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Executive Summary

Efficient distribution is crucial in many industries today, especially in retail, where customer demand is
growing rapidly. The rise of online shopping and automation has led to a shift towards the use of Central
Distribution Centers (CDCs). Companies in the retail industry often follow this trend, which requires
them to rethink how they handle their distribution. This research focuses on two main challenges: first,
changing the distribution system to adapt to new CDCs, and second, dealing with the computational
complexities when optimizing the distribution on a large scale. The aim is to design a large distribution
system for the allocation of stores and the routing of vehicles.

An extended analysis is performed to reach this goal. The analysis can be divided into two parts:

1. A computational analysis examines several cases with different computational improvements.
This computational plan shows that the adjustments to the Gurobi optimization tool have a posi-
tive influence on the run time.

2. An experimental analysis consists of a base case, validation of the base case, and five experi-
mental cases.

New elements are introduced to the mathematical model, which are primarily focused on the routing of
vehicles. We also improve the computation by implementing a start solution, adjusting the parameters
of the Gurobi optimization tool and including a callback function which bounds the run time. This model
will determine the routing decisions for demand from several Distribution Centers (DCs) to the stores
and will find the optimal vehicle routes. A case study at a company in the Netherlands provides insights
into the changing world of distribution systems. It offers practical solutions for businesses trying to make
their distribution processes better.

The results are compared from three perspectives. It must be considered that the clustering of data
impacts the results, and sub-optimal outcomes are present because certain gaps in the data are not
entirely eliminated in the experiments, affecting result interpretation. This error and uncertainty are
based on the level of aggregation of data and the gap size of the solution.

First, they are compared based on the performance metrics. The main KPI is the most important metric
to compare the cases on, but the other metrics need to be considered too. Consolidation of demand
at the CDCs is proven to be a successful improvement, while an improvement in costs of 5.4% can be
achieved. The total costs influence the third and fourth cases, so these cases can not be compared with
the others. What can be concluded from these cases is that the metrics of both perform as expected.
When lowering the total costs of transportation between the CDCs and Regional Distribution Centers
(RDCs), the third case, the percentage of indirect delivery will increase. When increasing the volume, in
the fourth case, the direct delivery increases too. And when decreasing the volume, the direct delivery
decreases too.

Second, the results are compared based on their routing decisions. In some cases, the indirect delivery
is more attractive. In others, the direct delivery, there is a difference in the postal codes with the highest
influence on the routing decisions. Besides this fact, two postal codes pop up in all cases as postal
codes with a significant influence on the total costs, considering a difference in routing decisions. These
postal codes are 48 and 94. Therefore, it is advised to change the routing decisions of these postal
codes.

Third, the relationship between routing decisions, distances and volumes is discovered. As a result,
there are no convincing relationships between the routing decisions and distances on its own and be-
tween the routing decisions and volumes. However, a relationship between all three can be determined
using a logistic regression. The coefficients of this logistic regression function (a, b, c and d) are fitted
on the data. A probability of the routing decision can be determined where the coefficients fit the data
and the distances and volume of the new store can be entered. Here, with an accuracy between 63.1%
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for the second case and 78.0% for the third case, advice can be given for the routing decision based
on the distance of a store to the CDCs, the distance of a store to an RDC plus the distance of this RDC
to the CDCs, and the volume of demand of this store.

All in all, this research aimed to design an effective distribution system for store allocation and vehi-
cle routing, addressing the main research question. Four sub-research questions guided the study,
delving into system characteristics, planning model formulation, system performance, and the general-
izability of findings. The analysis revealed that consolidating demand at CDCs can lead to significant
cost improvements because of the higher truckloads. Changing transport costs between CDCs and
RDCs and adjusting order volumes can influence delivery strategies. Moreover, the study identified spe-
cific postal codes as crucial in routing decisions. Despite the absence of direct relationships between
routing decisions, distances, and volumes, logistic regression models provide guidance. Notably, the
findings suggest that this distribution model can be adapted to various scenarios with different network
structures, making a general contribution to the literature. Overall, this research contributes valuable
insights into the design of large-scale distribution systems, offering a foundation for more efficient and
cost-effective store allocation and vehicle routing strategies.
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1
Introduction

Distribution plays a significant role in many industries due to growing demand (Munasinghe & Rupas-
inghe, 2016). The same is true for the retail industry. Retailers must ensure that their supply chains
are effective and able to fulfil consumer needs. To do this, a focus is needed on inventory management
and transportation (Lagorio & Pinto, 2021). Several factors influence the need for innovation in inven-
tory management. First, as companies struggle to recruit employees, they are forced to automate their
inventory systems (PWC, 2023). Second, customers are increasingly getting used to a flexible market
where last-minute changes can be made to their orders and where orders can be delivered at short
notice (Tarry, 2022). This plays a significant role in the growth of e-commerce in the retail industry (Mor-
gan Stanley, n.d.). To increase the efficiency of a company’s inventory system and transportation, there
is a trend of more and more companies returning to automated Central Distribution Centres (CDCs)
where they can easily handle a large proportion of orders at one location. Bol.com and Albert Heijn are
examples of such companies where this trend has also impacted and which has also brought to life
an automated CDC that (partially) replaces several non-automated Distribution Centres (DCs) (Stad,
2022). The building of new CDCs forces companies to adjust their transport schedules. Stores must be
reassigned to the Regional Distribution Centre (RDC) they are currently assigned to or the new CDC.
The demand can be delivered from the CDC directly or from the CDC via an RDC. Consolidation of
demand can take place at an RDC, which can make it attractive to deliver from that DC. Here, financial
and environmental aspects need to be taken into account by the company. The financial aspect is
important to remain competitive in the market. Higher costs in transport and logistics will eventually be
passed on to the customer. Today, the environment is becoming an increasingly important aspect to
consider. Society and the government are both encouraging improvements in this area. As a direct
result, companies must have this focus too.

1.1. Main challenge
A challenge that arises from the described developments is the need for a change of structure of the dis-
tribution system. This challenge can be split into two parts: an industrial challenge and a computational
challenge.

Industrial challenge
The industrial challenge arises due to the opening of the new DC. The distribution system will change,
and this will influence the optimal allocation of stores to the DCs. Stores will be supplied directly or
indirectly from the new DC. When stores are supplied indirectly, demand is first sent to an RDC, where
it will be consolidated for delivery to the stores. Here, the challenge arises to adjust the distribution
system to reallocate the stores to the DCs. This allocation is based on the aforementioned trade-off
between cost and environment. Three sets of vehicles can be used for the transportation of demand,
which all can be assigned to one of the routing options. So, the routing of vehicles needs to be revised
to meet the new allocation of stores.

1
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Computational challenge
A second challenge arises due to the size of the distribution system. The larger the distribution sys-
tem, the higher the number of options for allocation and routing, which all need to be evaluated. The
complexity influences the computational forces required to solve the model. It is therefore necessary to
look at how this complexity can be reduced while searching for new optimal outcomes. It is important
to keep evaluating performance while searching for a solution to this challenge. All in all, this ultimately
results in a main challenge: the design of a large distribution system for the allocation of stores and the
routing of vehicles.

The described challenge reflects a more general challenge in many industries. In today’s industry,
transport and logistics are going to play an increasingly important role. Costs must be as low as possible
to maintain competitive prices and remain competitive in the market. In addition, companies are being
judged increasingly harshly for environmentally unfriendly behaviour. Also, companies are automating
their DCs to improve the efficiency of their operations. This is often done in new locations, and, as
a result, a part of the stores are eventually supplied from a new DC. A trend here is that such an
automated DC can take over some or all of the roles of several smaller, non-automated DCs. Therefore,
this research on the allocation of stores and the routing of vehicles must be done.

1.2. Contribution
The design of a large distribution system for the allocation of stores and the routing of vehicles will
be studied in this research. There have previously been numerous papers written on this subject and
its variations. Andersen et al. (2009) formulates a fixed charge capacitated multi-commodity network
design. Each of the arcs has a fixed cost and certain capacity. An arc-based formulation is used for
this network. The main objective is to minimize the total costs, including fixed and flow costs. The
service network design with asset management includes constraints which ensure that the number of
vehicles entering and leaving a node must be equal, (Andersen et al., 2009). An upper bound of the
fleet size is taken into account, and costs are linked to using an asset. Cheong et al. (2007) introduced a
network design which contains multiple suppliers, consolidation hubs, supply hubs and manufacturers.
To enable make-to-order production, the suppliers transport components to the warehouses, which
regularly restock the makers. Every warehouse has a specific manufacturing plant it serves. Each
warehouse must send suppliers replenishment orders according to each manufacturer’s daily final as-
sembly schedule. This research aims to determine which of the possible hubs need to be opened and
what the minimal total logistic costs are. These costs consist of the transportation costs from the sup-
pliers to the hubs, the transportation costs from the hubs to the warehouses, the expenses associated
with keeping goods in the warehouses, and the fixed and variable costs associated with operating the
hubs. The distribution network of a consumer goods company is investigated by Cintron et al. (2010).
Reducing consumer demand supplied by the RDC and increasing supply from independent distributors
or directly from the plants’ warehouses may decrease supply chain distribution expenses. The model
contains several factories, each of which produces a variety of goods. As long as every item in the
container is produced in the designated facility, it is thought that a variety of products can be shipped
directly from a factory to a consumer. The objectives are to maximize total profit, minimize lead time,
maximize power and maximize credit performance. Integrated distribution network design problems
often include several plants, depots, transit points and customers. Ambrosino and Scutella (2005) pro-
vides a static model for such a network. They do not take into account inventory management, so
there is no difference between a transit point and a regional depot. Alikhani et al. (2021) proposes a
supply chain network design which focuses on resilience against disruptions. The network consists of
several suppliers, distribution centres and stores. The distribution centres can function as a cross-dock
or as a warehouse. This research focuses on determining where to locate facilities and schedule the
distribution of demand. The objective is to minimize the total costs of facility location and distribution.
Even though many of these transportation problems exist in the literature already, there is still room for
research. The gap in the literature that will be explored in this paper relates to:

The allocation of stores and the routing of vehicles for large-scale distribution systems based
on the opening of new DCs.
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The contribution can be split into two parts: a scientific contribution and a business contribution.

Scientific contribution
The design of a large distribution system for the allocation of stores and the routing of vehicles will be
studied in this research. Since there are no known solutions to this particular case, this is considered a
scientific contribution. First, the mathematical model for the distribution system of this research will be
built on existing models. New parts will be added to the combination of existing parts. The new parts
will involve the use of various modalities that can be deployed on limited parts of the system. All in
all, this model will be tailored for this specific type of distribution system, which contains multiple DCs
and a large number of stores. Second, finding an optimal solution for these complex systems can be
computationally challenging. The optimization problems for such large-scale distribution systems are
currently still a topic wheremuch research can be done. A distribution system quickly becomes complex
with a number of DCs and stores, and this grows exponentially. The optimization tool will automatically
select heuristics that fit the type of optimization, and that will help solve the model more efficiently. The
combination of a start solution, adjustments regarding the input parameters of the optimization tool, a
callback function and math-based heuristics will be implemented to avoid reaching the computational
limits.

Business contribution
Openings of new central DCs are due to the trend of automating DCs, which affects companies’ trans-
port and logistics. There is a trade-off for companies to determine how much demand needs to be
delivered from the current DCs and how much from the new ones. Whereas previously, the choice of
allocation was often based on the smallest distance to a DC, this is different with this new form of dis-
tribution system. Here, the choice has to be made whether it is more advantageous to divert demand
via RDCs. Given the various delivery options that arise, this choice becomes a lot more complex. This
study will provide a solution to this complex issue and help businesses further with the design of their
distribution system.

So, this optimisation with the aim of designing a large distribution system for the allocation of stores and
the routing of vehicles is an expected contribution to science due to the new parts of the mathematical
model, the implementation of a start solution, input parameters, a callback function and math-based
heuristics, and the contribution to logistics companies.

1.3. Problem statement
Retailers need to stay innovative to fulfil consumers’ needs. The high expectations of consumers
and the shortage in the labour market are already two reasons to improve transport and logistics in
the retail industry. These reasons complement the already existing trend where companies increase
their efficiency by building automated CDCs. It is necessary to reassign stores to either the current
RDC or the new CDC. An RDC may see demand consolidation, which could make it more appealing
to deliver from that DC. Here, both financial and environmental factors must be taken into account.
These developments bring some challenges. Retailers must keep a competitive position in the market,
so the costs need to be as low as possible while keeping an eye on the emissions of the transport.
Furthermore, solving such an optimization problem for a large-scale distribution system may bring
computational challenges. Therefore, the goal of this research is to:

Design a large distribution system for the allocation of stores and the routing of vehicles.
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1.4. Research questions
Several research questions have been formulated to investigate the gap in the literature and the cor-
responding goal of the study. The main research question will be answered by four sub-research
questions, Table 1.1.

How can a large distribution system be designed for the allocation of stores and routing of vehi-
cles?
1. What are the characteristics of this distribution system?

2. Which methods can be used to formulate a planning model regarding this distribution system?

3. How do you evaluate the performance of the system?

4. What is the performance of the system, given the data from the case study?

Table 1.1: Research questions

1.5. Research methods
Table 1.2 indicates the methods that will be used to answer the research questions. These methods
are further elaborated on in the following sections.

How can a large distribution system be designed for the allocation of stores and routing of vehi-
cles?
1. What are the characteristics of this distribution
system?

Desk research & expert consulting

2. Which methods can be used to formulate a
planning model regarding this distribution sys-
tem?

Literature & expert consulting

3. How do you evaluate the performance of the
system?

Modelling

4. What is the performance of the system, given
the data from the case study?

Case study

Table 1.2: Research methods

1.5.1. Desk research & expert consulting
Experts from the case study will be consulted to gain insight into the characteristics of the distribution
system. These experts will have a clear overview of the distribution system and can provide advice
based on all the ins and outs of this study. Desk research will be performed to collect and analyze
the information from the experts and to complement this information with other data. Chapter 2 will
describe the characteristics of this distribution system.

1.5.2. Literature & expert consulting
Literature will be studied in Chapter 3 to gather information regarding distribution systems. The se-
lection of methods for this research will be based on the study. Expert consulting will complement
the literature study. Experts in the field of transportation and optimization problems, such as TU Delft
professors, will be consulted.
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1.5.3. Modelling
A mathematical model will be constructed in Chapter 4 based on the information from the first two
sub-research questions. A mathematical model is a more abstract and simplified version of reality
Richardson (1979). The reality will be converted into a goal, constraints, parameters, and variables.
These elements combined will result in the model. A mathematical model will enable optimization and,
thus, should improve the distribution system.

Some limitations will need to be taken into account when implementing a mathematical model. First,
models are based on assumptions and observations. The harder it is to determine the model’s spec-
ifications, the more assumptions will need to be made. To fully understand a model’s limitations, one
must understand the assumptions that are made. Second, sometimes, a model is fitted on a sample of
data instead of a specification of equations that is determined based on several input parameters. The
model can be fitted wrongly, which in turn leads to surrealistic outcomes when new data is inserted.
Third, a model is dependent on data. Inaccurate results may be the result of unrealistic data. So, the
model may be perfect, but as long as there is no proper set of data, the results of the model will not
be valid to use. There are several significant advantages, on the other hand, to using a mathemat-
ical model. Two considerable advantages relate to evaluating a large problem while considering all
relationships within the model. Furthermore, a model is less prone to biases.

Current literature often implements linear integer programming as an optimization tool. The characteri-
zation of a linear model is that all constraints and objectives contain linear formulations. Linear integer
programming is flexible, and solvers have been developed for these models. This research will use a
linear integer model for the optimization too.

1.5.4. Case study
A case study will be conducted at a company in the Netherlands to put the model into practice, Chapter
5. The company is active in the retail industry, with several DCs and many stores. The company has
opened a new CDC, necessitating an overhaul of its distribution system. Stores need to be reallocated
to the DCs. This is an excellent opportunity to use the company’s data in the modelling that will be done
in this case study. The outcomes can be validated more easily with the help of experts. The mathemat-
ical model can be converted into a script that can be optimized for this case. First, a default case study
will be performed, after which the model will be extended with several scenarios and configurations.

1.5.5. Software
The data will be processed in the Spyder software by programming the model in the Python language
and by making use of the Gurobi solver. For Python-based scientific programming, Spyder is an open-
source, cross-platform integrated development environment. Gurobi is a cutting-edge solution for prob-
lems involving linear programming, mixed-integer programming, and quadratic programming.

1.5.6. Overview
An overview of the process of this research is given in Figure 1.1. Real-world developments in the
field of transportation will bring specific problems with them, as stated in Section 1.3. A literature study
will be performed to address these problems and to discover the current state-of-the-art. The literature
study will give insight into what is already known and what is still unknown about this topic. The case
study will consist of a real-world application. The case study will be solved using a mathematical model,
so first, the specifications of this model will need to be determined. These specifications will include
questions, relations, and assumptions on which the model should focus. The model can be formulated
when the specifications are set. This formulation will contain parameters, variables, constraints, and
objectives. The model can be solved using data as input from the case study. The model will be
converted into a Python script, which will be solved with the help of the Gurobi optimizer. Before any
conclusions can be drawn, the results will need to be evaluated and validated. If the results turn out to
be invalid, it will be essential to work towards an optimal and valid result based on an iterative process.
The specifications of the model can be checked first, and from this point on, the cycle can be rerun
until the results seem to be a valid outcome of the model. The research will be concluded based on
the validated results, and with the help of recommendations, the research gap can be solved.
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Figure 1.1: Methods and workflow overview, adapted from Pedley (n.d.)

The system that will be used in this research will be analysed in Chapter 2. Literature will be studied
to gather information about models that can be used for the formulation of this distribution system,
Chapter 3. The mathematical model corresponding to the system will be formulated in Chapter 4. The
case study is provided in Chapter 5. The discussion, conclusion and recommendations are presented
in Chapter 6.



2
System analysis

The characteristics of the distribution system that is analysed in this research are outlined in this chapter.
The first sub-research question:

What are the characteristics of this distribution system?

can be answered based on the analysis. The main characteristics are the decision level of this opti-
mization, the system’s boundaries, the locations of DCs and stores, modalities used for the distribution,
demand specifications, time restrictions and performance metrics.

Figure 2.1: Structure of the distribution system

2.1. Decision level
Network optimization generally deals with three levels of decisions: the strategic, tactical and opera-
tional level. This research mainly focuses on the tactical decision level of a network model. The tactical
decision level corresponds to medium-term decisions regarding network design. These decisions in-
clude the allocation of stores to DCs, the frequency of delivery, consolidation of deliveries and the fleet
size, among others. The strategic level deals with decisions which include significant investments like
locating and building new DCs. While the goal of this research is not to find an optimal location for new
DCs, stores or any other long-term decision corresponding to significant investments, this decision level
is not of interest. The operational level deals with short-term planning, which includes specific vehicle
routes, for example. While the main goal is not to have a set of routes per vehicle, this is not the main
focus point.

7
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2.2. System boundaries
DCs and stores bound the distribution system, Figure 2.1. This means that the flow of rawmaterials, the
production of commodities and the transport from the factories to the DCs are left out of consideration.
The figure indicates the system boundary with a black dotted line, and the flows left out of consideration
are indicated with black arrows. Besides these flows, the flow from the stores to the customers is left
out of scope too. Only the flow within the network between the DCs and stores is considered.

2.3. Locations
The locations of all DCs and stores are known. The DCs have a fixed capacity, and the stores have a
known demand. The system includes CDCs and RDCs. Stores can be supplied from the CDC directly
or from the CDC via an RDC. This research focuses on the distribution of demand from the DCs to
the stores. All stores receive demand from all CDCs and from one RDC. For each store, the decision
must be made per CDC whether or not there is direct or indirect delivery. The delivery from RDCs will,
therefore, include consolidated deliveries. This results in a balance between the costs of delivery from
the CDC directly to the stores or the costs from the CDC to the RDC, consolidation costs and costs of
delivery from the RDC to the stores. The combination of these two supply methods can be seen as
a tree topology, Figure 2.1. Direct delivery from the CDCs to the stores is indicated with blue arrows.
Delivery from the CDCs to the RDCs is indicated with red arrows. The other stores are supplied from
the RDC they are allocated to, with consolidated deliveries indicated with green arrows.

2.4. Modalities
The demand for this model is transported by trucks. There are three types of trucks used for delivery.
The first truck type is used for transportation from the CDCs to the RDCs. The second truck type is
used for transportation from the RDC to the stores. The third truck type is used for direct transportation
from the CDCs to the stores. This results in a heterogeneous fleet. The capacities and costs of these
trucks may differ by type. For transport from a CDC to an RDC, there is a fixed cost for transport and
a process cost per unit of demand. A variable amount per kilometre is charged for direct delivery from
a CDC to a store. An end-of-route cost is charged for direct delivery from a CDC to the stores, while
it is assumed that this is outsourced. The fleet size of this system is variable and may depend on the
optimal solution.

2.5. Demands
The demand for stores changes over time. Stores are supplied multiple times per week. Routing
schedules can be constructed per day of delivery. The demand is multi-commodity while it has an
origin, a destination and a number of products, which differ per store. The trucks are loaded with
demand for the stores on their route, so the routes will not change when started. This results in a
static and deterministic model. Transport of demand can be consolidated so that multiple stores can
be supplied by one truck.

2.6. Time restrictions
The delivery to stores may be restricted by certain times. For example, these restrictions can be set
due to strategic decisions by the company or municipalities. Some municipalities restrict truck delivery
to morning delivery only. On the other hand, other stores may prefer a late delivery, for example. This
results in specific time windows for vehicles to supply the stores. If there are restrictions on time, the
system will be time-dependent. Since converting a model to a time-space network will significantly
impact the computational forces for optimising the model and the assumption is made that the time
constraints will not considerably influence the optimal outcome, this is not considered for the time being.
This is for ease of simplification in the model.
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2.7. Distribution
The four possible distribution options of a system containing two CDCs and two RDCs are visualised
in 2.2. There are four types of products in combination with a DC. The origin of type a is at one of
the CDCs. The origin of type b is at another CDC. The origin of types c and d are at one of the RDCs.
Scenario 1: Product types a and b are delivered to the stores from the CDC directly, and types c and d
are delivered from one of the RDCs. Scenario 2: Product type b is delivered directly to the stores from
the CDC, and type a is first transported to one of the RDCs to consolidate the deliveries. Then, a, c
and d are delivered from one RDC to the stores. Scenario 3: Product types a and b are first transported
to one of the RDCs to consolidate the deliveries. Then, all types are delivered from an RDC to the
stores. Scenario 4: Product type a is delivered to the stores from the CDC directly, and type b is first
transported to one of the RDCs to consolidate the deliveries. Then, b, c and d are delivered from one
RDC to the stores.

2.8. Performance metrics
Performance metrics of this distribution system were determined using Key Performance Indicators
(KPIs). The most important KPI is the total cost of transport. The total cost of transport includes the
routing costs and the processing costs. The routing costs consist of transportation costs between a
CDC and an RDC, a CDC and a store, an RDC and a store and between two stores. The processing
costs are variable and based on the size of demand transported from the CDCs to the RDCs. The
second KPI is the total distance driven by all vehicles. The third KPI equals the total number of vehicles
needed to transport all demand. Table 2.1 shows an overview of these KPIs.

Key Performance Indicators

1. Total costs of transport [€]

2. Total distance [km]

3. Total number of vehicles [-]

Table 2.1: Overview of KPIs

Four other metrics are used to evaluate the performance of the model. These metrics are the costs
per container, load per vehicle, drop size per stop and the number of stops per vehicle. The costs per
container are preferably as high as possible, and the load per vehicle, drop size per stop and stops per
vehicle as low as possible.
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(a) Option 1

(b) Option 2

(c) Option 3

(d) Option 4

Figure 2.2: Visualisation of distribution options



3
Literature

Literature can be studied based on the system analysis of Chapter 2 and the resulting answer to the
first sub-research question. The literature can provide insight into distribution systems. The second
sub-research question can be answered based on the literature:

Which methods can be used to formulate a planning model regarding this distribution sys-
tem?

Network design is a general term for various distribution system problems. The planning levels of dis-
tribution systems can be classified into three categories: strategic, tactical and operational (Crainic &
Laporte, 1997). Strategic (long-term) decisions shape the strategies and determine general develop-
ment. Tactical (medium-term) decisions relating to the design of a network. Operational (short-term)
decisions relate to detailed representations of the assets, facilities and activities. Network designs
contain four decision layers: topology, location, allocation and routing decisions. The topology layer
decides the structure of the network. The location layer determines where the facilities must be located
in the network. The allocation layer allocates customers to open facilities. The routing layer determines
the routes for the vehicles to satisfy the demand.

3.1. Network design
Network designs are widely used in distribution system problems (Crainic, 2000). Network design deals
with strategic decisions that may contain significant investments and focus on the long term. These
formulations are defined on graphs, with nodes connected by links. When the links are directed, they
are represented by arcs. The nodes can represent origins and destinations. The links may have costs,
length and capacity. The main objective of network designs is to select links in the network to satisfy
all demands for distribution by minimizing the total costs. A commonly used version of the network
design is the linear cost, incapacitated, multi-commodity (MCND) network design. Multi-commodity
networks include two or more commodities that must be distributed from a specific origin to a destination
(Salimifard & Bigharaz, 2022). Multi-modality networks use multiple modes of transportation for the
distribution of demand. Combinations of these modes can be made to reduce the total costs of the
transport. Another advantage of multi-modal transportation corresponds to the sustainability of the
transport, which can be increased.

3.2. Service network design
A service network design focuses mainly on the tactical level but includes some strategic and opera-
tional characteristics. This aligns with the decision level of the distribution system from this research.
A service network design aims to plan the resources and activities to satisfy the demand (Crainic &
Hewitt, 2021). The operation of a vehicle is called a service. Service network design usually takes
place in transportation based on consolidation. Consolidated transportation considers capacities and
service schedules. Several orders can be combined within the same vehicle, and multiple vehicles may
be used for one delivery from origin to destination. The service contains a route and physical as well as

11
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operational characteristics. The physical characteristics include the vehicle type and vehicle capacity,
for example. The operational characteristics include the costs, total trip time and departure time. The
goal of tactical planning is to create a distribution plan and schedule to minimise the negative effects
of consolidation, meet customer demand and service-quality standards and be profitable and effective.
It discusses system-wide operational planning to choose and schedule services and transfer and con-
solidate activities at terminals. The service network design combines two sets of choices. The first set
corresponds to the frequencies or schedules of the operations of the services. The second set includes
the routes. The routes contain an origin, destination and intermediate stops. A service network design
contains various characteristics. As stated, the design can be capacitated or incapacitated (Andersen
et al., 2009), one single or multiple commodities may be used, and the network may allow consolida-
tion of deliveries (Andersen et al., 2009), so it can consist of direct and/or indirect deliveries (Section
3.5). Other characteristics are the flow type of the model, which can be arc or path-based (Section 3.4),
fixed charge or variable charged (Andersen et al., 2009), and time-based so that frequencies can be set
(Section 3.6). Many different closed-formmethodologies have been used to solve transportation issues.
However, finding an explicit optimal solution becomes computationally costly and nearly impossible to
establish when more complicated restrictions are considered. For this reason, academics have inves-
tigated several heuristics. The framework used by Amorim et al. (2014) employs an Adaptive Large
Neighbourhood Search (ALNS) metaheuristic optimization method inspired by Large Neighbourhood
Search (LNS). ALNS enhances solutions iteratively by making large-scale modifications, alternately
deleting and repairing the solution to avoid local optima. ALNS offers benefits like handling various
limitations and exploring diverse search spaces but has drawbacks in computational complexity and
parameter sensitivity (Amorim et al., 2014), (Ropke & Pisinger, 2006). Osvald and Stirn (2008) utilize
a sequential constructive heuristic followed by a Tabu Search (TS) improvement heuristic. TS uses
memory structures to learn from previous solutions and avoid cycling but is sensitive to parameter
selection and prone to getting stuck in local optima (Osvald & Stirn, 2008), (Fu et al., 2005), (Vidal
et al., 2013). Tarantilis and Kiranoudis (2002) implements a List-Based Threshold Accepting (LBTA)
algorithm, a modification of Threshold Accepting (TA) that stores candidate solutions in a list. LBTA is
suitable for resolving issues in large and complex search spaces but shares some downsides with TA,
including sensitivity to parameters and the potential for suboptimal solutions (Tarantilis & Kiranoudis,
2002), (Maringer, 2005).

3.3. Network structure
Hubs connect many nodes by using a relatively small number of links in Facility Location - Network De-
sign (FL-ND) (Maknoon, 2022). Consolidation can take place at hub facilities. The network design and
economy of scale rules often affect the costs. All locations are represented by nodes, the infrastructure
by edges and the route of products by arcs. An origin, a destination, and a volume characterize the
commodities. The connection layout of the network can be grouped into six design basics: a line topol-
ogy, a star topology, a ring topology, a tree topology, a mesh topology and a hybrid topology. Hubs
are connected by a single line in the line topology. All nodes are linked to a single central hub through
which all traffic passes. Each hub is connected to two other hubs in a ring topology. This results in a
low probability of failure. In a mesh topology, hubs are partially or fully connected. In the hierarchy tree
topology structure, all locations are arranged hierarchically. The network of Ambrosino and Scutella
(2005) is an example of a tree analysis, Figure 3.1. This network comprises a plant, multiple central de-
pots, multiple regional facilities and clients. The use of depots and facilities helps to reduce the last mile
delivery costs as low as possible, while transport between facilities is often against a significantly lower
cost. Distribution centres can also function for resilience against disruptions (Alikhani et al., 2021). The
flow of commodities can be re-routed easily when a network consists of multiple distribution centres.
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Figure 3.1: Network structure of Ambrosino and Scutella (2005)

The hybrid topology is a combination of several other topologies. To create the proper network structure,
four steps can be followed. The first two steps are linked to the design decisions, and the second two to
the operational decisions. The design decisions consist of location decisions, so what locations should
be considered as a hub and topology decisions, so which link needs to be selected. The operational
decisions consist of allocation decisions, so the assignment of supply and demand nodes to hubs and
routing decisions, so how demand is routed between the origin and destination. This study focuses
on the operational decisions of the distribution system. The stores must be allocated to the DCs, and
the commodities must be routed through the network. The tree topology is assumed to best fit as a
network structure. It is believed that the design decisions have already been made.

3.4. Flow type
The flow in a service network design can be modelled path-based or arc-based (Ohmori, Yoshimoto,
et al., 2019). Arc (or link) based modelling focuses on all individual links between the nodes in the
network (Andersen et al., 2009). The design and optimization are performed on this level. Path (or
route) based modelling focuses on all routes that connect the origin and destination nodes. The design
and optimization are performed on this level of connecting the origin and destination with paths. This
research implements an arc-based model.

3.5. Direct and indirect delivery
Some networks include direct and indirect deliveries, just like the distribution system from this research.
The distinction can be made based on the size of the demand of specific locations. When a network
consists of plants and warehouses, it may be more cost-effective to first transport orders from a plant to
a warehouse, where they can be consolidated and delivered simultaneously. Trucks can be used with
a higher load factor. A tree topology can be used to apply various layers of distribution centres (Mu-
nasinghe & Rupasinghe, 2016). With this, direct and indirect supplies can be achieved. Consolidating
deliveries at a cross-dock (Sung & Song, 2003) can make demand delivery more efficient. Demand is
distributed from origin to destination via distribution centres. The demand arrives at a distribution centre
and is directly loaded in another vehicle for the final delivery. The delivery of demand that originates
from the same place but has delivery locations in different regions may be more efficient by splitting
this delivery. The network, including direct and indirect deliveries, may differ in structure. The network
of Cheong et al. (2007) contains several suppliers, consolidation hubs, warehouses and manufactur-
ing plants, Figure 3.2a. All suppliers are linked to a single consolidation hub, and all manufacturers
are connected to a dedicated warehouse. Consolidated shipping takes place between the consolida-
tion hubs and the warehouses. Another network, which consists of the flow of consumer goods, is
designed by Cintron et al. (2010). This network deals with four options for the transportation of goods.
A combination of direct and indirect deliveries reduces the total transportation costs, Figure 3.2b.
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(a) Network structure of Cheong et al. (2007) (b) Network structure of Cintron et al. (2010)

Figure 3.2: Examples of direct and indirect delivery networks

3.6. Time-space representation
A time-space network replicates the nodes in each period of time (Andersen et al., 2009). The sched-
uled length is partitioned into periods; each time step can include a specific action. The routes of the
service or flow of products are included in this time-space network, while at each time step, the location
is indicated. Changes over time are indicated by an arrow which connects the nodes. An example of
a time-space representation is visualized in Figure 3.3. This example consists of three nodes and four
time periods. Figure 3.3a represents all possible services, and a feasible solution is given in Figure
3.3b. Frequency constraints can be added to the service network design, which sets the number of
occurrences of each arc (Andersen et al., 2009). This frequency is set in a time-space setting. Lower
and upper bounds set the frequency of the services. Route length constraints can be added to the
model to create repetition in the asset routes (Andersen et al., 2009). This repetition results in some
cycles in the network for specific routes. A multiple of the time horizon bounds the length of these
routes. An extensive network with a detailed representation of time may result in a difficult-to-solve
model. The assumption has been made that time can be disregarded for this research, but it is worth
understanding how this would affect the model and how it could be applied in a more in-depth study.

(a) A network with four time periods and three nodes (b) Feasible example of a service

Figure 3.3: Example of a time-space representation by Andersen et al. (2009)



4
Mathematical model

This chapter introduces the mathematical model of the distribution system. First, the scope of this
mathematical model is formulated. Second, the assumptions are listed to simplify the real-world prob-
lem. Third, the model is developed based on sets, parameters, decision variables, an objective and
constraints. This mathematical model can be formulated based on the system analysis of Chapter 2,
the literature of Chapter 3 and the resulting answers to the first and second sub-research questions.
Fourth, an explanation is stated of how this mathematical model is implemented as a computer model.
Fifth, the model is verified based on a dummy situation. Sixth, computational information is gathered
like the Gurobi input parameters, computational times and computational limits. The model can be
used to answer the third sub-research question:

How do you evaluate the performance of the system?

4.1. Scope
The goal of this research is to design a large distribution system for the allocation of stores and the
routing of vehicles. The scope of this research is based on the system analysis of Chapter 2. The
movement between DCs and stores defines the system’s boundaries. The locations, which include
CDCs, RDCs, and stores, are all known in advance. Stores are assigned to all CDCs, but they are only
assigned to a single RDC. Three different vehicle types comprise the fleet: vehicle type 0 transports
demand from a CDC to an RDC, vehicle type 1 transports demand from an RDC to a store and vehicle
type 2 transports demand from a CDC to a store. This model converts the real-world situation to a
mathematical formulation. The model must make several decisions:

• On which arcs will (parts of) a commodity flow to reach the destination?
• How many services are required to meet the demand on the network?
• From which CDCs are the stores supplied directly?

4.2. Assumptions
It is important to map the assumptions and state the input and output needed for this model. Several
assumptions are made for the model:

• The volume of a commodity may be larger than the capacity of a truck, so split delivery is possible.
• A split delivery of a commodity must always originate from the same DC. So the complete com-
modity is delivered from the CDC to the stores, or from the CDC via an RDC to the stores, or from
the RDC to the stores.

• Consolidation of commodities is possible for delivery. This allows it to operate with a higher
truckload.

15
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• Transportation is possible between a CDC and an RDC. There is no transportation possible be-
tween CDCs and between RDCs.

• Vehicle type 0 may start and end at a CDC and only drive to an RDC. Vehicle type 1 may start
and end at an RDC and may only drive to stores. Vehicle type 2 may begin at a CDC and may
only drive to stores.

• The demand of all stores is met.
• DCs have no capacity limit as it is assumed that the demand of all stores does not exceed this.
• A maximum number of deliveries is set per store based on the demand size and the number of
DCs it is supplied from.

4.3. Formulation
This model is based on the methods from the papers of Crainic and Hewitt (2021) and Ambrosino
and Scutella (2005). Constraints 4.2, 4.9, 4.17 are inspired by the formulations of Crainic and Hewitt
(2021). Constraints 4.3, 4.5, 4.10, 4.11 are inspired by the formulations of Ambrosino and Scutella
(2005). The objective function 4.1 and constraints 4.4, 4.6, 4.7, 4.8, 4.12, 4.13, 4.14, 4.15, 4.16, 4.18
are a potential contribution of this paper to the literature. Table 4.1 describes the sets, parameters and
decision variables.

4.3.1. Sets
The sets of this model can be divided into five categories. The first category contains all sets of nodes.
The second category includes all sets of arcs. The third category contains a set of commodities. The
fourth category includes sets corresponding to the vehicles. The fifth and last category contains the
set of route types.

Nodes
The model consists of four sets of nodes. The first set of nodes includes all stores (Ns). All stores have
demand which needs to be transported from the CDCs (N cdc) and an RDC (Nrdc). Finally, all sets of
nodes are combined into a complete set of nodes (N ).

Arcs
The model consists of ten sets of arcs. The CDCs are linked to all RDCs. The number of arcs from
the CDCs to the RDCs equals: |Adc+ |= |Adc− |= |N cdc|·|Nrdc|. All stores are linked to one RDC. The
number of arcs from the RDCs to the stores equals: |Ardcs+ |= |Ardcs− |= |Ns|. All stores are linked to
both CDCs. The number of arcs from the CDCs to the stores equals: |Acdcs+ |= |Acdcs− |= |N cdc|·|Ns|.
The stores are linked only if they are connected to the same RDC. Therefore, the total number of store
arcs can not be determined based on a generic formula. The number of arcs between stores which are
supplied by the same RDC equals: |As|= |Ns|2−|Ns|. There is a complete set of arcs, which consists
of all other sets of arcs (A). Finally, there are two sets of arcs which contain the outward (N+(i)) as
well as the inward (N−(i)) arcs of a specific node i. These sets contain |N | sets of arcs of which the
sets of arcs differ in size. The size depends on the number of arcs linked to node i.

Commodities
In a system containing two CDCs, all stores have three commodities linked to them: the first one is
demand from the first CDC, the second one is demand from the second CDC, and the third one is
demand from the RDC. The commodities are defined as 100000 + store ID, 200000 + store ID and
300000 + store ID respectively. Therefore, the number of commodities equals |P |= 3 · |Ns|.

Vehicles
The set of vehicles is determined based on the volumes of the commodities per location and the vehicle
capacity of vehicle type 1 (the vehicle used for transportation from RDCs to stores). The number
of vehicles equals |V |=

∑
i∈Ns

∑
p∈(P :i=dp) vol

p

cap1 . This number assumes the extreme situation where
everything is delivered via the RDC, and the number of vehicles is rounded up per store. The set of
vehicle types consists of three types, so |C|= 3. Vehicle type 0 transports demand from a CDC to an
RDC, vehicle type 1 transports demand from an RDC to a store and vehicle type 2 transports demand
from a CDC to a store.
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Routes
The set of route types consists of two types, so |Q|= 2. Route type 0 is for indirect delivery from a CDC,
so the demand is first transported to an RDC. Route type 1 is for direct delivery from a CDC to a store.

4.3.2. Parameters
The parameters of this model can be divided into three categories. The first category contains all
parameters regarding the commodities. The second category includes all parameters regarding the
vehicles. The third and last category contains parameters regarding the routes.

Commodities
Commodities consist of a volume (volp), origin (op) and destination(dp). Direct delivery from one of the
CDCs to a store can be prohibited for several reasons. If direct delivery is prohibited, this is indicated
with a 1. This is determined per commodity (rddp).

Vehicles
The capacity of a vehicle is set per vehicle per type (capvc). In other words, the maximum capacities
are assigned per type of vehicle for each vehicle number. The transportation cost per kilometre (tcc),
transportation cost per hour (hcc), fixed loading time (fltc), variable loading time (vltc), fixed unloading
time (futc) and variable unloading time (vutc) are set per vehicle type. Therefore, there are three values
per parameter. The times are, again, converted to a number of hours. The delivery costs from one of
the CDCs to one of the RDCs (fcij) are fixed per combination of DCs. The processing costs (pc) per
unit of demand for commodities transported from a CDC to a store via an RDC is a fixed value and the
same for all locations. Lastly, end-of-route costs (erc) are accounted for using vehicle type 2.

Routes
Distances are determined for all arcs (disij). These distances are based on actual distances and not
as the crow flies distances. Travel times are also determined for all arcs (timesij). These times are
based on actual travel times for the given distances. The times are converted to a number of hours, so
01 : 23 : 12 becomes 1.39 hours.

4.3.3. Objective
Objective: Minimize the total sum of costs. The total costs consist of a fixed cost for delivery between
a CDC and an RDC, a variable processing cost based on the size of the demand from the CDC at the
RDC, a variable operating cost based on the distance driven for delivery from the DCs to the stores, a
variable operating cost based on the travel time for delivery from the DCs to the stores, a fixed cost for
the loading of a vehicle at DCs, a fixed cost for the unloading of a vehicle at a store, a variable costs
for the loading and unloading of a vehicle per unit of demand and a fixed cost for the end of a route of
vehicle type 2.

min
∑

(i,j)∈Adc+

∑
v∈V

fcij · yv0ij +
∑

(i,j)∈Adc+

∑
p∈P

∑
v∈V

pc · xpv0
ij +

∑
(i,j)∈(Ardcs+∪Ardcs−∪As)

∑
v∈V

(tc1 · disij + hc1 · timeij) · yv1ij +
∑

(i,j)∈Ardcs+

∑
v∈V

hc1 · flt1 · yv1ij +

∑
(i,j)∈(Ardcs+∪As)

∑
v∈V

hc1 · fut1 · yv1ij +
∑

(i,j)∈Ardcs+

∑
p∈P

∑
v∈V

hc1 · (vlt1 + vut1) · xpv1
ij +

∑
(i,j)∈(Acdcs+∪As)

∑
v∈V

(tc2 · disij + hc2 · timeij) · yv2ij +
∑

(i,j)∈Acdcs+

∑
v∈V

hc2 · flt2 · yv2ij +

∑
(i,j)∈(Acdcs+∪As)

∑
v∈V

hc2 · fut2 · yv2ij +
∑

(i,j)∈Acdcs+

∑
p∈P

∑
v∈V

hc2 · (vlt2 + vut2) · xpv2
ij +

∑
(i,j)∈Acdcs+

∑
v∈V

erc · yv2ij (4.1)
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Sets Description
N
od
es

Ns Set of store nodes
Nrdc Set of Regional Distribution Centre nodes
Ncdc Set of Central Distribution Centre nodes
N Set of all nodes (Ns ∪Nrdc ∪Ncdc)

Ar
cs

Adc+ Set of arcs from CDCs to RDCs
Adc− Set of arcs from RDCs to CDCs
Acdcs+ Set of arcs from CDCs to stores
Acdcs− Set of arcs from stores to CDCs
Ardcs+ Set of arcs from RDCs to stores
Ardcs− Set of arcs from stores to RDCs
As Set of arcs between stores
A Set of all arcs (Adc+ ∪Adc− ∪Acdcs+ ∪Acdcs− ∪Ardcs+ ∪Ardcs− ∪As)
N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i

C
om

m
od
iti
es P Set of commodities

Ve
hi
cl
es V Set of vehicles

C Set of vehicle types

R
ou
te
s Q Set of route types {indirect delivery, direct delivery : 0, 1}

Parameters Description

C
om

m
od
iti
es volp Volume of commodity p

op Origin of commodity p
dp Destination of commodity p
rddp Indicates whether direct delivery of commodity p is permitted

Ve
hi
cl
es

capvc Capacity of vehicle of type c
tcc Transportation cost per kilometer of vehicle of type c
hcc Transportation cost per hour of vehicle of type c
fltc Fixed loading time of vehicle of type c
vltc Variable loading time of vehicle of type c
futc Fixed unloading time of vehicle of type c
vutc Variable unloading time of vehicle of type c
fcij Fixed cost for delivery between a CDC i and an RDC j
pc Processing costs per unit of demand from CDC at RDC
erc End of route costs for vehicle v of type 2

R
ou
te
s disij Distance between node i and j

timeij Travel time between node i and j

M Very large number
Decision variables Description

xpvc
ij

Non-negative real number representing the demand volume of com-
modity p transferred on arc (i, j) by vehicle v of type c

yvc
ij

Binary variable, 1 if vehicle v of type c is selected for
design arc (i, j), 0 otherwise

zpqi

Binary variable, 1 if either commodity p is transported from a CDC to
an RDC (zp0i ) or if commodity p is transported from a CDC to a store
(zp1i ), 0 otherwise

Table 4.1: Sets, parameters and decision variables
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4.3.4. Design constraints
Constraint: Design balance conservation.∑

j∈N+(i)

yvcij −
∑

j∈N−(i)

yvcji = 0 ∀i ∈ N, v ∈ V, c ∈ C (4.2)

Constraint: Vehicle type 1 may only start from one of the RDCs.∑
i∈Nrdc

∑
j∈N+(i)

yv1ij ≤ 1 ∀v ∈ V (4.3)

Constraint: Vehicle type 1 cannot enter or leave a CDC.∑
(i,j)∈(Adc+∪Adc−∪Acdcs+∪Acdcs− )

yv1ij = 0 ∀v ∈ V (4.4)

Constraint: Vehicle types 0 and 2 may only start from one of the CDCs.∑
i∈Ncdc

∑
j∈N+(i)

yvcij ≤ 1 ∀v ∈ V, c ∈ [0, 2] (4.5)

Constraint: Vehicle type 0 cannot drive from a DC to a store.∑
(i,j)∈(Acdcs+∪Acdcs−∪Ardcs+∪Ardcs−∪As)

yv0ij = 0 ∀v ∈ V (4.6)

Constraint: Vehicle type 2 cannot drive to an RDC and, therefore, drive not from an RDC to a store.∑
(i,j)∈(Adc+∪Adc−∪Ardcs+∪Ardcs− )

yv2ij = 0 ∀v ∈ V (4.7)

Constraint: Restrict the maximum number of vehicles allowed to deliver at a store. This maximum is
based on the volume of demand and the number of DCs it is supplied from. For example, when a store
is supplied from both CDCs directly, and an RDC, and the volume per DC is less than the capacity of a
vehicle, the maximum number of vehicles to deliver equals three. So, the number of deliveries is based
on the number of DCs and the minimum number of vehicles needed to transport all demand, taking the
capacity of the vehicles into account.

∑
i∈N−(j)

∑
v∈V

∑
c∈C

yvcij ≤
∑

i∈Ncdc

∑
p∈(P :i=op,j=dp)

zp1i · volp

cap0 2
+

∑
i∈Ncdc

∑
p∈(P :i=op,j=dp)(1− zp1i ) · volp +

∑
p∈(P :op∈Nrdc,j=dp) vol

p

cap0 1
+ 0.99 ∀j ∈ Ns (4.8)

4.3.5. Flow constraints
Constraint: The flow conservation constraint ensures that the commodity flow on all incoming arcs of
a node equals the commodity flow of all outgoing arcs. There are two exceptions: the origin node and
the destination node of a commodity. At these places, the commodity flow equals the volume of the
demand.

∑
j∈N+(i)

∑
v∈V

∑
c∈C

xpvc
ij −

∑
j∈N−(i)

∑
v∈V

∑
c∈C

xpvc
ji =

 volp, i = op

−volp, i = dp

0, otherwise
∀i ∈ N, p ∈ P (4.9)
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Constraint: Make sure that a commodity can not switch from a vehicle.∑
j∈N+(i)

xpvc
ij −

∑
j∈N−(i)

xpvc
ji = 0 ∀i ∈ (N cdc ∪Ns : i ̸= op, i ̸= dp), p ∈ P, v ∈ V, c ∈ C (4.10)

Constraint: Satisfy all demands. ∑
i∈N−(dp)

∑
v∈V

∑
c∈C

xpvc
idp = volp ∀p ∈ P (4.11)

Constraint: Demand can not be sent back to a DC.∑
p∈P

xpvc
ij = 0 ∀(i, j) ∈ (Adc− ∪Acdcs− ∪Ardcs−), v ∈ V, c ∈ C (4.12)

Constraint: The total volume of a commodity must be delivered via the same DCs while considering
split deliveries. So, if the commodity is originated at a CDC, it can be delivered from the CDC directly or
via one of the RDCs. Equation 4.13 checks whether a (part of) commodity p is transported from a CDC
to an RDC. Equation 4.14 indicates whether direct delivery from a CDC is permitted. Equation 4.15
checks whether a (part of) commodity p is transported from a CDC to a store. Equation 4.16 makes
sure that a commodity is either delivered directly or indirectly from the CDC.∑

v∈V

xpv0
ij ≤ M · zp0i ∀i ∈ N cdc, j ∈ Nrdc, p ∈ P (4.13)

rddp ≤ zp0i ∀i ∈ N cdc, p ∈ P (4.14)

∑
j∈Ns

∑
v∈V

xpv2
ij ≤ M · zp1i ∀i ∈ N cdc, p ∈ P (4.15)

zp0i + zp1i = 1 ∀i ∈ (N cdc : i = op), p ∈ P (4.16)

4.3.6. Design and flow integrated constraints
Constraint: A service’s capacity cannot be exceeded. Therefore, if one or multiple commodities are
transported by a vehicle, they must be big enough to carry them.∑

p∈P

xpvc
ij ≤ capvc · yvcij ∀(i, j) ∈ A, v ∈ V, c ∈ C (4.17)

Constraint: A vehicle may not leave a DC without a commodity.

yvcij ≤
∑
p∈P

xpvc
ij ∀(i, j) ∈ (Adc+ +Acdcs+ +Ardcs+), v ∈ V, c ∈ C (4.18)

4.3.7. Variable constraints
xpvc
ij ≥ 0 ∀(i, j) ∈ A, p ∈ P, v ∈ V, c ∈ C (4.19)

yvcij ∈ {0, 1} ∀(i, j) ∈ A, v ∈ V, c ∈ C (4.20)

zpqi ∈ {0, 1} ∀i ∈ N cdc, p ∈ P, q ∈ Q (4.21)
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4.4. Implementation
The model is translated to code using the Spyder software. The code is written in the Python language.
First, all data is converted from several Excel files to the correct format of the sets and parameters.
Second, the converted data is input for the model described in Section 4.3. The model is solved using
Gurobi. This process is executed several times for the different verification steps and eventually for
the case study. An HP ZBook Studio G4 with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81
GHz and 16 GB of Random-Access Memory (RAM) is used as hardware for running the model. The
computational limit linked to this RAM is described in Section 4.6.1.

4.5. Verification
A verification is performed to see if the model is a correct conversion of the real-world problem. Dif-
ferent verification steps focus on another part of the model to check this. First, the model’s outcomes
are compared with self-calculated outcomes for a small-scale network. Second, two parameters are
changed, and the model’s behaviour is assessed. Third, the store arcs have been added to check
for demand consolidation. Finally, a large-scale network is inserted to see if the model performs as
expected.

4.5.1. Step 1. Output
The first step of the verification consists of a check of the output values. The output results of the model
that are manually calculated are the total costs, total distance driven by all vehicles and total number of
vehicles used for delivery. These values are checked for a small network which consists of two CDCs,
two RDCs and three stores, Table 4.2. To limit the number of outcomes, there are no arcs between
stores. Section B.1 contains all input data of this verification step.

Sets
Ns {3001, 3002, 3003}
Ncdc {10001, 10002}
Nrdc {20001, 20003}
N Ns ∪Nrdc ∪Ncdc

Table 4.2: Set of nodes step 1

All possible results are given in Table B.5. The optimal solution from the model consists of a total cost
of €1, 098, a total distance of 534 km and a total number of vehicles of 4. The same optimal solution
results from manually calculating all possible solutions, Table 4.3.

Description Optimal solution
Total costs [€] 1, 098
Total distance [km] 534
Total number of vehicles [-] 4

CDC 10001 to store 3001 Indirect
CDC 10002 to store 3001 Indirect
CDC 10001 to store 3002 Indirect
CDC 10002 to store 3002 Indirect
CDC 10001 to store 3003 Indirect
CDC 10002 to store 3003 Indirect

Table 4.3: Optimal solution step 1

The routes of the vehicles and the routes of the commodities are tracked to discover any inaccuracies
in the outcome. The vehicle routes are given in Table B.6 and the commodity routes in Table B.7. No
inaccuracies were found.

4.5.2. Step 2. Parameters
Now that it is established that the output values are calculated correctly, the behaviour of the model
can be studied of this same small network in step 2, Table 4.2.
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Increasing fcij
Currently, the most optimal solution is to deliver indirectly from both CDCs. To check the behaviour
for this choice, the fixed costs for delivery between the CDCs and RDCs (fcij) can be increased to an
amount at which the model should switch to direct delivery. The fcij values are increased by a factor
of 10 to make sure the model should switch from indirect delivery to direct delivery, Table B.8.

All possible results are given in Table B.9. The optimal solution from the model consists of a total cost of
€1, 439, a total distance of 515 km and a total number of vehicles of 4. The same optimal solution results
from manually calculating all possible solutions, Table 4.4. The expectation is met while all demand
from the CDCs is delivered directly.

Description Optimal solution
Total costs [€] 1, 439
Total distance [km] 515
Total number of vehicles [-] 4

CDC 10001 to store 3001 Direct
CDC 10002 to store 3001 Direct
CDC 10001 to store 3002 Direct
CDC 10002 to store 3002 Direct
CDC 10001 to store 3003 Direct
CDC 10002 to store 3003 Direct

Table 4.4: Optimal solution step 2 - increasing fcij

Increasing the demand
The behaviour for the direct and indirect delivery from the CDCs can be investigated by increasing
some of the demand. The demand from CDC 10001, and from the RDCs is increased by a factor of
10. The expectation is that the demand from this CDC is delivered directly and indirectly from the other
CDC.

All possible results are given in Table B.13. The optimal solution from the model consists of a total
cost of €6, 567, a total distance of 3, 066 km and a total number of vehicles of 18. The same optimal
solution results from manually calculating all possible solutions, Table 4.5. The expectation is met while
all demand from CDC 10001 is delivered directly and from CDC 10002 indirectly.

Description Optimal solution
Total costs [€] 6, 567
Total distance [km] 3, 066
Total number of vehicles [-] 18

CDC 10001 to store 3001 Indirect
CDC 10002 to store 3001 Direct
CDC 10001 to store 3002 Indirect
CDC 10002 to store 3002 Direct
CDC 10001 to store 3003 Indirect
CDC 10002 to store 3003 Direct

Table 4.5: Optimal solution step 2 - increasing the demand

4.5.3. Step 3. Adding the store arcs
Adding the store arcs to the model includes the possibility of consolidating demand for delivery to
multiple stores, Table B.16 and Table B.17. The expectation is that when the distance between stores
is relatively small compared to their distance to a DC, both stores will be supplied by the same vehicle
if the capacity allows this. This will result in lower costs and a lower number of vehicles.

The optimal solution from the model consists of a total cost of €1, 086, a total distance of 532 km and
a total number of vehicles of 3, Table 4.6. The expectation is met while the total costs and number of
vehicles are lower than the total costs and the total number of vehicles of step 1, equal to €1, 098 and
4, respectively.
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Description Optimal solution
Total costs [€] 1, 086
Total distance [km] 532
Total number of vehicles [-] 3

CDC 10001 to store 3001 Indirect
CDC 10002 to store 3001 Indirect
CDC 10001 to store 3002 Indirect
CDC 10002 to store 3002 Indirect
CDC 10001 to store 3003 Indirect
CDC 10002 to store 3003 Indirect

Table 4.6: Optimal solution step 3

The routes of the vehicles and the routes of the commodities are tracked to discover any inaccuracies
in the outcome. The vehicle routes are given in Table B.18 and the commodity routes in Table B.19.
No inaccuracies were found.

4.5.4. Step 4. Large scale
This step consists of a check of the behaviour of the model on a large scale. The output values are
checked for a network which consists of two CDCs, two RDCs and ten stores, Table 4.7. Section B.4
contains all input data of this verification step.

Sets
Ns {3004, 3001, 3005, 3006, 3007, 3002, 3003, 3008, 3009, 3010}
Ncdc {10001, 10002}
Nrdc {20001, 20003}
N Ns ∪Nrdc ∪Ncdc

Table 4.7: Set of nodes step 4

A time limit is 7 hours, which equals 25, 200 seconds. Since the purpose of this step is not to discover
the most optimal outcome but to check the operation of the model, a time limit is set. The solution from
the model consists of a total cost of €3, 136, a total distance of 1, 090 km and a total number of vehicles
of 12, Table 4.9. This solution is linked to an optimization gap of 17.9%.

The routes of the vehicles and the routes of the commodities are tracked to discover any inaccuracies
in the outcome. The vehicle routes are given in Table B.24 and the commodity routes in Table B.25.
No inaccuracies were found.

4.5.5. Conclusion
The five verification steps were successful, and no inaccuracies were found in the model results, Table
4.8. With that, it is assumed that the model works properly and can be implemented in the case study.

Description Successful verification?
Step 1. Output Yes
Step 2. Parameters - increasing fcij Yes
Step 2. Parameters - increasing the demand Yes
Step 3. Adding the store arcs Yes
Step 4. Large scale Yes

Table 4.8: Overview of verification steps
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Description Solution
Total costs [€] 3, 136
Total distance [km] 1, 090
Total number of vehicles [-] 12

CDC 10001 to store 3001 Indirect
CDC 10002 to store 3001 Indirect
CDC 10001 to store 3002 Indirect
CDC 10002 to store 3002 Indirect
CDC 10001 to store 3003 Indirect
CDC 10002 to store 3003 Indirect
CDC 10001 to store 3008 Direct
CDC 10002 to store 3008 Direct
CDC 10001 to store 3009 Indirect
CDC 10002 to store 3009 Indirect
CDC 10001 to store 3010 Indirect
CDC 10002 to store 3010 Indirect
CDC 10001 to store 3005 Indirect
CDC 10002 to store 3005 Indirect
CDC 10001 to store 3006 Indirect
CDC 10002 to store 3006 Indirect
CDC 10001 to store 3007 Indirect
CDC 10002 to store 3007 Indirect
CDC 10001 to store 3004 Indirect
CDC 10002 to store 3004 Indirect

Table 4.9: Solution step 4

4.6. Computation
This model is focused on large networks, and with that, it also becomes very complex. Therefore, an
understanding of computational complexity is given first. Then, the Gurobi input parameters are tuned
based on the output files of these networks. Improvements in time are achieved due to this tuning of
input parameters. Finally, a callback function is formulated to limit the optimization time.

4.6.1. Computational Limits
The model quickly becomes very complex to solve. This is due to the number of variables required.
The complexity influences the computational forces needed to solve the model. The goal is to find the
optimal solution for the allocation of stores and the routing of vehicles. The Gurobi solver aims to find
a solution in which the lower and upper bound of the solution is equal to 0%. Although the optimality
gap can be adjusted, the problem is still very complex to solve. The more complex the model, the
longer it takes to solve it, and the more RAM is needed to store the values. Several elements influence
computational forces. The optimization in Gurobi is based on certain variables. Five variable types
can be implemented (Gurobi, 2022a): continuous, general integer, binary, semi-continuous, and semi-
integer. Continuous variables between the lower and upper bound can take any value. General integer
variables can also take integral values but are more constrained than continuous variables. Binary
variables take either the value 0 or 1. Semi-continuous and semi-integer variables can take 0 as a
value or a value between the lower and upper bound. Binary variables take the least memory and
continuous variables the most. There is one general integer, and there are two binary variables used
in the model. The number of variables needed to solve the problem can be determined based on the
indices of the different variables and can be calculated with Equation 4.22.

number of variables = |A|·|P |·|V |·|C|+|A|·|V |·|C|+|N cdc|·|P |·|Q| (4.22)

To give an insight into the complexity of this model, a network consisting of 2 CDCs, 4 RDCs and 100
stores is chosen. This network results in 832 · 106 variables needed to solve the problem. A problem
containing this number of variables can be interpreted as a very complex model.
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number of variables = 829, 013, 130 + 2, 791, 290 + 1, 188 = 831, 805, 608 (4.23)

A computational limit for the hardware that contains 16 GB RAM is found for a model containing an
approximate number of variables of 27 · 106 in total.

4.6.2. Start solution
In the Gurobi optimiser, it is possible to add a start vector (Gurobi, 2022b). The MIP solver will then try
to build an initial solution. Adding this vector can save time searching for the initial solution and possibly
reduce the optimisation area. It is possible to add parts or all of a start vector. If the entire vector is
added, a choice has thus been made in advance in the zp0i variable, and a choice has thus been made
whether a CDC supplies a store directly or indirectly. This vector is added and can be enabled at will.

4.6.3. Input parameters
When optimizing using the Gurobi tool, there are default input parameters set that affect this process.
These parameters can be adjusted to match the model better. This model can be characterized as
Mixed Integer Programming (MIP). Before changing them, it is essential to have a reference situation.
Therefore, optimization times are determined for various network sizes. All networks consist of 2 CDCs,
1 RDC and a certain number of stores, Table 4.10. These run times correspond to a gap of 0%. The
networks contain no store arcs due to the high solving time. The numbers of variables are calculated
using Equation 4.22. All stores have the same demand from the three DCs. They are supplied directly
from the first CDC and indirectly, so via the RDC, from the second CDC.

Num. of stores [-] Num. of variables [-] Num. of constraints [-] Computational time [s]
1 1, 068 743 0.04
5 44, 220 11, 455 0.58
10 282, 840 58, 460 3.59
20 1, 991, 280 367, 120 26.36

Table 4.10: Computational times before tuning the Gurobi input parameters

The parameters are tuned in two steps. First, theGurobi tuning tool is used to find the first improvements
that can be made regarding the input parameters. Second, the input parameters are adjusted based
on information supplied by Gurobi.

Two parameters are set for the Gurobi tuning tool. The first one is the time limit, and the second one is
the number of seeds. The time limit is set to −1 so the tuning tool can determine a proper tuning time
(Gurobi, 2022c). The number of seeds is set to 3, so everything is checked with three sets of values
(Gurobi, 2022d). This reduces the chance of giving parameter values that only work well for a single
input data set. The Gurobi tuning tool resulted in one improved parameter set, Appendix C.0.2. The
optimal input parameter is stated in Table 4.11.

Input parameter Value [-]
Heuristics 0.0001

Table 4.11: Input parameters Gurobi tuning tool

The heuristics input parameter determines the time spent on heuristics (Gurobi, 2022e). More and
better feasible solutions are often received using a significant heuristic time value. These parameter
adjustments result in a decrease in solving time, Table 4.12. These run times correspond to a gap of
0%.
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Num. of stores [-] Num. of variables [-] Num. of constraints [-] Computational time [s]
1 1, 068 743 0.03
5 44, 220 11, 455 0.36
10 282, 840 58, 460 3.71
20 1, 991, 280 367, 120 24.27

Table 4.12: Computational times after tuning with the Gurobi tool

Several other input parameters are selected based on the information supplied by Gurobi. Combina-
tions of these parameters are used to determine what combination of parameters has a positive influ-
ence on the computational time. A selection of these parameters is made based on their improvements
compared to the computational times of the tuning tool, Table 4.13.

Input parameter Value [-]
Heuristics 0.0001
Cuts 2
MIPFocus 1
PreSparsify 2

Table 4.13: Input parameters manual tuning

The global cut control focuses on the creation and application of global cutting planes, which are effec-
tive tools for enhancing the problem’s linear relaxation and enlarging the range of possible solutions
(Gurobi, 2022f). The aggressive cut generation (2) seems best for this model. Depending on the objec-
tives, the high-level solution strategy can be adjusted using the MIPFocus parameter (Gurobi, 2022g).
The solver finds a balance between locating new solutions and proving that the existing solution is the
best. Setting this to 1 enables finding workable solutions rapidly. The presolve sparsify reduction can
potentially reduce the number of non-zero values in the presolved model (Gurobi, 2022h). All model
types must execute this step when the setting is set to 2. These parameter adjustments result in a
decrease in solving time, Table 4.14. These run times correspond to a gap of 0%.

Num. of stores [-] Num. of variables [-] Num. of constraints [-] Computational time [s]
1 1, 068 743 0.05
5 44, 220 11, 455 0.71
10 282, 840 58, 460 2.18
20 1, 991, 280 367, 120 11.88

Table 4.14: Computational times after manual tuning

Some other input parameters were tested but did not result in a lower computational time. The method
is the algorithm for the initial root relaxation of a MIP model (Gurobi, 2022i). The barrier method (2)
seemed best. The model can be presolved to make it smaller and easier to solve (Gurobi, 2022j). The
conservative solve setting (1) seemed best, while the aggressive setting (2) may lead to a tighter model.
The value represents the maximum number of cutting plane passes made during the production of the
root cut (Gurobi, 2022k). Setting this option to 3 seemed the best for large distribution systems. The
cover cut generation can be controlled, and the best setting seemed to be a moderate cut generation
(1) for this model (Gurobi, 2022l).

4.6.4. Callback
In some cases, the Gurobi tool puts an extreme amount of time into proving the optimal answer but with
little development in the outcome. Here, the gap decreases in minimal quantity, as does the incumbent
solution. To avoid taking up an extreme amount of time for this in significant optimisations, a callback
function is implemented that avoids this (Gurobi, 2022m). The callback function keeps track of time
and gaps. If the gap development is greater than 1%, the optimiser saves the iteration time. If the
development in the gap is smaller than 1%, the tool does not do so. The optimiser gets terminated if
the last iteration time is longer than 20min ago, i.e. if the change in gap development has been smaller
than 1% for longer than 20 min. After this, these outcomes are included as results of this optimisation.
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4.6.5. Conclusion
This section reflects the complexity of the model. The number of variables rapidly increases dramati-
cally, which can also quickly reach the hardware limit. A start solution can be added to save time and
reduce the optimisation area. Also, the input parameters of the model have been changed to better
suit its implementation. For this purpose, the heuristic, cuts, MIP focus and pre-sparsify have been
set. Finally, a callback functionality is used that reduces optimisation time. All these methods together
improve the computation.



5
Case study

A case study at a company in the Netherlands is provided in this chapter. This case fits the generic
distribution problem, as described in the system analysis, Chapter 2, and specifies data and configura-
tion according to the company’s distribution network. The fourth research question can be answered
based on the case study of this chapter:

What is the performance of the system, given the data from the case study?

First, the case study is explained in detail. Here, it focuses mainly on the characteristics of the distribu-
tion system. Based on these characteristics, insight is given into the data belonging to the case study.
The data is presented per a group of sets, parameters and decision variables. Next, a computational
plan is formulated. This plan examines several cases with different computational improvements. This
computational plan shows that the adjustments to the Gurobi optimization tool have a positive influence
on the run time. Then, the experimental plan is introduced. It consists of a base case, validation of
the base case, and five experimental cases. Finally, the experimental plan cases are compared and a
relationship between routing decisions, distances and volumes is sought. The base case represents
the company’s current situation. It uses the existing data as input for the model, but also the company’s
route choices. Next, the outcome of this case is validated with the company’s calculations concerning
the KPIs regarding the same input. There is a difference in the main KPI, the total costs of transport of
7.3%. This difference is expected to be the result of the callback function that is used and the clustering
of the data. The callback function stops the optimisation when a particular criterion is met. A difference
between the incumbent and best-bound solution is the result. The clustering disables the opportunity
of consolidating the demand. This leads to less efficient transport, while the truckload is expected to
be lower. Based on this, it is assumed that the model performs correctly. Five experimental cases
follow the validation. The first case is an optimisation based on the current data. Here, only the route
choices are redefined by the model. The first case has an improvement on the total costs of transport
of 5.3% compared to the base case. The two other KPIs, the total distance and total number of vehi-
cles, perform slightly less than the base case. The other four metrics perform better. This indicates
that the routing decisions of this case are better than those of the company. This also suggests that
optimisation is a better approximation for route choices than the current models. The second case
introduces the possibility of consolidation of demand at the CDCs. It is expected that it will become
more attractive to consolidate demand at the CDCs and then deliver directly rather than consolidate at
RDCs. The metrics of this case are all positive and so an improvement compared to the base case. In
addition, it is also an improvement on the first case because all the results are an improvement. In the
third case, transport costs between CDCs and RDCs are reduced five times. This reduction reflects
the current developments regarding the increase in the costs of last-mile delivery and the possibility
of making shuttle journeys cheaper and more efficient because this is owned and regulated by the
company. This case provides insight into the behaviour of the model concerning route choices. The
model behaves as expected. When transportation costs from the CDCs to the RDCs reduce, the num-
ber of direct deliveries decreases and the number of indirect deliveries increases. Then, the fourth
experiment considered is changing the volume. Since the volumes of stores vary continuously, it is

28
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essential to discover how this affects the route choices made. Again, this case provides insight into
the model’s behaviour concerning route choices. When the volume decreases, the number of direct
deliveries decreases and the number of indirect deliveries increases. When the volume increases, the
number of direct deliveries increases, and the number of indirect deliveries decreases. Finally, an at-
tempt is made to solve the model without clustering for a more realistic outcome. For this, the model is
converted from the Gurobi to the PuLP tool and the company’s server is used to run the code. Unfortu-
nately, the server also proved to be not powerful enough. As a result, it was impossible to compare the
performance of clustering with the situation where the data was not clustered. The robustness of the
model was also examined to analyse the behaviour of the outcomes. This showed that the model is
sensitive to changes in volume regarding the performance metrics but not really sensitive regarding the
routing decisions. The analysis also showed that the model is not really sensitive to changes in fixed
costs (fcij) regarding the performance metrics but that it is sensitive to changes in routing decisions.
The computational values were also tracked to understand the performance of the optimisation. The
average run time per case equals 29 hours. The results are compared from three perspectives. First,
they are compared based on the performance metrics. The main KPI is the most important metric to
compare the cases on, but the other metrics need to be considered, too. Consolidation of demand at
the CDCs is proven to be a successful improvement, while an improvement in costs of 5.4% can be
achieved. The total costs influence the third and fourth cases, so these cases can not be compared with
the others. What can be concluded from these cases is that the metrics of both perform as expected.
When lowering the total costs of transportation between the CDCs and RDCs, the third case, the per-
centage of indirect delivery will increase. When increasing the volume, in the fourth case, the direct
delivery increases too. And when decreasing the volume, the direct delivery decreases too. Second,
the results are compared based on their routing decisions. In some cases, indirect delivery is more at-
tractive, and in others, direct delivery. There is a difference in the postal codes with the most significant
influence on the routing decisions. Besides this fact, two postal codes pop up in all cases as postal
codes with a considerable influence on the total costs, considering a difference in routing decisions.
These postal codes are 48 and 94. Therefore, it is advised to change the routing decisions of these
postal codes. Third, the relationship between routing decisions, distances and volumes is discovered.
As a result, there are no convincing relationships between the routing decisions and distances on its
own and between the routing decisions and volumes. However, a relationship between all three can
be determined using a logistic regression. Here, with an accuracy between 63.1% for the second case
and 78.0% for the third case, advice can be given for the routing decision based on the distance of a
store to the CDCs, the distance of a store to an RDC plus the distance of this RDC to the CDCs, and
the volume of demand of this store.

5.1. General description
A case study is carried out for the distribution system of a company in the Netherlands. The company
is active in the retail industry, with several DCs and many stores. New locations are opened every year,
resulting in a continuous need for improvement of the transport and logistics network. To continue
to meet growing demand, processes need to be made more efficient, and automation plays a major
role in this. Therefore, a fully automated distribution centre will be opened. A large proportion of all
products will be stored in this CDC. The CDC will deliver slow-movers, which consist of products with
a particular shelf life. The RDCs will deliver fast movers, while the delivery time needs to be as low as
possible. A store will receive demand from both CDCs and from one of the RDCs. Now, the question
is whether it is more cost-effective to first transport demand from the CDC to the RDC before delivery
to the stores. The locations are known in advance and include two CDCs, four RDCs and a large
number of stores. The goal is to allocate the stores to one or multiple DCs. While the stores will
always be supplied from an RDC, the main goal is to determine whether or not they are supplied from
the CDC directly or whether this demand is consolidated at an RDC and transported from there. The
order sizes of the stores are different per day of delivery. While the company is interested in a fixed
allocation of the stores to the DCs, which may not differ per day, the demand for a representative day
is considered for the optimization. This is for ease of simplification in the model. Currently, there are
16 · 103 containers routed through the retail network. The transportation cost for this container volume
amounts to €135 · 103. The overall transportation costs can be categorized into three sections: routing
costs from CDCs to RDCs, routing costs from CDCs to stores, and routing costs from RDCs to stores.
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The shuttle costs, which refer to the routing costs from CDCs to RDCs, amount to €14 ·103. Additionally,
the transportation costs from CDCs to stores sum up to €46·103, while the transport costs from RDCs to
stores reach €76 · 103. Consequently, the average transportation cost per unit of demand is calculated
as €3.09. Based on these figures, it can be concluded that 30% of stores are directly supplied by the
first CDC, while 85% receive their supplies directly from the second CDC.

5.2. Data
This section provides an overview of the data used for the case study. It should be noted that this data
is used as a starting point, but the data can be altered for different scenarios.

5.2.1. About the data
The data provided by the company is based on a representative day. The aim is to find out which stores
are supplied directly or indirectly by the CDCs. This allocation will be the same for every day of the
week, so it is essential to assume a representative day. The data is based on all stores and includes
node, arc, commodity, vehicle and route sets, and commodity, vehicle and route parameters, Table 4.1.

5.2.2. Complexity of the model
The model used in the case study quickly becomes very complex, as stated in Chapter 4.6.1. This is
due to the size of the problem and, therefore, the amount of variables used in the model. The number of
variables needed to solve the problem can be determined based on the indices of the different variables
and can be calculated with Equation 4.22.

number of variables = 1, 659, 549, 691, 800 + 773, 682, 840 + 8, 580 = 1, 660, 323, 383, 220 (5.1)

A problem containing 2 · 1012 variables can be interpreted as a very complex model, and simplification
is needed to solve this. Simplification of this problem is achieved via clustering of data, Section 5.2.3.

5.2.3. Clusters
The distribution network is clustered two times due to the complexity. First, all data is divided into
four groups, one group per RDC. The stores (Ns) are assigned to one of the groups based on the
allocation. While all stores are supplied from both CDCs (N cdc), these are left out of this clustering.
Second, all locations within the RDC cluster are grouped based on their postal code. Postal codes in
the Netherlands have the following format: 1234AB. First, The Netherlands is divided based on the first
two digits of the postal codes (12). Second, the areas containing the same first two digits of the postal
codes are divided even more by the second two digits (34). A final division is achieved based on the
two letters assigned to the postal codes (AB). The first two digits are used to group all locations of this
distribution network. A small set of locations is not clustered based on their postal code due to their
size of demand. A total of 14 locations are left out of the clusters. Clustering these locations would
have too big of an influence on optimising locations in the same postal code area. So, all locations are
assigned to an RDC group and a postal group, resulting in a total number of 137 clusters.

5.2.4. Sets
The sets of this case study are divided into five categories: the nodes, the arcs, the commodities, the
vehicles and the routes.

Nodes
The total set of nodes (N ) can be split into five categories, among which there are 2 CDCs (10001,
10002), 4 RDCs (20001, 20002, 20003, 20004), and a large number of stores. A distinction is made
between regular stores and large stores, which have a significantly larger demand.

Arcs
The first optimization step consists of finding the optimal solution to supply all postal code areas from
the dedicated RDC they are assigned to and the CDCs. The Ardcs set consists of arcs between the
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postal code areas and the RDC from which they are supplied. The set of arcs between the postal code
areas (As) is empty. In the second step of finding the optimal solution, the Ardcs set consists of arcs
between the stores of a postal code area and the RDC from which they are supplied. The set of arcs
between the stores in this postal code area (As) contains all possible arcs.

Commodities
All stores have three commodities linked to them. These commodities contain information on the orders
from the stores to both CDCs and one of the RDCs.

Vehicles
Three types of trucks are considered in this case study. The first type drives between CDCs and RDCs,
the second between RDCs and stores and the third between CDCs and stores.

Routes
There are two sets of routes. The first route indicates indirect delivery from a CDC, so the delivery is
done via an RDC. The second route indicates direct delivery from a CDC.

5.2.5. Parameters
The parameters of this case study are divided into three categories: the commodities, the vehicles and
the routes.

Commodities
All commodities contain a volume, origin and destination. The volume of a store may be 0, while not
all stores place an order on each day of the week. There is a chance that direct delivery from a CDC
may be restricted due to the location of the store. This may be caused by a store located on an island,
an environmental zone in a city, a General Municipal Regulation restriction or simply because a store
cannot be reached by a large truck.

Vehicles
All of the company’s vehicles have an equal capacity. The transportation cost per kilometre, transporta-
tion cost per hour, fixed loading time, variable loading time, fixed unloading time and variable unloading
time are set per vehicle type, and they differ from vehicles that are linked to a CDC to those that are
linked to an RDC. The processing costs at all DCs are assumed to be equal. A partner executes direct
delivery from the CDCs. An end-of-route cost is accounted for because of this.

Routes
The company supplied data containing absolute distances and times between all locations in the net-
work. These distances and times are linked to routes the vehicles can drive and not to the as the crow
flies distance between two locations. New distances and times are needed for the postal code areas.
These are calculated based on the average value of all locations involved. Various methods have
been devised to do this differently. Still, they are mainly suitable for situations where the coordinates
are known of all locations and a realistic estimate of distance and subsequent travel time needs to be
made (Daganzo, 1984). Since, in this case, the actual distances and times are known, it is assumed
that the average of these values sufficiently matches the actual values. It is taken into account that
small differences in these distances do not have a significant impact on the outcome of this optimisation
step. Here, direct or indirect delivery from the CDC is considered for an entire postal code area, and
here, a few kilometres do not have a significant impact on the outcome.

5.2.6. Solving the model
Solving the problem is done in several steps. While the data is clustered two times, the system is solved
in five steps. First, the stores are clustered based on the allocation to one of the RDCs. Second, all
locations in each RDC cluster are grouped based on the first two digits of the postal codes. Exceptions
for these postal code groups are the larger stores. Third, the model is optimized for the postal code
clusters per RDC. The result of this optimization step is the allocation of the postal code clusters to the
CDCs or the RDCs. This decision is taken into account in step four. Fourth, the model is optimized
per postal code of an RDC. The result of this optimization step is the costs, distance and number of
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vehicles needed for delivery. Benefits can be achieved by consolidating demand from various stores
per vehicle. Fifth, the total costs, distance and number of vehicles for the delivery to all clusters can be
calculated based on all results of step four.

5.3. Computational plan
A computational plan was drawn up to test the various methods on the company’s inputs from Section
4.6. This analysis consists of a base configuration, i.e. without tuning, and four other configurations.
Three different sets of input data are compared for each configuration. The second optimization step
considered in this plan is creating a set of routes for all stores within one postal.

5.3.1. Base configuration
No adjustments are made to the model for the base configuration. So, no start solution, input param-
eters and callback are added. A maximum run time limit is set to three hours (10, 800 s) to limit the
computation. The results of the different configurations can be compared by considering the maximum
time limit.

Postal A Postal B Postal C
RDC 20003 20003 20003
Number of stores [-] 3 6 9

O
bj
.b

ou
nd

Start [€] - - -
Heuristic [€] 360 1, 308 1, 974
Upper-bound (root relaxation) [€] 330 706 1, 134
Incumbent [€] 360 818 1, 339
Best-bound [€] 360 818 1, 165
Gap [%] 0 0 13.0

W
or
k Explored nodes [-] 63 25, 698 9, 673

Simplex iterations [-] 1, 440 9, 750, 065 15, 273, 241
Run time [s] 0.26 1, 540.60 10, 800.14

Table 5.1: Results of base configuration

5.3.2. First configuration, start solution
A start solution is added in the first configuration. This start solution can save much time in the first
optimisation phase for large distribution systems. The Gurobi tool can continue to find a better solution
based on this initial solution. The maximum time limit is also set for this configuration.

Postal A Postal B Postal C
RDC 20003 20003 20003
Number of stores [-] 3 6 9

O
bj
.b

ou
nd

Start [€] 563 1, 476 2, 366
Heuristic [€] 396 1, 308 1, 974
Upper-bound (root relaxation) [€] 330 706 1, 134
Incumbent [€] 360 818 1, 339
Best-bound [€] 360 778 1, 166
Gap [%] 0 4.8 12.9

W
or
k Explored nodes [-] 40 119, 525 13, 518

Simplex iterations [-] 1, 562 73, 604, 413 18, 190, 849
Run time [s] 0.29 10, 800.12 10, 800.18

Table 5.2: Results of first configuration

5.3.3. Second configuration, input parameters
Input parameters are added in the second configuration. These parameters can be adjusted to bet-
ter match the model with the settings of the Gurobi tool. The maximum time limit is also set for this
configuration.
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Postal A Postal B Postal C
RDC 20003 20003 20003
Number of stores [-] 3 6 9

O
bj
.b

ou
nd

Start [€] - - -
Heuristic [€] - - -
Upper-bound (root relaxation) [€] 330 706 1, 134
Incumbent [€] 360 818 1, 338
Best-bound [€] 360 818 1, 236
Gap [%] 0 0 7.7

W
or
k Explored nodes [-] 19 3, 442 20, 694

Simplex iterations [-] 1, 491 463, 422 17, 632, 610
Run time [s] 0.35 38.00 10, 800.11

Table 5.3: Results of second configuration

5.3.4. Third configuration, callback function
A callback function is added in the third configuration. This function terminates the model if the change
in gap development has been smaller than 1% for longer than 20 min. The maximum time limit is also
set for this configuration.

Postal A Postal B Postal C
RDC 20003 20003 20003
Number of stores [-] 3 6 9

O
bj
.b

ou
nd

Start [€] - - -
Heuristic [€] 360 1, 308 1, 974
Upper-bound (root relaxation) [€] 330 706 1, 134
Incumbent [€] 360 818 1, 339
Best-bound [€] 360 818 1, 150
Gap [%] 0 0 14.1

W
or
k Explored nodes [-] 63 25, 698 1, 163

Simplex iterations [-] 1, 440 9, 750, 065 2, 655, 780
Run time [s] 0.27 1, 551.95 2, 405.70

Table 5.4: Results of third configuration

5.3.5. Fourth configuration, combination of all configurations
The adjustments of all previous configurations are combined in this configuration. So, a start solution,
input parameters and callback are added. The maximum time limit is also set for this configuration.

Postal A Postal B Postal C
RDC 20003 20003 20003
Number of stores [-] 3 6 9

O
bj
.b

ou
nd

Start [€] 563 1, 476 2, 366
Heuristic [€] 396 1, 308 1, 974
Upper-bound (root relaxation) [€] 330 706 1, 134
Incumbent [€] 360 818 1, 341
Best-bound [€] 360 818 1, 154
Gap [%] 0 0 14.0

W
or
k Explored nodes [-] 19 3, 286 1, 336

Simplex iterations [-] 1, 491 486, 649 2, 421, 573
Run time [s] 0.44 62.99 2, 246.28

Table 5.5: Results of fourth configuration
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5.3.6. Comparative results
The start solution added in the first configuration has no significant influence on the results. Besides
that, the model has difficulties finding a start solution, which results in a situation where it can take hours
or days to find the first solution. The second configuration includes adjustments to the input parameters
of the Gurobi tool. It can be noted that the optimization time reduces drastically, especially for the more
extensive networks. The gap difference decreases for the extensive network too. A callback function
is added in the third configuration. This callback function is helpful for more extensive networks where
the gap stabilises more or less after a while. The time limit is reached in the first two configurations and
the base configuration, but the run time does not reach its limit in the third configuration. Combining
all methods results in the most optimal situation for all types of networks. The start solution is needed
to avoid difficulties in finding the first solution, the input parameters are added for a higher solving
efficiency, and the callback ensures that the model does not stay around the same gap for a long time.
In the end, the gap and run-time are important factors to reduce, and that is achieved in the combination
of all methods.

5.4. Experimental plan
The company’s distribution network is analyzed in a base case, a validation and five new cases. Optimal
results are determined, and insight into the network can be gained from these cases and their scores
on the three KPIs from Table 2.1:

1. Total costs of transport [€]
2. Total distance [km]
3. Total number of vehicles [-]

The five new cases contain different scenarios and configurations. A case may consist of a new sce-
nario, a new configuration, or a combination of both. Scenarios are characterized by all the (input)
data from external influences (store demands, etc) and configurations by design alternatives (network
design, procedures, etc).

5.4.1. Base case
The base case concerns the company’s current situation. This situation will serve as a reference for
the follow-up scenarios. This will allow us to see if changes in the model are an improvement over the
base case and thus result in a more optimal situation that the company can implement. In this process,
the KPIs will be set against each other, Section 5.5. The zpqi decision variable, which indicates whether
or not a commodity p is transported from a CDC to an RDC or if commodity p is transported from a
CDC to a store, is set by the current decisions of the company.

Mathematical model adjustment
There is one adjustment in the decision variables. The decision variable indicating the routing decisions
(zpqi ) is known already and therefore converted to a parameter, Table 5.6.

from
Decision variables Description

zpqi

Binary variable, 1 if either commodity p is transported from a CDC to
an RDC (zp0i ) or if commodity p is transported from a CDC to a store
(zp1i ), 0 otherwise

to
Decision variables Description

zpqi

Routing decisions by the company, 1 if either commodity p is trans-
ported from a CDC to an RDC (zp0i ) or if commodity p is transported
from a CDC to a store (zp1i ), 0 otherwise

Table 5.6: Parameters adjustment
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Results
The results of the base case are stated in Table 5.7. The total costs of transport for the base case
equals €147 · 103.

Description Value

KP
Is

Total costs of transport [€ ·103] 147
Total distance [km ·103] 55
Total number of vehicles [- ·103] 0.5

Costs per container [€] 3.35
Load per vehicle [containers] 15
Drop size per stop [containers] 8
Stops per vehicle [-] 0.6

Table 5.7: Results base case

An overview of the results divided per RDC is given in Table 5.8. What can be concluded is that more
than half of the demand from the CDCs is sent directly.
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RDC 20001 42 14 6 22 57.4 42.6
RDC 20002 38 10 8 19 42.5 57.5
RDC 20003 38 14 3 21 69.8 30.2
RDC 20004 29 9 5 15 54.5 45.5

Total 147 48 22 77 57.4 42.6

Table 5.8: Results per RDC of base case

The routing decisions are divided per CDC and visualized in Figures D.1 and D.2.

5.4.2. Validation
To validate the model, the company’s routing decisions are adopted into the model and optimised. The
optimal values are compared with the results of the company’s models concerning this equal input
value. From these models, it is not possible to extract the total distance and total number of vehicles.
However, total costs and the proportion of direct and indirect deliveries can be compared.

Results
The total costs are €135 · 103, Table 5.9. There is a difference in the total costs of €11 · 103 compared
to the base case. As explained earlier, run times are reduced using the callback function. If the best-
bound value is adopted as the optimal value, it amounts to €133 · 103. Here, there is only a difference
of €3 · 103 in the final cost. Based on this and the other analysis results, it is assumed that the results
are valid. The main difference can be found in the transfer costs. Higher transfer costs can be a result
of optimizing the model in clusters. While the models of the company assume a high load factor per
vehicle, this can be lower while the transport from the CDCs to the RDCs can not be combined from
different postal codes. More vehicles are assumed to be needed, and therefore, higher transfer costs
are linked to this. Other differences can occur quickly because of the difference in the accuracy of
calculations. Given the large total demand, small costs can have a large impact, and the discrepancies
are assumed to be realistic. The outcomes have also been checked by experts from the company and
assumed to be valid. The total distance can not be determined in the company’s model and is therefore
left out of consideration of this validation.
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Description Value Difference [%]
KP

Is
Total costs of transport [€ ·103] 135 7.3
Total distance [km ·103] - -
Total number of vehicles [- ·103] 0.5 5.6

Costs per container [€] 3.09 7.3
Load per vehicle [containers] 16 5.1
Drop size per stop [containers] 8 9.1
Stops per vehicle [-] 0.8 17.6

Table 5.9: Results validation

The main increase in costs is linked to the transfer costs, Table 5.10. This increase is expected due
to the given reasoning. The percentages corresponding to the number of direct and indirect deliveries
from both CDCs are equal in the base case and the validation.
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RDC 20001 39 14 4 21 57.4 42.6
RDC 20002 35 9 6 20 42.5 57.5
RDC 20003 38 15 2 21 69.8 30.2
RDC 20004 24 7 3 14 54.5 45.5

Total 135 46 14 76 57.4 42.6

Table 5.10: Results per RDC of validation

5.4.3. First case, optimization by new model
The first case can be characterized as a change in configuration and no change in scenario, while
the routing decision from the CDCs may differ compared to the base case. There is no other change
in the model, so the model’s effectiveness compared to the current situation, the base case, can be
investigated.

Results
The results of this case are stated in Table 5.7. There is a positive difference in the main KPI value
from this configuration compared to the base case. The total costs are €8 · 103 lower. The KPI values
of the total distance and total number of vehicles are slightly higher.

Description Value Improvement [%]

KP
Is

Total costs of transport [€ ·103] 139 5.3
Total distance [km ·103] 55 −1.2
Total number of vehicles [- ·103] 0.5 −1.0

Costs per container [€] 3.17 5.3
Load per vehicle [containers] 15 2.6
Drop size per stop [containers] 10 13.6
Stops per vehicle [-] 0.6 5.1

Table 5.11: Results first case (a positive percentage equals an improvement)

There is a difference in routing decisions too, Table 5.12. There is a shift from direct to indirect delivery
of 18%.
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RDC 20001 40 8 9 22 39.5 60.5
RDC 20002 37 9 8 19 45.8 54.2
RDC 20003 35 8 6 22 44.7 55.3
RDC 20004 27 3 8 16 23.1 76.9

Total 139 29 31 80 39.4 60.6

Table 5.12: Results per RDC of first case

The ten clusters with the biggest cost differences are added to Table 5.13. The route difference percent-
ages are split into the transportation from CDC 10001 and from CDC 10002. The percentages indicate
the number of stores with a different route option than the base case compared to the total number
of stores in the postal. The cost difference shows the increase or decrease due to the difference in
routing options. A positive cost difference means lower costs for the current case. The distance from
the postal to the CDCs and from the postal to the RDC is stated too.

Postal [-] RDC 10001 [%] 10002 [%] Cost diff. [€] CDC dist. [km] RDC dist. [km]
56 20001 0 77.8 732 32 10
48 20004 33.3 100 613 26 2
94 20002 0 87.5 271 64 7
91 20002 0 50.0 232 73 30
62 20001 0 88.9 225 66 44
63 20001 0 33.3 219 66 45
95 20002 0 25 211 75 19
88 20002 0 50 197 60 36
82 20003 33.3 100 187 25 32
27 20003 100 100 181 18 12

Table 5.13: Route option differences first case

The routing decisions are divided per CDC and visualized in Figures E.1 and E.2.

5.4.4. Second case, consolidation of demand at CDCs
The second case can be characterized as a change in configuration and no change in scenario, while
the network design differs from the base case. Both CDCs are located next to each other. Currently,
the commodities there are not merged due to internal restrictions. It is expected that combining com-
modities at the CDCs will benefit direct delivery to stores. Stores can then, for example, be supplied
with a vehicle that contains products from both DCs. This may eliminate the benefit of consolidating
demand at an RDC and potentially change the allocation choice. Demand from both CDCs can be
consolidated at CDC 10002. So if the decision is made that the vehicle will deliver both demands, the
demand will be first picked up at CDC 10001 and then pick up the demand from CDC 10002.

Mathematical model adjustments
The sets of arcs are extended by including the arcs between the CDCs (Acdc+ and Acdc− ), Table 5.14.
The route sets include the distances and times of these new arcs too. The objective function and
several constraints are adjusted. Two new constraints are added.
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from
Sets Description

Ar
cs

A Set of all arcs (Adc+ ∪Adc− ∪Acdcs+ ∪Acdcs− ∪Ardcs+ ∪Ardcs− ∪As)
N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i

Parameters Description

R
ou
te
s disij Distance between node i and j

timeij Travel time between node i and j

to
Sets Description

Ar
cs

Acdc+ Set of arcs between CDCs
Acdc− Set of arcs between CDCs

A
Set of all arcs (Adc+ ∪ Adc− ∪ Acdcs+ ∪ Acdcs− ∪ Ardcs+ ∪ Ardcs− ∪
As ∪Acdc+ ∪Acdc− )

N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i (for the new A)
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i (for the new A)

Parameters Description

R
ou
te
s disij

Distance between node i and j (including the distances for the new
Acdc+andAcdc− )

timeij
Travel time between node i and j (including the times for the new
Acdc+andAcdc− )

Table 5.14: Sets and parameters adjustment

Adjusted objective function, Equation 4.1.

min
∑

(i,j)∈Adc+

∑
v∈V

fcij · yv0ij +
∑

(i,j)∈Adc+

∑
p∈P

∑
v∈V

pc · xpv0
ij +

∑
(i,j)∈(Ardcs+∪Ardcs−∪As)

∑
v∈V

(tc1 · disij + hc1 · timeij) · yv1ij +
∑

(i,j)∈Ardcs+

∑
v∈V

hc1 · flt1 · yv1ij +

∑
(i,j)∈(Ardcs+∪As)

∑
v∈V

hc1 · fut1 · yv1ij +
∑

(i,j)∈Ardcs+

∑
p∈P

∑
v∈V

hc1 · (vlt1 + vut1) · xpv1
ij +

∑
(i,j)∈(Acdcs+∪As∪Acdc+ )

∑
v∈V

(tc2 · disij + hc2 · timeij) · yv2ij +
∑

(i,j)∈(Acdcs+∪Acdc+ )

∑
v∈V

hc2 · flt2 · yv2ij +

∑
(i,j)∈(Acdcs+∪As)

∑
v∈V

hc2 · fut2 · yv2ij +
∑

(i,j)∈(Acdcs+∪Acdc+ )

∑
p∈P

∑
v∈V

hc2 · (vlt2 + vut2) · xpv2
ij +

∑
(i,j)∈Acdcs+

∑
v∈V

erc · yv2ij (5.2)

Adjusted constraint Vehicle type 1 cannot enter or leave a CDC, Equation 4.4.∑
(i,j)∈(Adc+∪Adc−∪Acdcs+∪Acdcs−∪Acdc+∪Acdc− )

yv1ij = 0 ∀v ∈ V (5.3)

Adjusted constraint: Vehicle type 0 may only start from one of the CDCs, Equation 4.5.∑
i∈Ncdc

∑
j∈N+(i)

yvoij ≤ 1 ∀v ∈ V (5.4)

New constraint: Vehicle type 2 may only drive on arcs in set Acdc+ or to the stores.∑
(i,j)∈Acdc+

yv2ij +
∑

(i,j)∈Acdcs

yv2ij ≤ 1 ∀v ∈ V (5.5)
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New constraint: Vehicle type 2 may only drive from one of the CDCs to the stores.∑
i∈Ncdc

∑
j∈Ns

yv2ij ≤ 1 ∀v ∈ V (5.6)

Adjusted constraint: Vehicle type 0 cannot drive from a DC to a store and cannot drive between CDCs,
Equation 4.6. ∑

(i,j)∈(Acdcs+∪Acdcs−∪Ardcs+∪Ardcs−∪As∪Acdc+∪Acdc− )

yv0ij = 0 ∀v ∈ V (5.7)

Adjusted constraint: Vehicle type 2 cannot drive to an RDC and therefore drive not from an RDC to a
store and cannot drive back from a CDC to another CDC, Equation 4.7.∑

(i,j)∈(Adc+∪Adc−∪Ardcs+∪Ardcs−∪Acdc− )

yv2ij = 0 ∀v ∈ V (5.8)

Adjusted constraint: Demand can not be sent back to a DC, Equation 4.12.∑
p∈P

xpvc
ij = 0 ∀(i, j) ∈ (Adc− ∪Acdcs− ∪Ardcs− ∪Acdc−), v ∈ V, c ∈ C (5.9)

Adjusted constraint: Checks whether a (part of) commodity p is transported from a CDC to a store,
Equation 4.15.∑

j∈Ns

∑
v∈V

xpv2
ij +

∑
k∈(Ncdc:k ̸=i,(i,k)∈Acdc+ )

∑
j∈Ns

∑
v∈V

xpv2
ij ≤ M · zp1i ∀i ∈ N cdc, p ∈ P (5.10)

Results
The results of this case are stated in Table 5.15. There is a positive difference in all KPI values from
this configuration compared to the base case. The total costs are €8 · 103 lower. The KPI values of the
total distance and total number of vehicles are improved by 4.9% and 3.5%, respectively.

Description Value Improvement [%]

KP
Is

Total costs of transport [€ ·103] 139 5.4
Total distance [km ·103] 52 4.9
Total number of vehicles [- ·103] 0.5 3.5

Costs per container [€] 3.17 5.4
Load per vehicle [containers] 15 2.6
Drop size per stop [containers] 9 4.5
Stops per vehicle [-] 0.6 0

Table 5.15: Results second case (a positive percentage equals an improvement)

There is a small difference in routing decisions too, Table 5.16. There is a shift from direct to indirect
delivery of 2.4%. In this shift, 72.0% of the demand is transported from CDC 10001 to CDC 10002.
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RDC 20001 41 13 7 21 60.7 39.3
RDC 20002 36 12 6 18 65.9 34.1
RDC 20003 35 10 5 21 52.3 47.7
RDC 20004 27 5 7 15 37.7 62.3

Total 139 39 25 75 55.0 45.0

Table 5.16: Results per RDC of second case

The ten clusters with the biggest cost differences are added to Table 5.17. One of the postal codes,
postal 39, has no difference in routing decisions. The improvement in costs is due to the consolidation
of demand at CDC 10002 from CDC 10001.

Postal [-] RDC 10001 [%] 10002 [%] Cost diff. [€] CDC dist. [km] RDC dist. [km]
48 20004 33.3 100 613 26 2
94 20002 0 87.5 271 64 7
39 20003 0 0 250 9 15
89 20002 100 0 240 63 27
91 20002 0 50.0 232 73 30
62 20001 0 88.9 225 66 44
83 20002 100 0 220 41 25
63 20001 0 33.3 219 66 45
95 20002 0 25.0 211 75 19
68 20001 33.3 0 206 24 23

Table 5.17: Route option differences second case

The routing decisions are divided per CDC and visualized in Figures F.1 and F.2. The second case
performs slightly better on themain KPI compared to the first case (0.1%). The performance on the other
two KPIs, the total distance and the total number of vehicles, is higher (6.1% and 4.5% respectively).
There is an overlap in the difference in routing decision compared to the top 10 of the first case too,
postal codes 48, 94 (RDC 20002), 91 (RDC 20002), 62, 63 and 95.

5.4.5. Third case, altered shuttle costs
The third case can be characterized as a change in configuration and no change in scenario while fixed
costs for delivery between a CDC i and an RDC j differs compared to the base case. There are two
expectations regarding transportation costs. First, normal trucks are currently used for transportation
between CDCs and RDCs. There will be a change over time where the normal trucks will get an extra
trailer for more efficient transportation. Of these, the cost will be relatively low (per unit of demand)
compared to the current cost of commuting. Second, delivery restrictions are emerging in more and
more places. Think of this as combining demand from different stores to make a maximum number of
deliveries on a street for all stores combined. In addition, there may also be restrictions on the type
of vehicles that can deliver demand in a downtown area. There is a trend here whereby the cost of
last-mile delivery continues to rise. Therefore, it is interesting to investigate how the model responds
to changes in fixed costs between CDC and RDC (fcij). To discover this relationship, these costs
are reduced by 5% five times. This allows allocation differences to be construed and to see how the
allocation might look in the future.
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Mathematical model adjustments
There is one change compared to the base case, Table 5.18. The fixed delivery costs between the
CDCs and RDCs parameters (fcij) are adjusted. These costs are five times reduced by 5%.

from
Parameters Description

Ve
hi
cl
es fcij

Fixed cost for delivery between a CDC i and an RDC j, 100% of the
costs

to
Parameters Description

Ve
hi
cl
es fcij

Fixed cost for delivery between a CDC i and an RDC j, 95%, 90%,
85%, 80%, 75% of the costs

Table 5.18: Parameters adjustment

Results
The results of this case are stated in Table 5.19. Costs are not representative for this case while the
costs are lower for direct delivery per configuration.

Description fcij = 0.95 fcij = 0.90 fcij = 0.85 fcij = 0.80 fcij = 0.75

KP
Is

Total costs of transport
[€ ·103] 136 134 133 131 129

Total distance [km ·103] 55 55 55 55 57
Total number of vehicles
[- ·103] 0.5 0.5 0.5 0.5 0.5

Costs per container [€] 3.12 3.06 3.03 2.98 2.94
Load per vehicle [containers] 16 16 16 16 16
Drop size per stop
[containers] 10 10 10 10 10

Stops per vehicle [-] 0.6 0.6 0.6 0.6 0.6

Table 5.19: Results third case (a positive percentage equals an improvement)

Differences in routing decisions for all RDCs are stated per fcij percentage in Table 5.20. The ratio
of direct and indirect delivery changes with an expected trend. When the costs of transportation from
the CDCs to the RDCs reduce, the number of direct deliveries decreases and the number of indirect
deliveries increases.
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Direct [%] Indirect [%]

fcij = 0.95

RDC 20001 27.9 72.1
RDC 20002 45.8 54.2
RDC 20003 43.5 56.5
RDC 20004 23.1 76.9
Total 35.6 64.4

fcij = 0.90

RDC 20001 26.2 73.8
RDC 20002 37.7 62.3
RDC 20003 40.6 59.4
RDC 20004 17.5 82.5
Total 31.4 68.6

fcij = 0.85

RDC 20001 26.2 73.8
RDC 20002 37.7 62.3
RDC 20003 38.2 61.8
RDC 20004 17.5 82.5
Total 30.7 69.3

fcij = 0.80

RDC 20001 26.2 73.8
RDC 20002 37.7 62.3
RDC 20003 35.5 64.5
RDC 20004 13.4 86.6
Total 29.1 70.9

fcij = 0.75

RDC 20001 21.7 78.3
RDC 20002 28.9 71.1
RDC 20003 26.3 73.7
RDC 20004 13.4 86.6
Total 23.1 76.9

Table 5.20: Results per RDC of third case

The routing decisions are divided into direct and indirect delivery and are shown in Figure 5.1 and
Figure 5.2 respectively.

Figure 5.1: Direct delivery regarding fcij Figure 5.2: Indirect delivery regarding fcij

The ten clusters with the biggest differences in costs are added per fcij percentage to Table 5.21.
When a postal exists in multiple RDC clusters, the cluster is indicated with the RDC ID. There is an
overlap in postal codes 56, 48, 57, 94 (RDC 20002), 62.
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fcij = 0.95 [-] fcij = 0.90 [-] fcij = 0.85 [-] fcij = 0.80 [-] fcij = 0.75 [-]
56 56 56 56 56
48 48 48 48 48
57 57 57 57 57
94 (20002) 94 (20002) 94 (20002) 43 43
52 52 54 94 (20002) 94 (20002)
91 (20002) 54 52 54 54
62 34 34 52 34
50 50 50 34 62
63 62 62 26 26
95 91 (20002) 91 (20002) 62 91 (20002)

Table 5.21: Postal codes of maximal route option differences third case

The performance of this case can not directly be compared with the other cases while there is a differ-
ence in transportation costs. There is an overlap in the difference in routing decisions compared to the
top 10 of the first and second scenarios, postal codes 48, 94 (RDC 20002) and 62.

5.4.6. Fourth case, altered volumes
The fourth case can be characterized as a change in scenario and no change in configuration while the
volume of demand differs compared to the base case. There is an expected change in volume because
of two reasons. First, the volume is based on a representative day. While by default not all stores have
the same demand during the week, this indicates differences already. Second, the company expects
growth during the coming years. Because of this growth, it is important to see what changes in routing
decisions will be the result. The volumes are adjusted five times to discover the influence. This allows
allocation differences to be construed and to see how the allocation might look in the future.

Mathematical model adjustments
There is one change compared to the base case, Table 5.22. The volumes (fcij) are adjusted five
times by a certain percentage. A new set of vehicles and their corresponding capacities are a result of
this adjustment.
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from
Sets Description

Ve
hi
cl
es

V Set of vehicles

Parameters Description

C
om

m
od
iti
es volp Volume of commodity p, 100% of the volume

Ve
hi
cl
es

capvc Capacity of vehicle of type c

to
Sets Description

Ve
hi
cl
es

V Set of vehicles, adjusted set based on new total volume

Parameters Description

C
om

m
od
iti
es volp Volume of commodity p, 125%, 115%, 105%, 95%, 85% of the volume

Ve
hi
cl
es

capvc
Capacity of vehicle of type c, adjusted based on new set of vehicles
(V )

Table 5.22: Sets and parameters adjustment

Results
The results of this case are stated in Table 5.23. Costs are not representative of this case, while the
costs are strongly dependent on the volume of demand (volp).

Description volp = 0.85 volp = 0.95 volp = 1.05 volp = 1.15 volp = 1.25

KP
Is

Total costs of transport
[€ ·103] 128 136 148 157 165

Total distance [km ·103] 51 54 58 61 63
Total number of vehicles
[- ·103] 0.5 0.5 0.5 0.5 0.6

Costs per container [€] 3.36 3.36 3.15 3.05 2.97
Load per vehicle [containers] 14 15 16 16 16
Drop size per stop
[containers] 9 10 10 10 11

Stops per vehicle [-] 0.6 0.6 0.6 0.6 0.6
Number of containers [-] 14 16 18 19 21

Table 5.23: Results fourth case (a positive percentage equals an improvement)

Differences in routing decisions for all RDCs are stated per volp percentage in Table 5.24. The ratio
of direct and indirect delivery changes with a trend. When the volume decreases, the number of direct
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deliveries decreases and the number of indirect deliveries increases. When the volume increases, the
number of direct deliveries increases and the number of indirect deliveries decreases.

Direct [%] Indirect [%]

volp = 0.85

RDC 20001 44.8 55.2
RDC 20002 44.5 55.5
RDC 20003 34.1 65.9
RDC 20004 35.8 64.2
Total 39.8 60.2

volp = 0.95

RDC 20001 38.1 61.9
RDC 20002 41.2 58.8
RDC 20003 45.6 54.4
RDC 20004 18.7 81.3
Total 37.4 62.6

volp = 1.05

RDC 20001 55.0 45.0
RDC 20002 49.7 50.3
RDC 20003 33.9 66.1
RDC 20004 32.8 67.2
Total 43.3 56.7

volp = 1.15

RDC 20001 56.0 44.0
RDC 20002 50.0 50.0
RDC 20003 43.8 56.2
RDC 20004 29.5 70.5
Total 46.0 54.0

volp = 1.25

RDC 20001 47.4 52.6
RDC 20002 53.9 46.1
RDC 20003 43.8 56.2
RDC 20004 27.2 72.8
Total 43.9 56.1

Table 5.24: Results per RDC of fourth case

The routing decisions are divided into direct and indirect delivery and are shown in Figure 5.3 and
Figure 5.4 respectively.

Figure 5.3: Direct delivery regarding volp Figure 5.4: Indirect delivery regarding volp

The ten clusters with the biggest differences in costs are added per volp percentage to Table 5.25.
When a postal exists in multiple RDC clusters, the cluster is indicated with the RDC ID. There is an
overlap in postal codes 48 and 94 (RDC 20002). For the smaller volumes, there is an overlap in the
postal codes 48 and 94 (RDC 20002). For the larger volumes, there is an overlap in the postal codes
48, 91 (RDC 20002), 94 (RDC 20002) and 94 (RDC 20004).
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volp = 0.85 [-] volp = 0.95 [-] volp = 1.05 [-] volp = 1.15 [-] volp = 1.25 [-]
48 56 48 48 48
57 48 52 91 (20002) 91 (20002)
56 57 94 (20002) 94 (20002) 94 (20004)
38 (20003) 75 91 (20002) 94 (20004) 56
11 43 95 31 (20003) 38 (20001)
94 (20002) 94 (20002) 88 29 (20004) 90 (20004)
89 (20002) 52 28 (20004) 38 (20001) 94 (20002)
43 25 (20003) 14 90 (20004) 31 (20003)
50 (20004) 50 27 40 (20003) 36 (20001)
46 91 (20002) 20 (20003) 36 (20001) 20 (20004)

Table 5.25: Postal codes of maximal route option differences fourth case

The performance of this case can not directly be compared with the other cases while there is a differ-
ence in volumes. There is an overlap in the difference in routing decisions compared to the top 10 of
the first and second scenarios, postal codes 48 and 94 (20002).

5.4.7. Fifth case, optimization on the company’s server
The fifth case can be characterized as a combination of change of configuration and no change in
scenario while only the network is adjusted. The data is clustered because of the large amount of
data. The clustering ensures that consolidation of demand cannot be properly accounted for in the
optimization and the model will therefore never be able to determine the most optimal outcome. To still
be able to perform a more optimal optimization once, an optimization is performed on the company’s
servers. This will allow a one-time look at a more optimal outcome and compare it to the outcomes of
the current clustered model. This comparison provides insight into the effectiveness of the clustered
model. The optimization that will be performed concerns a model per RDC. For each RDC, store arcs
will be added to examine more possibilities. The optimization on the company’s servers needs to be
done with the help of another solver named PuLP (PuLP, 2022). Therefore, the Gurobi model needs
to be rewritten to a PuLP model.

Mathematical model adjustments
There is one change compared to the base case, Table 5.26. The set of store arcs (As) is extended.
Arcs are added for every store based on the 5 nearest stores. A new set of all arcs (A), outward arcs
(N+(i) = {j ∈ N : (i, j) ∈ A}) and inward arcs (N−(i) = {j ∈ N : (j, i) ∈ A}) are a result of this
adjustment.

from
Sets Description

Ar
cs

As Set of arcs between stores
A Set of all arcs (Adc+ ∪Adc− ∪Acdcs+ ∪Acdcs− ∪Ardcs+ ∪Ardcs− ∪As)
N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i

to
Sets Description

Ar
cs

As Set of arcs between stores, each store is connected to the five nearest
stores

A
Set of all arcs (Adc+ ∪Adc− ∪Acdcs+ ∪Acdcs− ∪Ardcs+ ∪Ardcs− ∪As),
adjusted based on new set of store arcs (As)

N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i, adjusted based on new set of store arcs (As)
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i, adjusted based on new set of store arcs (As)

Table 5.26: Sets and parameters adjustment

Computation
Besides converting the model from Gurobi to PuLP, the input parameters, start solution and callback
also need to be changed. It has been found as not possible to apply the input parameters to the PuLP
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optimisation. However, a time limit of two hours was set. This limits the load on the company’s server
and will not hold up other work too much. The start solution was converted to PuLP to save time in
optimisation. Finally, it has also not been found possible to implement the callback in the new model.

Results
The PuLP optimisation was started several times on the company’s server. First, the model with arcs
from stores to the 5 nearest stores was started. This gave a memory error. This was also tried for 4, 3
and finally 2 arcs between stores. In the end, this still proved too powerful a model to run. The server
capacity is loaded and, as shown in figure 5.5, a memory problem arises. As a result, it is not possible
to compare the outcomes of this case with previous cases to determine the effectiveness of clustering.
This again shows the complexity in size of the problem.

Figure 5.5: Server capacity

5.4.8. Sensitivity analysis
The robustness of the model can be investigated with the help of a sensitivity analysis. A sensitivity
analysis can provide insight into the behaviour of the model. Some input values may change easily over
time and other input values may be uncertain. This analysis gives insight into how much the values
affect the outcomes of the model. Volumes are expected to change frequently and easily. In addition,
the assumption has been made that transport costs are uncertain. Therefore, this analysis is divided
into two parts. The first analysis focuses on the sensitivity of the volume. The second analysis focuses
on the sensitivity of the costs of transportation from the CDCs to the RDCs.

The sensitivity of the model to costs can be analysed in a number of ways. First, the percentage
difference in costs can be plotted against the percentage difference in outcomes, in addition, route
differences can be assessed against the current situation. Finally, the postal codes with the largest
changes on a cost basis can be assessed for similarities.

First analysis, sensitivity of volume
The case study focuses on a representative day regarding the volumes. The representative day can
be used for a long-term, so strategic, allocation decision. The demand of stores varies while the orders
of a store depend on the sales. The volumes also depend on seasons such as Christmas. Besides
these fluctuations, there is an expected growth of volume because of the company’s goals to continue
to grow as a company and thus increase the number of products sold. Five percentage adjustments of
volume are considered in this analysis, 85%, 95%, 105%, 115% and 125% of the volume respectively.
Data for this analysis is extracted from the first and from the fourth case of the case study, Section 5.4.3
and Section 5.4.6 respectively.

The three KPIs are sensitive regarding the difference in the volumes, Table 5.4.6.2. The total costs,
distance and number of vehicles increase when the volume increases. The three KPIs decrease when
the volume decreases. They do not increase or decrease as much as the volume does, but they follow
the same trend. The load per vehicle and drop size per stop have somewhat the same behaviour. The
costs per container are not really sensitive to volume changes. Overall, the costs per container are
lower when the total volume is higher, but they are within a 7% window compared to the base case.
The stops per vehicle are more or less constant for all volumes and therefore not really sensitive to
changes. The sensitivity of the route choices is quite low, Table 5.20. For the first 5% in reduction,
the difference is 2.1%, 2.7% for the second reduction, 3.9% for the third reduction, 2.0% for the fourth
reduction and finally 2.4% for the fifth reduction. There is no trend in the differences, Figure 5.7, but it
can be concluded that these costs have a relatively low impact on the outcome.
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Figure 5.6: Sensitivity of the results compared to the base
case regarding volp

Figure 5.7: Sensitivity of routing decision regarding volp

Unfortunately, there is a small overlap in the postal codes that involves a large cost difference for the
change in volume, Table 5.25. So these route choices are affected by the changes in volume and will
result in quite some differences.

Overall it can be concluded that the model is sensitive to changes in the volume. It is, therefore,
important to consider route choices given the expected changes in these volumes and to observe the
lack of robustness of the model to these changes.

Second analysis, sensitivity of costs
The costs of transportation are assumed to be uncertain while they depend on third parties and fluc-
tuations in prices of fuel prices. Besides these differences, there is an expectation that the costs of
transportation from the CDCs to the RDCs will decrease over time while this can be optimized. Fur-
thermore, increasing restrictions on last-mile deliveries results in more expensive solutions. The effect
of all these uncertainties are combined in the costs of transportation from the CDCs to the RDCs. Five
percentage adjustments of costs are considered in this analysis, 95%, 90%, 85%, 80% and 75% of the
fcij costs respectively. Data for this analysis is extracted from the first and from the third case of the
case study, Section 5.4.3 and Section 5.4.5 respectively.

The main KPI, the total costs of transportation, is sensitive regarding the difference in the fixed cost for
delivery between a CDC i and an RDC j, Table 5.4.5.2. This cost and the costs per container, which
follow the same trend, decrease almost linearly between the 1.00 and 0.75 fractions of fcij . The total
distance, total number of vehicles and load per vehicle are not sensitive regarding fcij while they do
not differ that much. The number of stops per vehicle decrease with lower costs and the corresponding
drop size per stop increase. These are highly influenced between the 0.95 and 0.90 fractions and
stabilise after.

The sensitivity of the route choices is quite high, Table 5.20. For the first 5% in reduction, the difference
is 3.8%, 4.2% for the second reduction, 0.7% for the third reduction, 1.6% for the fourth reduction and
finally 6% for the fifth reduction. There is no trend in the differences, Figure 5.9, but it can be concluded
that these costs have a significant impact on the outcome.

Despite the fact that there are differences in route choices compared to the base case, there is a
great similarity in the postal codes that change, which involve a large cost difference, Table 5.21. So,
these route choices are affected by the reduction in costs, but the biggest changes remain somewhat
constant.

Overall, it can be concluded that the model is sensitive to changes in the fixed cost for delivery between
a CDC i and an RDC j. It is, therefore, important to consider route choices given the expected changes
in these costs and to observe the lack of robustness of the model to these changes.
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Figure 5.8: Sensitivity of the results compared to the base
case regarding fcij

Figure 5.9: Sensitivity of routing decision regarding fcij

5.4.9. Computation
Several adjustments have been made to the model related to computational limits. These modifications
include the start solution, input parameters and a callback function. Adding a callback function affects
the gap remaining after optimisation. As a result, there may be a difference in the incumbent solution
and the best bound. The gap can be calculated using the incumbent and best-bound using the following
equation:

gap (%) =
|best-bound− incumbent|

incumbent
(5.11)

To gain insight into what influence this has had, these numbers are given in Table 5.27. While the best
bound is the best objective value derived from relaxing the problem at a certain node in the search
tree, the incumbent is the currently best-known solution. The best bound serves as an indicator of the
effectiveness of the problem’s current relaxation. The best objective value among the nodes that have
been investigated in the relaxation and have been bound is the best bound. It acts as a lower bound
on the objective value of the best solution. The incumbent solution is equal to the optimal values of the
cases. A gap range can be discovered between 6.76% and 10.3%. This means that the final solution
is always sub-optimal, while the gap is not equal to 0% for all of the experimental cases.

Case Run time [h] Incumbent [€ ·103] Best-bound [€ ·103] Gap [%]
Base 35 147 133 9.6
First 33 139 127 8.7
Second 39 139 125 10.3
Third, fcij = 0.95 32 136 126 8.0
Third, fcij = 0.90 33 134 125 7.2
Third, fcij = 0.85 32 133 123 7.3
Third, fcij = 0.80 32 131 121 7.2
Third, fcij = 0.75 27 129 120 6.8
Fourth, volp = 1.25 28 165 153 7.3
Fourth, volp = 1.15 31 157 143 8.7
Fourth, volp = 1.05 31 148 135 9.3
Fourth, volp = 0.95 30 136 125 7.9
Fourth, volp = 0.85 32 128 115 10.3

Table 5.27: Computation values of all cases



5.5. Comparative results 50

5.5. Comparative results
The objective of this case study is to ascertain the most efficient outcomes for the distribution system.
Achieving optimality within the system can be assessed from various perspectives. Firstly, perfor-
mance metrics can serve as a basis for comparing different scenarios. Ultimately, the primary aim is
to minimize the overall transportation costs. However, routing decisions may also consider alternative
metrics, such as vehicle load, for instance. Secondly, we can compare routing decisions to explore
their influence on performance metrics. We focus on identifying the routing decisions that exert the
greatest impact on costs. Thirdly, examining the relationship between routing decisions, distances and
volumes between postal codes, CDCs, and RDCs can yield valuable insights, providing a practical
guideline for routing decisions. These three comparative analyses offer a comprehensive overview of
the system’s performance, enabling the extraction of optimal results.

An important note to consider is the fact that the data is aggregated because of the clustering of all
locations. This will, therefore, result in an error and uncertainty in the outcome. The statements made
about the results, therefore, relate to the current outcomes, but it is important to take into account
deviations that are not included. Besides the aggregation of the data, sub-optimal results also arise
due to the gaps that are not equal to 0% for any experimental cases. These are elements that should
be taken into account when interpreting the results and conclusions.

5.5.1. Comparing the performance metrics
The performance metrics of all cases are combined in Table 5.28. The metrics can not directly be
compared among all cases. This is while for the third case, the fixed costs between CDC and RDC
(fcij) are reduced five times which automatically results in lower costs. For the fourth case, this is due
to the volume adjustments which will also automatically result in different costs. What can be concluded
from this overview is that consolidation of demand, the second case, will have a positive influence on
the main KPI, the total costs of transport. This adjustment in the distribution system will also positively
influence the total distance driven, the total number of vehicles, the costs per container and the load
per vehicle. In general, the model performs better compared to the routing decisions of the company,
while the total costs of transport for the first case are lower than those of the base case. In the third
case there is a decreasing trend in costs of transport and an increasing trend in the total distance and
total number of vehicles. In the fourth case, the costs of transport per container decrease when the
volume increases and increase when the volume decreases. The total costs of transport, total distance
driven, total number of vehicles, load per vehicle and drop size per stop show the opposite behaviour.
They increase when the volume increases too.
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Base case 147 55 476 3.35 15 8 0.6
First case 139 55 481 3.17 15 4 0.6
Second case 139 52 459 3.17 15 9 0.6
Third case, fcij = 0.95 136 55 479 3.12 16 10 0.6
Third case, fcij = 0.90 134 56 482 3.06 16 10 0.6
Third case, fcij = 0.85 133 56 484 3.03 16 10 0.6
Third case, fcij = 0.80 131 56 483 2.98 16 10 0.6
Third case, fcij = 0.75 129 57 489 2.94 16 10 0.6
Fourth case, volp = 1.25 165 63 564 2.97 16 11 0.6
Fourth case, volp = 1.15 157 61 530 3.05 16 10 0.6
Fourth case, volp = 1.05 148 58 504 3.15 16 10 0.6
Fourth case, volp = 0.95 136 54 470 3.18 15 10 0.6
Fourth case, volp = 0.85 128 51 445 3.36 14 9 0.6

Table 5.28: Comparing the performance metrics

5.5.2. Comparing the routing decisions
The routing decisions and corresponding costs of all cases are combined in Table 5.29. The interesting
difference between the first and the base case is that in the base case, 57.4% of all postal codes is
delivered directly from the CDC and in the first case only 39.4%. When consolidating the demand at
the CDCs, in the second case, the routing decision shifts back to direct delivery. That is an expected
transition while the vehicles from CDCs to the stores can have a higher load. A trend can be discovered
in the third case, the lower the fixed transportation costs from CDC to RDC, the higher the indirect
delivery. Demand can be transported to the RDC at a lower cost, where it can be consolidated and a
vehicle can operate with a higher load. The fourth case shows the same behaviour as in the second
case. When the volume increases, the direct delivery percentages increase too. This is the result of
the possibility of increasing the truckload for delivery from the CDCs to the stores. It can be seen, then,
that the most optimal outcome of the model has to do with the truckload. The higher the truckload, the
cheaper the transport. Consolidation of demand is thus an important element of distribution. When
consolidating at the RDCs, there will be a trade-off between the transport costs from the CDC and the
shuttle costs plus the processing costs at the RDC. So overall, there is a main difference between the
base case and the first case, but the model behaves as expected in the other cases.
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Base case 147 48 22 77 57.4 42.6
First case 139 29 31 80 39.4 60.6
Second case 139 39 25 75 55.0 45.0
Third case, fcij = 0.95 136 27 32 80 35.6 64.4
Third case, fcij = 0.90 134 23 33 81 31.4 68.6
Third case, fcij = 0.85 133 22 33 81 30.7 69.3
Third case, fcij = 0.80 131 21 34 75 29.1 70.9
Third case, fcij = 0.75 129 17 36 84 23.1 76.9
Fourth case, volp = 1.25 165 38 32 95 43.9 56.1
Fourth case, volp = 1.15 157 38 30 89 46.0 54.0
Fourth case, volp = 1.05 148 36 29 84 43.3 56.7
Fourth case, volp = 0.95 136 27 31 78 37.4 62.6
Fourth case, volp = 0.85 128 27 29 72 39.8 60.2

Table 5.29: Comparing the routing decisions and costs

The postal codes of maximal route option differences of all cases are combined in Table 5.30. The postal
codes on the left have the highest cost differences compared to the base case and are in decreasing
order to the right. When a postal exists in multiple RDC clusters, the cluster is indicated with the RDC
ID. If the postal codes reappear in several or even all cases, this shows an improvement that can be
made. In that case, the model suggests each time that changing the routing decision has a positive
impact on the costs concerning transport. Between the first and second cases, there is an overlap in
six postal codes, 48, 94 (RDC 20002), 91 (RDC 20002), 62, 63 and 95. Within the third case, there is an
overlap in postal codes 56, 48, 57, 94 (RDC 20002), 62. Between the first, second and third cases, there
is an overlap in postal codes 48, 94 (RDC 20002) and 62. Within the fourth case, there is an overlap in
postal codes 48 and 94 (RDC 20002). For the smaller volumes, there is an overlap in the postal codes
48 and 94 (RDC 20002). For the larger volumes, there is an overlap in the postal codes 48, 91 (RDC
20002), 94 (RDC 20002) and 94 (RDC 20004). Finally, between all cases, there is an overlap in postal
codes 48 and 94 (RDC 20002). Therefore, it is advised to change the routing decisions of these postal
codes while they have a positive influence on all configurations and scenarios.
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postal codes

First case 56 48
94
(20002)

91
(20002) 62 63 95 88

82
(20003) 27

Second case 48
94
(20002)

39
(20003)

89
(20002)

91
(20002) 62 83 63 95 68

Third case, fcij = 0.95 56 48 57
94
(20002) 52

91
(20002) 62 50 63 95

Third case, fcij = 0.90 56 48 57
94
(20002) 52 54 34 50 62

91
(20002)

Third case, fcij = 0.85 56 48 57
94
(20002) 54 52 34 50 62

91
(20002)

Third case, fcij = 0.80 56 48 57 43
94
(20002) 54 52 34 26 62

Third case, fcij = 0.75 56 48 57 43
94
(20002) 54 34 62 26

91
(20002)

Fourth case, volp = 1.25 48
91
(20002)

94
(20004) 56

38
(20001)

90
(20004)

94
(20002)

31
(20003)

36
(20001)

20
(20004)

Fourth case, volp = 1.15 48
91
(20002)

94
(20002)

94
(20004)

31
(20003)

29
(20004)

38
(20001)

90
(20004)

40
(20003)

36
(20001)

Fourth case, volp = 1.05 48 52
94
(20002)

91
(20002) 95 88

28
(20004) 14 27

20
(20003)

Fourth case, volp = 0.95 56 48 57 75 43
94
(20002) 52

25
(20003) 50

91
(20002)

Fourth case, volp = 0.85 48 57 56
38
(20003) 11

94
(20002)

89
(20002) 43

50
(20004) 46

Table 5.30: Comparing the postal codes of maximal route option differences

5.5.3. Comparing the relationship between routing decisions, distances and vol-
umes

The total costs depend mainly on distances and volumes. Therefore, three relationships are examined:
the routing decisions based on distances, the routing decisions based on the number of containers and
the relationship between the two elements using logistic regression.

The relationship between routing decisions and distances
The first relationship explored is between routing decisions and distance from the store to the CDCs.
The second relationship is between the routing decision and the distance from the store to the RDC
plus the distance from the RDC to the CDCs. These relationships are first examined for the base case,
Figures 5.10 and 5.11. For the routing choices based on distance from the CDC, it can be seen that
up to 75 km, there is a stronger preference for direct delivery. After 75 km, the choice is almost at the
same level. For the distance to the RDC, there is a preference for direct delivery up to 140 km, and
after that, the choice is again around the same level.

Figure 5.10: Routing decisions per set of CDC - store
distances of the base case

Figure 5.11: Routing decisions per set of CDC - RDC + RDC -
store distances of the base case
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As a next step, the relationships were also examined for the first case, Figures 5.12 and 5.13. Here, it
can be seen for both relationships that indirect delivery generally takes place more than direct delivery.
Furthermore, no areas can be identified with a clear strength preference for a routing decision.

Figure 5.12: Routing decisions per set of CDC - store
distances of the first case

Figure 5.13: Routing decisions per set of CDC - RDC + RDC -
store distances of the first case

Unfortunately, for both situations, no convincing route choice can be recommended based on the dis-
tances. This assumes that no relationship can be found based on either of the distances alone.

The relationship between routing decisions and volumes
The second relationship explored is the relationship between routing decisions and volumes of demand.
This relationship is first examined for the base case, Figure 5.14. A strong preference can be seen for
direct delivery for volumes between 5 and 10 containers for a store. Here, there is a peak in preference
at volumes of 6 containers. Here, the choice is almost 6 times more likely for direct delivery. For the first
case, this relationship is, unfortunately, less intense, Figure 5.15. Here, between 1 and 15 containers,
there is a slight preference for indirect delivery, but the number of choices is still enormously close here.
Between 6 and 13 containers, there is an increase in this preference, but it remains small.

Figure 5.14: Routing decisions per set of volumes of the base
case

Figure 5.15: Routing decisions per set of volumes of the first
case

Despite a preference for direct delivery for the base case within a specific range of containers, no
advice can be given outside this range. For the first case, this is even more general as no convincing
advice can be provided for almost no number of containers. It is thus assumed here that this general
relationship between the number of containers and route choice cannot be found either.
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The relationship between routing decisions, distances and volumes using a logistic regression
model
The third relationship explored is the relationship between routing decisions, distances and volumes. A
correlation between these could allow an assumption to be made for route choice. Given the high run
time, it could be advantageous to estimate the routing decision with a rule of thumb. This rule-of-thumb
was determined using a logistic regression (Yu et al., 2011). A logistic regression was chosen as a
method, given the possibility of applying binary outcomes. For this case study, the binary outcome
1 equals direct delivery from the CDC, and 0 equals indirect delivery. The objective function is most
influenced by the distance to stores and by the volume of demand. Therefore, these elements are
included to fit the data using the logistic regression. A regression function is formulated:

x = a · discdc,store + b ·
∑

p∈(P :op=cdc,dp=store)

volp + c · (discdc,rdc + disrdc,store) + d (5.12)

The coefficients a, b, c and d are fitted on the data. A probability of the routing decision can be deter-
mined from the result of Equation 5.12 where the coefficients are fit to the data and the distances and
volume of the new store can be entered:

P(x) =
1

1 + e−x
(5.13)

If the probability is 0.5 or higher, the advice is to deliver directly from the CDC. If the probability is lower
than 0.5 it is advised to deliver indirectly. The data is split into a train set and a test set. This division is
done with a ratio of 80 : 20.The coefficients are determined for the base case, and the accuracy of this
regression equals 63.5%. While this regression function is influenced by three variables, a 3D graph
should be used to give instant insight into all routing decisions. For ease of use, the average value
is chosen so that a constant value for the volume can be assumed. For the base case, the average
volume equals 4 containers. A 2D graph can be plotted based on this average volume so that easy
insight can be gained into the advice for the routing decision, Figure 5.16.

Figure 5.16: Regression of routing decisions of the base case

For the base case, the average volume equals 4 containers too, and the accuracy of this regression
equals 68.9%. This regression is visualized in Figure 5.17.
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Figure 5.17: Regression of routing decisions of the first case

An overview of the coefficients and accuracies of all cases is shown in Table I.1. Corresponding figures
of the regressions for the average volume are added to Appendix I. To make this rule-of-thumb more
general, matrices can be created where advice can be obtained for each distance and volume combi-
nation. This makes it possible to give advice for the routing decision with reasonable certainty without
immediately performing another two-day run.



6
Conclusion, discussion and

recommendation

This chapter will first conclude the study using the main and sub-research questions formulated earlier.
Next, a discussion will compare this research with the literature, and it will also indicate the limitations
of the study. The chapter will conclude with a recommendation.

6.1. Conclusion
The goal of this research was to design a large distribution system for the allocation of stores and
the routing of vehicles. Four sub-research questions have been formulated to help answer the main re-
search question that is linked to the goal of this study. The first sub-research question can be answered
based on the system analysis:

What are the characteristics of this distribution system?

The distribution system analysed in this research focuses mainly on the tactical decision level. The
decisions corresponding to this level include fleet size, frequency of delivery, allocation of stores to DCs
and consolidation of deliveries. The flow between DCs and stores bounds the system. The locations
are all known in advance and consist of CDCs, RDCs and stores. Stores are always allocated to one
RDC and to all CDCs. The fleet consists of three types of trucks. The first type drives between CDCs
and RDCs, the second between RDCs and stores and the third between CDCs and stores. The demand
of stores may change over time, and the stores are supplied multiple times a week. Deliveries may
be restricted to a certain time window in which the delivery must be done. A set of KPIs is formulated
to track the performance of the network. The KPIs are stated as follows: total cost of transport, total
distance and total number of vehicles. A case study is performed at a company in the Netherlands. The
company has opened a new CDC, necessitating an overhaul of its distribution system. Stores need to
be reallocated to the DCs. Three types of trucks must be taken into account for this case study. While
the company wants the stores to be allocated to a single set of DCs, the network can be optimized
for a representative day, and time does not need to be considered. Now that the characteristics of the
system are known, the second sub-research question can be answered based on the literature:

Which methods can be used to formulate a planning model regarding this distribution sys-
tem?

Various properties of network designs have been investigated in the literature. The distribution system
from this research focuses mainly on the tactical decision level. Therefore, the system can be formu-
lated as a service network design. The stores can be supplied directly and indirectly, and consolidation
can occur at several DCs. An arc-based representation aligns best with the consolidated deliveries,
while the commodities and services can be distinguished per arc. For now, time can be left out of
consideration, but the arc-based formulation allows us to include this in more in-depth research. The
models of Crainic and Hewitt (2021) and Ambrosino and Scutella (2005) contain several characteris-
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tics of the distribution system from this research and are therefore used as an input for constructing the
model. The other parts of the mathematical model, which mainly focus on the routing of the vehicles,
are considered a contribution to the literature because they are focused on the structure of the distribu-
tion system of this research. The third research question can be answered based on the characteristics
of the system and the methods to formulate the model:

How do you evaluate the performance of the system?

The performance can be tracked using the mathematical model. First, the mathematical model was
constructed using some assumptions and the literature reviewed earlier. This model was then verified.
This is an essential step for the continuation of the study. It was found that this model quickly runs
into computational complexities, and therefore, the limits were examined. Improvements have been
made based on a start solution, Gurobi input parameters, a callback function and a start solution. The
main KPI of this research indicates the performance of the system, so the total cost of transportation.
This KPI is the objective function of the model too. The computational characteristics of the model
are essential to track. The complexity and run times influence the usability of the model. The fourth
research question can be answered based on the answer to the previous research question.

What is the performance of the distribution system, given the data from the case study?

A computational plan was carried out to investigate the impact of various solution enhancements on
the model. This showed that for all types of networks, combining all strategies yields the best outcome.
The callback makes sure that the model does not remain in the same gap for an extended period of
time, the input parameters are included for a higher solving efficiency, and the start solution is required
to avoid issues in finding the first solution. When these methods are used, it is possible to reduce the
gap and run time, which are crucial variables. The combination of these methods and the clustering of
data enables us to solve a model of this size. This combination, which is specified for the distribution
system of this research, is considered a contribution to the literature. What must be noted here is that
the callback function and the clustering result in a sub-optimal and somewhat surrealistic output, which
needs to be interpreted correctly. One needs to ensure that the gap between the given solution and
the best solution and data aggregation results in an error and uncertainty in the results. Five cases are
examined in the experimental plan. The base case consists of the company’s input and route choices,
the outcome of which has been recalculated by our model. This was then verified with the company’s
current calculations. Here, a difference emerged, explained by clustering data in this study’s model.
Based on this explanation and an expert check, it was assumed that the model works correctly. The
first case involves optimising the model with respect to the current situation. From this, an improvement
was seen regarding the main KPI, total cost, of 5.3%. The two other KPIs, the total distance and total
number of vehicles, perform slightly less than the base case. The second case introduces the possibility
of consolidation of demand at the CDCs. This case results in improvements on all metrics compared
to the base case, with an improvement on the total costs of 5.4%. It is also an improvement over the
first case with a small reduction in cost but a significant improvement for the other two KPIs. In the first
case, demand from the CDCs cannot yet be consolidated. Consolidation is possible at the RDCs and
this can explain why indirect deliveries have a higher share. There is a more optimal transport from
the RDCs due to the higher load rates. Therefore, in the second situation, you see a strong transition
because demand can be consolidated at the CDCs. Thus this transport also improves with a higher
load factor as follows. Transport costs between CDCs and RDCs are reduced five times in the third
case. This reduction is due to the increasing costs of last-mile delivery and improvements in shuttle
journeys. This case provides insight into the behaviour of the model with respect to route choices. The
model behaves as expected. When the costs of transportation from the CDCs to the RDCs reduce,
the number of direct deliveries decreases and the number of indirect deliveries increases. Changes in
volumes represent real-world behaviour and are included in the fourth case. Again, this case provides
insight into the behaviour of the model with respect to route choices. When the volume decreases,
the number of direct deliveries decreases and the number of indirect deliveries increases. When the
volume increases, the number of direct deliveries increases, and the number of indirect deliveries
decreases. The truckload is, therefore, essential to take into consideration. Transport costs decrease
with increasing load rate. Thus, a key component of distribution is the consolidation of demand. The
shuttle costs plus the processing costs at the RDC must be less than direct transport from the CDCs
while combining at the RDCs. As a fifth case, the model is tried to solve without clustering on the the
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company’s server by converting the model from Gurobi to PuLP. Unfortunately, the server also proved
to be not powerful enough. As a result, it was impossible to compare the performance of clustering
with the situation where the data was not clustered. Through a sensitivity analysis, the model was
found to be sensitive in the performance metrics to changes in volume but not as sensitive to changes
in route choices. For changes in transport costs between CDCs and RDCs, an inverse relationship
was found. The computational values were also tracked to understand the optimisation performance,
and the average run time per case equals 29 hours. The study evaluated results from three angles.
First, it compared performance metrics, with the main metric, the total costs, being the most important.
Consolidating demand at CDCs proved successful, resulting in a 5.4% cost improvement. However,
the third and fourth cases couldn’t be directly compared to others while they have a direct influence on
the total costs. It was observed that lowering transportation costs between CDCs and RDCs increased
indirect deliveries, while higher volumes led to more direct deliveries. Second, the study examined
results based on routing decisions, noting differences in attractiveness between direct and indirect
deliveries. Specific postal codes, especially 48 and 94 (RDC 20002), consistently influenced total costs
and are recommended routing changes. Third, the study explored the relationship between routing
decisions, distances, and volumes. While no direct links were found between routing decisions and
distances or volumes individually, logistic regression offered accurate advice (ranging from 63.1% to
78.0%) for routing decisions based on store distance to CDCs, store distance to RDCs plus RDC-to-
CDC distance, and store demand volume. Now that we also know the performance of the distribution
system, we can conclude the study and answer the main research question:

How can a large distribution system be designed for the allocation of stores and routing of
vehicles?

In conclusion, this research aimed to design an effective distribution system for store allocation and ve-
hicle routing, addressing the main research question. Four sub-research questions guided the study,
delving into system characteristics, planning model formulation, system performance, and the general-
izability of findings. The analysis revealed that consolidating demand at CDCs can lead to significant
cost improvements because of the higher truckloads. Changing transport costs between CDCs and
RDCs and adjusting order volumes can influence delivery strategies. Moreover, the study identified spe-
cific postal codes as crucial in routing decisions. Despite the absence of direct relationships between
routing decisions, distances, and volumes, logistic regression models provide guidance. Notably, the
findings suggest that this distribution model can be adapted to various scenarios with different network
structures, making a general contribution to the literature. Overall, this research contributes valuable
insights into the design of large-scale distribution systems, offering a foundation for more efficient and
cost-effective store allocation and vehicle routing strategies.

6.2. Discussion
First, the generalisation of the case study’s findings is formulated. Second, the results of this study will
be compared with the literature to determine its contribution to the literature. Then, the limitations of this
study will also be recalled. Finally, environmental considerations in the route decisions are discussed.

6.2.1. Generalisation of findings
The model can easily be implemented in other situations. However, this requires the structure of this
distribution system to be of the same form. Thus, the network consists of CDCs, RDCs and stores.
Here, three different types of vehicles can be used, each on its own part of the network. However, the
characteristics of these vehicles can be adjusted. In addition, it is not necessarily necessary to receive
orders from both CDCs and RDCs as the volumes can also be set to 0. The number of CDCs and RDCs
is variable and can be reduced or increased. The same applies to stores. Thus, it can be seen that
this model is generalised and can be easily reapplied. However, the model can be adapted to specific
preferences, and a time element can be added, for example.

6.2.2. Comparison with literature
One of the results of this study indicates that distance from the DCs and volumes influence the routing
decisions. Especially with a high truckload and a small distance to the CDC, it indicates direct delivery.
Hiohi et al. (2015) discovered the same relationship between direct and indirect delivery. In case the
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delivery nodes are at a relatively close distance to the DCs, and if the demand size is large enough to
ensure a high load of the vehicle, direct delivery is often advised. If one of these arguments does not
hold, indirect delivery is more appropriate often. The same relationship between the volume and con-
solidation is stated by Crainic and Hewitt (2021), Bakir et al. (2021) and Crainic and Kim (2007). They
state that no consolidation will take place when the size of demand is large enough compared to the
capacity of the vehicle. Geurs (2022) experienced an equal problem regarding large-scale optimization.
The customers are aggregated to the postal code 2 level too. An expectation in difference in costs is
stated in this study and this aligns with the finding of this research, while there is a difference in the
results of the base case and the validation. Abbasi et al. (2019) faced the same problem regarding the
computational complexity of a large-scale problem. They mention that with an increase in nodes, the
size of the scale to solve the problem quickly grows. They implement a Variable Neighborhood Search
(VNS) algorithm to avoid this problem.

6.2.3. Limitations
This study contains several limitations like the exclusion of time, the exclusion of capacity limits of DCs,
restrictions on the computation, the use of a representative day and clustering of data. First, time is
assumed to have little influence on the optimal outcome. But to make themodel align better with the real
world, it is essential to include the time dimension. Restrictions on delivery time can be included, and
vehicles can be selected for multiple routes per day. Second, the model tries to find an optimal solution
for the entire distribution system. All DCs have a minimum and a maximum capacity. The minimum
capacity is linked to the cost of using this DC. A DC must trade a specific size of demand to be valuable
and net something. The maximum capacity is set more or less by the physical limitations. These
capacity limits may influence the outcome. Third, restrictions are imposed for the optimization, like a
callback function. The optimiser gets terminated if the change in gap development has been smaller
than 1% for longer than 20min. This results in a difference between the best-bound and the incumbent
solution. So, a more optimal solution can be found without the callback function. Fourth, the data is
based on a representative day. While the volume has a significant influence on the routing decisions,
this can result in different outcomes when changes occur. The model, therefore, may be optimized for
several volumes to have a more realistic set of decisions. Fifth, the data and hence optimisation are
clustered to reduce complexity and thus stay within limits. With this, there is a sub-optimal outcome
shown in Figure 6.1.

Figure 6.1: Sub-optimality in transport due to clustering

Two of the three transport flows are sub-optimal because of clustering. Route choices are determined
by postal code, and then, based on that choice, transport is set up for all stores within that postal code.
This, therefore, allows demand to be consolidated only for stores within that postal code. From both
CDCs, only demand coming from there can be transported and thus cannot be consolidated with other
demand from other DCs. However, vehicles can drive past multiple stores. At the RDC, demand from
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that RDC and from both CDCs can be consolidated if it comes through this DC first. So here, the load
factor is in all likelihood higher, and this transport is more optimal. So, this flow is reasonably optimal
compared to the other two. However, the flows can still be a lot more optimal, and thus the load factor
higher if the transport is set up without clustering. Then, more demand can be consolidated. This is
also one of the reasons why the share of indirect delivery is currently expected to be higher.

6.2.4. Environmental considerations in route decisions
In the current model, the total distance driven and average truckload are determined and included in
the results, but no constraints are based on them. Given the recent developments regarding environ-
mental awareness and the corresponding new regulations being drawn up for transport, it is essential
to consider this. Total distance and truckload are somewhat linked. The higher the truck load, the fewer
vehicles are needed, and this is likely to have a positive impact on the total distance driven. Now, of
course, the cheaper option may not imply a smaller distance to be driven, but in general, it can be con-
cluded that fewer vehicles result in fewer kilometres. In addition, empty truck movement is also present
in the system. This is not directly included at the moment but is also definitely something to consider.
Vehicle type 2, which drives from CDCs to the stores, are rented, and thus the empty truck movement of
this type is not considered. For vehicle types 0 and 1, this does matter. When the demand is delivered
to the stores, they drive back partly empty. However, stores have packaging that needs to be returned
to the DCs, so the vehicles generally never drive back without any load. This could be an interesting
follow-up study to include this in the optimisation. So, the choice may ultimately be made to positively
influence the total distance driven, total number of vehicles and truckload in the objective function with
which the cost may therefore be higher. This adjustment contributes to a better environment.

6.3. Recommendation
Recommendations may apply to current or upcoming research. The practice recommendations are
discussed first. These guide the actions needed to put the study’s findings into practice. Following that,
suggestions for additional research will be made.

6.3.1. Practice recommendations
There are several recommendations for the company to use this model. Given the accuracy of this
model to plan transport at vehicle level and to include actual distances, times and costs, route choices
can be made even better. This avoids the more general assumptions for the number of stores visited by
a vehicle in the company’s model, for example. An important thing to note is that due to clustering, the
results are more or less surrealistic. It is expected that the number of indirect deliveries is over-valued,
while the load rate is higher from RDCs to the stores in the model. This is all due to the clustering and is,
therefore, essential to avoid. More server capacity is needed to run the model, so this is something to
focus on. While the model takes quite some time to get to the optimal solution, the logistic regression
function can be used. The company may solve the model for several scenarios and calculate the
coefficients of this function. This function can then be used for half a year, for example. Based on the
distances to the stores and the volumes, the routing choice can be determined quickly when using this
function. Furthermore, based on the results, it can be noted that consolidation at the CDCs is beneficial
for the costs of transportation. Therefore, it is strongly advised to start planning to make this possible.
In addition, based on the expectation of the increase in last-mile delivery costs and the decrease in
transferring costs, it can be seen that this will involve a shift from direct to indirect delivery. This shift
should, therefore, be factored into planning for the coming years.

6.3.2. Further research
The advice for further research is linked to the limitations of this current study. First, it is advised to
include the time dimension in the model. This constraint can be written in the following form (Andersen
et al., 2009) for example:

T = {t} = {1, ..., Tmax} (6.1)
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∑
(i,j)∈A:Ti≤t≤Tj

yvcij − δvc = 0 ∀v ∈ V, c ∈ C (6.2)

δvc ∈ 0, 1 ∀v ∈ V, c ∈ C (6.3)

Here, the planning period is divided into time periods, Equation 6.1. The vehicles can only be used in
one activity per time period, Equation 6.2. The δvc indicates whether a vehicle is used or not, Equation
6.3. Vehicles can be used multiple times and stores can be supplied within specific periods of time by
including this. Second, the capacity of the DCs can be added quite easily. The total outgoing demand
from the DCs must be between two boundaries, a minimum and a maximum. This constraint can be
written in the following form for example:

∑
j∈N+(i)

∑
p∈P

∑
v∈V

∑
c∈C

xpvc
ij > mini ∀i ∈ (N cdc ∪Nrdc) (6.4)

∑
j∈N+(i)

∑
p∈P

∑
v∈V

∑
c∈C

xpvc
ij < maxi ∀i ∈ (N cdc ∪Nrdc) (6.5)

In these formulas, the mini and maxi can be set per DC. This ensures that all DCs remain valuable
to keep in use. Third, avoiding the callback function is possible when more time is available for the
optimization. This function is only added to limit the run time, but if the run time matters less, it can
be switched off. In addition, a larger server to run the code on will also reduce the run time so again
the time can be limited with an optimal outcome. Fourth, clustering has the most significant impact on
the outcome. Therefore, it would be of great value to avoid this. This can be avoided by running the
code on a large server. The fifth case of this case study already tries to avoid the clustering, but it still
seemed too complex to solve. Therefore, another larger server needs to be used actually to run this.
Here, choices can be made to connect all stores or, for example, only create arcs between stores for
the five closest ones. Also, the choice can be made to optimise per RDC, thus reducing the size of
the problem somewhat. The recommendation is to optimise per RDC with a restriction on the store
arcs because it is expected that this alone will contribute significantly to the outcome and is already a
reasonable approximation of the actual optimal situation.
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Abstract
Efficient distribution is crucial in many industries today, especially in retail, where customer demand grows rapidly.
The rise of online shopping and automation has led to a shift towards using Central Distribution Centers (CDCs).
Retailers are part of this trend, which requires them to rethink how they handle their distribution. This study
focuses on two main challenges: first, changing the distribution system to adapt to new CDCs, and second, dealing
with the computational complexities when optimizing the distribution on a large scale. The aim is to design a
large distribution system for the allocation of stores and the routing of vehicles. In this research, we introduce
new elements to the mathematical model, which are mostly focused on the routing of vehicles. We also improve
the computation by implementing a start solution, adjusting the parameters of the Gurobi optimization tool and
including a callback function which bounds the run time. This model will determine the routing decisions for
demand from several DCs to the stores and find the optimal vehicle routes. Through a case study at a company in
the Netherlands, this paper provides insights into the changing world of distribution systems. It offers practical
solutions for businesses trying to make their distribution processes better. The analysis revealed that consolidating
demand at CDCs can lead to significant cost improvements while altering transport costs between CDCs and
RDCs and adjusting order volumes can influence delivery strategies. Despite the absence of direct relationships
between routing decisions, distances, and volumes, a logistic regression model provides guidance.

Keywords: Distribution System Design, Location-Routing Problem, Transportation, Retailer-Depot Allocation

1 Introduction

Distribution plays a significant role in many industries due to growing demand (Munasinghe & Rupasinghe, 2016).
The same is true for the retail industry. Retailers must ensure that their supply chains are effective and can fulfil
consumer needs. To do this, a focus is needed on inventory management and transportation (Lagorio & Pinto,
2021). Several factors influence the need for innovation in inventory management. First, as companies struggle
to recruit employees, they are forced to automate their inventory systems (PWC, 2023). Second, customers
are increasingly getting used to a flexible market where last-minute changes can be made to their orders and
orders can be delivered at short notice (Tarry, 2022). This plays a significant role in the growth of e-commerce
in the retail industry (Morgan Stanley, n.d.). To increase the efficiency of a company’s inventory system and
transportation, there is a trend of more and more companies returning to automated Central Distribution Centres
(CDCs) where they can easily handle a large proportion of orders at one location. Bol.com and Albert Heijn are
examples of such companies where this trend has also impacted and which has also brought to life an automated
CDC that (partially) replaces several non-automated Distribution Centres (DCs) (Stad, 2022). The building of



new CDCs forces companies to adjust their transport schedules. Stores need to be reassigned to the Regional
Distribution Centre (RDC) they are currently assigned to or to the new CDC. The demand can be delivered from
the CDC directly or from the CDC via an RDC. Consolidation of demand can take place at an RDC, which can make
it attractive to deliver from that DC. Here, financial and environmental aspects need to be taken into account by
the company. The financial aspect is important to remain competitive in the market. Higher costs in transport
and logistics will eventually be passed on to the customer. Today, the environment is becoming an increasingly
important aspect to consider. Society and the government are both encouraging improvements in this area. As a
direct result, companies must have this focus too.
A challenge that arises from the described developments is the need for a change of structure of the distribution

system. This challenge can be split into two parts: an industrial challenge and a computational challenge. The
industrial challenge arises due to the opening of the new DC. The distribution system must be adjusted to reallocate
the stores to the DCs. The computational challenge arises due to the size of the distribution system. The larger the
distribution system, the higher the number of options for allocation and routing, which all need to be evaluated.
The complexity influences the computational forces needed to solve the model. Therefore, the purpose of this
study is to provide an answer to the following question: How can a large distribution system be designed for the
allocation of stores and routing of vehicles?
Although there have been numerous papers written on this subject and its variations, there is still room for

research. The mathematical model for the distribution system of this research will be built on existing models.
New parts will be added to the combination of existing parts as a scientific contribution. The new parts will
involve various modalities that can be deployed on limited parts of the system. Adjustments regarding the input
parameters of the optimization tool, a callback function and math-based heuristics will be implemented to avoid
reaching the computational limits. This study will provide a solution to the more complex allocation of stores and
help businesses further design their distribution system.
A case study will be conducted in the Netherlands. The company has several DCs and a large number of

locations. The company has opened a new CDC, necessitating an overhaul of its distribution system. Stores need
to be reallocated to the DCs.

2 System analysis

To correctly represent the distribution system in a mathematical formulation, it is essential to analyse the system.
The main characteristics are the decision level of this optimization, the system’s boundaries, the locations of DCs
and stores, modalities used for the distribution, demand specifications, time restrictions and performance metrics.
This study mainly focuses on the tactical decision level of a network model. The tactical decision level

corresponds to medium-term decisions regarding the design of a network. These decisions include the allocation
of stores to DCs, the frequency of delivery, consolidation of deliveries and the fleet size, among others. DCs and
stores bound the distribution system, Figure 1. This means that the flow of raw materials, the production of
commodities and the transport from the factories to the DCs are left out of consideration. The system boundary is
indicated in the figure with a black dotted line, and the flows left out of consideration are indicated with black
arrows. Besides these flows, the flow from the stores to the customers is left out of scope too. Only the flow within
the network between the DCs and stores is considered.
The locations of all DCs and stores are known. The DCs have a fixed capacity, and the stores have a known

demand. The system includes CDCs and RDCs. Stores can be supplied from the CDC directly or from the CDC via
an RDC. The focus of this research is on the distribution of demand from the DCs to the stores. All stores receive
demand from all CDCs and from one RDC. For each store, the decision must be made per CDC whether or not
there is direct or indirect delivery. The delivery from RDCs will, therefore, include consolidated deliveries. This
results in a balance between the costs of delivery from the CDC directly to the stores or the costs from the CDC to
the RDC, consolidation costs and costs of delivery from the RDC to the stores. Usually, the demand for stores
changes over time. Stores are supplied multiple times a week. Routing schedules can be constructed per day of
delivery. But while this study focuses on the tactical level, a representative day will be chosen to allocate the
stores. The demand is multi-commodity while it has an origin, a destination and a type and number of products
which differ per store. A store receives demand from all CDCs and from one of the RDCs. There are three possible
scenarios for delivery. In the first scenario, the demand from all CDCs and the RDC is delivered directly. No
consolidation of demand takes place in this scenario. In the second scenario, demand is delivered directly from
a part of the CDCs. The other CDCs send demand to the RDC, where it will be consolidated for delivery to the
store. In the third scenario, all demand from the CDCs is sent to the RDC for complete delivery consolidation.
The demand for this model is transported by trucks. There are three types of trucks used for delivery. The first
truck type is used for transportation from the CDCs to the RDCs. The second truck type is used for transportation
from the RDC to the stores. The third truck type is used for direct transportation from the CDCs to the stores.
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Figure 1: Structure of the distribution system

This results in a heterogeneous fleet. The capacities and costs of these trucks may differ by type. The delivery to
stores may be restricted by certain times. Since converting a model to a time-space network will have a significant
impact on the computational forces for optimising the model and the assumption is made that the time constraints
will not have particularly large influences on the optimal outcome, this is left out of consideration.
Performance metrics of this distribution system are determined using Key Performance Indicators (KPIs). The

most important KPI is the total cost of transport. The total cost of transport includes the routing costs and the
processing costs. The routing costs consist of costs of transportation between a CDC and an RDC, a CDC and
a store, an RDC and a store and between two stores. The processing costs are variable and based on the size
of demand transported from the CDCs to the RDCs. The second KPI is the total distance driven by all vehicles.
The third KPI equals the total number of vehicles needed to transport all demand. Four other metrics are used to
evaluate the performance of the model. These metrics are the costs per container, load per vehicle, drop size per
stop and the number of stops per vehicle. The costs per container are preferably as high as possible, and the load
per vehicle, drop size per stop and stops per vehicle as low as possible.

3 Literature study

Literature can be studied now that the system characterizations are specified. Methods from previous studies can
be analysed to determine which methods suit best for this study.
Network design is a general term for various distribution system problems. Network designs contain four

decision layers: topology, location, allocation and routing decisions. The topology layer decides the structure of
the network. The location layer determines where the facilities must be located in the network. The allocation
layer allocates customers to open facilities. The routing layer decides the routes for the vehicles to satisfy the
demand. Network designs are widely used in distribution system problems (Crainic, 2000). Network design
deals with strategic decisions which may contain significant investments and which focus on the long term. These
formulations are defined on graphs, which have nodes that are connected by links. When the links are directed,
they are represented by arcs. The nodes can represent origins and destinations. The links may have costs, length
and capacity. The main objective of network designs is to select links in the network to satisfy all demands
for distribution by minimizing the total costs. A commonly used version of the network design is the linear
cost, incapacitated, multi-commodity (MCND) network design. Multi-commodity networks include two or more
commodities that must be distributed from a specific origin to a destination (Salimifard & Bigharaz, 2022). Multi-
modality networks use multiple modes of transportation for the distribution of demand. Combinations of these
modes can be made to reduce the total costs of the transport. Another advantage of multi-modal transportation
corresponds to the sustainability of the transport, which can be increased.
A service network design focuses mainly on the tactical level but includes some strategic and operational

characteristics. This aligns with the decision level of the distribution system from this research. A service network
design aims to plan the resources and activities to satisfy the demand (Crainic & Hewitt, 2021). The operation of
a vehicle is called a service. Service network design usually takes place in the context of transportation based
on consolidation. Consolidated transportation considers capacities and service schedules. Several orders can be
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combined within the same vehicle, and multiple vehicles may be used for one delivery from origin to destination.
The service contains a route and physical as well as operational characteristics. The physical characteristics include
the vehicle type and vehicle capacity, for example. The operational characteristics include the costs, total trip
time and departure time. The goal of tactical planning is to create a distribution plan and schedule that will
minimise the negative effects of consolidation, meet customer demand and service-quality standards and be
profitable and effective to run. It discusses system-wide operational planning to choose and schedule services and
transfer and consolidate activities at terminals. The service network design combines two sets of choices. The
first set corresponds to the frequencies or schedules of the operations of the services. The second set includes
the routes. The routes contain an origin, destination and intermediate stops. A service network design contains
various characteristics. As stated, the design can be capacitated or incapacitated (Andersen et al., 2009), one
single or multiple commodities may be used, and the network may allow consolidation of deliveries (Andersen
et al., 2009), so it can consist of direct and/or indirect deliveries. Other characteristics are the flow type of the
model, which can be arc or path-based, fixed charge or variable charged (Andersen et al., 2009), and time-based
so that frequencies can be set.
Hubs are used to connect a large number of nodes by using a relatively small number of links in Facility

Location - Network Design (FL-ND) (Maknoon, 2022). Consolidation can take place at hub facilities. The costs
are affected by the network design and economy of scale rules often. All locations are represented by nodes, the
infrastructure by edges and the route of products by arcs. An origin, a destination and a volume characterize
the commodities. The connection layout of the network can be grouped into six design basics: a line topology, a
star topology, a ring topology, a tree topology, a mesh topology and a hybrid topology. Hubs are connected by
a single line in the line topology. All nodes are linked to a single, central, hub through which all traffic passes.
Each hub is connected to two other hubs in a ring topology. This results in a low probability of failure. In a mesh
topology, hubs are partially or fully connected. In the hierarchy, tree topology, structure all locations are arranged
in a hierarchal way. The network of Ambrosino and Scutella (2005) is an example of a tree analysis. This network
consists of a plant, multiple central depots, multiple regional facilities and clients. The use of depots and facilities
helps to reduce the last mile delivery costs as low as possible, while transport between facilities is often against a
significantly lower cost. Distribution centres can also function for resilience against disruptions (Alikhani et al.,
2021). The flow of commodities can be re-routed easily when a network consists of multiple distribution centres.
The hybrid topology is a combination of several other topologies. To create the proper network structure, four

steps can be followed. The first two steps are linked to the design decisions, and the second two to the operational
decisions. The design decisions consist of location decisions, so what locations should be considered as a hub and
topology decisions, so which link needs to be selected. The operational decisions consist of allocation decisions,
so the assignment of supply and demand nodes to hubs and routing decisions, so how demand is routed between
the origin and destination. This study focuses on the operational decisions of the distribution system. The stores
need to be allocated to the DCs, and the commodities need to be routed through the network. The tree topology
is assumed to best fit as a network structure. It is believed that the design decisions have already been made.
The flow in a service network design can be modelled path-based or arc-based (Ohmori, Yoshimoto, et al.,

2019). Arc (or link) based modelling focuses on all individual links between the nodes in the network (Andersen
et al., 2009). The design and optimization are performed on this level. Path (or route) based modelling focuses
on all routes that connect the origin and destination nodes. The design and optimization are performed on this
level of connecting the origin and destination with paths. This research implements an arc-based model.
Some networks include direct and indirect deliveries, just like the distribution system from this research. The

distinction can be made based on the size of the demand of particular locations. When a network consists of
plants and warehouses, it may be more cost-effective to first transport orders from a plant to a warehouse, where
they can be consolidated and delivered simultaneously. Trucks can be used with a higher load factor. A tree
topology can be used to apply various layers of distribution centres (Munasinghe & Rupasinghe, 2016). With
this, direct and indirect supplies can be achieved. Demand delivery can be made more efficient by consolidating
deliveries at a cross-dock (Sung & Song, 2003). Demand is distributed from origin to destination via distribution
centres. The demand arrives at a distribution centre and is directly loaded in another vehicle for the final delivery.
The delivery of demand that originates from the same place but has delivery locations in different regions may
be more efficient by splitting this delivery. The network, including direct and indirect deliveries, may differ in
structure. The network of Cheong et al. (2007) contains several suppliers, consolidation hubs, warehouses and
manufacturing plants. All suppliers are linked to a single consolidation hub, and all manufacturers are linked to a
dedicated warehouse. Consolidated shipping takes place between the consolidation hubs and the warehouses.
Another network, which consists of the flow of consumer goods, is designed by Cintron et al. (2010). This network
deals with four options for the transportation of goods. A combination of direct and indirect deliveries reduces
the total transportation costs.
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The distribution system from this study focuses mainly on the tactical decision level. Therefore, the system can
be formulated as a service network design. The stores can be supplied directly and indirectly, and consolidation
can occur at several DCs. An arc-based representation aligns best with the consolidated deliveries, while the
commodities and services can be distinguished per arc.

4 Mathematical model

The goal of this study is to design a large distribution system for the allocation of stores and the routing of vehicles.
The scope of this study is based on the system analysis. The movement between DCs and stores defines the
system’s boundaries. The locations, which include CDCs, RDCs, and stores, are all known in advance. Stores are
assigned to all CDCs, but they are only assigned to a single RDC. Three different vehicle types comprise the fleet:
vehicle type 0 transports demand from a CDC to an RDC, vehicle type 1 transports demand from an RDC to a
store and vehicle type 2 transports demand from a CDC to a store. This model converts the real-world situation to
a mathematical formulation using the methods from the literature study.
Several assumptions are made for the model. First, the volume of a commodity may be larger than the capacity

of a truck, so split delivery is possible. Second, a split delivery of a commodity must always originate from the
same DC. So the complete commodity is delivered from the CDC to the stores, or from the CDC via an RDC to the
stores, or from the RDC to the stores. Third, consolidation of commodities is possible for delivery. This allows it
to operate with a higher truckload. Fourth, transportation is possible between a CDC and an RDC. There is no
transportation possible between CDCs and between RDCs. Fifth, vehicle type 0 may start and end at a CDC and
only drive to an RDC. Vehicle type 1 may start and end at an RDC and may only drive to stores. Vehicle type 2
may start at a CDC and may only drive to stores. Sixth, the demand of all stores is met. Seventh, DCs have no
capacity limit as it is assumed that the demand of all stores does not exceed this. Eight, a maximum number of
deliveries is set per store based on the demand size and the number of DCs it is supplied from.
This model is based on the methods from the papers of Crainic and Hewitt (2021) and Ambrosino and Scutella

(2005). Constraints (2, 9, 17) are inspired by the formulations of Crainic and Hewitt (2021). Constraints (3,
5, 10, 11) are inspired by the formulations of Ambrosino and Scutella (2005). The objective function (1) and
constraints (4, 6, 7, 8, 12, 13, 14, 15, 16, 18) are a potential contribution of this paper to the literature.

4.1 Sets, parameters and variables

The sets of this model can be divided into five categories. The first category contains all sets of nodes. The
second category includes all sets of arcs. The third category contains a set of commodities. The fourth category
comprises sets corresponding to the vehicles. The fifth and last category includes the set of route types. The
parameters of this model can be divided into three categories. The first category contains all parameters regarding
the commodities. The second category includes all parameters regarding the vehicles. The third and last category
contains parameters regarding the routes. Table 1 describes the sets, parameters and decision variables.

4.2 Formulation

min
∑

(i,j)∈Adc+

∑
v∈V

fcij ·yv0ij +
∑

(i,j)∈Adc+

∑
p∈P

∑
v∈V

pc·xpv0
ij +

∑
(i,j)∈(Ardcs+∪Ardcs−∪As)

∑
v∈V

(tc1·disij+hc1·timeij)·yv1ij +

∑
(i,j)∈Ardcs+

∑
v∈V

hc1 · flt1 · yv1ij +
∑

(i,j)∈(Ardcs+∪As)

∑
v∈V

hc1 · fut1 · yv1ij +
∑

(i,j)∈Ardcs+

∑
p∈P

∑
v∈V

hc1 · (vlt1+ vut1) ·xpv1
ij +

∑
(i,j)∈(Acdcs+∪As)

∑
v∈V

(tc2·disij+hc2·timeij)·yv2ij +
∑

(i,j)∈Acdcs+

∑
v∈V

hc2·flt2·yv2ij +
∑

(i,j)∈(Acdcs+∪As)

∑
v∈V

hc2·fut2·yv2ij +

∑
(i,j)∈Acdcs+

∑
p∈P

∑
v∈V

hc2 · (vlt2 + vut2) · xpv2
ij +

∑
(i,j)∈Acdcs+

∑
v∈V

erc · yv2ij (1)

Subject to the following constraints:∑
j∈N+(i)

yvcij −
∑

j∈N−(i)

yvcji = 0 ∀i ∈ N, v ∈ V, c ∈ C (2)
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Sets Description
No
de
s Ns Set of store nodes

Nrdc Set of Regional Distribution Centre nodes
Ncdc Set of Central Distribution Centre nodes
N Set of all nodes (Ns ∪Nrdc ∪Ncdc)

Ar
cs

Adc+ Set of arcs from CDCs to RDCs
Adc− Set of arcs from RDCs to CDCs
Acdcs+ Set of arcs from CDCs to stores
Acdcs− Set of arcs from stores to CDCs
Ardcs+ Set of arcs from RDCs to stores
Ardcs− Set of arcs from stores to RDCs
As Set of arcs between stores
A Set of all arcs (Adc+ ∪Adc− ∪Acdcs+ ∪Acdcs− ∪Ardcs+ ∪Ardcs− ∪As)
N+(i) = {j ∈ N : (i, j) ∈ A} Outward arcs of node i
N−(i) = {j ∈ N : (j, i) ∈ A} Inward arcs of node i

Co
m
m
od
it
ie
s P Set of commodities

Ve
hi
cl
es V Set of vehicles

C Set of vehicle types

Ro
ut
es Q Set of route types {indirect delivery, direct delivery : 0, 1}

Parameters Description

Co
m
m
od
it
ie
s volp Volume of commodity p

op Origin of commodity p
dp Destination of commodity p
rddp Indicates whether direct delivery of commodity p is permitted

Ve
hi
cl
es

capvc Capacity of vehicle of type c
tcc Transportation cost per kilometer of vehicle of type c
hcc Transportation cost per hour of vehicle of type c
fltc Fixed loading time of vehicle of type c
vltc Variable loading time of vehicle of type c
futc Fixed unloading time of vehicle of type c
vutc Variable unloading time of vehicle of type c
fcij Fixed cost for delivery between a CDC i and an RDC j
pc Processing costs per unit of demand from CDC at RDC
erc End of route costs for vehicle v of type 2

Ro
ut
es disij Distance between node i and j

timeij Travel time between node i and j

M Very large number
Decision variables Description

xpvc
ij

Non-negative real number representing the demand volume of commodity p
transferred on arc (i, j) by vehicle v of type c

yvc
ij

Binary variable, 1 if vehicle v of type c is selected for
design arc (i, j), 0 otherwise

zpqi

Binary variable, 1 if either commodity p is transported from a CDC to an
RDC (zp0i ) or if commodity p is transported from a CDC to a store (z

p1
i ), 0

otherwise

Table 1: Sets, parameters and decision variables
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∑
i∈Nrdc

∑
j∈N+(i)

yv1ij ≤ 1 ∀v ∈ V (3)

∑
(i,j)∈(Adc+∪Adc−∪Acdcs+∪Acdcs− )

yv1ij = 0 ∀v ∈ V (4)

∑
i∈Ncdc

∑
j∈N+(i)

yvcij ≤ 1 ∀v ∈ V, c ∈ [0, 2] (5)

∑
(i,j)∈(Acdcs+∪Acdcs−∪Ardcs+∪Ardcs−∪As)

yv0ij = 0 ∀v ∈ V (6)

∑
(i,j)∈(Adc+∪Adc−∪Ardcs+∪Ardcs− )

yv2ij = 0 ∀v ∈ V (7)

∑
i∈N−(j)

∑
v∈V

∑
c∈C

yvcij ≤
∑

i∈Ncdc

∑
p∈(P :i=op,j=dp)

zp1i · volp

cap0 2
+

∑
i∈Ncdc

∑
p∈(P :i=op,j=dp)(1− zp1i ) · volp +

∑
p∈(P :op∈Nrdc,j=dp) vol

p

cap0 1
+ 0.99 ∀j ∈ Ns (8)

∑
j∈N+(i)

∑
v∈V

∑
c∈C

xpvc
ij −

∑
j∈N−(i)

∑
v∈V

∑
c∈C

xpvc
ji =

 volp, i = op

−volp, i = dp

0, otherwise
∀i ∈ N, p ∈ P (9)

∑
j∈N+(i)

xpvc
ij −

∑
j∈N−(i)

xpvc
ji = 0 ∀i ∈ (N cdc ∪Ns : i ̸= op, i ̸= dp), p ∈ P, v ∈ V, c ∈ C (10)

∑
i∈N−(dp)

∑
v∈V

∑
c∈C

xpvc
idp = volp ∀p ∈ P (11)

∑
p∈P

xpvc
ij = 0 ∀(i, j) ∈ (Adc− ∪Acdcs− ∪Ardcs−), v ∈ V, c ∈ C (12)

∑
v∈V

xpv0
ij ≤ M · zp0i ∀i ∈ N cdc, j ∈ Nrdc, p ∈ P (13)

rddp ≤ zp0i ∀i ∈ N cdc, p ∈ P (14)

∑
j∈Ns

∑
v∈V

xpv2
ij ≤ M · zp1i ∀i ∈ N cdc, p ∈ P (15)

zp0i + zp1i = 1 ∀i ∈ (N cdc : i = op), p ∈ P (16)

∑
p∈P

xpvc
ij ≤ capvc · yvcij ∀(i, j) ∈ A, v ∈ V, c ∈ C (17)

yvcij ≤
∑
p∈P

xpvc
ij ∀(i, j) ∈ (Adc+ +Acdcs+ +Ardcs+), v ∈ V, c ∈ C (18)

xpvc
ij ≥ 0 ∀(i, j) ∈ A, p ∈ P, v ∈ V, c ∈ C (19)

yvcij ∈ {0, 1} ∀(i, j) ∈ A, v ∈ V, c ∈ C (20)

zpqi ∈ {0, 1} ∀i ∈ N cdc, p ∈ P, q ∈ Q (21)
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The objective function minimizes the total sum of the costs (1). The total costs consist of a fixed cost for
delivery between a CDC and an RDC, a variable processing cost based on the size of the demand from the CDC at
the RDC, a variable operating cost based on the distance driven for delivery from the DCs to the stores, a variable
operating cost based on the travel time for delivery from the DCs to the stores, a fixed cost for the loading of a
vehicle at DCs, a fixed cost for the unloading of a vehicle at a store, a variable costs for the loading and unloading
of a vehicle per unit of demand and a fixed cost for the end of a route of vehicle type 2. Constraint (2) is the
design balance conservation. Constraints (3 - 7) indicate routing restrictions. Vehicle type 1 may only start from
one of the RDCs and cannot enter or leave a CDC, vehicle types 0 and 2 may only start from one of the CDCs.
Vehicle type 0 cannot drive from a DC to a store, and vehicle type 2 cannot drive to an RDC and, therefore, drive
not from an RDC to a store. The maximum number of vehicles allowed to deliver at a store is set by constraint
(8). This maximum is based on the volume of demand and the number of DCs it is supplied from. For example,
when a store is supplied from both CDCs directly, and an RDC, and the volume per DC is less than the capacity
of a vehicle, the maximum number of vehicles to deliver equals three. So, the number of deliveries is based on
the number of DCs and the minimum number of vehicles needed to transport all demand, taking the capacity
of the vehicles into account. Constraint (9) is the flow conservation. It ensures that the commodity flow on all
incoming arcs of a node equals the commodity flow of all outgoing arcs. There are two exceptions: the origin
node and the destination node of a commodity. At these places, the commodity flow equals the volume of the
demand. Constraint (10) restricts commodities from switching from vehicles. All demand is satisfied by constraint
(11). Constraint (12) ensures that demand can not be sent back to a DC. Constraints (13 - 16) force that the
total volume of a commodity must be delivered via the same DCs while considering split deliveries. So, if the
commodity is originated at a CDC it can be delivered from the CDC directly or via one of the RDCs. Constraint
(17) makes sure that a service’s capacity cannot be exceeded, therefore, if one or multiple commodities are
transported by a vehicle, the vehicle must be big enough to carry these. A vehicle may not leave a DC without a
commodity due to constraint (18). Constraints (19 - 21) are the variable constraints.

4.3 Implementation

The model is translated to code using the Spyder software. The code is written in the Python language. The
model is solved using Gurobi. An HP ZBook Studio G4 with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
2.81 GHz and 16 GB of Random-Access Memory (RAM) is used as hardware for running the model.

4.4 Verification

A verification is performed to see if the model is a correct conversion of the real-world problem. Different
verification steps focus on other parts of the model to check this. First, the model’s outcomes are compared with
outcomes calculated by hand for a small-scale network. Second, two parameters are changed, and the model’s
behaviour is assessed. These parameters consist of the costs of transportation between the CDCs and RDCs and
the demand. Third, the store arcs have been added to check for consolidation of demand. Finally, a large-scale
network is inserted to see if the model performs as expected. The five verification steps are all successful, and no
inaccuracies are found in the model results. With that, it is assumed that the model works properly and can be
implemented in the case study.

4.5 Computation

The model quickly becomes very complex to solve. This is due to the number of variables required. The complexity
influences the computational forces needed to solve the model. The goal is to find the optimal solution for the
allocation of stores and the routing of vehicles. The Gurobi solver aims to find a solution in which the lower and
upper bound of the solution is equal to 0%. Although the optimality gap can be adjusted, the problem is still
very complex. The more complex the model, the longer it takes to solve it, and the more RAM is needed to store
the values. The number of variables needed to solve the problem can be determined based on the indices of the
different variables and can be calculated with Equation 22.

number of variables = |A| · |P | · |V | · |C|+ |A| · |V | · |C|+ |N cdc| · |P | · |Q| (22)

To give an insight into the complexity of this model, a network consisting of 2 CDCs, 4 RDCs and 100 stores is
chosen. This network results in 832 · 106 variables needed to solve the problem. A computational limit for the
hardware that contains 16 GB RAM is found for a model containing an approximate number of variables of 27 · 106
in total. To reduce the complexity of this model and the corresponding run times, a start solution can be added,
the Gurobi input parameters can be adjusted, and a callback function can be implemented. A start solution vector
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can save time searching for the initial solution and possibly reduce the optimisation area. When optimizing using
the Gurobi tool, there are default input parameters set that affect this process. These parameters can be adjusted
to match the model better. This model can be characterized as Mixed Integer Programming (MIP). The heuristic,
cuts, MIP focus and pre-sparsify have been set to 0.0001, 2, 1 and 2, respectively. Finally, a callback functionality
is used that reduces optimisation time. The optimiser gets terminated if the last iteration time is longer than
20 min ago, i.e. if the change in gap development has been smaller than 1% for longer than 20 min. All these
methods together improve the computation.

5 Case study

The case study is carried out for the distribution system of a company in the Netherlands. New locations are
opened yearly, resulting in a continuous need to improve the transport and logistics network. To continue to
meet growing demand, processes need to be made more efficient, and automation plays a significant role in this.
Therefore, a fully automated distribution centre will be opened. A large proportion of all products will be stored
in this CDC. A store will receive demand from both CDCs and from one of the RDCs. Now, the question is whether
it is more cost-effective to first transport demand from the CDC to the RDC before delivery to the stores. The
locations are known in advance and include two CDCs, four RDCs and a large number stores. The goal is to
allocate stores to one or multiple DCs. While the stores will always be supplied from an RDC, the main goal is
to determine whether or not they are supplied from the CDC directly or whether this demand is consolidated
at an RDC and transported from there. The order sizes of stores are different per day of delivery. Still, while
the company is interested in a fixed allocation of the stores to the DCs, the demand for a representative day is
considered for optimization. The distribution network is clustered two times due to the complexity. First, all
data is divided into four groups, one group per RDC (Nrdc). The stores (Ns) are assigned to one of the groups
based on the allocation. The first two digits of the postal codes of all locations are used to group this distribution
network. A small set of locations is not clustered based on their postal code due to their size of demand. A total
of 14 locations are left out of the clusters. Clustering these locations would have too big of an influence on the
optimization of locations in the same postal code area.

5.1 Computational plan

A computational plan is drawn up to test the various methods on the company’s inputs. This analysis consists of
a base configuration, i.e. without tuning, and four other configurations. Three different sets of input data are
compared for each configuration. The start solution added in the first configuration has no significant influence on
the results besides that the model has difficulties with finding a start solution, which results in a situation where
it can take hours or days to find the first solution. The second configuration includes adjustments to the input
parameters of the Gurobi tool. It can be noted that the optimization time reduces drastically, especially for the
more extensive networks. The gap difference decreases for the large network too. A callback function is added in
the third configuration. This callback function is helpful for more extensive networks where the gap stabilises
more or less after a while. The time limit is reached in the first two configurations and the base configuration, but
the run time does not reach its limit in the third configuration. Combining all methods results in the most optimal
situation for all types of networks. The start solution is needed to avoid difficulties in finding the first solution,
the input parameters are added for a higher solving efficiency, and the callback ensures that the model does not
stay around the same gap for a long time. In the end, the gap and run-time are important factors to reduce, and
that is achieved in the combination of all methods.

5.2 Experimental plan

The distribution network is analyzed in a base case, a validation and five new cases. Optimal results are determined,
and insight into the network can be gained from these cases and their scores on the performance metrics. The
base case represents the company’s current situation. It uses the existing data as input for the model, but also the
company’s route choices. Next, the outcome of this case is validated with the company’s calculations concerning
the KPIs regarding the same input. There is a difference in the main KPI, the total costs of transport of 7.3%. This
difference is expected to be the result of the callback function that is used and the clustering of the data. The
callback function stops the optimisation when a specific criterion is met. A difference between the incumbent
and best-bound solution is the result. The clustering disables the opportunity of consolidating the demand. This
leads to less efficient transport, while the truckload is expected to be lower. Based on this, it is assumed that the
model performs correctly. Five experimental cases follow the validation. The first case is an optimisation based on
the current data. Here, only the route choices are redefined by the model. The first case has an improvement on

Page 9 of 14



the total costs of transport of 5.3% compared to the base case. The two other KPIs, the total distance and total
number of vehicles, perform slightly less than the base case. The other four metrics perform better. This indicates
that the routing decisions of this case are better than the current ones. This also suggests that optimisation is a
better approximation for route choices than the current models. The second case introduces the possibility of
consolidation of demand at the CDCs. It is expected that it will become more attractive to consolidate demand at
the CDCs and then deliver directly rather than consolidate at RDCs. The metrics of this case are all positive and
so an improvement compared to the base case. In addition, it is also an improvement on the first case because all
the results are an improvement. In the third case, transport costs between CDCs and RDCs are reduced five times.
This reduction reflects the current developments regarding the increase in the costs of last-mile delivery and the
possibility of making shuttle journeys cheaper and more efficient because this is owned and regulated by the
company. This case provides insight into the behaviour of the model concerning route choices. The model behaves
as expected. When the costs of transportation from the CDCs to the RDCs reduce, the number of direct deliveries
decreases and the number of indirect deliveries increases. Then, the fourth experiment considered is changing
the volume. Since the volumes of stores vary continuously, it is essential to discover how this affects the route
choices made. Again, this case provides insight into the model’s behaviour concerning route choices. When the
volume decreases, the number of direct deliveries decreases and the number of indirect deliveries increases. When
the volume increases, the number of direct deliveries increases, and the number of indirect deliveries decreases.
Finally, an attempt is made to solve the model without clustering for a more realistic outcome. For this, the model
is converted from the Gurobi to the PuLP tool and the company’s server is used to run the code. Unfortunately,
the server also proved to be not powerful enough. As a result, it was impossible to compare the performance of
clustering with the situation where the data was not clustered. The robustness of the model was also examined to
analyse the behaviour of the outcomes. This showed that the model is sensitive to changes in volume regarding
the performance metrics but not really sensitive regarding the routing decisions. The analysis also showed that
the model is not really sensitive to changes in fixed costs (fcij) regarding the performance metrics but that it is
sensitive regarding changes in routing decisions. The computational values were also tracked to understand the
performance of the optimisation. The average run time per case equals 29 hours, Table 2.

Case Run time [h] Incumbent [€ ·103] Best-bound [€ ·103] Gap [%]
Base 35 147 133 9.6
First 33 139 127 8.7
Second 39 139 125 10.3
Third, fcij = 0.95 32 136 126 8.0
Third, fcij = 0.90 33 134 125 7.2
Third, fcij = 0.85 32 133 123 7.3
Third, fcij = 0.80 32 131 121 7.2
Third, fcij = 0.75 27 129 120 6.8
Fourth, volp = 1.25 28 165 153 7.3
Fourth, volp = 1.15 31 157 143 8.7
Fourth, volp = 1.05 31 148 135 9.3
Fourth, volp = 0.95 30 136 125 7.9
Fourth, volp = 0.85 32 128 115 10.3

Table 2: Computation values of all cases

5.3 Results

The results are compared from three perspectives. It must be considered that the results are impacted by the
clustering of data, and sub-optimal outcomes are present because certain gaps in the data are not fully eliminated
in the experiments, affecting result interpretation. This error and uncertainty are based on the level of aggregation
of data and the gap size of the solution.
First, they are compared based on the performance metrics. The main KPI is the most important metric to

compare the cases on, but the other metrics need to be taken into account too, Table 3. Consolidation of demand
at the CDCs is proven to be a successful improvement, while an improvement in costs of 5.4% can be achieved.
The total costs influence the third and fourth cases, so these cases can not be compared with the others. What can
be concluded from these cases is that the metrics of both perform as expected. When lowering the total costs of
transportation between the CDCs and RDCs, the third case, the percentage of indirect delivery will increase. When
increasing the volume, in the fourth case, the direct delivery increases too. And when decreasing the volume, the
direct delivery decreases too.
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Base case 147 55 476 3.35 15 8 0.6
First case 139 55 481 3.17 15 4 0.6
Second case 139 52 459 3.17 15 9 0.6
Third case, fcij = 0.95 136 55 479 3.12 16 10 0.6
Third case, fcij = 0.90 134 56 482 3.06 16 10 0.6
Third case, fcij = 0.85 133 56 484 3.03 16 10 0.6
Third case, fcij = 0.80 131 56 483 2.98 16 10 0.6
Third case, fcij = 0.75 129 57 489 2.94 16 10 0.6
Fourth case, volp = 1.25 165 63 564 2.97 16 11 0.6
Fourth case, volp = 1.15 157 61 530 3.05 16 10 0.6
Fourth case, volp = 1.05 148 58 504 3.15 16 10 0.6
Fourth case, volp = 0.95 136 54 470 3.18 15 10 0.6
Fourth case, volp = 0.85 128 51 445 3.36 14 9 0.6

Table 3: Comparing the performance metrics

Second, the results are compared based on their routing decisions, Table 4. In some cases, indirect delivery is
more attractive, and in others direct delivery. There is a difference in the postal codes with the highest influence
on the routing decisions. Besides this fact, two postal codes pop up in all cases as postal codes with a significant
influence on the total costs considering a difference in routing decisions. These postal codes are 48 and 94.
Therefore, it is advised to change the routing decisions of these postal codes.
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Base case 147 48 22 77 57.4 42.6
First case 139 29 31 80 39.4 60.6
Second case 139 39 25 75 55.0 45.0
Third case, fcij = 0.95 136 27 32 80 35.6 64.4
Third case, fcij = 0.90 134 23 33 81 31.4 68.6
Third case, fcij = 0.85 133 22 33 81 30.7 69.3
Third case, fcij = 0.80 131 21 34 75 29.1 70.9
Third case, fcij = 0.75 129 17 36 84 23.1 76.9
Fourth case, volp = 1.25 165 38 32 95 43.9 56.1
Fourth case, volp = 1.15 157 38 30 89 46.0 54.0
Fourth case, volp = 1.05 148 36 29 84 43.3 56.7
Fourth case, volp = 0.95 136 27 31 78 37.4 62.6
Fourth case, volp = 0.85 128 27 29 72 39.8 60.2

Table 4: Comparing the routing decisions and costs

Third, the relationship between routing decisions, distances and volumes is discovered. As a result, there are
no convincing relationships between the routing decisions and distances, and between the routing decisions and
volumes. However, a relationship between all three can be determined using a logistic regression, Figure 2.
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x = a · discdc,store + b ·
∑

p∈(P :op=cdc,dp=store)

volp + c · (discdc,rdc + disrdc,store) + d (23)

The coefficients a, b, c and d are fitted on the data. A probability of the routing decision can be determined
from the result of Equation 23 where the coefficients are fit to the data and the distances and volume of the new
shop can be entered:

P(x) =
1

1 + e−x
(24)

Here, with an accuracy between 63.1% for the second case and 78.0% for the third case, advice can be given
for the routing decision based on the distance of a store to the CDCs, the distance of a store to an RDC plus the
distance of this RDC to the CDCs, and the volume of demand of this store.

Figure 2: Regression of routing decisions of the first case

6 Conclusions

This study aimed to design an effective distribution system for store allocation and vehicle routing, addressing
the main research question. Four topics guide the study: delving into system characteristics, planning model
formulation, system performance, and the generalizability of findings. The analysis revealed that consolidating
demand at CDCs can lead to significant cost improvements while altering transport costs between CDCs and RDCs
and adjusting order volumes can influence delivery strategies. Moreover, the study identified specific postal codes
as crucial in routing decisions. Despite the absence of direct relationships between routing decisions, distances,
and volumes, logistic regression models provide guidance. Notably, the findings suggest that this distribution
model can be adapted to various scenarios with different network structures, making a general contribution to the
literature. Overall, this research contributes valuable insights into the design of large-scale distribution systems,
offering a foundation for more efficient and cost-effective store allocation and vehicle routing strategies.

7 Discussion

The model is adaptable to similar distribution systems involving CDCs, RDCs, and stores. It allows for variations
in vehicle types, order sources (CDCs and RDCs), and the number of CDCs, RDCs, and stores. While the model is
versatile and can be applied broadly, it can also be customized for specific preferences, including the addition of
time-related factors.
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One key finding of this study shows that routing decisions are influenced by distance from DCs and volumes
of demand. High truckloads and short distances to CDCs favour direct delivery, aligning with the findings of Hiohi
et al. (2015). In cases where these conditions are not met, indirect delivery is more suitable. This relationship
between volume of demand and consolidation is consistent with studies by Crainic and Hewitt (2021), Bakir et al.
(2021) and Crainic and Kim (2007). The results of this study align with the experience of Geurs (2022), revealing
cost differences between the base case and the validation. Handling computational complexity in large-scale
problems, Abbasi et al. (2019) successfully implemented a Variable Neighborhood Search (VNS) algorithm to
improve efficiency as the number of nodes increased.
This study contains several limitations like the exclusion of time, the exclusion of capacity limits of DCs,

restrictions on the computation and clustering of data. First, time should be included to align the model better
with the real world. Second, a minimum and maximum capacity should be set for the DCs to make sure that a DC
is financially interesting to keep open and to make sure that the physical capacities are considered. Third, a more
optimal solution with a smaller gap can be found without the callback function. Fourth, while the volume has a
significant influence on the routing decisions, it may be optimized for several volumes to have a more realistic set
of decisions. Fifth, data clustering should be avoided so that no sub-optimal outcome is generated.
In the current model, the total distance driven and average truckload are calculated but not directly constrained.

These factors need to be considered, given the growing environmental concerns and emerging transport regulations.
Higher truckloads generally lead to fewer vehicles and a reduced total distance, which leads to more sustainable
transportation. Moreover, it is essential to address empty truck movements within the system, as some vehicles
may return partially empty after deliveries. Including these aspects in the optimization may result in higher costs
but offers a greener, more eco-friendly solution.

8 Recommendation

There are several practical recommendations for the company. Given the accuracy of this model to plan transport
at vehicle level and to include actual distances, times and costs, route choices can be made even better. An
important thing to note is that due to clustering, the results are more or less surrealistic. It is expected that the
number of indirect deliveries is over-valued while the load rate is higher from RDC to the stores in the model.
More server capacity is needed to run the model. While the model takes some time to get to the optimal solution,
the logistic regression function can be used. The company may solve the model for several scenarios and calculate
the coefficients. Based on the distances to the stores and the volumes, the routing choice can be determined
quickly when using this function. Furthermore, based on the results, it can be noted that consolidation at the
CDCs is beneficial for the costs of transportation.
The advice for further research is linked to the limitations of this current study. First, it is advised to include

the time dimension in the model. Second, the capacity of the DCs can be added quite easily. The total outgoing
demand from the DCs must be between two boundaries, a minimum and a maximum. Third, avoiding the callback
function is possible when more time is available for the optimization. This function is only added to limit the
run time, but if the run time matters less, it can be switched off. In addition, a larger server to run the code on
will also reduce the run time, so again, the time can be limited with an optimal outcome. Fourth, clustering has
the biggest impact on the outcome. Therefore, it would be of great value to avoid this. This can be avoided by
running the code on a large server.
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