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A B S T R A C T   

This study focuses on the metabolic impacts of simultaneous glucose and oxygen concentration gradients on 
penicillin production in an industrial-scale fermentor, using the computational fluid dynamics-cellular reaction 
dynamics approach. Inclusion of oxygen-coupling considerably impacts the glucose uptake and resulting peni-
cillin productivity. This is characterised by six metabolic regimes; lifeline data reconstructed from experimental 
results, recorded from the cellular perspective, indicates rapid dynamics in glucose and dissolved oxygen uptake 
by the microorganisms. The results are highly sensitive to variations in the oxygen-related model parameters, 
requiring accurate insight into the multiphase hydrodynamics and metabolic processes. Hypothetical scenarios 
with stronger glucose-oxygen limitations than tested experimentally were further explored. A precision scale- 
down (SD) simulator was designed based on the lifeline data, requiring considerable operational dynamics, 
with increasing system complexity and implementation difficulty. These insights may inspire further research 
into alternative SD configurations better suited to mimic the rapid dynamics of large-scale fermentation 
processes.   

1. Introduction 

The performance of microorganisms in industrial-scale fermentation 
processes may be affected by environmental factors, notably substrate 
and dissolved oxygen (DO) concentrations (Steel and Maxon 1966, 
Larsson et al., 1996, Manfredini et al., 1983). In large-scale fermenta-
tions, the distribution of these factors can be spatially heterogeneous, 
which means that throughout the process microorganisms will try to 
adapt to changes in their extracellular environment, acknowledging cell- 
to-cell differences depending on the time spent in various bioreactor 
zones, thus impacting overall process performance (in particular, rate 
and yield) (Neubauer and Junne 2010, Wang et al., 2014). The chal-
lenging task of rational process design and optimisation is to take the 
environmental heterogeneity into account. A detailed and high- 
resolution modelling framework can be a major enabler to this effort. 
In order to parameterise models, scale-down (SD) simulators are 
commonly used to probe the impact of gradients on the performance of 

the bioreactors, under representative industrial-scale conditions in the 
lab (Noorman 2011, Wang, Tang et al. 2015). An SD simulator is to be 
designed following 5 degrees of freedom (Noorman 2011), and typically 
implemented based on either a single-reactor or a multi-compartment 
reactor (commonly two-compartment) approach (Neubauer and Junne 
2010, Wang, Chu et al. 2014). Many SD simulators have been developed 
for highly relevant microbial production systems, e.g., the yeast 
(S. cerevisiae) fermentation process, in which the large-scale gradients of 
both glucose (Sweere et al., 1988b, George, Larsson et al. 1993, George, 
Larsson et al. 1998, Heins, Lencastre Fernandes et al. 2015, Haringa, 
Deshmukh et al. 2017) and oxygen (Sweere et al., 1988a,c) have been 
experimentally or numerically mimicked. 

Recently, a scale-down framework was developed for characterising 
substrate distributions in an industrial-scale (54 m3) penicillin (PEN) 
fermentor, by developing a computational fluid dynamics-cellular re-
action dynamics (CFD-CRD) model (Haringa, Tang et al. 2016, Haringa, 
Tang et al. 2018). Considerable substrate gradients were predicted, and 
characterised by specific metabolic regimes in both single phase 
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(Haringa, Tang et al. 2016), and Eulerian-Eulerian two-phase (Haringa, 
Tang et al. 2018) systems. The Euler-Lagrange method has been used to 
assess potential environmental changes experienced by individual mi-
croorganisms (Lapin et al., 2004, 2006). The obtained lifeline data 
revealed rapid fluctuations (in the order of seconds) in the substrate 
uptake rate of the microorganisms (Haringa, Tang et al. 2016, Haringa, 
Tang et al. 2018). These extracellular substrate fluctuations were further 
integrated into the intracellular metabolism characterised by a 9-pool 
model (Tang et al., 2017), to investigate the metabolic response of 
P. chrysogenum for PEN production (Haringa, Tang et al. 2018). This 
modelling effort was supported by experimental SD studies, used to 
develop the metabolic model (de Jonge et al., 2011, Tang et al., 2017), 
and to compare performance in different SD simulators (Wang et al., 
2018). In these SD studies, the industrial-scale substrate gradients were 
imitated by applying an intermittent substrate feed in a single-reactor 
simulator (de Jonge et al., 2011, Wang et al., 2018), and by feeding in 
one compartment of a two-compartment simulator (Wang et al., 2018), 
which both led to considerable reduction of the PEN productivity. 
However, the applied feed time scales (typically 30 s in a cycle of 360 s) 
seem too large to replicate the aforementioned rapid fluctuations pre-
dicted by the industrial-scale CFD model (Haringa, Tang et al. 2016, 
Haringa, Tang et al. 2018). These fluctuations, characterised by speci-
fied regime-transition patterns, were well represented using fluctuating 
pulse feed in a numerical SD simulator (Haringa, Tang et al. 2018). 
Although the predictions matched industrial-scale data reasonably, 
translating the proposed SD design to a practical setup brings about 
challenges, and the design has not yet been realised. 

Several studies have reported that changes in the DO concentration 
have an important effect on the PEN production process (Vardar and 
Lilly 1982, Larsson and Enfors 1985, Larsson and Enfors 1988, Henrik-
sen et al., 1997, McIntyre et al., 1999). The PEN production can be 
considerably inhibited, or even (reversibly/irreversibly) lost when the 
DO concentration was below specific thresholds (Vardar and Lilly 1982, 
Larsson and Enfors 1988, Henriksen et al., 1997), or under DO starvation 
conditions (Larsson and Enfors 1985, McIntyre et al., 1999). To simplify 
the model, oxygen was assumed to be non-limiting in the previous 
modelling work (Haringa, Tang et al. 2016, Haringa, Tang et al. 2018), 
supported by (unpublished) DO observations in the industrial fermen-
tation under consideration. Similarly, the potential limitations or 
extracellular fluctuations of oxygen have not been addressed in the 
relevant numerical SD studies. Still, local DO limitations can affect 
bioprocesses, and further model development needs to consider the 
potential simultaneous impact of oxygen gradients and substrate 
gradients. 

This study focuses on characterising the oxygen gradients by inte-
grating oxygen transfer and depletion processes in the CFD simulation of 
an industrial-scale P. chrysogenum fermentor. The aim is to further 
develop the industrial-scale CFD-CRD model framework by investi-
gating the impact of the oxygen gradients on coupled substrate uptake 
and PEN production, including some hypothetical scenarios with severe 
substrate-oxygen limitations, and to propose an SD simulator design 
representative to the industrial-scale system, while keeping realizability 
of the experimental setup in mind. 

2. Model setup 

2.1. Industrial-scale modelling 

The CFD model was developed based on an industrial-scale 
fermentor for PEN production, similar to prior work (Haringa, Tang 
et al. 2016, Haringa, Tang et al. 2018), with an effective volume of 54 m3 

and two Rushton impellers for stirring (stirring speed 1.63 s− 1). Aeration 
was applied in the model with a superficial gas velocity of 0.05 m/s 
measured under standard temperature and pressure conditions. The 
Realizable k-ε model (Shih et al., 1995) with the dispersed turbulence 
multiphase model was used for turbulence simulation, and the Sliding 
Mesh model was used for modelling the agitators. The Eulerian-Eulerian 
model was applied for the aerated flows. In the current approach, the 
liquid phase properties were assumed similar as water, considering the 
challenge to integrate non-Newtonian broth rheology in the model 
(Haringa, Tang et al. 2018). The ideal gas law and a single-bubble size 
(6.4 mm) assumption were applied for the gas phase. The Grace model 
(Clift et al., 1978) was used for solving the drag force between the two 
phases, with the surface tension set to 0.073 N/m. Other interphase 
forces were not considered, similar to previous work (Gunyol et al., 
2009, Khopkar et al., 2003, Haringa, Deshmukh et al. 2017, Haringa, 
Tang et al. 2018). The 3rd order discretisation scheme Quadratic 
interpolation for convective kinetics (QUICK) (Leonard and Mokhtari 
1990) was applied for the momentum, volume fraction, and turbulence 
equations. Oxygen transfer between the two phases was simulated based 
on a hybrid mass transfer assumption. It was assumed that oxygen 
transport into the liquid phase is dominated by penetration in low- 
turbulence regions, and by surface renewal due to turbulent eddies in 
high-turbulence regions. Consequently, the oxygen mass transfer coef-
ficient kL was first calculated both by the Higbie penetration model 
(Higbie 1935), and the Lamont-Scott Eddy-cell model (Lamont and Scott 
1970); then the larger value was used to determine the local mass 
transfer coefficient. As in prior work (Haringa, Tang et al. 2016, 

Nomenclature 

a Volume specific gas bubble area, m2/m3 

c Stirrer blade height coefficient, - 
Cs, Co Concentrations of glucose and DO, respectively, mol/L 
Cx Biomass concentration, g/L 
c* Oxygen solubility, mol/m3 

Ds Impeller diameter, m 
Fglucose, fs,Glucose feed rate, mol/(m3⋅s) 
Ko The affinity constants for DO, mol/L 
Ks The affinity constants for glucose, mol/L 
kL Oxygen mass transfer coefficient, m/h 
N Stirring speed, s− 1 

OTR Oxygen transfer rate, mol/(m3⋅s) 
PsG, PsU Stirring power input under gassed and ungassed 

conditions, W 
QG Gas flow rate, m3/s 
qs, qo Specific uptake rates of glucose and DO, respectively, mol/ 

(Cmolx⋅s) 
qo,max Max. specific uptake rates of DO, mol/(Cmolx⋅s) 
qs, max Max. specific uptake rates of glucose, mol/(Cmolx⋅s) 
RGU The PsG / PsU ratio, - 
t Time, s 
vG Gas superficial velocity, m/s 
VL Liquid volume, m3 

Yos Relative DO uptake rate (to glucose uptake), -. 
ρL Liquid density, kg/m3 

τ95 95% mixing time, s 

Abbreviations 
CFD Computational fluid dynamics 
CRD Cellular reaction dynamics 
DO Dissolved oxygen 
PEN Penicillin 
QUICK Quadratic interpolation for convective kinetics 
SD Scale-down  
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Haringa, Tang et al. 2018), the substrate (glucose) feed rate was set to 
1.23 g/(m3 liquid⋅s); the biomass concentration (55 g/L) and liquid 
volume were assumed to be constant; biomass growth and volume 
changes were considered negligible over the simulation timespan (order 
of minutes) in this study. 

In the liquid phase, glucose and oxygen consumption was considered 
using a coupled assumption, which was characterised by two models. 
First, the Tsao & Hanson model (Tsao and Hanson 1975), in which the 
glucose and oxygen uptake rates were calculated as 

qs = qs,max •
Cs

Cs + Ks
•

Co

Co + Ko
(1)  

qo = qo,max •
Co

Co + Ko
•

Cs

Cs + Ks
(2)  

where qs and qo denote specific uptake rates of glucose and DO, 
respectively; qs, max and qo,max the maximum biomass specific uptake 
rates of glucose and DO, respectively; Ks and Ko the affinity constants for 
glucose and DO, respectively; Cs and Co local concentrations of glucose 
and DO, respectively. The second approach used in this study was the 
Roels model (Roels 1983), previously applied for the substrate-oxygen 
coupled consumption in other studies (Kuschel and Takors 2020, 
Hajian et al., 2020). The coupled metabolic kinetics were estimated by 
the limiting biomass growth rate between glucose and DO 

μ = min(μs, μo) (3)  

where μ the specific biomass growth rate; μs,μo biomass growth rates of 
glucose and DO, respectively, calculated by the Herbert-Pirt 
correlations. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μs =
1
αs

(
qs − βs • qP − γs • qbyp − ms

)

μo =
1
αo

(
qo − βo • qP − γo • qbyp − mo

)
(4)  

where m denotes the maintenance rate; α, β, γ the coefficients of biomass 
growth rate, PEN production rate, and byproduct formation rate, 
respectively. The subscripts s and o denote glucose and DO, respectively. 
The correlation with glucose repression of the PEN gene cluster (Douma 
et al., 2010) was also considered to calculate the PEN production rate. 
All oxygen-related parameters in the Tsao & Hanson model and the 
Roels model were taken from (Janoska et al., 2022). Additionally, a 
scenario with unlimited oxygen availability was simulated for reference. 

An Euler-Lagrange model was applied for tracking a large number of 
lifelines representing the microorganism trajectories. The microorgan-
isms were assumed as massless particles in the liquid phase. The discrete 
random walk model was used for the turbulent dispersion effect on the 
particle’s motion. In each case, 20 000 particles were tracked for a flow 
time of 900 s (over 10 times of the simulated 95% mixing time (t95) of 
the bioreactor) and the data sampling time step size was 0.03 s, to obtain 
lifelines with sufficient statistical meaning and accuracy (Haringa et al., 
2017b). Fourier analysis on the obtained lifeline data was carried out 
first. A smooth spectrum, having a stabilised trend after 3 times of t95, 
was observed without any frequency standing out in particular (data not 
shown). The results agreed with the previous work (Haringa, Tang et al. 
2016), so similar to their conclusion, the Fourier analysis was not used 
for further data analysis. 

2.2. Scale-down simulator design 

The proposed SD simulations applied the single-reactor mode with a 
chemostat operation (fixed reactor volume and biomass concentration). 
As discussed in Haringa, Tang et al. (2018}, the time scale of mixing is 
smaller than the oscillations of the mean glucose concentration, so any 
transient change in the glucose concentration caused by feed dripping in 

the SD simulator was neglected, and ideal mixing was assumed. Then, 
the glucose mass balance between feed and consumption was calculated 
as 

qsCx +
dCs

dt
= Fglucose =

{
fs, feedON
0, feedOFF (5)  

where Cx denotes the biomass concentration, and Fglucose the glucose feed 
rate. Both feast phase (constant feed rate fs) and famine phase (no feed) 
were included. Similarly, the oxygen mass balance could also be esti-
mated under oxygen supply ON and OFF conditions 

qoCx +
dCo

dt
= OTR =

{
kLa(c* − co), supplyON

0, supplyOFF
(6)  

where OTR denotes the oxygen transfer rate, kL the oxygen mass transfer 
coefficient, a the volume specific gas bubble area, and c* the oxygen 
solubility. Due to the ideal mixing assumption, constant kLa and 
instantaneous oxygen transfer from gas phase to liquid phase without 
any delaying effect were assumed. The kLa is correlated with the oper-
ational parameters in a gassed and stirred bioreactor with the coalescing 
broth scenario, in which bubble size > 2 mm was assumed (Van’t Riet 
1979, Noorman et al., 2018) 

KLa = 0.026
(

PsG

VL

)0.4

vG
0.5 (7)  

{
PsG = RGUPsU

PsU = 0.5cπ4ρLN3Ds
5 (8)  

where PsG and PsU denote stirring power input under gassed and 
ungassed conditions, respectively, VL the liquid volume, vG the gas su-
perficial velocity, c the stirrer blade height coefficient (0.21), ρL the 
liquid density, N the stirring speed, and Ds the impeller diameter. RGU is 
the PsG / PsU ratio, which is determined by the correlations for a single- 
impeller stirring tank (Cui et al., 1996) 

RGU =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 9.9
(

QGN0.25

Ds
2

)

,
QGN0.25

Ds
2 ≤ 0.055

0.48 − 0.62
(

QGN0.25

Ds
2

)

,
QGN0.25

Ds
2 > 0.055

(9)  

where QG denotes the gas flow rate. 
For SD design, we focused on oxygen-coupled lifelines generated 

with the Tsao & Hanson model. At this stage, we do not have the 
experimental data to decide whether this model or the Roels model is 
more representative of industrial gradients, but we expect the design 
challenges to be similar between them. The SD simulator design was 
carried out in the following three variants. 

(1) SD-A: The first design was based on the SD approach developed in 
prior work (Haringa, Tang et al. 2018), extended to replicate oxygen- 
related lifelines. The single-reactor mode was still assumed, with a 
relatively high biomass concentration (27.5 g/L) to capture the rapid 
fluctuations in the lifeline profiles. Each glucose feast-famine event was 
coupled with oxygen dynamics, and vice-versa. For glucose lifelines to 
characterise metabolic regimes, the randomised feed rate and time scale 
were determined based on correlations between the magnitude and 
duration of qs/qs,max, which were estimated by a proposed arc-analysis 
method (Haringa, Tang et al. 2016) on the industrial-scale lifeline 
data. Similarly, the oxygen supply mode was assumed intermittent. To 
characterise metabolic regimes, the time scale and the lowest Co reached 
in each oxygen supply-off phase were determined based on the Co–re-
lated correlations from the arc-analysis. The connection and switch 
between different glucose feed and oxygen supply conditions were 
determined based on the probability of involved regime-transition pat-
terns and logical pattern sequences. 

(2) SD-B: The second design originates from practically realisable 
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design choices based on typical established SD simulator operation, 
extended to mimic the predicted simultaneous glucose-oxygen gradients 
to a decent degree. In this SD experiment, a relatively low biomass 
concentration (6 g/L) was applied. The basic cycle design and glucose 
feed conditions were set based on the experimental setup of de Jonge, 
Buijs et al. (2011); the oxygen limitation was represented by applying a 
DO starvation mode in the oxygen supply condition, similar to some 
previous studies (Larsson and Enfors 1985, McIntyre et al., 1999). More 
details of the experimental setup are summarised in Table S1. 

(3) SD-C: based on the limitations of SD-A and SD-B, a new SD 
simulator design was proposed to achieve a trade-off between the 
adequate representation of the industrial-scale data (improvement over 
SD-B), and an effective translation to practically realisable SD experi-
ments (improvement over SD-A). The details are described in Section 
3.2.3. 

3. Results and discussion 

3.1. Glucose-oxygen coupled impacts on penicillin production in the 
industrial-scale fermentor 

3.1.1. Metabolic regime definition and dependency on oxygen-coupled 
uptake kinetics 

In the current approach, both glucose and oxygen exert control over 
the uptake kinetics. First, we must consider how the presence of oxygen 
affects the metabolic regime definition, which was proposed for non- 
limiting oxygen conditions (Haringa, Tang et al. 2016). The oxygen 
criterion was determined by the impact of DO on PEN productivity, 
where the PEN production rate showed a dramatic decrease when the 
DO concentration was below 0.05 mmol/L (Janoska et al., 2022); the 
observed trend being in agreement with the correlation reported by 
Henriksen, Nielsen et al. (1997). Based on the static regime assumption, 
this critical DO concentration could be used as a threshold for limiting 
the PEN production process, and the PEN metabolism could be classified 
as either DO-sufficient (Co > 0.05 mmol/L), or DO-limited (Co ≤ 0.05 
mmol/L). Combining this with the prior glucose regimes, six metabolic 
regimes were defined based on the thresholds for both glucose uptake 
capacity (qs/qs,max) and DO concentration. As shown in Table 1, each 
regime is determined by a sub-regime of glucose (Excess, Limitation, or 
Starvation, as defined before (Haringa, Tang et al. 2016)), and a sub- 
regime of DO (Sufficient, or Limited). The regime naming is also listed 
in this table and used in the rest part of this paper, with + and - for DO 
Sufficient and DO Limited, respectively. 

We applied both glucose-oxygen uptake models to the CFD simula-
tions, and registered the regime distribution, both with the regular 
glucose feed rate and a more extreme scenario with the glucose feed 
doubled. Table 1 contains the metabolic regime distributions for the 
resulting four cases. In the Tsao & Hanson model (normal feed), only 3 
metabolic regimes were observed in the studied bioreactor: L-, L+, and 
S+, with the S- regime and glucose-Excess (E + and E-) being absent. 
Almost 15% of the domain was predicted to operate with limited DO 
concentrations (L-), detrimental for PEN production. In regions of high 
local glucose concentration, the limiting effect of oxygen is sufficient to 
avoid glucose uptake saturation, leading to the absence of the excess 

regime. As excess glucose may lead to repression of enzyme production 
in the PEN pathway (Douma et al., 2010, Tang et al., 2017, Haringa, 
Tang et al. 2018), this may have a positive impact on PEN production. 
Using the Roels model, the two glucose-Excess sub-regimes: E + and E- 
were predicted to be present. This difference was caused by the different 
approach towards calculating qs between Equation (1) and Equation (4). 
In the Roels model, glucose uptake is not directly affected by oxygen 
limitation (and vice-versa), so the glucose-Excess regime (qs/qs,max >

0.95) could occur when the local glucose concentration was high 
enough. As this change leads to a higher local glucose uptake rates, 
stronger glucose gradients are observed, with larger glucose Starvation 
regimes (S + here). In the Roels scenario the glucose level was the 
limiting parameter to calculate qs in most regions, and only a small 
fraction (4%) of the bioreactor was under oxygen-Limited conditions (E- 
and L-). 

It should be noted that the aforementioned differences between the 
two models could not be further validated, since no experimental data 
on oxygen distributions in the studied industrial fermentor was avail-
able. Hence, comments regarding which model presents the most real-
istic description of the fermentation environment are out of the current 
scope. For design of the scale-down setup, we focus on the Tsao & 
Hanson model as an example; we expect the approach to be equally 
applicable to the data generated with the Roels model. 

3.1.2. Glucose-oxygen gradients and metabolic regime distributions 
The oxygen coupling effect on the glucose uptake performance was 

assessed first. First, results from the Tsao & Hanson model are compared 
with a scenario with unlimited oxygen availability, where the glucose 
uptake capacity (qs/qs,max) was still characterised by the prior definition 
of metabolic regimes (Haringa, Tang et al. 2016). Fig. 1A shows the 
metabolic regime distributions of the two scenarios from the same 
frozen flow field. The results of the unlimited oxygen scenario were in 
good agreement with previous work (Haringa, Tang et al. 2016). The 
fraction differences (≤10%) in the Excess, Limitation and Starvation 
regimes were mainly due to the flow-field changes following the inclu-
sion of aeration in the current model, whereas the previous work 
(Haringa, Tang et al. 2016) considered single-phase flow. However, the 
oxygen-coupled scenario (the Tsao & Hanson, normal feed in Table 1) 
had distinct regime distributions, with no glucose-Excess regime and a 
considerable decrease of the glucose-Starvation regime. These changes 
indicated that with the proposed kinetics, the oxygen gradients had the 
potential to impact the overall glucose uptake and fermentation 
performance. 

Although with reduced size, the glucose-Starvation regime still filled 
the lower part of the bioreactor, due to the top feed location and high 
affinity for glucose uptake. The situation for oxygen was reverse: the 
aeration inlet is located near the bottom of the bioreactor. Additionally, 
the top part had relatively low DO solubility resulting from the hydro-
static pressure gradients and lower oxygen partial pressure in the gas 
bubbles, aggravated by a high DO depletion rate coupled with the high 
local glucose concentration (Cs) according to Equation (2). Hence, the 
local DO concentration (Co) could very well be lower than the threshold 
value (0.05 mmol/L), as shown in Fig. 1B. The opposite glucose and DO 
gradients had a similar pattern to previous work on bioreactors for 

Table 1 
Definition of glucose-oxygen coupled metabolic regimes, and the predicted fractions (%) in the studied fermentor by the two oxygen-coupling models, with a real and a 
hypothetical case (doubled feed rate).  

Re-defined metabolic regime Glucose Oxygen Roels, 
normal feed 

Tsao & Hanson, normal feed Roels, 
double feed 

Tsao & Hanson, double feed 

E+ Excess (E) Sufficient (+) 9.0 0 11.8 0 
L+ Limitation (L) 18.0 37.7 23.2 58.2 
S+ Starvation (S) 69.0 47.5 51.2 8.0 
E- Excess (E) Limited (-) 2.7 0 12.9 0 
L- Limitation (L) 1.3 14.8 0.9 33.8 
S- Starvation (S) 0 0 0 0  
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C. glutamicum (Kuschel and Takors 2020) and S. cerevisiae (Hajian et al., 
2020), which also used feed on the top and aeration from the bottom. In 
the top part, the resulting decreased magnitude of the term Co/(Co + Ko) 
led to calculate the local glucose uptake capacity lower than 0.95, and 
thus no Excess-regime was obtained. With the reduced DO-coupled 
glucose consumption in the top part, the glucose fed by the same rate 
could be better distributed throughout the whole bioreactor, leading to a 
larger fraction of the Limitation-regime, combined with a smaller frac-
tion of the Starvation-regime. 

The metabolic regime data were further integrated into the 9-pool 
model (Tang et al., 2017) to estimate long-term stabilised PEN pro-
duction performance. It should be noted that the oxygen uptake process 
has not been included in the 9-pool model, hence, the model outcomes 
only predict the impact of the altered glucose distribution in the aerated 
scenario. Similar to the prior work (Haringa, Tang et al. 2018), the 
lifelines with a time scale of 80 h were formed by connecting the single 
particle’s lifelines (each with a time scale of 900 s) in random order. 
Totally 61 elongated lifelines were obtained, and the averaged response 
curves are shown in Fig. 1C. It was found that the PEN production rate of 
the oxygen-coupled scenario dropped faster, and the stabilised rate 
(over 80 h fermentation time) was also lower (~5%), compared to the 
unlimited oxygen scenario. Although with a better overall glucose dis-
tribution (reduced size of the glucose-Starvation regime), the glucose- 

Excess regime, which can increase the PEN formation due to less 
glucose repression, was absent. Hence, if the Tsao & Hanson uptake 
coupling approach is combined with the 9-pool model, low DO con-
centrations can still negatively impact PEN production, despite the 
impact of oxygen not being directly accounted for by the 9-pool model. 
Qualitatively, the impact of low DO does follow prior experimental work 
in lowering PEN production (Vardar and Lilly 1982, Larsson and Enfors 
1988, Henriksen et al., 1997). However, for better quantitative under-
standing, the impact of low DO should be directly included in a struc-
tured kinetic model, and coupled simulation results should be compared 
with experimental outcomes in future work. 

3.1.3. Statistical analysis of the glucose-oxygen coupled lifelines 
Regime analysis was performed on the oxygen-coupled lifeline data, 

yielding regime-residence time distributions and regime-transition pat-
terns, characterising the microbial trajectories through the connected re- 
defined metabolic regimes. Based on the applied regime distribution, six 
new regime-transition patterns were determined, which are summarised 
in Table 2 and Fig. 2A. 

As shown in Table 2, the begin and end points in each regime- 
transition pattern were determined by specified limiting parameters 
from both glucose and oxygen, leading to different profile characteristics 
between glucose (qs/qs,max) and oxygen (Co) lifelines. Generally, all 

Fig. 1. Distributions in the studied fermentor of (A) glucose uptake regimes defined by Haringa, Tang et al. (2016), including DO-unlimited (left) and DO-coupled 
(right) scenarios; (B) oxygen-Limited regime (Co < 0.05 mmol/L), oxygen-coupled. (C) Response of PEN production rate predicted in DO-unlimited and DO-coupled 
scenarios, the average of 61 elongated lifelines. 
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patterns were characterised by three groups: Co threshold determined 
(Pattern 1 and 4), qs/qs,max threshold determined (Pattern 2 and 6), and 
combined threshold determined (Pattern 3 and 5). Fig. 2B shows sche-
matic lifelines of Pattern 1, 2, and 5 for illustration of the three groups. 
Since Pattern 1 was Co threshold determined, its oxygen lifeline started 
and ended with a maximum Co of 0.05 mmol/L, and the profile could be 
characterised using the arc-analysis approach proposed in prior work 
(Haringa, Tang et al. 2016). The minimum Co (Co,min) and the time scale 
to reach Co,min were used to determine the DO arc magnitude and arc 
duration, respectively. For the conditions classified as glucose limiting, 
the criterion was that the glucose lifelines remained in the Limitation 
sub-regime range (0.05 < qs/qs,max < 0.95). As shown in Fig. 2C, neither 
maximum nor minimum qs/qs,max correlated to the begin or end point; 
the lifelines usually started at qs/qs,max ~ 0.78 and ended ~ 0.74, the 
minimum qs/qs,max had a correlation to time scale (t), and could drop 
down to 0.4 when t > 40 s. Hence, the lifeline could not be characterised 
by the arc-analysis and the profile may be more arbitrary. 

As qs/qs,max threshold determined, the glucose lifeline of Pattern 2 
could be characterised by the arc-analysis similar to the unlimited ox-
ygen scenario (Haringa, Tang et al. 2018), whereas the oxygen lifeline 
may have a more arbitrary profile in the oxygen-Sufficient sub-regime 
range (Co > 0.05 mmol/L). Regarding Pattern 5, which is characterised 
by combined glucose-oxygen thresholds, the oxygen lifeline started with 
the minimum Co of 0.05 mmol/L, and generally had an increasing trend 
(may not be monotonic) since the trajectory moved from top towards 
bottom of the bioreactor. In contrast, the glucose lifeline generally had a 
decreasing trend, and ended with the minimum qs/qs,max of 0.05. For 
Pattern 4, 6, and 3, the lifeline characterisations were carried out similar 
to Pattern 1, 2, and 5, respectively. Moreover, Fig. 2A contains the in-
formation of logical sequences for pattern connections. For example, 
Pattern 1 started from Pattern 3 or 4, and was followed by Pattern 4 or 5. 
As shown in Fig. 2D, the connecting points (between the end point of 
Pattern 3 or 4, and the first point of Pattern 1) had a good correlation in 
qs/qs,max values. Similar results were obtained in the other pattern 
connections (data not shown), so any concentration discontinuity in 
lifelines during pattern switches could be negligible. These different 
lifeline characteristics in regime-transition patterns and logical pattern 
sequences were also considered in constructing and connecting lifelines 
in the SD simulators, which are described in Section 3.2.1 and 3.2.3. 

The residence time distributions of the six re-defined regime-transi-
tion patterns are shown in Fig. 2E. All these patterns generally had an 
exponential decay trend, especially when the residence time was over 
10 s, similar to the results of the unlimited oxygen scenario in this study 
(data not shown) and in the previous work (Haringa, Tang et al. 2016, 
Haringa, Tang et al. 2018). However, considerable differences were 

Table 2 
Determination of glucose-oxygen coupled regime-transition patterns, qs/qs,max 
dimensionless.  

Pattern Regime 
transition: 
from/in/to 

Limiting 
parameters, begin 
point 

Lifeline 
stays 

Limiting 
parameters, end 
point 

1 L+/L-/L+ Co 0.05 mmol/L; 
glucose in 
Limitation 

L- Co 0.05 mmol/L; 
glucose in 
Limitation 

2 S+/L+/S+ DO in Sufficient; 
qs/qs,max 0.05 

L+ DO in Sufficient; 
qs/qs,max 0.05 

3 S+/L+/L- DO in Sufficient; 
qs/qs,max 0.05 

L+ Co 0.05 mmol/L; 
glucose in 
Limitation 

4 L-/L+/L- Co 0.05 mmol/L; 
glucose in 
Limitation 

L+ Co 0.05 mmol/L; 
glucose in 
Limitation 

5 L-/L+/S+ Co 0.05 mmol/L; 
glucose in 
Limitation 

L+ DO in Sufficient; 
qs/qs,max 0.05 

6 L+/S+/L+ DO in Sufficient; 
qs/qs,max 0.05 

S+ DO in Sufficient; 
qs/qs,max 0.05  

Fig. 2. (A) Six new regime-transition patterns obtained in the studied industrial 
fermentor, distributed with logical connections; (B) schematic glucose uptake 
(qs/qs,max) and oxygen (Co) lifelines of Pattern 1, 2, and 5 (black dots denote 
limiting points); (C) qs/qs,max of the first point, end point, maximum, and 
minimum in the glucose lifelines of Pattern 1, as a function of time scale; (D) qs/ 
qs,max of the connecting points (between the end point of Pattern 3 or 4, and the 
first point of Pattern 1), as a function of time scale; (E) residence time distri-
butions of the six regime-transition patterns. 
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found in the small timescales. Pattern 3 and 5 had little probability when 
the residence time was < 5 s. Since the two patterns accounted for the 
transition between the regimes located in the top (L-) and bottom (S + ), 
minimal time to travel through the whole L + regime was required. 
Moreover, the other four patterns had different exponential decay rates 
in small residence time scales. This was similar to the unlimited oxygen 
scenario (Haringa, Tang et al. 2016), and indicated different circulation 
loops dominated the biomass motion in each regime. Although with 
some differences in the decay rate, the overall exponential decay 
behaviour still indicated a circulation condition in each regime in terms 
of hydrodynamic behaviour. This indicates that in single-reactor SD 
mode, variable time intervals can be used to mimic the circulation time 
distribution in the large-scale vessel, basing the regimes on a consistent 
metabolic response. Of course, there are still concentration gradients 
inside these regimes; the glucose/DO distribution is not ideally mixed in 
the literal sense. 

3.1.4. Hypothesised more severe glucose-oxygen gradients, and the impact 
of oxygen transfer kinetics 

The simulation results can be used to further develop the SD 
framework (from industrial-scale) considering glucose-oxygen limita-
tions. However, the results did not demonstrate a large oxygen-Limited 
zone in the studied bioreactor. More severe oxygen (DO starvation) 
conditions have been considered in some lab-scale work (Larsson and 
Enfors 1985, McIntyre et al., 1999). 

To study if such conditions are expected to appear under more 
intense fermentation conditions, we considered a doubled glucose feed 
rate (both for the Roels and Tsao & Hanson models), while the other 
settings remained the same. The results are shown in Table 1. As 
mentioned in Section 3.1.1, the differences between the two models will 
not be discussed, and only Tsao & Hanson’s data are analysed here. A 
considerable fraction (33.8%) of the oxygen-Limited regime (only L- as 
well) was obtained when a double glucose feed rate was applied, which 
was also included in the following SD design. Moreover, assessing the 
sensitivity of the mass transfer model, some adjustments in stirring 
speed, bubble size, and broth rheology were found to considerably affect 
the estimation of oxygen transfer rate (kLa) from gas to liquid (Table S2), 
which propagated into substantially affecting the oxygen gradients. 
These hypothetical adjustments were based on reasonable assumptions, 
and their importance is clear from the CFD simulations as well as from 
the previous work (Haringa, Tang et al. 2018). Unfortunately, no rele-
vant experimental data is available for the studied bioreactor. Hence, we 
can only highlight the qualitative relevance here. Future work focusing 
on experimental quantification of these parameters in industrial-scale 
facilities would be highly valuable. 

3.2. Setup and operational design of scale-down simulators, based on the 
industrial-scale analysis 

3.2.1. Representation of predicted industrial-scale metabolic regimes & 
lifelines 

The results in Section 3.1.3 illustrated that the re-definition of the 
metabolic regimes did not qualitatively change the key lifelines char-
acteristics: frequent and rapid switches between metabolic regimes. As 
described in Section 2.2, the prior SD approach (Haringa, Tang et al. 
2018) still forms a basis for the first variant (SD-A) of the SD simulator 
design in this study, and was further developed to construct the oxygen- 
related lifelines. For each regime-transition pattern, the distinct profile 
characteristics described in Section 3.1.3 were referred to construct the 
SD glucose and oxygen lifelines. Since glucose and oxygen uptake rates 
(qs and qo) were dependent on both Cs and Co (Equation (1) and (2), their 
changes would be more complex when Cs and Co were varying simul-
taneously. To reduce the complexity of lifeline construction in SD-A, 
some assumptions (e.g., constant Cs or Co in specified duration) were 
considered to minimise the frequency of on–off switches for glucose feed 
and oxygen supply in each regime-transition pattern. Pattern 

connections were determined based on the logical pattern sequences, 
and the connection choice statistically depended on probability of the 
relevant patterns. As shown in Table 3, the fractions of both the meta-
bolic regimes and the regime-transition patterns predicted in SD-A are 
quite close to the CFD lifeline data (deviation < 2%), showing that the 
design has the potential to represent the currently predicted industrial- 
scale regime characteristics. 

3.2.2. Translation to SD experiments: Performance assessment and 
optimisation 

The randomised construction of glucose and oxygen lifelines in SD-A 
requires highly variable conditions for both glucose feed and oxygen 
supply, which will be even more difficult to practically impose in an SD 
simulator than the unlimited oxygen scenario. To solve the SD-A’s 
limitation, an effective translation to practical SD implementation is 
required. As described in Section 2.2, SD-B was designed based on an 
experimental SD simulator, which was run to mimic the glucose-oxygen 
limitations predicted in the studied fermentor (here shows the hypoth-
esised scenario with stronger glucose-oxygen limitations). As a restric-
tion to the design of this SD protocol, the basic experimental setup was 
mainly referring to some previous studies (Larsson and Enfors 1985, de 
Jonge et al., 2011, McIntyre et al., 1999). Thus, the glucose-oxygen 
limitations were represented by the combination of one glucose- 
famine phase and one DO-starvation phase in a single cycle, whereas 
the two phases were not overlapping. 

The same setup was assumed in SD-B first, to assess the performance 
of the referred experimental SD simulator. As shown in Table 4, 
considerable fraction differences were obtained in all metabolic regimes 
between CFD (the second row) and SD-B (the third row). So this SD 
experiment seems not able to match the metabolic regime distributions 
predicted in the industrial-scale bioreactor. To improve the perfor-
mance, the SD-B setup was further optimised by adjusting the oxygen 
and feed supply conditions in a single cycle, including flow rate and 
duration of the DO-supply (aeration) phase, and the glucose feed rate. 
However, the optimised setup (SD-B, Opt. 1, and Opt. 2 in Table 4) could 
only have a good agreement in some regimes, while with considerable 
deviation in the other. Besides, the S- regime was absent in the CFD 
results, but could still be predicted in SD-B even after the optimisations. 
So the discrepancy to the industrial-scale data seems intrinsic in SD-B, 
indicating the limitation of the applied combination of single glucose- 
famine phase and DO-starvation phase. In addition, the biomass con-
centration in SD-B (6 g/L) was lower than SD-A (27.5 g/L), leading to 
slower glucose and DO consumption; the on–off switches for the glucose 
feed and oxygen supply had a time scale at least in the order of 101 s. 
Hence, the rapid fluctuations (in 100 s) in the industrial-scale lifelines 
could not be resolved in SD-B, even with optimisations. Although 
commonly applied in previous SD studies (Larsson and Enfors 1985, de 
Jonge et al., 2011, McIntyre et al., 1999, Wang et al., 2018), the setup 
based on single switch of glucose feast-famine or DO supply-starvation 
with a relative large time scale and low biomass concentration, was 
found to have intrinsic limitation to represent the industrial-scale data, 
and thus needs to be further improved. 

Table 3 
Fractions (%) of metabolic regimes and regime-transition patterns predicted in 
the studied fermentor (CFD) and SD-A.    

CFD, Cx 55 g/L SD-A, Cx 27.5 g/L  

Metabolic regime 
L-  14.8 13.5 ± 0.3 
L+ 37.7 37.4 ± 0.4 
S+ 47.5 49.1 ± 0.3   

Regime-transition pattern 

1  12.4 11.7 ± 0.2 
2  35.8 36.4 ± 0.7 
3  1.8 1.9 ± 0.02 
4  10.5 9.7 ± 0.3 
5  1.8 1.9 ± 0.02 
6  37.6 38.3 ± 0.7  
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3.2.3. Further improvement: A new SD simulator design 
Regarding the limitations of SD-A and SD-B, a new SD simulator (SD- 

C) was designed in this step. To effectively translate to practical SD 
experiments, SD-C considered periodic cycles with specified settings for 
glucose feed and DO supply conditions, instead of the randomised setup 
in SD-A. To obtain a better match with the fluctuations observed in the 
CFD data, SD-C also included the time scale, frequency, and logical 
sequence of the regime-transition patterns missed in SD-B. The basic 
cycle setup of SD-C is shown in Fig. 3, which is divided into six steps. 
Each step accounts for one type of regime-transition pattern switches. 
The mean residence time and probability of the six regime-transition 
patterns (in Table S3) were used to specify their time scale and switch 
frequency in the whole cycle. The logical pattern sequences were used to 
arrange the switch type in each step and the sequence of the six steps. 
Generally, Step 1 contains a number of transition loops between the 
connected Pattern 1 and 4, accounting for the frequent switches between 
the L- and L + regimes observed in the CFD lifeline data. Similarly, Step 
4 contains loops between Pattern 2 and 6, accounting for the frequent 
switches between L + and S +. Step 2 and 3 were set for Pattern 5, and 
Step 5 and 6 for Pattern 3, which both had large time scales and small 
probability, and accounted for connecting the two frequent switches in 
Step 1 and 4. 

As shown in Table 4, SD-C (Cx 20 g/L) had a much better agreement 
in the regime distributions to the CFD data with almost no prediction of 
S-, compared to all SD-B cases. The small differences (<4%) were 
acceptable since the setup with periodic cycles and fixed parameters was 
still an approximation to the statistical characteristics of the CFD data. 
The predicted SD glucose (qs/qs,max) and oxygen (Co) lifelines (Fig. 4A) 
demonstrated rapid changes similar to the industrial-scale results. In 
Step 1 (0 to 92 s), both profiles repeated a steep increase–decrease in a 

short time (~8 s), to account for the frequent switches between Pattern 1 
and 4. Similarly, the frequent switches between Pattern 2 and 6 were 
reflected in the sharp fluctuations in Step 4 (118 to 176 s). 

Generation of SD-C lifelines requires both stable and highly fluctu-
ating conditions for glucose feed and aeration in one cycle. As shown in 
Table 5 and Fig. 4B, the glucose feed and aeration operations were 
frequently switched between ON and OFF in some steps. In Step 1, the 
oxygen supply was periodically turned ON in a short time (4.5 s) with a 
relatively large amount (over 3 times larger than Step 3), to match the 
transition between L- and L +. The glucose feed was turned ON at the 
same time to minimise the generation of S-. In Step 4, pulse glucose feed 
(0.6 s) was applied and the oxygen supply was kept on to account for the 
other frequent transition between L + and S +. In the other steps, the 
glucose feed and oxygen supply operations were not fluctuating but just 
stable. 

Moreover, some recommendations for managing metabolic regime 
fractions in an SD simulator could be summarised. The glucose- 
Starvation sub-regimes (S + and S-) were found to be sensitive to both 
glucose feed and aeration conditions. To minimise the occurrence of S- 
(not observed in CFD) in the SD experiments, it is suggested that the 
starting time and time scale of aeration should be closely coupled with 
the glucose-feed phase, and the glucose feed rate should be at a mod-
erate level (not too high). In order to create more severe glucose-oxygen 
limitations, increase of S-’s proportion may be required. The presence of 
S + seems important for system stabilisation, since little or no S +
fraction could lead to predict abnormal long-term system performance 
with large glucose accumulation and insufficient DO (by over con-
sumption). The glucose-Limitation sub-regimes (L + and L-) were found 
to be more sensitive to changes in the oxygen supply conditions than the 
glucose feed conditions in the studied range. It could be expected that 

Table 4 
Metabolic regime fractions predicted in the studied fermentor (CFD), SD-B (including the referred SD experiment and 2 optimised settings, with estimated glucose feed 
and air supply conditions), and new SD simulator (SD-C).   

Cx, g/L Metabolic regime fraction, % Estimated conditions in a cycle 

S- L- S+ L+ Cycle time, s Glucose feed Air supply 

CFD 55 0 33.8 8.0 58.2 – – – 
SD-B Exp. referred 6 13.4 12.3 31.5 42.8 360 0–36 s ON, 4e-5 mol/s 84–244 s ON, 2.0 L/min 

Opt. 1* 5.4 34.3 23.1 39.6 0–36 s ON, 5e-5 mol/s 72–324 s ON, 2.7 L/min 
Opt. 2* 21.0 17.1 8.3 53.6 0–36 s ON, 5e-5 mol/s 72–288 s ON, 3.2 L/min 

SD-C (new design) 20 0.1 34.8 10.4 54.7 194 ** ** 
10 0.9 35.6 9.3 54.3 
6 1.9 34.1 8.0 56.0 

*: Optimised (Opt.) glucose feed and air supply conditions, and the other settings were kept the same with the referred SD experiment. 
**: Details of the conditions are summarised in Table 5. 

Fig. 3. Schematic setup of the new SD simulator (SD-C), six steps included.  
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Fig. 4. (A) Glucose and DO lifeline profiles, and (B) proposed glucose feed and air supply conditions (based on SD-B configuration), in one cycle (after a fermentation 
time of 80 h) of SD-C. 

Table 5 
Proposed glucose feed and air supply conditions in the six steps in one cycle of the new SD simulator (SD-C), based on SD-B’s configuration.   

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Glucose 
feed 

ON/OFF switch mode 
(Duration, 
×frequency) 

2 s OFF + 5.7 s ON 
×12 

All 5 s 
OFF 

3 s ON + 15 s 
OFF 
×1 

1.4 s OFF + 0.6 s ON + 3.3 s 
OFF 
×11 

All 1.4 s 
OFF 

All 16.5 s 
ON 

Feed rate in ON, mol/s 2.1 e-5 – 6.0 e-5 6.0 e-5 – 6.4 e-5 
Air supply ON/OFF switch mode 

(Duration, 
×frequency) 

2 s OFF + 4.5 s ON + 1.2 s 
OFF 
×12 

All 5 s 
OFF 

All 18 s ON All 58.3 s ON All 1.4 s ON All 16.5 s 
ON 

Flow rate in ON, L/s 
1: Coalescing 
2: Non-coalescing 

1: 1.55 
2: 1.1 e-2 

– 1: 0.43 
2: 7.7 e-4 

1: 0.03 
2: 3.1 e-6 

1: 0.03 
2: 3.1 e-6 

1: 0.03 
2: 3.1 e-6  
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these recommendations are not only applicable to the current SD setup, 
but also have the potential to guide further adjustments or hypothetical 
extensions in SD design. 

3.2.4. Applicability to experimental SD simulator in practice 
It should be noted that the setup in Table 5 was based on SD-B’s 

setup, and the assumptions described in Section 2.2, which should be 
checked when applying in a practical SD experiment. In theory, the 
setup can represent the environmental fluctuations required to mimic a 
full-scale environment, but practically there will be challenges: in a 
single cycle, there are frequent fluctuations in both feed- and airflow 
rate. The complexity in the SD setup seems inherent, since the well- 
mixed SD simulator needs a time sequence of different ‘actions’ to 
drive the entire culture to experience the environmental changes that 
are spatially distributed and experienced by part of the microorganisms 
in the industrial-scale bioreactor. The approach taken in SD-B (Cx 6 g/L) 
may be inadequate for SD-C (Cx 20 g/L) because of rheological changes, 
which may require a higher stirring speed as well as affect mass transfer. 
A higher stirring speed N requires a lower airflow to achieve the same 
kLa, which may be beneficial concerning the high airflow rates required 
for the base design of SD-C. Additionally, using pure O2 instead of air or 
applying measures to reduce the bubble size distribution such as usage 
of microspargers (Groen et al., 2005) or reducing bubble coalescence 
may be applied to reduce the airflow rate (in the order of 102 ~ 104, also 
shown in Table 5). Besides, the complex simultaneous operation of de-
vices for glucose feed and aeration should be well programmed and 
controlled in practice. 

Lower biomass concentrations were also applied in SD-C. As shown 
in Table 4, the scenarios with reduced Cx (6 and 10 g/L) obtained good 
results in the regime distributions. However, with low Cx it was not 
possible to realize rapid glucose and DO consumptions. As shown in 
Fig. 5, the lifelines had much smoother fluctuations; especially in Step 1, 
some Co peaks could not cover the threshold value of 0.05 mmol/L. The 
frequent transitions between L + and L-, and considerable gradients of 
glucose (maximum qs/qs,max up to 0.9) and DO (minimum Co < 0.01 
mmol/L) obtained in the CFD model were difficult to be reflected in the 
low Cx scenarios. Hence, a relatively high Cx seems necessary in SD-C. 

As commonly used in previous studies (Sweere et al., 1988b, Wang 
et al., 2018, George, Larsson et al. 1993, George, Larsson et al. 1998, 
Haringa, Deshmukh et al. 2017,), the multi-compartment reactor mode 
was also considered as an alternative scale-down approach. However, 
the highly fluctuating glucose and oxygen lifelines are more applicable 
to be constructed in a single bioreactor with frequent temporal condition 
changes than two bioreactors with frequent spatial variations. Never-
theless, for purpose of completing the exercise, a four-compartment 

reactor mode was designed, including two compartments of stirred 
tank reactors (STR), and two compartments of plug flow reactors (PFR), 
as shown in Fig. S1. However, operating the four-compartment SD 
simulator may be too challenging in practice. Since frequent changes in 
glucose and oxygen conditions are still required in the two STRs, the 
aforementioned challenge in SD-C should also be considered, and thus 
the four-compartment SD simulator has considerably increased system 
complexity. And further, pumping broth between compartments in-
troduces possible artefacts, such as shear damage to the cells or oxygen 
and glucose depletion in the tubing, with increased risks for malfunction 
and contamination. 

Alternative could also be the application of micro-bioreactors, e.g., 
micro-fluidics, in which the rapid regime transitions are easier to be 
represented by pulse or sinusoidal feeding of Cs and Co. However, the 
response of single or a few number of cells cannot fully represent the 
overall performance of the cell population in industrial-scale system. 
Thus further work on validation/calibration of SD-C, and implementa-
tion of the frequent fluctuations in lifelines in experimental SD simula-
tors would be valuable. 

4. Conclusions 

In this study, glucose-oxygen coupled impacts on metabolism of PEN 
production in an industrial-scale fermentor were numerically investi-
gated. Based on threshold concentrations of both glucose and oxygen, 
six metabolic regimes were defined to characterise the coupled impacts. 
Both Tsao & Hanson and Roels (black-box) models were applied to 
characterise the glucose-oxygen coupled consumption. The Roels model 
predicted considerable glucose gradients, whereas less oxygen gradients 
since a small fraction of the oxygen-Limited regimes was obtained. 
However, the Tsao & Hanson model predicted distinct regime distribu-
tions: with no glucose-Excess regimes and larger oxygen-Limited frac-
tion. These differences make clear that it is important to define and 
integrate appropriate oxygen-coupled uptake kinetics in the model, 
preferably using metabolic mechanisms of oxygen action, and imple-
ment it in the prior CFD-CRD framework, while the model choice needs 
to be validated in the future work. 

In the Tsao & Hanson model, the glucose gradients ran from top (feed 
location) to bottom; in contrast, the DO gradients materialised in the 
opposite direction due to the aeration near the bottom. Compared to the 
unlimited oxygen scenario, the reduced magnitude of the glucose gra-
dients revealed considerable changes in overall glucose uptake, and the 
resulting PEN productivity in the studied bioreactor. Regarding the re- 
defined metabolic regimes, the lifeline data showed frequent regime 
transitions with small characteristic time scales (100 ~ 101 s), indicating 

Fig. 5. Glucose and DO lifeline profiles in one cycle (after a fermentation time of over 80 h) of SD-C, (A) Cx 10 g/L, (B) Cx 6 g/L.  
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rapid changes in glucose- and DO-uptake by the microorganisms. It is 
noted that these rapid fluctuations are usually not covered in experi-
mental studies using SD simulators. Rather, slow cycles in the order of 
several minutes are applied which is addressing more worst-case per-
formance than a representative scale-down. 

Further, the model framework was developed by a hypothetical 
study (double feed) to create more severe glucose-oxygen gradients, 
which was not experimentally tested with our PEN case, but may still be 
highly relevant for general industrial practice. The observed data de-
pendency on modelling the gas–liquid flows, oxygen transfer, and oxy-
gen uptake kinetics, indicated the demand of more accurate insight into 
the multiphase hydrodynamics and metabolic processes. Some recom-
mendations for managing metabolic regime distributions in SD experi-
ments were also proposed. 

Regarding the limitations in the two SD simulators developed based 
on selected prior SD protocols, a new SD simulator was designed to be 
both representative to the highly oscillating industrial-scale conditions, 
and applicable to translate to SD experiments in the lab. The proposed 
SD setup requires a relatively high biomass concentration, frequent 
regime switches, and considerable operational fluctuations in glucose 
feed and oxygen supply, and thus implementation will not be straight-
forward using commonly used lab-scale STR’s and/or PFR’s. Rather, we 
advocate to consider alternative, micro-scale SD simulator set-ups that 
can accommodate faster changes of the cellular environment, yet 
capable of maintaining the required amplitude ranges. However, focus 
should be in reducing time scales of the operational fluctuations (from 
minutes to 10 s or less) in experimental SD simulators in the future. 
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