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Preface

Welcome, and thank you for taking the time to read my thesis. I wish I could provide a grander opening,

but as I’m writing this after finishing everything else, I’d like to save a moment for other things. To save

you a bit of time, feel free to skip this preface for now and perhaps return to it later—if you’re still curious to

read a few irrelevant words from someone who, at 24, has yet to achieve anything particularly noteworthy.

For those who chose to keep reading, here’s a quick overview of this report to help set your expec-

tations—maybe even lower them—so that the main content might surprise you in a positive way. This

thesis focuses on my attempt to train a policy for drone racing that can also avoid obstacles in unseen

environments, using reinforcement learning and domain randomization. You will read sentences written by

a non-native English speaker, which are likely full of imperfections, mixed with some that GPT helped gen-

erate. You’ll also find clumsy code implementations, naive methodology designs, sub-optimal performance

metrics, and plenty of drone crashes. To put it bluntly, this might all seem like trash. But wait—calling it

”trash” might be a bit harsh, after all, there’s value in sharing what didn’t work well. If you’re working on

something similar, I hope my findings save you a few hours of trial and error.

For those returning after reading the entire thesis—welcome back! And for those who stuck with

the preface, thank you as well. Reflecting on this project, I know that many aspects could have been

done better. However, as a non-EU student paying e2,400 a month in tuition just to remain registered,

extending this project indefinitely was not an option. The second half of the project was particularly stressful,

especially when waiting for training to be completed without any certainty of success. And now, finally, it’s

done. I know, this thesis is far from perfect; it’s flawed, buggy, and full of holes. But at least, the research

objective has been achieved. One important lesson I’ve learned is that while it’s good to think things

through, getting the hands dirty and starting to try at the early stages is critical. There’s no such thing as

perfect preparation, so a rough early start is often good enough, and we can always improve everything on

top of it. This way, the whole journey might be more enjoyable.

Lastly, I want to sincerely thank everyone who has supported me throughout this journey. I could

attempt to list all your names, but there’s always the risk of accidentally leaving someone out, which has

happened to me before in my bachelor’s thesis preface. So this time, I want to thank everyone who: (a) is

reading this thesis, (b) has heard me talk about it, (c) helped me in any way—whether with code, papers,

or life in general—and (d) feels connected to this project and believes they deserve credit. This way, I

hope no one feels forgotten. Cheers!

Yueqian Liu

October 16, 2024
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1
Introduction

1.1. Research Background

Drones have found diverse applications in various sectors, such as surveying, mapping, package delivery,

and search-and-rescue operations. They are also utilized for tasks such as infrastructure inspection,

environmental monitoring, agricultural management, and entertainment purposes like aerial photography.

Many of these tasks require the drone to navigate through cluttered environments, avoid obstacles, and

reach the goals in minimum time.

In our world, changes occur continuously, presenting challenges for autonomous navigation systems.

Plans based on prior knowledge of the environment can become unsafe or outdated over time. To address

this challenge, autonomous systems must have the intelligence to adapt to these changes effectively. This

thesis explores possible solutions to make autonomous systems “smart” enough to adapt to environmental

changes in the task of obstacle-aware autonomous drone racing.

Autonomous drone racing has emerged as a hot topic in research and a perfect testing ground for testing

cutting-edge technologies that drive diverse drone applications, particularly those related to minimum-time

autonomous navigation. In its basic form, obstacle-free autonomous drone racing involves navigating

through gates to be traversed. However, in obstacle-aware drone racing, the navigation system faces the

additional challenge of guiding the drone to safely avoid obstacles positioned between these waypoints.

This task models various practical applications, such as search-and-rescue in the forest and urban food

delivery.

In research, topics of general-purpose drone navigation in clutter and obstacle-free drone racing are

relatively well studied, but the combination of the two, i.e. obstacle-aware autonomous drone racing, has

received less attention. In this particular setting, there already exist strong optimization-based and learning-

based baselines for static and previously known environments. However, for unknown environments, most

methods rely on online planning and optimization, and learning-based methods have difficulty handling

the uncertainty of environments. So we have decided to look into the problem of learning obstacle-aware

drone racing policies that work in unknown environments.

The research background can be summarized in the following points. They collectively motivate the

thesis and shape the upcoming research objectives and questions.

• Drones have found various applications, many of which require the drone to be capable of time-optimal

navigation, avoid obstacles, and adapt to environmental changes.

• Obstacle-aware drone racing is a good model of various practical applications and is a testing ground

for the underlying technologies. So, this task is relevant to the society.

• Despite its relevance, obstacle-aware drone racing remains unsolved with learning-based methods

in unknown environments, presenting a research direction worth exploiting.

1.2. Research Objective and Questions

Based on the social background and the research landscape, the research object is formulated below. It

also serves to narrow down the scope and to state a clear goal of this thesis project.
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The research objective is to design and train a neural policy that navigates a quadcopter through

static racing tracks while avoiding static obstacles by generating low-level throttle and body rate

commands. The policy will have access to accurate quadcopter states, waypoint poses and

sizes, and depth images of a front-facing camera. Any prior knowledge of obstacles will not be

accessible, which means that the policy must make decisions on the fly to avoid crashing into

obstacles.

Research Objective

Toward the research objective, we formulate three research questions that will be addressed sequentially

as the research progresses.

What are existing methods in the literature that can achieve the objective in whole or partially?

Research Question 1

If there is no existing method that achieves the objective completely, what is our proposed

method?

Research Question 2

How does the policy trained using the proposed method perform in terms of navigation success

rate, speed, and generalization ability?

Research Question 3

To answer question 1, an extensive literature review will be conducted and closely related work will be

studied in depth. Hopefully, the answer could give directions to answer question 2. Once question 2 is

solved, the proposal will be implemented, then experiments will be designed and conducted to validate the

proposed method, answering question 3.

1.3. Report Structure

This report is divided into four main parts, each contributing to the overall understanding of the thesis work

and addressing different aspects of the project:

• Part I: Preliminary Analysis. This part lays the groundwork for the research conducted in the project.

It begins with a literature review in Chapter 2, Chapter 3 then introduces the proposed method,

explaining the rationale behind the approach and outlining the preliminary efforts made towards its

implementation.

• Part II: Early Results. While the scientific article in Part III has the core contributions, this section

showcases early findings that enrich the thesis but do not fit well into the article. These results are

valuable in illustrating the broader implications of the work and include performance evaluations of

the implemented software and experiments related to obstacle-free drone racing. They also serve

the purpose of validating the work done in Part I.

• Part III: Scientific Article. This part provides a concise summary of the central work and contributions

of the entire thesis. It highlights the core research questions, the methodology employed, and the

key findings and results. The article serves as the primary representation of the contributions made

in the project and is designed to stand alone as a compact synthesis of the thesis.

• Part IV: Closure. This concluding chapter summarizes the major findings, revisits the research

questions, and assesses the extent to which the research objectives have been achieved. Additionally,

it provides recommendations for future work, identifying areas where further research could extend

or build upon the contributions made in this project.
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Part I
Preliminary Analysis
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2
Literature Review

2.1. Autonomous Drone Racing

Drone racing is an exhilarating sport that combines the thrill of high-speed flight with the excitement of

competitive racing. In drone racing, pilots use specially designed drones, often highly agile quadcopters,

equipped with front-facing cameras to navigate through complex courses filled with twists, turns, and

perhaps obstacles. The pilots wear First Person View (FPV) goggles that provide a live video feed from

the camera’s perspective, allowing them to fly as if they were on the drones.

Drone racing competitions take place in various settings, from indoor arenas to outdoor tracks, each

offering unique challenges. Several drone racing competitions have gained fame and recognition within

the drone racing community. Organizations like the Drone Racing League (DRL) and MultiGP have hosted

many human-piloted local and global competitions in the past few years.

Autonomous drone racing removes the human pilot from the process. In autonomous drone racing, the

drones are equipped with artificial intelligence systems that allow them to navigate through a course without

human control. Competitions for autonomous drone racing include the 2016-2019 IROS Autonomous

Drone Racing (ADR) competitions [3, 4, 5], the 2019 AlphaPilot Challenge [6, 7], the 2019 NeurIPS Game

of Drones [8], and the more recent 2022-2023 DJI RMUA UAV Challenges [9, 10]. These competitions

have significantly encouraged research and development in the field.

Autonomous drone racing is essentially time-optimal autonomous drone navigation. The software

architecture for general navigation usually consists of separate modules for perception, planning, and

control. The software stack for racing can also be broken into these modules, with the planning module

focused more on finding time-optimal trajectories and the perception and control modules adapted to

high-speed agile flight in racing tracks. With advances in neural networks and learning methods, some

approaches replace modules with neural networks and combine multiple modules into a single neural

network. A survey on autonomous drone racing [11] reviews both learning-based and classical methods in

the drone racing navigation software stack.

Since this thesis project concerns obstacle-aware drone racing, the literature review will categorize

papers based on the racing environment: whether or not there are additional obstacles between the gates.

Figure 2.1: FPV of a drone in DRL Simulator [1] and 2023 MultiGP Championship track [2].
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2.1. Autonomous Drone Racing 5

The tracks in early competitions, such as the IROS ADR, AlphaPilot, and NeurIPS Game of Drones, are

situated in less cluttered space [12, 7, 13], which allow drones to complete the tracks without considering

obstacle avoidance, as long as the drones do not deviate too far from the line segments connecting the

gates. However, for harder tracks in cluttered environments, such as the tracks of the more recent DJI

RMUA Challenges [9, 14], the absence of obstacle awareness could cause safety issues. Additionally, in

human-piloted drone racing, DRL competitions for example, and in drone racing video games, there are

plenty of tracks that require obstacle-avoidance ability.

Figure 2.2: Track layout of 2023 DJI RMUA UAV Challenge [14].

2.1.1. Obstacle-Free Autonomous Drone Racing

We will start by looking at solutions for autonomous drone racing competitions. Team KIRD from KAIST

won the 2016 IROS ADR competition using a visual servoing method [15]. KIRD used precomputed

altitude, heading, and forward velocity commands, which were obtained from the given racing track, to

roughly navigate the drone from gate to gate. Then RGBD-based visual servoing was employed to guide

the drone through gates. To execute velocity commands for gate-to-gate navigation and visual servoing,

optical flow was calculated using a downward-facing camera for velocity feedback.

In the 2017 IROS ADR, team INAOE took the lead [3]. INAOE used monocular ORB-SLAM [17] and

height measurement from a barometer and an ultrasound sensor to obtain drone position up to scale.

Gates were detected using color filtering and the gate positions were used to compensate for visual SLAM

drift. With position feedback, INAOE employed a classical cascaded PID position controller to follow

relative waypoints to complete the track.

Team RPG won the 2018 IROS ADR [4]. On the perception front, they used Visual Inertial Odometry

(VIO) for state estimation, and a neural network for detecting relative gate poses. With the drone’s states

estimated by VIO, and relative gate poses, gate poses in the odometry frame were obtained using Extended

Kalman Filter (EKF). Regarding planning, waypoints were first generated using gate poses in the odometry

frame, then reference trajectories were interpolated based on the waypoints. Finally, Perception-Aware

Figure 2.3: Tracks of 2016-2019 IROS ADR [15, 3, 16].
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Model Predictive Controller (PAMPC) [18] was employed for trajectory tracking.

The 2019 IROS ADR featured a simpler track but the drone was only allowed to pass through dynamically

illuminated gates. Team UMD got the second place [16]. UMD used HSV color space gate detection and a

lightweight visual-inertial localization method for perception. Waypoints were then generated with detected

gate poses. A nonlinear model predictive controller was used for position control, which generates attitude

commands for a PD attitude controller.

The first place of the 2019 AlphaPilot was team MAVLab [7]. Team RPG [6] was placed the second.

MAVLab used a semantic segmentation neural network for gate detection. State estimation was built

upon the Visual Model-predictive Localization (VML) method [19]. Planning was on the waypoint-heading

level and control was done by a classical cascaded PID controller with gate-aware lateral position control.

RPG also used a learning-based method for gate detection, but the other modules in the pipeline were

different from MAVLab’s. For state estimation, they opted for fusing results from an off-the-shelf VIO,

ROVIO [20], and relative gate pose estimations, for joint estimation of VIO drift and global gate poses.

Paths were planned in a receding horizon with sampling-based methods. The paths were approximated

by polynomials before being tracked using a classical PID control scheme. To ensure that the VIO works

correctly, the maximum velocity in the planning module was set to a conservative value, which resulted in

a longer lap time than team MAVLab.

Figure 2.4: Track layout of 2019 AlphaPilot final race and FPV images [7].

The 2019 NeurIPS Game of Drones included three Tiers, for all Tiers the ground truth of drone pose was

accessible. In Tier 1, the gate poses were accurately known, while in Tier 2 and 3 only noisy gate poses

were given. A baseline opponent competitor was present in Tier 1 and 3 but not in 2. There aren’t detailed

descriptions about team Dedale’s approach [21], which was placed the first for Tier 1. They probably relied

on drag-aware and flight-corridor-based joint planning and control via MPC similar to [22]. In Tier 2 and 3,

since accurate gate poses were not provided, the winner team [23] employed spline trajectory planning

and tracking to navigate the drone to the approximate poses where the gates could be detected visually,

then employed an action generation network trained using reinforcement learning [24] to pass through

the gates. Parameters, such as maximum velocity and acceleration, for spline trajectory generation and

tracking, were optimized using the Genetic Algorithm for the minimum lap time.

Figure 2.5: Racing environments of 2019 NeurIPS Game of Drones [8].
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Obstacle-Free & Optimization-Based

Time-Optimal Planning for Quadrotor Waypoint 
Flight

Computationally expensive
Can't handle track changes

Exploits quadrotor limits

Model Predictive Contouring Control for Time-
Optimal Quadrotor Flight

Computationally efficient
Improved real-world control 

performance

Time-Optimal Online Replanning for Agile 
Quadrotor Flight

Robust to external 
disturbances

Handles track changes

Time-Optimal Gate-Traversing Planner 
for Autonomous Drone Racing

Polynomial representation
Exploits free space at gates

Figure 2.6: An overview of serveral optimization-based methods [25, 26, 27, 28].

Around the time team RPG participated in the 2018 IROS ADR, they published the Deep Drone Racing

series [29, 30], presenting methods similar to that made for the competition. The main idea was also

using a neural network for gate detection, whose outputs were then fed into a trajectory generator, finally

the trajectory was tracked by a controller. However, the output modality of the neural network, training

framework, and control method were different. The neural network’s outputs were directions in the image

frame and normalized desired speed. The training was done using imitation learning, and for control,

classical approaches were employed. The second paper in the series augmented network training with

domain randomization, which allowed the drone to adapt to environments not seen at training time.

Besides the competitions, the AGILEFLIGHT project [31] has also facilitated research and development

in autonomous drone racing. Optimization is a powerful and important tool in this field. For a static

and obstacle-free racing track, each gate could be assigned a waypoint at the middle, then the time-

optimal trajectory passing the waypoints can be planned using optimization with Complementary Progress

Constraint (CPC) [25]. It beats team Dedale’s record in the 2019 NeurIPS Game of Drones. However, it is

computationally expensive and has difficulty adapting to changing track layouts. To address the first issue,

a Model Predictive Contouring Control (MPCC) approach has been proposed [26]. MPCC can produce

a near-time-optimal flight trajectory when tested in simulation and outperforms the CPC-MPC approach

in the real world. In addition, it requires orders of magnitude less computational time when combined

with point-mass-model (PMM) reference path generation. MPCC can also work with an online reference

path generation module for fast re-planning, which enables adapting to changing tracks and coping with

external disturbances [27]. With re-planning enabled, lap times in real-world testing are further reduced.

Although the CPC method plans time-optimal “waypoint” flights, yet due to the freedom of selecting the

crossing point of each gate, CPC’s result might not be the time-optimal solution for the given racing track.
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A recent work [28] demonstrates that lap times can be further reduced even with polynomial trajectories by

leveraging the spatial potential of the gates.

Obstacle-Free & Learning-Based

Autonomous Drone Racing with Deep 
Reinforcement Learning

State-based w/o perception-
aware reward

Near-time-optimal flight as 
compared to CPC

Generalizes to unseen 
tracks to a certain level

Handles perturbed gate 
posesLearning Deep Sensorimotor Policies for Vision-

based Autonomous Drone Racing

Teacher policy is trained 
with perception-aware 

reward using RLThe student policy still uses 
states information

The student policy results 
in better lap times than the 

teacher policyImitation learning

Champion-level drone racing using deep 
reinforcement learning

State-based policy with 
perception-aware reward

Special training scheme for 
sim-to-real transfer

Uses VIO and gate 
detection network to get 

the statesHuman champion-level real-
world performance

Bootstrapping Reinforcement Learning with 
Imitation for Vision-Based Agile Flight

Similar to the previous 
RL+IL work

Pure vision-based student 
policy

Additional RL fine-tuning 
for better performance

Figure 2.7: An overview of several learning-based methods [32, 33, 34, 35].

Reinforcement Learning (RL) is another approach to autonomous drone racing. It has been demon-

strated that near-time-optimal agile flight can be achieved by leveraging state-based RL. In [32], A deep

neural network trained with RL maps the current drone states and relative gate states directly to rotor

thrusts, which are applied to the simulated drone model to produce roll-out trajectories. Compared to the

CPC method, this RL method under-performs slightly in terms of lap time, but can better handle dynamic

gates and generalize to unseen tracks. Moreover, deep policies optimized using RL can be a good teacher

policy in the imitation learning framework: Fu et al. [33] trained a deep policy with additional perception

reward for keeping the next gate in camera FOV (Field of View) as the teacher policy, then employ imitation

learning to train a deep policy that maps both states and FPV images to commands. It achieves better lap
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times compared to the state-only policy in [32], while preserving robustness to disturbances and noises.

Deploying policies learned via reinforcement learning in the real world is challenging. It requires

special designs on sim-to-real transfer and careful system engineering. With these requirements satisfied,

learning-based approaches have the potential to reach human-level performance. For autonomous drone

racing, this is demonstrated by Kaufmann et al. [34]. Their racing drone, powered by the Swift system, has

a state-based neural policy at the core of the control module. The neural policy is initially trained similarly

to the teacher policy in [33] with perception reward. To enable sim-to-real transfer, the policy weights are

fine-tuned in simulation with residual dynamics and noises identified using real-world data. Since the policy

is state-based, the perception module performs gate detection using methods seen in their AlphaPilot

solution [6], and estimates drone states fusing both the VIO results, gate detection results, and ground

truth gate poses. Throughout multiple races with human world champions, Swift can achieve average

shorter lap times and better performance consistency.

Xing et al. [35] revisit the idea in [33] of using imitation learning to train vision-based student policies.

Obtaining the student policy from imitation learning is not the end in [35], it is further fine-tuned through RL

for better performance. Interestingly, the monocular vision-based policy does not have access to any of the

quadcopter states, suggesting that high-speed agile flight is possible with identical input-output modalities

as human pilots.

The learning-based methods using RL have several advantages over optimization-based methods

in autonomous drone racing, thanks to RL’s task-level objective optimization, expressiveness of deep

neural networks, and domain randomization techniques [36]. The advantages include not only better lap

times but also higher success rates in real-world flights, where unmodeled effects and disturbances are

non-negligible.

2.1.2. Obstacle-Aware Autonomous Drone Racing

Obstacle avoidance in general-purpose drone navigation, which does not prioritize aggressive flight or the

shortest navigation time, is a widely researched topic [37, 38, 39, 40, 41, 42]. While these methods are not

optimized for high-speed, minimum-time flight, they can still be used to navigate drones through races.

In contrast, obstacle avoidance in autonomous drone racing is a relatively less explored area, gaining

attention only in recent years.

The teach-and-repeat navigation framework is widely used in autonomous robot missions, and has

been applied to drone racing in [43]. In the teaching phase, a human pilot would navigate the drone in

the cluttered environment and pass through the gates, and a flight corridor is generated, capturing the

topological structure of the demonstrated path. A global trajectory is then optimized within the flight corridor

using the Coordinate Descent Algorithms [44]. The repeat phase involves re-planning, which deforms the

global trajectory in a receding horizon, to avoid additional obstacles and to handle VIO drift. The deformed

trajectories are then tracked using a geometric controller [45]. This teach-repeat-replan design enables

the drone to fly through the track while avoiding previously unseen and dynamic obstacles.

In static and deterministic environments, Fast-Racing provides a polynomial baseline for obstacle-aware

autonomous drone racing [46]. At its core is a GPU-accelerated global planning algorithm based on the

GCOPTER framework [47]. It plans on SE(3) within the flight corridor, so a planned trajectory might pass

through narrow gaps instead of spending more time going around the obstacles. This method is relatively

efficient: it takes seconds on GPU and less than one minute on CPU to plan a trajectory for a track that has

a comparable size to 2019 NeurIPS Game of Drone tracks. The winner solution [9] of the 2022 DJI RMUA

UAV Challenge is also polynomial-based. Compared to Fast-Racing, this method has two major upgrades,

one is using time-uniform MINCO trajectory representation instead of the vanilla MINCO, and another is

adding an online re-planning module for avoiding dynamic obstacles and passing through moving gates.

Obstacle-free time-optimal waypoint flight is tackled in CPC [25], then how to plan a time-optimal flight

in environments with obstacles? Penick et al. [48] provide a sampling-based baseline. This sampling-

based method is capable of finding high-quality solutions in complex cluttered environments, but doesn’t

scale very well: as the environment complexity increases, the computation time increases, and solution

quality degrades. In complex environments, a follow-up work, a reinforcement-learning-based method

[49] outperforms it. Regarding success rate, two real-world deployments are tested: RL-based with



2.1. Autonomous Drone Racing 10

Betaflight [50] rates controller, and sampling-based with MPC: the RL deployment has higher success

rates, demonstrating its ability to adapt to unmodeled effects.

In obstacle-free environments, state-based RL-trained policy can be the teacher policy for training

a vision-based policy in [33]. Similarly, in the obstacle-aware case, a vision-based student policy [51]

is obtained from [49] using almost the same methodology. The teacher policy in [51] is retrained with

perception reward, which results in a slight increase in lap times, but the vision-based student policy has the

shortest lap times in general, due to the observed cutting-corner behavior. Despite its good performance,

the vision-based policy still includes numerical state input for decision-making.

Obstacle-Aware

Fast-Racing: An Open-Source Strong Baseline 
for SE(3) Planning in Autonomous Drone Racing

Optimization-based
Polynomial trajectories

Minimum-Time Quadrotor Waypoint Flight in 
Cluttered Environments

Sampling-based
Not truly time-optimal

Long computation time

Learning Minimum-Time Flight in Cluttered 
Environments

State-based policy
No perception-awareness

Learning Perception-Aware Agile Flight in 
Cluttered Environments

Imitation learning
Perception-aware reward

Polynomial-Based Online Planning for 
Autonomous Drone Racing in Dynamic 

Environments

Optimization-based, 
replans trajectories online

Handles dynamic obstacles 
and gates

Figure 2.8: An overview of several methods for obstacle-aware drone racing [46, 49, 51, 52].
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2.2. Vision-Involved Navigation via Deep RL

Learning-based methods for obstacle-aware drone racing [49, 51] often fail to generalize to environments

different from those in which they were originally trained. This limitation suggests that the policy networks

tend to “memorize” specific actions in response to sensor data, rather than genuinely learning the principles

of obstacle avoidance. To address this issue, research on general-purpose navigation using Deep RL

offers valuable insights.

Near-perfect discrete-action indoor navigation for ground robots has been demonstrated with DD-PPO

[53]. The agent utilizes a policy network comprising a Convolutional Neural Network (CNN) as the encoder

and a Long Short-Term Memory (LSTM) network to integrate information from different timestamps and

make navigation decisions. This network maps visual observations and relative goal poses to discrete

actions, as illustrated in Figure 2.9. Training occurs across multiple reconstructed indoor scenes to enhance

generalization. During the RL training process, the weights of both the CNN and LSTM are jointly optimized,

enabling the CNN to extract features particularly useful for navigation, outperforming a CNN pre-trained on

ImageNet [54].

Figure 2.9: Network architecture of the point-goal navigation agent in [53].

However, jointly optimizing all modules in the policy network using only RL, as described in DD-PPO, is

inefficient and costly. Incorporating auxiliary tasks is one method to enhance training efficiency. Desai et

al. [55] and Ye et al. [56] demonstrate that using auxiliary tasks in training point-goal navigation agents

reduces the number of steps needed to reach peak performance to about one-fifth to one-quarter of the

steps required without auxiliary tasks. Additionally, when trained for the same number of steps, including

auxiliary tasks improves the final performance.

Another method to enhance training efficiency is modular learning, where network modules are learned

separately. Once an upstream module is learned, it is frozen while downstream modules are optimized.

Although this approach may seem less “clean” compared to using auxiliary tasks, it offers the potential for

easier integration of multi-domain knowledge, such as knowledge from both simulations and the real world.

Figure 2.10: Network architecture and training methods of the quadruped agent in [57].
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Hoeller et al. [57] propose a modular learning framework for training a quadruped robot to navigate

in cluttered dynamic environments. The network consists of a CNN encoder, an LSTM recurrent neural

network (RNN), and a multi-layer perceptron (MLP) action network. The training process involves four

steps: (1) training a variational autoencoder (VAE) to obtain the encoder weights, which are then frozen, (2)

training a baseline policy (action network) to map encoded images to actions, (3) collecting data, including

depth images and camera poses, with the baseline policy and using the data to train the LSTM to predict

future latent vectors, and (4) training the MLP with the encoder and LSTM weights fixed. An overview of

this framework is provided in Figure 2.10.

Inspired by [57], MAVRL [41] adopts a similar framework for drone navigation but introduces additional

supervision during the LSTM network training phase. As depicted in Figure 2.11, the LSTM is explicitly

trained to memorize or predict past, current, and future latent spaces without the aid of vehicle state

information. MAVRL’s experimental results suggest that retaining memory of the current and past latent

spaces is more beneficial for efficient training than predicting the future latent space. Kulkarni et al. [42]

propose a similar method, using a procedural and modular training framework where the encoder is first

trained using Deep Collision Encoding (DCE) [58], followed by training the policy network (comprising the

MLP and RNN) with the DCE weights fixed.

Figure 2.11: Network architecture and LSTM training (red dotted line) of the drone agent in [41].

Zhao et al. [59] propose incorporating a learned agility policy into a traditional navigation pipeline to

create a hybrid system, as shown in Figure 2.12. Unlike MAVRL and Kulkarni’s approaches, the action

in this hybrid system is a parameter that indicates the level of agility for an optimization-based planner.

More importantly, instead of encoding images, they encode the local occupancy map, which represents

geometric data from multiple fused depth images. The voxel encoder is trained from scratch in a two-stage

setup: the first stage focuses on learning a good representation of the voxel map, and the second stage

fixes the encoder weights while training the MLP to maximize other reward terms. This approach provides

an alternative method for extracting useful information from depth images without relying on a 2D encoder

and an RNN.

Figure 2.12: Overview of the hybrid system and agility policy network architecture in [59].
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To this point, we have reviewed several works on enabling general-purpose vision-based navigation

through Deep RL. We’ve seen multiple strategies for designing policy networks, training agents, and

enhancing training efficiency. Usually, a policy network would include CNNs for extracting visual features,

RNNs for fusing multi-step information, and MLPs for bridging network modules and deciding on actions.

To improve training efficiency, employing auxiliary tasks and modular learning have proven to be effective

approaches. For generalization ability, these works all involve training in multiple different environments

to avoid “environmental overfitting”. These studies serve as important references and inspirations for

developing agents capable of doing flexible and “real” obstacle avoidance in drone racing.

2.3. Modeling and Simulation

Accurately modeling and simulating the drone and the environment is crucial in the research and develop-

ment of autonomous drone racing. Good models are important to both optimization-based and RL-based

methods. For optimization-based methods, which mostly rely on a reference model, the fidelity of the

reference model greatly influences real-world performance. In the RL setting, the simulated environment

with which the agent interacts is a model of the real world. How well the model abstracts the real world, and

to which parts domain randomization can be applied both affect the overall performance and generalization

ability of the learned policy. We will first provide an overview of related simulators and then elaborate on

drone physics modeling.

2.3.1. Simulators

Gazebo [60] is one of the most popular simulators for robotics. It can simulate multi-rigid-body dynamics

and accepts plugins for customized simulation. RotorS [61] builds upon Gazebo for multirotor-oriented

simulation by providing a set of sensor and actuator plugins. A similar set of plugins is also integrated into

PX4 [62] for SITL (Software In The Loop) flight with Gazebo. Although widely used, Gazebo offers limited

capabilities in photo-realistic rendering and efficient parallel simulation, making it a less favorable choice

for developing vision-based or learning-based algorithms.

AirSim [63] is a simulator built on top of Unreal Engine 4. Thanks to Unreal Engine, AirSim can do

photo-realistic rendering and can take advantage of the Unreal Marketplace which provides a rich set of

assets and scenes. Besides visual rendering, it simulates additionally aerodynamic forces and torques,

which are not seen in RotorS. AirSim is widely used for the validation of vision-based navigation and training

vision-based networks. Despite its rendering strength, there are limitations. Firstly, it is inconvenient to

customize scene and track layouts, as the editor is tightly coupled with Epic Game Launcher and is only

available on the Windows operating system. Secondly, the physics simulation speed is limited to about

1000 steps per second, which is quite slow compared to newer simulators.

FlightGoggles [64] is another simulator capable of photo-realistic rendering. It is based on Unity,

which has better cross-platform support than Unreal. Compared to AirSim, FlightGoggles uses simpler

aerodynamic effects but adds motor dynamics and the torque induced by motor acceleration. The physics

updating frequency is on par with AirSim, achieving about 960 steps per second. Using decoupled rendering

and physics engines represents a more flexible architecture.

Flightmare [65] is a Unity-based simulator for quadrotors. Like FlightGoggles, it adopts the architecture

that decouples rendering and physics simulation. Flightmare offers three implementations for physics

simulation: RotorS, real-world dynamics, and parallelized classical dynamics. Using the third option and

running on an i7-8850H CPU, physics can be simulated at 25,000 steps per second for one quadcopter,

and 175,000 steps per second for 50 to 150 quadcopters. However, the RGB image rendering speed

is limited to about 30 frames per second (FPS) for 512×512 RGB images. The rendering speed may

be boosted on a GPU, but it goes up to about only 200 FPS (640×480 RGB) on an RTX 4090. These

characteristics suggest that Flightmare is better suited for state-based RL, rather than vision-based RL.

Isaac Sim [66] is a general robotics simulator built on top of NVIDIA’s Omniverse platform, whose

underlying renderer is Omniverse RTX and the physics engine is PhysX. Isaac sim is shipped with simulated

cameras and Lidars, articulated robotic arms and ground vehicles, plus communication APIs, but without

direct support for drone simulation. Fortunately, Isaac Sim allows adding features through extensions.

Pegasus Simulator [67] comes as an extension that implements missing sensors and actuators for drones.

Pegasus to Isaac Sim is like RotorS to Gazebo.



2.3. Modeling and Simulation 14

RotorS AirSim FlightGoggles

Flightmare Orbit & OmniDrones Isaac Gym

Figure 2.13: Visuals of the simulator and frameworks.

Orbit (Isaac Lab) [68], an open-source Isaac-Sim-powered robot learning framework hosted by the

official Omniverse developer team, is designed to “be the environment zoo for Isaac Sim with contributions

from the community as well as internal development” [69]. Orbit includes models for quadrupeds, robotic

arms, grippers, hands, and mobile manipulators, also wrappers to learning libraries, and benchmark tasks.

Simulation performance on an RTX 3090 GPU has also been reported in [68], physics simulation runs at

up to in total of 125,000 steps per second for multiple robots, and rendering runs at 270 FPS for 640×480
RGB images. The biggest advantage of using Isaac-Sim is that the physics simulation can be implemented

as tensor operations, which scales very well for multiple instances in parallel.

OmniDrones [70], inspired by Orbit and being aware of the lack of drone support in Orbit, is a recently

built drone learning framework parallel to Orbit. The authors acknowledge that the “abstractions and

implementation of OmniDrones were inspired by Isaac Orbit. Some of the drone models (assets) and

controllers are adopted from or heavily based on the RotorS simulator”. So OmniDrones can be regarded

as “Orbit for drones” and its authors have planned to merge it with Orbit, but this has not yet been finished

as of the time of writing [71]. Notably, OmniDrones implements the down-wash effect for multi-drone

coordination tasks. Although vision-based tasks are not included, OmniDrones is still a good source of

reference for drone-related learning tasks.

Isaac Sim and its associated frameworks, despite providing scalable physics simulations and photo-

realistic rendering, have slow rendering speeds. what’s worse, rendering camera sensors would consume

a large amount of video RAM (VRAM). These limitations make Isaac Sim and related products less suitable

for vision-based reinforcement learning (RL). A viable alternative is Habitat Sim [72], which can achieve

thousands of FPS for RGB-D rendering. However, Habitat Sim lacks direct support for drones and there is

little information regarding customizing the environments. Another option is Isaac Gym [73], a simulator

designed for robot learning that supports parallel physics simulations. Isaac Gym is the proof-of-concept

product for robot learning technologies to be integrated into Isaac Sim. Although Isaac Gym is no longer

actively developed, it achieves around two thousand FPS for image rendering and is VRAM efficient.

Therefore, Isaac Gym is a better option than Isaac Sim for vision-based RL, especially for tasks that only

require depth images.

Figure 2.13 illustrates the visuals produced by the mentioned simulators. The degree of photo-realism

depends on both the quality of the assets used for rendering and the ability to simulate lighting effects

within the scene. With high-quality assets, all simulators and frameworks can achieve a high level of

photo-realism, except for RotorS and Isaac Gym, which have limited capabilities in simulating lighting

effects.
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Table 2.1: Drone modeling in previously reviewed literature.

Literature
Major

Actuation

Rotor

Drag

Dynamic

Lift

Airflow

Interaction

Body

Drag

Battery

Model

Rotor

Dynamics

Rotor Acceleration

Torque

RotorS [61] Quadratic Linear - - - - 1st-Order Lag -

AirSim [63, 46, 9] Quadratic - - - Quadratic - - -

FlightGoggles [64] Quadratic - - - Quadratic - 1st-Order Lag Linear

Flightmare [65, 32] Direct - - - Linear - 1st-Order Lag -

Pegasus [67] Quadratic - - - Linear - - -

Omnidrones [70] Direct - - Downwash Random - - -

NeuroBEM [74] BEM BEM BEM NN NN - 1st-Order Lag -

Optimization [25, 26, 27] Direct - - - Linear - - -

Swift [34] Quadratic Fitting Fitting Fitting Fitting Gray-Box 1st-Order Lag Linear

Penicka et al. [48] Direct - - - - - - -

Penicka et al. [49] Quadratic - - - Linear - 1st-Order Lag -

MAVRL [41] (Evaluation) Quadratic Linear - - - - 1st-Order Lag -

Kulkarni et al. [42] Direct - - - - - - -

2.3.2. Drone Physics Modeling

The central part of a multirotor is often modeled as a rigid body, whose linear and angular accelerations are

induced by forces and torques produced by aerodynamic effects, rotor acceleration, and gravity. Once the

forces and torques are known, the rigid body motion can either be simulated by a custom implementation

of numerical integration, or by plugging the forces and torques into a physics engine. So essentially,

drone physics modeling is about determining forces and torques acting on the central rigid body. A survey

on autonomous drone racing [11] provides an overview of methods for modeling drone aerodynamics,

batteries, and motors. Here we will follow a similar narration outline, and review methods adopted in the

aforementioned simulators and research papers.

Aerodynamic forces and torques are generally caused by: (1) major actuation, (2) rotor drag, (3)

dynamic lift, (4) rotor-rotor, rotor-body airflow interaction, and (5) body drag. At low flight speed, it is a

popular choice to only consider major actuation and ignore other sources. A simple model is the quadratic

model: the force and torque are proportional to the square of the propeller’s angular velocity. However for

high-speed flights, other sources could produce non-negligible aerodynamic effects, and there are many

approaches towards more accurate modeling. For example, (2) and (5) could be modeled individually, often

with linear or quadratic assumptions, and flow interactions (4) are ignored. Another choice is to combine

first-principle with data-driven models. The combination is flexible and is usually tailored for different

applications. In prioritizing model accuracy, NeuroBEM [74] combines a Blade-Element-Momentum (BEM)

model capturing effects from (1) to (3), with a data-trained neural network (NN) for effects from (4) to

(5). For better computing efficiency, Swift [34] combines a simple quadratic propeller model with a fitted

polynomial model that accounts for all other sources.

Both the quadratic major actuation model and the BEM model depend on angular velocity as the input.

A simple assumption is that the angular velocity is proportional to the normalized motor command. However

most low-cost electronic speed controllers do not provide closed-loop control, and the angular velocity

depends on both the motor command and the instantaneous battery voltage. On real hardware, one can

measure the instantaneous voltage directly, in simulation, however, a battery model is needed. Bauersfeld

et al. [75] propose a gray-box model that remains accurate even in experiments with highly varying power

consumption.

The rotor is usually modeled as a first-order lag system with an adjustable time constant [61, 11, 74,

34]. In addition, rotor acceleration also causes torque, which is generally modeled as the product of the

rotor moment of inertia and acceleration. This product is referred to as the “linear” rotor acceleration torque

in Table 2.1, which summarises drone modeling methods in the previously reviewed literature. The “direct”

model for major actuation refers to directly using the commanded rotor forces as the simulated rotor forces,

without considering rotor rotation. A dash means “not considered”.
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2.4. Deep Reinforcement Learning

Deep reinforcement learning (Deep RL) represents a combination of two powerful paradigms in machine

learning: reinforcement learning and deep learning. RL addresses the challenge of how agents can learn

to make decisions through iterative trial and error. When deep learning is integrated into this framework,

as in Deep RL, agents gain the ability to learn from high dimensional data, such as pixels rendered on

a screen in a video game, and use neural networks to determine optimal actions to achieve specified

objectives, such as maximizing game scores. This capacity has led to a diverse array of applications

across multiple fields. The remaining part of the literature review will cover some highlight moments in the

history of Deep RL, a mathematical definition of the RL problem, and algorithms for training policies.

2.4.1. Highlight Moments

The history of Deep RL is marked by a series of significant milestones that underscore its rapid evolution

and impact across diverse domains. In 1992, the development of TD-Gammon [76] showcased one of the

earliest successful applications of reinforcement learning with neural networks, demonstrating the potential

of this framework in complex decision-making tasks. In 2003, Deep RL was applied to train a differential

wheeled robot to complete the box-pushing task [77].

However, it wasn’t until around 2013 when DeepMind’s work in applying deep RL to play Atari video

games captured widespread attention [78]. In 2015, AlphaGo’s [79] historic victory against a human

professional Go player marked a pivotal advancement, showcasing the prowess of deep RL in tackling

challenges previously thought insurmountable. Subsequent projects, such as AlphaZero [80] in 2017 and

MuZero [81] in 2019, further demonstrated Deep RL ’s versatility across multiple board games, including

chess and Shogi. Beyond simple Atari and board games, Deep RL agents have also reached human or

super-human levels in games like Dota 2 [82] and Gran Turismo [83]. In the recent AI boom characterized

by generative AI, RL was involved in the creation of the famous ChatGPT [84].

Deep Reinforcement Learning has also found widespread application in various other engineering

disciplines, such as robotics and aerospace engineering. Notably, in robotics, a notable achievement is

exemplified by OpenAI’s Rubik’s cube manipulator project [85]. In addition, Deep RL has emerged as a

popular framework for tackling challenges in embodied AI [86] and visual navigation [53], offering effective

solutions in these domains. Moreover, within aerospace engineering, Deep RL techniques have been

successfully employed to control a diverse range of aircraft, spanning from high-altitude balloons [87] and

unmanned aerial vehicles [34] to jets [88].

2.4.2. Problem Formulation

Mathematically, the (Deep) RL problem is often defined under the Markov Decision Process (MDP), which

is a framework used to model decision-making in scenarios where the results of actions are partly random

and partly under the control of a decision-maker, i.e. the agent. An MDP has the following elements:

• S: the set of valid states,

• A: the set of actions,

• R: the reward function S ×A× S → R,
• P : the transition probability function S ×A→ P(S), with P denoting probability.

The agent takes actions a ∈ A based on the policy π, which can be deterministic or stochastic. A

deterministic policy is usually expressed as π : S → A, and a stochastic one is usually π : P(a|s), meaning

the probability of taking action a at state s. With a deterministic policy, the action is directly mapped

from the state, while with a stochastic policy, the action is sampled from the policy probability distribution.

Actions cause transitions of states, as described by the transition probability function S, forming a trajectory

τ = (s0, a0, s1, a1, . . .), which is often evaluated using either the infinite-horizon discounted total return r(τ)
defined in equation (2.1) with the discount factor γ, or the finite-horizon total return defined in equation

(2.2).

r(τ) =

∞∑
t=0

γtR(st, at, st+1) (2.1)
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r(τ) =
T∑

t=0

R(st, at, st+1) (2.2)

The central problem is how to find the policy that maximizes the return expectation of the associated

trajectory, which is mathematically described as:

max
π

Eτ [r(τ)]. (2.3)

The (Deep) RL problem is closely related to the optimal control problem, which concerns about finding

the optimal control input sequence that drives the system to minimize a cost function. Sutton et al. [89]

considered the field of modern RL the product of the joining of three threads: (1) learning by trial and error,

(2) optimal control, and (3) temporal difference learning. One approach to tackling the optimal control

problem is through dynamic programming [90], which relies on value functions to recursively solve the

problem.

Throughout the development of RL algorithms, the concept of value functions, rooted in dynamic

programming, holds significant importance. The value represents the expected return, considering the

initial condition and the policy dictating subsequent actions and states. Values functions appear almost in

every RL algorithm. The value function V of a state s, given the policy π, is defined as:

Vπ(s) = Eτ [r(τ)|s0 = s]. (2.4)

The action-value function Q of a state s and action a, given the policy π is defined as:

Qπ(s, a) = Eτ [r(τ)|s0 = s, a0 = a]. (2.5)

By the definition of expectation, we have the following relation between the two value functions:

Vπ(s) = Ea[Qπ(s, a)]. (2.6)

Moreover, with the infinite-horizon discounted total return, the value functions can be expanded and

rewritten as the Bellman equations to work with recursive algorithms. For the value function V , let a be the

action of the current step and s′ be the state at the next step:

Vπ(s) = Ea,s′ [R(s, a, s
′) + γVπ(s

′)]. (2.7)

Similarly, for the action-value function Q, let a′ denote the next action:

Qπ(s, a) = Es′ [R(s, a, s
′) + γEa′ [Qπ(s

′, a′)]]. (2.8)

Finally, the difference between the action-value function and value function is defined as the advantage

function in equation (2.9), which quantifies the superiority of taking a particular action a in state s compared

to randomly selecting an action according to policy π and following the policy afterward.

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.9)

This brief description of the problem formulation and important functions paves the way for understanding

the reinforcement learning algorithms to be introduced below.
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2.4.3. Algorithms

We will review algorithms following OpenAI’s taxonomy [91], as illustrated in Figure 2.14. Algorithms

are first categorized by whether they are model-free or model-based. A model-free algorithm doesn’t

learn or access the environment model, i.e. the state transition function and the reward function, while

a model-based algorithm makes use of such information to make decisions. Then model-free ones are

branched based on what they learn, and model-based algorithms are branched based on whether the

model is given or not.

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

Figure 2.14: A non-exhaustive taxonomy of algorithms from OpenAI [91].

Model-based algorithms include World Models [92], Imagination-Augmented Agents (I2A) [93], Model-

Based RL with Model-Free Fine-Tuning (MBMF) [94], Model-Based Value Expansion (MBVE) [95], and

AlphaZero [80]. They work well and achieve high sample efficiency if the ground-truth model is known or

the sim-to-real gap is not a concern. However, the accurate ground-truth model is hard to obtain and many

real-world applications necessitate sim-to-real transfer, limiting the application of model-based algorithms.

Model-free algorithms have lower sample efficiency, compared to model-based ones, but are generally

easier to implement, and have seen wider application [91]. Algorithms that fall into the policy optimization

side learn the approximated value function Vπ and use it to optimize policy parameters for the maximum

return r(τ). They are also known as “policy-based” methods. On the Q-learning side, algorithms try to

learn the parameters θ for approximating the optimal action-value function Q∗
π, making Qθ → Q∗

π. So are

also referred to as “value-based” algorithms. In this way, the policy is to take actions that maximize the

action-value function:

a(s) = argmax
a

Qθ(s, a). (2.10)

Policy optimization is usually performed on-policy, where each iteration utilizes only the trajectory

generated by the most recent policy and excludes old data. Notable policy-based algorithms include Policy

Gradient (PG) [96], Trust Region Policy Optimization (TRPO) [97], Proximal Policy Optimization (PPO)

[98], as well as Advantage Actor-Critic (A2C/A3C) [99]. This on-policy approach often results in lower

sample efficiency compared to the off-policy approach, which leverages past data and is often seen within

the value-based algorithms. However, since policy optimization directly optimizes for the maximum reward,

policy-based algorithms have better stability and reliability. On the other hand, value-based algorithms like

Deep Q-Network (DQN) [78], Quantile Regression DQN (QR-DQN) [100], Categorical 51-Atom DQN (C51)

[101], and Hindsight Experience Replay (HER) [102] are known for their sample efficiency, but they do not

guarantee achieving the maximum return [103].
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Besides algorithms that can be clearly classified as policy-based or value-based, there are plenty of

algorithms that are blends of both, carefully trading off the advantages and disadvantages of each side.

Typical examples are Deep Deterministic Policy Gradient (DDPG) [104], Twin Delayed DDPG (TD3) [105],

and Soft Actor-Critic (SAC) [106].

We will focus on introducing PPO because it is the most adopted algorithm in previously reviewed work

on learning-based autonomous drone racing, moreover, it is close to state of the art on stability and sample

efficiency among policy-learning algorithms.

The line of research that has evolved into PPO consists primarily of three algorithms, ordered chrono-

logically which are PG, TRPO, and PPO. PG establishes the framework involving (1) policy gradient

calculation, (2) policy parameter update, and (3) value function parameter update. TRPO improves PG

by introducing a more complex policy parameter update step that takes the largest step size within the

Kullback–Leibler divergence (KLD) constraint. The good side of calculating such a “trust region” is that

it effectively avoids bad steps that can collapse the policy performance. But the downside is that TRPO

has increased computational complexity. PPO offers a simpler, more efficient, yet effective alternative to

TRPO.

In PG and TRPO, denoting the objective Eτ [r(τ)] to maximize as J(πθ), where θ is the parameters of

the policy network, the policy gradient has the general form:

∇θ[J(πθ)] = Eτ

[
T∑

t=0

∇θ[log πθ(at|st)] · Φt

]
. (2.11)

There are many valid options for Φt, with the advantage function Φt = Aπθ
(st, at) being a widely adopted

choice. Estimating the advantage function A requires estimating the value function, which is often rep-

resented by a network parameterized by φ, written as Vφ. Practically, the expectation in equation (2.11)

is approximated using values of a finite set of trajectories. With the approximated policy gradient, the

algorithms proceed to the policy parameter update step. In the simplest form, this step is:

θ′ = θ + α∇θ[J(πθ)]. (2.12)

PG does not set constraints over the learning rate α, but TRPO carefully selects the learning rate to take

the largest yet trusted step. Finally, by the definition of the value function, the parameters of the value

function φ network are updated by making Vφ(st) close to r̂(t) :=
∑T

t′=tR(st′ , at′ , st′+1):

min
φ

Eτ

[
T∑

t=0

(Vφ(st)− r̂(t))2

]
. (2.13)

The updated φ will be used in the next iteration to estimate the policy gradient.

Although TRPO has the same general form as PG, equations for TRPO are derived from the surrogate

advantage L(θ, θ′) that quantifies how much better the new policy πθ′ performs compared to the current

policy πθ. This being said, the goal is to find the new parameters θ′ that maximize the surrogate advantage

while conforming to the KLD constraint:

max
θ′

L(θ, θ′) = Es,a

[
πθ′(a|s)
πθ(a|s)

Aπθ
(s, a)

]
s.t. DKL(θ

′ || θ) ≤ δ,

(2.14)

where DKL is the average KLD, and δ is the hyper-parameter limiting the average KLD. The idea behind

the surrogate advantage is that if the advantage of a state-action pair is positive, then we want to increase

the probability of generating such a pair with the new policy as much as possible, i.e. πθ′(a|s) > πθ(a|s),
which is equivalent to maximizing the surrogate advantage. Similarly, if the advantage is negative, then we
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want to decrease the probability. But at the same time, we don’t want to step too far from the old policy to

avoid “collapsing” performance. So we have the KLD of two sets of parameters constrained by δ.

In practice, to simplify computation, these equations are approximated with their Taylor expansions:

L(θ, θ′) ≈ ∇θ[J(πθ)]
ᵀ · (θ′ − θ)

DKL(θ
′ || θ) ≈ 1

2
(θ′ − θ)ᵀ · ∇2

θ[DKL(θ
′ || θ)] · (θ′ − θ).

(2.15)

To this end, the approximated solution of equation (2.14) can be analytically derived using Lagrangian

duality. Together with backtracking line search, the policy parameter update rule can be expressed in the

form of equation (2.12). Finding the analytical solution involves calculating the inverse (often via conjugate

gradient) of the KLD’s Hessian matrix, which is quite expensive. This is the major problem that motivated

the development of PPO.

There are two variants of PPO, namely PPO with penalty and PPO with clipping. PPO with penalty

turns the hard KLD constraint into a soft penalty term that discourages large KLD between the new and

old parameters. For this variant, equation (2.14) is turned into:

max
θ′

L(θ, θ′) = Es,a

[
πθ′(a|s)
πθ(a|s)

Aπθ
(s, a)− βDKL(θ

′ || θ)
]
. (2.16)

The coefficient β is adjusted by the algorithm throughout training. PPO with clipping, as the name suggests,

clips the surrogate advantage so that the optimizer will not push excessively hard to maximize the advantage,

and thus the new policy will not deviate too much from the old. The surrogate advantage is then:

max
θ′

L(θ, θ′) = Es,a

[
min

(
πθ′(a|s)
πθ(a|s)

Aπθ
(s, a), clip

(
πθ′(a|s)
πθ(a|s)

, 1− ε, 1 + ε

)
Aπθ

(s, a)

)]
, (2.17)

where ε denotes the hyper-parameter to tune. By removing the hard KLD constraint, both variants avoid

expensive calculations and thus lower the computational overhead. Nevertheless, PPO with clipping is

generally more favored for its simplicity, ease of implementation, and broadly demonstrated effectiveness.

2.5. Conclusion

In conclusion, this chapter has provided an overview of key aspects within the domain of autonomous

drone racing and its associated fields. We began by elucidating the landscape of autonomous drone

racing competitions and the solutions proposed therein, spanning both obstacle-free and obstacle-aware

scenarios. This exploration offers a comprehensive understanding of the advancements made in this field,

serving as a foundation for this thesis project.

Recognizing the limited generalization ability of learning-based methods for obstacle-aware autonomous

drone racing, we examined research on general-purpose vision-based navigation via Deep RL to gain

insights for enhancing behavioral obstacle avoidance in intelligent agents. The network architectures,

training frameworks, and domain randomization schemes discussed in the reviewed papers provide

valuable inspiration for this purpose.

Moving forward, we delved into the topic of modeling and simulation, highlighting the diverse array of

simulators available for aerial and general robotics. By examining existing quadcopter physics modeling

within these simulators and previously reviewed work, we have a clear vision for building a simulator

tailored to specific task requirements.

Furthermore, our exploration extended into the domain of deep reinforcement learning, motivated by its

significance and applicability within the context of autonomous drone racing. We have focused on the line

of research, from PG and TRPO to PPO, due to PPO’s significance, popularity, and suitability for RL-based

autonomous drone racing.

To end this chapter, we provide the answer to Research Question 1 based on the reviewed literature.

For readers’ convenience, the question is restated below.
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What are existing methods in the literature that can achieve the objective in whole or partially?

Research Question 1

To the best of the author’s knowledge, no existing method in the literature fully achieves the desired

objective. However, several learning-based approaches partially address it. For instance, the state-based

drone racing policy by Song et al. [32] demonstrates generalization to unseen racing tracks but does

not account for obstacle avoidance. On the other hand, the vision-based policy [51] for drone racing

in cluttered environments strikes a balance between high-speed racing and obstacle avoidance, but it

compromises on generalization ability. Methods like MAVRL [41] and the navigation approach using DCE

[42] enable drones to navigate unseen cluttered environments but are not specifically optimized for racing

and rely on high-level controllers, offloading the complex control tasks from the policy itself. This gap in the

literature opens the door for new methodological proposals that could fully achieve the research objective,

addressing all the requirements.



3
Preliminary Work

3.1. Overview of Proposed Methodology

The proposed methodology is presented first as an overview to provide essential guidance for the practical

implementations introduced in the subsequent sections. While this section outlines the high-level approach,

more detailed explanations of the methodology can be found in the scientific article in Part III. As concluded

in the previous chapter, no existing method fully satisfies the research objective, highlighting the need for

novel methodological proposals and opening opportunities for innovation.

The core of our methodology is built upon three primary components. First and foremost, we propose

incorporating domain randomization of racing tracks and environments to promote the learning of general-

izable policies. This approach is motivated by the success of similar techniques in the works of Song et al.

[32], MAVRL [41], and Kulkarni et al. [42]. Domain randomization helps the reinforcement learning agent

to adapt to varied conditions.

Secondly, given that both vehicle state information and waypoint data are accessible, we propose

training a hybrid-input policy solely through reinforcement learning, in contrast to approaches that combine

state-based reinforcement learning with imitation learning, as demonstrated in [51]. The policy network we

employ will accept three types of input concatenated as a vector: (1) an encoded depth image, (2) the

vehicle’s state vector, and (3) waypoint information for two future waypoints. With these inputs, the policy

can hopefully learn to navigate complex environments effectively.

Lastly, to maintain the agility of the drone, we propose relying only on a low-level angular velocity

controller, similar to the approach used in Swift [34]. We also plan to design a reward function inspired by

those used in the drone racing literature [32, 34, 51]. This approach allows for high levels of maneuverability,

avoiding the more restrictive controllers used in MAVRL and Kulkarni et al., while still providing an effective

framework for training agile flight behaviors.

Implementing this proposed methodology involves non-trivial engineering challenges. Two key tasks

are: (1) creating the environment for reinforcement learning and (2) integrating the necessary components

to form a complete training loop. This requires either implementing or effectively utilizing existing libraries to

handle the various aspects of reinforcement learning, including environment management, neural network

construction, gradient calculation, and model parameter optimization. These efforts constitute the primary

focus of the remainder of this chapter.

3.2. Environment for Reinforcement Learning

We propose using depth images for obstacle avoidance, prioritizing high rendering speed over visual

fidelity. Given this, Isaac Gym [73] and Habitat Sim [72] are both strong candidates. Habitat Sim claims to

reach higher rendering speeds, but it is primarily designed for ground robots navigating in mesh datasets

like Gibson [107] and Matterport3D [108], making it less adaptable for drone racing tasks. In contrast,

Isaac Gym offers similarly high rendering speeds, extensive documentation for object spawning and pose

customization, and, most importantly, examples for developing custom environments, including the Aerial

Gym [109] implementation. As a result, Isaac Gym was chosen as the base simulator for this thesis project.

22
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At the start of this thesis project, no existing drone racing environments were available in Isaac Gym,

and Aerial Gym was still in its early development stages. Therefore, we opted to develop our custom

environments using the bare-bones Isaac Gym simulator. Our environment is composed of multiple

modules optimized with vectorized operations, and peripheral utilities extending Isaac Gym’s scene

simulation ability. They will be introduced in the following subsections.

3.2.1. Angular Velocity Controller

The angular velocity controller employed is a PID controller modeled after the Betaflight [50] controller,

which is widely used in FPV drone systems. We examined Betaflight’s original C code and replicated its

core functionalities in Python using PyTorch, enabling the simultaneous control of multiple drones.

This angular velocity controller processes normalized operator commands, either from the neural policy

or a human pilot, and outputs the desired angular velocity in the drone’s body frame as well as normalized

motor commands. The process involves three main steps: (1) mapping operator commands to desired

angular velocity, (2) computing the PID control sum, and (3) performing control allocation or mixing.

In the first step, operator commands are mapped to the desired angular velocity, a process referred to

as “rates mapping” in Betaflight. We implemented the default mapping known as Actual Rates [110] from

Betaflight. Given a := [aᵀ
rate athrottle]

ᵀ ∈ [−1, 1]4 as the operator commands and Kd, Kf, Kg as adjustable

coefficients, the mapping from arate to the desired angular velocity in the body frame ωdes is given by:

ωdes = sgn(arate)
(
Kd |arate|+ (Kf −Kd)

(
(1−Kg)a

2
rate +Kga

6
rate

))
. (3.1)

In the second step, the PID control sum uPID at time t is calculated using:

uPID(t) = KPeω(t) +KI

∫ t

0

eω(τ) dτ −KDL
(
dω(t)

dt

)
+KFFωdes(t), (3.2)

where KP, KI, KD, and KFF are diagonal coefficient matrices for the proportional, integral, derivative, and

feed-forward terms, respectively. Here, eω represents the angular velocity error, and L denotes a simple

first-order low-pass filter in the time domain. This step is simplified compared to Betaflight’s implementation,

which includes more complex feed-forward terms and dynamic coefficient updating algorithms, such as

anti-gravity compensation, throttle PID attenuation, I-term relaxation, and dynamic damping.

In the final step, the PID control sum is converted into normalized motor commands through a mixing

function that supports various Betaflight features, including airframe customization, air-mode, throttle boost,

and thrust linearization. Airframe customization allows for the mixing table to adapt to different motor

layouts, air-mode maintains attitude control at low throttle values, throttle boost enhances response to

high-frequency throttle commands, and thrust linearization ensures consistent control at extreme throttle

levels. The mixing function M calculates the motor commands umotor ∈ [0, 1]4 as follows:

umotor = M(uPID, athrottle). (3.3)

The mixing function involves several clamping operations and min-max normalizations, which are detailed

in Listing A.1.

3.2.2. Drone Model

The drone is modeled as a rigid body with a rectangular collision box in PhysX. To simulate the dynamics

of the drone, there are two common approaches: (1) teleporting the body to the desired poses while using

a standalone numerical integrator for rigid body dynamics, or (2) applying wrenches (forces and torques)

directly to the body, allowing the PhysX solver to handle the forward dynamics. For simplicity, we opted

for the latter approach. We developed modules to convert motor commands into total actuator wrenches

and implemented a basic drag model, which adds additional forces and torques based on the linear and

angular velocities in the body frame.

First, the motor commands are translated into rotor (motor and propeller) angular velocities, Ω, using a

first-order lag model:
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Ω̇ = Krotor · (Ωss(umotor)−Ω), (3.4)

where Krotor represents the spin-up or slow-down constant, which depends on the difference between the

steady-state angular velocity, Ωss, and the current angular velocity, Ω. The steady-state angular velocity is

determined by the motor commands umotor from the angular velocity controller, using a polynomial model

fitted to the motor manufacturer’s data.

Next, based on the current rotor angular velocities Ω and their time derivatives Ω̇, the total actuator

wrenches generated by the rotors are computed as follows:

[
fact

τact

]
=

[ ∑
i fprop(Ωi)∑

i

[
τprop(Ωi) + ri × fprop(Ωi) + ζiJrotorΩ̇i

]] , (3.5)

where fprop(Ωi) and τprop(Ωi) represent the thrust force and torque generated by the i-th spinning propeller,
respectively. The mappings from Ω to fprop and τprop are based on polynomial models derived from the

motor manufacturer’s data. Here, ri is the displacement of the i-th rotor relative to the drone’s body frame,

Jrotor denotes the moment of inertia of the rotor (which includes the propeller and the spinning parts of the

motor), and ζi indicates the rotational direction of the i-th rotor.

Finally, we compute the aerodynamic drag acting on the drone’s body, which depends on the linear

velocity, v, and the angular velocity, ω, in the body frame:

[
fdrag

τdrag

]
= −1

2
ρ

[
Atran

(
Cav

2 +Cbv
)

Arot

(
Ccω

2 +Cdω
)] , (3.6)

where ρ is the air density, Atran and Arot are the effective areas responsible for generating translational and

rotational drag, respectively, and Ca, Cb, Cc, and Cd are adjustable coefficients in the polynomial drag

model. The aerodynamic drag wrench is then summed with the total actuator wrench and applied to the

gravity-enabled PhysX rigid body. Figure 3.1 illustrates the data flow in the drone simulation pipeline.

Angular 
Velocity 

Controller

Drone 
Model

PhysX 
Rigid 
Body

𝒂 𝒖motor 𝒇act + 𝒇drag

𝝉act + 𝝉drag

𝝎 𝝎𝒗

Figure 3.1: Data flow in the drone simulation pipeline.

All of these models have been implemented using PyTorch and optimized for GPU-based parallel

physics simulation. Moreover, the model’s coefficients and parameters provide a wide scope for domain

randomization in reinforcement learning, potentially enabling the training of robust policies that can

generalize well.

3.2.3. Waypoints

The primary task in drone racing is to navigate through all gates on a track, passing from the correct

side of each gate to the other. Each gate is modeled as a “waypoint” and is parameterized by its center

position, pwp, orientation quaternion, qwp, passing region width, wwp, passing region height, hwp, and a

binary parameter, χwp, which indicates the presence of physical bars around the waypoint. This flexible

parameterization allows for the definition of various types of waypoints:

• Points: wwp = hwp = χwp = 0;

• Bounded planar regions: wwp 6= 0, hwp 6= 0, χwp = 0;

• Collidable gates: wwp 6= 0, hwp 6= 0, χwp 6= 0.
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With this waypoint definition, a racing track is constructed as an ordered sequence of waypoints. To make

track definition more intuitive, our implementation supports the use of Euler angles as an alternative to

quaternions for defining waypoint orientations. An example of defining the Split-S track [34] is provided in

Listing A.2.

Inspired by the work of Song et al. [32], we implemented a random track generator that can create

varied or uniform racing tracks across multiple parallel environments. Our implementation parameterizes

the transformation between consecutive waypoints using five variables, allowing for intuitive adjustment of

the track’s difficulty and enough room for randomization. The parameters include four angles, (ψ, θ, α, γ),
and a distance, r. The pose of the next waypoint is determined by starting with the current waypoint’s

pose and applying the following transformations:

1. Rotate about the body z-axis by angle ψ;

2. Rotate about the updated body y-axis by angle θ;

3. Translate in the direction of the updated body x-axis by distance r;

4. Rotate about the updated body x-axis by angle α;

5. Rotate about the updated body y-axis by angle γ.

These transformations, excluding α, and their corresponding effects are illustrated in Figure 3.2. Generally,

for a fixed distance r, the track becomes more challenging as the angles increase. Similarly, if the angles

are held constant, the track’s difficulty increases when r exceeds an upper threshold or falls below a lower

threshold. This implementation is also useful for curriculum learning, where task difficulty needs to be

progressively adjusted.

𝜃

𝜓

𝑟

𝛾

Figure 3.2: Partial parameters of the transform between two consecutive waypoints.

3.2.4. Procedural Assets

Isaac Gym provides limited functionality for spawning procedural assets. To overcome this limitation, we

extended it by implementing additional interfaces that allow for the procedural generation of a wider variety

of geometries, assemblies, and racing tracks. This enhancement significantly increases the achievable

randomness of the environments and makes it easy to design racing tracks. Leveraging Isaac Gym’s

ability to load assets from URDF files, we use the Urdfpy package to procedurally create URDF files, which

are then loaded into Isaac Gym.

Isaac Gym’s built-in procedural assets include cuboids, capsules, and spheres, as shown in Figure

3.3(a). In addition to these, we implemented functions to spawn more complex shapes, such as cylinders,

hollow cuboids, cuboid wireframes, abstracted trees from Aerial Gym [109], and racer quadcopter models,

as illustrated in Figure 3.3(b)-(c).

Beyond basic geometries and abstracted assemblies like trees and racing drones, we also provide

several racing track assets, as shown in Figure 3.4. New tracks can be easily created by defining a list
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(a)

(b)

(c)

(d)

Figure 3.3: Extended set of assets for our drone racing environment.

of waypoints and, optionally, adding obstacles as URDF links. An example of the code for defining such

obstacles is provided in Listing A.3.

Split-S Walls

Multi-story RMUA

Figure 3.4: Racing track assets.

3.2.5. Obstacle Manager

Song et al. [32] suggest that training agents on multiple randomly generated tracks fosters the development

of generalizable skills for obstacle-free drone racing. We propose extending this idea to obstacle-aware

drone racing, which requires not only a random track generator but also a module to place random obstacles

along the track. This task is handled by the obstacle manager.

The obstacle manager places obstacles in such a way that the flight paths between waypoints are

“efficiently” influenced while allowing control over the level of difficulty. Here, efficiency refers to the ratio of

obstacles that potentially obstruct flight paths to the total number of obstacles. A higher efficiency translates

to faster simulation speeds for the same level of difficulty, as fewer objects are in the environment.



3.2. Environment for Reinforcement Learning 27

A naive approach would involve distributing obstacles uniformly in space with random poses. However,

this method is highly inefficient: obstacles positioned far from the waypoints or the segments connecting

them are less relevant to the problem. A simple improvement to efficiency is to confine obstacles to regions

where the racing drone is likely to fly. In our implementation, obstacles of various shapes orbit around

waypoints, obstructing omnidirectional flight paths, while walls and trees are placed along the segments

connecting waypoints.

Random cuboids, spheres, capsules, cylinders, hollow cuboids, and cuboid wireframes are managed

to orbit waypoints, as illustrated in Figure 3.5(a). They are distributed uniformly in all directions around the

waypoint, with their distances from the central waypoint, denoted as d, following a normal distribution. For

obstacles orbiting a waypoint with index i, the normal distribution is determined by the distance between

waypoint i and the next waypoint i+ 1, denoted as ri, along with the radii of the no-obstacle safe zones

around both waypoints, labeled si and si+1:

µ =
1

2
(ri + si − si+1), σ =

1

6
(ri − si − si+1), (3.7)

where µ and σ represent the mean and standard deviation of the normal distribution, respectively. These

parameters are visualized in Figure 3.5(b), where the safe zones around each waypoint are outlined in

white wireframes. This strategy ensures that obstacles are positioned relative to the track which effectively

challenges the drone to learn obstacle avoidance.

(a) (b)

Figure 3.5: Obstacles orbiting waypoints of a straight racing track.

(a) (b) (c)

Figure 3.6: Trees and walls managed by the obstacle manager.

Trees are rooted along the line segments connecting the waypoints. The distances of the tree roots

from the starting waypoint, indexed as i, are uniformly sampled from the range between si and ri − si+1,

as shown in Figure 3.6(a). Each tree’s orientation in space is defined by a random angle, uniformly

sampled between 0 and 2π, as depicted in Figure 3.6(b). Walls, represented by thin cuboids, are also

distributed along the line segments. Their orientations are aligned with that of the starting waypoint for



3.2. Environment for Reinforcement Learning 28

simplicity. Figure 3.6(c) illustrates how the walls are placed along the track to further challenge the drone’s

maneuverability.

Figure 3.5 and 3.6 demonstrate obstacles placed along a straight-line track and visualize different

collections of obstacles for clarity. Now we can put everything including the random track generator and

all kinds of obstacles together to create the complete scene. Figure 3.7 demonstrates that the current

implementation of the track generator and obstacle manager can create very challenging scenes for

obstacle-aware drone racing.

Figure 3.7: Randomly generated racing tracks with all obstacles enabled in parallel environments.

3.2.6. Isaac Gym Environment

Our environment, referred to as a “task” in the IsaacGymEnvs framework, inherits from the VecTask class

to integrate the previously mentioned modules alongside other utility components. However, the base

VecTask class is not natively designed to handle physics simulation in conjunction with a low-level controller

and isn’t optimized for learning from vision-involved inputs. To address these limitations, we put in extra

engineering effort to re-implement several functions. Additionally, the asynchronous auto-resetting of

environments posed further challenges in managing resets efficiently.

The step function receives the policy’s action, then transitions the environment to a new state, and

returns information including the reward, observation, termination flags, and auxiliary data for logging

or curriculum learning. Given the auto-resetting nature of the environments, care must be taken to

compute observations only after any necessary resets to avoid extra rendering. The step function can be

summarized as follows:

1. Clamp the input action and pass it to the angular velocity controller as the setpoint.

2. For multiple physics steps: (a) run the angular velocity controller and drone model to compute the

forces and torques to be applied to the rigid bodies, (b) call the PhysX simulation API to update the

rigid body states, and (c) check for collisions.

3. Check the done condition. An environment is considered done if any of the following occur: (a)

the final waypoint is reached, (b) a timeout occurs where too many steps have been taken without

reaching the final waypoint, or (c) the drone collides with an obstacle.

4. Compute the reward components and sum them into a scalar reward.

5. Reset environments that have reached the done state. This involves teleporting the drone to its initial

state and clearing memory variables in all relevant modules.

6. Render camera sensor data and calculate the observation vector. These steps occur after resetting

to comply with the auto-reset requirements.

7. Return the observation, reward, done flags, and any additional information.

In addition to resets occurring within the step function, environments are also reset at the start of each

rollout via the reset function. The primary objective of the reset function is to initialize the environments
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for the rollout and provide the initial observation. In our implementation, this also includes randomizing the

racing tracks and obstacle positions.

3.3. Reinforcement Learning Library

There are several reinforcement learning libraries available, including RL Games [111], Stable-Baselines3

[112], CleanRL [113], SKRL [114], and TorchRL [115]. RL Games is the default library bundled with

IsaacGymEnvs, but it lacks comprehensive documentation and tutorials. Stable-Baselines3 is a widely

used library; however, it relies on NumPy for its data interface, requiring an additional step to convert

PyTorch data to NumPy, which may introduce inefficiencies. Both SKRL and CleanRL offer strong

documentation and directly use PyTorch tensors, but neither seamlessly integrates into the repository

structure of IsaacGymEnvs. TorchRL, despite receiving considerable attention and providing excellent

documentation, is still in an early stage of development.

Eventually, we opted for RL Games version 1.6.1 after encountering several issues with TorchRL

version 0.5. Due to the limited documentation of RL Games, we had to rely on directly reading the source

code to learn to customize the training loop and define new network architectures. To assist other RL

practitioners who may face similar challenges, we hereby document our insights and practical tips for

working with RL Games in IsaacGymEnvs, which, in the author’s view, contribute valuable additions to this

thesis project.

3.3.1. Program Entry Point

The primary entry point for both training and testing within IsaacGymEnvs is the train.py script. This

file initializes an instance of the rl_games.torch_runner.Runner class, and depending on the mode

selected, either the run_train or run_play function is executed. Additionally, train.py allows for custom

implementations of training and testing loops, as well as the integration of custom neural networks and

models into the library through the build_runner function, a process referred to as “registering”. By

registering custom code, the library can be configured to execute the user-defined code by specifying the

appropriate names within the configuration file. Environments also need to be registered in train.py so

that they can be used in the training or testing loop.

In RL Games, the training algorithms are referred to as “agents”, while their counterparts for testing are

known as “players”. In the run_train function, an agent is instantiated, and training is initiated through the

agent.train call. Similarly, in the run_play function, a player is created, and testing begins by invoking

player.run. Thus, the core entry points for training and testing in RL Games are the train function for

agents and the run function for players.

1 def run_train(self, args):
2 """Run the training procedure from the algorithm passed in."""
3

4 print('Started to train')
5 agent = self.algo_factory.create(self.algo_name, base_name='run', params=self.params)
6 _restore(agent, args)
7 _override_sigma(agent, args)
8 agent.train()
9

10 def run_play(self, args):
11 """Run the inference procedure from the algorithm passed in."""
12

13 print('Started to play')
14 player = self.create_player()
15 _restore(player, args)
16 _override_sigma(player, args)
17 player.run()

Listing 3.1: Implementation of run_train and run_play.

3.3.2. Training Algorithms

The creation of an agent is handled by the algo_factory, as demonstrated in Listing 3.1. By default,

the algo_factory is registered with continuous-action A2C, discrete-action A2C, and SAC. This default
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registration is found within the constructor of the Runner class, and its implementation is shown in Listing

3.2. From this code, it’s easy to trace the actual algorithm implementations. Our primary focus will

be on understanding A2CAgent, as it is the primary algorithm used for most continuous-control tasks in

IsaacGymEnvs.

1 self.algo_factory.register_builder('a2c_continuous',
2 lambda **kwargs: a2c_continuous.A2CAgent(**kwargs))
3 self.algo_factory.register_builder('a2c_discrete',
4 lambda **kwargs: a2c_discrete.DiscreteA2CAgent(**kwargs))
5 self.algo_factory.register_builder('sac',
6 lambda **kwargs: sac_agent.SACAgent(**kwargs))

Listing 3.2: Default algorithms in RL Games.

At the base of all RL Games algorithms is the BaseAlgorithm class, an abstract class that de-

fines several essential methods, including train and train_epoch, which are critical for training. The

A2CBase class inherits from BaseAlgorithm and provides many shared functionalities for both contin-

uous and discrete A2C agents. These include methods such as play_steps and play_steps_rnn
for gathering rollout data, and env_step and env_reset for interacting with the environment. How-

ever, functions directly related to training—like train, train_epoch, update_epoch, prepare_dataset,
train_actor_critic, and calc_gradients—are left unimplemented at this level. These functions are

implemented in ContinuousA2CBase, a subclass of A2CBase, and further in A2CAgent, a subclass of

ContinuousA2CBase.

The ContinuousA2CBase class is responsible for the core logic of agent training, specifically in the

methods train, train_epoch, and prepare_dataset. In the train function, the environment is reset once

before entering the main training loop. This loop consists of three primary stages: (1) calling update_epoch,
(2) running train_epoch, and (3) logging key information, such as episode length, rewards, and losses.

The update_epoch function, which increments the epoch count, is implemented in A2CAgent. The heart of

the training process is the train_epoch function, which operates as follows:

1. play_steps or play_steps_rnn is called to generate rollout data in the form of a dictionary of tensors,

batch_dict. The number of environment steps collected equals the configured horizon_length.

2. prepare_dataset modifies the tensors in batch_dict, which may include normalizing values and

advantages, depending on the configuration.

3. Multiple mini-epochs are executed. In each mini-epoch, the dataset is divided into mini-batches,

which are sequentially fed into train_actor_critic. Function train_actor_critic, implemented

in A2CAgent, internally calls calc_grad, also found in A2CAgent.

The A2CAgent class, which inherits from ContinuousA2CBase, handles the crucial task of gradient

calculation and model parameter optimization in its calc_grad function. Specifically, calc_grad first

performs a forward pass of the policy model with PyTorch’s gradients and computational graph enabled. It

then calculates the individual loss terms as well as the total scalar loss, runs the backward pass to compute

gradients, truncates gradients if necessary, updates model parameters via the optimizer, and finally logs

the relevant training metrics such as loss terms and learning rates.

With an understanding of the default functions, it becomes straightforward to customize agents by

inheriting from A2CAgent and overriding specific methods to suit particular needs. A good example of this

is the implementation of the AMP algorithm [116] in IsaacGymEnvs, where the AMPAgent class is created

and registered in train.py, as shown in Listing 3.3.

1 _runner.algo_factory.register_builder(
2 'amp_continuous',
3 lambda **kwargs: amp_continuous.AMPAgent(**kwargs)
4 )

Listing 3.3: Registration of AMPAgent.

3.3.3. Players

Similar to training algorithms, default players are registered with player_factory in the Runner class.

These include PpoPlayerContinuous, PpoPlayerDiscrete, and SACPlayer. Each of these player classes
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inherits from the BasePlayer class, which provides a common run function. The derived player classes

implement specific methods for restoring from model checkpoints (restore), initializing the RNN (reset),
and generating actions based on observations through get_action and get_masked_action.

The testing loop is simpler compared to the training loop. It starts by resetting the environment to

obtain the initial observation. Then, for max_steps iterations, the loop feeds the observation into the model

to generate an action, which is applied to the environment to retrieve the next observation, reward, and

other necessary data. This process is repeated for n_games episodes, after which the average reward and

episode lengths are calculated and displayed.

Customizing the testing loop is as straightforward as customizing the training loop. By inheriting from a

default player class, one can override specific functions as needed. As with custom training algorithms,

customized players must also be registered with player_factory in train.py, as demonstrated in Listing

3.4.

1 self.player_factory.register_builder('a2c_continuous',
2 lambda **kwargs: players.PpoPlayerContinuous(**kwargs))
3 self.player_factory.register_builder('a2c_discrete',
4 lambda **kwargs: players.PpoPlayerDiscrete(**kwargs))
5 self.player_factory.register_builder('sac',
6 lambda **kwargs: players.SACPlayer(**kwargs))
7

8 _runner.player_factory.register_builder(
9 'amp_continuous',

10 lambda **kwargs: amp_players.AMPPlayerContinuous(**kwargs)
11 )

Listing 3.4: Default players and registration of custom AMPPlayerContinuous.

3.3.4. Models And Networks

The terminology and implementation of models and networks in RL Games version 1.6.1 can be confusing

for new users. We aim to clarify these concepts and provide a high-level overview of their functionality and

relationships.

• Network Builder. Network builder classes, such as A2CBuilder and SACBuilder, are subclasses

of NetworkBuilder and can be found in algos_torch.network_builder. The core component of a

network builder is the nested Network class (we name it the “inner network” class), which is typically

derived from torch.nn.Module. This class receives a dictionary of tensors, such as observations

and other necessary inputs, and outputs a tuple of tensors from which actions can be generated. The

forward function of the Network class handles this transformation. Additionally, a network builder

includes a load function to load parameters that define the network architecture and a build function

to instantiate the Network class.

• Model. Model classes, like ModelA2C and ModelSACContinuous, inherit from BaseModel in

algos_torch.models. They are similar to network builders, as each contains a nested Network
class (referred to as the “model network” class) and a build function to construct an instance of

this network. To instantiate a model network class, it requires an inner network class, commonly

named a2c_network or sac_network, depending on the algorithm to be used. The model network

class, also derived from torch.nn.Module, incorporates both the inner network and normalization

modules as submodules. Its forward function supports different modes for training and playing and

uses tensor dictionaries for both the input and output.

• Model & Network in Algorithm. In a default agent or player algorithm, self.model refers to an

instance of the model network class, while self.network refers to an instance of the model class.

• Model Builder. The ModelBuilder class, located in algos_torch.model_builder, is responsible
for loading and managing models. It is usually instantiated in the load_networks function of an

agent or player class. Within its constructor, ModelBuilder registers the default network builders

and models. It also provides a load function, which creates a model instance based on the specified

name. Note that there is also a NetworkBuilder class in the same file, but it is used internally by

ModelBuilder.



Customizing models requires implementing a custom network builder and a model class. These custom

classes should be registered in the Runner class within train.py. A good reference example is again the

AMP implementation. Listing A.4 demonstrates the default registration of models and network builders,

along with the AMP example for registering customized components.

3.4. Conclusion

In this chapter, we laid the groundwork for the development of our obstacle-aware drone racing framework.

We began by outlining the core methodology, which is using domain randomization to enhance the

generalizability of the learned policies. This overview served as a guide for making informed design

choices and implementing practical solutions.

Following this, we focused on creating environments suited for reinforcement learning. This section

highlighted the necessary components for simulating complex racing tracks and obstacles while ensuring

scalability and efficiency. The environment design plays a pivotal role in achieving our objective of training

policies that can navigate a variety of tracks with obstacles.

Additionally, we explored the reinforcement learning library, RL Games, in-depth, dissecting key aspects

such as algorithm registration, training, and testing loops, as well as models and networks. Understanding

the code of the library is essential for efficient customization and implementation of our approach. We

also highlighted areas where specific adaptations and custom implementations are required to tailor the

defaults to our problem. This section of the report has been merged into the main branch of the RL Games

repository as part of its documentation.

In conclusion, this chapter provides a comprehensive introduction to the preliminary steps required to

train a generalizable policy for obstacle-aware drone racing. This preliminary work is crucial for anything

that builds upon it, as presented in the standalone article.
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4
Simulation Performance

4.1. Controller Response

The angular velocity controller was designed with adjustable parameters to allow for domain randomization,

which could improve sim-to-real transfer by varying controller performance. However, for this project, we

employed a fixed set of hand-tuned parameters throughout training and experimentation to maintain a

clear focus on training policies that generalize to unseen tracks and obstacles. This set of parameters was

tuned for a controller running at 250 Hz. The resulting angular velocity response is demonstrated below in

Figure 4.1 by plotting both the desired and measured angular velocities over simulation time as the drone

completes a lap on the Split-S track [34].
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Figure 4.1: Components of desired and measured body-frame angular velocity.
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4.2. Environment Steps per Second

The speed at which simulated environments can run is crucial for efficient reinforcement learning. Steps

Per Second (SPS) is a key metric that indicates how many environment simulation steps can be processed

per second. Higher SPS values enable faster data collection, quicker policy updates, and more extensive

training within limited timeframes. Optimizing SPS directly impacts the rate of policy updates and overall

training duration. Here we evaluate the performance of our drone racing environments under various

configurations.

Our implementation allows multiple environments to be stepped in parallel within a single simulation step.

Consequently, the total SPS is the product of the per-environment SPS and the number of environments

running in parallel. We conducted experiments to analyze the total SPS, (per-environment) SPS, and

GPU VRAM usage (normalized using 24 GB) at different scales of parallelization, scene complexity, and

camera sensor presence (480×270). To maximize performance, the experiments were run in headless

mode when cameras were disabled, and in GUI mode when cameras were enabled. The results of these

experiments are presented in Figures 4.2 to 4.4. All experiments were conducted on a desktop computer

equipped with an Intel i9-13900K CPU and an Nvidia RTX 4090 GPU running Ubuntu 22.04.
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Figure 4.2: SPS and VRAM usage for different numbers of parallel environments and camera

configurations, where each environment consists of 1 ground plane and 2 gates.
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Figure 4.3: SPS and VRAM usage for different numbers of parallel environments and camera

configurations, where each environment consists of 1 ground plane and 7 gates (Split-S).
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Figure 4.4: SPS and VRAM usage for different numbers of parallel environments and camera

configurations, where each environment consists of 1 ground plane, 2 gates, and 20 geometries.
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The number of parallel environments is a critical factor in determining overall performance. As expected,

increasing the number of environments results in a decrease in per-environment SPS due to the fixed

computational capacity being “distributed” across more environments. However, total SPS—calculated

as the product of the number of environments and per-environment SPS—initially rises with the increase

in parallel environments. This growth continues until reaching a point of diminishing returns, where the

system becomes saturated.

The trends of total SPS, per-environment SPS, and VRAM usage vs. the number of environments are

consistent for both camera-enabled and camera-disabled environments. However, it is important to note

that enabling camera sensors introduces substantial computational overhead and significantly increases

VRAM usage, limiting the number of environments that can run in parallel to the thousands. In such cases,

the maximum achievable total SPS is reduced by two orders of magnitude compared to environments

without cameras.

Scene complexity also plays a crucial role in determining simulation performance. As the complexity

of the environment increases—through the addition of gates or geometric obstacles—the computational

demands per environment rise significantly. This leads to a noticeable reduction in per-environment and

total SPS, as more resources are required to simulate the additional elements.

These experiments demonstrate that factors such as scene complexity, number of parallel environments,

and sensor configurations all significantly influence simulation speed. In general, environments without

camera sensors can generate hundreds of thousands of interaction data points per second, enabling the

rapid learning of state-based policies in a matter of minutes. While enabling cameras introduces substantial

computational overhead, resulting in a slower simulation speed, it remains considerably faster than other

simulators and frameworks like Flightmare, AirSim, and FlightGoggles.



5
Obstacle-Free Drone Racing

Obstacle-free drone racing eliminates the need for camera sensors typically required for obstacle avoidance,

enabling us to fully leverage our environments’ capacity to achieve hundreds of thousands of total steps

per second, as detailed in the last section. This capability facilitates the rapid learning of state-based

policies, often resulting in convergence in under 20 minutes. In this chapter, we will first demonstrate our

ability to train directly on the target racing track, reaching state-of-the-art performance in a short time frame.

Following this, we will showcase the effectiveness of utilizing random track segments across different

parallel environments to develop a generalizable racing policy that can race on unseen tracks.

5.1. Direct Training on the Target Track

We utilize the Split-S track as our target racing track to demonstrate direct training. The track layout and

environment performance are illustrated in Figure 4.3. To maximize total SPS, we spawn 16,384 parallel

environments during training. Given the asynchronous nature of these environments, we set the rollout

horizon in the PPO algorithm to 50 steps, equivalent to 2 seconds of simulation time, to enable frequent

policy updates. The policy is represented by a five-layer MLP with hidden dimensions of 256, 128, 128, 64.

For the observations, we use a 56-dimensional vector derived from the observation vector described in

Part III, by simply removing the DCE vector. And the reward function is the same as that in Part III.

During training, drones are initialized with the same pose as the initial waypoint, with zero commands

and velocities. The policy converges within 250 million total steps, or approximately 20 minutes of training,

achieving a lap time of 5.72 s. The mean episode reward and length throughout training are presented

below.
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Figure 5.1: Mean episode reward and length throughout direct training on Split-S.

From these plots, we can infer what is happening at each stage of training. Initially, the policy struggles

to navigate through gates or steer the drone properly, leading to quick episode failures and negative mean

rewards. As training progresses, the policy learns to pass through an increasing number of gates, resulting

in both higher rewards and longer episode lengths. Around 30 million steps, the episode length plateaus
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as timeouts occur after 175 steps. This indicates that while the policy can reliably pass through multiple

gates, it is unable to complete the entire track within the timeout limit. However, as training goes on, the

policy begins to improve its speed. At approximately 75 million steps, the reward starts to level off, while

episode lengths begin to decrease, signaling that the policy can successfully finish the track. Following

this point, the policy refines its racing skills to maximize speed and accumulate the highest discounted

reward until no further improvements can be made within this particular experimental setup.

We further plot the trajectory produced by rolling out the best-reward policy on two racing tracks: the

Split-S track and the Turns track, as shown in Figure 5.2. As illustrated, the policy performs well on the

training track, reaching a peak speed of about 25 m/s and generating a typical drone racing trajectory,

consistent with findings from other works [25, 32, 34]. However, on the Turns track, which features several

straight segments and simple turns, the policy struggles to pass through even the third gate. These

observations suggest that the policy trained directly on the target track exhibits strong overfitting to the

training environment and fails to generalize effectively to new tracks.

Split-S Turns
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Figure 5.2: Rollout trajectory of the policy trained directly on the Split-S track. The top color bar maps

trajectory color to drone speed in m/s. Gates are represented as points colored according to their heights.

5.2. Learning a Generalizable Policy

Achieving a generalizable policy is crucial for enabling agents to perform well across diverse environments

rather than just in the specific conditions under which they were trained. And it is one of the biggest

challenges in RL. In the context of drone racing, policies trained only on a single track may exhibit overfitting,

as demonstrated in the previous section. In this section, we explore the use of domain randomization and

varied training scenarios. By using short random track segments in parallel environments as shown in

Figure 4.2, we aim to train the policy to adapt to unseen tracks. Figure 5.3 illustrates the mean episode

reward and episode length recorded during training in this randomized setup.
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Figure 5.3: Mean episode reward and length throughout training on random different tracks.



The policy network, observation, and reward settings remain the same as in the direct training ex-

periment. However, the tracks are randomized across environments using the waypoint generator, as

described in Section 3.2, and drones are initialized with random bounded commands, velocities, and poses.

Given the diversity of environments, we increased the rollout horizon to 100 steps to ensure that each

agent has enough time to reach the finishing gate in a single rollout. Additionally, the simplicity of these

randomized tracks allows us to achieve a higher total SPS, enabling the collection of 250 million steps in

just 10 minutes. Within this time frame, the learned policy demonstrates a notable ability to generalize to

unseen racing tracks.

Split-S Turns
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Figure 5.4: Rollout trajectory of the policy trained on random tracks. The top color bar maps trajectory

color to drone speed in m/s. Gates are represented as points colored according to their heights.

Figure 5.4 shows the resulting trajectory of the generalizable policy on both the Split-S and Turns

tracks. While the policy successfully completes both tracks, the trajectories are not as optimal as those

achieved through direct training. This can be observed by comparing the Split-S results in Figures 5.4

and 5.2. Despite the sub-optimal performance, this policy can serve as a starting point for adaptation to

specific target tracks, potentially speeding up the process of training a fully optimized policy. However,

this performance gap raises an important question: how can we train a policy that not only generalizes to

unseen tracks but also performs as well as a directly trained policy in terms of smoothness and lap time?

We believe this is an interesting direction for future research.
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Learning Generalizable Policy for Obstacle-Aware
Autonomous Drone Racing

Yueqian Liu

Abstract—Autonomous drone racing has gained attention for
its potential to push the boundaries of drone navigation tech-
nologies. While much of the existing research focuses on racing
in obstacle-free environments, few studies have addressed the
complexities of obstacle-aware racing, and approaches presented
in these studies often suffer from overfitting, with learned
policies generalizing poorly to new environments. This work
addresses the challenge of developing a generalizable obstacle-
aware drone racing policy using deep reinforcement learning.
We propose applying domain randomization on racing tracks
and obstacle configurations before every rollout, combined with
parallel experience collection in randomized environments to
achieve the goal. The proposed randomization strategy is shown
to be effective through simulated experiments where drones reach
speeds of up to 70 km/h, racing in unseen cluttered environments.
This study serves as a stepping stone toward learning robust
policies for obstacle-aware drone racing and general-purpose
drone navigation in cluttered environments. Code is available
at https://github.com/ErcBunny/IsaacGymEnvs.

Index Terms—Aerial Systems: Perception and Autonomy, Col-
lision Avoidance, Integrated Planning and Learning, Reinforce-
ment Learning

I. INTRODUCTION

AUTONOMOUS drone navigation has emerged as a crit-
ical area of research, driven by the growing demand for

drones in industries such as delivery, inspection, and emer-
gency response. Drone racing, with its emphasis on minimum-
time navigation, has become a benchmark task for testing
advanced autonomous systems aiming to navigate at high
speeds while avoiding obstacles in partially or fully unknown
environments. Drone racing originally began as a competitive
sport where human pilots control agile drones via radio to
fly through a racing track as fast as possible while avoiding
potentially present obstacles. This requires precision, quick
reflexes, and expert navigation skills. In autonomous drone
racing, human pilots are replaced by algorithms and artificial
intelligence (AI). This introduces the challenge for algorithms
and AI of matching human-level performance and adaptability.

There have been several global autonomous drone racing
events, including the 2016-2019 IROS Autonomous Drone
Racing (ADR) competitions [1], [2], the 2019 AlphaPilot
Challenge [3], [4], the 2019 NeurIPS Game of Drones [5],
and the 2022-2023 DJI RMUA UAV Challenges [6], [7].
The tracks in early competitions, such as the IROS ADR,
AlphaPilot, and Game of Drones, are situated in less cluttered

This paper is part of the author’s M.Sc. thesis supervised by Ir. Hang Yu and
Dr. Ir. Christophe De Wagter, at MAVLab TU Delft. Full thesis is available
at https://repository.tudelft.nl.

Fig. 1. Trajectories of successful rollouts of a single policy on multiple
different racing tracks with obstacles designed to block flight paths.

spaces, allowing drones to complete the tracks without con-
sidering obstacle avoidance. However, for tracks in cluttered
environments, such as those in the more recent DJI RMUA
Challenges, the absence of obstacle awareness could cause
crashing. Additionally, in human-piloted drone racing, such as
the Drone Racing League competitions, and in drone racing
video games, there are plenty of tracks that require obstacle
avoidance.

Although autonomous drone racing has received significant
attention, much of the research has been limited to obstacle-
free scenarios [8]. Obstacle-free scenarios do not reflect the
complexities encountered in real-world tasks where obstacle
avoidance is necessary. Recognizing this, researchers have
been exploring ways to integrate drone racing with obsta-
cle avoidance through various approaches. Path-planning and
optimization-based approaches can achieve short lap times [9]
and strike a balance between lap times and computational
efficiency [6], [10], [11], but rely on carefully designed
algorithms and may experience performance degradation when
model mismatches occur. Current learning-based approaches
[12], [13] leverage reinforcement learning (RL) and imitation
learning (IL) to train neural policies capable of making low-
latency decisions that result in aggressive and collision-free
trajectories. However, these policies do not generalize well to
new racing tracks or different obstacle configurations.

This paper aims to enhance the generalization ability of
learned policies. Specifically, the goal is to develop a single
policy capable of navigating a quadcopter through various rac-
ing tracks with obstacles, without requiring additional tuning
after training. Drawing inspiration from works on learning
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drone navigation in cluttered environments [14], [15] and
generalizable obstacle-free drone racing [16], which all involve
training the policy in multiple randomized environments, we
propose applying the same strategy, domain randomization
[17] over racing tracks, to expose the agent to a diverse set of
environments. This allows the policy to learn the underlying
navigation “skills” while not relying on unique observations
associated with one or a few training environments. Simulated
experiments verify that the resulting policy can indeed general-
ize to unseen racing tracks while avoiding obstacles in unseen
sizes and shapes. Several successful examples are shown in
Fig 1. In summary, the main contributions of this study are:

• We verify the effectiveness of applying domain random-
ization to encourage the learning of generalizable skills.

• We present the first generalizable neural policy for the
obstacle-aware drone racing task, where the policy di-
rectly maps observations to low-level commands.

• We open-source tools and reusable modules to facili-
tate research and development in both obstacle-free and
obstacle-aware drone racing.

II. RELATED WORK

A. Obstacle-Free Autonomous Drone Racing
Optimization-based methods have been widely applied to

the task of drone racing. For static obstacle-free racing
tracks, time-optimal trajectories passing through gates’ center
waypoints can be generated using optimization with Com-
plementary Progress Constraint (CPC) [18]. However, this
approach is computationally expensive and struggles to adapt
to changing track layouts. To reduce computational overhead,
Model Predictive Contouring Control (MPCC) is introduced
[19]. MPCC has been further extended to include an online
reference path generation module to adapt to dynamic tracks
and handle external disturbances [20]. A more recent study
[21] demonstrates that lap times can be further reduced by
exploiting the spatial potential of the gates.

Reinforcement Learning has also emerged as a promising
approach for autonomous drone racing. Near-time-optimal
agile flight can be achieved through state-based RL [16].
Although the learned policy results in slightly longer lap times
than the CPC method, it handles variations in gate poses and
generalizes to unseen tracks. Furthermore, state-based policies
can serve as teacher policies within the IL framework, enabling
the training of purely vision-based student policies [22]. In a
follow-up study [23], the student policy is further fine-tuned
using RL. These two studies show the feasibility of high-speed
agile flight using AI with the same input-output modalities as
human pilots.

Reinforcement learning based approaches offer several ad-
vantages over optimization-based methods. These include im-
proved lap times and higher success rates during real-world
flights, where unmodeled effects and disturbances are non-
negligible [24]. However, deploying policies in real-world
scenarios is challenging, requiring closing the sim-to-real gap
and careful system engineering. The Swift system [25] demon-
strates that, by bridging the gap via fine-tuning using data-
driven residual models, AI systems powered by RL policies
can achieve performance on par with human champions.

B. Obstacle-Aware Autonomous Drone Racing

For the task of obstacle-Aware autonomous drone racing,
leveraging optimization and planning, several methods have
proven effective. The teach-and-repeat framework is widely
used in autonomous robot missions, and has been applied
to drone racing [10]. This framework enables the drone to
fly through the track while avoiding previously unseen and
dynamic obstacles. In static environments, Fast-Racing [11]
provides a polynomial trajectory baseline for obstacle-aware
autonomous drone racing. The winning solution of the 2022
DJI RMUA UAV Challenge [6] also follows a polynomial-
based trajectory but incorporates an additional online re-
planning module to avoid dynamic obstacles and pass through
moving gates. Moreover, Penick et al. [9] offer a sampling-
based baseline aimed at finding time-optimal trajectories in
cluttered environments, though this method struggles to scale
with increasing environment complexity.

While RL-based methods have shown great promise in
obstacle-free autonomous drone racing, achieving better lap
times, disturbance rejection, and less compute latency, their
application to obstacle-aware racing remains relatively sparse.
To the best of our knowledge, only two studies [12], [13] have
addressed this challenging task. Furthermore, they all focus on
completing a single predefined racing track in minimum time,
not considering generalizing to unseen scenarios. Realizing
this gap, we aim to explore methods that enhance policy
generalization in obstacle-aware drone racing.

C. Vision-Involved Navigation via Deep RL

In the aforementioned works addressing obstacle-aware
drone racing with RL, the policies fail to generalize to en-
vironments different from the ones they were trained on. To
overcome this limitation, research on learning general-purpose
navigation offers valuable insights and guidance.

Near-perfect discrete-action indoor navigation for ground
robots has been demonstrated with DD-PPO [26], in which
training occurs across multiple indoor scenes to enhance
generalization. The agent utilizes a policy network comprising
a Convolutional Neural Network (CNN) as the encoder and
a Long Short-Term Memory (LSTM) network. At first, this
network is optimized as a whole using RL, which is inefficient.
Follow-up works [27], [28] show that using auxiliary tasks,
such as predicting depth, inverse dynamics, and remaining
distance to target, results in quicker policy convergence and
better overall performance.

Besides using auxiliary tasks, modular learning is another
approach to achieving efficient learning for vision-involved
navigation tasks. Hoeller et al. [29] propose a modular learning
framework for training a quadruped robot to navigate in
cluttered dynamic environments. Here network modules are
learned separately: once an upstream module is learned, it
is frozen while downstream modules are optimized. MAVRL
[14] and Kulkarni et al. [15] also adopt a similar framework
for drone navigation in clutter. All these methods utilize
randomization of the training environments to promote gener-
alization, which directly inspires our core idea for learning a
generalizable policy in obstacle-aware drone racing.
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III. METHODOLOGY

A. Drone Model and Waypoints

The drone is modeled as a rigid body with mass m and
moment of inertia J . With the body frame attached to the
center of gravity, the equations of dynamics can be written as:

ṗW
q̇WB
v̇W
ω̇B
Ω̇

 =


vW

1
2qWB ⊗

[
0 ωT

B
]T

gW + 1
mRWB(fa + fd)

J−1(τa + τd − ωB × JωB)
kr(Ωs −Ω)

 , (1)

where W , B denote the world frame and the drone body frame,
and pW , qWB, vW , ωB, gW represent drone position, attitude
quaternion, linear velocity, angular velocity, and gravitational
acceleration, respectively. Rotation matrix of drone attitude
is RWB. Actuator wrench, or “force and torque”, (fa, τa)
and aerodynamic drag wrench (fd, τd) make up the total
wrench acting on the rigid body. Rotor spinning dynamics
is considered as a first-order lag model: the derivative of
rotor angular velocities in rounds per second (RPM) Ω̇ is the
product of the rotor constant kr and the difference between
steady-state RPM Ωs and current RPM Ω.

From rotor angular velocities and accelerations we can
calculate the actuator wrenches:

[
fa

τa

]
=

[ ∑
i fp(Ωi)∑

i

(
τp(Ωi) + ri × fp(Ωi) + ζiJrΩ̇i

)] , (2)

where fp(Ωi) and τp(Ωi) represent the thrust force and torque
generated by the i-th spinning propeller, respectively. They are
calculated using polynomial models derived from the motor
manufacturer’s data. Here, ri is the displacement of the i-th
rotor relative to the drone’s body frame origin, Jr denotes the
moment of inertia of the rotor, which includes the propeller
and the spinning parts of the motor, and ζi indicates the
rotational direction of the i-th rotor.

The aerodynamic drag depends on the linear velocity, vB =
R−1

WBvW , and the angular velocity, ωB, in the body frame:[
fd

τd

]
= −1

2
ρ

[
At

(
C0v

2
B +C1vB

)
Ar

(
C2ω

2
B +C3ωB

)] , (3)

where ρ is the air density, At and Ar are the effective areas
responsible for generating translational and rotational drag,
respectively. Coefficients Ci for i from 0 to 3 are adjustable
coefficients in the polynomial drag model.

The steady-state angular velocity is determined by the motor
commands um using a polynomial model fitted to the motor
manufacturer’s data. Simulating how human operators control
racing drones, we employ an angular velocity controller to
translate control commands a ∈ [−1, 1]4 to motor commands
um ∈ [0, 1] of the drone. Vector a contains 3 channels for
body rates and 1 channel for the throttle, or collective thrust
level. The angular velocity controller is derived from Betaflight
[30] and is responsible for mapping control commands to
desired angular velocity, running closed-loop control, and
allocating the control to motor commands.

Apart from dynamics and control, the rigid body’s collision
geometry is coarsely approximated by the minimum body-
frame axis-aligned bounding box of the real geometry. Regard-
ing sensors, we assume we have access to accurate vehicle
states including pW , qWB, vW , and ωB. Furthermore, we
attach a tilted depth camera to the front of the drone and set
the depth sensing range to a relatively large value (e.g. 20 m)
to mimic how human operators or depth estimation networks
retrieve depth from monocular images.

Drone racing requires the drone to pass through gates from
the correct side to the other. In the obstacle-aware scenario,
there are possible additional requirements for the drone to
avoid certain obstacles by following desired courses where
no physical gates exist. We propose to model physical gates
and course constraints as waypoints. A waypoint is defined
as a finite-size rectangle plane parameterized by position pwp,
attitude quaternion qwp, width and height of the valid pass-
through region (wwp, hwp), and a binary parameter gwp, which
indicates the presence of physical bars around the waypoint.
The waypoint frame, denoted by G, is attached to the center
of the rectangle, with the x-axis perpendicular to the plane,
pointing towards the valid pass-through direction, and y-
axis z-axis perpendicular to the sides of the rectangle. An
illustration of waypoints can be found in Figure 3(a).

B. Task Formulation

We formulate obstacle-aware autonomous drone racing as
a partially observable Markov decision process (POMDP)
[31]. POMDP models the agent-environment interaction and
internal dynamics of the environment. The agent is an AI
system that decides on the action to take based on observations
from the environment. The environment is everything else
that takes the agent’s actions, updates environment states,
computes rewards, and finally outputs the observations, closing
the interaction loop. Actions are taken based on the policy π
that maps observations to actions, with the transition model
of states, a trajectory τ can be produced. The goal is to find
the policy that maximizes the expectation of total discounted
reward:

max
π

Eτ

[ ∞∑
t=0

γtr(t)

]
, (4)

where γ ∈ [0, 1) stands for the discount factor, and r(t)
denotes the reward as a function of time t.

1) States: States include every piece of necessary informa-
tion to define the environment configuration. This may include
drone rigid body states, camera transform, internal states of the
actuator model and controllers, gate poses and sizes, obstacle
shapes, and poses, etc.

2) Action: As discussed in the previous drone model sec-
tion, we use the control commands denoted by a as the action
to simulate human operators’ control commands to a radio-
controlled racing drone.

3) Transition: The transition of states of our environment is
deterministic and only updates states associated with the drone
model. Action a is turned into actuator wrenches through the
angular velocity controller and Equation (2). Together with the
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Fig. 2. Illustration of part of the target waypoint’s guidance reward field.
The pass-through region (outlined using black lines) and the waypoint frame
(RGB-xyz) are displayed at the center. The field spans to the entire R3.

drag wrenches in Equation (3), drone states pW , qWB, vW ,
and ωB can be updated using Equation (1) with an integrator
or a physics engine. States of obstacles and gates are fixed
within an episode of the process.

4) Reward Function: The reward function is a weighted
sum of reward terms including the progress reward rprog,
perception reward rprec, command reward rcmd, collision re-
ward rcol, guidance reward rguid, waypoint passing reward rwp,
timeout reward rtime, and finally the linear velocity reward rvel.
By representing weights collectively as a vector λ, we can
write the reward as:

r =
[
rprog rprec rcmd rcol rguid rwp rtime rvel

]
λ.

(5)
Terms rprog, rprec, rcmd, and rcol are formulated as in Swift
[25]. The guidance reward is extended based on the safety
reward seen in [16]. The remaining ones are additional terms
proposed in this study.

To calculate the guidance reward, we first need to transform
the drone position from the world frame to the target waypoint
frame. Let pG = [x y z]T denote drone position in the way-
point frame, the guidance reward is rguid = −f2(x)·g(x, y, z),
with f(x) = max(1− sgn(x)x/k0, 0) and g(x, y, z) expanded
to:

g(x, y, z) =

{
k1 exp(−y2+z2

2v ), x > 0

1− exp(−y2+z2

2v ), x ≤ 0
, (6)

where v is further expanded to:

v = k2
(
1 + f2(x)

)√ z2 + y2

(z/hwp)
2
+ (y/wwp)

2 , (7)

if y2 + z2 ̸= 0. Otherwise v = k2
(
1 + f2(x)

)
. Here ki for i

from 0 to 2 are scalar parameters, and k2 is different for cases
x > 0 and x ≤ 0, i.e. for different sides of the waypoint.
Figure 2 illustrates the guidance reward field induced by the
target waypoint. Our formulation adapts the original “safety
reward” to rectangular waypoints and additionally penalizes
the behavior of approaching the gate from the wrong side.

The waypoint passing reward rwp and the timeout reward
rtime are sparse and only become non-zero at specific steps:
rwp turns to positive if the drone has just passed through a
waypoint, and rtime turns to negative if the drone has not
crossed the final waypoint within a time limit.

Finally, we use the linear velocity reward rvel to encourage
forward flight, which is beneficial for both making progress
and obstacle avoidance with a limited camera field of view.
It penalizes lateral and backwards velocity in the body frame
vB = [vx vy vz]

T using negative parameters k3 and k4:

rvel = k3v
2
y + k4 (min(vx, 0))

2 . (8)

5) Observations: We assume all observations are noise-
free and deterministic. At time t, the observations include: the
depth image dt ∈ [0, 1]270×480, drone states st ∈ [−1, 1]18,
the last action at−1 ∈ [−1, 1]4, and waypoint information of
the next two target waypoints wt ∈ [−1, 1]34.

The depth image is produced by a depth camera using
the pinhole model. We set resolutions to 270×480 and its
horizontal FOV to 90 degrees. The transform from the ground-
truth depth dgt to the observed depth d is:

d = min (dgt/dmax,1) , (9)

where dmax denotes the maximum sensing range.
The drone states vector is defined as:

s =
[
(pW−pW0

)T

pmax
xT
B yT

B zT
B

vT
W

vmax

ωT
B

ωmax

]T
, (10)

where pW0
is the initial drone position; xB, yB, and zB

are column vectors of the rotation matrix RWB. Manually
adjustable parameters for maximum sensing ranges for the
position, linear velocity, and angular velocity are denoted
by pmax, vmax, and ωmax, respectively. This vector is further
clamped to [−1, 1] before returned.

We include information about two future waypoints based
on the result of the gate observation experiment in [16]:
including information about two future gates can improve
success rate and lap times. The information vector of one
waypoint, indexed i, is defined as:

wi
t =

[
sc min(lT/lmax,1) vT

corners
]T

, (11)

with sc being the cosine similarity between vector pwpi−pWB
and the x-axis of waypoint i, l being the vector containing
lengths of vectors from the origin of the drone body frame to
4 waypoint corners, lmax being the maximum allowed value of
these lengths, and vcorners denoting concatenated unit vectors
from the drone to the corners. The dimension of wi

t adds up
to 17, so the dimension of wt, containing w0

t and w1
t , is 34.

6) Policy: We use a neural network to represent the policy.
Denoting the parameters of the neural network by θ, we can
express the policy function as:

at = πθ(dt, st,wt,at−1). (12)

The neural network consists of an image encoder module
that encodes an image dt to a 64-dimensional latent vector
zt and a multi-layer perceptron (MLP) module that maps
the concatenated 120-dimensional vector [zT

t sTt wT
t aT

t−1]
T to

action at.
We employ a pre-trained Deep Collision Encoder (DCE)

[32] as the image encoder and freeze its weights during
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Fig. 3. Illustration of parameters describing relative waypoint poses (a) and
obstacles managed by the obstacle manager (b)-(e). Sub-figure (b) shows
orbital obstacles, (c) and (d) show tree-like obstacles from different views,
and (e) shows wall-like obstacles between waypoints.

training. The DCE is a residual network using convolutional
layers at each block, and has fully connected layers that
generate the mean and variance of the latent distribution, from
which the latent vector z is sampled. This sampling process
makes the policy stochastic.

The MLP module consists of two major parts. The first
part is composed of 4 fully connected linear layers with
Exponential Linear Unit (ELU) activation in between each
layer, while the second part contains separate linear layers.
The output of the first part is mapped to the mean and variance
of the action distribution, in addition to a scalar, also known
as the “value”, by 3 separate linear layers. During training,
the action is sampled from the distribution characterized by
mean and variance, and during evaluation and deployment,
the action directly uses the mean.

C. Policy Training

Given that our policy is represented by a neural network,
our goal boils down to finding the optimal parameters θ
that maximizes the expectation of accumulated rewards in
Equation (4). We use the Proximal Policy Optimization (PPO)
[33] reinforcement learning algorithm for this purpose. Addi-
tionally, we explore the technique of domain randomization
to enable generalization to unseen environments, hoping that
with enough variability encountered during training, an unseen
environment would appear as just another variation, where
the policy has required knowledge to finish the track. To
achieve this, we have designed a waypoint generator, a random
obstacle manager, and multiple training strategies.

1) Waypoint Generator and Obstacle Manager: We con-
sider a racing track the combination of waypoints and ob-
stacles for the obstacle-aware drone racing task. We use the
waypoint generator to generate random waypoints and use the
obstacle manager to put obstacles at places that effectively
block the flight paths between waypoints.

We use 5 values (ψwpij , θwpij , rwpij , αwpij , γwpij ) to param-
eterize relative pose between waypoint i and j, as shown in
Figure 3(a). Given the pose of waypoint i as position vector
and rotation matrix (pwpi ,Rwpi), the pose of waypoint j can
be calculated using:

pwpj = rwpijRy(θwpij )Rz(ψwpij )Rwpi

[
1 0 0

]T
+ pwpi

Rwpj = Ry(γwpij )Rx(αwpij )Ry(θwpij )Rz(ψwpij )Rwpi

.

(13)

Although there are only 5 degrees of freedom, this parameteri-
zation allows for enough room for randomization and intuitive
adjustments of the track’s difficulties.

Waypoints are generated procedurally. Firstly, the Initial
waypoint’s roll, pitch, and yaw angles are sampled uniformly
within defined bounds, and the position is set to an arbitrary
value. Secondly, for subsequent waypoints, we sample the
relative pose parameters uniformly within defined bounds and
calculate their poses till the final waypoint using Equation
(13). Thirdly, parameters (wwp, hwp, gwp) are also sampled
uniformly within defined ranges for all waypoints. Lastly,
we offset all waypoints’ positions to fit the track within
environment boundaries.

We observe that uniformly distributing obstacles in R3, as
seen in [15], is not suitable for significantly larger environ-
ments. Uniformly distributing obstacles requires an excessive
number of obstacles in the environments, which increases
computational overhead and hurts simulation performance.
Our obstacle manager allows for challenging the agent on
obstacle avoidance using a small number of obstacles, by
strategically sampling obstacle poses based on the generated
waypoints. The manager supports uniformly distributing tree-
like obstacles along line segments connecting waypoint cen-
ters, placing wall-like cuboids between waypoints, and finally
making obstacles of various shapes orbit waypoints. Managed
obstacles are illustrated in Figure 3(b) to 3(e). By anchoring
obstacles to the racing track, we achieve efficient obstacle
management. Furthermore, the difficulty level can controlled
by specifying the number of obstacles in each group and
parameters defining the shapes of the obstacles.

2) Training on Track Segments: Since full-length tracks are
the combination of segments of shorter lengths, we believe
that training on short track segments will allow generalization
to full-length tracks, while reducing computational overhead
for the waypoint generator, obstacle manager, and the physics
engine. Plus, with shorter track lengths, we can fit full episodes
into shorter rollout horizons, which increases policy update
frequency and potentially reduces the wall-clock time required
for the policy to converge. We generate waypoints and manage
obstacles for short track segments containing only 4 way-
points. The task is to fly from the initial position near waypoint
0, pass through waypoint 1, and finally finish the episode
by passing through waypoint 2. Waypoint 3 is generated to
keep the dimensions of the waypoint information vector wt

consistent.
3) Environment Randomization: Combining the waypoint

generator and obstacle manager, we can create an infinite
amount of random environments for training. Aiming to pro-
vide the agent with diverse experience, our implementation
of the waypoint generator and the obstacle manager supports
vectorized environments, that is, for a single round of data
collection (rollout), multiple different environments are ran-
domly created using these tools. By incorporating experience
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collected in different environments into a single rollout dataset,
we avoid overfitting the policy to a single environment from
the ground up. For a small number of parallel environments,
e.g. a few hundred, creating only a single set of random
environments and using them for all rollouts is not enough, as
this makes the policy learn an average strategy that maximizes
the mean total reward for this specific set of environments.
To solve this problem, we generate a new set of random
environments for every single rollout, which further diversifies
the total experience dataset.

4) Random Agent Initialization: The camera transform in
the drone body frame and drone states are randomly initialized
upon agent resets to make the policy more robust. This strategy
can also be seen as an application of domain randomization.
Specifically, we randomize the camera position in the yz-
plane of the drone body frame, and the camera tilt angle. For
drone states, we initialize the position within the obstacle-free
zone of the initial waypoint to avoid spawning the drone into
obstacles, other states such as linear and angular velocities,
as well as the initial actions, are uniformly sampled within
defined ranges. The initial attitude is either the same as the
initial waypoint’s attitude or the resulting attitude of firstly
aligning the body x-axis with vector pwp1−pwp0 , and secondly
rotating about the vector for a random angle.

D. Implementation Details

We implement vectorized environments based on the Isaac
Gym Simulator [34], which supports parallel physics simula-
tion on GPUs and offers relatively high image rendering speed.
To work with Isaac Gym, our code is highly optimized using
PyTorch-based vectorized operations. The physics simulation
frequency and angular velocity control frequency are set to 250
Hz, while the camera rendering frequency and policy control
frequency are set to 25 Hz, that is, one environment step
corresponds to 10 closed-loop physics steps. With this setting,
we achieve about 3,000 total environment steps per second
with camera sensors enabled. This speed is recorded on a
consumer-grade desktop PC equipped with an Intel i9-13900K
CPU and an Nvidia RTX 4090 GPU running the Ubuntu 22.04
operating system.

Fig. 4. Illustration of parallel environments for training. Environments are
tiled up in Isaac Gym but are independent and asynchronous. Debug views
of the waypoints are enabled here for visualization purposes, but are disabled
during actual training.
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Fig. 5. Logged mean episode length in steps, mean total reward, mean
collision reward, and mean waypoint reward throughout training.

Although the implemented waypoint generator and obstacle
manager are capable of generating complex racing tracks
with a large number of obstacles, for now, we train the
policy in simpler environments. To ensure enough expe-
rience diversity within data collected through one rollout,
we run 512 random environments in parallel. Every en-
vironment includes 4 tree-like obstacles taken from Aerial
Gym [35], and 12 wall-like obstacles with sizes randomly
specified from (0.2, 1.5, 1.5) to (0.2, 2.5, 2.5) in meters. For
the waypoint generator, the range of waypoint sizes is set
to [1.4, 2.0]; the initial waypoints’ roll and pitch are re-
stricted within range [−0.2, 0.2], but yaw can be an arbi-
trary value; bounds of the relative waypoint pose parameters
(ψwpij , θwpij , rwpij , αwpij , γwpij ) are (−0.3,−0.3, 6, 0, 0) and
(0.3, 0.3, 18, 3.14, 0.2). Figure 4 shows the appearances of
such environments.

We code the training loop based on the actor-critic PPO
agent in RL-Games [36]. Our domain randomization happens
during environment resets, so we modify the original training
loop to include calling environment reset before running
rollout in every training iteration. In total, we train the
policy for 1,000 iterations, which corresponds to collecting
experiences in 512,000 different environments for about 520
million environment steps. It takes about 50 wall-clock hours
to finish all iterations. Figure 5 shows the mean episode length,
total reward, and the collision and waypoint reward terms
throughout training. With the collision reward set to -10 at
collision, and the waypoint reward set to 5 at waypoint passing,
the corresponding reward curves suggest achieving around
10% crash rate and 90% success rate at the end of training.
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Fig. 6. Illustration of rollout trajectories of the trained policy on multiple different racing tracks without obstacles: (a) “Kebab”, (b) “Circle”, (c) “Turns”,
and (d) “Wavy Eight”. Physical gate bars are represented as points colored according to their z positions in the world frame.

(a)
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Success Rate: 29%
Average Speed: 8.7 m/s

Fig. 7. Side views (a) and top-down views (b) showing distorted trajectories
due to the presence of obstacles.

IV. EXPERIMENTS

A. Demonstrating Generalizable Obstacle-Aware Racing

We first demonstrate the policy’s ability to generalize to un-
seen waypoint placement and the number of waypoints. Four
full-length tracks are designed for this experiment: “Kebab”,
“Circle”, “Turns”, and “Wavy Eight”. The “Kebab” features
5 waypoints roughly in a row, representing scenarios encoun-
tered during training. The “Circle” consists of 9 waypoints
uniformly distributed on a circle with a radius of 15 meters.
The “Turns” has 11 waypoints positioned on a big letter “S”.

Success Rate: 30%
Average Speed: 10.0 m/s

Fig. 8. Trajectories executed on the “Circle” track with additional obstacles.

Then in the “Wavy Eight”, waypoints form a figure of eight,
with their z coordinates different. Since the drone’s position
is part of the observation, all waypoints in the test tracks are
positioned within the same environment boundaries as those
used for training.

Drones are randomly initialized as in training, but we set
larger ranges for initial attitude, body-frame velocities, and
commands, to further “stress” the policy. Under this setup, we
roll out 100 episodes for each track, log the trajectories, and
calculate the success rate and the average linear speed. Results
are shown in Figure 6. On track “Kebab”, the most similar to
the training scenarios, the policy achieves the highest success
rate. As the track gets more twists and includes more sharp
turns that are not present in the training set, the success rate
drops. Despite the performance drop, this experiment confirms
that the policy generalizes to full-length racing tracks and
completely unseen relative waypoint poses.
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(a) (b) (c) (d)

Fig. 9. Illustration of random tracks of different complexities and executed trajectories on two randomly selected tracks. Sub-figures (a) to (b) correspond to
difficulty levels from 1 to 4.

To verify the generalizable obstacle avoidance ability of
the policy, we deliberately place obstacles of various shapes,
including ones not present in training, on track “Kebab” and
“Circle” to block trajectories that might have been executed
if there were no obstacles. If the policy is capable of obsta-
cle avoidance, the resulting trajectories would be distorted.
Furthermore, due to randomness in the initial drone states,
we also anticipate observing non-homotopic trajectories or
passing around obstacles on different sides. The results shown
in Figures 7 and 8 confirm that our policy has indeed learned
the generalizable ability to avoid obstacles. However in several
parts of these designed tracks, the obstacle configurations have
deviated too far from those in training environments, so the
success rates are low.

B. Benchmarking Policy by Varying Scene Complexity

To further evaluate the capability of our policy, we assess
its performance on a series of randomized tracks with varying
levels of complexity. Level 1 represents the difficulty level
of training environments: in each environment there are 12
wall-like obstacles and 4 tree-like obstacles, relative waypoint
pose parameters (ψwpij , θwpij , rwpij , αwpij , γwpij ) are set be-
tween (−0.3,−0.3, 6, 0, 0) and (0.3, 0.3, 18, 3.14, 0.2). Level
2 doubles the amount of obstacles and leaves waypoint pa-
rameters unchanged. Level 3 includes 60 additional obstacles
orbiting waypoint 0 and waypoint 1. Finally, level 4 sets the

bounds of the waypoint parameters to (−1,−0.4, 6, 0, 0) and
(1, 0.4, 18, 3.14, 0.3) on top of other settings in level 3.

We generate 100 random tracks per difficulty level and roll
out 10 episodes per track, resulting in a total of 1000 episodes
per level. Screenshots of environments in Isaac Gym, sample
environments, and resulting trajectories are illustrated in Fig-
ure 9. For each trajectory, we log its termination mode, safety
margin, mean and maximum values of average commands of
all motors, linear speed, and angular speed. Then we can
calculate the success rates and plot the data distributions of
other metrics over all trajectories for all difficulty levels, as
shown in Figure 10.

The success rate starts at 0.9 for level 1, consistent with
the training results shown in Figure 5, but decreases as
track difficulty increases, reaching around 0.4 by level 4. A
similar downward trend is observed for the safety margin,
indicating that the drone comes closer to obstacles on harder
tracks. In terms of control effort, the maximum values of
motor commands remain consistent across difficulty levels,
suggesting that the policy pushes the drone to its control limits
whenever possible. The mean values of commands show a
clear upward trend, implying that navigating more complex
tracks requires increasingly aggressive control inputs. This is
also reflected in the angular speed, where both mean and
maximum values increase with difficulty, as the drone must
rotate more quickly to handle tighter turns and avoid obstacles.
Finally, both the mean and maximum values of linear speed
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Fig. 10. Policy performance metrics across different difficulty levels. The
safety margin of an episode is the minimum distance between the trajectory
and the obstacle.

show a slight decrease as difficulty increases, due to the drone
slowing down in response to more complex track layouts and
more cluttered spaces.

These results show that the policy generalizes to unseen
tracks and achieves a high success rate in similar-to-training
environments. As the test set deviates from the training set,
the policy can adapt to increased difficulty with higher control
effort and more careful velocity management and still maintain
a certain level of success rate.

C. Towards Robust Obstacle-Aware Racing Policies

We additionally evaluate the policy on four hard tracks,
all characterized by shorter waypoint distances, and a higher
density of obstacles. These characteristics require the drone
to do sharper turns. As a result, the policy struggles to
navigate, with most trajectories being unsuccessful, lowering
success rates to below 0.01, as shown in Figure 11. This
performance decline suggests that the current policy, trained in
simple environments, lacks the robustness required to navigate
more complex and constrained tracks. This limitation could
be due to over-simplified environments in the training set.
The training tracks have fewer obstacles, and obstacles are all
distributed in a simple way, which may make the policy overfit
to this specific track design. As a result, the policy struggles
in new, more challenging scenarios that require advanced
obstacle avoidance and tighter maneuvering.

To improve robustness, the core problem would be how
to randomly create a set of training environments that bet-
ter represent the complexity of real-world tracks. Once this
problem is answered, we can train the policy with domain
randomization to finally obtain a robust policy for obstacle-
aware drone racing.

Fig. 11. Illustration of rollout trajectories on hard racing tracks where
distances between waypoints are much shorter, requiring sharper turns. Most
trajectories are unsuccessful.

V. CONCLUSION

This work presents an approach for training a generalizable
obstacle-aware drone racing policy using domain randomiza-
tion and deep reinforcement learning. The policy is trained
on randomized short track segments, and evaluated on both
hand-crafted, full-length tracks and randomized short segments
across varying difficulty levels. Experiment results demon-
strate that the policy generalizes well to unseen tracks and
adapts to increased difficulty levels, achieving high success
rates in environments closely resembling the training set.
However, the policy encounters challenges in more complex,
cluttered environments, where obstacle density and tighter
waypoint spacing result in significant performance drops of
the policy. This highlights the importance of further research
into the method for generating more diverse and challenging
training environments. Future work may also explore using
advanced training strategies such as curriculum learning or
adaptive difficulty scaling to better prepare policies for real-
world drone racing challenges.
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6
Conclusion

This report details efforts devoted towards training a neural policy that can do obstacle-aware drone racing

and is capable of generalizing to unseen racing tracks. At the heart of the thesis is the idea of using

reinforcement learning with domain randomization over racing tracks: by randomizing the tracks and

exposing our agent to diverse environments, we hope that an unseen track is just another variation of the

tracks used in training, where the agent is trained to perform well. This idea is shown effective in extensive

simulated experiments: the agent achieves a 90% success rate while flying at an average speed of 10 m/s

in similar-to-training but not exactly seen environments. However, it is important to point out that random

randomization fails if the test set is too different from the training set such that the test set can no longer

be counted as a “variation”. This limitation suggests that to make the policy more robust, we need better

methodologies for creating the training environments, or the training set. These key results and insights

have been put into the article in Part III.

Before connecting the dots, putting pieces together, and writing the final article, a significant amount

of engineering effort has been made to “create the dots”. A complete software stack for training drone

racing policies in Isaac Gym has been developed. The software stack includes reusable modules such

as the waypoint generator, procedural asset composer, racing track creator, a polynomial drone model,

and a Betaflight-based angular rates controller. They can be directly used for obstacle-free drone racing

tasks, which have also been demonstrated as one of the early results. Since our software leverages

GPU parallelization, it reaches very high simulation speed. Using the software, we can train a policy that

achieves state-of-the-art lap times in under 20 minutes using the direct training method, and we can obtain

a generalizable policy by training it on 16,384 random track segments for just 10 minutes.

Let’s wrap up by reflecting upon the research questions.

What are existing methods in the literature that can achieve the objective in whole or partially?

Research Question 1

Answer 1: No existing method in the literature fully achieves the desired objective. However, several

learning-based approaches partially address it [32, 41, 42, 51]. This question has been answered in detail

at the end of Section 2.5.

If there is no existing method that achieves the objective completely, what is our proposed

method?

Research Question 2

Answer 2: Our proposed method is to apply domain randomization over environments, specifically over

racing track waypoint poses and obstacle configurations, and to combine it with parallel experience

collection in different randomized environments. Details are explained in the article in Part III.
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How does the policy trained using the proposed method perform in terms of navigation success

rate, speed, and generalization ability?

Research Question 3

Answer 3: The policy performs well in environments similar to those seen at training time, but performance

decreases as the test environments get less similar to the training environments. In similar-to-training

environments, the policy achieves a 90% success rate and an average linear speed of 10 m/s. In random

environments with additional obstacles, the success rate drops to 40% and the average speed decreases

to 7 m/s. On manually designed tracks with obstacles, the success rate may further decrease. Despite the

decline in success rate, the policy’s generalization ability is proven by non-zero success rates on racing

tracks significantly different than training tracks.



7
Recommendations

Training Environment Generation

Training with domain randomization over tracks is effective in improving a policy’s ability to generalize to

unseen test tracks. However, if the test tracks are too different to be viewed as a training track variation,

the policy may easily fail. This brings forward the question of how to generate a set of environments for

training so that the policy is robust enough to a vast range of test cases. In the obstacle-free case, we have

also observed sub-optimal performance of a policy trained on randomized tracks as compared to a policy

directly trained on the target track, which also leads to the question of how to train a policy that performs

as well as directly trained ones while preserving generalization ability. This question is also related to

training environment generation. But there might be other factors and methodologies too as this is still an

open question.

Observation Design

In this project, the depth image is clipped at a maximum range of 20 meters, normalized, and encoded via

DCE. While this works in simulation, it poses limitations for real-world applications, especially when using a

monocular FPV camera mounted on a drone. Future work should explore alternatives, such as integrating

monocular depth estimation networks or stereo depth systems for more practical perception. Additionally,

the current inclusion of the drone’s normalized position in the observation limits the racing track size to the

maximum observation range, which constrains performance outside this range. Investigating the removal

or adjustment of these observation terms, and analyzing the resulting policy performance, could be a

valuable next step.

Policy Network Architecture

The policy network used in this project is relatively simple due to time constraints. Adding a memory

module, such as GRU or LSTM, could help capture temporal dependencies and improve performance in

complex scenarios where the policy needs to recall past states. Moreover, the use of a stochastic policy

derived from the sampled latent space of DCE adds uncertainty, which may make real-world deployment

challenging. Exploring the use of the mean latent space, or deterministic policy approaches, may lead to

more stable and reliable performance.

Reward Function Design

The reward function design could be improved to make learning more efficient. The guidance reward is

adapted from a safety reward in [32], but the negative reward near waypoints discourages the agent from

approaching them, which delays discovering the large positive reward associated with passing through them.

A possible improvement would be making the reward field positive on the “inbound” sides of waypoints to

guide the agent more smoothly. Additionally, there is no dense reward for obstacle avoidance, making it

harder for the agent to learn this crucial behavior. Implementing a dense obstacle avoidance reward would

require significant engineering, particularly for vectorized environments, but this is an important area for

future exploration.
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Scaling up Training

The current implementation supports running a single instance of Isaac Gym on one GPU, which limits

the speed of experience collection. Vision-involved reinforcement learning typically benefits from using

multiple GPUs for rendering, which can dramatically increase the steps per second achieved during

training. Adapting the code to support multi-GPU rendering and training is highly recommended, as it

would significantly accelerate experimental iterations. A viable approach may include porting the code to

Isaac Lab and exploring cloud computing platforms like AWS or Google Cloud, which offer scalable GPU

resources to support high-performance training environments.
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A
Appendix

1 @torch.jit.script
2 def _compute_mixing_script(
3 mix_table: torch.Tensor,
4 throttle_boost_gain: float,
5 thrust_linearization_throttle_compensation: float,
6 thrust_linearization_gain: float,
7 output_idle: float,
8 pid_sum: torch.Tensor,
9 cmd_t: torch.Tensor,

10 throttle_low_freq_component: torch.Tensor,
11 ):
12 # find desired motor command from RPY PID, shape (num_envs, num_rotors)
13 rpy_u = torch.matmul(mix_table[:, 1:], pid_sum.T).T
14

15 # u range for each environment, shape (num_envs, )
16 rpy_u_max = torch.max(rpy_u, 1).values
17 rpy_u_min = torch.min(rpy_u, 1).values
18 rpy_u_range = rpy_u_max - rpy_u_min
19

20 # normalization factor
21 norm_factor = 1 / rpy_u_range # (num_envs, )
22 norm_factor.clamp_(max=1.0)
23

24 # mixer adjustment
25 rpy_u_normalized = norm_factor.view(-1, 1) * rpy_u
26 rpy_u_normalized_max = norm_factor * rpy_u_max
27 rpy_u_normalized_min = norm_factor * rpy_u_min
28

29 # throttle boost
30 throttle_high_freq_component = cmd_t - throttle_low_freq_component
31 throttle = cmd_t + throttle_boost_gain * throttle_high_freq_component
32 throttle.clamp_(min=0.0, max=1.0)
33

34 # thrust linearization step 1
35 throttle /= 1 + thrust_linearization_throttle_compensation * torch.pow(
36 1 - throttle, 2
37 )
38

39 # constrain throttle so it won't clip any outputs
40 throttle.clamp_(min=-rpy_u_normalized_min , max=(1 - rpy_u_normalized_max))
41

42 # synthesize output
43 u_rpy_t = rpy_u_normalized + throttle.view(-1, 1)
44

45 # thrust linearization step 2
46 u_rpy_t *= 1 + thrust_linearization_gain * torch.pow(1 - u_rpy_t, 2)
47

48 # calculate final u based on idle
49 u = output_idle + (1 - output_idle) * u_rpy_t
50

51 return u

Listing A.1: Python code for the mixing function.
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1 def _define_waypoints() -> List[Waypoint]:
2 waypoints = [
3 Waypoint(
4 index=0, xyz=[-5.0, 4.75, 1.0], rpy=[0.0, 0.0, -90.0],
5 length_y=1.0, length_z=1.0, gate=False,
6 ),
7 Waypoint(
8 index=1, xyz=[-0.5, -1.0, 3.25], rpy=[0.0, 0.0, -18.0],
9 length_y=1.7, length_z=1.7, gate=True,

10 ),
11 Waypoint(
12 index=2, xyz=[9.6, 6.25, 1.1], rpy=[0.0, 0.0, 0.0],
13 length_y=1.7, length_z=1.7, gate=True,
14 ),
15 Waypoint(
16 index=3, xyz=[9.5, -3.8, 1.1], rpy=[0.0, 0.0, 226.0],
17 length_y=1.7, length_z=1.7, gate=True,
18 ),
19 Waypoint(
20 index=4, xyz=[-4.5, -5.1, 3.25], rpy=[0.0, 0.0, 180.0],
21 length_y=1.7, length_z=1.7, gate=True,
22 ),
23 Waypoint(
24 index=5, xyz=[-4.5, -5.1, 1.2], rpy=[0.0, 0.0, 0.0],
25 length_y=1.7, length_z=1.7, gate=True,
26 ),
27 Waypoint(
28 index=6, xyz=[4.9, -0.5, 1.1], rpy=[0.0, 0.0, 79.0],
29 length_y=1.7, length_z=1.7, gate=True,
30 ),
31 Waypoint(
32 index=7, xyz=[-2.0, 6.6, 1.1], rpy=[0.0, 0.0, 208.0],
33 length_y=1.7, length_z=1.7, gate=True,
34 ),
35 Waypoint(
36 index=8, xyz=[-0.5, -1.0, 3.25], rpy=[0.0, 0.0, -18.0],
37 length_y=1.7, length_z=1.7, gate=False,
38 ),
39 ]
40

41 return waypoints

Listing A.2: Code for defining waypoints of the Split-S racing track.

1 def _define_obstacles() -> Tuple[List[urdfpy.Link], List[List[float]]]:
2 obstacle_links = []
3 obstacle_origins = []
4

5 obstacle_links.append(cuboid_link("obstacle_0", [4.0, 0.1, 2.0]))
6 obstacle_origins.append([-4.0, 2.0, 1.0, 0.0, 0.0, 0.0])
7

8 obstacle_links.append(cuboid_link("obstacle_1", [0.1, 2.0, 2.0]))
9 obstacle_origins.append([-2.0, 3.0, 1.0, 0.0, 0.0, 0.0])

10

11 obstacle_links.append(cuboid_link("obstacle_2", [0.1, 2.0, 2.0]))
12 obstacle_origins.append([2.0, 4.0, 1.0, 0.0, 0.0, 0.0])
13

14 obstacle_links.append(cuboid_link("obstacle_3", [2.0, 0.1, 2.0]))
15 obstacle_origins.append([3.0, 0.0, 1.0, 0.0, 0.0, 0.0])
16

17 obstacle_links.append(cuboid_link("obstacle_4", [2.0, 0.1, 2.0]))
18 obstacle_origins.append([5.0, -2.0, 1.0, 0.0, 0.0, 0.0])
19

20 obstacle_links.append(cuboid_link("obstacle_5", [0.1, 2.0, 2.0]))
21 obstacle_origins.append([1.0, -2.0, 1.0, 0.0, 0.0, 0.0])
22

23 return obstacle_links, obstacle_origins

Listing A.3: Code for defining obstacles of the Walls racing track.
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1 # algos_torch.model_builder.NetworkBuilder.__init__
2 self.network_factory.register_builder(
3 'actor_critic',
4 lambda **kwargs: network_builder.A2CBuilder()
5 )
6 self.network_factory.register_builder(
7 'resnet_actor_critic',
8 lambda **kwargs: network_builder.A2CResnetBuilder()
9 )

10 self.network_factory.register_builder(
11 'rnd_curiosity',
12 lambda **kwargs: network_builder.RNDCuriosityBuilder()
13 )
14 self.network_factory.register_builder(
15 'soft_actor_critic',
16 lambda **kwargs: network_builder.SACBuilder()
17 )
18

19 # algos_torch.model_builder.ModelBuilder.__init__
20 self.model_factory.register_builder(
21 'discrete_a2c',
22 lambda network, **kwargs: models.ModelA2C(network)
23 )
24 self.model_factory.register_builder(
25 'multi_discrete_a2c',
26 lambda network, **kwargs: models.ModelA2CMultiDiscrete(network)
27 )
28 self.model_factory.register_builder(
29 'continuous_a2c',
30 lambda network, **kwargs: models.ModelA2CContinuous(network)
31 )
32 self.model_factory.register_builder(
33 'continuous_a2c_logstd',
34 lambda network, **kwargs: models.ModelA2CContinuousLogStd(network)
35 )
36 self.model_factory.register_builder(
37 'soft_actor_critic',
38 lambda network, **kwargs: models.ModelSACContinuous(network)
39 )
40 self.model_factory.register_builder(
41 'central_value',
42 lambda network, **kwargs: models.ModelCentralValue(network)
43 )
44

45 # isaacgymenvs.train.launch_rlg_hydra.build_runner
46 model_builder.register_model(
47 'continuous_amp',
48 lambda network, **kwargs: amp_models.ModelAMPContinuous(network),
49 )
50 model_builder.register_network(
51 'amp',
52 lambda **kwargs: amp_network_builder.AMPBuilder()
53 )

Listing A.4: Registrations of models and network builders.
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Figure A.1: A video presentation is available at: https://www.youtube.com/watch?v=f3pSJzbFjsM.

https://www.youtube.com/watch?v=f3pSJzbFjsM
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