follows, the comparative results of the two filters
are presented via two distinct case studies. First, the robust-
ness of the estimates to measurement noise is tested with
an unperturbed numerical model, where process noise is
absent. Next, the performance of the algorithms is assessed
with an erroneous model which derives from the reference
model after introduction of a certain amount of error on its
natural frequencies.

The time histories of the sought-for quantities serve as
the basis for the comparison study and weight is lent to the
calibration of filter parameters. Moreover, particular atten-
tion is paid to the possibility of obtaining sufficiently ac-
curate estimates for the critical underwater locations, based



on tower-only measurements. This is illustrated by means
of the estimated displacement time histories of node 21
(Fig. 5(a)) which is located at the lowest K-joint of the lat-
tice structure, 20 m above the mudline.

5.1 Unperturbed Model

Both filters are initialized with a zero state while the co-
variance matrix of the measurement noise is calculated
from Eq. (15). Since no process noise is present, the ini-
tial covariance of the state P ζ

0 and the process noise Q ζ

are both set to 10−15 × I, where I is an identity matrix of
appropriate dimension. It should be mentioned that initial-
ization of the GDF does not involve any information on the
statistics of the input. However, the DKF requires an ini-
tial guess for the input and its covariance matrix in order to
obtain the input-state estimates.

The covariance of the input is acting as a regulariza-
tion parameter within the DKF algorithm and can there-
fore strongly affect the quality of the results. Hence, it is
of crucial importance that Qp is properly adjusted to the
tunning value in order for the filter to furnish accurate es-
timates. Within this context, use is made of the L-curve as
suggested in the work of (Lourens, Reynders, De Roeck,
Degrande, & Lombaert 2012). Figure 8 depicts the L-curve
for the adopted sensor configuration where the horizontal
axis denotes the norm of the estimation error for the mea-
sured quantities

∑
||d k −Gζζζ −

k − Jp̂ k||22/Nt and the ver-
tical axis refers to the corresponding values of the covari-
ance Qp of the input noise. It is seen that for the case of
an unperturbed model the L-curve has a distinct corner at
the value of 1011 × I which is assigned to the input noise
covariance Qp and its initial guess P

p
0 accordingly.

For the given frequency content of the excitation, the
structural response is dominated by the first mode shape
whose estimation is therefore of particular interest. In Fig-
ure 9, the estimated time histories of the modal displace-
ment and velocity for mode 1 are presented. It is observed
that both the DKF and the GDF are able to provide suffi-
ciently accurate estimates of the two states.

Moreover, in order to investigate to what extent the re-
sponse at critical locations on the jacket structure can be es-
timated from the current sensor setup, the lateral displace-
ment of node 21 (Fig. (5(a)) is calculated. Figure 10 depicts
the displacement time histories estimated by the two filters.
It is seen that, even with a reduced-order model consist-
ing of only three modes, both filters deliver a satisfactory
downward extrapolation of the measurement data and are
able to trace the displacement time history at underwater
locations. However, it is observable that the GDF can yield
a better match with the target value of displacement, com-
pared with the DKF estimates.

5.2 Erroneous Model

A second application of the filters is performed; this time,
however, the employed model does not exactly represent
the real structure. The first two natural frequencies of the
numerical model are increased by 20%. Thus, the mea-
surement data is obtained from the response of the true
structure and the estimation algorithms are applied using
an erroneous model whose first three natural frequencies
are 0.348 Hz, 1.360 Hz and 1.511 Hz, respectively. Again,

10−1 100
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104

1012

1020

Error norm

Q
p

Unperturbed model
Erroneous model (10% error)
Erroneous model (20% error)

Figure 8: L-curve for the state and input identification of the
wind turbine structure using DKF

5% measurement noise is introduced to the measurement
data.

To initialize the procedure, a zero state is again assumed
for both algorithms and the measurement noise matrix R is
obtained by Eq. (15). In addition, the initial covariance of
the state P ζ

0 and the process noise Q ζ are set to 10−7 × I
in order to compensate for the error introduced in the nu-
merical model. Calibration of the input covariance Qp is
also accomplished by means of the L-curve where now the
curve corresponding to the erroneous model is used, as il-
lustrated in Figure 8. It is seen that when an error is intro-
duced in the model, the corner of the curves is becoming
smoother and the tuning value is not obvious anymore. The
adopted value for Qp in this case is 1013 × I which again
corresponds to the lowermost point of the upper vertical
segment of the L-curve.

Figure 11 shows the estimated time histories of the
modal states for mode 1 when the erroneous model is used.
Although there is a disagreement between the two models
used for the estimation and the data generation, both al-
gorithms can still properly trace the modal responses af-
ter proper adjustment of their parameters, with the GDF
slightly ouperforming the DKF. Moreover, it is seen in Fig-
ure 12 that equally accurate estimates can be obtained for
the underwater locations.

Figure 13 presents a comparison between the DKF es-
timates obtained with two different tuning parameters cor-
responding to the left and right L-curves in Figure 8. The
importance of a proper tuning of Qp is apparent, as well as
the dependence of this tuning on model accuracy. It should
be noted here that the L-curve was developed for linear
models Ax = b, in which only the right-hand side b is
subjected to errors. In situations where both the coefficient
matrix A (comparable to the state matrix A in a state-space
setting) and the right-hand side b (comparable to d in the
observation equation) contain errors, regularization meth-
ods based on Total Least Squares (TLS) should theoreti-
cally be used (Hansen 1998). The authors are of the opin-
ion, however, that tuning difficulties will remain also with
the application of more suitable regularization methods.
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Figure 9: Modal displacement (top) and velocity (bottom) time histories estimated by GDF and DKF for mode 1 using the unperturbed
model
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Figure 10: Displacement time histories estimated by GDF and DKF for node 21 using the unperturbed model
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Figure 11: Modal displacement (top) and velocity (bottom) time histories estimated by GDF and DKF for mode 1 using the erroneous
model
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Figure 12: Displacement time histories estimated by GDF and DKF for node 21 using the erroneous model
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Figure 13: Modal displacement time histories estimated by DKF for mode 1 using the erroneous model; covariance Q p of input noise
is tuned according to the L-curves of the unperturbed and the erroneous model at 1011 × I and 1013 × I, respectively

6 CONCLUSIONS

A comparative study of two Kalman-type filters was pre-
sented, both capable of extrapolating the measured vibra-
tion response of an offshore wind turbine tower to critical
locations beneath the waterline. The extrapolation is per-
formed based on a limited set of simulated sensor data and
a possible erroneous (reduced-order) model of the struc-
ture. Different analyses were performed to assess the ro-
bustness of the two filters to modelling errors and the fol-
lowing conclusions were drawn:

• The GDF is seen to slightly outperform the DKF
where the inferiority of the DKF estimates is related
to the relative difficulty in finding an optimal regular-
ization parameter.

• A major drawback of the GDF is the fact that it re-
quires either strain or displacement measurements for
a stable estimation. Although displacement measure-
ments are not feasible offshore, the turbine towers are,
however, often equipped with strain gauges.
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