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A B S T R A C T

With an increase of data documentation and standardization in the construction
field in The Netherlands, by norms such as the NEN, there is a possibility to intro-
duce data-driven approaches to certain areas within the construction industry. One
of these is the area of budget estimation which is currently fully dependent on a cost
estimating professional. Due to the need for estimations that are effective and time-
efficient, especially in the primary phase of a project, the potential of introducing a
data-driven approach is explored through this thesis. The main objective of this re-
search is the development of a data-driven model, in the form of a Virtual Assistant
(VA), to increase the objectivity of the estimation of maintenance budgets of civil en-
gineering structures. From a literature study it is apparent that a fitting data-driven
approach for the development of this model is the machine learning technique De-
cision Tree Classification (DTC). The VA model is developed using historical data,
in the form of past input and past output, to train the model and therefore make
predictions. Data that is used as past output for this model is a budget range which
is documented as a budget class and data that is used as past input is data that is
ensured to be objective and gives a description of each bridge. In this case the past
input data are the characteristics of the bridge which refer mostly to the dimension
of the bridge, the NEN2767, which captures the decomposition and condition of the
bridge and to a lesser extent the duration of the maintenance. Through exploring
past cases the machine learns rules and predicts the outcome for a new case and
therefore predicts the budget range. This shows in which range the budget guess
of the estimator should fall. Generally in order to develop a VA model and make it
applicable for industry use it is important that an organization that uses such model
aligns their data storage with the DTC methodology. This means the introduction
of standardizing data in classes and the introduction of standard procedures to doc-
ument the data. Only when these elements are present within the organization, the
data that is used for past input and output can be regarded as objective and the VA
can fulfill its function which is to verify the budget estimators guess in an objective
manner.
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1 I N T R O D U C T I O N

As mentioned in the abstract, this research focuses on the development of a data-
driven model to increase the objectivity of the estimation of maintenance budgets
of civil engineering structures. More about the background of this research follows
in this chapter.

1.1 budget estimation in the construction industry:
background

Budget estimation is an essential component in the construction industry since it
has a direct effect on the contractors’ economic performance. Overestimation or
underestimation may cause problems in business performance, i.e., overestimation
may result in a negative public image of the contractor while underestimation will
result in financial losses (Haroun [2015]).

Besides this, during the early project stage budget estimation needs to be per-
formed within a limited time period using limited information in an uncertain en-
vironment. Estimating methods at this stage needs to be quick, inexpensive, and
reasonably accurate (Kim et al. [2012]).

Therefore there is a need for estimations that are both effective and time-efficient.
In every construction company the budget estimation is the job of the cost engi-
neer/cost estimator. Construction and cost engineering professionals have long
recognized the need for improvements in cost control (Humphreys [1991]). This
research aims to help the budget estimation process by introducing a data-driven
approach which intends to help make the estimates of cost estimators more objec-
tive and thus help combat overestimation or underestimation.

1.2 problem statement
At the moment budget estimates are based on the opinion of the cost estimator
without a verification process. This results in estimations being not accurate enough
and a possibility for deviations from the predicted budgets in the future. There is
no objectivity in the current way of estimating project budgets, so this research will
focus on introducing a systematic and data-driven approach to budget estimation
which helps make estimates more objective.

1.3 development gap
Current Practice: The accuracy of a budget estimate relies on the level to which the
estimator defines a project; the experience and skill of the estimator; the level of
accuracy of the used tools and references used to make an estimation.

Gap: Ambiguity in the definition of the project level; high dependence on expert-
opinion; ambiguity in the tools and references used by estimator.

1



2 introduction

Figure 1.1: Process Quote to Tender

1.4 scope
Budget estimation in construction encompasses a large field of different types of
applications. This thesis focuses on the maintenance budget estimations because of
its large potential of introducing a data-driven approach to, especially in the context
of the Netherlands. The general method for i.a. maintenance budget estimation
by contractors, as defined by BAM, is depicted in Fig. 1.1 and is consists of the
following steps:

1. Quote request: The contractor receives a quote request from the client ac-
companied by documents regarding the decomposition of the elements of the
civil structure according to the NEN2767 (Dutch normative inspection). Also
previous reports of budget and inspection may be included.

2. Inspection of civil structure: The contractor performs a nulmeting (initial in-
spection) to understand the condition of the civil structure and determine
further steps. In this initial inspection a condition-number is given to each
element of the structure to grade the state.

3. Collection of relevant data: All of the previous documents and condition data
will be collected to paint a picture of the current state of the civil structure.

4. Tender Process: Hereafter the tender process starts, where the budget is esti-
mated for future maintenance and operation of the civil structure. Also the
work that needs to be performed on the structure is defined.

5. Next stage: Finally the client decides whether to proceed with this contractor
or another one based on the tender documents.

As previously mentioned there is a large potential to introduce a data-driven ap-
proach to budget estimation of maintenance budgets, especially in the context of
The Netherlands. The main reason for this is that there already exists a standard-
ization of inspection processes, in the form of the Dutch Normative or Nederlandse
Norm (NEN) (more in Chapter 4.4.2). This NEN-norm decomposes a civil structure
to its building parts in a standardized manner and therefore it makes it easier to
compare different civil structures to each other. Due to this standard way of docu-
menting inspection and cost data, there is a potential to automate this process and
introduce a data-driven approach.

1.5 research objective
Fig. 1.2 shows the old method of budget estimation and Fig. 1.3 shows the new
method of budget estimation. The old method uses only the expert guess to come
to a budget estimation. This expert guess is based on condition data retrieved
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Figure 1.2: Old method of estimating budgets

Figure 1.3: New method of estimating budgets

from the nulmeting (initial inspection) and it is based on reference projects from
previous structures that are similar as well as the general knowledge of the expert.
With the new method this human-based estimation is supported by using a data-
driven approach which verifies the human guess by predicting a budget range. In
this way the data-driven approach serves as a Virtual Assistant (VA) for the expert
by verifying their guess.

Therefore the main objective of this research is:

The development of a model, in the form of a Virtual Assistant, that verifies the
expert guess by predicting the budget range of maintenance.

1.6 research questions
From the main objective the main research question follows:

How can we improve the objectivity of a preliminary budget-estimate, with
regards to the maintenance of civil engineering structures?

A series of sub-questions are formulated to direct the study and to provide an
answer to the main question:

1. What kind of data-driven approach should be applied?

2. How is the data-driven model trained and what is the output?

3. How does this research compare to the current approach of estimating?

4. What are the main elements of an estimation model for maintenance budgets?



4 introduction

Figure 1.4: Structure thesis

1.7 thesis structure
This thesis introduces the problem to be solved in Chapter 1 and the methodology
to do so in Chapter 3. The methodology is derived form a literature study which is
conducted in Chapter 2 to find the best fit model for the solution. The development
of the model is documented in Chapters 4 & 5 and it is evaluated in Chapter 6.
Finally the thesis is concluded in Chapter 7. The overall thesis structure is depicted
in Fig. 1.4.



2 L I T E R AT U R E S T U DY & M O D E L T H E O R Y

This chapter introduces budget estimation for civil structures using a range of differ-
ent method and in special the focus of this thesis, which is data-driven approaches.
From these approaches the most fitting one for the thesis is chosen. Chapter 2.1 and
2.2 show the literature study and chapter 2.3 and 2.4 elaborate on the model theory
used for this thesis. Therefore this chapter also answers the first sub-question: What
kind of data-driven approach should be applied?

2.1 budget estimation in the civil engineering
domain

Budget estimation is the most important preliminary process in any construction
project since it ensures the successful completion of a construction project (Elfaki
et al. [2014]). At the moment the budget estimation is a knowledge-intensive en-
gineering task, relying heavily on the expertise of the cost estimating professional
(Staub-French et al. [2003]). However, the last few decades with the introduction
of digitization and use of computers we are able to perform the same numeri-
cal and symbolic manipulations a person can, but faster and more reliable (Hop-
good [2012]). Raftery [1987] categorized the budget estimation into three genera-
tions: 1) budget estimation based on unit price (developed in the 1950’s), 2) budget
estimation based on statistical methods (developed in the 1970’s) and 3) budget
estimation based on intelligent methods (developed in the 1980’s). Therefore in
today’s generation the focus should be budget estimation using intelligent systems.

Numerous studies have been reported in literature concerning the maintenance
costs and maintenance budgeting (Srivastava et al. [2020]). Several studies have
been done on using predictive methods for maintenance work but there is little
information to be found on using intelligent systems for maintenance budgeting.
The following studies give insight in budget estimation in the civil engineering
field in current practice.

Evdorides et al. [2002] propose a framework for the programming of the mainte-
nance of roads and bridges. The output of this framework is a set of maintenance
projects where the total cost for the roads are specified. Using this framework a
more objective way of defining which maintenance tasks need to performed can be
carried out, which leads for prevention of unnecessary costs. However, this is an
analytical framework for the prevention of extra costs. This means it is not focused
on estimating maintenance budgets but is more focused on what works need to be
carried out to have an efficient programming of infrastructure. The framework is
generic and there is no proposed method on which algorithm to use to achieve the
objective of preventing cost overruns.

Scarf [2007] also proposes a framework for maintenance management. Again it
is very generic and it does not specify how it can be used for budgeting.

Wang et al. [2008] propose a more fitting framework. They propose a model
which predicts the amount of restorations cost to be made based on previous data
and a k-nearest neighbor approach. They made use of historical data to make a
prediction. However the estimation is regarding restoration budgets and not main-
tenance budgets, which means that it has a deterministic character. Maintenance
budgets are less predictable and a model exactly like this does not fit.

5



6 literature study & model theory

Figure 2.1: Main techniques for cost estimation sorted by Intelligent System group it falls
under.

Although current literature on maintenance budget estimation in the civil field
does propose the use of intelligent systems to make an estimation, it does not spec-
ify on which technique is the best. Current methodologies for budget estimation
include regression analysis, artificial neural networks, fuzzy logic, and case-based
reasoning (Kim et al. [2012]). The following sections give a background on these
different intelligent systems in order to select the technique to be used in this thesis.

2.2 intelligent systems & budget estimation

Intelligent systems can be roughly divided into 3 main groups:

1. Knowledge-Based Systems (KBS): Where conventional programming inter-
twines domain knowledge with the software controlling the application of
that knowledge, the knowledge-based systems separates them. The two ex-
plicitly separated system are the knowledge-base and the inference module
(Hopgood [2012]).

2. Computational Intelligence (CI): Unlike the KBS, here the knowledge is not
explicitly stated but it is represented by numerical values. As the system im-
proves its accuracy, these values might be subject to change (Hopgood [2012]).

3. Hybrid Systems (HS): In many cases KBS and CI could work complementary
to each other and thus be used together in a hybrid system (Hopgood [2012]).

These intelligent systems are also used in budget estimation. For the budget
estimation of construction projects Elfaki et al. [2014] reviewed and analyzed pro-
posals regarding budget estimation techniques for construction projects in a 10-year
long survey. They found five main sorts of intelligent systems (see Fig. 2.1): Ma-
chine Learning [HS], Rule-Based Systems [KBS], Evolutionary Systems [CI], Agent-
Based Systems [KBS] and Other Hybrid Systems [HS] (Elfaki et al. [2014]).

The following explains these systems:

Machine Learning

Machine Learning (ML) is when pre-solved data and the resulting output are fed
to the computer. These two are used to create a program, which does the job
of traditional programming (Sullivan [2017]). Machine learning can be seen as a
hybrid system.
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Rule-Based Systems

A rule-based system is a KBS where the knowledge base is represented in the form of
a set, or sets, of rules. In order for the system to work, it also needs to have access to
facts, unconditional statements which are assumed to be correct (Hopgood [2012]).

Evolutionary Systems

When it is hard to formulate a problem statement, evolutionary systems may come
in handy. Miettinen et al. [1999] explain that at a high level of abstraction it is
compared to the evolutionary process, where the more fit the individuals, the more
influence there is in the future makeup of the population through the concept sur-
vival of the fittest. The most important components in evolutionary systems are:
the population of the individuals, the notion of fitness, the bias, and the notion of
inheritance (Miettinen et al. [1999]). Evolutionary systems fall under the CI group
of intelligent systems.

Agent-Based Systems

Agent-Based Systems act analogous to human societies and organizations. The sys-
tems contain agents, which are intelligent computerized assistants, that are capable
of achieving a goal in a way that is autonomous, cooperative and collaborative (Sug-
umaran [1998]). Agent-Based Systems can be seen as KBS.

The techniques described by Elfaki et al. [2014] all suffice for budget estimation.
In order to understand which type of intelligent system to use for predicting whether
the maintenance budget is priced right it is important to have an understanding of
the different types of approaches to maintenance management and understand the
techniques used there. Susto et al. [2014] explain three different types of approaches
to maintenance management:

1. Run-to-failure maintenance (R2F): repair actions happen after the defect is
detected.

2. Preventive Maintenance (PvM): maintenance is scheduled and carried out
periodically with the aim of anticipating the process failures.

3. Predictive Maintenance (PdM): by continuous monitoring of the process health,
maintenance is performed only when needed. PdM also uses prediction tools
to assess when the future maintenance should be performed.

In the case of this thesis, we are dealing with Predictive Maintenance (PdM) since
the condition of the bridge is continuously monitored through periodical inspection
and maintenance is performed when needed. PdM-related solutions based on ML

techniques seem to be among the most popular techniques (Susto et al. [2014]).
Therefore this thesis is focusing on the use of ML as intelligent system. In theory any
of these types of intelligent systems can be used for predictive budget estimation
but given that ML is the most popular technique the focus is machine learning.

2.3 machine learning as predictive modeling method
Machine learning has three main different types of learning styles (Sullivan [2017]):

1. Supervised Learning: the input data and output data are known. Through
training of the data a predictive model is built. This training process is re-
peated until it achieves the desired level of accuracy.
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2. Unsupervised Learning: the output data is not known so a model is con-
structed by estimating the number of structures present in the input data in
order to arrive at general rules. With unsupervised learning we therefore do
not have a level of accuracy. Examples of unsupervised learning problems are
e.g.dimension reduction, clustering and association rule learning.

3. Semi-supervised Learning: the input data includes a mixture of labeled as
well as unlabeled data. The model needs to organize the data and besides
that also make predictions.

The goal of this thesis is predictive modeling and for this reason supervised or
semi-supervised learning method should be used. Since this thesis only contains
labeled data, the use of a supervised learning suffices.

Predictive modeling is the art of building models that make prediction based on
patterns found in historical data (Kelleher et al. [2015]). Overall, there are many
different types of predictive algorithms for machine learning. The main groups are
(Kelleher et al. [2015]):

• Information based learning: through the use of data, information is extracted
and concepts such as most information gain and least information loss are
most important.

• Similarity based learning: by looking what have worked well in the past,
new predictions are made.

• Probability based learning: fundamentals of probability theory and Bayes’
theorem are used e.g.calculating probabilities based on relative frequencies
and conditional probabilities.

• Error based learning: a search for a set of parameters that minimizes the total
error of the prediction is performed.

Currently, the technique that is used for making the prediction by the estimator
is a similarity based prediction. By exploring various reference projects that are
similar to the new case, the budgets for maintenance of new structures are predicted.
The goal of this thesis is to develop a VA that verifies the prediction by the estimator.
Therefore another type of learning method is used to eliminate any bias that can
appear from using the same approach. This is information-based learning. The
reason for this is that we have the following data to our disposal: the characteristics
of the bridge, condition/state of the bridge, historical cost data, historical budget
data. Due to the complexity of the relations between these data sets, an information
based learning approach is most appropriate.

2.4 machine learning: chosen technique for this
research

From the above it is apparent that this research deals with: a supervised predictive
machine learning approach that is information based. For this kind of method a
wide range of techniques have been developed (Kotsiantis et al. [2006]). The main
techniques, as defined by Rokach and Maimon [2008] are shown in figure 2.2. In
this research the chosen technique is Decision Tree Classification (DTC) because of
1) its applicability to this research in particular and 2) its ease of use and finally 3)
because of the gap in academic literature.
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Figure 2.2: Taxonomy of data mining Methods as defined by Rokach and Maimon [2008].
The blue shows the chosen technique for this research.

2.4.1 Decision Tree Classification: Applicability

DTC is applicable because the standardization aspect within this research makes it
easy to classify information.

The case for this research is to improve the objectivity of budget estimates, through
machine learning using an information based approach that only takes into account
objective data. The data that is dealt with is to a great extent standardized, making
it easy to classify. The basis for the data are inspection reports, based on the Dutch
Normative NEN2767, and cost data of different bridges in the Netherlands, pro-
vided by BAM. Documented data used to support bridge management vary from
agency to agency (Sanford et al. [1999]) and this case is no different. The only thing
that ties these data-sets together are the standardized methods and if a model is
made on the basis of this standardization it will give an objective way to compare
the different bridges.

DTC is applicable because the algorithm filters out all unnecessary information,
making it easy for the user to deal with the complexity of the information.

There lays a complexity in understanding the factors affecting the price, especially
the price of maintenance budgets. It is difficult to understand what the exact factors
are that make up a budget estimation and the relations between these different
factors. Therefore it is necessary to include as much input as possible and let the
algorithm filter out the unnecessary information. This research is based the premise
of using objective data and therefore minimize the assumption factor or human
heuristic. Defining the factors that influence the price by ourselves defeats this
purpose of minimizing bias. With DTC the model algorithm filters out the most
important influence factors on the price.

2.4.2 Decision Tree Classification: Ease of use

DTC provides ease of use compared to the other methods, mainly because:
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1. it is simple to understand, interpret and visualize, especially the smaller-sized
trees (Tan et al. [2006]).

2. little effort is required for data preparation as DTC is a non-parametric ap-
proach for building classification models, in other words, it does not require
any prior assumptions regrading the probability distribution satisfied by class
and other attributes (Tan et al. [2006]).

3. can handle both numerical and categorical data as DTC can perform both clas-
sification, regression and multi-output tasks (Géron [2017]).

4. non linear parameters don’t effect its performance since DTC works, unlike
linear regression models. When there is a high non-linearity as well as a
complex relationship between the independent dependent variables, a tree
model will serve better than a regular method (Sullivan [2017]).

2.5 sub-question 1
This chapter answered the first question:

What kind of data-driven approach should be applied?

The last few decades with the introduction of digitization and use of computers
we are able to perform the same numerical and symbolic manipulations a person
can, but faster and more reliable. Therefore there is a potential in using intelligent
systems to at least verify the human estimators guess by computerized methods.
There are several intelligent system models that can be used for this, but given the
context of maintenance budgets, machine learning is the most popular technique
that is currently used. Machine learning has different learning methods and since
this thesis is focused on predictive modelling, the learning method used is super-
vised learning. There are several predictive machine learning techniques but for
this research the chosen technique is Decision Trees because of 1) its applicability to
this research in particular (see Ch. 2.4.1), 2) its ease of use (see Ch. 2.4.2).
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The research methodology is outlined in this chapter. First the DTC model algorithm
is explained and hereafter the general methodology for the thesis is derived. Finally
the workflow for answering the guiding sub-questions is discussed.

3.1 decision tree classification

Decision trees are used in data mining and in operations research. Although their
form looks the same, there is a fundamental difference. In data mining a decision
tree is a predictive model and in operations research it refers to a hierarchical model
of decisions and their consequences in order to help decision making and strategy
planning (Rokach and Maimon [2008]). The focus of this research is a decision tree
as predictive model.

In general terms DTC uses a tree like structure where each internal node denotes
a test on an attribute, each branch represents an outcome of the test and each
leave/terminal node holds a class label (See Fig. 3.1). Decision trees find and
identify the most significant variable as well as its value (Sullivan [2017]).The ques-
tion arises how the splits are made, and the answer lays in the type of decision tree
algorithm used.

There are several algorithms for DTC, of which the most popular ones are ID3,
CART and C4.5 (Singh and Gupta [2014]). The difference between the algorithms
are shown in Table 3.2. In order to select which algorithm it is important to note
the characteristics of this project (see Table 3.1).

Input Data Output Data Missing Values Outliers

Categorical/numerical Categorical Yes Yes

Table 3.1: Characteristics research data

Figure 3.1: Decision Tree Structure

11
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Table 3.2: Basic characteristic of decision tree algorithms Singh and Gupta [2014]

From the above it is apparent that there is no possibility for this thesis to use
the ID3 algorithm since ID3 is not familiar with numerical values. In this thesis
the input data mostly consists of numerical values as there is a mention of size
and dimension, condition scores and finance. Therefore using ID3 is out of the
question. Furthermore C4.5. is also not a fitting option in this case because of
the difference in documentation, we are dealing with missing values. Finally, the
most fitting algorithm to use for this thesis is the CART algorithm. CART stands
for Classification and Regression Trees and it was developed by Breiman et al.in
1984. The key idea of CART is recursive partitioning. This means that the process
begins by taking in to account all the data and all possible variables for growing a
tree. From here it will select what the best split is considering the target attribute.
The tree repeats this process until it cannot find another split (Boonamnuay et al.
[2018]).

3.2 general methodology
The general methodology for this thesis is the methodology of Géron [2017] for the
development of the VA model using a machine learning approach (see Fig. 3.2).
As mentioned in Chapter 2 machine learning uses pre-solved input and output
as a basis for future predictions. This means that a VA model using a machine
learning approach heavily relies on the data and the way it is trained by feeding the
algorithm different types of dataset. Hereafter the solution is evaluated by defining
the accuracy of the model. For machine learning the accuracy needs to be between
85-95 %. If that is the case then the model work and it is ready for launch. It does
not reach this accuracy, the errors need to be analyzed and another iteration is done.
This goes on until the required accuracy is achieved.

3.3 workflow
In order to answer the main research question, four guiding sub-questions are de-
fined. The workflow for answering these questions is as follows:

1. What kind of data-driven approach should be applied?

The first question explores the different types of data-driven approaches, ap-
plicable to estimation, through a literature study. This literature study leads
to several options for data-driven approaches. According to the characteris-
tics of the data input & output a fitting model is chosen. This sub-question is
answered in Chapter 2.
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Figure 3.2: Machine learning modeling approach as defined by Géron [2017]

2. How is the data-driven model trained and what is the output?

This chapter explores the way the model is trained and its output. This is done
by firstly creating an artificial database and secondly training the data using
the DTC algorithm. An artificial database is created because the real dataset,
given by construction contractor BAM, does not contain enough data to train
the model. The sub-question is answered in Chapter 5.

3. How does this research compare to the current approach of estimating?

The added value of the new approach to estimating is explored through a
comparison between the human way and the ML way of estimating. This
is done through creating some fictional cases and comparing both methods
to understand the differences. The answer to this sub-question is given in
Chapter 6.

4. What are the main elements of an estimation model for maintenance
budgets?

The last sub-question explores what is generally needed for building a model
for maintenance budgets using the DTC algorithm. This sub-question can be
answered only after the model is built, verified and validated. This way it
is ensured that all relevant maintenance budgets elements are present. The
verification is done on the basis of an accuracy test and a sensitivity analysis
and the validation is done on the basis of an expert review. The answer to this
question is given in Chapter 6.





4 DATA E X P LO R AT I O N

From the previous chapters it is apparent that there is a need to develop a machine
learning model using decision tree methodology. This chapter explores how to de-
velop this model by establishing an understanding of the data through exploration.

4.1 data sources

This thesis focuses on developing a model using a data-driven approach, therefore it
relies heavily on the use of different data sources. The data sets are made available
by the construction contractor BAM. The data sets include: the NEN2767 decompo-
sition of bridges, the inspection reports of several bridges, the financial data of the
bridges. However upon exploring these data-sets it was apparent that the provided
data is not enough to build a working ML model using DTC methodology. Therefore
an artificial database is made (see Ch. 5) to mimic how the model would work if the
data-set was complete for modeling. In order to create this artificial database the
input and output needs to be known. This chapter explores the data set as provided
by BAM (see Fig. 4.3) and creates an understanding of what input and output to
model.

4.2 data documentation: abt table

Machine learning works through documenting historical data in a systemic man-
ner so that the machine learning algorithm can predict a new case, based on this
historical data. Therefore there is a need for a database. The way this database
is structured for predictive data analytic models is in the form of a Analytics Base
Table (ABT) (See Fig. 4.1). The columns under the descriptive features describe the
input (x) and the column under the target features describes the output (y). The
whole classification model is dependent on these features (see Fig. 4.2). The follow-
ing sections explain how this ABT table, so the database, is filled in for the case of
this thesis.

Figure 4.1: ABT table example

15
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Figure 4.2: Classification as the task of mapping an input attribute set x into its class label y
Tan et al. [2006]

Figure 4.3: Dataset summary in histogram

4.3 data input & output

From the BAM data there is a total of 60 bridges and with that 60 accompanying
documents that are used as a reference for the data input & output. The documents
are inspection reports and some cases also include budgeting reports. The inspec-
tion reports are thoroughly read and the recurring elements of these reports are
documented. These recurring elements are the basis of input (x) of the database.
The budget reports are the basis of the output (y). Figure 4.3 depicts the summary
of the recurring features in histograms, with the feature on the x-axis and the fre-
quency of occurrence on the y-axis. It is apparent from figure 4.3 that the recurring
features are mostly regarding the placing of the bridge, the size of the bridge, the
building elements of the bridge and the condition of these building elements. Fur-
thermore we can conclude that the data is non-parametric, some features are more
often present than others and the data does not seem to behave following a distri-
bution. Another aspect that is apparent is that there are many input features (112

features).

For this case and the amount of data as given by the contractor there is no possi-
bility to create a working model. However, there is a possibility to create artificial
data in order to prove the feasibility of the model (See Chapter 5). Beforehand it
is important to specify the data needed for this model (input) and the maintenance
budget (output).
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4.4 input
Based on the inspection reports provided by BAM the following main elements are
at the basis of this model: the characteristics of the bridge, the NEN2767 condition
data and the total duration of the maintenance.

4.4.1 Characteristics of the bridge & duration maintenance

The characteristics of the bridge that are relevant are mostly regarding the dimen-
sions of the bridge and the location of the bridge. The dimensions can have an effect
on the budget however the location does not amount to any impact on the budget
so it can be disregarded.

The duration of the maintenance has a large effect on the final budget so this
needs to be included. In the BAM dataset the duration is always the same which
leads to this aspect being disregarded by the DTC algorithm. This is because the case
duration has just one input (in this case 25 years) so it would be disregarded all in
all. For this reason it is needed to note this as an critical factor for the development
of the final model for the VA.

4.4.2 NEN2767: Decomposition & condition

The most important data set is the NEN2767, which provides 1) a decomposition
of the building elements and parts of the structure and 2) the condition of these
elements and parts. The Dutch Normative NEN2767 is developed with the goal
of solving the problem of variation in methods of inspection. It makes it possible
to measure the state of the structure and record defects in a unambiguous way.
The initial purpose for the development of this inspection methodology was the
prevention of subjectivity in the distribution of funds for urban development. This
thesis case has a similar reasoning, the prevention of accounting too much money
for maintenance.

Decomposition

The NEN decomposition needs to be included since it forms the key element to com-
pare the different bridges to each other. The NEN2767 defines this decomposition
by listing all the elements and building parts that a standard bridge should have
(see Fig. 4.4).
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Figure 4.4: Scope NEN2767

Figure 4.5: Condition Score

Condition

From the decomposition a standard condition score can be derived that corresponds
to the amount and intensity of the defects. The defects are all standardized and be-
gin with a G-code. An example of a way this coding system works is:

NEN-114-2192 with defect 15-G056 means from the railing construction, the aluminum
building part railing has the defect: non-constructive tear.

The main principle is the more defects, the higher the condition score, the higher
the maintenance budget should be.

Through the decomposition a condition score can be given to each of the elements.
There are 6 condition scores (see Fig. 4.5). Appendix A explains these condition
scores in more detail. For budgeting however we only use condition 1-5 because 6

refers to the demolition state and that is not included in a maintenance budget.
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4.5 output: budget estimation
The output in this case is the historical data of the maintenance budgets for the 60

available bridges. An important implication in this case is that for only 6/60 bridges
these reports are available. Therefore for the output artificial data is made based on
the available budget reports.





5 DATA M O D E L I N G

This chapter explains the modeling process of this thesis. From Chapter 4 it is
apparent that there is a need for an artificial database which will be elaborated
in this chapter. Furthermore the final result of the model is compared to another
algorithm. Finally an answer to the second sub-question is given in the conclusion:
How is the data-driven model trained and what is the output?

5.1 data types

From the previous chapter the following input and output data together with their
data types can be distinguished: bridge size, total duration of the maintenance of
the bridge, the NEN-norm which captures the decomposition and state of the bridge
& the budget. The data with the accompanying data types, which show the way the
data is processed in the ABT table, can be seen in Fig. 5.1.

Data Bridge Size Duration Maintenance NEN-norm Budget

Datatype Categorical Numerical Categorical Categorical

Table 5.1: Data types

5.2 sample size

In order to make the synthetic data there needs to be an understanding of what
sample size is needed to reach the adequate performance target. For DTC an ade-
quate performance target is 85-95 %. This is important to define, not only to get an
accurate estimate but also because in the real life application the gathering data can
be difficult to obtain (Figueroa et al. [2012]).

Sug [2009] suggest that more data does note equate a better decision tree. There-
fore a repeated sampling method is proposed using different sample sizes to decide
the best sample size for the given problem. For this thesis the repeated sampling
is done with three sample sizes (See Table 5.2 for the results). From this it can be
derived that having a sample size of 300 (with overlap in data) already suffices for
constructing a working model. To explain that this sample size already suffices,
even though the tree can be more accurate, there are two reasons:

Reason 1: Performance target is reached with a sample size of 300

For decision tree classification the performance target is a model that has an accu-
racy of 85-95%, and the results of the synthetic data with a sample size of 300 is
already in the range of the performance target.

21
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Sample Size 300 600 1200

Accuracy 0.8889 0.9000 0.9144

Table 5.2: Sample size and corresponding accuracy

Reason 2: The most realistic sample size for this model is a size of 300

In The Netherlands there are around 3700 bridges and viaducts (Octrooicentrum
Nederland [2008]). Of these structures, BAM maintains and operates 60 bridges.
The largest player in The Netherlands is Rijkswaterstaat and they operate 885 bridges
(Rijkswaterstaat [2020]). This means that even if BAM expands their inventory of
bridges it will most likely not exceed 100 and in the near future it will stay around
60. This means that many of the bridges in our database are going to be of the same
type, making it easy to classify and have overlap in the database. This also means
that a sample size of 300 is a realistic target for this model to work.

5.3 model input
In order to create the model there is a need for artificial data, since the data at hand
is not complete. For classification to work, we need to create overlap. A way to
do this is by clustering the data that is similar at first and therefore using classes
instead of numerical values. The following explains how every feature is recorded
in the database.

The results of this artificial data is shown in Appendix B and an overview of the
artificial data is given in a pairplot in Appendix C.

Bridge size

For the artificial data there are 3 size classes of bridges defined. A way to classify,
is by looking at the amount of building elements a bridge has. The more building
elements, the larger the bridge, the higher the size class.

Duration maintenance

In the BAM case the duration of the maintenance is 25 years for each case. Therefore
this is not going to be classified in the decision tree and it is disregarded. However
if the database is supplemented with more data, then the decision tree will take into
account the different duration’s, provided that: the parameter for the decision tree
min sample split < the amount of newly added data.

NEN-norm

The NEN-norm consists of 3 system levels: element - building part - material type
(see Fig. 4.4). To create overlap in the model and thus increase the similarities in
the different cases, the NEN-norm is defined on the element level. This will not
lead to problems since the element level is a summary of the building parts and it
will always take on the worst condition of the building part as the condition score.
Figure 5.1 shows this, as Leuning algemeen (Railing general) with condition score 1

and Beschermlaag (Protection layer) with condition score 2 are the building parts and
Leuning (Railing) is the element level which has condition score 2.

Size class NEN-norm

The condition relates to the defect of every element but it does not say anything
about the extent of the defect. Therefore it is necessary to introduce a measure to
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Figure 5.1: Example of condition element as defined in an inspection report

Figure 5.2: Reference: CROW’s way of defining size classes

the defect. In many cases this measure is defect per m2. However this can lead to a
variation in m2 of the defect. Again, to create overlap in the model there are 3 Size
Classes for the defect introduced. To prove the applicability of classifying defect in
size classes: the same methodology is used by CROW which is a renowned Dutch
knowledge platform that provides uniform tools for practical implementation of
existing legislation and regulations. Fig. 5.2 shows the way CROW defines defects
in size classes.

Budget

To mimic the non-parametric budget data from the BAM case there needs to be a
variation in the way the budget is composed. The budget is created based on data
found from the 6 cases that had budgeting information. In order to create variation
in the budget a fixed price is derived from these 6 cases. This fixed price is taken
for a standard budget that matches condition n. Hereafter this standard budget is
taken as the mean for every project that matches condition n and the variation is
created by using the normal distribution with: µ = standardbudget and σ = 20%.

5.4 dtc algorithm
The way the model predicts future budgets is depending on the Decision Tree algo-
rithm. As the analysis chapter concluded this is the CART algorithm. A pseudo-
code is shown in Algorithm 5.1.

The main steps in CART is building the tree, stopping the tree building process,
pruning the tree and choosing the best tree.

Building the tree & stopping the tree

The way the tree is built depends on the chosen algorithm. The difference between
the algorithms is the way they split the data. This research uses the CART algorithm
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which uses the gini-impurity metric. Gini impurity looks at what the probability
is that a datapoint is classified incorrectly, and chooses the smallest gini impurity
index to split on (Lewis [2000]).

To decide when to stop a tree, the parameters of the tree can be tweaked, espe-
cially the parameter maximum depth of the tree. This shows how large the tree is
in depth. In this case by trial and error the max depth is set to 11. Every maximum
depth will give another accuracy. As long as the accuracy of the model is not under
85% the model is fit for use.

Pruning the tree & choosing the best tree

Once a tree is grown it can reach an accuracy of 100%. This means that the tree
is overfitting the data. Therefore the result needs to be generalized again, which
means that the tree needs to be pruned. The pruning is in this case not needed
since pruning comes into play by little variation and a large dataset and this case is
missing a large dataset. Furthermore since there will be no pruning there are also
no trade-offs to be made as far as choosing the best tree.

Algorithm 5.1: CART pseudo-algorithm VA maintenance budgets using
scikit-learn decision tree classifier

Input: X = The characteristics of the different bridges, the condition data
and the intensity of defect

Output: Y = The decision whether the budget falls in class 1,2,3,4,5 or 6

1 Upload database
2 Fill the missing values with 0

3 Define output (Y); Define input (X)
4 Split data in train & test, with train = 0.7 & test = 0.3
5 Apply CART decision tree classification algorithm from scikit-learn
6 Test accuracy using confusion matrix
7 if Accuracy = 100% then
8 prune decision tree

9 Visualize tree
10 Predict maintenance budget class for new case using predict function

5.5 model output
For this thesis an artificial case is made and a decision tree is grown. The sample
size of this artificial case is 300 bridges. The database for this case is shown in
Appendix B and the results of the fully grown tree are shown in Appendix C. The
python code can be found in Appendix D. The tree contains a depth of 11 and has
an overall accuracy of 88.9 %. This means it reached the performance target and it
is reliable enough to start making predictions.

5.6 budget class prediction vs budget
prediction

A question that often is posed is whether the model can make a prediction of a
budget instead of a budget class. With the decision tree methodology this is also
possible but the decision tree classifier needs to be changed into a decision tree
regressor. Reason for this being: given the data set S, then the observation {xi, yi}
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contains the information related to process iteration n Susto et al. [2014]. In its
mathematical form:

S = {xi, yi}n
i=1 (5.1)

Where:

• S: dataset

• {xi, yi}: observation

• xi ∈ R1∗p: contains information

• y: output

IF y assumes continuous variables THEN a regression problem is obtained, whereas
IF y assumes categorical variables THEN a classification problem is obtained (Susto
et al. [2014]).

Even though in theory it is possible to make an estimate more defined, the prac-
tice shows a different result. To change this problem and make it fit for the decision
tree regressor the only thing that needs to be changed in the data set is the out-
put (y) which goes from budget class to budget (see Appendix E and Appendix F).
From the input (x) the size class of the defect needs to be changed into a actual m2

of the defect. Besides this, decision tree regressor often requires more data, but for
the sake of comparison between the classification and regression model, the data
set is kept the same. Now the decision tree regression can be modeled of which the
algorithm is given in 5.2 and the output is shown in Appendix E.

There are several methods to evaluate the model, of which some are the Mean
Square Error (MSE), root MSE and R2 error. For this model, since again we are deal-
ing with non-parametric and noisy data, the most fitting method is R2 error. MSE
tends to overestimate the badness of the model. The R-Square Error associated with
the model is: 0.6756. This is significantly lower than the classification accuracy.

All in all, the previous shows that the classification method gives a better result
for this case of estimating maintenance budgets.

Algorithm 5.2: CART pseudo-algorithm VA maintenance budgets using
scikit-learn decision tree regressor

Input: X = The characteristics of the different bridges, the condition data
and the intensity of defect

Output: Y = The decision of what the budget is

1 Upload database
2 Fill the missing values with 0

3 Define output (Y); Define input (X)
4 Split data in train & test, with train = 0.7 & test = 0.3
5 Apply CART decision tree regressor algorithm from scikit-learn
6 Test accuracy using R square error
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5.7 sub-question 2
This chapter answered the second sub-question:

How is the data-driven model trained and what is the output?

This thesis uses a data-set from the construction contractor BAM in order to
create a DTC model. From Chapter 4 it is apparent that the data-set consists of data
regarding the bridge size, duration of maintenance and the NEN norm as input
and the budget class as the output. The input data and output data is divided into
classes. A random sampling is done to estimate the sample size which reaches the
performance target, 85-95 % accuracy. This target is reached with a sample size of
300. After this sampling, the data is modeled using two different DTC algorithms.
It is apparent that the CART classifier (see Algorithm 5.1) has the best performance
for this case. The output of this model is a prediction of a budget class.



6 V E R I F I C AT I O N & VA L I DAT I O N

In this chapter the model for the VA is verified by showing the accuracy test and a
sensitivity analysis in the first part of the verification. This is followed by a second
part of the verification which compares the current practice and the practice using
the VA. Based on the previous the third sub-question is answered: How does this
research compare to the current approach of estimating? Hereafter the model is validated
by an expert review. The full expert review can be found in Appendix H. Finally
the last sub-question can be answered: What are the main elements of an estimation
model for maintenance budgets?

6.1 verification: part i

6.1.1 Accuracy of model: confusion matrix

In order to evaluate the decision tree classification technique an accuracy metric
called the confusion matrix is used. The general idea is to count the total amount
an instance of class A is classified as class B in your testing data set (Géron [2017]).
The formula to compute this is the following (Boonamnuay et al. [2018]):

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
(6.1)

Where:

• TP = the number of data points from a positive class that are rightfully pre-
dicted as a positive class

• TN = the number of data points from negative class that are rightfully pre-
dicted as a negative class

• FP = the number of data points that are in reality from negative class but the
model incorrectly predicts these as a positive class

• FN = the number of data points that are in reality from positive class but the
model incorrectly predicts these as a negative class

The confusion matrix for this case is given in Fig. 6.1. In this case there is no
binary classification but a classification with 5 labels. This means there is no TP
or TN, but True Classes or False Classes: True/False Class 1, True/False Class 2,
True/False Class 3, True/False Class 4, True/False Class 5. The numbers on the
diagonal show the number of correctly predicted classes. The other numbers are
the falsely predicted classes. Therefore the accuracy of the VA model = 80/90 =
0.8889

6.1.2 Sensitivity analysis model

Gaps in our knowledge in this case are bridged by assumptions regarding the data
set, such as the assumptions of different classes as well as assumptions regarding
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Figure 6.1: Confusion matrix

the decision tree model parameters. A sensitivity analysis can be used to system-
atically investigate the means by which assessors bridge these uncertainty gaps. It
includes a what-if analysis for uncertain model parameters as well as the identifica-
tion of the significant assumptions (Gorris and Yoe [2014]). The following identifies
the significant assumptions and the shows sensitivity of the model parameters.

Significant Assumptions

The following assumptions are most significant and need to be provided for the VA

model to work. Therefore these are not subject to change.

1. The model needs to have overlap in the data, regardless of the sample size. In
this case this is done by e.g. introducing Size Classes to the NEN-elements.

2. In order for a new class to be included the number of times the class is present
> the minimum splitting criterion.

3. When a feature has only one class this feature is excluded in the classification,
like in this case the feature ’Tot duration of maintenance.’ These types of
features need to be identified beforehand to be aware of this later on when
the database is being supplemented with more data.

Model parameters

The VA model has several model parameters that are the basis of the model output.
Using the scikit-learn module the following are the decision tree model parameters:

sklearn.tree.DecisionTreeClassifier(*, criterion = ”, splitter = ”, max depth =
”, min samples split = ”, min samples leaf = ”, min weight fraction leaf = ”,
max features = ”, random state = ”, max leaf nodes = ”, min impurity decrease
= ”, min impurity split = ”, class weight = ”, presort = ”, ccp alpha = ”)

For the VA model the parameters that are defined are shown below.

DecisionTreeClassifier(criterion = ’gini’, max depth = 11, min samples split = 2,
random state = 0)

A sensitivity analysis is performed on the model parameters: max depth &
min samples split. The parameter criterion does not have a sensitivity analysis
because it is a fixed parameter. The whole CART algorithm depends on the splitting
criterion being gini impurity. Furthermore random state is disregarded for the same
reason, it is a fixed parameter.
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Figure 6.2: Sensitivity Analysis Graph max depth & accuracy

max depth accuracy model

2 0.5333

3 0.5556

4 0.6778

5 0.7111

6 0.7444

7 0.7555

8 0.7778

9 0.8333

10 0.8444

11 0.8889

12 0.8889

13 0.8889

Table 6.1: Sensitivity Analysis Table max depth & accuracy

Max depth

The max depth is the depth of the tree, so how many sub-levels there are in a tree.
Changing the depth of tree will change the accuracy of the model. The deeper the
tree is allowed to grow, the more information it is allowed to capture. This means
that there is a possibility for the tree to overfit, in other words, that the tree works
perfect (= accuracy of 100%) on the training data but once new data is fed it is not
going to work anymore. Therefore there needs to be a degree of generalization.
This is where the max depth is a useful parameter. It is important to also not overly
generalize the tree, because that would cause underfitting which means a very low
accuracy of the tree. For the VA model a sensitivity analysis is performed by filling
in several criteria for the tree and see how it affects the accuracy (see Fig. 6.2).
The graph shows the higher the max depth, so the deeper the tree, the higher the
accuracy of the model. It also shows that the model is not overfitting, since it does
not achieve an accuracy of 100&. After a depth equal to 11 it will stay on an accuracy
of 0.8889 percent. The VA model is trained on a depth equal to 11, so there will be
no complication in the future.
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Figure 6.3: Sensitivity Analysis Graph min sample split & accuracy

min sample split accuracy

2 0.8889

6 0.8444

10 0.7222

20 0.7111

30 0.6889

50 0.6111

100 0.6111

150 0.5333

200 0.4667

210 0.4667

211 0.3667

225 0.3667

Table 6.2: Sensitivity Analysis Table min sample split & accuracy

Min sample split

The min sample split parameter shows how many samples there should be in a
node for it to split. The smaller the min sample split parameter, the deeper the tree
can grow. From the previous (Fig. 6.2) it is apparent that a deeper tree has a higher
accuracy. In the case of the VA the minimum split is set to 2, which allows the tree to
grow. This is also the best way to start the tree. Only when the tree shows that it has
an accuracy of 100% it is logical to start changing this parameter to a higher number.
However, since that is not the case in the VA model (see Fig. 6.3), this parameter can
stay the same and most likely will stay the same even if data is added.

6.2 verification: part ii

6.2.1 Comparison to current way of estimating

The current way of estimating relies heavily on the expertise of a cost estimator. The
cost estimator uses similar reference projects to determine the maintenance budget



6.2 verification: part ii 31

Figure 6.4: Proof 1

of a new case. Hereafter the average of the similar cases is taken to come to a
budget. The human estimator uses a similarity-based approach and the VA uses
information-based learning (see Chapter 2.3). The following few cases show the
difference between the human estimate and the VA estimate and show how the VA

provides ’better’ estimates since it takes into account the whole database through
the information-based learning. More examples can be found in Appendix I.

Case 1: “The VA does not take into account the average but looks at all the data
and classifies where the prediction fits best”

Proof 1: Where the human estimate takes into account extreme values like in Fig.
6.4 and simply takes an average, the VA predicts a budget class that ends up in a
leaf node by classifying it. In this example this leaf node corresponds to budget
class 1 as this is where most of the cases are classified in. Therefore it filters out
the extremes and takes information from the whole data set into account without
estimating budgets that are unrealistic/false.

Case 2: “The VA considers, besides the same exact case, also similar cases to
classify where the prediction fits best”

Proof 2:
In Fig. 6.5 the combination [1,1,2] has two different outcomes: budget class in 2

cases and budget class 4 in 2 cases. Because the VA takes into account the informa-
tion of other cases as well, the model eventually classifies it as budget class 4. A
human would take the average (budget class 3) and that is most definitely not right.

Case 3: “The VA can predict never seen before cases by classifying into already
known tree”

Proof 3:
The last case shows that even if there is a totally new prediction to be made, the

VA will classify it somewhere in a budget range. This is done on the basis of other



32 verification & validation

Figure 6.5: Proof 2

Figure 6.6: Proof 3
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information from other projects that were found before. A human would not know
where to start in this case (see Fig. 6.6.

6.3 sub-question 3
The third sub-question can be answered now:

How does this research compare to the current approach of estimating?

This research compares to the current way of estimating by introducing a VA and
creating three main differences by doing so:

1. The VA does not take into account the average but looks at all the data and
classifies where the prediction fits best.

2. The VA considers, besides the same exact case, also similar cases to classify
where the prediction fits best.

3. The VA can predict never seen before cases by classifying them into the al-
ready known tree.

Furthermore from current academic literature it is apparent that there does not
exist a VA that uses DTC for prediction in the cases of maintenance budgets. This
thesis proved that this is a fitting strategy, provided that the organization that uses
the methodology aligns their data storage strategy with the VA model.

6.4 validation
The validation of the model is performed to evaluate whether it reached its devel-
opment objectives and is therefore functional for industry use. This is done through
an expert review. In Appendix H the full overview is given of the findings of the
expert review at BAM infra. The expert review was conducted through demonstrat-
ing the VA model and asking for feedback. The team of experts at BAM consists
of: an asset manager, a cost estimator and a project manager for inspections. All
experts were asked for their feedback on the VA model by explaining their point
of view on the VA’s applicability to current practice and the feasibility of creating
a VA. The question on applicability tests whether the VA model reached its desired
development objectives according to the experts, which are also the users of the tool.
The question on feasibility tests whether there are limitations that occur by using
this technique. This is important to test because at the moment the model is based
on artificial data so the expert perspective on the feasibility of a real model needs
to be included.

6.4.1 Applicability of VA model to estimation

First the applicability of the VA model is tested through the review. The applicability
means the extent to which the model reached its development objectives. These
objectives can be derived from the development gap (see section 1.3) and are the
following:

1. Clear definition of project level: The VA model has no ambiguity in the defi-
nition of the project level. It is clear how each project is defined.

2. Independent prediction: The VA model does not depend on the opinion of
the cost estimator and can make a prediction independently.

3. Clear definition of used tools and references: The VA model clarifies what
tools and references are used for the estimation.
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Clear definition of project level

All of the experts agreed that the project level is defined clearly by using the VA.
Each line in the database includes a description of each of the bridges by defining
its size and decomposition. For every next bridge the same characteristics should be
filled in to predict a new budget. Therefore the definition of project level is always
ensured to be the same. Currently the accuracy of a budget estimate relies on the
level to which the cost estimator defines a project. This approach is changed by
using the VA because the extent to which a project needs to be defined is already
preset.

Independent prediction:

When focusing on the dependence on the cost estimators opinion the general con-
sensus was that the VA can predict independently. In theory anyone can use the tool
to insert the data that is asked for and arrive at a prediction, without using the cost
estimator. However it is to be noted that there was also an agreement that the VA

prediction should be a support to the cost estimator and not a replacement, which
is also the case here since it is a virtual assistant. The VA is used as a verification
tool.

Clear definition of used tools and references

The objective of clear definition of used tools and references is also seen as achieved.
The used tool for the VA model is the model itself and the used references are clear
because there is a whole database which stores historical information about past
bridges. Furthermore the way the way the VA shows a tree, containing the trade-offs
that are made for arriving at a decision, make it very understandable. This helps the
users to communicate better to outside parties what the most critical components
are of the budget estimate.

6.4.2 Feasibility of VA model to be develop

Since the VA model used for the demo case relies on artificial data, the question
regarding feasibility of development for a real case was posed. The model was
presented at two levels of detail: VA that predicts a budget range, Level of Detail
1 (LOD1) and a VA that predicts the final budget, Level of Detail 2 (LOD2).

The general consensus was that the VA is feasible for industry use when devel-
oped at LOD1, predicting a budget class/range. This has less to do with the model
and more to do with the way data is stored at the moment within the organization
and the amount of data available at hand. Within the organization there needs to
be more standardization and more standard procedures to generate objective data.
When this is done the budget classes can be determined and a multidisciplinary
team can look into whether to add more input features.

6.5 sub-question 4
The previous chapters answered the fourth question:

What are the main elements of an estimation model for maintenance
budgets?

The main elements of an estimation model for maintenance budget using the
CART algorithm can be retrieved from an initial data exploration specific to the
case at hand, verified and validated by expert review. From the case it is apparent
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that the main elements are characteristics of the bridge, which refer mostly to the
dimension of the bridge, the NEN2767, which capture the decomposition and con-
dition of the bridge and to a lesser extent the duration of the maintenance. In this
case the duration of the maintenance is always the same (25 years). Therefore this
duration aspect is not included in the tree structure. Whenever new data is fed, this
aspect will automatically be included if and only if the parameter for the decision
tree min sample split is < the amount of newly added data.

Furthermore other relevant data can also be included as long as they do not
conflict with the significant assumptions, which are:

1. The model needs to have overlap in the data, regardless of the sample size. In
this case this is done by e.g. introducing Size Classes to the nen-elements.

2. In order for a new class to be included the number of times the class is present
> the minimum splitting criterion.

3. When a feature has only one class, this feature is going to not be included in
the classification, like in this case the feature ’Tot duration of maintenance.’
These types of features need to be identified beforehand to be aware of this
later on when the database is supplemented with more data.

Finally, in order to assure the model to function and make the input as complete
as possible, there is a need for identifying the applicability of this model to the
industry. From expert review it is apparent that a VA model is feasible to develop if
data is documented in a standardized way using standard procedures set up by a
multidisciplinary team of experts.





7 C O N C L U S I O N S & R E C O M M E N DAT I O N S

This chapter concludes the thesis by answering the main research question. Fur-
thermore it proposes recommendation for future use. This is done in a process
diagram for future steps to be implemented by a contractor if they choose to use
this methodology for budget verification.

7.1 conclusion
In today’s practice the budget estimation of the maintenance of civil structures re-
lies on the opinion of a cost estimator only. This results in estimations that are not
accurate enough with a possibility of deviations from the estimated budget in the
future which in turn will effect the economic performance of a contractor or con-
struction company. However, with the increase of documentation of data there is
a potential to make these estimates more objective. In order to do so, this thesis
looked into developing a Virtual Assistant (VA) to verify the maintenance budget
guess of the cost estimator using a data-driven approach. This VA fills the gap of:
ambiguity in the definition of the project level, high dependence on expert-opinion
and the ambiguity in the tools and references used by estimator. The main research
question for this thesis follows:

How can we improve the objectivity of a preliminary budget-estimate, with
regards to the maintenance of civil engineering structures?

The way the objectivity is improved in this thesis is through a data-driven ap-
proach. By conducting a literature study it is found that there are several intelligent
systems that can be used for this. In current literature and given the context of
maintenance budgets, machine learning is the most popular technique that is cur-
rently used. Machine learning is an approach where historical data is documented
together with the results and on the basis of this new predictions are made. The
machine will try to find patterns in the new data that correspond to what it already
’knows’ in order to come to the best prediction. There are several predictive ma-
chine learning techniques but for this thesis the chosen technique is Decision Trees
Classification.

In order to develop the VA model using Decision Tree Classification, data is re-
trieved from the construction contractor BAM. On the basis of this data an artificial
(or mock) database, with a sample size of 300 bridges, is created. Only the objective
elements are filtered out and fed to the model, these elements are: the bridge size,
duration of maintenance and the NEN norm as input and the budget class as the
output. The reason that the prediction of the VA is a budget class and not an actual
budget is because of the accuracy of a budget class model (=0.85%) being higher
than the accuracy of an actual budget model (=0.68%). This is proven by comparing
both predictions and the accompanying algorithms. It is important to note that for
the VA model to work some assumptions need to be included which are that: 1)
there needs to be overlap in the data so that it allows the machine to find patterns
and create rules and 2) the parameters of the model need to be re-checked when
data is added.

Furthermore the VA can be used as verification for the estimators’ guess since the
approach of the VA is information-based and the approach of the human estimator
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is similarity-based. This means that an estimator will use the cases only known
from past experience whereas the VA uses a more holistic approach by taking into
account all historic cases that ever existed and that are documented in its database.
This fills the gap that currently exists in the way of estimating project budgets.
By using a VA there is no need for a definition of the project level, all project
levels together with their information are included in the definition of the database.
Secondly there is less dependence on the expert-opinion alone since there is now
a two-step verification, meaning computerized estimator and a human estimator.
Thirdly the ambiguity by tools and references that are used by the estimators can
also be handled since decision tree methodology actually forms a tree which shows
all trade-offs made to arrive to a certain decision.

Finally from current academic literature it can be concluded that a similar VA,
which uses DTC for prediction in the cases of maintenance budgets, does not exist
yet. Nevertheless this thesis proved that this is a fitting strategy to implement for as-
sisting the cost estimator, provided that the organization that uses the methodology
aligns their data storage strategy with the VA model database.

7.2 recommendations
From the expert review some remarks were made about the need for standardiza-
tion within the organization to make this tool work in the future. Figure 7.1 shows
a process diagram to use when trying to implement this VA methodology in an or-
ganization. This is based on the outcomes of the VA model made for this thesis and
the expert review.

1. Identify the domain of the maintenance budget, which structure do we have
to maintain?

First it is necessary to find out which structure it is that we need to maintain.
The VA for every structure is different and when comparing the structures
should be of the same type. There are a total of 64 different structures as
defined in the nen-norm.

2. Create a multidisciplinary team within the organization of domain experts
related to this type of maintenance.

Based on the structure to maintain, a team of experts needs to be formed that
have knowledge on the maintenance of the structure as well as other aspects
related to the structure. It is recommended to start with a large team and
slowly narrow it down to a team of specialists, once the scope is known.

3. The multidisciplinary team decides on which features to include in the
database.

Together the multidisciplinary team can discuss on which features to include
or exclude. It is expected that this takes several meetings and iterations.

4. Create data classes by standardization of the features.

Now it is important to create classes for the defined features. The way these
classes are defined by the domain experts as well as other computerized meth-
ods such as finding patterns in data and clustering the data based on these
patterns.

5. Make sure the data quality of each project is the same by creating a standard
procedure on how to classify.

It is recommended to keep a data quality report to ensure that the data is
always retrieved via the same method. This standardization does not only
contribute to the objectivity of the final estimate but it also ensures that the
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Figure 7.1: Process diagram industry use

comparison between the different structures is as complete as possible and no
data is missing.

6. Use the decision tree classification model as described in this research and
run the model.

The findings of this research can help build the final model for the VA.

7. You have successfully created a VA for maintenance budget estimation.
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A A P P E N D I X A : D E T E R M I N I N G
C O N D I T I O N S C O R E

As the defined in the NEN2767-4-1, a condition score is determined by the extent,
intensity and severity of the defects found. In the descriptions below, the condition
is described in general terms.

Condition score 1 - Excellent condition

• No or very limited aging

• Installations operate smoothly

• Defects are usually in the form of slight damage or of an aesthetic nature

• Repairs can be performed immediately and bring the building part back to
the intended basic quality

• With regard to the overall appearance of defects, building components are in
an excellent condition.

Condition score 2 - Good condition

• Incipient aging

• Installations operate nearly fault-free

• Defects to building components in the form of material degradation

• Defects, such as weathering symptoms, are only detected locally

• Building parts can have visible dirt infestation

• With regard to the overall appearance of defects, the building components can
be considered as good.

Condition score 3 - Reasonable condition

• The aging process has started locally

• The functioning of the installations can be a single time disrupted without
harming the business process

• Defects, in the form of weathering, etc., can occur locally or regularly

• Building parts show local defects to finishes, materials and components

• A building component may show a visible aging in its entirety.

• With regard to the overall appearance of the defects, the technical condition
is qualified as reasonable. The quality of the materials used and/or the basic
quality, detailing and execution can play a significant role in this.

Condition score 4 - Moderate condition

• The aging process is observed on a regular basis

• The operational reliability of installations is moderately guaranteed
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• Building components regularly show defects in finishes, materials and com-
ponents

• Locally, malfunctions in the functioning of the building component may act
and regular (serious) defects may occur that can lead to loss of function

• Operating interruptions may occur

• With regard to the overall appearance of defects, the components are assessed
as moderate. This can include are caused by errors in choice of materials, poor
basic quality and/or execution.

Condition score 5 - Poor condition

• The ageing process has become more or less irreversible

• The functioning of the installations are no longer guaranteed. Many (serious)
defects can occur that lead to loss of function. Business interruptions may
occur on a regular basis.

• Building components exhibit to a considerable extent defects in finishes, ma-
terials and components

• functioning of building components is no longer guaranteed

• The overall appearance of faults in the components is poor. The cause may
be: structural defects in the materials, the originally defective basic quality
and/or the execution.

Condition score 6 - Very poor condition

• Maximum defect image

• The condition of construction parts is so bad that it can no longer be classified
under Condition 5

• There is a maximum defect image and faults constantly occur in the function
fulfillment of building components

• The building component is unusable and technically ripe for demolition



B A P P E N D I X B : DATA B A S E D E C I S I O N
T R E E C L A S S I F I E R

The following shows a snippet of the database used for the VA model. The full
database is added to this thesis in a separate file.
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Figure B.1: Database VA model, sample size = 300



C A P P E N D I X C : D E C I S I O N T R E E
C L A S S I F I E R M O D E L

In order to see a clear picture of the tree the code accompanied by this thesis can be
copy & pasted to the website: http://www.webgraphviz.com/. There the tree will
be generated to fit your pc screen.
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Figure C.1: Decision Tree VA model, sample size = 300



D A P P E N D I X D : P Y T H O N C O D E
C L A S S I F I E R M O D E L

[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

[2]: ds = pd.read_excel('DTC_voorbeeld.xlsx',sheet_name = 'LOD1')

[3]: ds.shape

[3]: (300, 14)

[4]: ds.head()

[4]: Case Tot duration Size Class Bridge Leuning-SC1 Leuning-SC2 \
0 1 25 1 1.0 NaN
1 2 25 1 1.0 NaN
2 3 25 1 NaN NaN
3 4 25 1 NaN NaN
4 5 25 1 NaN NaN

Leuning-SC3 Talud-SC1 Talud-SC2 Talud-SC3 HWA-SC1 HWA-SC2 HWA-SC3 \
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN
2 NaN 1.0 NaN NaN 5.0 NaN NaN
3 NaN 1.0 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN 1.0 NaN NaN

Budget Budget Class
0 3501.052960 2
1 3217.189524 2
2 4381.078144 2
3 630.963522 1
4 1403.593848 2

[5]: ds_new = ds.fillna(0)
ds_new.head()

[5]: Case Tot duration Size Class Bridge Leuning-SC1 Leuning-SC2 \
0 1 25 1 1.0 0.0
1 2 25 1 1.0 0.0
2 3 25 1 0.0 0.0
3 4 25 1 0.0 0.0
4 5 25 1 0.0 0.0

Leuning-SC3 Talud-SC1 Talud-SC2 Talud-SC3 HWA-SC1 HWA-SC2 HWA-SC3 \
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1
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2 0.0 1.0 0.0 0.0 5.0 0.0 0.0
3 0.0 1.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Budget Budget Class
0 3501.052960 2
1 3217.189524 2
2 4381.078144 2
3 630.963522 1
4 1403.593848 2

[6]: Y = ds_new['Budget Class ']
X = ds_new.drop(['Case', 'Tot duration', 'Budget', 'Budget Class '], axis = 1)

[7]: from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

[8]: X_train,X_test,Y_train,Y_test = train_test_split( X, Y, test_size = 0.3,␣
↪→random_state = 10)

[9]: dt = DecisionTreeClassifier(criterion = 'gini', max_depth=11,␣
↪→min_samples_split=2,random_state = 10)

[10]: dt.fit(X_train,Y_train)

[10]: DecisionTreeClassifier(max_depth=11, random_state=10)

[11]: dt.score(X_train, Y_train)

[11]: 0.9904761904761905

[12]: dt.score(X_test,Y_test)

[12]: 0.8888888888888888

[13]: from sklearn import tree

[14]: dtc = tree.export_graphviz(dt, out_file = 'tree.dot', feature_names = X_train.
↪→columns, max_depth = 20, filled = True)

[15]: !dot -Tpng tree.dot -o tree.png

[16]: image = plt.imread('tree.png')
plt.figure(figsize = (15,15))
plt.imshow(image)

[16]: <matplotlib.image.AxesImage at 0x18ade297408>
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[17]: # Vul in:
# DtReg.predict( [[Size Class, Leuning-1, Leuning-2, Leuning-3, Talud-1,␣

↪→Talud-2, Talud-3, HWA-1, HWA-2, HWA-3 ]] )

dt.predict([[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]])

[17]: array([2], dtype=int64)

[18]: # OPTIONAL -> use if acc = 100%

# PRUNING

from sklearn.tree import DecisionTreeClassifier
path = dt.cost_complexity_pruning_path(X_train, Y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

[19]: ccp_alphas

[19]: array([0. , 0.0015873 , 0.00357143, 0.00380952, 0.00455026,
0.0047619 , 0.0047619 , 0.00634921, 0.00714286, 0.00714286,
0.00793651, 0.00818071, 0.00833333, 0.00833333, 0.00888889,
0.00952381, 0.00968254, 0.00986395, 0.01142857, 0.01160043,
0.01166667, 0.01168831, 0.01253968, 0.01327188, 0.01428571,
0.01464052, 0.01650794, 0.01821459, 0.01853074, 0.02607537,
0.02694832, 0.03612782, 0.03627173, 0.0656428 , 0.11717572])

[20]: clfs = []
for ccp_alpha in ccp_alphas:

clf = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha)
clf.fit(X_train, Y_train)
clfs.append(clf)
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print("Number of nodes in the last tree is: {} with ccp_alpha: {}".format(
clfs[-1].tree_.node_count, ccp_alphas[-1]))

Number of nodes in the last tree is: 1 with ccp_alpha: 0.11717571892077938

[21]: train_scores = [clf.score(X_train, Y_train) for clf in clfs]
test_scores = [clf.score(X_test, Y_test) for clf in clfs]

fig, ax = plt.subplots()
ax.set_xlabel("alpha")
ax.set_ylabel("accuracy")
ax.set_title("Accuracy vs alpha for training and testing sets")
ax.plot(ccp_alphas, train_scores, marker='o', label="train",

drawstyle="steps-post")
ax.plot(ccp_alphas, test_scores, marker='o', label="test",

drawstyle="steps-post")
ax.legend()
plt.show()

[22]: clf = DecisionTreeClassifier(random_state=0, ccp_alpha=0.02)
clf.fit(X_train,Y_train)

[22]: DecisionTreeClassifier(ccp_alpha=0.02, random_state=0)

4
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[23]: pred=clf.predict(X_test)
from sklearn.metrics import accuracy_score
accuracy_score(Y_test, pred)

[23]: 0.6888888888888889

[24]: plt.figure(figsize=(15,10))
tree.plot_tree(clf,filled=True)

[24]: [Text(547.2692307692308, 498.3, 'X[3] <= 0.5\ngini = 0.787\nsamples = 210\nvalue
= [3, 41, 38, 66, 31, 31]'),
Text(386.3076923076923, 407.70000000000005, 'X[0] <= 1.5\ngini = 0.732\nsamples

= 172\nvalue = [3, 41, 38, 66, 21, 3]'),
Text(257.53846153846155, 317.1, 'X[1] <= 1.5\ngini = 0.652\nsamples = 72\nvalue

= [3, 34, 21, 14, 0, 0]'),
Text(193.15384615384616, 226.5, 'X[2] <= 0.5\ngini = 0.563\nsamples = 52\nvalue

= [3, 32, 10, 7, 0, 0]'),
Text(128.76923076923077, 135.89999999999998, 'X[8] <= 3.0\ngini =

0.387\nsamples = 42\nvalue = [3, 32, 7, 0, 0, 0]'),
Text(64.38461538461539, 45.299999999999955, 'gini = 0.278\nsamples = 38\nvalue

= [3, 32, 3, 0, 0, 0]'),
Text(193.15384615384616, 45.299999999999955, 'gini = 0.0\nsamples = 4\nvalue =

[0, 0, 4, 0, 0, 0]'),
Text(257.53846153846155, 135.89999999999998, 'gini = 0.42\nsamples = 10\nvalue

= [0, 0, 3, 7, 0, 0]'),
Text(321.9230769230769, 226.5, 'gini = 0.565\nsamples = 20\nvalue = [0, 2, 11,

7, 0, 0]'),
Text(515.0769230769231, 317.1, 'X[0] <= 2.5\ngini = 0.651\nsamples = 100\nvalue

= [0, 7, 17, 52, 21, 3]'),
Text(450.69230769230774, 226.5, 'gini = 0.592\nsamples = 58\nvalue = [0, 7, 15,

33, 3, 0]'),
Text(579.4615384615385, 226.5, 'X[9] <= 3.5\ngini = 0.604\nsamples = 42\nvalue

= [0, 0, 2, 19, 18, 3]'),
Text(515.0769230769231, 135.89999999999998, 'X[2] <= 0.5\ngini = 0.59\nsamples

= 34\nvalue = [0, 0, 2, 19, 10, 3]'),
Text(450.69230769230774, 45.299999999999955, 'gini = 0.435\nsamples = 26\nvalue

= [0, 0, 2, 19, 4, 1]'),
Text(579.4615384615385, 45.299999999999955, 'gini = 0.375\nsamples = 8\nvalue =

[0, 0, 0, 0, 6, 2]'),
Text(643.8461538461538, 135.89999999999998, 'gini = 0.0\nsamples = 8\nvalue =

[0, 0, 0, 0, 8, 0]'),
Text(708.2307692307693, 407.70000000000005, 'X[0] <= 2.5\ngini = 0.388\nsamples

= 38\nvalue = [0, 0, 0, 0, 10, 28]'),
Text(643.8461538461538, 317.1, 'gini = 0.219\nsamples = 8\nvalue = [0, 0, 0, 0,

7, 1]'),
Text(772.6153846153846, 317.1, 'gini = 0.18\nsamples = 30\nvalue = [0, 0, 0, 0,

3, 27]')]
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[25]: #plot confusion matrix() will run the test data down the tree and draw a␣
↪→confusion matrix

from sklearn.datasets import make_classification
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

a = plot_confusion_matrix(dt, X_test, Y_test)
# you can see 5/10 are correctly classified which is 50%

6



E A P P E N D I X E : D E C I S I O N T R E E
R E G R E S S O R

This appendix shows the database for the VA using the decision tree regressor and
the model output.
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56 appendix e: decision tree regressor
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Figure E.1: Database VA model, sample size = 300
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Figure E.2: Decision Tree VA model, sample size = 300





F A P P E N D I X F : P Y T H O N C O D E
D E C I S I O N T R E E R E G R E S S O R

[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

[2]: ds = pd.read_excel('DTC_voorbeeld.xlsx',sheet_name = 'LOD2')

[3]: ds.shape

[3]: (300, 10)

[4]: ds.head()

[4]: Case Tot duration Size Class Bridge NEN-414_Leuning m2_Leuning \
0 1 25 1 1.0 23.011598
1 2 25 1 1.0 22.518598
2 3 25 1 NaN NaN
3 4 25 1 NaN NaN
4 5 25 1 NaN NaN

NEN-272_Talud-SC1 m2_Talud NEN-144_HWA-SC1 m2_HWA Budget
0 NaN NaN NaN NaN 3313.741068
1 NaN NaN NaN NaN 3411.330344
2 1.0 47.714599 5.0 10.542897 4376.799959
3 1.0 27.916250 NaN NaN 662.699204
4 NaN NaN 1.0 23.873793 1026.568586

[5]: ds_new = ds.fillna(0)
ds_new.head()

[5]: Case Tot duration Size Class Bridge NEN-414_Leuning m2_Leuning \
0 1 25 1 1.0 23.011598
1 2 25 1 1.0 22.518598
2 3 25 1 0.0 0.000000
3 4 25 1 0.0 0.000000
4 5 25 1 0.0 0.000000

NEN-272_Talud-SC1 m2_Talud NEN-144_HWA-SC1 m2_HWA Budget
0 0.0 0.000000 0.0 0.000000 3313.741068
1 0.0 0.000000 0.0 0.000000 3411.330344
2 1.0 47.714599 5.0 10.542897 4376.799959
3 1.0 27.916250 0.0 0.000000 662.699204
4 0.0 0.000000 1.0 23.873793 1026.568586

[6]: Y = ds_new.iloc[:, 9].values
X = ds_new.iloc[:, 2:9].values

1
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60 appendix f: python code decision tree regressor

[7]: from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split( X, Y, test_size = 0.3,␣

↪→random_state = 10)

[8]: from sklearn.tree import DecisionTreeRegressor

DtReg = DecisionTreeRegressor(max_depth=20, min_samples_split=10)

DtReg.fit(X_train, Y_train)

[8]: DecisionTreeRegressor(max_depth=20, min_samples_split=10)

[9]: Y_predict_dtr = DtReg.predict((X_test))

#Model evaluation using R-square for DTR
from sklearn import metrics
r_square = metrics.r2_score(Y_test, Y_predict_dtr)

print('R-Square Error associated with Decision Tree Regressor is:', r_square)

R-Square Error associated with Decision Tree Regressor is: 0.6755756006403919

[10]: from sklearn.tree import export_graphviz

dtc = export_graphviz(DtReg, out_file = 'dtregtree.dot', feature_names = ds_new.
↪→columns[2:9], max_depth = 20, filled = True)

[11]: !dot -Tpng dtregtree.dot -o dregtree.png

[12]: image = plt.imread('dregtree.png')
plt.figure(figsize = (15,15))
plt.imshow(image)

[12]: <matplotlib.image.AxesImage at 0x212b7dc5808>
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[13]: export_graphviz(DtReg, out_file = 'dtregressor.dot',
feature_names = ds_new.columns[2:9])

[14]: DtReg.predict( [[1, 1, 22, 0, 0, 0, 0]] )

[14]: array([3785.90517025])

3





G A P P E N D I X G : PA I R P LOT S Y N T H E T I C
DATA
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64 appendix g: pairplot synthetic data

Figure G.1: Pairplot Synthetic Data VA model, sample size = 300



H A P P E N D I X H : E X P E R T R E V I E W

This chapter shows an overview of the findings of the expert review conducted at
BAM infra. The expert review was conducted through demonstrating the VA model
and asking for future remarks. The VA model was presented in two levels of detail:
VA that predicts a budget range (LOD1) and a VA that predicts the final budget
(LOD2). The team of experts at BAM consists of: an asset manager, a cost estimator
and a project manager for inspections.

All experts were asked for their feedback on the VA model by explaining their
point of view on the VA’s applicability to current practice, the feasibility of creating
a VA and other remarks.

• Applicability VA

How well do you think the VA is working?

• Feasibility VA

How do you think a working VA can be realized, given the development
objectives?

h.0.1 Cost Estimator

Applicability VA

The VA seems easy to use at first glance. The functions to fill in are preset which
makes it easy to use. I would not opt for an independent prediction, which in theory
this seems to be possible. The database allows for retrieving past information which
at the moment is not there in this structured manner.

Feasibility VA

The VA is feasible when using LOD 1: predicting a budget class. This is because
it works for a rough estimate for the first stages of the project, but it is dangerous
to use for a final budget price (inschrijfprijs). This has less to do with the model
and more to do with the way data is stored at the moment within the organiza-
tion. Therefore the prediction of an exact price is not applicable but prediction of a
budget class would be. The human still needs to be involved in the cost estimation
process. A reference to prove this point: within our organization the section asphalt
already uses intelligent systems for predicting prices. In one case 5 models were
used to create a budget for asphalt costs and because of the presence of the models
the cost estimator simply used these models to predict the budget without also pre-
dicting a price himself. This led to budget that was not realistic, because apparently
there were other factors that influenced the budget as well that were not taken into
account in the model. For this reason the human needs to be involved in the bud-
get estimation procedure and the model can be of assistance for verification. With
this assistance it would also be ideal if there would be a bandwidth of accuracy of
the estimate. Furthermore the VA can be feasible if the way data is documented is
standardized. The way in this case the data is divided into classes is something that
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66 appendix h: expert review

needs to be looked at within the organization. How these classes are determined
and the possibility to add more features need to be discussed within a multidisci-
plinary team. Also the way the data is delivered needs to be the same exact way,
for it to be stored easily in the database. These are arrangements that need to be
communicated not only in the cost estimation branch but within all branches that
have anything to do with the estimation of budgets for bridges. Only with a mul-
tidisciplinary team there can be a template made for the database by looking what
need to be included and standardized.

h.0.2 Project Manager Inspections

Applicability VA

This model seems to have a good potential for future use. The model’s name is
also fitting for its purpose. It is a VA: an assistant for the cost estimator and not a
replacement. Therefore from the perspective of ease of use it is very comfortable to
use but we should not disregard the cost estimators opinion.

Feasibility VA

The model is probably going to work well once realized, provided we introduce
standardization in the way of working. There needs to be more standardization
and more clearer standards to generate objective data. So when an inspector is
looking at a bridge and classifies an element in class 2, it needs to be also classified
by another inspector in the same category. Therefore the judgement should be the
same. This way the input data will be more reliable. Once we have good quality of
data, a standardized way of working, we might even replace the cost estimator with
a model. Until that time the right measures need to be taken to come to an initial
budget range. Therefore the VA is feasible if the quality of the data is documented
as well as standardization is introduced. There is already a digital strategy for the
future in the works and this model really shows the potential of the use of machine
learning, decision tree methodology.

h.0.3 Asset Manager

Applicability VA

In the contracting world there is a need to use digitization and intelligent tools
in order to use the assets in the most efficient way. At the moment BAM already
uses tools as such for smaller works. The VA, on this conceptual level, shows
that machine learning can be applicable as an intelligent tool. It also shows that
intelligent tools can also be used for projects with a larger. The tool seems easy
to use and if data keeps being stored in the right manner it has a potential to
be changed from an assistant for the cost estimator to an actual estimator. If we
know the outcomes are reliable then it very efficient because of its ease of use and
standard input features.

Feasibility VA

There is the need for a multidisciplinary team and more communications with the
company tho realize this model. Different disciplines have different ideas on what
is most important to include. It is also necessary to sit with disciplines that already
make use of machine learning or other intelligent systems to use their expertise as
a comparison. This model is a good first step to provide insight on where to start
with the composition of the multidisciplinary team.



I A P P E N D I X I : C O M PA R I S O N VA &
H U M A N E S T I M AT I O N

Case 1: “The VA does not take into account the average but looks at all the data
and classifies where the prediction fits best”

Proof 1:
See Fig. I.1.

Case 2: “The VA considers, besides the same exact case, also similar cases to
classify where the prediction fits best”

Proof 2:
See Fig. I.2.

Case 3: “The VA can predict never seen before cases by classifying into already
known tree”

Proof 3:
See Fig. I.3.
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Figure I.1: Proof 1b

Figure I.2: Proof 2b

Figure I.3: Proof 3b



colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.
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