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Abstract

The dynamics of many physical processes can be described by port-Hamiltonian (PH) models
where the importance of the energy function can be seen. In Control by Interconnection (CbI),
the controller is another PH system that is connected to the plant through a power preserving
interconnection to add up the energy functions. However, a major issue in this is that the
choice of Casimir function and controller Hamiltonian is left to the discretion of the designer
and requires experience to make a good choice. In this thesis, an attempt is made to eliminate
this problem by using machine learning algorithms (in particular, reinforcement learning) to
let the computer "learn" the best controller design.
Moreover, the assumption that both the plant and the controller must be passive leads to
what is known as the dissipation obstacle, which means that dissipation is allowed only on
those states/coordinates of the energy function which do not require shaping. This imposes
restrictions on the applications. Here, it is attempted to try to go beyond this dissipation
obstacle and achieve a dynamic feedback controller.
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Chapter 1

Introduction

The port-Hamiltonian (PH) framework [4] allows many physical systems to be described
in terms of the interconnection structure of the elements and an energy function. This is
particularly useful in the context of modelling of complex non-linear systems as simpler sub-
systems that can be interconnected to model a larger more complex physical system. PH
theory also provides control engineers with a number of tools to exploit this structure when
designing controllers. A popular methodology to do so is Passivity Based Control (PBC)
[5, 6], which exploits the property of passivity to achieve the desired control objective by
rendering the closed loop passive with respect to a desired storage function. The interested
reader is referred to [3, 4, 5, 6] for more details on PH systems and PBC. However, most
PBC methods require state information, which is not always available in practice. One
prominent output feedback method for PH systems is Control by Interconnection (CbI). In
this method, the controller also modelled as a PH system. Interconnecting the two in a power
preserving manner, the energy of the controller gets added to the energy of the plant. A
relation between the plant and controller states is found by means of dynamical invariants
(called Casimir functions). By using this, the energy of the closed loop system can be shaped
as desired. Some advantages to using CbI are:

• CbI has a very intuitive way of presenting the control design objective in terms of
shaping the energy of the system via energy exchange with the environment.

• CbI is an output feedback method which does not require state information, which is
often not available in practice.

• Properties like stability and passivity can be guaranteed by CbI which makes them ideal
for environments where multiple dynamical systems interact with each other.

However, there are some significant disadvantages as well:

• Deriving a control law for CbI involves solving Partial Differential Equations (PDEs)
which have multiple solutions and choosing the best solution requires experience in
control design. Moreover, solving PDEs numerically can be computationally expensive.

Master of Science Thesis Anshuman Bhattacharjee



2 Introduction

• CbI does not take into account input saturation, which is a problem often encountered
in real life applications where actuators have a limited operating range and trying to
use the actuators outside of this range may damage them.

• There is no standard way of incorporating performance criteria into CbI.

In the recent years, there has been a trend to incorporate machine learning into control.
With the decline in the cost of computational power, machine learning algorithms like Rein-
forcement Learning (RL) are becoming more popular and viable. Particularly in the case of
robotics, where frequently the robot must navigate unstructured or unknown terrain, or in
the case of complex tasks which cannot always be clearly pre-defined, some sort of adaptive
or learning control technique is required. RL is inspired from how animals (and humans)
interact with and learn from their environment. Some examples showing the success of RL
in robotics and control can be found in [7, 8, 9].

RL is useful when there is a lack of information about the dynamical system or the environ-
ment. However, there are disadvantages to this method as well. The speed of learning can be
very slow, especially in high dimensional cases and it is often difficult to ensure the quality
of the learned control policy.

Recently however, there have been some promising results incorporating RL into various
state feedback PH controllers [1, 10, 11, 12]. Inspired by these results, this thesis seeks
to incorporate RL with the CbI methodology to eliminate some of the drawbacks of both
methods while retaining the advantages. Thus, the main motivation of this thesis is to embed
RL into the CbI methodology in order to make it possible to easily find suitable Casimir
functions and design an output feedback controller for PH systems.

However, the applicability of CbI is somewhat hindered by the dissipation obstacle, which
requires that dissipation may not be present in the coordinates to be shaped. In this thesis,
an attempt is made to formulate a dynamic controller that might allow one to circumvent the
dissipation obstacle.

The rest of this thesis is organised as follows:

• Chapter 2 introduces the concepts of the PH framework. It introduces PH systems
theory and CbI and provides an example of using CbI to stabilise a model of a physical
system.

• Chapter 3 introduces the basic concepts of discrete time RL and sheds some light on
previous work using RL with the PH framework, which provides the inspiration and
motivation for this thesis.

• Chapter 4 presents the developed methodology and algorithm.

• An attempt to further generalise CbI to go beyond the dissipation obstacle is made in
Chapter 5.

• Finally, some conclusions and recommendations for future work are mentioned in Chap-
ter 6.
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Chapter 2

Port-Hamiltonian Systems

2-1 Introduction

Historically, mechanical and electrical engineering have taken slightly different approaches
to physical systems. While most of the analysis of physical systems has been performed
within the Lagrangian and Hamiltonian framework with its roots in analytical mechanics,
the network point of view taken by electrical engineering is prevalent in the modelling and
simulation of complex physical systems [3]. The port-Hamiltonian (PH) framework combines
both these points of view - by associating the interconnection structure of the network model
with a geometric structure given by a Dirac structure and the Hamiltonian dynamics are then
defined with respect to this Dirac structure and the Hamiltonian given by the total stored
energy of the system [3].

Apart from offering an intuitive and insightful framework for the modelling and analysis of
complex physical systems, PH systems theory provides a natural starting point for control.
Especially in the case for control of non-linear systems, it is widely recognised that the natural
properties of the system should be exploited and PH systems theory provides a range of tools
for doing so [4]. Furthermore, a very nice property of PH systems is that they are open
dynamical systems and can interact with their environment through ports. In addition, the
interconnection of two or more PH systems in a power preserving manner is again a PH
system [3, 4].

2-2 Port Hamiltonian Systems

The general framework for PH systems was introduced in [13] and developed further in [14].
A review of PH systems and Passivity Based Control (PBC) can be found in [3, 4, 14, 5].

Master of Science Thesis Anshuman Bhattacharjee



4 Port-Hamiltonian Systems

2-2-1 Input state output port-Hamiltonian Systems

An important class of PH systems in control engineering is the input state output PH system.
A general input state output PH system is of the form1 [4],

ẋ = [J(x)−R(x)]∂H(x)
∂x

+ g(x)u,

y = gT (x)∂H(x)
∂x

,

(2-1)

where x ∈ Rn is the state vector, u ∈ Rm, m ≤ n is the control input, J(x), R(x) : Rn 7→ Rn×n
with J(x) = −J(x)T and R(x) = R(x)T ≥ 0 are the interconnection and dissipation (or
damping) matrices respectively, H(x) : Rn 7→ R is the Hamiltonian, which is the total stored
energy of the system, u, y ∈ Rm are the conjugated input output variables whose product has
the units of power and g(x) : Rn 7→ Rn×m is the input matrix (assumed to be full rank). For
the remainder of this thesis, the matrix F (x) : Rn 7→ Rn×n is denoted as,

F (x) := J(x)−R(x), (2-2)

which satisfies F (x) + F T (x) = −2R(x) ≤ 0.
The power balance equation is then,

Ḣ(x) = ∂TH(x)
∂x

ẋ (2-3)

= ∂TH(x)
∂x

(
[J(x)−R(x)]∂H

∂x
(x) + g(x)u

)
(2-4)

= − ∂
TH(x)
∂x

R(x)∂H(x)
∂x︸ ︷︷ ︸

d(x)

+uT y (2-5)

where d(x) is the natural dissipation of the system.
Since R(x) is positive semi-definite, it follows that

Ḣ(x) ≤ uT y. (2-6)

If the HamiltonianH(x) is bounded from below and positive semi-definite, Eq. (2-6) is referred
to as the passivity inequality. If the Hamiltonian is not bounded from below and nor is it
positive semi-definite, then Eq. (2-6) is called the cyclo-passivity inequality [5].

2-2-2 Casimir Functions

An important property of PH systems is the existence of dynamical invariants independent
of the Hamiltonian H(x) of the system, known as Casimir functions [14]. If a function
C : Rn 7→ R exists, satisfying,

∂TC(x)
∂x

[J(x)−R(x)] = 0, x ∈ Rn (2-7)

1All vectors are column vectors. All gradients defined are also column vectors.
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2-2 Port Hamiltonian Systems 5

implying that the time derivative of C along the solutions of the PH system is zero for u = 0,
such a function C(x) is called a Casimir function. For arbitrary input functions, this holds if
additionally [15],

∂TC(x)
∂x

g(x) = 0. (2-8)

This is easily verified by

Ċ = ∂TC(x)
∂x

ẋ (2-9)

= ∂TC(x)
∂x

[J(x)−R(x)]∂H
∂x

(x) + ∂TC(x)
∂x

g(x)u (2-10)

= 0. (2-11)

An important consequence of the existence of Casimir functions is that if C1(x), C2(x), · · · , Cr(x)
are Casimir functions, then not only dH

dt = 0 for u = 0, but also:

d

dt
(H +Ha(C1, C2, ..., Cr))(x(t)) = 0 (2-12)

for any functionHa : Rr 7→ R. This means that even thoughH(x) is not positive definite at an
equilibrium x∗, the function H(x) +Ha(C1, C2, · · · , Cr)(x) could possibly be positive definite
at the equilibrium point by appropriately choosing Ha and thus may serve as a candidate
Lyapunov function for stability analysis. This method is called the Energy-Casimir method
and it has various applications in the control of PH systems, most notably in Control by
Interconnection (CbI).

2-2-3 Passivity

The notion of passivity is an important concept in PH systems. Passivity is a fundamen-
tal property of dynamical systems and can be directly inferred from the (cyclo) passivity
inequality (Eq. (2-6)). Integrating Eq. (2-5), we get the following energy balancing equation,

H[x(t)]−H[x(0)]︸ ︷︷ ︸
stored energy

=
∫ t

0
uT (s)y(s) ds︸ ︷︷ ︸

supplied energy

−
∫ t

0

[
∂H

∂x
[x(s)]

]T
R(x(s))

[
∂H

∂x
[x(s)]

]
ds︸ ︷︷ ︸

dissipated energy

. (2-13)

Simply put, a passive system cannot generate energy on its own [4]. It is important to
distinguish here between passive and cyclo-passive systems. In other words, a system is cyclo
passive if it cannot create energy over closed paths in the state space. It might however,
produce energy along some initial portion of its trajectory and in such a case, it will not be
a passive system. Every passive system is a cyclo-passive system but the converse does not
always hold [15]. This notion of passivity is often exploited in the control of PH systems.
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6 Port-Hamiltonian Systems

2-3 Passivity Based Control

Passivity Based Control (PBC) is a generic name that refers to a controller design method-
ology which renders the system passive with respect to a desired storage function and injects
damping, thus achieving stabilisation [6].

2-3-1 Standard Passivity Based Control

In the standard formulation of PBC, it is desired to design a control law u = β(x) + v such
that the closed loop satisfies the new power balancing equation [16],

Ḣd(x) = vT (s)z(s)− dd(x) (2-14)

where Hd(x) is the desired energy function, the new passive output is given by z (may be
equal to y) and the natural dissipation d(x) has been replaced with some function dd(x) ≥ 0
to ensure a faster convergence rate. The desired energy function Hd(x) is chosen such that
it has a strict minimum at the desired x∗ and is known as Energy Shaping (ES) whereas the
modification of the dissipation function is referred to as Damping Injection (DI) [17].

2-3-2 Stabilisation via Energy Balancing

Defining the added energy function as

Ha(x) = Hd(x)−H(x), (2-15)

a state feedback law is said to be energy balancing if this added energy is equal to the energy
supplied by the environment,

Ḣa(x) = −βT (x)y. (2-16)

The closed loop energy is equal to the difference between the stored and supplied energy and
hence this class of PBC is known as Energy Balancing PBC.

2-3-3 Energy Shaping and Damping Injection

The process described in sub-section 2-3-2 of augmenting the plant Hamiltonian with some
added energy Ha(x) such that Hd(x) = H(x) +Ha(x) has a minimum at the desired equilib-
rium, i.e,

x∗ = arg minHd(x) (2-17)

is known as Energy Shaping (ES) [3].

In Damping Injection (DI), the closed loop asymptotic stability is achieved by injecting further
damping into the system such that a target closed loop system is obtained,

ẋ = [J(x)−Rd(x)]∂Hd(x)
∂x

(2-18)
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2-3 Passivity Based Control 7

with Rd(x) = R(x) + g(x)Kd(x)gT (x) the desired dissipation matrix in terms of a damping
injection matrix Kd(x).
Combining the two, desired closed loop dynamics can be achieved by a control law,

u(x) = uES(x) + uDI(x), (2-19)

where,

uES(x) = (gT (x)g(x))−1gT (x)[J(x)−R(x)]∂Ha(x)
∂x

, (2-20)

uDI(x) = −Kd(x)gT (x)∂Hd(x)
∂x

. (2-21)

The added energy Ha(x) is found by finding the solutions to the Partial Differential Equation
(PDE) [

g⊥[J(x)−R(x)]
gT (x)

]
∂Ha(x)
∂x

= 0, (2-22)

where g⊥ is the full rank left annihilator of g(x), i.e. g⊥(x)g(x) = 0. Amongst all the
solutions, the one satisfying Eq. (2-17) is chosen [3].

2-3-4 Interconnection and Damping Assignment Passivity Based Control

As the name implies, in Interconnection and Damping Assignment Passivity Based Control
(IDA-PBC) the system is controlled by assigning it a desirable damping and interconnection
matrix such that the new energy function has the minimum at the desired point. The objective
is again, to find a static control law u = β(x) such that the closed loop dynamics are of the
form,

ẋ = [Jd(x)−Rd(x)]∂Hd

∂x
(2-23)

where the new energy function Hd(x) has a strict local minimum at the desired equilibrium
point x∗, and Jd(x) and Rd(x) are the desired interconnection and damping matrices respec-
tively [18, 6].
Given J(x), R(x), H(x), g(x) and desired equilibrium x∗ ∈ Rn, assume that functions β(x),
Ja(x), Ra(x) and a vector function K(x) can be found satisfying [18]

[J(x) + Ja(x)− (R(x) +Ra(x))]K(x) = −[Ja(x)−Ra(x)]∂H
∂x

(x) + g(x) (2-24)

such that the following holds:

1. Structure preservation:

Jd(x) := J(x) + Ja(x) = −[J(x) + Ja(x)]T

Rd(x) := R(x) +Ra(x) = [R(x) +Ra(x)]T ≥ 0

2. Integrability: K(x) is a gradient of a scalar function, i.e,

∂K

∂x
(x) =

[
∂K

∂x
(x)
]T

(2-25)
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3. Equilibrium assignment: K(x) at x∗ verifies

K(x∗) = −∂H
∂x

(x∗) (2-26)

4. Lyapunov stability: The Jacobian of K(x) at x∗ satisfies the bound

∂H

∂x
(x∗) ≥

∂2H

∂x2 (x∗) (2-27)

Under these conditions, the closed loop system u = β(x) is a PH system with dissipation of
the form given in Eq. (2-23) with

Hd(x) = H(x) +Ha(x) (2-28)

and
∂Ha

∂x
(x) = K(x). (2-29)

Further, x∗ will be a locally stable equilibrium of the closed loop system. If in addition, it can
be ascertained that x∗ is the largest invariant set under the closed loop dynamics contained
in {

x ∈ Rn|
[
∂Hd

∂x
(x)
]T
Rd(x)∂Hd

∂x
(x) = 0

}
(2-30)

then, x∗ will be asymptotically stable [18, 6].

In practice, for systems of the form (2-1), Ja(x) and Ra(x) can be fixed and then solutions
are found to the PDE

g⊥[J(x) + Ja(x)− (R(x) +Ra(x))]∂Ha

∂x
(x) = −g⊥[Ja(x)−Ra(x)]∂H

∂x
(x) (2-31)

in terms of Ha(x) where g⊥ is the left annihilator matrix of g(x), i.e, g⊥(x)g(x) = 0. The
control can then be calculated as [18]

β(x) = [gT (x)g(x)]−1gT (x)
{

[J(x) + Ja(x)− (R(x) +Ra(x))]∂Ha

∂x
(x) + [Ja(x)−Ra(x)]∂H

∂x
(x)
}
.

(2-32)

2-4 Control by Interconnection (CbI)

The controllers mentioned in Section 2-3 are all state feedback controllers. However, in
practice, state information is not always available. CbI takes an output feedback approach
to control, wherein the energy shaping results from the interconnection of the plant system
with a suitable controller system [15, 19].

Consider a PH system of the form given in Eq. (2-1) interconnected with a PH controller

ζ̇ = [Jc(ζ)−Rc(ζ)]∂Hc(ζ)
∂ζ

+ gc(ζ)uc,

yc = gTc (ζ)∂Hc(ζ)
∂ζ

(2-33)
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2-4 Control by Interconnection (CbI) 9

with state ζ ∈ Rm, input uc, output yc, and Hc(ζ) is the controller Hamiltonian. Using a
standard power preserving negative feedback interconnection as,[

u
uc

]
=
[

0 −Im
Im 0

] [
y
yc

]
, (2-34)

the composed system is again a PH system and can be written as[
ẋ

ζ̇

]
=
[
J(x)−R(x) −g(x)gTc (ζ)
gc(ζ)gT (x) Jc(ζ)−Rc(ζ)

] [
∂Hcl
∂x (x, ζ)
∂Hcl
∂ζ (x, ζ)

]
(2-35)

with Hcl the closed loop energy function given by

Hcl(x, ζ) = H(x) +Hc(ζ). (2-36)

Now, although Hc(ζ) can be freely assigned, the energy of the plant H(x) is given and thus
it is not immediately clear how to effectively shape the closed loop energy of the system [15].
The idea now is to investigate the Casimir functions of the closed loop system as they are
dynamical invariants that relate the plant states to the controller states [14, 20, 19].
In practice, we usually restrict ourselves (without much loss of generality) to Casimir functions
of the form

C(x, ζ) = ζ − S(x) = 0 (2-37)
where S is some function of x. The invariance condition Ċ(x, ζ) = 0 results in the PDE[

−∂TS(x)
∂x Ic

] [J(x)−R(x) −g(x)gTc (ζ)
gc(ζ)gT (x) Jc(ζ)−Rc(ζ)

]
= 0 (2-38)

which can be expressed as the following chain of equalities [15, 21, 17]

∂TS(x)
∂x

J(x)∂S(x)
∂x

= Jc(ζ), (2-39)

R(x)∂S(x)
∂x

= 0, (2-40)

Rc(ζ) = 0, (2-41)

J(x)∂S(x)
∂x

= −g(x)gTc (ζ). (2-42)

Now, the x-dynamics of the system given in Eq. (2-35) is given as,

ẋ = [J(x)−R(x)]∂H(x)
∂x

− g(x)gTc (ζ)∂Hc(ζ)
∂ζ

(2-43)

Using Eq. (2-40) and Eq. (2-42), this can be written as,

ẋ = [J(x)−R(x)]
(
∂H(x)
∂x

+ ∂S(x)
∂x

∂Hc(ζ)
∂ζ

)
(2-44)

Substituting ζ = S(x) + κ and using the chain rule of differentiation gives

ẋ = [J(x)−R(x)]∂Hs(x)
∂x

(2-45)

with Hs(x) = H(x) + Hc(S(x) + κ). Thus the interconnection has resulted in a closed loop
system with the same interconnection structure but with shaped energy.

Master of Science Thesis Anshuman Bhattacharjee



10 Port-Hamiltonian Systems

Figure 2-1: Inverted Pendulum [1]

2-4-1 Dissipation Obstacle

The condition given by Eq. (2-40) somewhat hinders the applicability of CbI. In essence,
it states that the Casimir functions cannot depend on the coordinates that are subject to
dissipation [21] i.e, dissipation is admissible only in those coordinates that do not require
shaping of the energy. This is known as the dissipation obstacle [17]. This stymies the use of
CbI for applications other than mechanical systems where the coordinates to be shaped are
usually positions (which are unaffected by friction) [5].

2-5 Example of CbI - Inverted Pendulum

To illustrate CbI, the example of an inverted pendulum is taken which is a well known non-
linear system. The model of an actual inverted pendulum setup available at the robotics lab
at Delft Center for Systems and Control (DCSC) is used to perform some simulations.

Consider a pendulum as shown in Figure 2-1, actuated by applying a voltage u to the motor.

The PH model of the pendulum is given by2,

[
q̇
ṗ

]
︸︷︷︸
ẋ

=


[

0 1
−1 0

]
︸ ︷︷ ︸

J(x)

−
[
0 0
0 cp

]
︸ ︷︷ ︸
R(x)


[
∇qH(q, p)
∇pH(q, p)

]
︸ ︷︷ ︸
∇xH(x)

+
[

0
Kp

Rp

]
︸ ︷︷ ︸
g(x)

u

y =
[
0 Kp

Rp

]
︸ ︷︷ ︸
gT (x)

[
∇qH(q, p)
∇pH(q, p)

]
︸ ︷︷ ︸
∇xH(x)

(2-46)

where cp is the damping caused due to the friction and the Hamiltonian of the system is given
by,

2∇x = ∂/∂x
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2-5 Example of CbI - Inverted Pendulum 11

Table 2-1: Inverted Pendulum Model Parameters

Model Parameters Symbol Value Units
Pendulum inertia Jp 1.9× 10−4 kgm2

Pendulum mass Mp 5.2× 10−2 kg
Gravity gp 9.81 m/s2

Pendulum length lp 4.2× 10−2 m
Friction cp 1× 10−3 Nms

Torque constant Kp 5.6× 10−2 Nm/A
Rotor resistance Rp 9.92 Ω

H(q, p) = 1
2Jp

p2 +Mpgplp(1 + cos q), (2-47)

where Jp is the rotational moment of inertia, Mp is the mass of the pendulum, lp is the length
of the pendulum, and gp is the gravitational constant. The states q, p, are the position (angle
with respect to the normal) and the momentum respectively. The model parameters are given
in Table 2-1 [22].
The natural equilibria of this system are found to be given by,

(q∗, p∗) = (kπ, 0), k ∈ Z (2-48)

as can also be seen from the system energy (or Hamiltonian) as shown in Figure 2-2. It can
also be seen that the system has stable equilibria when k is odd and unstable equilibria when
k is even. The desired objective is to shape the energy such that the pendulum stabilises at
(q∗, p∗) = (0, 0) corresponding to the upright position.
Let the controller also be a PH controller,

ζ̇ = g(ζ)uc,

yc = gT (ζ)∂Hc(ζ)
∂ζ

(2-49)

interconnected with [
u
uc

]
=
[
0 −1
1 0

] [
y
yc

]
. (2-50)

Choose gc(ζ) = Rp

Kp
for convenience and proceed as follows.

The interconnected system is nowq̇ṗ
ζ̇

 =

 0 1 0
−1 −cp −1
0 1 0


∇qHcl

∇pHcl

∇ζHcl

 . (2-51)

A suitable Casimir function C(q, p, ζ) can now be found by solving

[
∂C
∂q

∂C
∂p

∂C
∂ζ

]  0 1 0
−1 −cp −1
0 1 0

 =
[
0 0 0

]
(2-52)
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2-5 Example of CbI - Inverted Pendulum 13

which leads to C(q, p, ζ) = K(q − ζ) and candidate Lyapunov functions

V (q, p, ζ) = 1
2Jp

p2 +Mpgplp(1 + cos q) +Hc(ζ) +K(q − ζ) (2-53)

with the functions Hc(ζ) and K(q − ζ) still to be determined suitably so as to ensure the
desired local minimum condition (q∗, 0, ζ∗).

The equilibrium assignment gives

∂V

∂q
(q∗, 0, ζ∗) = Mpgplp(− sin q∗) + ∂K

∂q
(q∗ − ζ∗) = 0 (2-54)

∂V

∂p
(q∗, 0, ζ∗) = 0 (2-55)

∂V

∂ζ
(q∗, 0, ζ∗) = ∂Hc

∂ζ
(ζ∗)− ∂K

∂ζ
(q∗ − ζ∗) = 0 (2-56)

The condition for ensuring the minimum condition gives
Mpgplp cos q∗ + ∂2K

∂q2 (q∗ − ζ∗) 0 − ∂2K
∂q∂ζ (q∗ − ζ∗)

0 1 0
− ∂2K
∂ζ∂q (q∗ − ζ∗) 0 ∂2K

∂ζ2 (q∗ − ζ∗) + ∂2Hc
∂ζ2 (ζ∗)

 > 0, (2-57)

allowing for many possible solutions.

For contrast, proceed again find a suitable Casimir function for this system via the approach
given in Section 2-4.

Using Eq. (2-39) to Eq. (2-42), the following holds. Eq. (2-39) and Eq. (2-41) are already
satisfied since Jc = 0 and Rc = 0. Eq. (2-40) is the dissipation obstacle which means in this
case that only the coordinates of position, q, can be shaped.

Solve Eq. (2-42) which gives,
S(q) = q + κ (2-58)

as the family of suitable Casimir functions.

It is now possible to shape the controller Hamiltonian Hc(S(q)) such that the closed loop
energy has a minimum at the desired q∗.

Choosing,

Hc(q) = k1
q2

2 −Mpgplp(1 + cos q), (2-59)

with k1 = 5, it is possible to achieve stabilisation at the desired q∗ = 0.

The system energy, desired energy and controller Hamiltonian are shown in Figure 2-3.

The simulation results for control by interconnection for the given system is shown in Figure 2-
4.
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2-6 Summary 15

2-6 Summary

In this chapter, the PH framework has been presented along with a number of control methods
for PH systems. It is seen that most of these methods rely on the availability of state
information. The CbI methodology has also been presented and with the aid of an example,
it has been shown how CbI can be used to shape the energy of the system in the absence
of state information. It is also seen that CbI requires solving a set of Partial Differential
Equations (PDEs) which allow for many solutions for the choice of Casimir function and
controller Hamiltonian and there does not appear to be an intuitive way to make the best
choice.
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Chapter 3

Reinforcement Learning

In a Reinforcement Learning (RL) problem, an agent learns the optimal strategy to complete
some task based on its interactions with the environment. The agent takes some action (e.g.
control strategy) and adapts its strategy based on the feedback from the environment in such
a manner as to maximise a numerical reward [23].

Figure 3-1 shows the schematic of RL. At some point in time, the environment is in a state st.
The agent takes an action at. As a result, the environment changes its state to st+1 and gives
the agent a reward rt+1. Based on this reward, the agent understands whether the action it
took was favourable or not and accordingly takes the next action.

3-1 Elements of Reinforcement Learning

Apart from the agent and the environment, a reinforcement learning system has the following
main elements [23].

1. Policy: A policy governs the actions to be taken by the agent. Simply put, one can
think of a policy as a mapping from the states of the environment to the actions to
be taken when in those states. The policy defines the behaviour of the agent and may
be stochastic in nature. Depending on the nature of the problem, the policy may be

Figure 3-1: Schematic of Reinforcement Learning
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18 Reinforcement Learning

a simple lookup table or even involve a complex search problem [23]. Thus, the policy
essentially dictates what action to take in a certain state. In terms of control theory,
the policy can be the control law to be followed.

2. Reward function: The reward function defines the goal in the reinforcement learning
problem. The agent always tries to maximise the cumulative reward it can receive over
time. So the reward function can be thought of as a measure of how desirable a certain
state or a certain action is. Reward functions may not be altered by the agent [23].

3. Value Function: The reward function indicates how profitable or how desirable it is
to take an action in the immediate sense. Contrastingly, the value function specifies
what is the best course of action in the long run. The value of the state can be thought
of as the total amount of reward an agent can expect to accumulate over time, starting
from that state [23].

4. Environment Model: The model of the environment is something which mimics the
behaviour of the environment. Given the current state and the action, it can predict
the resultant next state and reward. It is used for planning purposes by the agent.

An important thing to note here is the difference between the reward and value. A state may
have a high reward but a low value since it does not lead to any states which are beneficial in
the long run. The opposite is also possible. A state may have a low reward but a high value
because it leads to next states which offer a very high reward. Values are estimated from
observing and interacting with the environment. Nevertheless, when making and evaluating
decisions, the values are more important than the rewards [23].

3-2 Markov Decision Process

In this sub-section, the concepts of discrete time RL are introduced. An RL algorithm can
be used to solve problems modelled as a Markov Decision Process (MDP). An MDP is
denoted using 〈X,U, f, ρ〉, where X denotes the state space, U denotes the action space, f :
X×U×X 7→ [0,∞) is the state transition probability density function and ρ : X×U×X 7→ R
is the reward function.
The agent takes an action uk from a state xk to transition to a state xk+1 and for this, it
receives an immediate reward rk+1,

rk+1 = ρ(xk, uk, xk+1).

The reward function ρ is assumed to be bounded and the rewards depends on the previous
state, current state and action taken. The goal of the RL agent is to find a policy which,
when followed, allows it to accumulate the maximum reward in the long term. Thus, the
agent wants to find a policy π, which maximises the expected value of some function g of the
reward. This motivates us to define a cost function for the policy as

J(π) = E{g(r1, r2, ...)|π}. (3-1)

In practice, usually the function g is either the discounted sum of rewards or the average
reward [2]. In this thesis, only the discounted reward setting is considered1.

1Interested readers may refer to [23, 2] for details on the average reward setting.
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3-2-1 Discounted Reward and Value Functions

For the discounted reward setting, the cost function J is

J(π) = E

{ ∞∑
k=0

γkrk+1|x0, π

}
(3-2)

where γ ∈ [0, 1) is reward discount factor and the initial state is x0 ∈ X. During the learning
process, the agent evaluates the cost J for a policy π, this is called policy evaluation. The
resulting estimate of the cost J is called the value function. If the value function only depends
on the state x, it is called the state value function. From the initial state the policy is followed
and the state value function is

V π(x) = E

{ ∞∑
k=0

γkrk+1|x0 = x, π

}
. (3-3)

Similarly, the state action value function defines the expected return starting from an initial
state, applying some action, and then following the policy. The state action value function is

Qπ(x, u) = E

{ ∞∑
k=0

γkrk+1|x0 = x, u0 = u, π

}
. (3-4)

The optimal policy is the policy that maximises these functions.

V ∗(x) = max
π

V π(x), (3-5)

Q∗(x) = max
π

Qπ(x, u), (3-6)

with V ∗(x) and Q∗(x) the optimal state value function and state action value function re-
spectively.

Eq. (3-3) and Eq. (3-4) can also be put in the recursive form [24]. The state value function
is then given by

V π(x) = E
{
ρ(x, u, x′) + γV π(x′)

}
, (3-7)

and the state action value function by

Qπ(x, u) = E
{
ρ(x, u, x′) + γQπ(x′, u′)

}
, (3-8)

where x′ is drawn from the probability distribution function f(x, u, ·) and u′ is drawn from
π(x′, ·).

Eq. (3-7) and Eq. (3-8) are known as the Bellman Equations and optimality conditions for
them are given by the Bellman optimality equations (Eq. (3-9) and Eq. (3-10)) [23]

V ∗(x) = max
u

E
{
ρ(x, u, x′) + γV ∗(x′)

}
, (3-9)

Q∗(x, u) = max
u

E

{
ρ(x, u, x′) + γmax

u′
Q∗(x′, u′)

}
. (3-10)
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3-3 Types of Reinforcement Learning Algorithms

RL has several types of algorithms and these can broadly be classified into three categories:

• Actor only

• Critic only

• Actor-Critic

where actor refers to the policy function (or controller) and critic refers to the value function.

3-3-1 Actor only

Actor only algorithms typically work with a parametrised family of policies over which an op-
timisation procedure can be directly applied to select the best action. This has the advantage
that a spectrum of continuous actions can be generated, but the optimisation procedures used
(usually policy gradient methods) suffer from a high variance in the estimates of the gradient,
thus slowing down the learning process [2].

Typically, policy gradient methods are actor only and do not use any stored value function.
The policy (π) is parametrised by a vector ϑ ∈ Rp. Since the cost function is a function
of the policy, it follows that the cost function J(π) is a function of ϑ. Assuming that the
parametrisation is differentiable, the gradient of the cost function with respect to ϑ is given
by [2]

∇ϑJ = ∂J

∂πϑ

∂πϑ
∂ϑ

. (3-11)

Standard optimisation techniques exist to find a local optimum of the cost function J . For
example, a simple gradient ascent method would provide the following update equation,

ϑk+1 = ϑk + αa,k∇ϑJk (3-12)

where αa,k > 0 is a small enough learning rate that ensures that2 J(ϑk+1) > J(ϑk).

Such methods converge strongly to a local optimum and thus, a big advantage of using actor-
only methods is their strong convergence property.

3-3-2 Critic only

Critic only methods use a state action value function and no explicit function for a policy
[2]. A simple and intuitive way of deriving a policy for critic-only methods is to select
"greedy actions" [23] i.e, the action for which the value function gives the highest expected
return. The disadvantage of these methods is that to find out the optimal greedy action,
one must perform an optimisation procedure in every state and this can be computationally

2The cost function here has been defined as the expected reward so we wish to maximise it. In case the
cost function is defined in such a way that it should be minimised, the plus sign in (3-12) is replaced with a
minus sign, resulting in J(ϑk+1) < J(ϑk).
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Figure 3-2: Schematic of actor-critic algorithm [2]

intensive. Critic only methods usually either work with discrete action spaces or if the action
space is continuous, it is discretised using suitable function approximation. This approach
however, undermines the ability to use continuous action spaces and to find the true optimum.
Examples of critic-only methods include Q-learning and SARSA [2]. These methods first use
function approximation for continuous action spaces to discretize it and then learn the optimal
value function by finding online an approximate solution to Eq. (3-5) or Eq. (3-6) (as the case
may be). Finally, the policy is calculated by

π(x) = arg max
u

Q(x, u). (3-13)

The downside to using critic only algorithms is that there is no guarantee on the optimality
or near optimality of the resulting policy if used with just any approximated value function
[2] as has been shown in [25] and [26].

3-3-3 Actor-Critic

Actor-critic methods, as the name indicates seek to combine the advantages of both the actor
only and critic only methods. The parametrised policy provides the advantage of computing
continuous actions without the need for optimisation procedures on a value function whereas
the critic provides the actor with low-variance knowledge of the performance. The critic’s
estimate of the expected return allows the actor to update itself with gradients that have
lower variance, thus speeding up the learning process considerably.

As shown in Figure 3-2, the learning agent is split into the actor (or policy function) and the
critic (or value function). The actor generates a control input u, based on the current state x.
The critic processes the reward r it receives from the environment and uses that to evaluate
the quality of the current policy. Based on this, the critic updates the actor and itself. Let
the value function be parametrised by θ ∈ Rq. We shall denote this with Vθ(x) or Qθ(x, u).
Assuming a linear parametrisation, we denote the features with φ and thus,

Vθ(x) = θTφ(x) (3-14)

or
Qθ(x, u) = θTφ(x, u) (3-15)

Master of Science Thesis Anshuman Bhattacharjee



22 Reinforcement Learning

The policy is parametrised by ϑ ∈ Rp and will be denoted with πϑ(x, u).

The goal of the RL algorithm is to find the best policy possible for the MDP and for this,
the critic must be able to accurately evaluate a given policy. Thus, the critic must find an
approximate solution to the Bellman equation for that policy and the difference between the
left and right hand sides of the Bellman equation is called the TD (Temporal Difference) error
and is used to update the critic. The TD error is estimated as

δk+1 = rk+1 + γVθk
(xk+1)− Vθk

(xk) (3-16)

where γ ∈ (0, 1] is the reward discount factor. Using this in the critic update,

θk+1 = θk + αc,kδk+1∇θVθk
(xk) (3-17)

where αc,k > 0 is the learning rate of the critic. Using Eq. (3-14), this can be reduced to

θk+1 = θk + αc,kδk+1φ(xk) (3-18)

This method is known as TD(0) learning. If we use eligibility traces, then let us have the
eligibility trace vector for all q features at time k denoted by zk ∈ Rq and update as

zk+1 = λγzk +∇θVθk
(xk) (3-19)

This decays with time by a factor of λγ with λ ∈ [0, 1) as the trace decay rate. This makes
the equation give greater credit to the more recent features and significantly speeds up the
learning process. Using this eligibility trace zk, the critic update now becomes,

θk+1 = θk + αc,kδk+1zk+1 (3-20)

The actor critic template for discounted setting can now be given as

δk = rk+1 + γVθk
(xk+1)− Vθk

(xk) (3-21)
zk+1 = λγzk +∇θVθk

(xk) (3-22)
θk+1 = θk + αc,kδk+1zk+1 (3-23)
ϑk+1 = ϑk + αa,k∇ϑJk (3-24)

3-4 Past work on port-Hamiltonian systems and Reinforcement
Learning

There are a number of challenges that hinder the widespread use of Passivity Based Control
(PBC) and Control by Interconnection (CbI). The most notable challenges are as follows
[1, 22, 12, 11]

• It involves the solution of a complex set of Partial Differential Equation (PDE)s. This
can be particularly difficult in the case of multi-domain physical systems.

• Solutions are founded on stability considerations and often overlook performance con-
siderations.
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• Model uncertainties can severely affect the performance of the designed PBC law.

Control laws have also been developed using RL and applied to a variety of systems, espe-
cially in the field of robotics (e.g, in [27] and [7]) but the drawback is that RL may have an
extremely slow learning rate. As a result it may take a large number of trials to learn a near
optimal policy.

To overcome these challenges, [1] presents a novel way of combining RL with port-Hamiltonian
(PH) systems. The advantages of combining these two are that [1, 10],

• The control goal can be specified in a "local" fashion without considering the global
system behaviour, say by defining the reward to be 0 in a small neighbourhood of the
desired goal and a negative reward at all other points. This is especially useful for
complex systems.

• Performance criteria can be included in the learning algorithm in addition to the stability
properties provided by PBC and CbI.

• The introduction of learning provides a robustness to model uncertainty.

This approach of combining RL with PBC has produced promising results, as collected in
[10].

3-5 Reinforcement Learning for port-Hamiltonian systems

In [1], the authors have applied RL to Energy Shaping (ES)-Damping Injection (DI). Consider
a PH system of the form given in Eq. (2-1). Defining the added energy function as

Ha(x) = Hd(x)−H(x), (3-25)

the feedback control law
u = g†(x)F (x)∂Ha

∂x
(x)−K(x)y (3-26)

satisfies the energy shaping and damping injection if the condition[
g⊥(x)F T (x)

gT (x)

]
∂Ha

∂x
(x) = 0 (3-27)

is satisfied where F (x) = J(x)−R(x), g† = (gT (x)g(x))−1gT (x) and K(x) = KT (x) ≥ 0 is a
positive semi-definite damping matrix that is used for damping injection [1].

The PDE (Eq. (3-26)) can now be reformulated in terms of desired closed loop energy Hd(x)
by using Eq. (3-25) as

[
g⊥(x)F T (x)

gT (x)

]
(∇xHd(x)−∇xH(x)) = 0 (3-28)
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and denoting the kernel of A(x) =
[
g⊥(x)F T (x)

gT (x)

]
as

ker(A(x)) =
{
N(x) ∈ Rn×b : A(x)N(x) = 0

}
. (3-29)

This equation now reduces to

∇xHd(x)−∇xH(x) = N(x)a (3-30)

with a ∈ Rb. Now if the state vector can be written as x =
[
wT zT

]
, where z ∈ Rc and

w ∈ Rd, c+ d = n corresponding to the zero and non-zero elements of N(x) such that[
∇wHd(x)
∇zHd(x)

]
−
[
∇wH(x)
∇zH(x)

]
=
[
Nw(x)

0

]
a (3-31)

then it is clear that ∇zHd(x) = ∇zH(x) (also called the matching condition) and hence
∇zHd(x) cannot be freely chosen and only ∇wHd(x) can be chosen freely [1]. This stems
from the dissipation obstacle (discussed in Section 2-4-1).
Parametrise this desired energy as

Ĥd(x, ξ) := H(x) + ξTφH(w) + H̄d(w) + C (3-32)

where ξTφH(w) represents the linear in parameters function approximator with ξ ∈ Re a
parameter vector and φH(w) an appropriately chosen basis function (with e large enough
to represent the desired closed loop energy), H̄d(w) is an arbitrary function of w, and C
chosen to render Ĥd(x, ξ) non-negative. Similarly, the desired damping matrix K(x) can be
parametrised as

[K̂(x,Ψ)]ij =
f∑
l=1

[Ψ]ijl[φK(x)]l (3-33)

with Ψ ∈ Rm×m×f and [Ψ]ijl = [Ψ]jil. The control law (Eq. (3-26)) now becomes

u(x, ξ,Ψ) = g†F

[
∇wĤd(x, ξ)−∇wH(x)

0

]
− K̂(x,Ψ)gT (x)∇xĤd(x, ξ) (3-34)

A Temporal Difference (TD) actor-critic algorithm is chosen for the reinforcement learning
algorithm because of the advantages mentioned in Section 3-3. The policy is chosen to be
equal to the control law. At any time step k,

π̂(xk, ξk,Ψk) = u(xk, ξk,Ψk). (3-35)

Assuming some saturation function % : Rm → S, S ⊂ Rm, such that %(u(x)) ∈ S ∀u where
S is the set of all valid control inputs. An exploration term is added keeping in mind the
saturation constraint as

∆ûk = uk − π̂(xk, ξk,Ψk). (3-36)

The gradients of the saturated policy can be calculated as [1]

∇ξ%(π̂) = ∇π̂%(π̂)∇ξπ̂ (3-37)
∇[Ψ]ij

%(π̂) = ∇π̂%(π̂)∇[Ψ]ij
π̂ (3-38)
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It should be noted that the gradient of the saturation function needs to be calculated and
this can usually be done analytically. Using the update equations given in Section 3-3, the
update for the parameters of the desired Hamiltonian are [1]

ξk+1 = ξk + αa,ξδk+1∆ūk∇ξ%(π̂(xk, ξk,Ψk) (3-39)

[Ψk+1]ij = [Ψk]ij + αa,[Ψ]ij
δk+1∆ūk∇[Ψ]ij

%(π̂(xk, ξk,Ψk) (3-40)

And the control law is given by

u = φ̄1(x) +
∑
i

ξiφ̄2,i(x) +
∑
j

Ψ̄jφ̄3,j(x) (3-41)

with Ψ̄ representing the stacked version of Ψ which is possible if the policy is parametrised
in an affine way [1].

3-6 Solving algebraic IDA-PBC using Reinforcement Learning

Consider the Interconnection and Damping Assignment Passivity Based Control (IDA-PBC)
control law given in Eq. (2-32) which can be re-written as [12]

u(x) = β(x) = ((gT (x)g(x))−1gT (x)(Fd(x)∇xHd(x)− F (x)) (3-42)

with the well known matching condition

g⊥(x)(Fd(x)∇xHd(x)− F (x)∇xH(x)) = 0 (3-43)

where F (x) = [J(x) − R(x)] and similarly Fd(x) = [Jd(x) − Rd(x)]. In algebraic IDA-PBC,
the desired energy function Hd(x) is fixed and is typically quadratic in increments. As a
result, Eq. (3-43) becomes an algebraic equation in unknown elements of Fd(x). Parametrise
the unknown matrix Fd(x) as Fd(x, ξ) to obtain

u(x, ξ) = ((gT (x)g(x))−1gT (x)(ξTφ(x)︸ ︷︷ ︸
Fd(x,ξ)

∇xHd(x)− F (x)) (3-44)

where ξ is the unknown parameter matrix. The parameter vector ξ can be calculated using
reinforcement learning in a similar fashion to the approach used in section 3-5. With the
policy (actor) update equation as [12]

ξi,k+1 = ξi,k + αa,ξδk+1∆uk∇ξi,k
uk(x, ξ) (3-45)

where ∆uk is a Gaussian noise exploration term. Thus, the authors of [12] have solved
algebraic IDA-PBC using RL and have implemented in for the swing up and stabilisation of
a simple pendulum and for the stabilisation of a magnetic levitation system.

3-7 Summary

This chapter introduced the RL framework and presented the different types of RL, along
with the advantages and disadvantages of the different methods. Some past work that has
been done on PH systems and RL has also been presented and it is these successes that are
the motivation for the development of the Control by Interconnection - Actor Critic (CBI-AC)
algorithm presented in the next chapter.
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Chapter 4

Control by Interconnection using
Reinforcement Learning

As can be seen from the example given in Section 2-5, there are many possible solutions to
finding a suitable Casimir function and controller Hamiltonian. However, particularly for
complex systems, this task can be tedious as it involves solving multiple Partial Differential
Equations (PDEs). Moreover, although there exist strong methods to analyse stability for
port-Hamiltonian (PH) systems, it is a difficult task to incorporate performance criteria into
the system. Reinforcement Learning (RL) on the other hand, is a suitable method to incor-
porate such criteria. Thus, motivated by the past work mentioned in Section 3-4, this thesis
attempts to use RL to learn a suitable Casimir function for Control by Interconnection (CbI).
The added advantage is that through the reward function in RL, it is possible to learn a
controller that meets certain desired performance criteria as well.

4-1 Formulation as a Reinforcement Learning problem

Recall the input-state-output PH system as introduced in Eq. (2-1) of Section 2-2:

ẋ = [J(x)−R(x)]∂H(x)
∂x

+ g(x)u,

y = gT (x)∂H(x)
∂x

,

(4-1)

where x ∈ Rn is the state vector, u ∈ Rm,m ≤ n is the control input, J(x), R(x) : Rn 7→ Rn×n,
J(x) and R(x) are the interconnection and damping matrices respectively, H(x) : Rn 7→ R is
the Hamiltonian, and u, y ∈ Rm are the input and output variables and g(x) : Rn 7→ Rn×m is
the input matrix.
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Let us choose the controller as a possibly non-linear integrator as in Section 2-5.

ζ̇ = uc,

yc = ∂Hc(ζ)
∂ζ

,
(4-2)

where ζ ∈ Rm, uc, yc ∈ Rm and Hc = 1
2ζ
T ζ. This is interconnected with the plant system

using the standard power preserving interconnection,[
u
uc

]
=
[

0 −Im
Im 0

] [
y
yc

]
(4-3)

where Im is the identity matrix of dimension m.

Depending on whether dissipation is present in the plant and on what states, the plant states
can be split into the shapeable and non-shapeable components using the approach given in
[1] (introduced briefly in this thesis in Section 3-5). The plant states can thus be written as

x =
[
xs
xns

]
where xs denotes the shapeable components and xns denotes the non-shapeable

components. The need for this is dictated by the dissipation obstacle (introduced in Section 2-
4-1) as the Casimir function is function of only the shapeable components.

Applying the invariance condition, the Casimir function is K(ζ−xs) which can be re-written
in the form ζ = S(xs).

The control law for the system is thus, u = −yc = −∂Hc(ζ)
∂ζ = −S(xs), where S(xs) is as

yet some unknown function. We can approximate this function using some differentiable
linear-in-parameters basis function as

S(xs) = ϑTϕ(xs) (4-4)

where ϕ(xs) is some suitable basis function.

The policy for the Actor-Critic Reinforcement Learning (ACRL) algorithm is chosen to be
the approximated Casimir function,

π̂(ϑ, xs) = S(xs) = ϑTϕ(xs). (4-5)

so the control law is now
u = −S(xs) = −π̂(ϑ, xs). (4-6)

We can now introduce the parameter update equations. Using a sampling time of Ts, we use
the subscript k to denote the values at a time instant k · Ts. Thus, we use xsk

, ϑk, ϕk to
denote the value of the parameters at a discrete time step k. Thus,

π̂k(ϑk, ϕk) := ϑTk ϕ(xsk
). (4-7)

An exploration term ∆u is then added to the control input in the direction of the policy. This
exploration term is drawn from a zero mean normal distribution with a variance of σ2.

To account for the control saturation, a saturation function is defined with

usat(x) = ς(u(x)) (4-8)
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with ς : Rm 7→ S, S ⊂ Rm such that

ς(u(x)) ∈ S ∀u. (4-9)

Taking the exploration and control saturation into account, the control action becomes,

uk = ς(−(π̂(ϑk, xsk
) + ∆uk)). (4-10)

We can easily find the gradient of the policy as,

∇ϑπ̂(ϑ, ϕ, xs) = ϕ(xs). (4-11)

The reward is comprised of some negative penalty on the states and is of the form,

rk+1 = ρ(x) (4-12)

A simple example of a suitable reward function would be one that penalises the states quadrat-
ically depending on how far away they are from the desired states.

The value function can then be similarly parametrised as,

V (θ, φ, x) = θTφ(x), (4-13)

where θ is a parameter vector and φ(x) is some suitable basis function which allows us to
easily find the gradient of the value function as

∇θV (θ, φ, x) = φ(x). (4-14)

Using δk to denote the Temporal Difference (TD) and zk to denote the eligibility traces (as
given in Section 3-3-3), we now get the critic update equations as,

δk+1 = rk+1 + γVθk
(xk) (4-15)

zk+1 = λγzk +∇θVθk
(xk) (4-16)

θk+1 = θk + αc,kδkzk (4-17)

A positive TD means that the state the system moved towards has a higher value and it is
more desirable to move in this direction. Thus, the actor is updated in the direction of the
policy if the TD (Eq. (4-15)) is positive and away from the policy if the TD is negative. Thus,
the actor update is

ϑk+1 = ϑk + αaδk+1∆uk∇ϑπ̂(xsk
, ϑk, ϕk). (4-18)

The Hamiltonian of the interconnected system is

Hcl = H(x) +Hc(ζ) (4-19)
= H(x) +Hc(S(xs)) (4-20)

and the stability of the closed loop system can then be analysed numerically. The full CbI
Actor-Critic (AC) algorithm is given in Algorithm 1.
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Algorithm 1 Control by Interconnection - Actor Critic
Input: System (4-1), γ, λ, αa, αc
1: z0(x) = 0 ∀x
2: Initialise x0, θ0, ϑ0
3: k ← 1
4: loop
5: Execute:
6: Draw ∆uk ∼ N (0, σ2), calculate control action uk = ς(−(π̂(ϑk, xsk

) + ∆uk))
7: Observe next state xk+1 and calculate reward rk+1 = ρ(xk+1, uk)
8: Critic:
9: TD: δk+1 = rk+1 + γV (θk, xk+1)− V (θk, xk)

10: Eligibility Trace: zk+1 = γλzk +∇θV (θk, xk)
11: Critic Update: θk+1 = θk + αcδk+1zk+1
12: Actor:
13: Actor Update:
14: ϑk+1 = ϑk + αaδk+1∆uk∇ϑπ̂(xsk

, ϑk)
15: end loop

4-2 Mechanical Systems

To illustrate, consider a fully actuated mechanical system of the form[
q̇
ṗ

]
=
[

0 I

−I −R̄

] [
∇qH(q, p)
∇pH(q, p)

]
+
[
0
I

]
u (4-21)

y =
[
0 I

] [∇qH(q, p)
∇pH(q, p)

]
(4-22)

with q ∈ Rn̄, p ∈ Rn̄ (n̄ = (n/2), n even) the generalised position and momenta respectively,
and R̄ ∈ Rn̄×n̄ the damping matrix. The system is of the form given in (4-1) with R̄ > 0 and
the Hamiltonian for the system is given by

H(q, p) = 1
2p

TM−1(q)p+ P (q) (4-23)

with M(q) = MT (q) > 0 the inertia matrix and P (q) the potential energy of the system. The
state vector can be split into xs = [q1, q2, · · · , qn̄]T and xns = [p1, p2, · · · , pn̄]T .

Using the controller structure (Eq. (4-2)) with m = n̄, the Casimir function is known to be
some function of the shapeable components and is thus parametrised as

S(xs) = S(q) = ϑTϕ(xs) = ϑTϕ(q) (4-24)

where q = xs.

The rest of the formulation follows that as given in Section 4-1. The validity of this method is
demonstrated in the following sections using two examples of well known mechanical systems.

Anshuman Bhattacharjee Master of Science Thesis



4-3 Example - Spring Mass Damper 31

4-3 Example - Spring Mass Damper

The method is first tested using the example of a spring mass damper. A spring mass damper
is a linear mechanical system with states x = [q, p]T . The system matrices and Hamiltonian
are respectively,

J(x) =
[

0 1
−1 0

]
, (4-25)

R(x) =
[
0 0
0 c

]
, (4-26)

g(x) =
[
0
1

]
, (4-27)

H(x) = 1
2mp2 + 1

2kq
2. (4-28)

The controller is the non-linear integrator of the form

ζ̇ = uc (4-29)
yc = ∇Hc(ζ). (4-30)

Then J(ζ) = 0, Rc(ζ) = 0, gc = I (of appropriate dimensions). And we choose the controller
Hamiltonian as

Hc(ζ) = 1
2ζ

2 (4-31)

for convenience.

Parametrising the actor as in Eq. (4-24), we define the reward function to be zero in the close
vicinity of the desired set point and penalise the system at all other states.

The model parameters and simulation parameters are given in Table 4-1 and Table 4-2 re-
spectively.

The results of our simulation are as follows. The final system trajectory is shown in Figure 4-
1. It can be seen that the learned Casimir successfully stabilises the system at the desired
set-point. The Hamiltonian of the closed loop system is shown in Figure 4-2. It is interesting
to note that the Hamiltonian does not have a single minima at the desired point but rather
also has other local minima. However in the region of interest along the trajectory from
the initial condition to the set point, the system has only one local minima at the desired set
point. The presence of the other local minima can be attributed to the fact that the algorithm
has not sufficiently explored the rest of the state space. This is also reflected in the heat map
of the value function as shown in Figure 4-3. The value function inaccurately estimates high
values at the extremities of the state space, which can again be attributed to the fact that
the algorithm has not explored those regions of the state space and thus has not been able to
make an accurate estimate of the value function for those regions.
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Table 4-1: Spring Mass Damper Model Parameters

Model Parameter Symbol Value Units
Mass m 1 kg

Friction c 1 Nms
Spring Constant k 2.5 N/m

Table 4-2: Spring Mass Damper Simulation Parameters

Simulation Parameter Symbol Value Units
No. of trials - 50 -
Time per trial Tt 15 s
Sample time Ts 0.01 s

Initial condition x0 (0, 0) -
Desired set-point xdes (−0.5, 0) -

Exploration variance σ2 0.15 -
Decay rate γ 0.87

Eligibility trace λ 0.57
Max input umax 2 N

Critic learning rate αc 6× 10−4

Actor learning rate αa 7× 10−4
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Figure 4-1: Spring Mass Damper: Final System Trajectory
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Figure 4-2: Spring Mass Damper: Closed Loop System Hamiltonian
The system follows a trajectory from q = 0 to q = −0.5 and within this range, the closed loop
Hamiltonian has only one minima at q = −0.5.
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Figure 4-3: Spring Mass Damper: Value Function
The value function has a maxima at the desired set point (−0.5, 0). However, it can be seen that
the critic has incorrectly estimated high values at the extremities. This can be attributed to the
fact that the algorithm did not explore that portion of the state space and hence has been unable
to make a good estimate of the value function at those states.
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Table 4-3: Inverted Pendulum Simulation Parameters

Simulation Parameter Symbol Value Units
No. of trials - 200 -
Time per trial Tt 6 s
Sample time Ts 0.03 s

Initial condition x0 (pi, 0) -
Desired set-point xdes (0, 0) -

Exploration variance σ2 0.1 -
Decay rate γ 0.97

Eligibility trace λ 0.67
Max input umax 5 N

Critic learning rate αc 1× 10−2

Actor learning rate αa 1× 10−8

4-4 Example - Inverted Pendulum

For the second example, an inverted pendulum is chosen as the plant system. The inverted
pendulum is non-linear system that is often used as a benchmark problem in control. The
same model of the system is used as in Section 2-5 and the model parameters are the same
as given in Table 2-1. It is again desired that the system be stabilised in the upright position
corresponding to q = 0.

The formulation as a reinforcement learning problem remains the same as in Section 4-2. The
simulation parameters used are given in Table 4-3. From the final system trajectory using the
learned controller shown in Figure 4-4, it can be seen that the system is successfully stabilised
in the upright position with (q, p) = (0, 0). However, it is interesting to note that in contrast
to the case with the spring mass damper system, the closed loop system Hamiltonian for the
inverted pendulum has a single minima at the desired point as can be seen from Figure 4-5.
This is due to the fact that during the learning process, the pendulum swings through a
variety of states and as a result the algorithm explores a larger portion of the total state
space. This also results in a more accurate value function as can be seen from Figure 4-6.
However, it can be seen that the value function still has some peaks at undesirable locations.
It is possible to eliminate these peaks by reducing the critic learning rate αc so that a better
value function can be learned. However, this has the negative consequence of reducing the
learning speed and since it can be seen that the policy learned is quite good, it is not necessary
to do so.

The learned policy is shown in Figure 4-7. Since the Casimir is only a function of the
shapeable state q, the policy reflects this and does not depend on the momentum. However,
it is interesting to note that the value function takes into account all the states and thus, the
policy learned is one that maximises the value function, thus indirectly taking into account
the momentum of the system. The rewards earned by the algorithm over the course of the
trials are shown in Figure 4-9. Figure 4-8 shows the sum of rewards per trial. It can be seen
that the algorithm converges in 200 trials.
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Figure 4-4: Inverted Pendulum: Final System Trajectory
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Figure 4-5: Inverted Pendulum: Final System Hamiltonian
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Figure 4-6: Inverted Pendulum: Value Function
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Figure 4-7: Inverted Pendulum: Policy
Since the Casimir is only a function of the shapeable component q, the policy reflects this and
does not depend upon the momentum p.
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Figure 4-8: Inverted Pendulum: Sum of rewards per trial
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Figure 4-9: Inverted Pendulum: Rewards earned by the controller
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4-5 Discussion

The feasability of using RL to find a suitable Casimir function for CbI has been shown in the
preceding sections. In this section, some discussion on the method follows.

4-5-1 Choice of Reward Function

Choosing a suitable reward function is arguably one of the most important criteria for suc-
cessful learning. In this thesis, the reward functions used were primarily quadratic reward
functions of the form

rA(x) = (x− xdes)TQ(x− xdes) (4-32)

where Q is a suitable diagonal matrix with Q(i,i) ≤ 0. Thus, the system incurs a nega-
tive penalty at every state except the desired state when the reward is the maximum with
rA(xdes) = 0. However, although this works well, it is possible that other types of reward
functions may be more suitable for certain types of systems. For the inverted pendulum sys-
tem for example, the topology of the system is such that the system wraps around 2π. For
such a system, using a reward function based on the cosine of the position would also be a
very good choice. One such reward function might be

rB(x) = Q(1,1)(1− cos(q)) +Q(2,2)p
2 (4-33)

Additionally, if it is desired to incorporate performance criteria into the system, this can also
be done using the reward function. For example, a reward function of the form

rC(x) = −(x− xdes)T Q̄k(x− xdes) (4-34)

where Q̄ is a suitable diagonal matrix with Q̄(i,i) ≥ 1 ensures that the penalty on the states
increases as time progresses and the learning algorithm will thus, try to stabilise the system
in the minimum possible time.

4-5-2 Saturation Function

In our algorithm, although the control input applied includes the saturation, we have not
explicitly taken into account the saturation function when updating the actor. However, this
can be easily corrected for by defining [22]

∆ū = −uk − π̂(xsk
, ϑk, ϕk). (4-35)

Using this in the actor update, Eq. (4-18) thus becomes,

ϑk+1 = ϑk + αaδk+1∆ūk∇ϑπ̂(xsk
, ϑk, ϕk). (4-36)

This has the effect that when the policy is such that the control input gets saturated, the
policy will not be updated further in that direction, thus keeping the control input within the
saturation bounds.
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4-5-3 Learning Rates

In any RL algorithm, it is imperative to find good values for the learning rates. An improper
learning rate may result in extremely poor or even no learning. However, this can be a tricky
task. One of the methods used in the RL community to find suitable values of the learning
rate is gridding, which is the approach that has been taken in this thesis. The possible values
of the learning rates α’s are gridded over a suitable range and for each point on the grid, the
learning process is repeated until a satisfactory result is obtained and suitable set of values
is found. Moreover, the simulation experiments can be automated to a large extent. The
downside of this method, however, is that if the learning process is computationally intensive,
then this may require significant time and/or processing power.

4-5-4 Function Approximation

To approximate the actor and the critic, function approximators are necessary. In this thesis,
two types of function approximation have been used - the Fourier Basis function and Poly-
nomial Basis function. Control by Interconnection - Actor Critic (CBI-AC) for the spring
mass damper system was implemented using the Fourier Basis and inverted pendulum using
the polynomial basis functions. It is found that the choice of basis function does not play
a significant role in the implementation of the CBI-AC as long as the parameters are rich
enough to describe the solution.

4-5-5 Feature Scaling

In this thesis, the states have been scaled according to

x̄i = xi − xi,min
xi,max − xi,min

(x̄i,max − x̄i,min) + x̄i,min (4-37)

for i = 1, · · · , n, with (x̄i,min, x̄i,max) = (−1, 1). This is important as it ensures that each
feature of the basis function has an equal contribution to the total policy and value function.

4-5-6 Robustness of the algorithm to model uncertainty

The robustness of the algorithm to variation in model parameters is a point of interest here.
The learning rates of the algorithm, in particular, should not be too specific to the model
otherwise a suitable gridding experiment (or some other method to find suitable learning
rates) needs to performed every time to find the correct learning parameters. To check the
robustness of the algorithm to uncertainties in the model, the parameters the mass, friction
and inertia of the inverted pendulum were varied to ±20% and the CBI-AC algorithm was
used to learn a controller. For all three cases, the algorithm was found to converge to a
similar value and the performance of the algorithm is unaffected. Figure 4-10 shows the sum
of rewards per trial earned by the algorithm in each case.
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Figure 4-10: Sum of rewards per trial for ±20% variation in model parameters of the inverted
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Figure 4-11: Robustness to uncertainty in the mass of the pendulum

4-5-7 Robustness of the learned controller to model uncertainty

It is also interesting to investigate the robustness of the learned controller to model uncer-
tainty. This is investigated on the inverted pendulum model. The model parameters are
varied to ±20% and the system is simulated with the previously learned controller.

• Mass: With a ±20% variation in the mass Mp, the learned controller is still able to
stabilise the system. Figure 4-11 shows the variations in the system trajectory. It can
be seen that when the mass is increased by 20%, the amount of oscillation in the system
around the desired equilibrium point is less. However, the controller takes almost the
same time to stabilise the system in all three cases. The learned controller is thus,
robust to model uncertainty in the mass of the pendulum.

• Friction: When the friction is varied to within ±20% of the value, the learned controller
is still able to stabilise the system as can be seen from Figure 4-12. However, variation
in the friction parameter has a significant impact on the performance of the learned
controller. When the friction is decreased by 20%, the controller takes significantly
longer to stabilise the system. Increasing the friction results in the controller stabilising
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Figure 4-12: Robustness to uncertainty in the friction present in the inverted pendulum system

the system much faster. This is due to the fact that CbI is unable to change the
interconnection or damping structure of the system and is only able to shape the energy.
A system with a higher damping converges faster and this can be seen from the results.
However, the system with higher friction requires a higher control input to stabilise.
This is expected as the dissipation in the system has increased and thus, a greater
amount of energy has to be injected into the system.

• Inertia: As can be seen from Figure 4-13, uncertainty in the inertia of the pendulum
does not significantly impact the time taken to stabilise the system. However, it does
affect the oscillations present in the system. Decreasing the inertia has the effect of
causing the system to stabilise marginally faster and increasing the inertia has the
opposite effect, causing the system to take marginally more time to stabilise. However,
neither of these are significant changes to the performance of the controller.
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Figure 4-13: Robustness to uncertainty in the inertia of the pendulum
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4-6 Summary

This chapter has developed and presented the CBI-AC algorithm that seeks to embed RL
into CbI so as to retain the advantages of both these methods. The algorithm has been
tested in simulation on two different mechanical systems - the spring mass damper and the
inverted pendulum and has been found to successfully stabilise both the systems. It has been
seen that the stability of the systems can be investigated and verified numerically. Moreover,
both the algorithm and the learned controller have been found robust to variations in model
parameters. However, it is seen that this method still suffers from the dissipation obstacle,
which is an inherent drawback of CbI.
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Chapter 5

Towards a dynamic controller

In the preceding chapters, it is shown that Control by Interconnection (CbI) is limited in
its applicability due to the dissipation obstacle. This leads to the motivation to attempt
to go beyond the dissipation obstacle in order to formulate a controller that might be able
to stabilise even systems with pervasive dissipation, thus extending the applicability of CbI.
Previously, it was thought that the limitations stem from the passivity constraint on the
controller and in [21], the authors have tried to circumvent the dissipation obstacle by relaxing
the passivity constraint on the controller. However, in [28], the authors have shown that
dissipation obstacle effectively hampers the CbI methodology. This leads to the research goal
of the second part of this thesis, which is to formulate a dynamic controller with enough
freedom to go beyond the dissipation obstacle while still using CbI methodology.

To this end, first consider the input state output port-Hamiltonian (PH) system that has
been the subject of study of this thesis so far,

ẋ = [J(x)−R(x)]︸ ︷︷ ︸
F (x)

∇xH(x) + g(x)u,

y = gT (x)∇xH(x).
(5-1)

Consider a PH controller

ξ̇ = [Jc(ξ)−Rc(ξ)]︸ ︷︷ ︸
Fc(ξ)

∇ξHc(ξ) + gc(ξ)uc,

yc = gTc (ξ)∇ξHc(ξ),
(5-2)

interconnected with the plant system using the standard power preserving interconnection[
u
uc

]
=
[

0 −Im
Im 0

] [
y
yc

]
. (5-3)
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48 Towards a dynamic controller

Figure 5-1: Interconnection of the plant and controller systems

The interconnected system can be written as[
ẋ

ξ̇

]
=
[
J(x)−R(x) −g(x)gTc (ξ)
gc(ξ)gT (x) Jc(ξ)−Rc(ξ)

] [
∇xHcl(x, ξ)
∇ξHcl(x, ξ)

]
. (5-4)

with Hcl = H(x) +Hc(ξ).

However, while formulating both the plant and controller as PH systems is convenient, it
has been seen that such a controller is limited in its applicability and it unable to shape the
coordinates in which pervasive dissipation is present.

This leads to the question of how much can the structure of the controller be relaxed to allow
more freedom in controller design while still being able to make strong statements about the
stability of the interconnected system.

One possibility to extend the use of CbI is to use state modulated control by interconnection
(as introduced in [5]), however authors of [5] have gone on to show that although this extends
the set of plants for which CbI is applicable, this method still suffers from the dissipation
obstacle.

However, motivated by this, this thesis starts investigation with the possibilities if both the
plant and controller states are available.

The interconnection of the plant and the controller is explained via Figure 5-1. If the inter-
connection is a power preserving interconnection, then the PH structure is preserved and the
interconnected system is also a PH system [3, 4].

Instead of the standard negative feedback power preserving interconnection, let the systems
be interconnected with some state modulation as

[
u
uc

]
=
[
f1(x, ξ) f2(x, ξ)
f3(x, ξ) f4(x, ξ)

] [
y
yc

]
. (5-5)
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It should be noted however, that this is not a power preserving interconnection unless the
matrices f1(x, ξ) and f4(x, ξ) are skew symmetric and fT2 (x, ξ) = −f3(x, ξ) [29].

This leads to a closed loop system of the form

[
ẋ

ξ̇

]
=
[
F (x) + g(x)f1(x, ξ)gT (x) g(x)f2(x, ξ)gTc (ξ)

gc(ξ)f3(x, ξ)gT (x) Fc(ξ) + gc(ξ)f4(x, ξ)gTc (ξ)

] [
∇xH(x)
∇ξHc(ξ)

]
. (5-6)

However, as a result of this (non power preserving) state modulated interconnection, the PH
structure that could be exploited to prove stability has been lost. There is thus, a trade-
off between freedom in controller design and maintaining the PH structure when trying to
use CbI. Imposing the restriction that the interconnection be power preserving leads to the
following interconnection structure[

u
uc

]
=
[
f1(x, ξ) f2(x, ξ)
−fT2 (x, ξ) f4(x, ξ)

] [
y
yc

]
. (5-7)

where f1(x, ξ) and f4(x, ξ) are also skew symmetric matrices.

This allows the PH structure to be preserved and the closed loop system can be written as[
ẋ

ξ̇

]
=
[
F (x) + g(x)f1(x, ξ)gT (x) g(x)f2(x, ξ)gTc (ξ)
−gc(ξ)fT2 (x, ξ)gT (x) Fc(ξ) + gc(ξ)f4(x, ξ)gTc (ξ)

] [
∇xH(x)
∇ξHc(ξ)

]
, (5-8)

with the closed loop Hamiltonian Hcl = H(x) +Hc(ξ).

This state modulated interconnection has allowed some new freedom in the controller design.
Since the matrix f1(x, ξ) is skew symmetric, g(x)f1(x, ξ)gT (x) is also skew symmetric. This
allows the modification of the interconnection structure of the plant system via the term
f1(x, ξ). Since F (x) = J(x)− R(x), where J(x) is a skew symmetric matrix, if it is possible
to find a skew symmetric matrix f1(x, ξ) such that

Jd(x) = J(x) + g(x)f1(x, ξ)gT (x), (5-9)

where Jd(x) is the desired interconnection structure, it is possible to change the interconnec-
tion structure as desired using this state modulated interconnection. This was not possible
using the standard CbI methodology as shown in Eq. (2-45). However, it is still not possible to
overcome the dissipation obstacle using this controller as can be shown. Restricting (without
much loss of generality) to Casimir functions of the form C(x, ξ) = ξ − S(x), the invariance
condition is found to be[
−∇xS(x) I

] [F (x) + g(x)f1(x, ξ)gT (x) g(x)f2(x, ξ)gTc (ξ)
−gc(ξ)fT2 gT (x) Fc(ξ) + gc(ξ)f4(x, ξ)gTc (ξ)

] [
∇xH
∇ξHc

]
= 0. (5-10)

Attempting to solve Eq. (5-10) again leads to the dissipation obstacle stymieing the use of
CbI for shaping coordinates which have pervasive dissipation present in them. Moreover, a
strong motivation for the use of CbI over state feedback control laws is that state information
is in practice not always readily available and observers for PH systems can only be designed
for a limited class of PH systems (as elaborated on in [30]).
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This leads to the motivation to introduce dummy states in the controller model to introduce
more freedom into the controller design, while trying to maintain the PH structure.

Let the controller structure be PH with[
ξ̇1
ξ̇2

]
=
[
Z11(ξ1, ξ2) Z12(ξ1, ξ2)
−ZT12(ξ1, ξ2) Z22(ξ1, ξ2)

] [
∇ξ1Hc(ξ1)
∇ξ2Hc(ξ2)

]
+
[
gc1(ξ1)
gc2(ξ2)

]
uc (5-11)

yc =
[
gTc1(ξ1) gTc2(ξ2)

] [∇ξ1Hc(ξ1)
∇ξ2Hc(ξ2)

]
(5-12)

Interconnecting this with the plant system (Eq. (5-1)) using the standard negative feedback
interconnection (Eq. (5-3)), the closed loop dynamics take the form ẋξ̇1

ξ̇2

 =

 F (x) −g(x)gTc1(ξ1) −g(x)gTc2(ξ2)
gc1(ξ1)gT (x) Z11(ξ1, ξ2) Z12(ξ1, ξ2)
gTc2(ξ2)gT (x) −ZT12(ξ1, ξ2) Z22(ξ1, ξ2)


 ∇xH(x)
∇ξ1Hc(ξ1, ξ2)
∇ξ2Hc(ξ1, ξ2)

 (5-13)

which is again a PH system with the interconnected system Hamiltonian

Hcl(x, ξ1, ξ2) = H(x) +Hc(ξ1, ξ2). (5-14)

The idea behind this formulation is that the controller states ξ1 can be directly related to
the plant states by finding a suitable Casimir function C(x, ξ1), which still allows some more
freedom in controller design via the dummy states ξ2. Suppose a suitable Casimir function is
found,

C(x, ξ1) = ξ1 − S(xs) = 0, (5-15)

where xs denotes the shape-able components of the plant, then the closed loop Hamiltonian
of the system becomes,

Hcl(x, ξ1, ξ2) = H(x) +Hc(ξ1, ξ2) (5-16)
= H(x) +Hc(S(xs), ξ2). (5-17)

With a suitable choice of the controller system matrices Z(ξ1, ξ2), it is hoped that this freedom
in controller design may allow one to go beyond the dissipation obstacle. The states ξ1 can
be used to shape the energy of the coordinates not affected by dissipation (i.e. the shape-able
coordinates xs) and with a suitable choice of controller dynamics, the dummy states ξ2 may
be made to evolve in such a manner that they can shape the coordinates with dissipation.

It should be noted here that systems with pervasive dissipation extract an infinite amount
of energy from the controller at equilibrium. However, the goal here is to try to formulate
a dynamic controller that renders the closed loop system passive with respect to the desired
equilibrium point.

Thus, the goal is to find a controller system as given in Eq. (5-11) such that at the desired
equilibrium x∗,

[J(x∗)−R(x∗)]∇xH(x∗) + g(x∗)u∗ = 0 (5-18)
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and correspondingly

u∗ = −y∗c = −
[
gTc1(ξ∗1) gTc2(ξ∗2)

] [∇ξ1Hc(ξ∗1)
∇ξ2Hc(ξ∗2)

]
(5-19)

It is however, not an easy task to find suitable controller matrices and there does not appear
to be an intuitive way of deriving a suitable controller. Motivated by the earlier success
with Reinforcement Learning (RL), it is interesting to now investigate if this problem can be
formulated as an RL problem and whether a suitable controller can be learned.

5-1 Formulation as a Reinforcement Learning Problem

The first method attempted to formulate this as an RL problem is as follows.

It is desired that the algorithm learn the matrices Z11, Z12 and Z22 such that the closed loop
system is passive with respect to a desired equilibrium point.

To this end, choosing for convenience [
gc1(ξ1)
gc2(ξ2)

]
=
[
0
I

]
(5-20)

and fixing the controller Hamiltonian as Hc(ξ1, ξ2) = 1
2ξ
T ξ, the controller system is now

[
ξ̇1
ξ̇2

]
=
[
Z11(ξ1, ξ2) Z12(ξ1, ξ2)
−ZT12(ξ1, ξ2) Z22(ξ1, ξ2)

] [
∇ξ1Hc(ξ1)
∇ξ2Hc(ξ2)

]
+
[
0
I

]
uc (5-21)

yc =
[
0 I

] [∇ξ1Hc(ξ1)
∇ξ2Hc(ξ2)

]
. (5-22)

The matrices Z11, Z12 and Z22, can be parametrised using function approximation as

Z11 = ϑ11ϕ(ξ) (5-23)
Z11 = ϑ12ϕ(ξ) (5-24)
Z11 = ϑ22ϕ(ξ) (5-25)

where ϑ11, ϑ12 and ϑ22 are some parameter vectors rich enough to capture the solution and
ϕ(ξ) is a suitable linear in parameters basis function.

The controller is now, [
ξ̇1
ξ̇2

]
=
[

ϑ11ϕ(ξ) ϑ12ϕ(ξ)
−(ϑ12ϕ(ξ))T ϑ22ϕ(ξ)

] [
ξ1
ξ2

]
+
[
0
I

]
uc (5-26)

yc =
[
0 I

] [ξ1
ξ2

]
. (5-27)
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Figure 5-2: Schematic of actor-critic algorithm [2]

Figure 5-3: Problem with dynamic controller ACRL formulation
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The problem that arises now is what to choose as a suitable policy and how to define a suitable
reward function. An intuitive choice would be to choose the dynamics of the controller as
the policies to be optimised but this leads to some problems with implementation in the RL
framework.
Usually in the context of Actor-Critic Reinforcement Learning (ACRL), a control action is
chosen according to the policy and based on the reward received and the approximated value
function learned, the policy is updated using gradient ascent methods. The schematic for
ACRL is shown again in Figure 5-2. And the current formulation is shown in Figure 5-3.
In the current formulation of our controller however, the control input u = −yc = −ξ2 is not
directly influenced by the policy but rather indirectly through the evolution of the controller
states ξ. So it is not directly clear how to choose a suitable policy.
However, this leads to an interesting thought. If it were possible to formulate the problem
such that the actor directly supplied the control action, this issue could possibly be overcome.
The dynamics of the controller states are given by

ξ̇1 = Z11(ξ1, ξ2)ξ1 + Z12(ξ1, ξ2)ξ2 (5-28)
ξ̇2 = −ZT12(ξ1, ξ2)ξ1 + Z22(ξ1, ξ2)ξ2 + y. (5-29)

Define s1 = ξ̇1, s2 = ξ̇2. This leads us to

s1 = Z11(ξ1, ξ2)ξ1 + Z12(ξ1, ξ2)ξ2 (5-30)
s2 = −ZT12(ξ1, ξ2)ξ1 + Z22(ξ1, ξ2)ξ2 + y (5-31)

With some abuse of notation, if the matrices Z11 and Z22 are invertible1, then it follows that

ξ1 = Z−1
11 s1 − Z−1

11 Z12ξ2 (5-32)
ξ2 = Z−1

22 s2 + Z−1
22 Z

T
12ξ1 + Z−1

22 y (5-33)

and if it is possible to get the values for s1, s2 then it may be possible to circumvent the prob-
lem. However, this imposes further an unnecessary restriction on the controller. Therefore,
this approach was abandoned and instead, the following approach is tried.
Pulling out the integrator from the controller leaves the rest of the dynamics as a static map
as shown in Figure 5-4. The control input required from the controller at equilibrium can
be easily computed from knowledge of the plant dynamics. The algorithm should now try to
learn a policy such that at the equilibrium, the controller output is the required u∗. Using
the reward function, it is possible to let the RL agent know that it should try to formulate
dynamics that allows it to stabilise the plant at the desired state. The block diagram of this
controller scheme is shown in Figure 5-5.
Following this, the reward function has to be defined in such a manner that there is a negative
reward incurred for the plant states not being close to the desired set point and also a negative
penalty incurred on the controller output being away from the output to maintain the desired
equilibrium. Thus, the reward function is of the form

rk+1 = ρ(x, ξ2). (5-34)
1By Jacobi’s theorem, skew symmetric matrices of odd dimensions are singular and hence, not invertible
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Figure 5-4: Pulling out the integrator leaving the rest of the controller dynamics

Figure 5-5: Dynamic controller system

Since the state ξ1 does not influence the output of the controller and by extension does not
influence the input to the plant, but only the controller dynamics, there is no penalty on the
controller states ξ1. When implementing this however, care must be taken to ensure some
suitable bounds on the controller state ξ1 to prevent the controller states from becoming
unstable. This can be done either via the reward function or by defining saturation bounds
on the controller states.

The policy are now taken as the parametrised sub-matrices of the controller dynamics. The
policies are a function of ξ and the critic is parametrised as a function of both the plant and
controller state spaces.

V (θ, x, ξ) = θTφ(x, ξ) (5-35)

5-2 Update equations

The dynamic controller finally has been parametrised as an RL problem. All that remains
now, is to introduce the update equations. Using the subscript k to denote the value at a
time step k, the gradient of the value function can be easily found

∇θVθk
(xk, ξk) = φ(x, ξ). (5-36)

Using again the ACRL scheme given in Section 3-3-3, the critic can now be updated as follows.
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δk+1 = rk+1 + γVθk
(xk, ξk) (5-37)

zk+1 = λγzk +∇θVθk
(xk, ξk) (5-38)

θk+1 = θk + αc,kδkzk (5-39)

where δ is the Temporal Difference (TD), zk is the eligibility trace and αc is a suitable critic
learning rate.
Updating the policy is a more difficult task. The policy depends on only the states ξ. A
positive TD means that the controller dynamics are such that the closed loop system is
moving towards a more desirable state and so the policy should be updated in that direction.
Drawing the exploration term from a zero mean standard normal distribution with a variance
of σ2,

∆Z ∼ (0, σ2). (5-40)

The policy is now updated with

ϑ11k+1 = ϑ11k
+ αaδk+1∆Zk∇ϑπ̂(ξk, ϑk, ϕk), (5-41)

ϑ12k+1 = ϑ12k
+ αaδk+1∆Zk∇ϑπ̂(ξk, ϑk, ϕk), (5-42)

ϑ22k+1 = ϑ22k
+ αaδk+1∆Zk∇ϑπ̂(ξk, ϑk, ϕk). (5-43)

Unfortunately, so far simulations based on this formulation have failed to achieve the intended
results. In the following section, some discussion follows on this methodology and why this
might be the case.

5-3 Discussion

Although the research towards learning a dynamic seemed at first glance to be extremely
promising, unfortunately, so far the desired results have been elusive. Some discussion on the
possibilities of what might have caused the negative results follows.

5-3-1 Verifying that the problem satisfies the Markov property

Due to the nature of the problem formulation, it is not immediately clear how RL can be
applied to this scenario. As mentioned previously in Section 3-2, RL can be applied to solve
problems modelled as a Markov Decision Process (MDP).
In words, a discrete time system satisfies the Markov property if the current state of the
system xk depends only on the immediate past xk−1. It is known that the plant system
satisfies the Markov property. Verifying that the controller formulation also satisfies this is
simple and intuitive.
Recall Eq. (5-32) and Eq. (5-33). This is equivalent to saying that at any time step k, the
system is of the form

ξk+1 = Z̄(sk, ξk, yk). (5-44)
Thus, the evolution of the state depends only on the state directly preceding it and the system
forms a Markov chain and thus, RL can be used to solve this problem.
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5-3-2 Possible causes for negative results

1. Learning rates: It is possible that finding correct learning rates was the problem.
During simulations, both the controller and plant systems were found to converge to
their natural equilibrium and the algorithm did not learn anything. Finding good
learning rates in RL can be a tricky problem. In this thesis, the gridding approach was
used to try to find suitable learning rates but it is possible that a more refined search
to find better learning rates might deliver better results.

2. Exploration: The exploration term in RL is responsible for the agent trying out new
actions that may not be the currently optimal policy in order to explore the environment.
In this thesis, the exploration term has been drawn from a zero mean normal distribution
with a chosen variance σ2. It is however possible that due to the nature of the problem,
the amount of exploration used was not enough to move towards a more optimal policy
and hence learning did not occur. As has been shown in the example using the spring
mass damper in Section 4-3, the value function cannot make accurate estimates about
the region of the state space that it has not explored. Perhaps using a higher level of
exploration or an exploration term of a different type (for example, a multisine wave)
might yield better results.

5-4 Summary

It has been seen in the preceding chapter that CbI suffers from the dissipation obstacle. This
chapter attempted to increase the freedom in controller design when using CbI. It was seen
that there is a trade-off between maintaining structure and flexibility in controller design.
Finally, it was proposed to augment the controller states with dummy states in order to
increase the freedom in controller design while still maintaining the PH structure and use RL
to learn such a controller. However, as of the time of writing this thesis, the author has been
unable to produce positive results with this method.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

The primary goal of this thesis was to design a methodology that combined the advantages
of Control by Interconnection (CbI) for port-Hamiltonian (PH) systems and Reinforcement
Learning (RL). Thus, CbI (Section 2-4) was combined with Actor-Critic Reinforcement Learn-
ing (ACRL) (Section 3-3-3) to yield the Control by Interconnection - Actor Critic (CBI-AC)
algorithm (Chapter 4). The plant states are partitioned into the shape-able and non shape-
able components and using CBI-AC, the energy of the closed loop system can be easily shaped.
The developed methodology was tested in simulation and the following conclusions can be
drawn:

• CBI-AC is an output feedback method that does not require state information. The
closed loop energy of the system can be effectively shaped and the added advantage is
that the learned controller can be interpreted in terms of energy exchange. Stability
can easily be analysed numerically from the closed loop energy of the system.

• There is no longer a need to explicitly solve a set of Partial Differential Equations
(PDEs). Moreover, the choice of a suitable Casimir function and controller Hamiltonian
is one that often requires experience to make a good choice. The CBI-AC algorithm
eliminates the need for this.

• Control saturation can be incorporated into the learning methodology.

• The performance of the CBI-AC learning algorithm is found to be robust to changes in
model parameters. However, it is possible that for a significantly large change in the
model parameters (> 20%), the learning rates may need to be tuned again.

• The learned controller is found to be robust to changes in model uncertainty up to ±20%
as well. The learned controller is able to stabilise the system even with a mismatch in
model parameters, as simulations have shown. Thus, for implementation on physical
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systems, it is possible that the controller initially be learned on a model of the system
in simulation, and then if required, finally tuned on the physical set-up.

• Finding the correct learning rates can sometimes be quite challenging. In this thesis,
the gridding approach was used successfully. However, for systems which require a long
time to simulate, some other method to find suitable learning parameters may need to
be used.

However, the dissipation obstacle still limits the use of this controller methodology as it is
still not possible to shape the coordinates that have pervasive dissipation in them. It was
seen that this is an inherent limitation of CbI and as a result the secondary goal of this thesis
was to try to formulate a controller methodology that allows enough freedom to go beyond
the dissipation obstacle, while still maintaining the CbI (Chapter 5). The following can be
concluded:

• There is an inherent trade-off between freedom in controller design and structure of the
system. Preserving the PH structure of the system allows us to exploit this to prove
stability but comes at the cost of freedom in controller design and interconnection.

• Assuming availability of state information, a state modulated interconnection allows a
controller design using which the interconnection structure of the plant can be modified.
However, the damping matrix cannot be modified using CbI.

• It may be possible to use dummy states to increase the available freedom in controller
design. However, the problem then arises as to how to design the controller dynamics.
It was hoped that RL would be able to provide a solution to this but so far there have
been no positive results using the framework specified in Chapter 5.

6-2 Recommendations and Future Work

• It would be interesting to see to what extent performance criteria can be incorporated
into the CBI-AC algorithm. It is hoped that with CBI-AC, it might be possible to
design controllers that can in addition to guaranteeing local stability, also guarantee
some desired performance constraints. This can be done by defining suitable reward
functions.

• The effect of the initialisation of the value function and policy is also of interest. In
this thesis, the parameter vector for both the actor and the critic were initialised with
zeros. Learning can be considerably sped up by using the knowledge of the model to
initialise the parameters closer to the optimal value.

• One of the major drawbacks of CbI is that it is still hampered by the dissipation obstacle.
However, using the knowledge of the model may allow for controller design that allows us
to go beyond the dissipation obstacle. In particular RL algorithms like Model Learning
Actor Critic (MLAC) [31] could be used to learn a suitable controller that could go
beyond the dissipation obstacle without having explicit access to state information.

Finally, it is hoped that this thesis will be another step into bringing the fields of RL and PH
systems closer together, with the ultimate goal of seeing the two used in everyday life.
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Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

CbI Control by Interconnection

PH port-Hamiltonian

RL Reinforcement Learning

PBC Passivity Based Control

PDE Partial Differential Equation

PDEs Partial Differential Equations

ES Energy Shaping

DI Damping Injection

IDA-PBC Interconnection and Damping Assignment Passivity Based Control

MDP Markov Decision Process

TD Temporal Difference

AC Actor-Critic

ACRL Actor-Critic Reinforcement Learning

CBI-AC Control by Interconnection - Actor Critic
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