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Abstract

Human-agent teams (HATs) are becoming more
prevalent in our current world, necessitating mu-
tual trust between humans and machines. This trust
is split into artificial trust (agents trusting humans)
and natural trust (humans trusting agents). Both
types must be facilitated for effective teamwork. It
is hypothesized that communicating artificial trust
effectively helps develop natural trust and overall
satisfaction. A visual summary of explanations is
proposed to serve as an effective communication
method. Summaries allow for in-depth information
processing, and visual representations are quicker
to interpret. This paper examines the impact of us-
ing a visual summary of explanations to communi-
cate the agent’s trust beliefs on the human team-
mate’s natural trust and overall satisfaction within
HATs. An experiment (n=40) was conducted to
study this effect. Participants collaborated with an
artificial agent during an urban search and res-
cue operation in a simulated 2D grid-world en-
vironment. Results show that the inclusion of a
visual summary increases the human teammate’s
trust in the agent alongside their overall satisfac-
tion. The paper emphasizes the need for further
research with longitudinal studies to measure the
long-term effectiveness of communicating artificial
trust.

1 Introduction
Artificial agents are becoming more capable of performing
advanced and relevant tasks within our daily lives [1]. Given
this notion, the prospect of collaborative teamwork between a
human and an artificial agent has been becoming more preva-
lent by the day. Humans offer flexibility and a stronger un-
derstanding of fuzzy data, whereas computers offer precision,
speed, and reliable memory [2]. A human and an artificial
agent may therefore help emphasize each others’ strengths
and cover their respective weaknesses. This concept is known
as human-AI teamwork [3], where a human and an artificial
agent work together as a team towards a goal, which is typi-
cally composed of a set of tasks that can be performed either
individually or jointly [2].

Effective teamwork is achieved with mutual trust, which
is when teammates trust each other [4]. Previous litera-
ture has shown that mutual trust within human-human teams
is crucial for effective teamwork [5]. On the other hand,
whether mutual trust is effective within the context of human-
AI teams (HATs) has not been extensively researched yet. It
is, however, proposed that, similar to human-human teams,
mutual trust is also a key driver for effective teamwork in
HATs [6]. Trust within HATs can be divided into two forms
of trust: artificial trust, and natural trust. Artificial trust refers
to artificial agents trusting humans, while natural trust refers
to humans trusting artificial agents [7]. Mutual trust within
HATs is therefore ensured if both the artificial agent and the
human teammate trust each other.

Within HATs, artificial agents may use trust as a predictive
tool when interacting with human teammates. In other words,
if an artificial agent is capable of assessing the trustworthi-
ness of a human teammate, it will be able to predict their
respective performance of a given task [6]. Instead of hav-
ing the artificial agent decide on actions without considering
the human’s capabilities and intentions, it can process human
behavior and adapt their own behavior accordingly, making
informed decisions that lead to more efficient results [8]. To
process artificial trust, an artificial agent may model a hu-
man’s characteristics, capabilities, and intentions in the form
of trust beliefs. This can be presented as an agent’s mental
model of a human’s trustworthiness, represented by artificial
trust beliefs of a human teammate’s competence and willing-
ness [9]. By using this mental model, the artificial agent may
adapt its decisions and choices when working with a human
teammate [10].

The mental model is not only useful for the artificial agent.
It can also provide feedback to the human to convey the
agent’s trust beliefs. By communicating the agent’s trust be-
liefs, the human may gain insight to the agent’s perspective,
therefore being able to adapt their actions accordingly as well.
This encourages a feedback loop as seen in Figure 1.

Figure 1: Feedback loop between human and artificial agent

In order to support this feedback loop, it is important to de-
termine which communication method is the most effective
to convey the agent’s mental model with. There are different
ways of communicating an agent’s trust beliefs and decisions
to a human teammate. Some methods include textual expla-
nations, justifications, or visual representations of the beliefs.
Zhang et al. (2023) investigated the effectiveness of different
communication strategies within the context of HATs. They
state that “AI teammates’ proactive communication with hu-
mans could facilitate the development of human trust and sit-
uational awareness” (p. 1) [11]. This implies that commu-
nicating trust beliefs could lead to increased natural trust. It
has also been stated by Zhang et al. (2023) that “the cur-
rent state-of-the-art AI technology has not yet been able to
fully participate in natural language communication with hu-
mans, especially in a team setting” (p. 2) [11]. It is therefore
important to develop an appropriate communication strategy
for artificial agents within HATs to facilitate the coordination
process [11]. Transparency and explainability of AI have sig-
nificant research and contributions [12]. However, within the
context of trust in HATs, literature is more limited.

To ensure efficiency with communicating artificial trust
beliefs within HATs, it is desirable to use a communica-
tion method that can be processed the fastest. According to



Sharma et al. (2012), compared to textual representations, hu-
mans are able to process visual representations 60,000 times
faster [13]. With this in mind, it is hypothesized that a visual
summary of a mental model of an artificial agent’s trust be-
liefs serves as an effective method of communication within
HATs. This paper will focus on investigating the effective-
ness of transparency in communicating an artificial agent’s
trust beliefs in its human teammate by answering the follow-
ing research question:

How does a visual summary of explanations of the
mental model of the agent’s trust in the human
teammate affect the human teammate’s trust in the
agent and overall satisfaction?

Research will therefore focus on investigating the effec-
tiveness of a visual summary of explanations as a communi-
cation method for the artificial agent’s mental model of trust
beliefs within a collaborative environment (HATs). The scope
of the project will mainly focus on the formalization of the
trust model and the communication method used for explain-
ing said trust model. This study will contribute to the field of
collaborative human-AI teamwork in several ways:

1. Building an artificial trust model: Formalizing trust
beliefs into mental models for the artificial agent. These
models will allows the agent to adapt its decisions and
actions based on varying trust levels in a collaborative
environment.

2. Developing a visual summary tool: Defining a vi-
sual summary to communicate artificial trust to enhance
communication within HATs.

3. Conducting a user-study: Gathering data on the effec-
tiveness of a visual summary as a method of commu-
nicating mental models. This will draw meaningful in-
sights into how trust can be communicated from an arti-
ficial agent to a human teammate.

The research paper is structured as follows. Section 2 in-
troduces the background and related works of the study, ex-
plaining concepts such as trust, mental models, and commu-
nication strategies. Section 3 describes the trust mechanism
that was developed for the study. Section 4 discusses the ex-
periment used to help answer the research question. Section 5
presents the results after conducting the experiment. Section
6 gives insights to responsible research. Section 7 discusses
the results and limitations, alongside future works. Lastly,
section 8 summarizes the findings.

2 Background
2.1 Trust and Mental Models
For trust to develop within a team, all members must recog-
nize the interests of other members in order to perform a joint
activity [14]. Trust is a multifaceted concept that is defined as
the dyadic behavior between a trustor (who places trust) and
the trustee (who is trusted). The act of trusting is the ”will-
ingness” of one party to be open to the risks posed by another
party’s actions [15]. As mentioned before, mutual trust exists
when both parties trust each other, which in the case of HATs
is when artificial and natural trust is present [6].

How one party trusts the other should be reflected by their
actual trustworthiness [16]. Trust refers to the subjective at-
titude of the trustor, while trustworthiness is the characteris-
tic representing someone to be trusted. This derivation im-
plies that a trustor must have a ”theory of the mind” of the
trustee [16]. In other words, a trustor formalizes a model of
the trustee’s perceived trust. Within HATs, artificial trust can
be computed from a formalized trust model, in which the hu-
man’s perceived capabilities are compared to the demands of
the task [8].

To model trust within HATs, a mental model of the agent’s
trust beliefs is required. These models are structured mental
representations to describe, explain, and predict the surround-
ing environment [17]. A formalization of artificial trust, and
a mental model of the artificial agent’s beliefs in the human
agent would leave room for preference modelling. For exam-
ple, if the agent were to be presented with two tasks, it may
select the one that is modelled as less preferred by the human,
further enhancing natural trust and overall satisfaction within
HATs [8].

Artificial trust is computed from an artificial trust model,
where trust is evaluated based on a capability dimension by
comparing the agent’s perceived abilities with the task re-
quirements [8]. Past literature consists of varying trust mod-
els. One of such derivations of a trust model states that artifi-
cial trust can be divided into two primary beliefs regarding the
trustee’s trustworthiness: competence and willingness [18].
Competence refers to the perception and evaluation of the
target’s ability and capability to carry out the relevant tasks,
while willingness refers to the likelihood of the target carry-
ing out the task, independently of the competence [19]. Over-
all, models such as the competence/willingness model can be
utilized to formalize trust in the form of a mental model. This
mental model represents an artificial agent’s trust beliefs in a
human teammate within HATs.

2.2 Communication of Beliefs
Coordination within HATs is dependent on human-AI com-
munication, which is challenging due to the limitations of
artificial agents processing natural language communication
[11]. To ensure trust, communication is key. This can be done
by sharing the agent’s mental models, falling under the cate-
gory of explainable AI (XAI) which aims to describe the rea-
soning and logic behind AI models. In the context of HATs,
it refers to the artificial agent’s mental model of the human’s
capabilities and relevant trust beliefs.

Given a mental model of the artificial agent’s trust beliefs,
the question of communicating it has not been thoroughly dis-
cussed in past literature, indicating a knowledge gap. Feed-
back mechanisms are critical for facilitating trust between
two parties, as transparency of information leads to higher
trust [20]. Thus, continuous bidirectional feedback, like in
Figure 1, would allow for timely adjustments and corrections,
leading to the notion of adaptability within HATs, which has
been stated in past literature to play a significant role within
them [21].

There are several means of communication for an artificial
agent’s mental model. Visually, textually, and considering
temporal aspects, within real-time, or as a summary. Liter-



ature has displayed that visualization systems have been uti-
lized as a method of communicating decision making within
HATs [22]. Summaries can be seen as a more appropriate op-
tion when considering situational stressors within tasks, such
as time constraints or high event cardinality [23]. A study by
Mayer, et al. (1996) has shown that a sequence of short cap-
tions with simple visual illustrations helped participants recall
the provided information more efficiently [24]. Conversely,
removing the illustrations eliminated the effectiveness of the
summary [24]. It concluded that information overload is an
aspect to be avoided, especially in situations with high stakes,
such as urban search and rescue environments [24]. Further-
more, a summary is a form of static information, as opposed
to the alternative real-time explanations. Mardell (2015) per-
formed a study that concluded that static representations of
visual information yielded higher success than standard live
representations [25]. This implies that visual summaries, as a
form of static information, may be a viable method for con-
veying visual explanations.

Overall, past literature deduces that short captions, sim-
ple visual illustrations, and static representations are success-
ful methods for communicating visual information. This pa-
per will consider these results to create an optimized visual
summary of explanations of an artificial agent’s trust beliefs
within HATs.

3 Trust mechanism
3.1 Environment
Based on the background information from the previous sec-
tion, a trust model has been developed. The environment in
which this trust model would take place in, is an urban search
and rescue scenario simulated using the MATRX framework
[26], as seen in Figure 2. The task involves a human player
and an artificial agent (RescueBot) working together to res-
cue victims within a map. Tasks include searching rooms,
removing obstacles (three types: rock, tree, stones), and res-
cuing victims (mildly or critically injured.)

When carrying out tasks as part of a joint-goal, interdepen-
dence relationships may be at play. Johnson et al. (2014)
states that interdependence is the set of complementary rela-
tionships that humans and artificial agents rely on to manage
hard (required) and soft (opportunistic) dependencies within
joint activity [27]. The tasks that may be carried out within
the game vary in interdependence:

• Individually by the agent: removing tree obstacle.

• Individually by the human or agent: saving mildly
injured victims.

• Individually by the human or agent, collaboratively
for more efficiency/reliability (soft interdependence):
searching rooms or removing stone obstacle.

• Collaboratively (hard interdependence): removing
rock obstacle, saving critically injured victims.

During the task, the human teammate is able to direct the
artificial agent via a chat communication interface to indicate
searched rooms, ask for help to remove an obstacle, and an-
nounce finding and rescuing victims. The artificial agent on

the other hand communicates searched rooms, found obsta-
cles, and found victims, asking the human teammate how to
proceed.

Figure 2: Map of the search and rescue task.

3.2 Trust Model
Given a set of tasks with varying levels of interdependence
as described in the previous subsection, the trust model was
developed. The model that this paper used followed the con-
ceptual model of competence and willingness. Competence
reflects an evaluation of the trustee’s ability to perform the
required tasks, while willingness reflects the trustor’s belief
of whether the trustee will carry out the task [28]. Both com-
petence and willingness are necessary to model when consid-
ering scenarios where a human teammate might excel in one
aspect but not the other. Additionally, willingness is tied to
preference modelling, which is discussed in subsection 3.4.

Tasks are divided into three types: Obstacle, Search, and
Victim. Each task type has associated competence and will-
ingness values. In the model, trust values are initialized as
0, and within the range of −1 and 1. The aggregate aver-
age of the competence values for all task types is denoted as
Tcompetence, and the aggregate average of the willingness val-
ues is denoted as Twillingness. The overall trust score, Toverall, is
calculated as the average of the aggregated competence and
willingness values, as seen in Equation 1.

Toverall =
Tcompetence + Twillingness

2
(1)

Equation 1: Formula for Trust

Table 1 shows a summary of actions the human teammate
may take throughout the game that will influence the trust
values. It displays the task type, the human action, and the
corresponding trust adjustments for competence (C) and will-
ingness (W). The last column (P) indicates if preference mod-
elling is considered, which will be discussed in subsection
3.4. Each trust adjustment comes with an explanation. For
example, the first entry in Table 1 would have the explana-
tion: ”You took too long to respond to remove obstacle, -W”.



Table 1: Summary of human actions and their corresponding trust
value adjustments

Task Human action C W P
Human does not respond to remove obstacle. - !

Human responds to remove obstacle together. + !

Human responds but does not arrive to remove obstacle. - - !
Human asked for help with an obstacle, but was not there. - -
Human asked for help with an obstacle, but is there. + +
Human removes obstacle together. + + !

Obstacle

Human lied about an obstacle. - - !

Human lied about searching a room. - - !
If another room was already searched in the past 5 seconds. -
Human double searches room. -
Human searches a new room. + + !
Human forgot to announce searching a room before announcing they found a victim. -

Search

Human forgot to announce searching a room before announcing they collect a victim. -
Human lied about a victim being rescued. - -
The bot confirms that the victim the human found was at the location. +
Human lies about victim location. - -
Human responds to rescuing victim with robot. + !

Human does not respond to rescuing victim with robot. - !

Human does not arrive to help rescue victim. - - !

Human arrives on time. + + !
If the human announced a found victim. + +
If the human collects a victim. + +

Victim

If the human did not announce a victim while he searched the area. - -

Each specific human action has different weights in trust
adjustments: large (0.4), medium (0.2), and small (0.1). For
example, lying about a critically injured victim’s location
has negative large trust adjustments for both competence and
willingness, while lying about a mildly injured victim’s lo-
cation has negative medium trust adjustments. This helps dif-
ferentiate the weights of the human teammate’s actions. The
table in Appendix A displays a fully detailed list of specific
human actions, their provided explanations, and their respec-
tive trust adjustments (including weights).

3.3 Behavior adaptation
Based on direct experiences and human actions, the agent will
adjust its trust beliefs regarding the human’s willingness and
competence for searching rooms, removing obstacles, and
rescuing victims. The agent responds to tasks based on how
much it trusts the human, which is modelled by its perceived
competence and willingness beliefs in the human throughout
the task. For every action conducted by the human player,
the artificial agent decides whether to trust the declaration or
not depending on its current mental model. If the human is
not trustworthy according to the agent, it will act more in-
dependently, whereas if it does trust the human teammate, it
will rely on the human more often. As an example, consider
the case where the human declares that they have searched
room 1. If the agent trusts the human, it will mark room 1
as searched, otherwise, it does not trust the human and will
consider room 1 as unsearched.

A confidence score is also tracked to determine how confi-
dent the agent is in its artificial trust towards the human. Each
task type has a corresponding confidence value, and the over-
all confidence score is the aggregate average of these values.
Initialized at 0 and ranging between −1 and 1, confidence is
based on the latest two trust beliefs and updated only when
trust values change. The agent checks if recent trust values
(competence and willingness) show monotonic (increasing
or decreasing) trends and adjusts the confidence accordingly.
Confidence is increased for monotone trends (0.2 for compe-
tence, 0.15 for willingness) and decreased for non-monotone
trends by the same amounts. Overall, the agent’s confidence
in its own decisions increases as long as its trust beliefs up-

date in a consistent manner, while it decreases with erratic
trust changes.

Confidence influences the likelihood of the artificial agent
trusting the human teammate’s declarations. First, a ran-
domly sampled value between 0 and 1 is selected. If the sam-
ple is less than the confidence score, it checks if the compe-
tence and willingness beliefs exceed their respective thresh-
old values. Both trust beliefs have the same base threshold
of 0, but the willingness threshold is influenced by the pref-
erence score (discussed in subsection 3.4). If both conditions
are satisfied, the agent trusts the human teammate, otherwise,
it does not. If the sample is greater or equal to the confidence
score, the agent defaults to trusting the human. The less con-
fident the agent is in its beliefs, the less likely it is for the
agent to make an independent decision.

3.4 Preference modelling
Since willingness is defined as the likelihood of the target
carrying out a task, the target’s preferences are implied to in-
fluence the willingness value. With this in mind, preference
modelling allows the artificial agent to tune its willingness
beliefs based on factors that may affect willingness. In this
specific instance, the preference model is shaped in accor-
dance to the environment. The weights of the willingness val-
ues adjusted in subsection 3.2 are influenced by a preference
model, following the heuristics of several factors tailored for
the experiment:

• If the task is within a flooded area (where traversal is
slower).

• If the task is far/close to the human.
• If the task involves a difficult victim (elderly victims)

where carrying takes longer.
Achieving the same outcome within a longer time frame is
assumed to be less preferable. In other words, the human is
less likely to prefer performing tasks in flooded and far areas,
alongside rescuing difficult victims. People have the tendency
to avoid mental effort when facing highly demanding tasks
[29], which these factors have been engineered for.

Whenever tasks that involve preference adjust the willing-
ness belief, a preference score is calculated. This score indi-
cates the likelihood of the human teammate preferring a spe-
cific task based on heuristics for distance, flood conditions,
and victim type. The score ranges from 0 to 1, with higher
values indicating greater preference. In order to calculate the
preference score, the three preference factors must be taken
into account, given the corresponding task that adjusted the
willingness belief.

Firstly, D is the distance score, which is computed by nor-
malizing the agent-human distance against the environment’s
maximum distance (the main diagonal), and inverting the re-
sult. The score is higher when the human and agent are
closer, and lower when they are farther apart. Secondly, F
is the flood score, which is equal to 1 if the task ends in a
non-flooded area, 0.5 if both the task and human remain in a
flooded area, or 0 if the task brings the human into a flooded
area. In other words, entering a flooded area is assumed to be
non-preferable, while exiting is seen as preferable. Lastly, V
is the victim score, which equals to 0 if the victim is difficult,



1 if not. Considering the preference factor scores F, D, and
V, Equation 2 describes how the preference score is calcu-
lated, where wF , wD, wV are the weights for the flood score,
distance score, and victim score. These weights are set as 1,
2, and 1, respectively. If the human location is unknown, set
wD = 0 and wF = 0. If no victim is specified, set wV = 0.
If wF = 0, wD = 0, and wV = 0, then P = 1.

P =
wF · F + wD ·D + wV · VS

wF + wD + wV
(2)

Equation 2: Preference score

3.5 Visual summary
The visual summary of the Rescuebot’s trust beliefs is a vi-
sual representation of its mental model, alongside explana-
tions regarding its decisions throughout the game. This can
bee seen in Figure 3. It consists of a graph plotting aggregated
trust (average competence and willingness for search, obsta-
cle, and victim tasks) against time (in seconds). Each point
represents a temporal event where the agent has updated its
trust value, and hovering over said point provides an expla-
nation for the change in trust. Additionally, depending on the
latest trust values, the agent provides a ’verdict’ of its mental
model, telling the player about its assumption on how willing
or competent they are, alongside how confident the agent is
in its decision-making.

Figure 3: Visual summary of the RescueBot’s beliefs

A time series plot helps visualize how the trust value
evolved over time. This approach leverages the human abil-
ity to detect patterns and trends in visual data, easing the pro-
cess of understanding the progression of trust [30]. The trust
metrics are aggregated because it simplifies the data into a
more digestible form, allowing for quick comprehension [31],
which is especially crucial in a time-sensitive environment.
There is additionally an option to view the individual pro-
gression of competence and willingness values to help con-
textualize the explanation (as it indicates when competence
or willingness is updated).

Furthermore, interactive elements such as the ability to
hover over points to read the explanations improves the user
experience through providing context and reasoning behind
the agent’s decision, fostering transparency, which plays a
role in making AI more trustworthy [32]. The tool-tips that
appear when hovering over the points ensure that details are
readily available without cluttering the main view.

The textual verdicts summarize the course of actions the
agent will take based on the presented trust beliefs. It assesses
the human’s willingness and confidence, which can be seen as
feedback (emulating the feedback loop from Figure 1) and an
incentive to understand what went right or wrong.

4 Methodology
4.1 Design
A user-study was conducted to investigate the effectiveness
of a visual summary of the artificial agent’s mental model of
its trust beliefs in the human teammate. It involved measur-
ing a human teammate’s natural trust and overall satisfaction
in the artificial agent within a HAT. It followed a between-
subject procedure, with the usage of a visual summary being
the between-subject independent variable. Two conditions
were compared: the baseline condition, and the summary
condition. The inclusion of a communication mechanism in
the summary condition is the only difference between the two
conditions. The visual summary (Figure 3) was presented 3
times during the task. The first progress point is either a third
of the total runtime (200 seconds), or after a third of the vic-
tims have been saved (2 victims). The second progress point
is at either 400 seconds or 4 victims saved. The last progress
point is after the end of the game (either all victims are saved,
or 600 seconds have passed). During each progress point,
the game was paused, and the summary was displayed on the
whole screen. The player could resume the game by closing
the summary.

4.2 Participants
Forty participants have been recruited to conduct this study
via personal contacts (23 male, 16 female, 1 non-binary),
twenty for each condition. 27 participants were within the
18-24 age range, 6 participants were within the 25-34 age
range, 4 participants were in the 35-44 age range, while 3
participants were within the 45-54 age range. The education
levels were spread between 12 participants for High school, 7
participants for HBO school, 12 participants for bachelor’s, 5
participants for master’s, and 4 participants for PhD. 13 par-
ticipants majored in a computer science related field, while
27 did not. Only 4 participants had experience with the MA-
TRX software, while 36 did not. Lastly, 3 participants had
no gaming experience at all, 10 has very little experience, 9
had some experience, and 18 had a lot of experience. Each
participant signed an approved informed consent form before
participating in the study.

4.3 Tools
The experiments were conducted on a laptop, which was used
to launch and run the 2D-grid world simulation of an urban
search and rescue environment. This environment was built
using the MATRX framework in Python.



4.4 Experimental Setup
The experiment was conducted within an urban search and
rescue environment implemented using the MATRX frame-
work, as displayed in Figure 2. The map consisted of 10
rooms, 6 victims (3 of which were mildly injured, and 3 crit-
ically injured), and 6 obstacles (2 rocks, 2 small stones, 2
trees). Furthermore, to facilitate for preference modelling,
flooded areas were added, marked as blue tiles, alongside dif-
ficult victims (elderly victims) who took longer to pick up
during the task. These correspond to the preference factors
from subsection 3.4. The goal of the game is to rescue all
6 victims on the map by searching rooms and removing ob-
stacles. Each task consisted of a specific interdependence re-
lationship determining whether the task could be carried out
individually or jointly (for both the human and artificial team-
mates). This task was to be carried out within a 10 minute
time-frame, after which it terminates and subsequently logs
the objective metrics and game data.

4.5 Procedure
The participants were first instructed to read and fill in a con-
sent form. After being (randomly) assigned to one of the ex-
perimental conditions (baseline vs summary), they followed a
tutorial to familiarize themselves with the environment, tasks,
controls, and chat system. The same tutorial was used across
all conditions. After the completion of the tutorial, a brief ex-
planation of the trust model was given. They were informed
about the artificial agent’s mental model, the definitions of
the trust model (competence/willingness/confidence), and its
behavioral adaptation. If the user was playing on the sum-
mary condition, they would also be provided with an example
summary and an explanation of the presented data. Follow-
ing that, the official task would begin, which had a maximum
duration of 10 minutes. The user was instructed to collab-
orate with the RescueBot during the search and rescue mis-
sion. Once the game was completed, the user would fill in
a pre-survey indicating their demographics, and a question-
naire. The results are intended to be anonymous.

4.6 Measures
In order to analyze the correlation between communicating
trust beliefs and natural trust alongside overall satisfaction, a
set of objective and subjective measures were used. Objective
data was automatically logged by the implementation, while
subjective measures (questionnaire) were recorded with Mi-
crosoft Forms.

Subjective Measures
Subjective measures relate to the dependent variables: nat-
ural trust and overall satisfaction in the agent. To measure
them, two previously verified questionnaires by Hoffman,
et al. (2023) were utilized. The two questionnaires have
been adapted to the environment to measure both variables,
and can be seen in Appendix B. Specifically, tables 8 (trust
scale for XAI) and 3 (the explanation satisfaction scale) were
adapted for natural trust and overall satisfaction respectively
[33]. The results of the questionnaires were aggregated into
average natural trust and average overall satisfaction.

Objective Measures
Objective measures include game data directly logged from
the game. This includes artificial trust, which is the average
of trust values (willingness and competence) per task type
(search, obstacle, victim), completeness (victims saved), and
ticks (gameplay time, which excluded pauses when the sum-
mary was displayed.)

5 Results
For each dependent variable, the corresponding questionnaire
results have been aggregated into two trust values per en-
try. One for natural trust, and one for satisfaction. These
trust values were determined by first converting the related
responses into a likert scale (1-5), then calculating the av-
erage value of the response (for example, ”strongly agree”
mapped to a 5, while ”strongly disagree” mapped to a 1). Af-
terwards, the mean and standard deviation of both conditions
were calculated per dependent variable. To test the normality
of the data, the SW (Shapiro-Wilk) test was used given each
dataset’s sample size of 20. Subsequently, Levene’s test was
used to determine the homogeneity of variances between the
two conditions. If both assumptions hold, then an indepen-
dent sample t-test (parametric) was used, otherwise, a Welch
t-test (non-parametric) was used.

5.1 Natural Trust
The baseline condition yielded a mean value of 3.43 and
a standard deviation of 0.66, while the summary condition
yielded a mean value of 4.09 and a standard deviation of 0.64.
The box-plots in Figure 4 depict a median trust value of 3.5,
and an interquartile range (IQR) of 0.94 for the baseline con-
dition, and a median of 4.19 with an IQR of 0.66 for the sum-
mary condition.

The SW test was conducted on the baseline (SW=0.97,
p=0.86) and communication (SW=0.91, p=0.077) datasets.
Both p-values are greater than 0.05, meaning that both
datasets are normally distributed. Both datasets satisfy the
assumption of a homogeneity of variance, which has been
determined by performing Levene’s test (L=0.18, p = 0.67).
Thus, a parametric independent sample t-test was performed,
which shows statistical significance (T = -3.19, p = 0.0028)
between the two conditions since the p-value is less than 0.05.

Figure 4: Box-plots of natural trust within the baseline and summary
conditions.



5.2 Satisfaction
The baseline condition yielded a mean value of 3.53 and
a standard deviation of 0.91, while the summary condition
yielded a mean value of 4.28 and a standard deviation of 0.53.
The box-plots in Figure 5 depict a median satisfaction value
of 3.71 and an IQR of 1.14 for the baseline condition, while
the summary condition shows a median satisfaction value of
4.36 and an IQR of 0.5.

Figure 5: Box-plots of satisfaction within the baseline and summary
conditions.

The SW test for the baseline (SW=0.98, p=0.86) and sum-
mary (SW=0.94, p=0.23) conditions show that both datasets
are normally distributed. Both datasets do not satisfy the as-
sumption of a homogeneity variance, as it fails the Levene
test (L=4.85, p = 0.034) given a p-value smaller than 0.05.
This means that the variances of the two conditions are sig-
nificantly different. Therefore, a Welch t-test was performed
on both datasets (T = -3.17, p = 0.0034), which concludes that
the satisfaction values between the conditions are statistically
significant given a p value less than 0.05.

5.3 Performance
Performance includes the objective measures: artificial trust,
completeness, and ticks. Table 2 depicts the mean, variance,
standard deviation, median, and IQR values for each objec-
tive metric in the baseline (B) and summary (S) conditions.

Table 2: Descriptive Statistics for Artificial Trust, Completeness,
and Ticks

Metric Mean Variance Std Dev Median IQR
Artificial Trust (S) 0.8576 0.0141 0.1187 0.8893 0.1160
Artificial Trust (B) 0.7568 0.0326 0.1807 0.7750 0.2708
Completeness (S) 0.8167 0.0202 0.1420 0.8333 0.3333
Completeness (B) 0.8917 0.0447 0.2113 1.0000 0.1667
Ticks (S) 5271.1000 281565.3579 530.6273 5407.0000 819.0000
Ticks (B) 4798.4500 416749.8395 645.5616 4815.5000 1009.0000

For artificial trust, the SW test for the baseline (SW=0.94,
p=0.29) succeeds, while the summary (SW=0.84, p=0.0037)
fails normality. Both datasets pass Levene’s test (L=3.95,
p=0.054). Welch’s t-test (T=-2.08, p=0.045) show statisti-
cal significance. For completeness, the SW test fails for both
the baseline (SW=0.58, p=1.76e-06) and summary (SW=0.79,
p=0.0005). The Levene’s test succeeds (L=0.027, p=0.87).

The Welch t-test (T=1.32, p=0.20) indicates no statistical sig-
nificance. For ticks, the SW tests succeed for both the base-
line (SW=0.95, p=0.35) and summary (SW=0.93, p=0.15).
The Levene’s test succeeds as well (L=1.26, p=0.27). The
t-test (T=-2.53, p=0.016) indicates statistical significance.

6 Responsible Research
Reproducibility is a crucial factor to consider for responsi-
ble research. Therefore, the codebases that were utilized for
the baseline and summary conditions are available on the in-
stitution’s GitLab instance1. Additionally, the inclusion of a
detailed methodology and experimental setup allows for one
to reproduce the results by using the provided code.

Moreover, reproducibility of the results is ensured in this
research paper by including automated data analysis using
the Python programming language. Objective measures have
been automatically logged using the codebase in the base-
line and summary conditions. To ensure accurate and consis-
tent comparisons, these same objective measures have been
recorded across both conditions. All gathered data will be
available on 4TU, which includes the data of all 40 partici-
pants that have been included in the analysis.

Given that a user-study was conducted, ethical concerns
must be considered as well. The subjective measures have
been collected using Microsoft Forms2, which complies with
the GDPR privacy laws. The research has obtained ap-
proval from the Human Research Ethics Committee (HREC)
at TU Delft (HREC form nr 4043). This ensures compli-
ance with the ethical considerations as detailed on the risk
assessment form, which concluded with minimal risk due to
an anonymized user-study. The collected data is limited to
non-sensitive information, which reduces the risk of identifi-
cation (age range, region, education level, majoring in a CS
field, experience with the MATRX software, and gaming ex-
perience).

Participants being recruited via personal networks can be
considered as a bias. This has been addressed by providing
participants with a consent form following TU Delft’s guide-
lines that requests honest responses to avoid biased data.

7 Discussion
7.1 Natural Trust
The natural trust of the human player in the RescueBot had
statistical significance between the two conditions. The in-
clusion of a summary increased the natural trust values from
3.43 (baseline) to 4.09 (summary). The similar standard de-
viations in both conditions suggest that the improvement in
trust was consistently perceived across participants, indicat-
ing stable and predictable responses.

Past literature stated that trust in an artificial agent is in-
fluenced by several factors, such as its perceived reliability
and how transparent its actions are [34]. Similar research
that did not include the communication of trust beliefs ar-
gued that evaluating the trustworthiness of an AI teammate

1gitlab.ewi.tudelft.nl
2forms.office.com

gitlab.ewi.tudelft.nl
forms.office.com


(natural trust) was challenging due to the underlying techni-
cal functions of artificial agents not being transparent enough
to their teammates [35, 36]. This paper addresses this limita-
tion, since the summary provided transparency in its actions,
paired with explanations that justify the decisions RescueBot
has made. Thus, the increase in natural trust can be attributed
to the enhanced transparency provided by the visual summary
of explanations.

Furthermore, a study by Ezer et al. (2019) stated that
HATs are most optimal if the human teammate trusts the
agent, which could be achieved through adaptive explain-
ability [20]. Sharing adaptive mental models that explain
themselves helps build bidirectional trust [20]. Additionally,
a study by Wright et al. (2018) stated that having an artificial
agent convey information that would support the human ad-
dresses the issue of the human teammates’ difficulty in main-
taining their awareness and understanding of the agent’s ac-
tions [37]. Therefore, it can be argued that the visual sum-
mary’s adaptive explanations of the artificial agent’s mental
model contributed to fostering natural trust.

7.2 Satisfaction

The overall satisfaction of the human player in the experi-
ment had statistical significance between the two conditions,
increasing the mean satisfaction value from 3.53 (baseline) to
4.28 (summary). Compared to the increase in natural trust,
the increase in overall satisfaction from the baseline to the
summary condition was slightly larger, implying that users
were generally more satisfied with the agent rather than trust-
ing it. The standard deviation of the summary condition was
significantly lower than the baseline condition, meaning that
users were consistently satisfied with the RescueBot given a
visual summary.

Much like natural trust, overall satisfaction in the agent
could be attributed to the transparency and explanations of
mental models [38]. A study by Wright et al. (2018) con-
cluded that agent transparency and reliability in human-robot
interaction influences user confidence, which in turn, im-
proves satisfaction [37]. Furthermore, users were aware of
the mental model in both conditions. In the baseline, users
did not receive any indication of their performance (artifi-
cial trust) which could lead to uncertainty. Past studies have
shown that a lack of epistemic explanations leads to uncer-
tainty which may detract from user satisfaction [39].

Additionally, the visual summary can be argued as a form
of ’gamification’, as the results were visually mapped onto a
graph akin to a ’grading’ system, which incentivizes users to
try again and perform better [40]. This is in line with how
participants were more satisfied when their performance was
presented to them via the agent’s visual mental model, espe-
cially when doing well. It also facilitates the feedback loop
presented in Figure 1.

Lastly, Ehsan et al. (2019) mentions that ”human-likeness”
contributes to overall satisfaction in the context of XAI [41].
The summary verdict and explanations could be argued to
resemble ”human-likeness” which in turn could have influ-
enced the overall satisfaction in the agent.

7.3 Performance
Artificial trust was statistically significant between the con-
ditions. The summary condition yielded better artificial trust
values compared to the baseline condition. This implies that
the human teammate used the summary as feedback tool to
improve artificial trust, similar to the feedback loop from Fig-
ure 1.

Furthermore, completeness between the conditions was not
statistically significant, but ticks were. The summary condi-
tion had less average ticks compared to the baseline condi-
tion, because when the summaries were displayed, the game
was paused, and ticks were not accounted for. Despite less
gameplay time, both artificial and natural trust values were
still higher, while completeness was slightly lower, but statis-
tically insignificant.

7.4 Limitations and Future Work
While the study provides valuable results and insights, some
limitations must be considered. Firstly, the sample size, while
adequate for statistical testing, could be increased to gen-
eralize the findings to a broader population. For example,
the large variance values in the baseline could be avoided
by reducing noise via an increased sample size. Further-
more, focus groups could help gather insights regarding the
demographics, as correlations between different characteris-
tics (such as age, gaming experience, etc) and the results may
provide additional potential insights.

Moreover, the study focused on short-term trust assess-
ments, having the users play a single game and report their
subjective experiences. Longitudinal studies could explore
how communication could impact trust over extended peri-
ods of interaction with the system.

The results are also context-specific, following a tailored
environment using the MATRX software. Exploring different
environments would strengthen the data as well, as it would
show that visual summaries may consistently improve natural
trust and overall satisfaction regardless of the environment.
Future work could therefore consider using different environ-
ments with different situational stressors as an additional in-
dependent variable.

Furthermore, the confounding factors of the experiment
must be considered. Firstly, the participant’s English profi-
ciency would likely affect the results, therefore it is a fac-
tor that must be considered regarding demographics in fu-
ture works. Secondly, the performance of the game may vary
across different machines, which may affect satisfaction val-
ues. Increased latency and response time leads to user dis-
satisfaction [42]. Thirdly, potential bias may lie within the
subjective data, as it is self-reported measures of trust and
satisfaction via personal contacts. These may be subject to bi-
ases such as inaccurate self-assessment and social desirability
bias.

Overall, future studies could include more diverse focus
groups alongside persistent long-term studies within real-
world contexts. Furthermore, additional subjective variables
that affect mutual trust such as behavioral actions, emotional
response, and perceived intention/reliability could be consid-
ered in future studies as well.



8 Conclusion
This research paper aimed to investigate the influence of a vi-
sual summary of explanations of an artificial agent’s mental
model on a human teammate’s natural trust and overall satis-
faction within HATs. The study highlighted the importance
of communicating information within HATs, alongside how
it can influence mutual trust, which in previous literature has
played a key factor within teams.

Users in the visual summary condition exhibited higher
trust and satisfaction values, and more consistent satisfaction
ratings. Additionally, users in the summary condition spent
less time in the game compared to the baseline condition, yet
still had higher artificial trust values. This highlights the im-
portance of transparency and explanations in HATs with re-
gards to sharing mental models that facilitate a feedback loop.

Overall, visual summaries provide a static, quick, and con-
cise method of communicating trust beliefs within HATs.
They facilitate transparency with explanations, which in turn
boosts mutual trust via improved artificial and natural trust,
alongside overall satisfaction.
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A Trust Adjustment Table Based on Human Actions

Table 1: Table displaying every human action that influences the trust values of competence (C) and willingness (W) throughout the task
alongside its corresponding explanation. The weights of the trust adjustments are 0.4 for Large (L), 0.2 for Medium (M), and 0.1 for Small
(S). The preference column (P) indicates if the preference score is added to the trust adjustment, which is equal to the calculated preference
score in that instance.

Type Human action Explanation C W P
Human does not respond to remove rock You took too long to respond to remove rock. -M !

Human responds to remove together rock You responded to remove rock. +M !

Human responds but does not arrive to remove rock on time You did not arrive to help me remove rock. -L -L !
Human asked for help with rock, but was not there You asked for help with rock but were not there. -M -M
Human asked for help with rock, and is there You asked for help with rock and was there. +S +S
Human removes rock together You removed rock with me. +L +L !
Human does not respond to remove tree You took too long to respond to remove tree -M
Human responds to remove tree You responded to remove tree +M +M
Human asks to help remove tree You instructed me to remove tree +M +M
Human does not respond to remove small stones You took too long to respond to remove stone. -S !

Human responds to remove together small stones You responded to remove stones. +S !

Human responds but does not arrive to remove small stones on time You did not arrive to help me remove stones. -M -M !
Human asked for help with small stones, but was not there You called for help to remove stones, but were not there. -M -M
Human responds and arrives to remove small stones You arrived to remove stones. +S +S
Human removes small stones together You removed stones with me. +M +M !

Obstacle

Human lied about an obstacle You called for help to remove an obstacle, but it was not there. -M -M !

Human lied about searching a room Found rock/tree/stone when you said you searched the room.
I found a victim in a room you searched. -L -L !

If a another room was already searched in the past 5 seconds, misinput You are searching another room too soon. -S
Human double searches room You double searched a room. -S
Human searches new room You searched a new room. +M +M !
Human forgot to announce searching a room before announcing they found a victim You forgot to announce searching a room before finding a victim. -S

Search

Human forgot to announce searching a room before announcing they collect a victim You forgot to announce searching a room before collecting a victim. -S
Human lied about a victim being rescued You lied about rescuing a victim. -L -L
Additional drop of the reward for claiming to rescue a victim You lied about rescuing a victim. -M -M
The bot confirms that the victim the human found was at the location I found the victim you claimed to have found. +S
Human lies about mildly injured victim location You lied about finding a mild victim. -M -M
Human lies about critically injured victim location You lied about finding a critical victim. -L -L
Robot asks continue/rescue together with critically injured victim and human says rescue together You responded to rescuing a critical victim. +M !

Robot asks continue/rescue together/rescue alone with mildly injured victim and human says rescue together You responded to rescuing a mild victim. +S !

Robot asks continue/rescue together/rescue alone with mildly injured victim and human does not respond You did not respond to rescuing a mild victim. - S !

Robot asks continue/rescue together with critically injured victim and human doesn’t respond You did not respond to rescuing a critical victim. -M !

Robot asks continue/rescue together with critically injured victim and human says rescue together, but doesn’t come You said you will come help with a critical victim, but didn’t come. -L -L !

Robot asks continue/rescue together with mildly injured victim and human says rescue together, but doesn’t come You said you will come help with a mild victim, but didn’t come. -M -M !

Human come to rescue before the threshold (mild victim) You came to rescue a mild victim. +M +M !

Human come to rescue before the threshold (critical victim) You came to help rescue a critical victim. +L +L !
If the player announced the found You found a victim. +S +S
If human collects a victim You collected a victim. +M +M

Victim

If the human did not announce a victim while he searched the area You forgot to announce you found a victim while searching an area. - S -S

B Adapted Questionnaires for Subjective Measures

Table 2: Table displaying both questionnaires utilized for measuring natural trust and overall satisfaction. These tables were adapted from
Tables 3 and 8 in the study by Hoffman et al. (2023). Users were asked to indicate how much they agreed with the statements given the
following scale: Strongly disagree, Disagree, Neither agree or disagree, Agree, Strongly Agree.

Natural trust Overall satisfaction
1. I am confident in RescueBot. I feel that it works well. 1. From RescueBot’s explanations, I know how it works.
2. The outputs (communication, decisions) of RescueBot are very predictable. 2. The RescueBot’s explanations of how it works are satisfying.
3. The RescueBot is very reliable. I can count on it to be correct all the time. 3. The RescueBot’s explanations of how it works have sufficient detail.
4. I feel safe that when I rely on RescueBot I will get the right result. 4. The RescueBot’s explanations of how it works seem complete.
5. RescueBot is efficient and works very quickly. 5. The RescueBot’s explanations of how it works tell me how to use it.
6. I am wary of the RescueBot. 6. The RescueBot’s explanations of how it works are useful to my goals.
7. The RescueBot can perform a task better than a novice human user. 7. The RescueBot’s explanations show me how accurate the system is.
8. I like using the RescueBot’s guidance for decision making.
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