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PREFACE

This thesis consists of two parts. The first part is based on my work from November 01
2015 to April 30 2016 in ABN AMRO Bank where I got the opportunity to take on this
project. The second part is based on my work from May 01, 2016 to July 2016 in TU Delft
where I went further with this project with the application of some advanced numerical
techniques. The defence date of this thesis is on August 31, 2016.

The information of the mortgages mentioned in this thesis is gathered from ABN
AMRO Hypotheken Groep BV (AAHG). AAHG, one of the subsidiaries of ABN AMRO
Bank, is responsible for the mortgage activities of ABN AMRO, providing mortgage prod-
ucts through various channels and under different brands, such as ABN AMRO(AAB)
label, Florius label, MoneYou label. Among these mortgage labels, 40% of AAHG’s port-
folio share is consists of AAB label, which makes AAB label the main brand in AAHG. In
the scope of this thesis, we focus on the mortgage (offers) under AAB label only.

The mortgage offer process considered in this thesis is the mortgage offer process
before March 21 2016. On March 21 2016, the Mortgage Credit Directive (MCD) was
implemented in Dutch legislation, requiring banks to meet the new rules. As a conse-
quence, AAHG has adapted its mortgage offer process accordingly. The changed offer
process has not been considered in this thesis due to the insufficient historical data. For
the information of readers, MCD and the changed mortgage offer process is described
in Appendix B.

Li Sun
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1
INTRODUCTION

A mortgage offer is a contract listing commitments between a prospective mortgage bor-
rower and a mortgage lender. After the lender’s approval on the borrower’s creditworthi-
ness, the borrower has an option, but not an obligation, to close this approved mortgage
offer and pass the mortgage contract at the notary. Such option is called a mortgage of-
fer option. Only if a mortgage offer is closed, the terms in the mortgage offer come into
force. Mortgage offer options can be utilized by a rational borrower, which is beneficial
to the borrowers’ position and adverse to the lenders’ position. To offset the adverse po-
sition, lenders can charge borrowers a reasonable value for the mortgage offer option,
which poses the topic of this thesis.

Before introducing the topic of this thesis, we introduce some background knowl-
edge related to mortgage offers. In Section 1.1, the basic knowledge about mortgages is
introduced. The mortgage offer process, as a part of a mortgage application process, is
introduced in Section 1.2. Afterwards, the value of mortgage offer options is explained,
which leads to the research question of this thesis in Section 1.3.

1.1. MORTGAGE INTRODUCTION
“In general, a mortgage is a loan that is secured by underlying assets that can be repos-
sessed in the event of default.” quoted from [1]. In this thesis, we restrict our scope of
mortgages to the loans which are required for buying residential real estate (RRE) with
the RRE as collateral. Borrowers are obliged to make interest payments and repayments
for their loans as stated in the mortgage contracts. If default happens during the loan
term1, the lender has the right to possess and sell the collateral compensating for a rele-
vant loss.

A mortgage process is defined as the process where a mortgage borrower needs to go

1The loan term of a mortgage is the period over which the loan runs [2].
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Figure 1.1: mortgage process

through from a mortgage application to the end of the loan term2, which is illustrated in
Figure 1.1. Before having a mortgage, a borrower applies for a mortgage from a mortgage
lender. After the lender’s processing of the application, a mortgage offer is sent to that
borrower, which is the start point of a mortgage offer process. The mortgage offer is a
contract which states loan commitments of the lender and the borrower. Generally, the
commitments can not be changed after the offer is sent, but it is only when the offer is
closed that the commitments need to be fulfilled. In Figure 1.1, the offer process ends
when the offer is closed, after which the borrower offically starts a mortgage contract.
Under ABN AMRO (AAB) label, the loan term starts on the first day of the next month
when the first payment is made by the bank for that loan [2]3. The date on which the
client starts to pay interest for the loan is the date on which the bank transfers the loan
funds, which is called the loan starting date. To facilitate the valuation in this thesis, we
make Assumption 1 regarding the loan starting date.

Assumption 1. We assume the bank transfers the loan funds for a closed mortgage offer
on the first day of the next month when the mortgage offer is closed.

Therefore, the loan starting date is the same as the starting date of the loan term, which
is the first day of the next month when the mortgage offer is closed. During the loan
term, the borrower is obliged to pay a prescribed monthly payment to the lender until
the loan term ends. At the end of the loan term, the outstanding principal of that loan
will be paid if no default happens.

In a mortgage offer, the lender’s commitment in the offer option is regarding the
mortgage rate which is combined with the outstanding principal each month resulting

2Mortgage prepayment and default during the loan term are not considered in this thesis.
3If a mortgage offer is closed before the bank makes the first payment for that loan, the loan term will start on

the first day of the month when the first payment is made [2].
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in the borrower’s monthly interest payment for that loan. The mortgage rate is priced
based on the following mortgage contract variables: mortgage type, mortgage offer type,
amortization scheme, Loan to Market Value (LtV), mortgage insurance or not. The ex-
planation of those variables is as follows.

Mortgage Type
Under the AAB label, basically there are two types of mortgages, variable-rate mortgages and fixed-
rate mortgages.

variable-rate mortgage:
A variable-rate mortgage is a mortgage with the interest rate adjusted by the lender each
month according to the money market developments.

fixed-rate mortgage:
A fixed-rate mortgage is a mortgage with a fixed interest rate for a certain agreed period.
This agreed period is known as the fixed-rate period (at least one year). Generally, the longer
the fixed-rate period is chosen, the higher the corresponding fixed rate will be. At the end
of the fixed-rate period, the borrower either pays off the outstanding principal or resets a
mortgage rate for the outstanding principal.

Mortgage Offer Type
There are two available types of mortgage offers under the AAB label for fixed-rate mortgages, i.e.,
the budget mortgage offer and the regular mortgage offer.

budget mortgage offer:
A budget mortgage offer is a mortgage offer with a budget option which gives borrowers the
right to lock a fixed mortgage rate for the applied mortgage. If a budget option holder closes
the offer, the interest rate for this holder to pay is the locked fixed mortgage rate, regardless
of a mortgage rate change during the offer period.

regular mortgage offer:
A regular mortgage offer is a mortgage offer with a regular option (also called lock-or-lower
option) which gives a borrower the right to have the lower mortgage rate of the initially
locked mortgage rate and the mortgage rate on the offer closing day. As a cost of this more
beneficial option compared to a budget option, under the AAB label, a regular option holder
needs to pay extra 10 basis points on the settled mortgage rate if the offer finally is closed,
compared to the mortgage rate a budget holder pays.

Amortization Scheme
After closing the offers, borrowers are obliged to pay a monthly interest payment for their loan,
meanwhile repaying their loan according to an agreed repayment scheme. Such a monthly pay-
ment scheme is called an amortization scheme. Specifically, an amortization scheme, or called
redemption scheme, can be described by an amortization schedule which states the scheduled
principal repayment, the interest payment, and the remaining principal in each month during the
loan term. There are three basic amortization schemes under the AAB label, namely the bullet
amortization scheme , the linear amortization scheme , and the annuity amortization scheme 4.
Figure 1.2, Figure 1.3 and Figure 1.4 demonstrate monthly payments under different amortization
schemes.

Linear mortgage:
For a linear mortgage, a fixed repayment is made every month in the loan term. And the
monthly payment will decrease steadily as the monthly interest rate payment does.

4see https://www.abnamro.nl/en/personal/mortgages/mortgage-types.html

https://www.abnamro.nl/en/personal/mortgages/mortgage-types.html
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Annuity mortgage (also called level-paying mortgage):
For an annuity mortgage, the monthly payment remains the same amount. Among the
monthly payment, the interest payment part decreases while the repayment part increases
during the loan term.

Bullet mortgage (also called interest-only mortgage):
For a bullet mortgage, the monthly payment is the interest payment part only until the end
of the loan term. The outstanding principal is to be fully repaid at the end of the loan term.

Figure 1.2: linear amortization
scheme

Figure 1.3: annuity amortization
scheme

Figure 1.4: bullet amortization
scheme

Loan to Market Value
Loan to market value (or loan-to-value (LtV)) of a mortgage is the ratio of the outstanding princi-

pal to the market value of the collateral. In the Netherlands, the max LtV is 102% in 2016 (103% in

2015) as regulated by the Mortgage Code of Conduct5. LtV affects the risk class which a mortgage

falls into. For a mortgage, the higher its LtV is, the riskier class it is in, and the higher the mortgage

rate generally is. On the other hand, a mortgage insurance for this mortgage is an alternative to

improve its risk class without changing its LtV.

Mortgage Insurance
Mortgage insurance (also known as mortgage guarantee or home-loan insurance) is an insurance

which is to compensate mortgage lenders for the losses caused by mortgage payment defaults.

For instance, in the Netherlands, mortgages with the National Mortgage Guarantee Scheme (in

Dutch: Nationale Hypotheek Garantie (NHG)) are evaluated limited financial risk to lenders, since

if a mortgage with NHG defaults, NHG is obliged to pay 90% of losses to the lender6.

The combination of these price setting variables gives a specific mortgage product
along with its corresponding mortgage rate, which determines the mortgage payment
cash flows as long as the mortgage is closed7.

1.2. INTRODUCTION TO MORTGAGE OFFER PROCESS
The information in this section is based on the features of AAB label mortgages and
therefore we refer to the mortgage lender as the bank. Before officially having a mort-
gage from a mortgage lender, a borrower usually makes a mortgage application, which is
the starting point of an application process (see Figure 1.5). As Figure 1.5 demonstrates,

5See http://www.dnb.nl/en/news/news-and-archive/dnbulletin-2015/dnb322357.jsp#.
6The introduction of a loss-sharing mechanism was announced on 31 October 2013. The loss-sharing mech-

anism states that lenders take 10% of the losses if a mortgage with NHG defaults, unlike losses totally
paid by NHG before this announcement. See https://www.fitchratings.com/gws/en/fitchwire/
fitchwirearticle/Dutch-Mortgage-Guarantee?pr_id=807733

7The uncertainty of prepayments and default during a mortgage term is not considered in this scope.

http://www.dnb.nl/en/news/news-and-archive/dnbulletin-2015/dnb322357.jsp##
https://www.fitchratings.com/gws/en/fitchwire/fitchwirearticle/Dutch-Mortgage-Guarantee?pr_id=807733
https://www.fitchratings.com/gws/en/fitchwire/fitchwirearticle/Dutch-Mortgage-Guarantee?pr_id=807733
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Figure 1.5: mortgage application process (the numbers represent the status codes in the system)

after processing the borrower’s application (state 130), the bank sends the borrower a
mortgage offer (state 210) consistent with the spot market as well as the borrower’s pre-
ferred mortgage product. Under the AAB label, a borrower has maximum 2 weeks to
consider and return the offer with signature, otherwise the offer expires. After the signed
offer is returned (state 220), the bank starts to process a creditworthiness assessment for
this returned offer within 21 days. If the borrower meets the credit requirements for the
mortgage in the returned offer, the bank will approve the credit (state 230). Otherwise
the bank rejects the credit (state 250), which means the returned offer is invalid and the
borrower falls out of the right to close this rejected offer. Only after the bank accepts the
credit (state 230), can the borrower close the offer within the offer period. Under the AAB
label, the initial offer period, for both budget offers and regular offers, is 3 months. Bud-
get offers cannot be extended beyond 3 months and therefore the offers must be closed
within three months since the offer sent date. A regular offer’s validity can be extended
by 6 months to a total of 9 months. There is no extension fee. However, if a regular offer is
not closed after an extension is requested, a cancellation fee of 1% of the loan principal is
applicable. After closing the mortgage offer (state 320), the borrower gets the loan from
the bank to buy the residential real estate. Figure 1.5 diagrammatically describes the
above process. As long as an application reaches the state colored orange in Figure 1.5,
this application officially ends, which means this application is not active anymore. So
we could call these orange colored states (namely, state 150, state 310, state 320) the ap-
plication end states.

Within an application process, an offer process starts when a mortgage offer is sent
out (state 210). At this moment, the commitments made by the bank are specified in
this sent offer, which means the bank is obliged to fulfill these commitments as long as
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Figure 1.6: offer process

the borrower meets the requirements stated in the offer. However, the borrower is not
obliged to finally close this offer. The end of an offer process means either this sent offer
is dropped (state 250) or comes into force (state 320). We call state 250 and state 320 the
offer end states, which are colored red in Figure 1.6. As a sent offer reaches either offer
end state, the outcome of this offer process is known.

Offer processes can be differentiated by the type of rights given to borrowers during
the offer period, because borrowers’ rights imply the commitments of a lender. The po-
tential loss to fulfill the commitments is a risk to the bank. As introduced in Section 1.1,
only the offer type is related to a borrower’s right in the offer process. So we differentiate
a budget offer process from a regular offer process.

1.3. RESEARCH QUESTION
In [3], a mortgage default can be viewed as an option on collateral possession. Analo-
gously, a budget option can be seen as an option on the possession of a forward loan
with a fixed interest rate. A mortgage offer is close to a fixed-interest-rate forward loan
contract to the borrower, which is committed by the lender. But the major differences
are that the loan starting time in a mortgage offer is not fixed due to the offer option.
The main research question of this thesis is:

• How to value offer options?

The price of a mortgage offer option should be the expected loss to the lender caused
by the offer option. No entirely satisfactory terminology has ever been created, but a
clear distinction exists between two directions in pricing offer options. One is based on
the endogenous termination modelling in an offer process, and the other one is based
on the exogenous termination modelling [3].

Endogenous Termination:
Offer options are exercised as a result of the borrower’s minimizing the market value
of the loan. Such exercise is regarded endogenous, or “optimal” termination in an of-
fer process, because the market value of the loan can be viewed as the market cost to
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the borrower by closing the mortgage offer and a rational borrower always tries to mini-
mize the cost. In the absence of credit risk, this financial termination is independent of
the borrower’s individual characteristics, depends only on the term structure of interest
rates. In the direction of the endogenous termination modelling in offer option valua-
tion, contingent-claim models are feasible candidates in generating such endogenous
termination so that the offer option price can be achieved.

Exogenous Termination:
Termination of a mortgage offer occurs for extraneous reasons, while not necessarily
minimizing the objective market cost of the mortgage. The motivation of such termi-
nation can arise from personal circumstances of the borrower, such as the borrower’s
preference or belief about expected return on the underlying. In the direction of the ex-
ogenous termination modelling, the knowledge of human behaviour in an offer period
is required. By predicting human behaviour in a coming offer period of a newly sent
mortgage offer, the lender buys corresponding hedging instruments at the offer send-
ing moment. The expected loss of this hedging portfolio consisting of the offer and the
hedging instruments at the offer sending moment is a reasonable option price for this
newly sent offer.

In this thesis, both proposed directions in pricing offer options are going to be per-
formed.





2
EXOGENOUS TERMINATION

MODELLING

This chapter is going to present the exogenous termination modelling for valuation of
mortgage offer options. In Section 2.1, a hedge strategy for fixed-rate mortgage offers
is proposed. Based on the hedge strategy, we get the quantity called hit ratio to be es-
timated for the mortgage offer process. An existing exogenous model called transition
matrix method (TMM) for the hit ratio prediction is studied and implemented in Sec-
tion 2.2. It motivates the improved transition matrix method in Section 2.3. In Sec-
tion 2.4, some correlation tests for the hit ratio are performed. In Section 2.5, some other
models regarding the hit ratio prediction are presented and analyzed, which concludes
this chapter.

Some terms in the subsequent calculations are explained below.

Definition 2 (Discount Factor). The discount factor D(t ,T ) is to discount the cash flow
occurring at time T to the value at time t . If the discount rate is continuous compounding
and constant during the period from time t to time T , denoted as r ,

D(t ,T ) = er (t−T );

if the discount rate is yearly compounding and constant during the period from time t to
time T ,

D(t ,T ) = (1+ r )t−T ,

where (t −T ) is in year faction; if the discount rate is continuous compounding and float-
ing during the period from time t to time T , denoted as r (s) for the discounted rate at time
s (t ≤ s ≤ T ),

D(t ,T ) = exp

{
−

∫ T

t
r (s)d s

}
.

11
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Definition 3 (Present Value (or Market Value)). The present value of a future cash flow is
defined as the current worth of that cash flow in the market. At time t , given that the rate
of return for a Y-amount cash flow occurring at time T (t < T ) is r , the present value (or
the market value) of that cash flow is given by

PV = Y ·D(t ,T ),

where D(t ,T ) is the discount factor at the discount rate r .

2.1. HEDGE STRATEGY
For a fixed-rate mortgage, the borrower is committed to a fixed mortgage rate m for a
fixed rate period. The fixed mortgage rate m generally consists of two parts, the fixed
rate of the basic funding cost rb and the other cost spread (m − rb). (Hereafter, we as-
sume the other cost spread is constant during the offer period.) However, the market
rate of the basic funding cost, i.e., the discount rate for the mortgage payments, which is
indexed to a reference rate, such as the Euro Interbank Offered Rate (Euribor), is floating
over time. The varying reference rate gives rise to the varying market value of the loan
with the interest rate rb during the fixed rate period. An upward movement of the refer-
ence rate during the fixed rate period can lead to the market value of the loan with the
interest rate rb less than the outstanding principal, which poses interest rate risk to the
bank.

On the other hand, the market value of a loan with the reference rate as the interest
rate is equal to the outstanding loan principal during the fixed rate period. For hedging
the interest rate risk of the fixed-rate loan, the bank can construct a hedging portfolio
of the loan to exchanged the fixed rate rb charged from the borrower with the reference
rate in the market. By such exchange, the market value of the hedging portfolio is equal
to the outstanding loan principal during the fixed rate period.

Suppose a budget offer with the committed mortgage rate m0 will be closed on a de-
terministic date. At the offer sending moment, the bank can hedge the interest rate risk
by entering into a forward interest rate swap (FIRS) in which the bank receives the refer-
ence rate and pays a fixed rate (the swap rate) on a specified notional amount during the
fixed rate period, as illustrated in Figure 2.1. Without considering mortgage prepayment
and default, the outstanding loan amount during the fixed rate period is deterministic at
the offer sending moment because of the known amortization scheme in the offer, which
is the specified notional amount of the FIRS. By charging the swap rate as the fixed rate
of the basic funding cost in m0, i.e., rb = s in Figure 2.1, the present value of the hedge
portfolio of this budget offer is equal to the outstanding loan principal during the fixed
rate period. Hence, the interest rate risk of the loan on the budget offer is totally hedged
by the bank.

However, the above hedge strategy works based on two assumptions. One is the bud-
get offer will be closed, and the other one is the offer closing date is deterministic. Al-
though these two assumptions do not hold in reality, the number to be predicted for the
hedge strategy can be derived. That is the so-called hit ratio.
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the borrower

rb basic funding cost

loan repayment

the bank

s swap rate

r (t ) reference rate

the swap
counterparty

Figure 2.1: hedge portfolio of a closed budget offer during the fixed-rate period

Definition 4 (Hit Ratio). The hit ratio h(t ) of a mortgage offer is defined as the probability
for the offer to be closed at time t . If t is a week, h(t ) is called weekly hit ratio. If t is a
month, h(t ) is called monthly hit ratio.

The hit ratio prediction is crucial for the hedge strategy and its hedge effectiveness.
This is explained separately for the budget offer case and for the regular offer case.

In the budget offer case, without loss of generality, we suppose at the beginning of
month T0, i.e., at time t0, the bank sends a batch of budget offers of the same mort-
gage contract variables. In the offers, the committed mortgage rate is m0 (yearly com-
pounding) for a T -year fixed rate period. The total mortgage principal of these offers
is M . In the 3-month budget offer period, the monthly closed offer principal in month
Ti (i = 0,1,2) is predicted as

M (p)(Ti ) = h(p)(Ti ) ·M ,

where h(p)(Ti ) (shorthand notation h(p)
i ) is the predicted month Ti hit ratio. In order to

hedge the interest rate risk of the offers which are predicted to be closed in month Ti , at
the offer sending moment t0 the bank enters into a FIRS in which the bank pays the swap
rate si (t0) and receives the reference rate on the outstanding principal of the loans dur-
ing the T -year fixed rate period. The FIRS will be settled at the beginning of month Ti+1.
The portfolio of the budget offers and the hedging instrument (the FIRS) is the hedging
portfolio of the budget offers.

We take the reference rate as the risk-free rate in the risk-neutral measure (Ω,F ,Q)
with filtration {Ft }t≥t0 . Under the risk-neutral measure, the fixed rate of the basic fund-
ing cost in m0, denoted as rb(t0), is the value satisfying the following equation.

EQ
[ 2∑

i=0

n∑
j=1

M (p)(Ti ,Ti+ j ) (rb(t0)− si (t0))∆t ·D(t0,Ti+ j+1)
∣∣∣ Ft0

]
= 0,

rb =
EQ

[∑2
i=0

∑n
j=1 M (p)(Ti ,Ti+ j )si (t0)∆t ·D(t0,Ti+ j+1)

∣∣∣Ft0

]
EQ

[∑2
i=0

∑n
j=1 M (p)(Ti ,Ti+ j )∆t ·D(t0,Ti+ j+1)

∣∣∣Ft0

] ,

(2.1)

where the terms are explained as follows.

M (p)(Ti ,Ti+ j ) (i = 0,1,2; j = 1,2, . . . ,n): the outstanding principal in month Ti+ j

of the offers which are predicted to be closed in month Ti ;

D(t0,T j+i+1): the discount factor with the reference rate as the discount rate to
discount the payment occurring at the beginning of month Ti+ j+1 to the value at
the offer sending moment t0;
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n: the number of the scheduled payment times stated in the offer;

∆t : the time interval (in year fraction) between adjacent mortgage payments, i.e.,
∆t = T

n . Generally, ∆t = 1
12 , meaning monthly mortgage payments in the offers.

Equation (2.1) implies that if the sent offers are closed exactly as predicted, the fixed rate
of the basic funding cost settled by Equation (2.1) results in the value of the hedging port-
folio equal to the outstanding loan amount at the offer sending moment.

At the end of month Ti (i = 0,1,2), it turns out that the realized closed amount in
month Ti is M(Ti ). If M(Ti ) < M (p)(Ti ), it means that the hit ratio h(p)

i is under esti-
mation, and the hedged amount by the FIRS is not enough so that an additional swap
need to be entered for hedging the interest rate risk of the

(
M (p)(Ti )−M(Ti )

)+
-amount

fixed-rate loan. The expected loss of the hedging portfolio to the bank is the market
value of the hedging portfolio minus the outstanding loan principal plus the cost of the
hedging instruments, i.e., the present value of the fixed rate payments according to the
settled swap minus the present value of the basic funding cost payments by the borrow-
ers plus the cost of the hedging instruments. Since there is no cost of entering the FIRS,
the expected loss of the hedging portfolio to the bank at the beginning of month T3 is
calculated as

Lb = +EQ

[
2∑

i=0

n∑
j=1

(
M(Ti ,Ti+ j )−M (p)(Ti ,Ti+ j )

)+
si (Ti+1)∆t ·D(T3,Ti+ j+1)

∣∣∣∣∣FT3

]
︸ ︷︷ ︸

present value of the cash outflows of the fixed-rate payments by the addtionally entered swaps

+EQ

[
2∑

i=0

n∑
j=1

M (p)(Ti ,Ti+ j )si (t0)∆t ·D(T3,Ti+ j+1)

∣∣∣∣∣FT3

]
︸ ︷︷ ︸

present value of the cash outflows of the fixed-rate payments by the intially entered FIRS

−EQ

[
2∑

i=0

n∑
j=1

M(Ti ,Ti+ j )rb(t0)
)
∆t ·D(T3,Ti+ j+1)

∣∣∣∣∣FT3

]
,︸ ︷︷ ︸

present value of the cash inflows of the basic funding cost payments by the borrowers

(2.2)

where M (p)(Ti ,Ti+ j ) (i = 0,1,2; j = 1,2, . . . ,n), n, and ∆t are explained in Equation (2.1),
M(Ti ,Ti+ j ) is the outstanding principal in month Ti+ j of the offers which are indeed
closed in month Ti , si (Ti+1) is the swap rate at the beginning of month Ti+1 for hedging
the interest rate risk of the budget offers closed in month Ti , D(T3,T j+i+1) is the discount
factor with the reference rate as the discount rate to discount the payment occurring at
the beginning of month Ti+ j+1 to the value at the beginning of month T3.

Without considering mortgage prepayments and defaults in the fixed rate period, by
the same amortization scheme in the offers, the ratios of the realized monthly outstand-
ing principals to the predicted monthly outstanding principals are the same. Hence, we
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rewrite Equation (2.2) as

Lb(T3) = EQ

[
n∑

j=1

2∑
i=0

((
M(Ti ,Ti+ j )

M (p)(Ti ,Ti+ j )
−1

)+
si (Ti+1)+ si (t0)

− M(Ti ,Ti+ j )

M (p)(Ti ,Ti+ j )
rb(t0)

)
M (p)(Ti ,Ti+ j )∆t ·D(T3,Ti+ j+1)

∣∣∣∣FT3

]

= EQ

[
n∑

j=1

2∑
i=0

((
h(Ti )

h(p)(Ti )
−1

)+
si (Ti+1)+ si (t0)

− h(Ti )

h(p)(Ti )
rb(t0)

)
M (p)(Ti ,Ti+ j )∆t ·D(T3,Ti+ j+1)

∣∣∣∣FT3

]
,

(2.3)

where h(Ti ) (i = 0,1,2) (shorthand notation hi ) is the realized month Ti hit ratio.

The expected loss of the hedging portfolio at the offer sending moment t0 can be
compensated by charging the budget option holders a reasonable budget option price.
That is, the price of one-unit-principal budget option at t0 is given by

EQ
[
−Lb(T3)

M
·D(t0,T3)

∣∣∣ Ft0

]
. (2.4)

In view of Equation (2.3), to obtain the expectation (2.4), we need to know a function of
state factors to represent the variable h(Ti ) (i = 0,1,2) accurately, i.e., knowing the me-
chanics how the value h(Ti ) (i = 0,1,2.) changes in the market environment. Addition-
ally, the budget option price can be minimized by choosing an optimal h(p)(Ti ) (i = 0,1,2)
in the hedge strategy after knowing the function of h(Ti ) (i = 0,1,2).

When we turn to regular mortgage offers, the mortgage rate commitment on a regu-
lar offer not only gives a borrower the right to lock in a mortgage rate, but also the right
to have a lower mortgage rate of the initially locked one and the one on the offer closing
date. By such commitment, the mortgage interest payments generated by a closed regu-
lar offer can differ from the ones by the closed budget offer, which also implies the hedge
strategy of the regular offer is not the same as the one of the budget offer. Without loss of
generality, suppose at the beginning of month T0, i.e., at time t0, the bank sends a batch
of regular offers of the same mortgage contract variables. The initially locked mortgage
rate is m0 for a T -year fixed rate period in the offers. The fixed rate of the basic funding
cost in m0 is rb(t0). The total mortgage principal of these offers is M . For the 9-month
regular offer period, the monthly closed offer principal in month Ti (i = 0,1, . . . ,8) is pre-

dicted by M (p)(Ti ) = h(p)
i M , where h(p)

i is the predicted month Ti hit ratio. If the regular
offers are closed at time t with the mortgage rate mt > m0 on the offer closing date, the
borrowers pay the mortgage rate m0, which means that in order to hedge the interest rate
risk of these closed regular offers, the bank should exchange the fixed rate of the basic
funding cost in m0 with the reference rate during the fixed rate period. In this situation, a
FIRS at the offer sending moment t0 should be entered by the bank to hedge the interest
rate risk of these closed regular offers, which is the same hedge strategy as the one in the
budget offer case. However, if the regular offers are closed at time t with the mortgage
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rate mt ≤ m0 on the offer closing date, the borrowers pay the mortgage rate mt , which
means that in order to hedge the interest rate risk of these closed regular offers, the bank
should exchange the fixed rate of the basic funding cost in mt , denoted as rb(t ), with the
reference rate by entering a FIRS on the offer closing date. The floating mortgage rate on
the offer closing day implies that the hedge strategy for the regular offers should be able
to hedge the interest rate risk of both the loan with the interest rate rb(t0) and the loan
with the interest rate rb(t ) during the fixed rate period. Hence, in addition to entering
a FIRS at the offer sending moment t0, the bank also buys a swaption on the notional
amount equal to the FIRS’. The swaption is a European put option with the swap rate of
the FIRS as the strike price, and matures on the settlement date of the FIRS, so that it
helps the bank to dump the unused part of the entered FIRS without loss.

The detailed operation can be seen as follows:

In order to hedge the interest rate risk of the regular offers closed in month Ti (i =
0,1, . . . ,8), at the offer sending moment t0 the bank enters into a FIRS in which the bank
pays a fixed rate (or the swap rate) si (t0) and receives the reference rate on the outstand-
ing principal during the T -year fixed rate period. The FIRS settles at the beginning of
month Ti+1. At the offer sending moment, the bank also buys a swaption on the no-
tional amount equal to the FIRS’s. The swaption is a European put option with the swap
rate si (t0) as the strike rate, which is to hedge the risk of selling the unused FIRS at the
settlement. At the settlement of the FIRS, i.e., at the beginning of month Ti+1, if the swap
rate is si (Ti+1), the payoff of the bought swaption is given by

EQ

[
n∑

j=1
M (p)(Ti ,Ti+ j )

(
si (t0)− si (Ti+1)

)+
∆t ·D(Ti+1,Ti+ j+1)

∣∣∣∣∣FTi+1

]
,

where M (p)(Ti ,Ti+ j ) (i = 0,1, . . . ,8; j = 1,2, . . . ,n), D(Ti+1,T j+i+1), n and∆t are explained
in Equation (2.2). On the offer closing day t ∈ [Ti ,Ti+1)1, if the swap rate si (t ) is not
greater than the one of the initially entered FIRS, i.e., si (t ) ≤ si (t0), the bank enters an-
other FIRS with the swap rate si (t ) to exchange with the reference rate on the outstand-
ing principal of the closed offers during the fixed rate period. The settlement date of this
newly entered FIRS is the beginning of month Ti+1. If the swap rate si (t ) is greater than
the one of the initially entered FIRS, i.e., si (t ) > si (t0), the initially entered FIRS is used to
hedge the interest rate risk of the closed offers. At the end of the offer period, the unused
part of the initially entered FIRS will be sold without any loss by holding the swaption.
By such operation, the bank can hedge the interest rate risk of the regular offers.

Now let us check the loss of the hedging portfolio of the regular offers. Suppose in
month T0, among these regular offers, there are some closed at time t ∈ [T0,T1) with the
fixed rate of the basic funding cost

min
(
rb(t0),rb(t )

)
.

1[Ti ,Ti+1) here represents a discrete set containing the days within month Ti .
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The total principal of the offers closed at t is denoted as M(t ). At the beginning of month
T1, the loss of the hedging portfolio for the regular offers closed in month T0 can be
obtained as follows.

In the case of
∑

t∈[T0,T1) M(t) · 1{s0(t)>s0(t0)} > M(p)(T0)2 :∑
t∈[T0,T1) M(t ) · 1{s0(t )>s0(t0)} > M (p)(T0) means that the predicted hit ratio h(p)

0 is underes-
timated and the notional amount in the initially entered FIRS is insufficient for hedging
the interest rate risk of the closed offers in month T0. So at the beginning of month T1,
the bank needs to enter an interest rate swap (IRS) on the notional amount( ∑

t∈[T0,T1)
M(t ) · 1{s0(t )>s0(t0)} −M (p)(T0)

)+
.

The entered IRS has the same payment feature as the initially entered FIRS, except for
the swap rate. The swap rate of the IRS is denoted as s0(T1). All the bought month T1

matured swaption are left without the need to hedge the loss of dumping the unused
FIRS. At the beginning of month T1, the expected loss of the hedging portfolio is

Lr (T1) = +EQ

[
n∑

j=1

( ∑
t∈[T0,T1)

M(t ,T j )1{s0(t )>s0(t0)} −M (p)(T0,T j )

)+
s0(T1)∆t ·D(T1,T j+1)

∣∣∣∣∣FT1

]
︸ ︷︷ ︸

present value of the cash outflows of the fixed-rate payments by the swap entered at the end of month T0

+EQ

[
n∑

j=1

∑
t∈[T0,T1)

M(t ,T j )1{s0(t )≤s0(t0)}s0(t )∆t ·D(T1,T j+1)

∣∣∣∣∣FT1

]
︸ ︷︷ ︸

present value of the fixed-rate payments by the addtional FIRSs entered during month T0

+EQ

[
n∑

j=1
M (p)(T0,T j )s0(t0)∆t ·D(T1,T j+1)

∣∣∣∣∣FT1

]
︸ ︷︷ ︸

present value of the cash outflows of the fixed-rate payments by the intially entered FIRS

−EQ

[
n∑

j=1

∑
t∈[T0,T1)

(
M(t ,T j ) · 1{rb (t )>rb (t0)}rb (t0)+M(t ,T j ) · 1{rb (t0)≥rb (t )}rb (t )

)
∆t ·D(T1,T j+1)

∣∣∣∣∣FT1

]
︸ ︷︷ ︸

present value of the cash inflows of the basic funding cost payments by the borrowers

−EQ

[
n∑

j=1
min

{ ∑
t∈[T0,T1)

M(t ,T j ) · 1{s0(t )>s0(t0)}, M (p)(T0,T j )

}(
s0(t0)− s0(T1)

)+
∆t ·D(T1,T j+1)

∣∣∣∣∣FT1

]
︸ ︷︷ ︸

payoff of the month T0 matured swaption

(2.5)
plus the cost of the bought swaption.

In the case of
∑

t∈[T0,T1) M(t) · 1{s0(t)>s0(t0)} = M(p)(T0) :∑
t∈[T0,T1) M(t ) · 1{s0(t )>s0(t0)} = M (p)(T0) means that the hedged amount in the FIRS is ex-

actly the used amount and no extra IRS is needed at the beginning of month T1. And
all the bought month T1 matured swaption are left without the need to hedge the risk of

21{A } is an indicator function which equals 1 when event A is true, otherwise equal to zero.
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dumping the FIRS. At the beginning of month T1, the expected loss of the hedging port-
folio is given by Equation (2.5) plus the cost of the bought swaption.

In the case of
∑

t∈[T0,T1) M(t) · 1{s0(t)>s0(t0)} < M(p)(T0) :∑
t∈[T0,T1) M(t ) · 1{s0(t )>s0(t0)} < M (p)(T0) means that the regular offers is over hedged by the

initially entered FIRS. Hedging the offer principal
(
M (p)(T0)−∑

t∈[T0,T1) M(t ) · 1{s0(t )>s0(t0)}
)+

in the initially entered FIRS is redundant. Only min
{∑

t∈[T0,T1) M(t ) · 1{s0(t )>s0(t0)}, M (p)(T0)
}

notional amount of the initially entered FIRS is used at the beginning of month T1, while
the unused part of the FIRS is hedged by the month T1 matured swaption. At the begin-
ning of month T1, the expected loss of the hedging portfolio is given by Equation (2.5)
plus the cost of the bought swaption.

At the end of the offer period, i.e., the beginning of month T9, the expected loss of
the hedging portfolio is given by

Lr (T9) = EQ

[
8∑

i=0

n∑
j=1

(( ∑
t∈[Ti ,Ti+1)

M(t ,Ti+ j )1{si (t )>si (t0)} −M (p)(Ti ,Ti+ j )

)+
si (Ti+1)

+ M (p)(Ti ,Ti+ j )si (t0)+ ∑
t∈[Ti ,Ti+1)

M(t ,Ti+ j )1{si (t )≤si (t0)}si (t )

− ∑
t∈[Ti ,Ti+1)

M(t ,Ti+ j ) · 1{rb (t )>rb (t0)}rb (t0)− ∑
t∈[Ti ,Ti+1)

M(t ,Ti+ j ) · 1{rb (t0)≥rb (t )}rb (t )

− min

{ ∑
t∈[Ti ,Ti+1)

M(t ,Ti+ j ) · 1{si (t )>si (t0)}, M (p)(Ti ,Ti+ j )

}(
si (t0)− si (Ti+1)

)+)

·∆t ·D(T9,Ti+ j+1)
∣∣∣FT9

]
(2.6)

plus the cost of the bought swaption.

Under the risk-neutral measure (Ω,F ,Q) with filtration {Ft }t≥t0 , a reasonable price
of one-unit-principal regular option at t0 is given by

EQ
[
−Lr (T9)

M
·D(t0,T9)

∣∣∣ Ft0

]
. (2.7)

To obtain the expectation (2.7), we need know a function of state factors to represent the
variable h(Ti ) (i = 0,1, . . . ,8) of the regular offers accurately, i.e., the mechanics how the
value h(Ti ) changes in the market environment. Additionally, the regular option price
can be minimized by choosing an optimal h(p)(Ti ) (i = 0,1, . . . ,8) in the hedge strategy
after knowing the function of h(Ti ) (i = 0,1, . . . ,8).

Therefore, we conclude that the hit ratio is crucial in the hedge strategy for mortgage
offer options and its dynamics determines the hedge effectiveness and the offer option
price.
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2.2. TRANSITION MATRIX METHOD ( TMM)
In this section, a hit ratio prediction model called transition matrix method is intro-
duced. In order to check its predictive performance, we perform some replication tests
of TMM based on the data in Appendix A. From the replication results, we can not only
deduce some drawbacks of TMM, but also propose a way to improve TMM, which moti-
vates the improved transition matrix method (ITMM) in Section 2.3

2.2.1. MODEL DESCRIPTION
The transition matrix method (TMM) is used to predict monthly hit ratios of newly sent
offers in one month [4]. It is based on a six-state transition matrix. The six states are the
possible offer states in an offer process (see Figure 1.6), namely state 210, state 220, state
230, state 250, state 310, and state 320. Based on the state transition information of the
active offers in month t , the month t transition matrix P (t ) is defined as

P (t ) =



P210,210(t ) P210,220(t ) P210,230(t ) P210,250(t ) P210,310(t ) P210,320(t )
0 P220,220(t ) P220,230(t ) P220,250(t ) P220,310(t ) P220,320(t )
0 0 P230,230(t ) P230,250(t ) P230,310(t ) P230,320(t )
0 0 0 P250,250(t ) P250,310(t ) P250,320(t )
0 0 0 0 P310,310(t ) P310,320(t )
0 0 0 0 0 P320,320(t )

 (2.8)

where 0 ≤ Pi , j (t ) ≤ 1 (i ≤ j , i , j ∈ J := {210,220,230,250,310,320}.) is the transition
probability that the offers in i -state at the beginning of month t transit to state j at the
end of month t . In fact,

P250,320(t ) = 0, P310,310(t ) = 1, P310,320(t ) = 0, P320,320(t ) = 1,

because offers in state 250 or state 310 are invalid and can not transit to state 320, vice
versa. The transition probabilities are measured in the principal ratio, i.e.,

Pi , j (t ) = Mi , j (t )∑
l∈J Mi ,l (t )

, i ≤ j , i , j ∈J , (2.9)

where Mi , j (t ) is the total principal amount of the offers which stay in state i at the be-
ginning of month t and transit to state j at the end of month t . The i -state ratio of the
active offers at the beginning of month t , denoted as Si (t ), is defined as the percentage
(in offer principal) of the offers in state i at the beginning of month t , given by

Si (t ) :=
∑l≥i

l∈J
Mi ,l (t )∑

i∈J
∑l≥i

l∈J
Mi ,l (t )

. (2.10)

We define the state ratio of the offers at the beginning of month t as a vector containing
the i -state ratio (i ∈J ), given by

S(t ) :=



S210(t )
S220(t )
S230(t )
S250(t )
S310(t )
S320(t )

 .
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Without the inflow of newly sent offers in month t , it holds that

S210(t )
S220(t )
S230(t )
S250(t )
S310(t )
S320(t )



tr

P (t ) =



S210(t +1)
S220(t +1)
S230(t +1)
S250(t +1)
S310(t +1)
S320(t +1)



tr

. (2.11)

where tr means the transpose of the vector. Without the inflow of newly sent offers in
month t , the month t hit ratio h(t ) of the offers which are active in the offer process at
the beginning of month t , can be obtained by

h(t ) = S320(t +1)−S320(t ).

It should be mentioned that the transition matrix calculation differentiates the offer in-
formation in mortgage labels and mortgage offer types [4]. Differentiation over mortgage
labels and mortgage offer types is necessary, since different kinds of rights may be given
to borrowers by different mortgage labels or different mortgage offer options, which im-
pacts borrowers’ decisions making in the offer process.

According to [4], J. Karelse and I. Ent have shown that based on historical data, the

3-month transition matrix of the offers sent in month t is roughly similar to P
3

(t ), where

P (t ) = 1
9

∑q=t−1
q=t−9 P (q), and hence presumed that the Markov property holds in the tran-

sition process. Under this assumption, P
n

(t ) can be used to obtain an n-month ahead
forecast of the state ratio S(t +n) of the offers sent in month t .

To predict the monthly hit ratios of the offers sent in month t , there are two possible
approaches of TMM. The differences are the input of the initial state ratio.

FIRST APPROACH IN TMM

For the offers sent in month t , first we get the predicted transition matrix P (t ) by averag-
ing the last nine one-month transition matrices, i.e.,

P (t ) = 1

9

q=t−1∑
q=t−9

P (q).

Second, we use P (t ) to predict the monthly hit ratios of the offers sent in month t . The
predicted month (t +1) hit ratio is given by

h(t +1) =
(
Str(t +1) ·P (t )

)
320

−S320(t +1),

where S(t +1) is the state ratio vector at the beginning of month (t +1) for the offers sent
in month t . The predicted hit ratio of month (t + i ) , i ∈N+, is given by

h(t + i ) =
(
Str(t +1) ·P

i
(t )−Str(t +1) ·P

i−1
(t )

)
320

,

until the maximum offer period is included. The predicted hit ratios obtained under the
above approach are called the transition matrix method (TMM) predicted hit ratios.
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SECOND APPROACH IN TMM
One problem in the first approach is that the month t hit ratio of the offer sent in month
t , i.e., S320(t + 1), can not be predicted due to the use of S(t + 1) in the calculation. To
tackle this problem, we make Assumption 5.

Assumption 5. For the offers sent in month t, we assume the offer state of those offers at
the beginning of month t is state 210.

By Assumption 5, we obtain the state ratio S(t ) of the offers sent in month t as follows.

S(t ) =



1
0
0
0
0
0

 (2.12)

And then Str(t )·P (t ) gives the predicted resulting state ratio at the end of month t . Hence,
combined with Assumption 5, the second approach in TMM gives the monthly hit ratios
as follows.

h(t ) =
(
Str(t ) ·P (t )

)
320

= P 210,320(t )

h(t + i ) =
(
Str(t ) ·P

i+1
(t )−Str(t ) ·P

i
(t )

)
320

, i ∈N+,

until the final month in the offer period is included. The predicted hit ratios obtained un-
der this approach are called the alternative transition matrix method (ATMM) predicted
hit ratios.

2.2.2. REPLICATION RESULTS
In this section, the data in the AST data sheet (see Appendix A) are going to be used in
the calculation of realized historical monthly hit ratios as well as the predicted monthly
hit ratios by TMM. Due to the limitation of the collected data, the transition probability
here is measured in offer number ratio instead of offer principal ratio, which means that
Equation (2.9) is replaced with Equation (2.13) in the following replication tests of the
transition matrix method.

Pi , j (t ) = Ni , j (t )∑
l∈J Ni ,l (t )

, i ≤ j , i , j ∈J , (2.13)

where Ni , j (t ) is the number of offers which are in state i at the beginning of month t and
transit to state j at the end of month t . And the calculation of the i -state (i ∈J ) ratio in
Equation (2.10) is replaced with

Si (t ) =
∑l≥i

l∈J
Ni ,l (t )∑

i∈J
∑l≥i

l∈J
Ni ,l (t )

. (2.14)
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The goodness of fit of TMM may indicate its predictive performance. The applied
statistic tools to measure the goodness of fit of TMM in this section are the R-squared
and the Root Mean Squared Error (RMSE). Suppose {xi }1≤i≤n are realized data points
which are predicted as {x̂i }1≤i≤n respectively, by the prediction model. The sum of squares
total (SST) and the sum of squares errors (SSE) are given by

SST =
n∑

i=1
(xi − x̄)2 , SSE =

n∑
i=1

(xi − x̂i )2 ,

where

x̄ =
∑n

i=1 xi

n
.

The SST measures how far the realized data points are from their mean, and the SSE
measures how far the realized data are from the predicted values. So,

R-squared = SST−SSE

SST
, RMSE =

√
SSE

n
.

The R-squared is a relative measure of fit, measuring the proportional prediction im-
provement by the prediction model, compared to the mean model, while the RMSE is
an absolute measure of fit. One of the results is presented in Table 2.1.

Monthly hit ratio Prediction T M M −R-squared T M M −RMSE AT M M −R-squared AT M M −RMSE

in month T0 -0.07141 0.25559
in month T1 0.42534 0.046992 0.20892 0.055135
in month T2 0.23995 0.064938 0.063747 0.072073
in month T3 -0.0694 0.060646 -0.17284 0.063511

Table 2.1: the R-squared and the RMSE of (A)TMM in the monthly hit ratio prediction for budget offers

From Table 2.1, the R-squared and the RMSE both suggest that the TMM prediction
preforms better than the ATMM prediction. The main reason is that the TMM prediction
has the input S(t+1) — the state ratio result of the first month transition. The R-squared
measures the predictive performance of the model, compared to the mean model. Nor-
mally, the value of R-squared ranges from zero to one, where one indicates that the
model explains all the movements of the response data around its mean, while zero in-
dicates that the model explains none of the movements of the response data around its
mean. Negative R-squared values indicate that in view of the sum of prediction errors,
the predictive performance of the model even falls behind the mean model’s. From the
results in Table 2.1, neither TMM nor ATMM can explain more than 50% of the move-
ments of the response data around its mean, and the RMSE results are relatively large,
compared to the realized monthly hit ratios in Figure 2.3. Hence, in terms of the R-
squared and RMSE measurements, TMM and ATMM can not be accepted in the hit ratio
prediction.

In addition, statistical hypothesis testing can also be applied to measure the good-
ness of fit of the prediction model. Before starting a hypothesis test, we do the following
preparation:
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Hypothesis Test A:
A standard criterion to judge a prediction model is the extent to which the pre-
dicted values resemble the observed data. So if the predicted values are exactly the
observed data, the model is a perfect prediction model. Testing whether the pre-
dicted values are the same as the realized data is equivalent to testing whether the
prediction error equals zero, where the prediction error is equal to the observed
value minus the corresponding predicted one. Thus, the null hypothesis H0 and
the alternative hypothesis H1 of the test are

H0 =
{

The values of the prediction errors and a series of zero values

come from the same continuous distribution.
}

H1 =
{

These two series of values are from different continuous distributions.
}(2.15)

The two-sample Kolmogorov-Smirnov test is applied to complete Hypothesis Test
A. The test result, denoted as h, is 1 if the test rejects the null hypothesis at the 5%
significance level (also called p-value), and 0 otherwise.

Hypothesis Test B:
Considering that the above hypothesis test is based on a strict requirement, i.e., the
prediction error should be zero, we switch to somewhat relaxed requirement for
the prediction model now. The requirement is the prediction error should follow
a normal distribution with zero mean. So in the second hypothesis test, the null
hypothesis H0 and the alternative hypothesis H1 are

H0 =
{

Prediction errors come from a normal distribution

with zero mean and unknown variance.
}

H1 =
{

Prediction errors do not have a zero mean.
} (2.16)

The t-test is applied to complete Hypothesis Test B.

One thing worth to mention here is that the above hypothesis tests are based on the
assumed performance criterion respectively for the prediction model. The crucial part
of an appropriate hypothesis test is the design of the null hypothesis. It is reasonable
to presume that an appropriate design of the null hypothesis of the hit ratio prediction
error should be adapted to the prediction error tolerance of the bank. So the above pro-
posed hypothesis tests are designed for reference only. Some of the hypothesis testing
results are presented in Table 2.2 and Table 2.3.

The results of the hypothesis tests in Table 2.2 and Table 2.3 indicate the model per-
formance in terms of the distribution of the prediction errors (or say the residuals). Re-
ferred as the assumed criteria of a hit ratio prediction model, the hypothesis testing re-
sults suggest that both TMM and ATMM fail to meet those criterion.
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ATMM Predicted Monthly hit ratio Hypothesis A-p −value Hypothesis A-h Hypothesis B-p −value Hypothesis B-h

in month T0 7.1211e-10 1 3.6303e-04 1
in month T1 1.7617e-18 1 3.5832e-09 1
in month T2 1.7617e-18 1 5.1460e-09 1
in month T3 3.6433e-14 1 0.0040 1

Table 2.2: Results of the hypothesis tests for the monthly hit ratio prediction by the alternative transition matrix
method (ATMM)

TMM Predicted Monthly hit ratio Hypothesis A-p −value Hypothesis A-h Hypothesis B-p −value Hypothesis B-h

in month T1 2.9330e-24 1 3.3251e-12 1
in month T2 1.7617e-18 1 3.9530e-09 1
in month T3 1.9435e-10 1 0.0165 1

Table 2.3: Results of the hypothesis tests for the monthly hit ratio prediction by the transition matrix method
(TMM)
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Figure 2.2: Comparison of realized and TMM predicted hit ratios for budget offers

Sep 2010 Feb 2011 Jul 2011 Dec 2011 May 2012 Oct 2012 Mar 2013 Aug 2013 Jan 2014 Jun 2014 Nov 2014 Apr 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ATMM Predicted Monthly Hit Ratio v.s. Realized Monthly Hit Ratio −−− Budget Offers

M
on

th
ly

 H
it 

R
at

io
 h

(T
i)

 

 

realization in Month T
0

ATMM prediction in Month T
0

realization in Month T
1

ATMM prediction in Month T
1

realization in Month T
2

ATMM prediction in Month T
2

realization in Month T
3

ATMM prediction in Month T
3

Figure 2.3: Comparison of realized and ATMM predicted hit ratios for budget offers



2.2. TRANSITION MATRIX METHOD ( TMM)

2

25

A plot of the prediction and the realization may give readers an intuitive check of the
model’s predictive performance. Figure 2.2 is the plot of the TMM predicted monthly hit
ratios and the realized monthly hit ratios in the case of budget offers. Figure 2.3 is the
plot of the ATMM predicted monthly hit ratios and the realized monthly hit ratios in the
case of budget offers. The x-axis is the month, in which the mortgage offers were sent.
From these two figures, first we can get the information that compared to the predicted
monthly hit ratios, the realized monthly hit ratios are much more volatile. Almost all
the predicted monthly hit ratios are lower than the realized ones. The reason may be
the use of the average of the last nine one-month transition matrices as the predicted
monthly transition matrix. The average of the last nine one-month transition matrices
contains the transition information of some long-lasting offers in their offer processes.
Although being still active in the offer process, these offers transit very slowly to a next
state, which makes the predicted hit ratios biased low. We also see that different monthly
realized hit ratios behave differently. For example, the month T1 realized hit ratios and
the month T2 ones are relatively close to each other, while being relatively far from the
month T0 realized hit ratios. This indicates that it may not be appropriate to use the same
predicted transition matrix to predict all the monthly hit ratios of the newly sent offers in
one month. Hence, the transition matrix method may not be able to capture the features
of the realized monthly hit ratios. Furthermore, we deduce that the predicted transition
matrix should distinguish offer durations. For example, the predicted transition matrix
for the month T0 should be according to the features of the month T0 transition. By this,
we develop an improved transition matrix method (ITMM) in the next section.
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Figure 2.4: comparison of the realized predicted CHRs and the (A)TMM ones

Finally, we present in Figure 2.4, the result of checking the assumed Markov property
in the transition matrix method [4]. The cumulative hit ratio (CHR) of the offers sent in
month T0 is defined as the sum of all the monthly hit ratios, i.e.,

CHR =
n∑

i=0
h (Ti ) ,



2

26 2. EXOGENOUS TERMINATION MODELLING

where h (Ti ) is the month Ti hit ratio of the offers sent in the month T0, and the month
Tn is the final month in the offer period. For budget offers, n = 3; for regular offers, n = 9.
If the Markov property of the transition matrix holds in the offer transition process, it
will also hold that, for the offers sent in month T0, the TMM (or ATMM) predicted CHR
is roughly equal to the realized CHR, i.e., in the TMM

n∑
i=0

h (Ti ) ≈
(
Str(T1) ·P

n
(T0)

)
320

,

or in the ATMM
n∑

i=0
h (Ti ) ≈

(
Str(T0) ·P

n+1
(T0)

)
320

,

where h (Ti ) is the realized month Ti hit ratio of the offers sent in the month T0, S(T j ) ( j =
0,1) is the state ratio at the beginning of month T j of the offers sent in month T0, and

P (T0) is the predicted transition matrix by averaging the last nine one-month historical
transition matrices.

Figure 2.4 shows a counterexample to the assumed Markov property, since we can
see after August 2013, the predicted CHRs are relatively far from the realized CHRs, com-
pared to the distance between the TMM predicted CHR and the realized CHR before
August 2013. This counter example implies that the Markov property statement in the
transition matrix method [4] is not satisfied, which further implies that the use of the
average of the last nine one-month transition matrices to predict monthly hit ratios is
inappropriate.

To conclude, there are some drawbacks of the transition matrix method, as discussed
above. By analyzing those drawbacks and the features of the realized monthly hit ratios,
we came up with an improved transition matrix method (ITMM) in the next section.

2.3. AN IMPROVED TRANSITION MATRIX METHOD (ITMM)
From the above analysis, we know the monthly offer transition results differ in the offer
duration. Based on this empirical result, we modify the predicted transition matrix in
TMM such that the obtained predicted transition matrix can not only distinguish the of-
fer duration, but also capture the characteristics of different monthly transitions, which
results in the improved transition matrix method (ITMM) in this section.

In the improved transition matrix method (ITMM), we separate the transition matrix
according to the offer duration (in months). By Assumption 5, we deduce the month T0

transition matrix P (T0) as in (2.17), for the mortgage offers sent in month T0. P (Ti ) (i =
0,1, · · · ,n) is the month Ti transition matrix of the offers sent in month T0, where Tn is
the final month in the offer period. Here the calculation of the monthly transition matrix
in ITMM differentiates mortgage labels and offer options, as required in TMM.
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P (T0) =



P210,210(T0) P210,220(T0) P210,230(T0) P210,250(T0) P210,310(T0) P210,320(T0)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (2.17)

where

P210, j (T0) = M210, j (T0)∑
l∈J M210,l (T0)

j ∈J .

where M210, j (T0) is the total principal amount of the month T0 sent offers which transit
to state j at the end of month T0. And

∑
l∈J M210,l (T0) is the total principal amount

of the offers sent in month T0. The first row of P (T0) gives all the month T0 transition
information of the offers sent in the month T0.

P (Ti ) =



P210,210(Ti ) P210,220(Ti ) P210,230(Ti ) P210,250(Ti ) P210,310(Ti ) P210,320(Ti )
0 P220,220(Ti ) P220,230(Ti ) P220,250(Ti ) P220,310(Ti ) P220,320(Ti )
0 0 P230,230(Ti ) P230,250(Ti ) P230,310(Ti ) P230,320(Ti )
0 0 0 P250,250(Ti ) P250,310(T1) P250,320(Ti )
0 0 0 0 1 0
0 0 0 0 0 1

 , (2.18)

where

Pk, j (Ti ) = Mk, j (Ti )∑
l∈J Mk,l(Ti )

, k ≤ j , k, j ∈J := {210,220,230,250,310,320},

where Mk, j (Ti ) is the total principal amount of the month T0 sent offers which stay in
state k at the beginning of month Ti and transit to state j at the end of month Ti .

With S(T0) as in (2.12), the month Ti (i = 0,1, . . . ,n) hit ratio h(Ti ) can be obtained as
follows.

h(T0) = (
Str(T0)P (T0)

)
320 = P210,320(T0),

h(T1) = (
Str(T0)P (T0)P (T1)−Str(T0)P (T0)

)
320 ,

h(Ti ) =
(

Str(T0)
i∏

z=0
P (Tz )−Str(T0)

i−1∏
z=0

P (Tz )

)
320

.

(2.19)

Before predicting the monthly hit ratios for the offers sent in month T0, we need to
obtain a good-quality predicted monthly transition matrix for these offers. After test-
ing the predictive performance of the predicted transition matrix based on different his-
torical periods, we finally settle the predicted transition matrix in ITMM based on the
transition in the last one month of month T0. So the predicted month Ti (i = 0,1, . . . ,n)
transition matrix P (Ti ) for the offers sent in month T0, are calculated as (2.17) or (2.18),
based on the historical transition information of the offers with the same month dura-
tion in the last one month of month T0.

Table 2.4 and Table 2.5 present the predictive performance of ITMM in the budget
offer case. Compared to the results of TMM and ATMM, ITMM has a generally improved
predictive performance. Although the R-squared results of TMM are higher than the
ones of ITMM, TMM has an expensive input which brings relatively higher R-squared
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Monthly hit ratio Prediction I T M M −R-squared I T M M −RMSE

in month T0 0.86261 0.086428
in month T1 0.30795 0.048096
in month T2 0.17069 0.062569
in month T3 -0.28068 0.060817

Table 2.4: the R-squared and the RMSE of ITMM in the monthly hit ratio prediction for budget offers

ITMM Predicted Monthly hit ratio Hypothesis A-p −value Hypothesis A-h Hypothesis B-p −value Hypothesis B-h

in month T0 1.57E-08 1 0.8127 0
in month T1 1.57E-08 1 0.2822 0
in month T2 1.57E-08 1 0.1859 0
in month T3 1.32E-07 1 0.1945 0

Table 2.5: Results of the hypothesis tests for the monthly hit ratio prediction by ITMM

but causes the loss of the month T0 hit ratio prediction. Therefore, ITMM generally
makes an improvement in the predictive performance, compared to (A)TMM.

Some drawbacks of ITMM still make ITMM hard to be accepted in the hit ratio pre-
diction. First, ITMM is still inaccurate. For example, although the month T0 R-squared
of ITMM in Table 2.4 is more than 80%, the R-squared results of the other months are
still much lower. Second, ITMM does not involve any state factor, which makes it im-
possible to calculate the expected loss in (2.3). Considering the above two drawbacks of
ITMM, we still need to look for a more appropriate model in predicting the monthly hit
ratios.

2.4. CORRELATION TEST
One of the state factors which directly inform the offer option holders is the mortgage
rate over the offer period. As the way of a product price influencing on clients’ choice
in the shopping, the mortgage rate may also influence on the offer option holders’ deci-
sions in the offer period. So in this section, we test the correlation between hit ratio and
mortgage rate in order to check whether there is a linear relation between them.

Considering that in the Netherlands the mortgage rate changes on a weekly basis, the
hit ratio used in the correlation test should also be the weekly rate. The weekly hit ratio
is defined as follows.

Definition 6. For the offers sent in month T0 with M(T0) the total principal amount, the
i -th weekly hit ratio hw (T0, i ) is calculated as the ratio of the principal of the i -week-
duration closed offers to M(T0), i.e.,

hw (T0, i ) = M p (T0, i )

M(T0)
(i = 1,2, . . . ,m) (2.20)

where M p (T0, i ) is the total principal of the i -week-duration closed offers among the offers
sent in month T0.



2.4. CORRELATION TEST

2

29

For an offer sent at time t1 with initially locked mortgage rate m(t1), if this offer is
closed at time t2 > t1 and the mortgage rate on the offer closing day is m(t2), the mort-
gage rate change of this closed offer is given by

∆m(t1, t2 − t1) = m(t1)−m(t2).

The corresponding mortgage rate change of hw (T0, i ) is a principal-weighted mortgage
rate change of all the mortgage rate changes of the i -week-duration closed offers, which
is denoted as∆mw (T0, i ). The weight of the mortgage rate change of each i -week-duration
closed offer is the ratio of its principal to M p (T0, i ). Due to the lack of offer details in
the transition data sheet (see Appendix A), the mortgage rate during the offer period is
matched with the corresponding 10-year mortgage rate (75% LtV) under AAB label dur-
ing that period, and the weekly hit ratio is calculated based on offer number instead of
offer principal.

offer duration in weeks correlation coefficient p-value

1 0.0500 0.6903
2 -0.1337 0.2846
3 0.2145 0.0838
4 0.0920 0.4625
5 -0.1793 0.1497
6 0.0660 0.5987
7 -0.1607 0.1975
8 -0.0023 0.9853
9 -0.1520 0.2230

10 0.0386 0.7581
11 0.0093 0.9406
12 -0.0405 0.7465
13 0.1244 0.3196
14 -0.1241 0.3207

Table 2.6: The result of the correlation test between the weekly hit ratios
{

hw
T0 ,i

}
(i=1,2,...,14)

and the corre-

sponding mortgage rate change
{
∆mw

T0 ,i

}
(i=1,2,...,14)

for budget offers

The correlation result between
{
hw (T0, i )

}
(i=1,2,...,14) and

{
∆mw (T0, i )

}
(i=1,2,...,14) in

the budget offer case is presented in Table 2.6. The p-value in the correlation test is for
the hypothesis testing with the null hypothesis H0 and the alternative hypothesis H1 as
follows.

H0 =
{

There is no linear relation between the tested variables.
}

H1 =
{

There is non-zero linear relation between the tested variables.
}(2.21)

In Table 2.6, we observe that the p-value is relatively high. And the sign of the correla-
tion coefficient in Table 2.6 interchanges frequently, which implies that the linear rela-
tion between the tested variables is inconsistent in the data. So we can deduce from
the data that there is no consistent linear relation between

{
hw (T0, i )

}
(i=1,2,...,14) and{

∆mw (T0, i )
}

(i=1,2,...,14).

By the result in Table 2.6, we start to consider the appropriateness of the variable
candidates in the correlation test. It is true that if 99.9% offers are closed in their 1st week
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after the offer sending moment, then there will be a very small weekly hit ratio for the
following weeks even with the most favorable mortgage rate change to the borrowers.
Considering that, we replace the weekly hit ratio with the conditional weekly hit ratio
on the remaining active offers in the correlation test. The definition of the conditional
weekly hit ratio on the remaining active offers is given as follows.

Definition 7. For the offers sent in month T0 with M(T0) the total principal amount, the
conditional i -th weekly hit ratio hc,w (T0, i ) on the remaining active offers is calculated as
the ratio of the total principal of the i -week-duration closed offers to the total principal of
the offers of which the offer duration is more than or equal to i weeks, i.e.,

hc,w (T0, i ) = M p (T0, i )

M(T0)−∑
1≤d<i M p (T0,d)−∑

1≤d<i M f (T0,d)
(i = 1,2, . . . ,m) (2.22)

where M p (T0, i ) is the total principal of the i -week-duration closed offers among the offers
sent in month T0, M f (T0, i ) is the total principal of the i -week-duration dropped offers
among the offers sent in month T0.

The correlation result for budget offers between
{
hc,w (T0, i )

}
(i=1,2,...,14) and the corre-

sponding mortgage rate change
{
∆mc,w (T0, i )

}
(i=1,2,...,14) is presented in Table 2.7. Con-

sidering that the dropped offers also play a role in determining the conditional weekly hit
ratio calculation, we investigate the (conditional) fallout rate along with the conditional
hit ratio investigation. The definitions of weekly fallout rate and conditional weekly fall-
out rate are given as follows.

Definition 8. For the offers sent in month T0 with M(T0) the total principal amount, the
i -th weekly fallout rate f w (T0, i ) is calculated as the ratio of the total principal of the i -
week-duration dropped offers to M(T0), i.e.,

f w (T0, i ) = M f (T0, i )

M(T0)
, (i = 1,2, . . . ,m) (2.23)

where M f (T0, i ) is the total principal of the i -week-duration dropped offers among the
offers sent in month T0.

Definition 9. For the offers sent in month T0 with M(T0) the total principal amount, the
conditional i -th weekly fallout rate f c,w (T0, i ) on the remaining active offers is calculated
as the ratio of the total principal of the i -week-duration dropped offers to the total princi-
pal of the offers of which the offer duration is more than or equal to i weeks.

f c,w (T0, i ) = M d (T0, i )

M(T0)−∑
1≤d<i M p (T0,d)−∑

1≤d<i M f (T0,d)
(i = 1,2, . . . ,m) (2.24)

where M p (T0,d) is the total principal of the d-week-duration closed offers among the of-
fers sent in month T0, and M f (T0,d) is the total principal of the d-week-duration dropped
offers among the offers sent in month T0.

The correlation result for budget offers between
{

f w (T0, i )
}

(i=1,2,...,14) the weekly fall-

out rate and
{
∆m̂c,w (T0, i )

}
(i=1,2,...,14) the corresponding mortgage rate change is shown
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in Table 2.8. The correlation test result for budget offers between
{

f c,w (T0, i )
}

(i=1,2,...,14)

the conditional weekly fallout rate and
{
∆m̂c,w (T0, i )

}
(i=1,2,...,14) the corresponding mort-

gage rate change is shown in Table 2.9.

offer duration in weeks correlation coefficient p-value

1 -0.1838 0.1396
2 -0.0119 0.9248
3 0.1375 0.2711
4 0.1531 0.2196
5 0.0962 0.4423
6 0.0117 0.9259
7 -0.1283 0.3046
8 -0.0001 0.9991
9 0.0722 0.5643

10 -0.0003 0.9984
11 0.0474 0.7056
12 -0.1668 0.1808
13 -0.0597 0.6339
14 -0.3174 0.0094

Table 2.7: The correlation test result between the conditional weekly hit ratio
{
hc,w (T0, i )

}
(i=1,2,...,14) and the

corresponding mortgage rate change
{
∆mc,w (T0, i )

}
(i=1,2,...,14) for budget offers

offer duration in weeks correlation coefficient p-value

1 0.0663 0.5969
2 0.0049 0.9691
3 -0.0432 0.7306
4 0.0511 0.6839
5 0.0625 0.6183
6 0.1809 0.1461
7 0.1290 0.3020
8 0.3268 0.0074
9 0.1269 0.3101

10 0.2458 0.0467
11 0.2488 0.0440
12 0.3646 0.0026
13 0.1875 0.1316
14 0.3749 0.0019

Table 2.8: The correlation test result between the weekly fallout rate
{

f w (T0, i )
}

(i=1,2,...,14) and the correspond-

ing mortgage rate change
{
∆m̂w (T0, i )

}
(i=1,2,...,14) for budget offers

The inconsistency in the signs of the correlation coefficients still remains in the con-
ditional weekly hit ratio test as shown in Table 2.7, although almost all the correlation
coefficients are positive in the (conditional) weekly fallout rate test as shown in Table 2.8
and Table 2.9. The p-value is still relatively high. So we can deduce from the data that
there is no linear relation between the tested variables. We also tested the correlation
between

{
hc,w (T0, i )−hc,w (T1, i )

}
(i=1,2,...,14) and

{
∆mc,w (T0, i )−∆mc,w (T1, i )

}
(i=1,2,...,14),

between
{
hc,w (T0, i )−hc,w (T0, i +1)

}
(i=1,2,...,13) and

{
∆mc,w (T0, i )−∆mc,w (T0, i +1)

}
(i=1,2,...,13),

and so on. But still there is no linear relation derived from the data between hit ratio (or
fallout rate) and mortgage rate.

After the correlation tests in this section, we conclude that there is no linear relation
derived from the data between hit ratio (or fallout rate) and mortgage rate.
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offer duration in weeks correlation coefficient p-value

1 0.0495 0.6929
2 0.1278 0.3063
3 0.0401 0.7492
4 0.2411 0.0511
5 0.1873 0.1321
6 0.2730 0.0266
7 0.1254 0.3157
8 0.3008 0.0141
9 0.0956 0.4449

10 0.1827 0.1421
11 0.3000 0.0144
12 0.3273 0.0073
13 0.0657 0.6004
14 0.2072 0.0950

Table 2.9: The correlation test result between the conditional weekly fallout rate
{

f c,w (T0, i )
}

(i=1,2,...,14) and

the corresponding mortgage rate change
{
∆m̂c, f (T0, i )

}
(i=1,2,...,14)

for budget offers

2.5. OTHER MODELS
This section presents some other models for the hit ratio prediction. And the appropri-
ateness of applying the models into practice is analyzed afterwards.

LOGIT MODEL
The logit model for the offer process comes from the logistic regression model. The form
of the logistic model is

ln

(
p

1−p

)
=β0 +xβ,

where p is the probability of an inter-state transition, i.e., the offer transition from one
state to another subsequent state,β0 is the intercept term, andβ is the vector of the coef-
ficient βi associated with an explanatory variables xi . The maximum likelihood method
can be applied to estimate the coefficients in the logistic model.

J. McMurray and T. Thomson [5] used a logistic regression to estimate the closing
probability (i.e., the hit ratio) of residential mortgages, which includes a wide range of
explanatory variables. In analogue, the logit model in [4] uses the regression model to
predict the probability of an inter-state transition, which includes the explanatory vari-
ables as follows.

x1: a binary variable, which is 1 for newly created mortgage offers and 0 otherwise;

x2: a binary variable, which is 1 for mortgage offers for newly built houses and 0
otherwise;

x3: a binary variable, which is 1 for mortgage offers for refurbishment and 0 other-
wise;

x4: the negative mortgage rate change, defined as x4,i = min(rt ,i − r0,i ,0) for mort-
gage offer i , where rt ,i is the prevailing mortgage rate at time t for the same type
mortgage offer, and r0,i the mortgage rate for offer i at the offer sending moment;
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x5: the positive mortgage rate change, defined as x5,i = max
{
rt ,i − r0,i ,0

}
.

So the regression formula in the logit model for the i -indexed mortgage offer is

ln

(
p

1−p

)
=β0 +β1x1,i +β2x2,i +β3x3,i +β4x4,i +β5x5,i (2.25)

Equivalently,

p = 1

1+exp
{−(

β0 +β1x1,i +β2x2,i +β3x3,i +β4x4,i +β5x5,i
)} (2.26)

The maximum likelihood method can be applied to estimate the coefficients in (2.26).

The logit model is used to predict the inter-state transition probabilities of an indi-
vidual offer. To estimate the monthly hit ratios of an offer by the logit model, the addi-
tional steps we need to take are the multiplication of the probabilities of the inter-state
transitions of which the combination makes the offer reach state 320 and the summation
of the multiplications of all the feasible transition combinations to get the monthly hit
ratios. The additional steps may enlarge the prediction error from the inter-state tran-
sition prediction by the logit model. More importantly, no obvious evidence proves the
reliability of the logit regression model. It can be found that in [4] there is some incon-
sistency in the signs of the same explanatory variable. Based on the above reasoning, we
can not accept the logit model for the hit ratio prediction.

HAZARD MODEL
The hazard model describes life time or survival time by modelling the hazard rate. The
hazard rate of a mortgage offer is the conditional probability of its transition occurring
at time t on the condition of no transition before t , which is given by

P (T = t |T ≥ t ) = p(t )

P (T ≥ t )
(2.27)

where T is the transition time, and p(t ) is the probability of transition occurring at time
t , i.e.,

p(t ) = P (T = t ) (2.28)

where t is the time in the offer period.

Cox Proportional Hazard Model has been applied to model the offer duration by S.
Hakim, M. Rashidian and E. Rosenblatt [6]. The model is specified as

p(t ) = p0(t )exp
{
βtrXi

}
(2.29)

where Xi is the vector of the explanatory variables, β is the vector of the coefficients, and
p0(t ) is the baseline hazard function. The partial likelihood method can be applied to
estimate the coefficients β.
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Similarly to the logit model [4], the hazard model includes the same explanatory vari-
ables and models the hazard rate of the inter-state transition in the mortgage process.

The drawbacks of the hazard model in [4] are the same as the ones of the logit model.
They both focus on estimating the inter-state transitions of individual offer, while the
hazard rate model estimates the time duration before each inter-state transition occurs
and the logit model estimates each inter-state transition probability. The advantage of
these two models is that they include the state factor, i.e., the mortgage rate change, in
the prediction. To conclude, based on the above reasoning, we can not accept these
models for the hit ratio prediction. In the next part, we turn to another direction in the
valuation of mortgage offer options.
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3
ENDOGENOUS TERMINATION

MODELLING

This chapter is going to present the endogenous termination modelling for the valu-
ation of mortgage offer options. We narrow the scope of this thesis and focus on the
budget option valuation. First, we come up with a setting of the budget option valua-
tion problem based on an optimal exercise strategy in Section 3.1. In view of the setting,
three numerical methods are proposed to solve the problem, namely the finite differ-
ence method (FDM), the least squares method (LSM), and the stochastic grid bundling
method (SGBM). The implementation of FDM, LSM and SGBM in the budget option val-
uation is explained in Section 3.2, Section 3.3, Section 3.4 respectively, which produces
some numerical test results presented in Section 3.5. In order to test the convergence of
the implemented methods in the budget option valuation, we present the convergence
study in Section 3.6. As an extension of the interest rate model in the budget option val-
uation, a one-dimensional jump diffusion model of the interest rate is presented and
tested in Section 3.7. As a representative of two-dimensional interest rate models, a two-
factor interest rate model is applied into the budget option valuation, which concludes
this chapter.

3.1. PROBLEM SETTING OF THE BUDGET OPTION VALUATION
The problem setting of the budget option valuation in this chapter is based on an as-
sumption of the optimal exercise strategy for budget option holders, analogously to the
contingent-claim models in [3] and [7].

Suppose a budget offer is sent at time t0 and the end of the offer period is time tM .

Assumption 10. The fundamental assumption in the budget option framework is that a
rational borrower seeks to minimize the market value of the loan during the offer period,
thereby strategically exercising the offer option when the prevailing value of the committed
loan P M(m0, t ) is lower than the comparable strike price K (t ) of the loan (t0 ≤ t ≤ tM ). At

37
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mortgage type: fixed-rate mortgage
offer option: budget option
locked mortgage rate (yearly compounding): m0
amortization scheme: bullet amortization scheme (or interest-rate only)
mortgage term1 T (years)
Loan principle: M

Table 3.1: Contract Specification

the offer sending moment t0, the strike price K (t ) is calculated as the t-forward price of
the loan, which depends on the term structure of the interest rate at time t0.

We assume the forward loan price to be the corresponding strike price {K (t )}t0≤t≤tM

for the offer option. {K (t )}t0≤t≤tM can be regarded as the initially agreed market cost
which the borrower considers to take at each moment during the offer period. The more
the strike price outnumbers the prevailing value of this committed loan, the stronger in-
centive the borrower has to exercise the budget option, which implies that the borrower
is able to have a lower market cost of the loan than the initially considered one.

There might be a question why we choose the forward price as the strike price instead
of the prevailing mortgage rate. There are two reasons. The first one is that the prevailing
mortgage rate is not immediately achievable for budget option holders according to the
terms in budget offers. If a budget option holder is a rational investor, at each moment
during the offer period (s)he will compare the prevailing market value of the loan in the
offer with the previously agreed loan value (or the forward price) correspondingly. The
second reason is that the difference between the forward loan price and the prevailing
loan value can, to some extent, reflect the difference between the prevailing mortgage
rate and the locked mortgage rate, because the prevailing interest rate term structure
plays a role in setting the fixed rate of the basic funding cost in the prevailing mortgage
rate. We do not include the calculation of mortgage rate over the offer period due to the
complexity of mortgage rate settlement.

Now we calculate the prevailing loan price and the strike price for a budget offer,
which are the candidates in the optimal exercise strategy. Suppose a budget offer is sent
at time t0 which is the beginning of month T0. With 3-month offer period at most, this of-
fer will expire at time tM which is the end of month T2, if having not been closed yet. The
contract specification of this budget offer is described in Table 3.1. If the loan starting
time is known for this offer, say the beginning of month Ti (i ∈ {1,2,3}) (shorthand nota-
tion: Ti (i ∈ {1,2,3})), under the risk-neutral measure (Ω,F ,Q) with filtration {Ft }t≥0, the
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prevailing market value of the loan at time t0 ≤ t < Ti is 2

P M(m0,Ti , t ) = EQ

[
N∑

j=1
m0 ·∆t ·M ·D(t ,Ti+ j )+M ·D(t ,Ti+N )

∣∣∣∣∣Ft

]

=
N∑

j=1
m0 ·∆t ·M ·EQ [

D(t ,Ti+ j )
∣∣Ft

]+M ·EQ [D(t ,Ti+N )|Ft ]

=
N∑

j=1
m0 ·∆t ·M ·EQ

[
exp

{
−

∫ Ti+ j

t
r (s)d s

}∣∣∣∣Ft

]
+M ·EQ

[
exp

{
−

∫ Ti+N

t
r (s)d s

}∣∣∣∣Ft

]
(3.1)

where r (s) is the risk-free rate at time s (t ≤ s ≤ TN ), D(t ,Ti+ j ) := exp
{
−∫ Ti+ j

t r (s)d s
}

( j = 1,2, . . . , N ) is the discount factor to discount cash flows happening at the beginning
of month Ti+ j to the time t , N is the number of payment times, ∆t = T

N is the time inter-
val (in year fraction) between adjacent mortgage payments, m0 and M are explained in
Table 3.1.

On the other hand, the loan starting time actually is unknown at t , which raises a
problem in valuing this offered loan. There is a proposed way to tackle this problem. The
prevailing loan value considered at Tk ≤ t < Tk+1,k = 0,1,2, is based on the assumption
that the offer will be closed immediately so that the mortgage on this offer will start at
the beginning of month Tk+1. So the prevailing market value of the loan considered at
Tk ≤ t < Tk+1,k = 0,1,2, is

P M(m0, t ,rt ) = EQ

[
N∑

j=1
m0 ·∆t ·M ·D(t ,Tk+1+ j )+M ·D(t ,Tk+1+N )

∣∣∣∣∣Ft

]

=
N∑

j=1
m0 ·∆t ·M ·EQ

[
exp

{
−

∫ Tk+1+ j

t
r (s)d s

}∣∣∣∣Ft

]
+M ·EQ

[
exp

{
−

∫ Tk+1+N

t
r (s)d s

}∣∣∣∣Ft

]
.

(3.2)
with the corresponding strike price K (t ) which is estimated at the offer sending moment
t0 as follows.

K (t ) = EQ

[
N∑

j=1
m0 ·∆t ·M ·D(t ,Tk+1+ j )+M ·D(t ,Tk+1+N )

∣∣∣∣∣Ft0

]

=
N∑

j=1
m0 ·∆t ·M ·EQ

[
exp

{
−

∫ Tk+1+ j

t
r (s)d s

}∣∣∣∣Ft0

]
+M ·EQ

[
exp

{
−

∫ Tk+1+N

t
r (s)d s

}∣∣∣∣Ft0

]
.

(3.3)
If a holder exercises the budget option in month T0, (s)he gets a loan which officially

starts at the beginning of month T1. The same goes in month T2, if a holder exercises
the budget option, (s)he gets a loan which officially starts at the beginning of month T3.
Different start times of the loan in the offer, i.e., different closing times of the offer, result
in different occurring times of the mortgage payments, which forms different underlying
assets. In this thesis we first value the budget option separately according to the exercise

2Here we do not consider prepayment or a default possibility after the offer period.
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t0 tM

month T0 month T1 month T2

basic budget offer period

the offer to be exercised in month T̃ ∈ {T0,T1,T2}

t0 t̃0 t̃M

month T̃

the budget offer period

loan starting time

Figure 3.1: budget offer period

month within the offer period. At the offer sending moment t0, the price of the budget
option to be exercised in month T0, denoted V 0

t0
, results from an American-style option

exercise in month T0. At t0, the price of the budget option to be exercised in month T1,
denoted V 1

t0
, results from holding the budget option in month T0 and then exercising the

budget option in an American style in month T1. At t0, the price of budget option to be
exercised in month T2, denoted V 2

t0
, results from holding the budget option in month T0

and month T1, and then exercising the budget option in an American style in month T2.
Figure 3.1 illustrates a general offer period of the budget offer option to be exercised in
month T̃ ∈ {T0,T1,T2}. After obtaining V 0

t0
,V 1

t0
,V 2

t0
, we derive the final price of the budget

option as
Vt0 = max

{
V 0

t0
,V 1

t0
,V 2

t0

}
.

Rational borrowers only exercise their option when it is in the money, i.e., P M(m0, t ,rt ) <
K (t ). To fully utilize the early-exercise facility of the budget option, at each option-
exercisable date t0 ≤ t ≤ tM , the holder will optimally compare the immediate exercise
payoff

It = (K (t )−P M(m0, t ,rt ))+ (3.4)

with the expected continuation payoff Ct which is the option value at time t conditional
on the option to be exercised after time t . Then the option will be exercised at time t ,
only if It ≥Ct , resulting in the value of this budget option at t as follows.

Vt = max{It ,Ct } .

To calculate Vt , we must know It and Ct . Unlike It which is known at time t , the expected
continuation value Ct is not explicit at time t . The appropriate procedure to estimate
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Ct is to adopt a backward approach, in the manner of dynamic programming. There
are three proposed methods in pricing Vt , namely the finite difference method (FDM),
the least squares method (LSM), and the stochastic grid bundling method (SGBM). In
fact, the difference of these three methods in option pricing is the way of calculating
Ct . In brief, FDM calculates Ct by a partial differential equation relation; LSM calculates
Ct by regressing the simulated continuation value C i

t on the simulated interest rate r i
t ,

where i is the i -th simulated interest rate path in which the budget option at t is in the
money; SGBM calculates Ct by regressing the one-step-forward simulated option val-
ues V i

t+1 on the one-step-forward simulated interest rates r i
t+1 and combining with the

conditional expectation of the applied basis functions of interest rate rt+1 on rt , where
i is the i -th simulated interest rate path in one bundled simulation set. After estimat-
ing Ct , by dynamic programming on comparing It with Ct , the option value Vt is settled
by Vt = max(It ,Ct ) at the exercisable time t0 ≤ t ≤ tM . These three methods will be ex-
plained in detail in the subsequent sections.

In this thesis, the interest rate model applied in the budget option valuation is re-

quired to have the analytical solution of P (t ,T ) = EQ
[

e−
∫ T

t rs d s
∣∣∣Ft

]
, (T > t ), the zero

coupon bond price, which aims to facilitate the calculation of the prevailing loan value
at each time step during the offer period.

In the basic setting of the budget option valuation problem, we apply the Vasicek
model [8] defined under the risk-neutral measure (Ω,F ,Q) by the dynamics

drt = κ(θ− rt )d t +σdWt , (3.5)

which results in the solution of the zero coupon bond price P (t ,T ), t ≤ T , as follows.



P (t ,T ) = EQ
[

e−
∫ T

t rs d s
∣∣∣Ft

]
= A(t ,T )e−B(t ,T )rt

A(t ,T ) = exp

{(
θ− σ2

2κ2

)
(B(t ,T )−T + t )− σ2

4κ
B(t ,T )2

}
B(t ,T ) = 1

k

(
1−e−κ(T−t ))

(3.6)

Proof. Under the interest rate dynamics given by (3.5), we get

d
(
eκs · rs

)= eκsκθd s +eκsσdWs∫ T

t
d

(
eκs · rs

)= ∫ T

t
eκsκθd s +

∫ T

t
eκsσdWs

eκT rT −eκt rt = θ
(
eκT −eκt )+σ∫ T

t
eκs dWs

rT = rt ·e−κ(T−t ) +θ (
1−e−κ(T−t ))+σe−κT

∫ T

t
eκs dWs .

(3.7)
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We know the distribution of
(∫ T

t rs d s
)

by

∫ T

t
rs d s =

∫ T

t
rt ·e−κ(s−t )d s +

∫ T

t
θ

(
1−e−κ(s−t ))d s +

∫ T

t
σe−κs

∫ s

t
eκx dWx d s

= rt

κ

(
1−e−κ(T−t ))+θ (

T − t + e−κ(T−t ) −1

κ

)
+

∫ T

t
eκx dWx

∫ T

x
σe−κs d s

= rt

κ

(
1−e−κ(T−t ))+θ (

T − t + e−κ(T−t ) −1

κ

)
+

∫ T

t

σ
(
eκ(x−T ) −1

)
−κ dWx

= 1−e−κ(T−t )

κ
(rt −θ)+θ (T − t )+

∫ T

t

σ
(
eκ(x−T ) −1

)
−κ dWx .

(3.8)

By Ito Isometry, we know

E

(∫ T

t

σ
(
eκ(x−T ) −1

)
−κ dWx

)2

= E
(∫ T

t

σ2
(
eκ(x−T ) −1

)2

κ2 d x

)

=−σ
2

2κ

(
1−e−κ(T−t )

κ

)2

− σ2

κ2

(
1−e−κ(T−t )

)
κ

+ σ2

κ2 (T − t ) .

(3.9)
Hence, we get

∫ T

t
rs d s ∼N


(
1−e−κ(T−t )

)
κ

(rt −θ)+θ (T − t ) , −σ
2

2κ

(
1−e−κ(T−t )

κ

)2

− σ2

κ2

(
1−e−κ(T−t )

)
κ

+ σ2

κ2 (T − t )

 .

(3.10)

By the moment generating function of the normal distribution, we get the analytical
solution to the zero coupon price P (t ,T ) in Equation (3.6).

3.2. THE FINITE DIFFERENCE METHOD IN THE BUDGET OP-
TION VALUATION

In this section, the problem of the budget option valuation is equivalently formulated
at first. In terms of the formulated problem, the finite difference method (FDM) is pro-
posed as an appropriate candidate to solve this problem. And the implementation de-
tails of FDM in the budget option valuation are explained.

3.2.1. PROBLEM FORMULATION
Without the early exercise facility, the no-arbitrage principle yields that the value of a
budget option Vt at time t during the offer period should satisfy the PDE [9]:

L (V ) ≡ ∂V

∂t
+κ(θ− rt )

∂V

∂rt
+ 1

2
σ2 ∂

2V

∂r 2
t

− rt V = 0 (3.11)

There are two methods to prove Equation (3.11), namely a martingale argument and a
riskless portfolio setting method, which are presented below.
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Proof by the Martingale Argument Method.

If there is no arbitrage, the process

{
Vt

exp
{∫ t

t0
rs d s

}
}

t0≤t≤tM

, i.e.,
{

Vt D(t0, t )
}

t0≤t≤tM

,

should be a martingale under the risk-neutral measure (Ω,F ,Q) where r (s) (short-
hand notation rs ) is the risk-free rate at time s (t0 ≤ s ≤ tM ). So,

EQ [d (Vt D(t0, t ))|Ft ] = 0. (3.12)

Now we derive d (Vt D(t0, t )) as follows.

d (Vt D(t0, t )) = D(t0, t )dVt +Vt dD(t0, t )

= D(t0, t )

(
∂Vt

∂t
d t + ∂V

∂rt
drt + 1

2

∂2Vt

∂r 2
t

(drt )2

)
−Vt D(t0, t )rt d t

= D(t0, t )

(
∂Vt

∂t
+κ(θ− rt )

∂V

∂rt
+ 1

2
σ
∂2Vt

∂r 2
t

− rt ·Vt

)
d t +D(t0, t ) ·σ∂V

∂rt
dWt

(3.13)
And

EQ [d (Vt D(t0, t ))|Ft ] = D(t0, t )

(
∂Vt

∂t
+κ(θ− rt )

∂V

∂rt
+ 1

2
σ
∂2Vt

∂r 2
t

− rt ·Vt

)
d t . (3.14)

Therefore, Equation (3.11) must hold because of Equation (3.12) under the mar-
tingale argument.

Proof by the Riskless Portfolio Setting Method.
First, we set up a self-financing portfolio Πt at t0 ≤ t ≤ tM , by holding a one-unit-
principal budget offer option and ∆t units of a zero coupon bond portfolio. The
budget offer option is sent at the beginning of month T0 with the parameters spec-
ified in Table 3.1 and the mortgage principal M = 1. The payments of the zero
coupon bond portfolio replicate the mortgage payments of the loan in the budget
offer closed in month T2. We denote the prevailing price of this zero coupon bond
portfolio at time t0 ≤ t ≤ tM as PH(m0,rt , t ) (shorthand notation PHt ), and

PH(m0,rt , t ) =
N∑

j=1
m0 ·∆t ·M ·P (t ,T3+ j )+M ·P (t ,T3+N ), (3.15)

where m0 is the locked mortgage rate in the budget offer, the mortgage principal
M = 1, N represents the number of the payment times of the mortgage specified
in Table 3.1, ∆t = T

N . And

Πt =Vt −∆t ·PHt .

Both Vt and PHt are functions of time t and instantaneous interest rate rt . And by
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Ito’s lemma, the dynamics ofΠt is

dΠt = ∂Vt

∂t
d t + ∂Vt

∂rt
drt + 1

2

∂2Vt

∂r 2
t

(dr )2 −∆t

(
∂PHt

∂t
d t + ∂PHt

∂rt
drt + 1

2

∂2PHt

∂r 2
t

(dr )2

)

= ∂Vt

∂t
d t + ∂Vt

∂rt
drt + 1

2
σ2 ∂

2V

∂r 2 d t −∆t

(
∂PHt

∂t
d t + ∂PHt

∂rt
drt + 1

2
σ2 ∂

2PHt

∂r 2
t

d t

)

=
[
∂Vt

∂t
+ 1

2
σ2 ∂

2Vt

∂r 2
t

−∆t

(
∂PHt

∂t
+ 1

2
σ2 ∂

2PHt

∂r 2
t

)]
d t +

(
∂Vt

∂rt
−∆t

∂PHt

∂rt

)
drt .

(3.16)
dΠt is random because of drt . We eliminate the randomness of dΠt in Equa-
tion (3.16) so that Πt is a riskless portfolio of Vt during the offer period, which is
made by setting

∆t =
∂Vt
∂rt

∂PHt
∂rt

, t0 ≤ t ≤ tM . (3.17)

By substituting Equation (3.17) into Equation (3.16), we get

dΠt =
[
∂Vt

∂t
+ 1

2
σ2 ∂

2Vt

∂r 2
t

−∆t

(
∂PHt

∂t
+ 1

2
σ2 ∂

2PHt

∂r 2
t

)]
d t . (3.18)

By the principle of no arbitrage, we get

d∆t = rt ·Πt d t

= rt (Vt −∆t PHt )d t ,

which yields

∂Vt

∂t
+ 1

2
σ2 ∂

2Vt

∂r 2
t

− rt Vt +∆t

(
rt ·PHt − ∂PHt

∂t
− 1

2
σ2 ∂

2PHt

∂r 2
t

)
= 0. (3.19)

By a martingale argument under the no-arbitrage principle, we know that

∂PHt

∂t
+κ(θ− rt )

∂PHt

∂rt
+ 1

2
σ2 ∂

2PHt

∂r 2
t

= 0. (3.20)

By substituting Equation (3.20) into Equation (3.19), we get

∂Vt

∂t
+ 1

2
σ2 ∂

2Vt

∂r 2
t

− rt Vt +∆t ·κ(θ− rt )
∂PHt

∂rt
= 0. (3.21)

Further by substituting Equation (3.17) into Equation (3.21), we get Equation (3.11)
and finish the proof.

With early exercise facility, however, the story changes. For an American put option, the
no-arbitrage principle yields

L (V ) ≤ 0.
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At any point (rt , t ), it will be optimal to either exercise this budget option, or to hold on
the option. At any time t during the offer period, it holds that (referred to [10])

L (V ) ≤ 0,

Vt ≥ (K (t )−P M(m0, t ,rt ))+,

L (V ) · (Vt − (K (t )−P M(m0, t ,rt ))+) = 0.

(3.22)

An explanation of Problem (3.22) is given as follows.

Firstly, if Vt < (K (t )−P M(m0, t ,rt ))+, there is an arbitrage resulting from shorting
selling cash (K (t )−P M(m0, t ,rt ))+ to buy the corresponding units of option Vt

and then immediately exercising the option by an arbitrageur. Thus, Vt ≥ (K (t )−
P M(m0, t ,rt ))+.

Secondly, in order to explain L (V ) ≤ 0, we set up the self-financing portfolio Πt

consisting of one-unit-principal option Vt in long position and∆t units of PH(m0, t ,rt ),
as the setting in the proof of Equation 3.11 by the riskless portfolio setting method.
And we know that

Πt =Vt −∆t ·PH(m0, t ,rt ),

riskless over the option period.

Case 1: dΠt > rtΠt d t
No matter option Vt is European or American style, there is an arbitrage re-
sulting from at time t shorting selling Πt units of money savings account to
buy one unit of the portfolio Πt by an arbitrageur. One time step (d t ) later,
i.e., at time (t +d t ), the arbitrageur gains the payoff (dΠt − rtΠt d t )+ by re-
turning the money savings account and selling the portfolio.

Case 2: dΠt < rtΠt d t
If option Vt is European style, there is an arbitrage resulting from at time t
shorting selling one unit of the portfolioΠt to buyΠt units of money savings
account by an arbitrageur. And at time (t +d t ), the arbitrageur gains the pay-
off (rtΠt d t −dΠt )+ by returning the portfolio and selling the money savings
account. However, if option Vt is American style, shorting selling portfolioΠt

puts the arbitrager at the mercy of the early exercise facility, which no longer
guarantees the arbitrager an arbitrage to beat the bank risklessly [11].

Hence, the American style of the budget option results in L (Vt ) ≤ 0 over the option
period.

Thirdly, as the free boundary problem of an American option valuation indicates,
when Vt > (K (t )−P M(m0, t ,rt ))+, the option is held. Otherwise an early exercise
causes immediate loss because of

−Vt + (K (t )−P M(m0, t ,rt ))+ < 0.

Hence,
L (Vt ) = 0, when Vt > (K (t )−P M(m0, t ,rt ))+ .
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On the other hand, when Vt = (K (t )−P M(m0, t ,rt ))+, the holder exercises the op-
tion optimally. Hence,

L (Vt ) ≤ 0, when Vt = (K (t )−P M(m0, t ,rt ))+ .

Therefore, the budget option valuation problem can be formulated into Problem (3.22).

3.2.2. BOUNDARY CONDITION
Now, we consider the boundary condition for Problem (3.22).

At maturity t = tM , if the option is still held, there is no more exercise opportunities
left for the holder. The holder either exercises the option at time tM if it is in the money,
or let the option expire. So the boundary condition for VtM is obvious, i.e.,

VtM = max
{
K (tM )−P M(m0, tM ,rtM ),0

}
. (3.23)

When rt = 0 (t0 < t < tM ), P Mt = P M(m0, t ,0). And

max
rt≥0

{
P M(m0, t ,rt )

}
= P M(m0, t ,0),

because ∂P M(m0,t ,rt )
∂rt

< 0 under the Vasicek model, which results in the maximum payoff
of the American call option at time t as follows.

V call
t = P M(m0, t ,0)−K (t ),

under rs ≥ 0, t0 < s < tM . For American options, there is no put-call parity. However, the
following relationships hold [12].

K (t ) ≥V put
t −V call

t +P M(m0, t ,rt )

Hence, when rt = 0 (t0 < t < tM ),

V put
t = 0, when rt = 0,

i.e., the budget option value
Vt = 0.

When rt →+∞ (t0 < t < tM ), all zero coupon bonds under the Vasicek model equal
zero, i.e.,

P (t ,T ) = A(t ,T )e−B(t ,T )rt → 0, as rt →+∞.

So,
P M(m0, t ,rt ) → 0, as rt →+∞,

and
max

{
K (t )−P M(m0, t ,rt ),0

}
→ K (t ), as rt →+∞.

Hence,
Vt → K (t ), as rt →+∞.
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3.2.3. THE FINITE DIFFERENCE METHOD IMPLEMENTATION

We transform

t = tM −τ
into Problem (3.22), resulting in the formulated budget option valuation problem as fol-
lows.

κ(θ− rτ)
∂V

∂rτ
+ 1

2
σ2 ∂

2V

∂r 2
τ

− rτV ≤ ∂V

∂τ

Vτ− (K (τ)−P M(m0,τ,rτ))+ ≥ 0(
−∂V

∂τ
+κ(θ− rτ)

∂V

∂rτ
+ 1

2
σ2 ∂

2V

∂r 2
t

− rτVτ

)
· (Vτ− (K (τ)−P M(m0,τ,rτ))+) = 0

(tM −τ) ∈ month T̃ :=
{

month Ti

∣∣∣the budget option to be exercised in month Ti , i = 0,1,2
}

,

(3.24)

and κ(θ− rτ)
∂Vτ
∂rτ

+ 1

2
σ2 ∂

2Vτ

∂r 2
τ

− rτVτ = ∂Vτ
∂τ

t0 ≤ (tM −τ) < t̃0,

where t̃0 is the beginning of month T̃ , as illustrated in Figure 3.1.

We set up a grid of τ-axis and r-axis. Let∆τ and∆r be the mesh size of τdiscretization
and the mesh size of r discretization respectively. To avoid unreadable long equations,
some shorthand notations are introduced.

τ j := j ·∆τ, j = 0,1, . . . , j̃ := tM − t0

∆τ
;

ri := i ·∆r, i = 0,1, . . . , ĩ ;

Vi , j :=V (ri ,τ j ),

Vj := V(τ j ) =


V (r1,τ j )
V (r2,τ j )

...
V (r ĩ ,τ j )

 .

The explicit method discretizes L (Vi , j ) = 0 in Problem (3.24) into

Vi , j+1 −Vi , j

∆τ
= κ(θ− ri )

Vi+1, j −Vi−1, j

2∆r
+ 1

2
σ2 Vi+1, j −2Vi , j +Vi−1, j

(∆r )2 − ri ·Vi , j .

The implicit method discretizes L (Vi , j ) = 0 in Problem (3.24) into

Vi , j+1 −Vi , j

∆τ
= κ(θ− ri )

Vi+1, j+1 −Vi−1, j+1

2∆r
+ 1

2
σ2 Vi+1, j+1 −2Vi , j+1 +Vi−1, j+1

(∆r )2 − ri ·Vi , j+1.
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The Crank-Nicolson method discretizes L (Vi , j ) = 0 in Problem (3.24) into

Vi , j+1 −Vi , j

∆τ
= 1

2

(
κ(θ− ri )

Vi+1, j −Vi−1, j

2∆r
+ 1

2
σ2 Vi+1, j −2Vi , j +Vi−1, j

(∆r )2 − ri ·Vi , j

)
1

2

(
κ(θ− ri )

Vi+1, j+1 −Vi−1, j+1

2∆r
+ 1

2
σ2 Vi+1, j+1 −2Vi , j+1 +Vi−1, j+1

(∆r )2 − ri ·Vi , j+1

)
,

which yields(
∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2

)
Vi−1, j+1 +

(
1+ ∆τσ2

2(∆r )2 + ∆τ
2

ri

)
Vi , j+1 +

(
− ∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2

)
Vi+1, j+1

=
(
− ∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2

)
Vi−1, j +

(
1− ∆τσ2

2(∆r )2 − ∆τ
2

ri

)
Vi , j +

(
∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2

)
Vi+1, j .

By applying the Crank-Nicolson method, we get

A ·V j+1 = B ·V j +d, (3.25)

where the iteration matrix A for solving V j+1 is an ĩ × ĩ matrix, visualized as
a1,1 a1,2 0 0 . . . 0 0
a2,1 a2,2 a2,3 0 . . . 0 0

...
...

...
...

. . .
...

0 0 0 0 . . . aĩ−1,ĩ aĩ ,ĩ

 (3.26)

where

ai ,i−1 = ∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2 , (3.27)

ai ,i = 1+ ∆τσ2

2(∆r )2 + ∆τ
2

ri , (3.28)

ai ,i+1 =− ∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2 . (3.29)

If A is strongly diagonally dominant, the Jacobi and Gauss-Seidel method applied to A
converge [13]. By choosing ∆τ and ∆r satisfying that condition, the convergence of the
Jacobi or Gauss-Seidel method applied to A is guaranteed. We give the condition along
with its proof below.

Condition 11 (convergence condition of FDM in the budget option valuation).

1. r ≥− 2
∆τ − σ2

(∆r )2 ;

2. ∆r < κ
3. θκ

κ+∆r − 2∆r
∆τ(κ+∆r ) < r < θκ

κ−∆r + 2∆r
∆τ(κ−∆r ) .
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proof. If A in Equation (3.26) is strictly diagonally dominant, the entries in iteration ma-
trix A satisfy ∣∣ai ,i−1

∣∣+ ∣∣ai ,i+1
∣∣< ∣∣ai ,i

∣∣ . (3.30)

where 1 ≤ i ≤ ĩ , and without loss of generality we denote a1,−1 = 0, aĩ ,ĩ+1 = 0.
So we need to guarantee∣∣∣∣− ∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2

∣∣∣∣+ ∣∣∣∣− ∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2

∣∣∣∣< ∣∣∣∣1+ ∆τσ2

2(∆r )2 + ∆τ
2

ri

∣∣∣∣ . (3.31)

Since∣∣∣∣− ∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2

∣∣∣∣+ ∣∣∣∣− ∆τ

4∆r
κ(θ− ri )− ∆τσ2

4(∆r )2

∣∣∣∣≤ ∣∣∣∣ ∆τ2∆r
κ(θ− ri )

∣∣∣∣+ ∆τσ2

2(∆r )2 , (3.32)

as long as it holds that∣∣∣∣ ∆τ2∆r
κ(θ− ri )

∣∣∣∣+ ∆τσ2

2(∆r )2 <
∣∣∣∣1+ ∆τσ2

2(∆r )2 + ∆τ
2

ri

∣∣∣∣ , (3.33)

the iteration matrix A will be strictly diagonally dominant. If r ≥− 2
∆τ− σ2

(∆r )2 , the inequal-
ity (3.33) is equivalent to ∣∣∣∣ ∆τ2∆r

κ(θ− ri )

∣∣∣∣< 1+ ∆τ
2

ri . (3.34)

The inequality (3.34) is equivalent to

θκ

κ+∆r
− 2∆r

∆τ(κ+∆r )
< r < θκ

κ−∆r
+ 2∆r

∆τ(κ−∆r )
(3.35)

with κ>∆r . Hence, as long as the relations in (3.35) and r ≥− 2
τ− σ2

(∆r )2 hold, we can guar-
antee that the iteration matrix A is strictly diagonally dominant and more importantly,
the Jacobi and Gauss-Seidel method applied to A converge.

The matrix B in Equation (3.25) is visualized as
b1,1 b1,2 0 0 . . . 0 0
b2,1 b2,2 b2,3 0 . . . 0 0

...
...

...
...

. . .
...

0 0 0 0 . . . bĩ−1,ĩ bĩ ,ĩ


where

bi ,i−1 =− ∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2 , (3.36)

bi ,i = 1− ∆τσ2

2(∆r )2 − ∆τ
2

ri , (3.37)

bi ,i+1 = ∆τ

4∆r
κ(θ− ri )+ ∆τσ2

4(∆r )2 . (3.38)
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The vector d in Equation (3.25) contains the boundary conditions for r0 and r ĩ+1,
which is visualized as

d =


0
0
...
0

dĩ


where

dĩ =
(
∆τ

4∆r
κ(θ− r ĩ−1)+ ∆τσ2

4(∆r )2

)
· (K (τ j )−P M(m0,τ j ,r ĩ )

)
+

(
∆τ

4∆r
κ(θ− r ĩ−1)+ ∆τσ2

4(∆r )2

)
· (K (τ j+1)−P M(m0,τ j+1,r ĩ )

)
.

(3.39)

We repeat the process of using iteration method in solving V j until we get V j̃ which
gives the solution of the budget option value at time t0 against the initial interest rate rt0 .

3.3. THE LEAST-SQUARE METHOD IN THE BUDGET OPTION

VALUATION
The least squares method [14] is initialized at the offer maturity tM and utilizes a backward-
induction. Under the risk-neutral measure (Ω,Ft ,Q), {rt }t≥t0 represents the stochastic
instantaneous interest rate process. We simulate b paths of {rt ; t ∈ T} with T = {tk }M

k=0
the discrete set of simulated time steps at which the interest rate r is sampled. The size
of the time size is denoted as ∆τ, and

∆τ= ti+1 − ti , i = 0,1, . . . , M −1.

And rt0 is known at time t0 for all the simulated paths. Denote V i
k = V (m0,r i

tk
, tk ) as the

value function of the budget option at time tk on the simulated path i .

during the exercise month T̃
The time t̃M denotes the end of month T̃ , as illustrated in Figure 3.1. At t̃M , the
value of a yet unexercised budget option is the immediate exercise payoff if it is
in the money. Consequently, the budget offer value for path i ∈ J := {1,2, . . . ,b} is
obtained by

V i
t̃M

= I i
t̃M

:= max
{

K (t̃M )−P M(m0, t̃M ,r i
t̃M

),0
}

.

We move one step backward in time. At
(
t̃M −∆τ), the continuation payoff of the

option for path i is obtained by

Ĉ i
t̃M−∆τ = I i

t̃M
·exp

{
−∆τ · r i

t̃M−∆τ
}

.

The expected continuation payoff function at
(
t̃M −∆τ) takes the form:

C t̃M−∆τ =β0 +
n∑

j=1
β j ·φ j (r t̃M−∆τ), (3.40)
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r (t0)

t̃Mt0 t̃0
(
t̃M −∆τ)

in-the-money paths at
(
t̃M −∆τ)

i.e. P Mt < K (t )

contact point r f (t̃M −∆τ)

such that I t̃M−∆τ = Ĉ t̃M−∆τ

I t̃M−∆τ ≥ Ĉ t̃M−∆τ, exercise the option

I t̃M−∆τ < Ĉ t̃M−∆τ, hold the option

t

r (t )

Figure 3.2: backward dynamic programming in the budget option valuation

where coefficients β j , ( j = 0,1, . . . ,n) are estimated by the least squares regres-
sion [14]. One possible choice of the basis functions φ j (r ) ( j = 1, . . . ,n) is the set of
(weighted) Laguerre polynomials [7]

φ j (r ) = e−
1
2 r er

j !

d j

dr j
(r j ·e−r ),

of which the first three basis functions are used in the LSM tests in sections 3.5,
namely

φ1(r ),φ2(r ),φ3(r ).

After regression, for the paths of in-the-money option at
(
t̃M −∆τ), we compare

the immediate exercise payoff I i
t̃M−∆τ with the expected continuation value Ĉ i

t̃M−∆τ.

If I i
t̃M−∆τ ≥ Ĉ i

t̃M−∆τ, the holder exercises the option and gets payoff I i
t̃M−∆τ,

otherwise holding on this option at
(
t̃M −∆τ). Thus, for the paths i ∈ J0 ={

i ∈ J|I i
t̃M−∆τ ≥ Ĉ i

t̃M−∆τ
}

, we update V i
t̃M−∆τ = I i

t̃M−∆τ;

For the other paths j ∈ J\J0, we update V j
t̃M−∆τ =V j

t̃M
·exp

{
−∆τ · r j

t̃M−∆τ
}

.

The above dynamic programming for valuing the budget option price at time
(
t̃M −∆)

is illustrated in Figure 3.2.

We move one step backward in time and repeat the above valuation process until
time t̃0 is reached. For each simulated path i ∈ J, we get option value V i

t̃0
at t̃0.

during the holding time t0 ≤ t < t̃0

Because of no exercise during t0 ≤ t < t̃0, at
(
t̃0 −∆τ

)
, i.e., one step backward of t̃0,

the option value for the simulated path i ∈ J is

V i
t̃0−∆τ =V i

t̃0
·exp

{
−∆τ · r i

t̃0−∆τ
}

,
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which just discounts V i
t̃0

to one step backward in time.

Repeat the above discounting process until the offer sending moment t0 is reached.
Hence, the estimated value of this budget option at t0 is obtained by

V̂0 =
∑b

i=1 V i
t0

b
. (3.41)

3.4. THE STOCHASTIC GRID BUNDLING METHOD IN THE BUD-
GET OPTION VALUATION

In addition to the least squares method (LSM), in this section we introduce a newly
launched regression-based method in the simulation pricing, the Stochastic Grid Bundling
Method (SGBM) by Jain and Oosterlee [15]. We apply SGBM in the budget option valu-
ation in order to get comparable solutions to those by FDM and LSM. The convergence
performance of SGBM will be presented in Section 3.6.

Applying SGBM aims at getting two estimators to determine the option value. One is
called director estimator (DE) which is biased high, so it is regarded as the upper bound
of the option value [15]. The other one is called path estimator (PE). Although PE is
based on the same optimal exercise strategy as in DE, the regressors for PE in estimating
the option continuation value at each time step are obtained from DE, which leads to a
bias-high option continuation value at each time step for PE. The bias-high continua-
tion value in PE delays the exercise time from the optimal exercise time, which leads to a
bias-low option value in PE. So PE can be regarded as a lower bound of the option value,
which will finally converge to the true value as long as the option continuation value ob-
tained by DE converges to the true option continuation value at each time step.

The computing steps to get these two estimators are as follows.

Steps of Director Estimator Computing
Under the risk-neutral measure (Ω,Ft ,Q), {rt }t≥t0 represents the stochastic in-
stantaneous interest rate process. We simulate b paths of {rt ; t ∈T} withT= {tk }M

k=1
the discrete set of simulated time steps at which the interest rate r is sampled.
∆τ= ti+1 − ti , (i = 1, . . . , M −1) is the length of the time step in each path. And rt0

is known at time t0 for all the simulated paths. Denote V i
k = V (m0,r i

tk
, tk ) as the

value function of the budget option at time tk on the simulated interest rate path i .

During the exercise month T̃ :

Step 1:
The budget option value is initialized at t̃M , i.e., the end time of month
T̃ , as illustrated in Figure 3.1. At t̃M , the value of the budget option is the
immediate exercise payoff if it is in the money. Consequently, for each
simulated path i ∈ J := {1,2, . . . ,b},

V i
t̃M

= max
{

K
(
t̃M

)−P M
(
m0,r i

t̃M
, t̃M

)
,0

}
.
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Step 2:
We move one step backward in time. At time

(
t̃M −∆τ), we bundle the

simulated paths {r i
t̃M−∆τ, i ∈ J} into l > 1 bundles according to a cho-

sen bundling technique. The bundling techniques introduced in [15]
are k-means clustering, recursive bifurcation, and recursive bifurcation
of reduced state space. In [16], the ‘equal-range bundling’ technique is
proposed, which is proved to have comparable computing accuracy to
the ‘equal-size’ bundling techniques but more robustness. Although the
‘equal-range bundling’ technique is more efficient in implementation
and can guarantee an equal number of simulated paths in each bun-
dle per time step, an overlap problem arises when simulated paths with
the same simulated value are across a bundle boundary and separated
into two bundles. In that situation, basis functions of the same simu-
lated value contribute to two different regressors, but during the path
estimator process, that simulated value is matched with only one of the
two regressors, which may induce biaseness in regression and estima-
tor. In this paper, we modify the ‘equal-range bundling’ technique by
applying a ‘quantile bundling’ technique so that it can guarantee a sim-
ilar number of simulated paths in each bundle per time step with much
efficiency in implementation. The ‘quantile bundling’ technique is that
when we bundle the simulated paths {r i

t̃M−∆τ, i ∈ J} into l bundles, the
v
l (v = 1,2, . . . , l)-th quantiles Q v

l
of {r i

t̃M−∆τ, i ∈ J} are used to separate

the paths by bundling paths {i ∈ J|Q v−1
l

< r i
t̃M−∆τ ≤ Q v

l
}, (v = 1,2, . . . , l)

into the v-th bundle, where we set Q0 = −∞ and Q1 = +∞. The number
of the bundles is the same for all the time steps, i.e., l bundles per time
step. At the meantime, {Q v

l
}l−1

v=1 as the boundary information for each
time step is stored so that the same bundling information is applied to
bundle the newly simulated paths in the path estimator process.

Step 3:

After bundling
{

r i
t̃M−∆τ, i ∈ J

}
into l bundles, we make regression and get

the regressors for each bundle at
(
t̃M −∆τ). For example, for the paths

in the α-th bundle (1 ≤α≤ l) denoted as path iα, we regress their option
values V iα

t̃M
at t̃M on the basis functionsφ j (r iα

t̃M
), ( j = 1, . . . ,n) and then get

the corresponding coefficients β j
t̃M−∆τ(α), ( j = 1, . . . ,n) for theα-th bun-

dle at
(
t̃M −∆τ). The basis functions chosen here are (weighted) mono-

mials of the instantaneous interest rate rt , which are

φ j (rt ) = r j−1
t , j = 1,2,3,4. (3.42)

Numerical studies by Stentoft [17] indicate that using monimials as the
basis results have comparable accuracy to Legendre polynomials or to
Laguerre polynomials, but higher computational efficiency. More im-
portantly, the choice of monomial basis functions ideally gives us a closed
form of EQ

[
φ j (rt ) | rt−1

]
. That is because under the Vasicek model (3.5),
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the conditional probability of rt given rt−1 is a normal distribution with
mean

µ̂t−1 = rt−1 +κ · (θ− rt−1)∆τ

and standard deviation

σ̂t−1 =σ ·
p
∆τ,

i.e.,

(rt | rt−1) ∼N (µ̂t−1, σ̂2
t−1).

Hence,

EQ [1 | rt−1] = 1,

EQ [rt | rt−1] = µ̂t−1,

EQ [
r 2

t | rt−1
]= µ̂2

t−1 + σ̂2
t−1,

EQ [
r 3

t | rt−1
]= µ̂3

t−1 +3µ̂t−1 · σ̂2
t−1.

Step 4:
After obtaining the coefficients for all the bundles at time

(
t̃M −∆τ), we

starts to calculate the expected continuation value Ĉ t̃M−∆τ of the budget
option at

(
t̃M −∆τ) in order to determine the option value at

(
t̃M −∆τ)

by

Vt̃M−∆τ = max
{

I t̃M−∆τ,Ĉ t̃M−∆τ
}

.

The continuation value for a path in the α-th bundle at
(
t̃M −∆τ) with

the simulated instantaneous interest rate r iα
t̃M−∆τ, is

Ĉ iα
t̃M−∆τ = exp

{
−∆τ · r iα

t̃M−∆τ
}
·

4∑
j=1

EQ
[
β

j
t̃M−∆τ(α) ·φ j (r t̃M

)
∣∣∣r iα

t̃M−∆τ
]

.

(3.43)
By the distribution of r t̃M

conditional on r iα
t̃M−∆τ in the Vasicek model, we

can get a closed form approximation of Ĉ iα
t̃M−∆τ. The immediate exercise

payoff at
(
t̃M −∆τ) on that path is

I iα
t̃M−∆τ = max

{
K (t̃M −∆τ)−P M

(
m0, t̃M −∆τ,r iα

t̃M−∆τ
)
),0

}
. (3.44)

So, the option value at
(
t̃M −∆τ) on that path is

V iα
t̃M−∆τ = max

{
I iα

t̃M−∆τ,C iα
t̃M−∆τ

}
. (3.45)

We then get the option values for all the simulated paths at
(
t̃M −∆τ).

Step 5:
We move one time step backward and repeat Step 2 to Step 5, until reach-
ing time t̃0, i.e., the beginning of month T̃ .
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During the holding time t0 ≤ t < t̃0:
During t0 ≤ t < t̃0, the option is not going to be exercised. At

(
t̃0 −∆τ

)
, i.e.,

one step backward of t̃0, the option value for the simulated path i ∈ J is

V i
t̃0−∆τ =V i

t̃0
·exp

{
−∆τ · r i

t̃0−∆τ
}

,

which just discounts V i
t̃0

to one step backward in time.

We repeat the above discounting process until the offer sending moment t0

is reached. Finally, the direct estimator for the budget option value at t0 is
obtained by

V0(rt0 ) =
∑b

i=1 V i
t0

b
. (3.46)

Steps of Path Estimator Computing

Step 1:
After calculating the direct estimator, we simulate (2×b) other Monte Carlo
(MC) paths of {rt ; t ∈ T} with T = {tk }M

k=1 the discrete set of simulated time
steps. ∆τ = tk+1 − tk , (k = 1, . . . , M −1) is the length of the time step in each
path. Of course, rt0 is known at time t0 for all the simulated paths. Define
V i

k =V (m0,r i
tk

, tk ) as the value function of the budget option at time tk on the
simulated path i .

Step 2:

For a simulated path r i =
{

r i
t0

,r i
t1

, . . . ,r i
tM−1

,r i
tM

}
among the 2b paths, the ex-

ercise time, or called the stopping time for its path estimator, is defined as

τ̂(r i ) = min
{

t
∣∣∣ I i (t ) ≥ Ĉ i (t )

}
, (3.47)

where Ĉ i (t ), the expected continuation value of the option at time t for path
i , is computed by Equation (3.43). Then the path estimator for path r i is
given by

V i
t0
= I i

τ̂(r i )
·exp

{
−
τ̂(r i )−∆τ∑

t=t0

r i
t ·∆τ

}
. (3.48)

Step 3:
After calculating the path estimators for the simulated 2b paths, the path es-
timator for the budget option value at t0 is obtained by

V0(rt0 ) =
∑2b

i=1

(
V i

t0

)
2b

. (3.49)

3.5. NUMERICAL RESULTS
The tests in this section are based on the basic setting of a budget option valuation prob-
lem, which is explained in the previous sections.
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In the numerical tests of FDM in the budget option valuation, the Gauss-Seidel iter-
ation method for solving Problem (3.22) is applied. The grid sizes in FDM are chosen to
be ∆τ= 1

360 , ∆r = 2 ·10−4 unless any specification. The stopping criterion in the Gauss-
Seidel iteration is chosen to be 10−8.

In the numerical tests of LSM and SGBM, to reduce the variance of the Monte Carlo
simulation, the antithetic sampling technique is applied. In each LSM test, there are
in total 40,000 simulated paths of the instantaneous interest rate over the offer period,
among which 20,000 paths are generated by antithetic sampling next to the other 20,000
paths. In each test of SGBM, there are ND = 20,000 simulated paths for the direct es-
timator calculation, and NP = 2ND (ND +ND (antithetic)) simulated paths for the path
estimator calculation. The solution presented below by LSM or by SGBM is an average
of the simulated solutions under 20 different random seeds, and the corresponding stan-
dard error (s.e.) is the standard deviation of these 20 simulated solutions. ∆τ= 1

360 is the
time step size. Ten bundles are used. The specification for each numerical test is the
same, unless stated otherwise.

All the numerical tests presented in this thesis are for the budget offer of one-unit
principal with the above default parameters.

Some numerical results of FDM, LSM, SGBM in the budget option valuation are pre-
sented next. To clarify the meaning of notations in the presented tables, we list the ex-
planation below:

V i
F D , (i = 0,1,2): the value of the budget option to be exercised in month Ti solved

by FDM;

VF D : the value of the budget option value solved by FDM, equal to the maximum
of

{
V 0

F D ,V 1
F D ,V 2

F D

}
;

V i
LSM , (i = 0,1,2): the value of the budget option to be exercised in month Ti solved

by LSM;

VLSM : the value of the budget option solved by LSM, equal to the maximum of{
V 0

LSM ,V 1
LSM ,V 2

LSM

}
;

s.e.(LSM): the standard error of the solution VLSM by LSM;

V i
DE , (i = 0,1,2): the direct estimator of the budget option to be exercised in month

Ti solved by SGBM;

VDE : the direct estimator of the budget option solved by SGBM, equal to the maxi-
mum of

{
V 0

DE ,V 1
DE ,V 2

DE

}
;

s.e.(DE): the standard error of the direct estimator VDE by SGBM;

V i
PE : the path estimator of the budget option to be exercised in month Ti solved by

SGBM;
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VPE , (i = 0,1,2): the path estimator of the budget option solved by SGBM, equal to
the maximum of

{
V 0

PE ,V 1
PE ,V 2

PE

}
;

s.e.(PE): the standard error of the path estimator VPE by SGBM.

Table 3.2 presents the budget option values V0 against different locked mortgage
rates m0 in the budget offer. Table 3.3 presents the budget option values V0 against dif-
ferent values of κ in the Vasicek interest rate model. Table 3.4 presents the budget option
values V0 against different values of θ in the Vasicek interest rate model. Table 3.5 presents
the budget option values V0 against different values of the interest rate rt0 at the of-
fer sending moment t0. Table 3.6 presents the budget option values V0 against differ-
ent mortgage terms of the budget offer. Table 3.7 presents the budget option values V0

against different values of σ in the Vasicek interest rate model. From the results in the
tables, we see that an increase in the mortgage term, or an increase in the volatility σ,
results in a relatively significant increase in the budget option value, which implies that
compared to the other tested parameters, the budget option value is much sensitive to
the mortgage term change and the volatility σ change.
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Figure 3.3: budget option valuation by FDM (the budget offer specified in Table 3.1 with κ = 0.5, θ = 0.02,
σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term).
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Figure 3.4: budget option valuation by FDM (the budget offer specified in Table 3.1 with κ = 0.5, θ = 0.02,
σ= 0.01, rt0 = 0.04, m0 = 0.02, 1-year mortgage term).
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Figure 3.3 and Figure 3.4 plot the budget option value V0 given by FDM and the im-
mediate exercise payoff against the discretized interest rate axis in the FDM implemen-
tation.

m0 VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.015 0.0031 0.003105 1.11E-05 0.003113 2.25E-05 0.003098 1.77E-05
0.02 0.00311 0.003115 1.13E-05 0.003122 2.26E-05 0.003108 1.77E-05

0.025 0.003119 0.003124 1.10E-05 0.003132 2.27E-05 0.003117 1.78E-05

m0 V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.015 0.001775 0.001778 0.001774 0.001777 0.002545 0.00255 0.002547 0.002542 0.0031 0.003105 0.003113 0.003098
0.02 0.00178 0.001784 0.001779 0.001782 0.002553 0.002557 0.002555 0.002549 0.00311 0.003115 0.003122 0.003108

0.025 0.001785 0.001789 0.001784 0.001788 0.00256 0.002565 0.002562 0.002557 0.003119 0.003124 0.003132 0.003117

Table 3.2: budget option valuation varying mortgage rate m0 (the budget offer specified in Table 3.1 withκ= 0.5,
θ = 0.02, σ= 0.02, rt0 = 0.02, 1-year mortgage term).

κ VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.3 0.003475 0.003481 1.21E-05 0.003489 2.54E-05 0.003472 1.99E-05
0.6 0.002946 0.002951 1.06E-05 0.002958 2.14E-05 0.002944 1.67E-05
0.9 0.00252 0.002525 9.10E-06 0.002531 1.82E-05 0.002519 1.47E-05

κ V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.3 0.001964 0.001968 0.001963 0.001967 0.002833 0.002838 0.002835 0.002829 0.003475 0.003481 0.003489 0.003472
0.6 0.001696 0.0017 0.001696 0.001699 0.002426 0.002431 0.002429 0.002424 0.002946 0.002951 0.002958 0.002944
0.9 0.001477 0.00148 0.001477 0.00148 0.002096 0.0021 0.002098 0.002094 0.00252 0.002525 0.002531 0.002519

Table 3.3: budget option valuation varying κ (the budget offer specified in Table 3.1 with θ = 0.02, σ = 0.02,
rt0 = 0.02, m0 = 0.02, 1-year mortgage term).

θ VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.02 0.00311 0.003115 1.13E-05 0.003122 2.26E-05 0.003108 1.77E-05
0.04 0.00309 0.003096 1.10E-05 0.003103 2.25E-05 0.003089 1.76E-05
0.06 0.00307 0.003077 1.10E-05 0.003084 2.23E-05 0.003069 1.75E-05

θ V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.02 0.00178 0.001784 0.001779 0.001782 0.002553 0.002557 0.002555 0.002549 0.00311 0.003115 0.003122 0.003108
0.04 0.001769 0.001775 0.00177 0.001774 0.002538 0.002543 0.002541 0.002535 0.00309 0.003096 0.003103 0.003089
0.06 0.001761 0.001767 0.001762 0.001765 0.002524 0.00253 0.002527 0.002521 0.00307 0.003077 0.003084 0.003069

Table 3.4: budget option valuation varying θ (the budget offer specified in Table 3.1 with κ = 0.5, σ = 0.02,
rt0 = 0.02, m0 = 0.02, 1-year mortgage term).

A budget option is a put option on the loan. On the other hand, because of ∂P M(m0,t ,rt )
∂rt

<
0, a budget option can be regarded as a call option on the prevailing instantaneous in-
terest rate rt . The minimum of the instantaneous interest rates meeting the optimal
exercise condition at time t0 ≤ t ≤ tM is called the contact point of the budget option at
t , denoted as r f (t ). The plot of the contact points is called the early-exercise curve. For
a budget option sent at the beginning of month T0, the early-exercise curve of the budget
option to be exercised in month T2 is presented in Figure 3.5. The early-exercise curve of
the budget option to be exercised in a different month during the offer period is almost
the same as the month T2 one.

Here we define the academic hit ratio as a quantity to describe the probability of
option holders to optimally exercise their budget option.
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rt0 VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.02 0.00311 0.003115 1.13E-05 0.003122 2.26E-05 0.003108 1.77E-05
0.04 0.003053 0.003056 1.11E-05 0.003064 2.22E-05 0.00305 1.74E-05
0.06 0.002996 0.002999 1.06E-05 0.003008 2.18E-05 0.002994 1.71E-05

rt0 V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.02 0.00178 0.001784 0.001779 0.001782 0.002553 0.002557 0.002555 0.002549 0.00311 0.003115 0.003122 0.003108
0.04 0.001749 0.001754 0.001749 0.001753 0.002508 0.002513 0.00251 0.002504 0.003053 0.003056 0.003064 0.00305
0.06 0.00172 0.001725 0.00172 0.001723 0.002464 0.002468 0.002465 0.00246 0.002996 0.002999 0.003008 0.002994

Table 3.5: budget option valuation varying initial instantaneous interest rates rt0 (the budget offer specified in
Table 3.1 with κ= 0.5, θ = 0.02, σ= 0.02, m0 = 0.02, 1-year mortgage term).

term in years VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

2 0.004822 0.004832 1.77E-05 0.004841 3.47E-05 0.004819 2.75E-05
5 0.006818 0.006833 2.44E-05 0.006846 4.87E-05 0.006815 4.02E-05

10 0.007333 0.007348 2.75E-05 0.007363 5.23E-05 0.007329 4.30E-05

term in years V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

2 0.002804 0.002811 0.002803 0.002808 0.003976 0.003985 0.00398 0.003973 0.004822 0.004832 0.004841 0.004819
5 0.003997 0.004008 0.003996 0.004004 0.005636 0.005648 0.005643 0.005633 0.006818 0.006833 0.006846 0.006815

10 0.004304 0.004317 0.004303 0.004312 0.006064 0.006077 0.006071 0.006062 0.007333 0.007348 0.007363 0.007329

Table 3.6: budget option valuation varying mortgage term T (the budget offer specified in Table 3.1 with κ= 0.5,
θ = 0.02, σ= 0.02, m0 = 0.02, rt0 = 0.02).

σ θ VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.02 0.02 0.00311 0.003115 1.13E-05 0.003122 2.26E-05 0.003108 1.77E-05
0.05 0.1 0.007583 0.007608 2.59E-05 0.007616 5.48E-05 0.00758 4.29E-05

0.2 0.5 0.026883 0.027227 8.80E-05 0.027049 0.000189 0.026925 0.000155

σ θ V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.02 0.02 0.00178 0.001784 0.001779 0.001782 0.002553 0.002557 0.002555 0.002549 0.00311 0.003115 0.003122 0.003108
0.05 0.1 0.004361 0.004375 0.004363 0.004371 0.006243 0.006259 0.006249 0.006236 0.007583 0.007608 0.007616 0.00758

0.2 0.5 0.015904 0.015952 0.01591 0.015941 0.022472 0.022585 0.022501 0.022457 0.026883 0.027227 0.027049 0.026925

Table 3.7: budget option valuation varying σ (the budget offer specified in Table 3.1 with κ = 0.5, m0 = 0.02,
rt0 = 0.02).
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Definition 12 (Academic hit ratio). Academic hit ratio h(t ) is defined as the probability
of a budget option holder to optimally exercise the budget option at time t within the offer
period, which equals to the probability of the prevailing instantaneous interest rate r (t ) to
be greater than or equal to the contact point r f (t ), i.e.,

h(t ) = P
(
r (t ) ≥ r f (t )

)
. (3.50)

Figure 3.6 presents the academic hit ratio obtained by LSM and SGBM for a budget
option in each month during the offer period. It can be observed that the academic hit
ratio curve of month T2 is higher than the one of month T1 which is higher than the one
of month T0. The reason can be derived from the early-exercise curves. For the days with
the same order in each exercisable month of the budget offer, say t1 < t2 < t3, although
the contact points are almost the same, by Equation (3.50) the relatively high offer dura-
tion results in a relatively high academic hit ratio, i.e., h(t1) < h(t2) < h(t3).

From the numerical results of the budget option valuation, it can be concluded that
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the budget option risk cannot be neglected, especially for mortgage offers of a long mort-
gage term or of a high interest rate volatility in the offer period.

3.6. CONVERGENCE STUDY

In this section, we are going to check the convergence performances of the applied meth-
ods in the budget option valuation problem by decreasing grid sizes, increasing the num-
ber of simulated paths, and increasing the number of the bundles relatively.

To view the convergence performance of FDM in the budget option valuation, we
plot the absolute value of its numerical solution error against decreasing the grid sizes
(∆r,∆τ) in a factor of 2 (see Figure 3.7). The absolute value of the error of a numerical
solution V0 is defined as

er r = |V0 −Vref| ,

where Vref is the reference value of V0. The path estimator obtained by SGBM of 216 sim-
ulated paths in the direct estimator process and 217 in the path estimator process, is used
as the reference value in Figure 3.7 which shows that the budget option value obtained
by FDM converges to the reference one as the grid sizes decrease.

Figure 3.8 shows that for both LSM and SGBM in the budget option valuation, as the
number of the simulated paths increases, the estimators converge, and the standard er-
ror of each estimator decreases.

Figure 3.9 shows that with a relatively large number of the simulated paths in SGBM,
as the number of the applied bundles increases, the estimators converge.
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Figure 3.7: FDM convergence performance with respect to the grid size (the budget offer specified in Table 3.1
with κ= 0.5, θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term)
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Figure 3.9: SGBM convergence performance regarding the number of bundles (the budget offer specified in
Table 3.1 with κ= 0.5, θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term)
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3.7. ONE-DIMENSIONAL JUMP DIFFUSION PROCESS IN THE BUD-
GET OPTION VALUATION

Rapid changes in the instantaneous interest rate process can be modelled as jumps. In
this section, we model the instantaneous interest rate process as a jump diffusion one,
and use LSM and SGBM to value the budget offer price based on a jump-diffusion inter-
est rate model.

The time instances for which a jump arrives are denoted as 0 < τ1 < τ2 < . . .. The
number of jumps is supposed to be counted by the counting variable Jt , where

τ j = inf
{

t ≥ 0, Jt = j
}

. (3.51)

In order to reduce computational costs of calculating P M(m0, t ,rt ) at each time step
for each simulated path, we choose a jump-diffusion model of the analytical solution of
zero coupon bond price P (0,T ) in this thesis.

According to [18], a jump-extended Vasicek model under the risk neutral measure is
given as follows.

drt = κ (θ− rt )d t +σdWt +qu
t d J u

t −qd
t d J d

t , (3.52)

where the up-jump variable qu
t and the down-jump variable qd

t are exponentially dis-
tributed with positive means 1

ηu and 1
ηd , and up-jump arrival number J u

t and down-jump

arrival number are distributed independently with intensities λu and λd , i.e.,

qu
t ∼ exp{ηu}, qd

t ∼ exp{ηd }, J u
t ∼ Poisson{λu t }, J d

t ∼ Poisson{λd t }.

The zero coupon bond price is given by

P (t ,T ) = exp{A(τ)−B(τ) (rt −θ)−H(t ,T )} ,

τ= T − t ,

H(t ,T ) =
∫ T

t
θdu = θτ,

A(τ) = (τ−B(τ))
σ2

2κ2 − σ2 ·B 2(τ)

4κ
−

(
λu +λd

)
τ

+ λuηu

κηu +1
ln

∣∣∣ (
1+ 1

κηu

)
eκτ− 1

κηu

∣∣∣
+ λdηd

κηd −1
ln

∣∣∣ (
1− 1

κηd

)
eκτ+ 1

κηd

∣∣∣,
B(τ) = 1−e−κτ

κ
.

(3.53)

Hence, we are going to price the budget option based on the jump-extended Vasicek
Model in Equation (3.52). After knowing the analytical solution of zero coupon bond
prices, we need to get the conditional expectation of the basis functions in SGBM, i.e.,
EQ

[
r i

t+1

∣∣rt
]

, i = 0,1,2,3. By the independence between the variables in Equation (3.52)
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and the moments of a normal distribution, an exponential distribution and a Poisson
distribution, we get

EQ [1|rt ] = 1;

EQ [rt+1|rt ] = rt +κ(θ− rt )d t + 1

ηu λ
ud t − 1

ηd
λd d t ;

EQ [
r 2

t+1

∣∣rt
]= (

rt +κ(θ− rt )d t
)2

+2
(
rt +κ(θ− rt )d t

)(
1

ηu λ
ud t − 1

ηd
λd d t

)
+σ2d t + 2

(ηu)2

((
λud t

)2 +λud t
)
+ 2

(ηd )2

((
λd d t

)2 +λd d t

)
−2

1

ηu λ
ud t · 1

ηd
λd d t ;

EQ [
r 3

t+1

∣∣rt
]= (

rt +κ(θ− rt )d t
)3

+3
(
rt +κ(θ− rt )d t

)2
(

1

ηu λ
ud t − 1

ηd
λd d t

)
+3

(
rt +κ (θ− rt )d t

)(
σ2d t + 2

(ηu)2

((
λud t

)2 +λud t
)
+ 2

(ηd )2

((
λd d t

)2 +λd d t

)
−2

1

ηu λ
ud t · 1

ηd
λd d t

)
+3σ2d t

(
1

ηu λ
ud t − 1

ηd
λd d t

)
+ 6

(ηu)3

((
λud t

)3 +3
(
λud t

)2 +λud t
)
− 6

(ηd )3

((
λd d t

)3 +3
(
λd d t

)2 +λd d t

)
−3

2

(ηu)2

((
λud t

)2 +λud t
)
· 1

ηd
λd d t

+3
1

ηu λ
ud t

2

(ηd )2

((
λd d t

)2 +λd d t

)
.

Some numerical test results based on the interest rate model (3.52) are presented be-
low.

Table 3.8 presents the budget option values V0 under the jump-extended Vasicek
model with upward (or/and downward) jumps and without upward (or downward) jumps.
It shows that the budget option values under the jump-extended Vasicek model with
non-zero jumps are higher than the ones without jumps.

Table 3.9 presents the budget option values V0 against different values of the ex-
pected upward jump number λu in the jump-extended Vasicek model. λu implies the
probability of an upward interest rate jump occurring at time t . The results in Table 3.9
show that a higher expected number of upward interest rate jumps in the offer period is,
a higher value of the budget option will be. The same conclusion can be derived for the
expected number of downward interest rate jumps in the offer period.

Table 3.10 presents the budget option values V0 against different values of the up-
ward jump size ηu in the jump-extended Vasicek model. ηu implies the jump size of an
upward interest rate jump in the offer period. The results in Table 3.10 show that a higher
expected jump size of an upward interest rate jump in the offer period is, a higher value
of the budget option will be. The same conclusion can be derived for the expected jump
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size of a downward interest rate jump in the offer period.

λu λd 1
ηu

1
ηd VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0 0 0 0 0.003128 2.52E-05 0.003122 2.26E-05 0.003117 2.23E-05

3 0 10−3 0 0.003147 2.62E-05 0.003141 2.21E-05 0.003134 2.24E-05

0 3 0 10−3 0.003155 2.39E-05 0.003151 2.25E-05 0.003145 2.28E-05

3 3 10−3 10−3 0.003173 2.43E-05 0.003169 2.18E-05 0.003161 2.24E-05

λu λd 1
ηu

1
ηd V 0

LSM V 1
LSM V 2

LSM V 0
DE V 1

DE V 2
DE V 0

PE V 1
PE V 2

PE

0 0 0 0 0.001785 0.002561 0.003128 0.001779 0.002555 0.003122 0.001778 0.00255 0.003117

3 0 10−3 0 0.001796 0.002576 0.003147 0.00179 0.00257 0.003141 0.001787 0.002565 0.003134

0 3 0 10−3 0.0018 0.002584 0.003155 0.001794 0.002577 0.003151 0.001794 0.002574 0.003145

3 3 10−3 10−3 0.00181 0.002597 0.003173 0.001805 0.002593 0.003169 0.001803 0.002588 0.003161

Table 3.8: under Model (3.52), budget option valuation results(the budget offer specified in Table 3.1 with κ =
0.5, θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term )

λu λd 1
ηu

1
ηd VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

1 0 10−3 0 0.003133 2.41E-05 0.003129 2.27E-05 0.003123 2.24E-05

5 0 10−3 0 0.003158 2.51E-05 0.003153 2.20E-05 0.003144 2.15E-05

9 0 10−3 0 0.003179 2.85E-05 0.003173 2.41E-05 0.003166 2.12E-05

λu λd 1
ηu

1
ηd V 0

LSM V 1
LSM V 2

LSM V 0
DE V 1

DE V 2
DE V 0

PE V 1
PE V 2

PE

1 0 10−3 0 0.001788 0.002566 0.003133 0.001783 0.00256 0.003129 0.001781 0.002555 0.003123

5 0 10−3 0 0.001801 0.002587 0.003158 0.001797 0.00258 0.003153 0.001793 0.002576 0.003144

9 0 10−3 0 0.001815 0.002606 0.003179 0.001812 0.002599 0.003173 0.001807 0.002595 0.003166

Table 3.9: under Model (3.52), the budget option valuation varying λu (the budget offer specified in Table 3.1
with κ= 0.5, θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term )

λu λd 1
ηu

1
ηd VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

3 0 5×10−4 0 0.00313 2.53E-05 0.003126 2.23E-05 0.00312 2.18E-05

3 0 2×10−3 0 0.003208 2.56E-05 0.003204 2.23E-05 0.003195 2.15E-05

3 0 5×10−3 0 0.003578 3.28E-05 0.003592 2.60E-05 0.003568 2.59E-05

λu λd 1
ηu

1
ηd V 0

LSM V 1
LSM V 2

LSM V 0
DE V 1

DE V 2
DE V 0

PE V 1
PE V 2

PE

3 0 5×10−4 0 0.002564 0.00313 0.001781 0.002558 0.003126 0.00178 0.002553 0.00312

3 0 2×10−3 0 0.002627 0.003208 0.001827 0.002623 0.003204 0.001821 0.002614 0.003195

3 0 5×10−3 0 0.002921 0.003578 0.002021 0.002932 0.003592 0.002002 0.002913 0.003568

Table 3.10: under Model (3.52), the budget option valuation varying ηu (the budget offer specified in Table 3.1
with κ= 0.5, θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02, 1-year mortgage term )

3.8. TWO FACTOR INTEREST RATE MODEL IN THE BUDGET OP-
TION VALUATION

In this section, we extend the one-factor interest rate model in budget option valuation
into a two-factor interest rate model. Under the setting of the two-factor interest rate
model, we implement some tests of budget option valuation and present some numeri-
cal test results.
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The weakness of one-factor interest rate models is the correlation feature at each
time instant between rates for different maturities [19]. For instance, under the Vasicek
model (3.5) with the formula of zero coupon bond prices (3.6), the continuous com-
pounding interest rate for the period from t to T is given

R(t ,T ) =− ln(P (t ,T ))

T − t

=− ln A(t ,T )

T − t
+ B(t ,T )

T − t
rt

=: a(t ,T )+b(t ,T )rt .

For any T1, T2 > t and T1 6= T2,

Corr(R(t ,T1),R(t ,T2)) = Corr(a(t ,T1)+b(t ,T1)rt , a(t ,T2)+b(t ,T2)rt )

= 1,

which implies at each time instant a perfect-correlation between rates for different ma-
turities. Such feature cannot adapt to the real financial market where the interest rates
are known to behave differently.

Based on the principal component analysis (or factor analysis) in [20], we know that
historical analysis of the whole yield curve usually suggests that two components can
explain 85% to 90% of variations in the yield curve under the real-world measure. The
more factors involved in the interest rate model, usually the less numerically-efficient
the implementation will be. In the consideration of numerically-efficiency and capabil-
ity of the model to represent realistic correlation patterns for budget option valuation, a
two-factor interest rate model is chosen for the budget option valuation in this section.

Based on the Vasicek model in [8], a hypothetical two-factor interest rate model [19]
under the risk-neutral measure (Ω,Ft ,Q) is defined by the dynamics

rt = xt + yt

d xt = κx (θx −xt )d t +σx dW1(t ),

d yt = κx
(
θy − yt

)
d t +σy dW2(t ),

dW1(t ) ·dW2(t ) = ρd t ,

(3.54)

with κx > 0, κy > 0, σx > 0, σ> 0 and −1 ≤ ρ ≤ 1.

Under the two-factor interest rate model in (3.54), we get

rt = x0 ·e−κx t +θx
(
1−e−κx t )+σx e−κx t

∫ t

0
eκx s dW1(s)

+ y0 ·e−κy t +θy
(
1−e−κy t )+σy e−κy t

∫ t

0
eκy s dW2(s),

(3.55)
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and ∫ T

0
rt d t =

∫ T

0

(
x0e−κx t +θx

(
1−e−κx t )+ y0e−κy t +θy

(
1−e−κy t ))d t

+
∫ T

0
σx e−κx t

∫ t

0
eκx s dW1(s)d t +

∫ T

0
σy e−κy t

∫ t

0
eκy s dW2(s)d t

= 1−e−κx T

κx
(x0 −θx )+θx T + 1−e−κy T

κy

(
y0 −θy

)+θy T

+
∫ T

0

σx
(
eκx (s−T ) −1

)
−κx

dW1(s)+
∫ T

0

σy
(
eκy (s−T ) −1

)
−κy

dW2(s).

(3.56)

If we denote

Ŵ (T ) :=
∫ T

0

σx
(
eκx (s−T ) −1

)
−κx

dW1(s)+
∫ T

0

σy
(
eκy (s−T ) −1

)
−κy

dW2(s);

Ŵ1(T ) :=
∫ T

0

σx
(
eκx (s−T ) −1

)
−κx

dW1(s);

Ŵ2(T ) :=
∫ T

0

σy
(
eκy (s−T ) −1

)
−κy

dW2(s).

Then we know that the distribution of Ŵ is normally distributed, since the sum of nor-
mally distributed variables is a normal distribution. The mean and variance of Ŵ (T ) are
given by

EQ [
Ŵ (T )

]= EQ [
Ŵ1(T )

]+EQ [
Ŵ2(T )

]= 0, (3.57)

and

Var
[
Ŵ (T )

]= Var
(
Ŵ1(T )

)+Var
(
Ŵ2(T )

)+Cor
(
Ŵ1(T ),Ŵ2(T )

)
=− σ2

x

2κx

(
1−e−κx T

κx

)2

− σ2
x

κ2
x

(
1−e−κx T

)
κx

+ σ2
x

κ2
x

T

−
σ2

y

2κy

(
1−e−κy T

κy

)2

−
σ2

y

κ2
y

(
1−e−κy T

)
κy

+
σ2

y

κ2
y

T

+
∫ T

0

σx
(
eκx (s−T ) −1

)
−κx

· σy
(
eκy (s−T ) −1

)
−κy

·ρd s

=− σ2
x

2κx

(
1−e−κx T

κx

)2

− σ2
x

κ2
x

(
1−e−κx T

)
κx

+ σ2
x

κ2
x

T

−
σ2

y

2κy

(
1−e−κy T

κy

)2

−
σ2

y

κ2
y

(
1−e−κy T

)
κy

+
σ2

y

κ2
y

T

+ σxσyρ

κxκy

(
1−e−(κx+κy )T

κx +κy
− 1−e−κx T

κx
− 1−e−κy T

κy
+T

)
.

(3.58)



3

68 3. ENDOGENOUS TERMINATION MODELLING

Hence, we know that∫ T

0
rt d t ∼N

(
µ,σ2)

µ := 1−e−κx T

κx
(x0 −θx )+θx T + 1−e−κy T

κy

(
y0 −θy

)+θy T

σ2 :=− σ2
x

2κx

(
1−e−κx T

κx

)2

− σ2
x

κ2
x

(
1−e−κx T

)
κx

+ σ2
x

κ2
x

T

−
σ2

y

2κy

(
1−e−κy T

κy

)2

−
σ2

y

κ2
y

(
1−e−κy T

)
κy

+
σ2

y

κ2
y

T

+ σxσyρ

κxκy

(
1−e−(κx+κy )T

κx +κy
− 1−e−κx T

κx
− 1−e−κy T

κy
+T

)
.

(3.59)

By the moment generating functions of the normal distribution, we get the analytical
solution of the zero coupon bond price P (0,T ), i.e.,

P (0,T ) = EQ
[

exp

{
−

∫ T

0
rt d t

}]
= e−µ+

σ2
2 .

(3.60)

With the bond price formula under the two-factor interest rate model, the next thing
to be considered is to simulate rt in LSM and SGBM. To facilitate simulating dW i

t (i =
1,2), we apply the Cholesky decomposition technique to defining the equivalent combi-
nations of independent Wiener processes to the correlated ones. For dW i

t (i = 1,2),(
dW1(t )
dW2(t )

)(
dW1(t )
dW2(t )

)tr

=
(

1 ρ

ρ 1

)
·d t

=
(

1 0
ρ

√
1−ρ2

)(
dW̃1(t )
dW̃2(t )

)((
1 0
ρ

√
1−ρ2

)(
dW̃1(t )
dW̃2(t )

))tr

,

(3.61)

where W̃1(t ) and W̃2(t ) are independent Wiener processes. Hence, we define that(
dW1(t )
dW 2(t )

)
=

(
1 0
ρ

√
1−ρ2

)(
dW̃1(t )
dW̃2(t )

)
=

(
dW̃1(t )

ρdW̃1(t )+
√

1−ρ2dW̃2(t )

)
. (3.62)

Therefore, the two-factor interest rate model in (3.54) is equivalently transformed into

rt = xt + yt

d xt = κx (θx −xt )d t +σx dW̃1(t )

d yt = κx
(
θy − yt

)
d t +σy

(
ρdW̃1(t )+

√
1−ρ2dW̃2(t )

)
dW̃1(t ) ·dW̃2(t ) = 0

(3.63)

with κx > 0, κy > 0, σx > 0, σy > 0, −1 ≤ ρ ≤ 1, and independent Wiener processes W̃1

and W̃2.
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The basis functions applied in LSM and SGBM are given by

1, xt , x2
t , yt , y2

t , xt yt .

The conditional expectations of these basis functions of xt+1, yt+1 on xt and yt are given
by

EQ [xt+1|xt ] = xt +κx (θx −xt )d t ,

EQ [
yt+1

∣∣yt
]= yt +κy

(
θy − yt

)
d t ,

EQ [
x2

t+1

∣∣xt
]= (xt +κx (θx −xt )d t )2 +σ2

x d t ,

EQ [
y2

t+1

∣∣yt
]= (

yt +κy
(
θy − yt

)
d t

)2 +σ2
y d t ,

EQ [
xt+1 · yt+1

∣∣xt , yt
]= (

xt +κx (θx −xt )d t
)(

yt +κy
(
θy − yt

)
d t

)+σxσyρd t .

Under the two-factor interest rate model, the applied bundling reference at each time
step in SGBM is the quantile of the sum of xi

t and y i
t , where i ∈ J := {1,2, . . . ,b} means the

i -th simulated path among the b simulated paths.

We implement the two-factor interest rate model in the budget option valuation based
on the above derivation. One of the numerical test results is presented in Table 3.11. Ta-
ble 3.11 shows that a higher value of the correlation coefficient ρ in the two-factor inter-
est rate model (3.54) is, a higher value of the budget option will be.

Figure 3.10 presents the month T2 early-exercise curves under different interest rate
models for the budget offer specified in Table 3.1 with m0 = 0.02, 1-year mortgage term.
Figure 3.11 presents the month T2 academic hit ratio curves under different interest rate
models for the budget offer specified in Table 3.1 with m0 = 0.02, 1-year mortgage term.
The parameter setting applied in different interest rate models in Figure 3.10 and in Fig-
ure 3.11 is given in Table 3.12. Figure 3.11 shows that the month T2 academic hit ratio
curves under different interest rate models are almost the same, although the month T2

early-exercise curves are different, which implies that with comparable parameter set-
ting, a different interest rate model does not change the academic hit ratio curve. Al-
though the interest rate models change the month T2 early-exercise curve in 3.10, but
the trends of the early-exercise curves are the same, i.e., contact point r f (t ) goes down
as the days increase in month T2. The same conclusion can be derived for the month Ti

(i = 0,1,2) early-exercise curve and the month Ti (i = 0,1,2) academic hit ratio curve.
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ρ VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE)

0.8 0.002951 2.49E-05 0.002959 2.12E-05 0.002945 1.10E-05
0.5 0.002693 2.30E-05 0.0027 1.89E-05 0.00269 1.02E-05

0 0.002195 1.93E-05 0.002204 1.47E-05 0.002197 8.32E-06
-0.5 0.001552 1.11E-05 0.001559 9.72E-06 0.001555 6.35E-06
-0.8 0.000983 7.87E-06 0.000987 5.95E-06 0.000985 3.94E-06

ρ V 0
LSM V 1

LSM V 2
LSM V 0

DE V 1
DE V 2

DE V 0
PE V 1

PE V 2
PE

0.8 0.00169 0.002426 0.002951 0.001687 0.002422 0.002959 0.001687 0.002424 0.002945
0.5 0.001542 0.002216 0.002693 0.00154 0.002211 0.0027 0.00154 0.002212 0.00269

0 0.001259 0.001809 0.002195 0.001258 0.001806 0.002204 0.001257 0.001806 0.002197
-0.5 0.000891 0.001278 0.001552 0.00089 0.001278 0.001559 0.000891 0.001279 0.001555
-0.8 0.000565 0.000809 0.000983 0.000563 0.000809 0.000987 0.000564 0.00081 0.000985

Table 3.11: under the two-factor interest rate model (3.54), the budget option valuation varying ρ (the budget
offer specified in Table 3.1 withκx = 0.5, κy = 0.5, θx = 0.01, θy = 0.01,σx = 0.01,σy = 0.01, x0 = 0.01, y0 = 0.01,
m0 = 0.02, 1-year mortgage term )

interest rate model parameter setting

Vasicek model
r0 κ θ σ

0.02 0.5 0.02 0.02

upward jump extended Vasicek model
r0 κ θ σ λu λd 1

ηu
1
ηd

0.02 0.5 0.02 0.02 5 0 10−3 0

downward jump extended Vasicek model
r0 κ θ σ λu λd 1

ηu
1
ηd

0.02 0.5 0.02 0.02 0 5 0 10−3

2-factor interest rate model (positive ρ)
x0 y0 κx κy θx θy σx σy ρ

0.01 0.01 0.5 0.5 0.01 0.01 0.01 0.01 0.5

2-factor interest rate model (negative ρ)
x0 y0 κx κy θx θy σx σy ρ

0.01 0.01 0.5 0.5 0.01 0.01 0.01 0.01 -0.5

Table 3.12: parameters used in different interest rate models in the budget option valuation tests
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Figure 3.10: month T2 early-exercise curves by SGBM under different interest rate models with the parameter
setting in Table 3.12 (the budget offer specified in Table 3.1 with m0 = 0.02, 1-year mortgage term)
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Figure 3.11: month T2 academic hit ratio curves by SGBM under different applied interest rate models with the
parameter setting in Table 3.12 (the budget offer specified in Table 3.1 with m0 = 0.02, 1-year mortgage term)





4
CONCLUSION AND OUTLOOK

In this thesis, both the exogenous termination modelling and the endogenous termina-
tion modelling in the valuation of mortgage offer options have been performed. In the
exogenous termination modelling, based on the loss of the hedging portfolio, we explain
that the quantity to be estimated is the monthly hit ratio. The monthly hit ratio predic-
tion is based on the historical data. From our tests and analysis in Chapter 2, we con-
clude that it is nontrivial to define an appropriate model in the hit ratio prediction. In the
endogenous termination modelling, we focused on the budget option valuation where all
the borrowers are assumed rational in exercising their offer options. With the assump-
tion of the strike prices over a offer period, the payoff of option can be calculated. Due to
the early exercise facility of offer options, the backward valuation methods with dynamic
programming are chosen, namely the finite difference method (FDM), the least squares
method (LSM), and the stochastic grid bundling method (SGBM). Despite the lack of
benchmark in offer option values, the numerical results from one applied method assist
to validate the others. All the numerical test results of the budget option valuation match
well, which convinces us the validity of the applied methods. In conclusion, we can use
the endogenous termination modelling to work on our research question.

Based on the work in this thesis, we present some outlook on the future research in
the valuation of mortgage offer options as follows.

The assumption of the strike prices in the offer period can be considered to adapt
to individual lender’s situation; the interest rate model can be considered to be
enriched to adapt individual lender’s yield curve model; and the regular option
valuation can be investigated based on the setting of the endogenous termination
modelling.

In summary, it can be said that this thesis forms a foundation of the valuation of
mortgage offer options.
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A
DATA

The data sheets used for the tests in Chapter 2 have been queried based on the data re-
quirement made for this project. We required that the data sheets contain the historical
transition information of the ABN AMRO (AAB) label mortgage offers from 01-Jan-2010
to 25-Jan-2016 along with the information of the mortgage contract variables. There are
two data sheets prepared for the above data requirement, containing the information of
the offers separately. One data sheet called “AanvraagDetails20160127” (AD), contains
all the required offer information for the last offer in each mortgage application. The
information of transition states and transition dates are not included in AD. The other
data sheet called “AanvragenStatusTransities20160127” (AST), contains the transition in-
formation for all the offers in each mortgage application. The information of mortgage
contract variables is not included in AST.

The problem raised that AD and AST can not be perfectly merged into a completed
sheet. The main reason is that the AD data sheet only includes the last offer in each
application, while the AST data sheet contains the transition information for all the offers
in each application. In order to utilize these two queried data sheets, we assume the
offers made in one application are in the same mortgage offer type. By this assumption,
we can separate the AST data sheet into the AST data sheet for budget offers and the AST
data sheet for regular offers. Due to the fact that the principal information for each offer
in AST is still missing, all the hit ratio calculations in the tests presented in Chapter 2 are
based on the offer number ratio instead of the principal ratio.
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B
INTRODUCTION TO THE

MORTGAGE CREDIT DIRECTIVE

On March 21 2016, the Mortgage Credit Directive (MCD) was implemented in Dutch leg-
islation, requiring banks to meet the new rules, under which the mortgage offer process
in Figure 1.6 has been changed in MCD adaptation. The changed offer process has not
been considered in this thesis, due to the insufficient historical data. For the information
of readers, MCD and the changed offer process are described in this appendix.

Learning the lesson from the financial crisis of 2007 to 2008, the European Commis-
sion launched a process of identifying and assessing the risks in the EU mortgage credit
market. In the Dutch mortgage market, the main risks are high Loan-to-Value (LtV) ra-
tio and Loan-to-Income (LtI) ratio, compared to other European countries. In the UK
mortgage market, the risk is that UK mortgages are increasingly extended to high(er) LtI,
while the LtV is not an immediate concern as it is much lower than the one in the Dutch
mortgage market [21]. The root of all risks in the EU mortgage credit market can be
summarized into the lax attitude of responsible lending. As recognizing the importance
of responsible behaviors in the credit market, the Mortgage Credit Directive 2014/17/EU
(MCD) was adopted on 4 February 2014. The aim of the Directive is to create a Union-
wide, transparent and efficient mortgage credit market with a high level of consumer
protection1. In the sense of the high level of consumer protection, the Directive takes
effort in preventing the consumers from over indebtedness and imposing transparent
information in the market. As acknowledged, consumer protection is necessary in sta-
bilizing the mortgage credit market, which in turn stabilizes the cash flow circulation in
the mortgage credit market. It can further strengthen the investors’ confidence in the
mortgage credit market, which is beneficial to the mortgage lenders’2 liquidity position.
Such stabilizing and stimulating the money circulation in the mortgage credit market are

1see, http://ec.europa.eu/finance/finservices-retail/credit/mortgage/index_en.htm
2Generally, mortgage lenders are banks.
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Figure B.1: The changed offer process under MCD

believed capable to bring a stabilized mortgage credit market.

The Directive lays down a common framework for sound underwriting standards
and prudential supervisory requirements in the laws, regulations and administrative
provisions of the Member States. “The main provisions include consumer information
requirements, principle based rules and standards for the performance of services (e.g.
conduct of business obligations, competence and knowledge requirements for staff), a
consumer creditworthiness assessment obligation, provisions on early repayment, pro-
visions on foreign currency loans, provisions on tying practices, some high-level princi-
ples (e.g. those covering financial education, property valuation and arrears and foreclo-
sures) and a passport for credit intermediaries who meet the admission requirements in
their home Member State. Member States will have to transpose its provisions into their
national law by March 2016.” [22].

Under the requirements of MCD, creditors in the Dutch mortgage markets have launched
a series of consistent changes for their mortgage products. In view of the changes in the
mortgage offer process, ABN AMRO Hypotheken Groep BV (AAHG) has moved the state
of creditworthiness assessment forward to the state of final offer release according to the
articles in [22] (see Figure B.1 for the details of the changed mortgage offer process).



C
SPECIAL CASE: κ= 0 IN THE

VASICEK MODEL

After validating the applied methods for the basic setting of the budget option valuation,
a special case of the interest rate model κ = 0 in the Vasicek model (3.5) is tested in this
section. Under the risk-neutral measure (Ω,F ,Q) with filtration {Ft }t≥0, setting κ= 0 in
the Vasicek model (3.5) turns the interest rate model into Equation (C.1).

drt =σdWt (C.1)

So,

rt = r0 +σ ·Wt , (C.2)

where r0 is the instantaneous interest rate at time t = 0.

Correspondingly, the zero coupon bond price P (0,T ) is

P (0,T ) = E
[

exp

{
−

∫ T

0
rt d t

}∣∣∣∣F0

]
= E

[
exp

{
−r0 ·T −σ

∫ T

0
Wt d t

}∣∣∣∣F0

]
. (C.3)

By Ito’s lemma, we get

d(Wt · t ) =Wt d t + tdWt .

We know that ∫ T

0
Wt d t =WT ·T −

∫ T

0
tdWt , (C.4)

which gives that ∫ T

0
Wt d t ∼N

(
0,T 2 − T 3

3

)
.
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Hence, by the moment generating functions of a normally distributed variable, Equa-
tion (C.3) can be further derived into

P (0,T ) = e−r0·T E
[

exp

{
−σ

∫ T

0
Wt d t

}]
= exp

{
−r0 ·T + σ2

2

(
T 2 + T 3

3

)} (C.5)

Therefore, we get the analytical solution of the zero coupon price P (0,T ) under the in-
terest rate model (C.1).

The conditional probability of rt given rt−1 is a normally distributed with mean

µ̂t−1 = rt−1

and standard deviation
σ̂t−1 =σ ·

p
∆τ,

i.e.,
(rt | rt−1) ∼N (µ̂t−1, σ̂2

t−1).

Hence, the conditional expectation of the basis functions in SGBM under the interest
rate model (C.1) are given by

EQ [1 | rt−1] = 1,

EQ [rt | rt−1] = µ̂t−1,

EQ [
r 2

t | rt−1
]= µ̂2

t−1 + σ̂2
t−1,

EQ [
r 3

t | rt−1
]= µ̂3

t−1 +3µ̂t−1 · σ̂2
t−1.

Some numerical test results based on the interest rate model (C.1) are presented be-
low, where V e

F D is the FDM numerical result of the value of the budget option which is
European style and can only be exercised at the offer maturity date tM , Ṽ e is the simula-
tion numerical result of the value of the budget option which is European style and can
only be exercised at the offer maturity date tM , and s.e.

(
Ṽ e

)
is the standard deviation of

Ṽ e.

Table C.1 presents the budget option values V0 against different mortgage terms of
the budget offer under the interest rate model (C.1). Table C.2 presents the budget option
values V0 against different values of the volatility σ in the interest rate model (C.1). Ta-
ble ?? presents the budget option values V0 against different locked mortgage rate m0 of
the budget offer under the interest rate model (C.1). From the test results in the budget
offer valuation under the interest rate model (C.1), we see that an increase in the mort-
gage term, or an increase in the volatility σ, results in a relatively significant increase in
the budget option value.
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term in years VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE) V e
F D Ṽ e s.e.

(
Ṽ e)

1 0.004182 0.004187 1.48E-05 0.004197 3.06E-05 0.004177 2.39E-05 0.003972 0.003975 2.14E-05
5 0.019474 0.019507 6.48E-05 0.019542 0.000138 0.019451 0.000125 0.019318 0.01933 9.95E-05

10 0.039686 0.039763 0.000137 0.039821 0.000275 0.039641 0.00027 0.039551 0.039573 0.000192

term in years V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

1 0.002306 0.002311 0.002304 0.002309 0.003364 0.003369 0.003365 0.003359 0.004182 0.004187 0.004197 0.004177
5 0.01102 0.011061 0.01102 0.011038 0.015798 0.015835 0.015809 0.015792 0.019474 0.019507 0.019542 0.019451

10 0.022458 0.022555 0.022476 0.022513 0.032198 0.03227 0.032217 0.032191 0.039686 0.039763 0.039821 0.039641

Table C.1: Under the interest rate model (C.1), budget option Valuation varying mortgage term T (the budget
offer specified in Table 3.1 with θ = 0.02, σ= 0.02, rt0 = 0.02, m0 = 0.02 )

σ θ VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE) V e
F D Ṽ e s.e.

(
Ṽ e)

0.01 0.02 0.002079 0.002081 7.36E-06 0.002087 1.53E-05 0.002077 1.18E-05 0.001973 0.001975 1.08E-05
0.05 0.1 0.010642 0.010662 3.53E-05 0.010678 7.67E-05 0.010628 6.16E-05 0.010137 0.010144 5.25E-05

0.2 0.5 0.047711 0.04804 0.000137 0.047862 0.000317 0.047656 0.000265 0.045578 0.046027 0.000189

σ θ V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.01 0.02 0.001148 0.001152 0.001148 0.001151 0.001675 0.001677 0.001675 0.001672 0.002079 0.002081 0.002087 0.002077
0.05 0.1 0.005822 0.005836 0.00582 0.005832 0.00853 0.008544 0.008532 0.008518 0.010642 0.010662 0.010678 0.010628

0.2 0.5 0.025055 0.025121 0.025049 0.025101 0.037481 0.037595 0.037497 0.037442 0.047711 0.04804 0.047862 0.047656

Table C.2: Under the interest rate model (C.1), budget option Valuation varying σ (the budget offer specified in
Table 3.1 with rt0 = 0.02, m0 = 0.02, 1-year mortgage term )

m0 VF D VLSM s.e.(LSM) VDE s.e.(DE) VPE s.e.(PE) V
eup
F D V

eup
simulation

s.e.
(
V

eup
simulation

)
0.015 0.00417 0.004174 1.49E-05 0.004185 3.05E-05 0.004165 2.39E-05 0.003961 0.003964 2.14E-05

0.02 0.004182 0.004187 1.48E-05 0.004197 3.06E-05 0.004177 2.39E-05 0.003972 0.003975 2.14E-05
0.025 0.004194 0.004199 1.47E-05 0.004208 3.07E-05 0.004189 2.40E-05 0.003983 0.003986 2.15E-05

m0 V 0
F D V 0

LSM V 0
DE V 0

PE V 1
F D V 1

LSM V 1
DE V 1

PE V 2
F D V 2

LSM V 2
DE V 2

PE

0.015 0.0023 0.002305 0.002298 0.002303 0.003355 0.003359 0.003356 0.00335 0.00417 0.004174 0.004185 0.004165
0.02 0.002306 0.002311 0.002304 0.002309 0.003364 0.003369 0.003365 0.003359 0.004182 0.004187 0.004197 0.004177

0.025 0.002312 0.002318 0.002311 0.002316 0.003374 0.003378 0.003375 0.003368 0.004194 0.004199 0.004208 0.004189

Table C.3: Under the interest rate model (C.1), budget option Valuation varying mortgage rate m0 (the budget
offer specified in Table 3.1 with varied θ = 0.02, σ= 0.02, rt0 = 0.02, 1-year mortgage term)





D
REPLICATION TESTS OF

BERMUDAN OPTION VALUATION

BY SGBM

In this appendix, some numerical tests for the stock option valuation are performed by
LSM and SGBM. In Section D.1, the stock price model is chosen as a one-dimensional ge-
ometric Brownian motion in the Bermudan stock option valuation. In Section D.2, one-
dimensional Merton jump-diffusion (MJD) model is chosen as the underlying model.
Afterwards, the case of a two-dimensional Merton jump-diffusion model in the Bermu-
dan stock option valuation is performed in Section D.3. The presented numerical results
in this appendix show the validity of the computing codes for the applied numerical
methods, which further convinces the readers about the validity in the numerical results
of the budget option valuation in this thesis.

Now we start to value a Bermudan put option. The specification of this Bermudan
put option is given in Table D.3. On each exercisable date, the option holder has the
option but not the obligation to exercise the Bermudan put option. Suppose on an exer-
cisable date tMi of the stock price SMi , the option is in the money, i.e., K −SMi > 0. Then
the immediate exercise payoff to the option holder is max

{
K −SMi ,0

}
.

initial stock price: S0

strike price: K
option period: T (in years)
number of exercise opportunity: M

Table D.1: Specification on the Bermudan put option
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Table D.2: parameters used in valuing the bermudan put option under GBM. The true option value (TV) is
2.3140 [15].

S0 K T M r σ

40 40 1 50 0.06 0.2

D.1. GEOMETRIC BROWNIAN MOTION (GBM)
In the risk-neutral space (Ω,F ,Q) with filtration {Ft }t≥0, suppose the stock price S fol-
lows a geometric Brownian motion, i.e.,

dSt = r ·St d t +σ ·St dWt . (D.1)

where r is the risk-free rate. The stock price process is risk-neutral.

The basis functions applied in LSM and SGBM are 1, log(St ), log2 (St ), and log3 (St ).

From Equation (D.1), we know that the distribution of St+1 conditional on St is as
follows. (

log(St+1)
∣∣∣ St

)
∼N

(
µ̂, σ̂2)

µ̂= log(St )+
(
r − σ2

2

)
d t

σ̂2 =σ2d t

Hence, we can easily get
E
[
log(St+1)

∣∣St
]= µ̂,

E
[
log2(St+1)

∣∣St
]= µ̂2 + σ̂2,

E
[
log3(St+1)

∣∣St
]= µ̂3 +3µ̂σ̂2.

Unless specification, the default implementation set-up is:

In the finite difference method (FDM): time step size d t = T
10·M , the grid size of

stock price ∆S = 0.1;

In the least squares method (LSM): The number of simulated paths is N = 50,000+
50,000 antithetic. The result is an average result of 20 tests of different random
seeds, and the corresponding standard error (s.e.) is the standard deviation of
these 20 test results;

In the stochastic grid bundling method (SGBM): The number of simulated paths
is ND = 50,000 in the direct estimator process and Np = ND + ND (antithetic) in
the path estimator process. The number of applied bundles is NB = 20 at each
time step. The result is an average result of 20 tests of different random seeds, and
the corresponding standard error (s.e.) is the standard deviation of these 20 test
results.
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Table D.3: Numerical Results by FDM, LSM, SGBM with parameters in Table D.2

TV FDM LSM s.e.(LSM) DE s.e.(DE) PE s.e.(PE)
2.3140 2.3142 2.3116 0.00438 2.3146 0.00226 2.3135 0.00551
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Figure D.1: early-exercise curve for the Bermudan put option with the parameters in Table D.2
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Figure D.2: convergence test on simulated path number for the Bermudan put option with the parameters in
Table D.2

0 1 2 3 4 5 6 7 8 9 10

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

Number of bundles: 2x 

O
p

ti
o

n
 V

al
u

e 
V 0

Value of Bermudan Put Option

 

 

DE
PE
True Value

Figure D.3: convergence test on bundle number in SGBM for the Bermudan put option with the parameters in
Table D.2 and simulated path number ND = 100,000 in DE and Np = ND +ND antithetic in PE
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D.2. 1-D MERTON JUMP-DIFFUSION (MJD) MODEL
In the risk-neutral space (Ω,F ,Q) with filtration {Ft }t≥0, suppose the stock price S fol-
lows a Merton Jump-diffusion (MJD) Model as follows,

dSt = St
(
µd t +σdWt +

(
qt −1

)
d Jt

)
. (D.2)

where log(q) ∼N (µ j ,σ2
j ), Jt ∼ Poisson(λt ), stochastic processes J ,q ,W are independent

of one another, and

µ= r −λ ·
(
exp

[
µ j + 1

2
σ2

j

]
−1

)
is chosen such that the risk neutrality of the stock price is achieved. Thus,

St = S0 ·exp

((
µ− σ2

2

)
· t +σWt

)
·

Jt∏
j=1

q j . (D.3)

From Equation (D.3), we get

log(St ) = log(S0)+
((
µ− σ2

2

)
· t +σWt

)
+

Jt∑
j=1

log(q j ). (D.4)

The basis functions applied in LSM and SGBM are 1, log(St ), log2 (St ), and log3 (St ).

From Equation (D.4), we know the distribution of St+1 conditional on St and d Jt ,
which is given by (

log(St+1)
∣∣∣ St ,d Jt

)
∼N

(
µ̂, σ̂2)

d Jt ∼ Poi sson(λ ·d t )

µ̂= log(St )+
(
µ− σ2

2

)
·d t +µ j ·d Jt

σ̂2 =σ2 ·d t +σ2
j ·d Jt .

Hence, we can easily get

E
[
log(St+1)

∣∣St
]= E[

µ̂
∣∣St

]
= log(St )+

(
µ− σ2

2

)
d t +µ jλd t ,

E
[
log2(St+1)

∣∣St
]= E[

µ̂2 + σ̂2∣∣St
]

=
(
log(St )+

(
µ− σ2

2

)
d t

)2

+2µ jλd t

(
log(St )+

(
µ− σ2

2

)
d t

)
+µ2

j

(
(λd t )2 +λd t

)+σ2d t +σ2
jλd t ,
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λ µ j σ j RV LSM s.e.(LSM) DE s.e.(DE) PE s.e.(PE)
1 -0.2 0.2 4.2742 4.2576 0.015768 4.2957 0.003009 4.2705 0.012899
3 -0.2 0.2 6.8141 6.804 0.020808 6.8303 0.003691 6.8054 0.017242
8 -0.2 0.2 10.745 10.73 0.034074 10.756 0.004351 10.725 0.023866

0.1 -0.9 0.45 3.3696 3.3434 0.029185 3.3236 0.006578 3.3602 0.016422

Table D.4: numerical results of 1D-MJD stock price model by LSM, SGBM with the parameters in Table D.2,
simulated paths N LSM

p = 100,000 in LSM, N DE
p = 217 in DE, N PE

p = 2×N DE
p in PE, and the reference values

(RV) obtained in Cong. F’s report

E
[
log3(St+1)

∣∣St
]= E[

µ̂3 +3µ̂ · σ̂2∣∣St
]

=
(
log(St )+

(
µ− σ2

2

)
d t

)3

+3µ jλd t

(
log(St )+

(
µ− σ2

2

)
d t

)2

3µ2
j

(
(λd t )2 +λd t

)(
log(St )+

(
µ− σ2

2

)
d t

)
+µ3

j

(
(λd t )3 +3(λd t )2 +λd t

)
+3E

((
log(St )+

(
µ− σ2

2

)
·d t +µ j ·d Jt

)
·
(
σ2 ·d t +σ2

j ·d Jt

)∣∣∣∣St

)
=

(
log(St )+

(
µ− σ2

2

)
d t

)3

+3µ jλd t

(
log(St )+

(
µ− σ2

2

)
d t

)2

3µ2
j

(
(λd t )2 +λd t

)(
log(St )+

(
µ− σ2

2

)
d t

)
+µ3

j

(
(λd t )3 +3(λd t )2 +λd t

)
+3

(
log(St )+

(
µ− σ2

2

)
d t

)(
σ2d t +σ2

jλd t
)
+3µ jλd t ·σ2d t +3µ jσ

2
j

(
(λd t )2 +λd t

)
,

(D.5)
As shown in Table D.4, for the rare jump case of λ = 0.1, SGBM may be inaccurate

due to the estimation error from sample distribution (see [16]).
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D.3. 2-D MERTON JUMP-DIFFUSION MODEL

In the risk-neutral measure (Ω,F ,Q) with filtration {Ft }t≥0, suppose the stock prices S1,
S2 follow a Merton jump-diffusion model as follows.



dS1
t = S1

t

(
µ1d t +σ1dW 1

t + (
q1

t −1
)

d Jt
)

dS2
t = S2

t

(
µ2d t +σ2dW 2

t + (
q2

t −1
)

d Jt
)

d Jt ∼ Poisson(λ ·d t )

EQ
[

dW 1
t ·dW 2

t

]
= ρ12d t

log
(
q i

t

)
∼N

(
µ

j
i ,

(
σ

j
i

)2
)

, i ∈ {1,2}

EQ
[(

log
(
q1

t

)−µ j
1

)(
log

(
q2

t

)−µ j
2

)]
=σ j

1σ
j
2ρ

j
12,

(D.6)

where stochastic processes J ,q ,W are independent of one another, and

µi = r −λ
(
exp

[
µ

j
i +

1

2

(
σ

j
i

)2
]
−1

)
, i = 1,2.

is chosen such that the risk neutrality of the stock prices is achieved. Thus,

Si
t = Si

0 ·exp

((
µi −

σ2
i

2

)
· t +σi W i

t

)
·

J i
t∏

j=1
q i

j , i = 1,2. (D.7)

From Equation (D.7), we get

log(Si
t ) = log(Si

0)+
((
µi −

σ2
i

2

)
· t +σi W i

t

)
+

Jt∑
j=1

log(q i
j ), i = 1,2. (D.8)

To facilitate simulating dW i
t (i = 1,2) and log

(
q i

t

)
(i = 1,2) in LSM and SGBM, we apply

the Cholesky decomposition technique to send the equivalent combinations of inde-
pendent Brownian motion to the correlated ones. For dW i

t (i = 1,2),

[
dW 1

t
dW 2

t

][
dW 1

t
dW 2

t

]T

=
[

1 ρ12

ρ12 1

]
·d t

=
[

1 0

ρ12

√
1−ρ2

12

][
dW̃ 1

t
dW̃ 2

t

]([
1 0

ρ12

√
1−ρ2

12

][
dW̃ 1

t
dW̃ 2

t

])T

,

(D.9)

where W̃ 1
t and W̃ 2

t are Wiener processes and independent of each other. Hence, we de-
fine [

dW 1
t

dW 2
t

]
=

[
1 0

ρ12

√
1−ρ2

12

][
dW̃ 1

t
dW̃ 2

t

]
=

[
dW̃ 1

t

ρ12dW̃ 1
t +

√
1−ρ2

12dW̃ 2
t

]
. (D.10)
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As for log(q i
t ) (i = 1,2), first we rewrite log(q i

t ), (i = 1,2) equivalently into



log(q i
t )−µ j

i

σ
j
i

= Z i
t , i = 1,2.

Z i
t ∼N (0,1 , )

EQ [
Z 1

t ·Z 2
t

]= ρ j
12,

(D.11)

which simplifies our work on the Cholesky decomposition of log(q i
t ) (i = 1,2) into that

of Z i
t (i = 1,2).

[
Z 1

t
Z 2

t

][
Z 1

t
Z 2

t

]T

=
[

1 ρ
j
12

ρ
j
12 1

]

=
 1 0

ρ
j
12

√
1−

(
ρ

j
12

)2

[
Z̃ 1

t

Z̃ 2
t

] 1 0

ρ
j
12

√
1−

(
ρ

j
12

)2

[
Z̃ 1

t

Z̃ 2
t

]T

,

(D.12)

where Z̃ 1
t and Z̃ 2

t are in standard normal distribution and independent of each other.
Hence, we define that

[
Z 1

t
Z 2

t

]
=

 1 0

ρ
j
12

√
1−

(
ρ

j
12

)2

[
Z̃ 1

t

Z̃ 2
t

]
=

[
Z̃ 1

t

ρ12 Z̃ 1
t +

√
1−ρ2

12 Z̃ 2
t

]
. (D.13)

Therefore, we rewrite Equation (D.6) into



dS1
t = S1

t

(
µ1d t +σ1dW̃ 1

t +
(
exp

{
µ

j
1 +σ

j
1 Z̃ 1

t

}
−1

)
d Jt

)
,

dS2
t = S2

t

(
µ2d t +σ2

(
ρ12dW̃ 1

t +
√

1−ρ2
12dW̃ 2

t

)
+

(
exp

{
µ

j
2 +σ

j
2

(
ρ12 Z̃ 1

t +
√

1−ρ2
12 Z̃ 2

t

)}
−1

)
d Jt

)
,

d Jt ∼ Poisson(λ ·d t ) ,

EQ
[

dW̃ 1
t ·dW̃ 2

t

]
= 0,

Z i
t ∼N (0,1) , i = 1,2.

EQ
[

Z 1
t ·Z 2

t

]
= 0.

(D.14)

The basis functions applied in LSM and SGBM are 1, log
(
S1

t

)
, log

(
S2

t

)
, log2 (

S1
t

)
, log2 (

S2
t

)
,

log
(
S1

t

)
log

(
S2

t

)
. The conditional expectations of these basis functions of Si

t+1 (i = 1,2) on
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Si
t (i = 1,2) are given by

EQ
[

log(Si
t+1)

∣∣∣Si
t

]
= log(Si

t )+
(
µi −

σ2
i

2

)
d t +µ j

i λd t , i = 1,2.

EQ
[

log2(Si
t+1)

∣∣∣Si
t

]
=

(
log(Si

t )+
(
µi −

σ2
i

2

)
d t

)2

+2µ j
i λd t

(
log(Si

t )+
(
µi −

σ2
i

2

)
d t

)

+
(
µ

j
i

)2 (
(λd t )2 +λd t

)+σ2
i d t +

(
σ

j
i

)2
λd t , i = 1,2.

EQ [
log(S1

t+1) log(S2
t+1)

∣∣S1
t ,S2

t

]= (
log(S1

t )+
(
µ1 −

σ2
1

2

)
d t +µ j

1λd t

)(
log(S2

t )+
(
µ2 −

σ2
2

2

)
d t

)

+µ j
2λd t

(
log(S1

t )+
(
µ1 −

σ2
1

2

)
d t

)
+σ1σ2ρ12d t

+
(
µ

j
1µ

j
2

)(
(λd t )2 +λd t

)+σ j
1σ

j
2ρ

j
12λd t .

With the strike price K , for the geometric average put option on St =
[
S1

t ,S2
t

]
, the

option intrinsic value

h(St ) = K −
√

S1
t ·S2

t

is used to bundle the simulated paths S1
t ,S2

t (see [16]).
For the arithmetic average put option on St =

[
S1

t ,S2
t

]
, at time t the option intrinsic value

h(St) = K − S1
t +S2

t

2

is used to bundle the simulated paths S1
t ,S2

t (see [16]).
For min put option on St =

[
S1

t ,S2
t

]
, the option intrinsic value

h(St) = K − S1
t +S2

t

2

and the difference between S1
t and S2

t are used to bundle the simulated paths S1
t ,S2

t
(see [16]).

The numerical test results presented below are obtained under 2D MJD (D.6) with
default setting: NLSM = 217 the number of simulated paths in LSM, ND = 217 the number
of simulated paths in DE, NP = 2× ND the number of simulated paths in PE, and the
number of applied bundles Nb = 64.
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S0 =
[

S1
0 ,S2

0

]
K T M r δ [σ1 ,σ2] ρ12 λ

[
µ

j
1 ,µ

j
2

] [
σ

j
1 ,σ

j
2

]
ρ

j
12

Set 1 [100,100] 100 1 8 0.05 0 [0.12, 0.15] 0.3 0.6 [-0.1,0.1] [0.17, 0.13] -0.2

Set 2 100 3 9 0.05 0.10 [0.20, 0.20] 0

Table D.5: parameters used for valuing the Bermudan put option under 2D Merton jump-diffusion (MJD)
model (δ is dividend rate )

S0 DE se(DE) PE se(PE) Reference Value
[90,90] 8.0726 0.009317 8.0673 0.021006 8.075

[100,100] 13.903 0.013037 13.901 0.025208 13.902
[110,110] 21.347 0.017279 21.347 0.026 21.345

Table D.6: numerical results of the max-on-call option valuation under 2-D MJD model by SGBM with Set 2
parameter setting in Table D.5, and the reference values (RV) obtained from [16]

DE se(DE) PE se(PE) LSM se(LSM) Reference Value
geometric average put option 3.6727 0.006998 3.6679 0.008253 3.66 0.012681 3.6693
arithmetic average put option 3.3878 0.006862 3.3811 0.005586 3.3752 0.012241 3.3825

min put option 9.5981 0.010547 9.544 0.018087 9.45 0.027417 9.5526

Table D.7: numerical results of the Bermudan put option valuation under 2-D MJD model by LSM, SGBM with
Set 1 parameter setting in Table D.5, and the reference values (RV) obtained from [16]
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Figure D.4: convergence test on bundle number for Bermudan geometric average put option under 2-D MJD
with the parameters in Table D.5
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Figure D.5: convergence test on bundle number for Bermudan arithmetic average put option under 2-D MJD
with the parameters in Table D.5



D

94 D. REPLICATION TESTS OF BERMUDAN OPTION VALUATION BY SGBM

2 3 4 5 6
9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

Bundle Number: 2x

B
er

m
u

d
an

 P
u

t 
O

p
ti

o
n

 P
ri

ce
 V

0

Convergence Check On Bundle Number In SGBM for Pricing Bermudan Put on Minimum Option

 

 

DE−Minimum
PE−Minimum
Reference Value

Figure D.6: convergence test on bundle number for Bermudan put-on-minimum option under 2-D MJD with
the parameters in Table D.5

10 11 12 13 14 15 16 17 18
3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

Path Number: 2x

B
er

m
u

d
an

 P
u

t 
O

p
ti

o
n

 P
ri

ce
 V

0

Convergence Check On Simulated Path Number In SGBM for Pricing Bermudan Geometric Average Put Option

 

 

DE−Geometric
PE−Geometric
Reference Value

Figure D.7: convergence test on simulated path number for the Bermudan geometric average put option under
2-D MJD with the parameters in Table D.5
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Figure D.8: convergence test on simulated path number for the Bermudan arithmetic average put option under
2-D MJD with parameters in Table D.5
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Figure D.9: convergence test on simulated path number for the Bermudan put-on-minimum option under 2-D
MJD with the parameters in Table D.5
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