<]
TUDelft

Delft University of Technology

Software Abstractions for Programmable Quantum Network Nodes

Delle Donne, C.

DOI
10.4233/uuid:11fac685-6a2d-46eb-b15e-6d05fdcd9f1b

Publication date
2023

Document Version
Final published version

Citation (APA)

Delle Donne, C. (2023). Software Abstractions for Programmable Quantum Network Nodes. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:11fac685-6a2d-46eb-b15e-
6d05fdcd9f1b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:11fac685-6a2d-46eb-b15e-6d05fdcd9f1b
https://doi.org/10.4233/uuid:11fac685-6a2d-46eb-b15e-6d05fdcd9f1b
https://doi.org/10.4233/uuid:11fac685-6a2d-46eb-b15e-6d05fdcd9f1b

Software Abstractions

for Programmable
Quantum Network Nodes

Carlo Delle Donne

Software Abstractions for Programmable
Quantum Network Nodes

Software Abstractions for Programmable
Quantum Network Nodes

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,
by the authority of the Rector Magnificus, prof. dr. ir. T. H. J. J. van der Hagen,
chair of the Board for Doctorates,
to be defended publicly on
Tuesday, 27 June 2023 at 12:30 o’clock

by
Carlo DELLE DONNE

Master of Science in Embedded Systems,
Delft University of Technology, the Netherlands,
born in Potenza, Italy.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. S. D. C. Wehner, promotor

Dr. P. Pawelczak, promotor

Independent members:

Prof. dr. A. van Deursen, Delft University of Technology

Dr. L. Y. Chen, Delft University of Technology

Prof. dr. R. Van Meter, Keio University, Japan

Dr. C. G. Almudéver, Technical University of Valencia, Spain

Prof. dr. K. G. Langendoen, Delft University of Technology, reserve member

V‘Q‘ QUANTUM R L\ . "
iHH INTERNET x*). CﬂSll’l’lll"

/
ALLIANCE AR o - research school

NWO

Keywords: Quantum networks, operating systems

Cover: % D B (Silent tyrant), Mari Nakagawa

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

Printed by: Ipskamp Printing

https://www.ipskampprinting.nl/proefschriften/

An electronic version of this dissertation is available at
https://repository.tudelft.nl/.

ISBN 978-94-6384-457-4

https://github.com/Inventitech/phd-thesis-template
https://www.ipskampprinting.nl/proefschriften/
https://repository.tudelft.nl/

It’s tempting to linger in this moment,

while every possibility still exists.

But unless they are collapsed by an observer,
they will never be more than possibilities.

Solanum

vii

Contents

Summary
Samenvatting
Acknowledgments
Curriculum Vitae
List of Publications
1 Introduction
1.1 Networking and Quantum Networking.
1.2 ResearchGoals.
1.3 Data and Software Availability 0oL
14 ThesisOQutline
References. L
2 Quantum Networking: Background and Challenges
2.1 Background
22 Challenges. L
23 RelatedWork.
References. L
3 Architecture of an Operating System for a Quantum Network Node
3.1 General Design Considerations.
32 KeyOSComponents.
3.2.1 Memory Management Unit.
3.22 Quantum Network Stack.
323 Schedulero
33 QNodeOSDesign. o
3.3.1 Full Stack of a Quantum Network Node
3.3.2 Processes.
3.3.3 Process Scheduling. oL,
3.3.4 QNodeOS Architecture.
3.4 DiscusSiono e e
References. L
4 Entanglement Generation With a Quantum Networking Stack
4.1 Quantum Link Layer Protocol
42 RevisedProtocolo
43 Physical Layer Control in Real-Time

44 Evaluation

ix

xi

xiii

viii Contents
4.5 Results With and Without Corrections 49

4.6 Discussion e 51
References. 52

5 OQuantum Networking With an Elementary Operating System 57
51 Implementation Lo 58

52 TestCases 60
5.2.1 Single-Qubit Gate Tomography 60

5.2.2 Entanglement Generation 60

5.2.3 Delegated Computation 61

5.24 Multitaskingo Lo 62

53 Discussiono e 62
References 63

6 Data Origin Authentication in the Quantum Networking Stack 65
6.1 RelatedWork. 67

6.2 Why Data Origin Authentication. 68

6.3 Experimental Methodology. 70

6.4 Classical Communication Latency 72

6.5 SimulationResultso oo 74

6.6 Discussion Lo 76
References. 77

7 Conclusion 79
7.1 SummaryofResults 79

72 FutureWorko 80
References. 81

A QNodeOS Components and Interfaces 83
References 86

B QDevice Interface 87
References. L 91

C Implementation of the Quantum Physical Layer 93
References 95

D Raw Distributions of RTT Measurements 97
Glossary 101

ix

Summary

Computer networks have been one of the most revolutionary concepts and technologies
of the last fifty years. Currently, it is arguably impossible to imagine a world without
the internet. And yet, just five decades ago, hardly anybody knew what it even meant.
Today, the first quantum computer networks are starting to take shape, along with the
promise of a future quantum internet. Quantum networking exploits fundamental primi-
tives of quantum mechanics — most importantly entanglement — to offer a new paradigm
of connectivity, which will enhance communication networks and bring some new excit-
ing applications into the scene.

Quantum networking has been studied for a few years already. Nevertheless, the cur-
rent state of the art of quantum networks is somewhat comparable to that of the classical
internet at the end of the 1960s: lots of interesting ideas, some experimental demonstra-
tions, and very few reliable testbeds. Scaling up to larger networks of quantum comput-
ers requires joint efforts of physics, mathematics, electronics and computer science, at the
very least. Bringing these disciplines together is a very bumpy road, given that we do not
yet have standard quantum physical platforms to work with, nor universal frameworks
and testbeds to validate our hypotheses against. One of the missing links between the
highly-complex physical platforms and networks and the high-level descriptions of quan-
tum networking applications is a framework that bridges that gap between these two,
providing platform-independent abstractions of the underlying physics to programmers
and users of a quantum network.

The goal of this thesis is threefold: discuss the requirements for such a framework
of abstractions — which we refer to as an operating system — for quantum networks,
propose a design for such an operating system, and implement and validate this design on
a physical quantum network. Whilst we are interested in measuring the performance of
the operating system, we consider our design to be best-effort, and thus we are primarily
aiming at establishing a baseline for future research in this field. Nevertheless, we are after
a fully-functional product that we hope can be used to push the boundaries of quantum
networking demonstrations, and to better understand the challenges of designing and
implementing efficient operating systems for quantum network nodes.

xi

Samenvatting

Computer netwerken is een van de meest revolutionaire concepten and technologieén
van de afgelopen vijftig jaar. Tegenwoordig is het zo goed als onmogelijk om je een we-
reld zonder het internet voor te stellen. En toch, slechts vijf decennia geleden, wist bijna
niemand wat het ook maar betekende. Nu wordt gewerkt aan de eerste kwantum compu-
ter netwerken, met daarbij een belofte op een toekomstig kwantum internet. Kwantum
netwerken maken gebruik van de fundamentele beginselen van de kwantummechanica —
waarbij vooral het concept van verstrengeling van belang is — om een nieuw paradigma van
connectiviteit aan ge bieden, welke communicatie netwerken zal versterken en nieuwe,
spannende toepassingen zal doen opbrengen.

Kwantum netwerken worden al een aantal jaar bestudeerd. Desondanks is de status
van kwantum netwerken tegenwoordig ongeveer vergelijkbaar met dat van het klassieke
internet aan het eind van de jaren 60: veel interessante ideeén, een aantal experimen-
tele demonstraties, en weinig betrouwbare testbeds. Opschalen naar grotere netwerken
met kwantum computers heeft op zijn minst een collectieve inspanning van natuurkun-
digen, wiskundigen, elektrotechnici en informatici nodig. Deze disciplines samen laten
komen is een lastige taak, aangezien we nog geen standaard fysieke platformen hebben,
nog hebben we universele kaders en testbeds om onze hypothese mee te testen. Eén van de
ontbrekende schakels tussen complexe fysieke platformen en netwerken en de abstracte
omschrijvingen van kwantum netwerk toepassingen is een kader dat het gat daartussen
overbrugt door platform-onathankelijke abstracties van de onderliggende natuurkunde
aan te bieden aan programmeurs en gebruikers van het kwantum netwerk.

Het doel van deze scriptie heeft drie hoofdzaken: de benodigdheden van een derge-
lijk kader van abstracties voor kwantum netwerken — welke we een besturingssysteem
noemen — bediscussiéren, een ontwerp voor zo’n besturingssysteem aandragen, en dit
ontwerpen implementeren en valideren op een fysiek kwantum netwerk. Waar we wel
geinteresseerd zijn in de prestaties van het besturingssysteem, noemen we ons ontwerp
“best-effort”, and richten we ons vooral op het neerzetten van een uitgangspunt voor toe-
komstig onderzoek in dit onderzoeksgebied. Desondanks zijn we op zoek naar een volle-
dig functionerend product waarvan we hopen dat het de grenzen van kwantum netwerk
demonstraties kan verleggen, en om een beter begrip te krijgen van de uitdagingen in het
efficiént implementeren van besturingssystemen voor kwantum netwerk nodes.

xiii

Acknowledgments

Whilst this thesis bears my name as the only author, all of this work and my whole per-
sonal and professional development would not have been remotely possible without the
help of a number of people. There is no way a few paragraphs can express my gratitude
satisfactorily, but I want you to know that your support has been invaluable and essential.

My two promotors Stephanie and Przemek have been my guiding light throughout
this four-year scientific journey. Ronald has provided a cutting-edge testbed to enable
groundbreaking experiments. The committee members Arie, Carmina, Lydia and Rodney
have provided solid feedback to help me refine this dissertation and have accepted to wear
Medieval heat-trapping robes at the end of June to attend my defence. My fellow group
mates Alvaro, Bart, Bethany, Francisco, Guus, Hana, Janice, Ravi, Scarlett, Soubhadra and
Thomas, and other present and past QuTechers Alejandro, Aram, Axel, David, David, Eric,
Gayane, Guilherme, Helena, Ingmar, Josh, Joél, Kanchan, Kenneth, Luise, Mariagrazia,
Matt, Matt, Matteo, Nico, Onder, Paul, Ravi, Remon, Siddhant, Sébastian, Thom, Thomas,
Tim, Vicky and Wojtek have been the pillar of my work and life at QuTech. My friends
from Italy Alessio, Davide, Davide, Edoardo, Eleonora, Francesco, Giulia, Manuela, Pier-
luigi, Rosita and Simone, and those found in the Netherlands Costas, Dimitris and Patrick
have never failed to make me feel loved and never cease to being a massive source of joy,
energy and inspiration. My whole family, and particularly Mamma, Papa, Luigi and my
companion Giulia are my shell, my den, my all-inclusive five-star suite, they are me, and
I am them.

Carlo
Delft, June 2023

XV

2018 - 2023

2016 - 2018

2013 - 2016

1994/05/02

Curriculum Vitee
Carlo Delle Donne

Ph.D. Quantum Computer Science

Delft University of Technology, The Netherlands

Thesis: Software Abstractions for Programmable Quantum Network Nodes
Promotors: Prof. dr. S. D. C. Wehner, Dr. P. Pawelczak

M.Sc. Embedded Systems

Delft University of Technology, The Netherlands
Thesis: Wake-up Alignment for Batteryless Sensors
Advisor: Dr. P. Pawelczak

B.Sc. Electronics and Telecommunications

University of Bologna, Italy

Thesis: Real-Time Data Streaming Using Bluetooth Low Energy
Advisors: Dr. E. Farella, Dr. B. Milosevic, Dr. S. Benatti

Born in Potenza, Italy

XVvii

List of Publications

. C.Delle Donne, M. Iuliano, B. van der Vecht, M. Skrzypczyk, I. te Raa, G. M. Ferreira, T.
van der Steenhoven, A. R.-P. Montblanch, M. Pompili, S. L. N. Hermans, N. Demetriou,
B. van Ommen, T. H. Taminiau, P. Pawelczak, W. Kozlowski, R. Hanson, and S. Wehner.
“ONodeOS: An Operating System for Quantum Network Nodes”

@ This article is included in this thesis as Chapters 2, 3 and 5.
(¢ This article is in preparation.

. J.S. Abrahams, C. Delle Donne, P. Brussee, T. Middelburg, R. C. Berrevoets, J. A. Slater,
and S. Wehner. “Data Origin Authentication in the Quantum Network Protocol Stack”

& J. S. Abrahams and C. Delle Donne contributed equally to this article.
@ This article is included in this thesis as Chapter 6.
(¢ This article is in preparation.

. M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. M. Ferreira,
L. de Kluijver, A.]J. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson, and
S. Wehner. “Experimental Demonstration of Entanglement Delivery Using a Quantum
Network Stack”. In: npj Quantum Information 8.1 (2022), p. 121. por: 10.1038/s41534~
022-00631-2

& M. Pompili and C. Delle Donne contributed equally to this article.
@ This article is included in this thesis as Chapter 4.

. A. Dahlberg, B. van der Vecht, C. Delle Donne, M. Skrzypczyk, 1. te Raa, W. Ko-
zlowski, and S. Wehner. “NetQASM—A Low-Level Instruction Set Architecture for
Hybrid Quantum—Classical Programs in a Quantum Internet”. In: Quantum Science
and Technology 7.3 (2022), p. 035023. DoI: 10.1088/2058-9565/ac753f

. J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawelczak, and J. Hester. “Reliable
Timekeeping for Intermittent Computing”. In: ASPLOS. ACM, 2020, pp. 53-67. DOI:
10.1145/3373376.3378464

. A. Y. Majid, C. Delle Donne, K. Maeng, A. Colin, K. S. Yildirim, B. Lucia, and P.
Pawelczak. “Dynamic Task-Based Intermittent Execution for Energy-Harvesting De-
vices”. In: ACM Trans. Sen. Netw. 16.1 (2020), pp. 1-24. po1: 10.1145/3360285

https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3360285

Introduction

primarily in the context of science and technology, but not only. Attaching it to
the name of a product makes it sound more advanced, superior. Leveraging people’s
confusion over the meaning of quantum mechanics, the g-word has been (mis)used to
advertise, among other things, computer applications [41], cleaning products [40], and
pseudoscience-fueled health and medical advice [22].

However, quantum physics is not just an otherworldly theory from science fiction
books, nor just a catchy name for 21st-century consumer products. Since the formulation
of the theory of quantum mechanics in the early decades of the 20th century, researchers
and enthusiasts have been looking into how to make use of these physical properties,
particularly in the fields of electronics, information processing and telecommunications.
Integrated circuits, lasers, light-emitting diodes and magnetic resonance imaging devices
are just a few example technologies that rely on the quantum theory to function. In the
domain of computer science, we know of a handful of applications that exploit the axioms
of quantum information theory to achieve something that was though to be very hard, or
even impossible. Some of the most well-known use cases include fast resolution of compu-
tational problems — like integer factorization [28] and unstructured searching [12] — and
efficient and secure communication schemes — for instance quantum key distribution [4,
10] and superdense coding [3].

Quantum networking, a new paradigm of telecommunications, seeks to enhance —
not replace — our current internet technology to provide new functionalities that are
impossible to attain with purely classical communications. Novel applications include
security-enhancing communication schemes such as quantum key distribution (QKD) [4,
10], advanced clock synchronization routines [15], distributed consensus protocols [2], dis-
tributed sensing [11], and secure cloud quantum computing [5, 6]. Even though quantum
communications are an established reality, and their potential applications have garnered
attention from industry and research institutes, the above list of applications does not nec-
essarily appeal to the masses, which mostly feel puzzled when someone tries to pitch their
research on quantum networking. Nonetheless, the community of quantum networking
researchers is not discouraged by this mismatch in expectations, as it hopes that more ap-

QUITE possibly, the word “quantum” is one of the most trending of the last decade,

2 1 Introduction

plications will be devised once the technology becomes more widespread and available to
more “consumers”. After all, we were also not aware of all the possible uses of the classical
internet when it was first developed. Yet, today the internet means instantaneous access
to low-cost clothes, scenes of hilarious felines, and — for some — tapes of bare bodies
engaging in intimate action on camera.

One of the most frequently asked questions about quantum technology is: When can
we use it? If more people had access to quantum networks, they would perhaps come
up with more ideas for useful quantum networking applications. Thus, what is missing
before we can deploy quantum networks consisting of a useful number of nodes? What
are the main limitations we are facing? How can we overcome them? Not surprisingly,
the answers to these questions are complicated. There is a cauldron of fundamental and
theoretical limitations, technological hardware obstacles, and computer science puzzles
that hinder the success of quantum networking. Fortunately, though, there is a growing
community of passionate researchers trying to study these limitations, build better hard-
ware, and solve these puzzles. In this thesis, we will address some of the challenges arising
when trying to manage the resources and the activity of a quantum network node, from
an operating system’s perspective. We thus aim to answer a fraction of the research ques-
tions in the field of quantum networking, and to lay another brick in the construction of
scalable, controllable, and configurable quantum networks.

The remainder of this chapter walks the reader through basic networking concepts
and quantum networking challenges, lists the research questions we aim to address, and
provides an outline of the rest of the thesis.

1.1 Networking and Quantum Networking

Digital communication networks have come a long way from the early days of the ARPANET
— one of the most important precursors of today’s internet. Back in 1969, one of the most
advanced networks of computers consisted of just four nodes. In 1981, as the global net-
work grew larger, networking researchers standardized the Internet Protocol version 4
(IPv4), which allowed up to 4 billion devices to have their own address on the public inter-
net [36]. Soon after, it became clear that the pool of available IPv4 addresses was going
to be depleted sooner than later — which happened in 2011 [38]. In 2023, there are 3.6
devices connected to the internet per capita, as estimated by Cisco in 2020 [39].

Scaling up from a four-node experiment to the massive networks of the 21st century
was no easy feat of course. This was made possible by advancements in various fields,
including networking hardware, traffic engineering, and network programmability. You
would most likely not be able to download a digital copy of this thesis in a fraction of a
second if it were not for Tbit/s network switches [42, 43], a diverse spectrum of routing
protocols [34, 35, 37], and software-defined networking [18], among other things. Never-
theless, classical networking was already appealing in its infant stages, for the simple rea-
son that even a small network of nodes can accomplish tasks that would not be attainable
without it — in the case of the ARPANET, sending simple pieces of text over large distances
almost instantaneously. The applications of quantum networking are not dissimilar to
their classical networking counterpart, in that some of them can be useful and effective
on small quantum networks already, whilst other use cases require more powerful nodes
and more complex networks [31].

1.2 Research Goals 3

Even though hardware and software advancements were essential to the betterment of
the internet, there are a few basic design ingredients that have been there since the dawn
of classical networking and that have made these technological leaps even possible. Key
architectural principles that guided the design of computer networks include the end-to-
end principle [27], encapsulation [33], and the packet switching model [26]. When designing
quantum networks and networking services, one should draw inspiration from classical
networking principles and avoid monolithic designs and software architectures that would
render the system rigid and hard to scale.

Then, how similar are quantum networks and classical networks? Which are the chal-
lenges that they have in common, and which ones are exclusive to quantum networking?
How much can we capitalize on the vast body of classical networking literature? In princi-
ple, quantum networks are just networks with a special physical layer, which, albeit more
technologically complex, could be abstracted away and encapsulated into an ad-hoc net-
working protocol. This simplification disregards, however, some fundamental limitations
that are inherent to quantum information, as well as the imperfect nature of near-term
quantum hardware. Standard networking routines like signal amplification, classical er-
ror correction, and data retransmission would not work in quantum networks — one fun-
damental theorem of quantum mechanics states that an arbitrary quantum state cannot
be cloned [9, 32]. Moreover, quantum states are subject to decoherence, a physical pro-
cess whereby the quality of the stored information degrades over time and due to external
interferences. Thus, not only do computation and networking delays affect throughput
and latency, but they also exact a toll on the quality of the service, effectively determining
whether a certain application produced meaningful results or not. Whilst decoherence can
be worked around with more sophisticated quantum hardware and control algorithms, the
no-cloning theorem is a hard limit on what one can do with quantum information, and
thus we cannot design quantum networking protocols assuming quantum information can
be freely copied and stored indefinitely.

Without being too speculative, we can argue that we cannot just encapsulate the re-
quirements of quantum networking into a specialized physical layer. Reusing classical
networking techniques and protocols as they are would fall short of the aforementioned
challenges posed by quantum mechanics. Nonetheless, many of the questions that drove
the classical networking research community can be of inspiration for analyzing require-
ments and limitations of quantum networks. Examples of such questions are: Can we
organize quantum information into packets? Do we need to resort to path reservation for
quantum communications? In which situations can we tolerate local and network latency?
How do we organize and layer quantum networking protocols and services? What metrics do
we look at when designing routing protocols? Can we improve performance and quality of
service with the employment of a software-defined control plane?

1.2 Research Goals

Perhaps disappointingly, but unsurprisingly too, this thesis will not try to answer all the
research questions from the previous section. The good news is that there are many on-
going efforts from various scientists that are looking into these questions, particularly
focusing on networking protocols [7, 14, 16, 23, 29], SDN [1, 17], network architectures [8,
13, 19, 20, 21, 25], and node architectures [30], among other topics. Most of the times, how-

4 1 Introduction

ever, researchers have to validate their designs on a simulated quantum network, given
that we do not yet have access to mid-scale testbeds consisting of more than a handful
of nodes — the most advanced of which features three interconnected devices [24]. On
the other hand, we need a framework to evaluate quantum networking protocols and ap-
plications on real quantum networks, to help us verify our assumptions and simulation
results even in the early stages of this research field. In this thesis, we will discuss design
considerations for such a framework, design and implement a rudimentary instance of it,
and evaluate our design and implementation on a quantum network.

The goal of this thesis is to provide a framework that facilitates the experimental inves-
tigation of quantum networking-related research questions, and that can help researchers
learn about the behavior of quantum communication applications without having to delve
into the complexity of running and managing the underlying network and the interaction
of the nodes with it. We refer to this framework as an operating system (OS), as its goal is to
abstract and manage quantum physical processes and resources to provide a user-friendly
interface to the application. More specifically, we will address the following questions:

Q1. What goals should an OS for quantum network nodes achieve? We explore challenges,
requirements and goals that one should consider when designing such an OS, whose
overarching objective is to bridge the gap between high-level user applications and
low-level quantum networking hardware.

Q2. What does an architecture for such an OS look like? We propose the first proof-of-
principle architecture for an OS for quantum network nodes. The architecture ensures
the OS can be deployed on various quantum platforms, provides means to manage
resources and schedule operations, and allows running multiple quantum networking
applications concurrently.

Q3. What is the performance of the OS’s quantum network stack? We revise and implement
state-of-the-art quantum network protocols to be integrated in the proposed OS, and
evaluate their performance for a basic networking feature: entanglement delivery.

Q4. What is the performance of the whole OS? We implement the proposed architecture,
and design test cases aimed at evaluating its functioning and performance, includ-
ing basic quantum networking applications and scenarios of concurrent execution of
multiple applications.

Q5. How would data origin authentication affect the performance of a quantum link? We
evaluate, this time in simulation, what penalty would be incurred in the rate of en-
tanglement generation if the quantum network stack would communicate over an
authenticated classical channel, as opposed to exchanging non-authenticated classi-
cal messages. The results from this evaluation will guide the adoption of data origin
authentication schemes into future versions of the proposed OS.

When measuring performance, we are mostly interested in two types of indicators:
(1) User-level quantum metrics — most importantly quantum fidelity, which is typically an
indicator of the quality of execution of the application, and which depends on the behavior
of the OS as well as the quality of the quantum hardware. (2) OS-level timings — classical
metrics like latency and throughput at various levels of the OS that provide insights into
bottlenecks and shortcomings of the design and/or implementation of the OS itself, which

1.3 Data and Software Availability 5

Object Location

Datasets for Chapter 4 DorI: 10.4121/16912522
Datasets for Chapter 6 DoOI: 10.4121/d2726121-354d-444c-b859-3585d62811e5
Application SDK https://github.com/QuTech-Delft/netgasm

Table 1.1: Location of experimental data and software supporting this thesis.

in most cases have an impact on the quantum fidelity.

This work is aimed at designing, implementing and evaluating a “product” that, al-
though experimental and not production-ready, is a fully-functional research tool, and
as such is ready to be reused and adapted with little effort by anyone who is interested
in experimenting with quantum networking protocols and applications on real networks.
Our implementation-driven research does not intend to produce the best protocols and
algorithms for the control of quantum network nodes — rather, it wishes to establish a
baseline for such a system, and a framework to study and test more advanced versions of
its components. To demonstrate the applicability of our tool, we evaluate the OS on a small
state-of-the-art quantum network based on nitrogen-vacancy centers in diamond [24], de-
ployed in a laboratory environment.

1.3 Data and Software Availability

The datasets that support this thesis are made public and available in the online data repos-
itory 4TU.ResearchData. The software to analyze such data is also made public and avail-
able in the same package as the datasets. The application software development kit (SDK)
is open-sourced on GitHub. Finally, the operating system is a software project owned
and developed by QuTech and the Delft University of Technology. As of the time of
writing the project is not open source and not available for general usage. If you are
interested in accessing the source code for research purposes, please contact QuTech at
secr-qutech@tudelft.nl. Refer to Table 1.1 for pointers to data and software.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 offers some background on quan-
tum information, quantum networking and classical networking, and recaps the main chal-
lenges involved. Chapter 3 outlines the most important design considerations that serve
as the basis for the design of our OS (question Q1), and describes our proposal for the
architecture of a quantum network node’s OS (question Q2). Chapter 4 showcases the
performance of the quantum network stack integrated in the OS for entanglement gener-
ation (question Q3). Chapter 5 described the implementation of the OS and proposes test
cases for evaluating its performance, including simple quantum networking applications
and concurrent execution of multiple applications (question Q4). Chapter 6 quantifies, this
time in simulation, the effect of authenticating classical messages in the quantum network
stack on the performance of a quantum link (question Q5). Finally, Chapter 7 concludes
this thesis and reflects upon future steps.

https://doi.org/10.4121/16912522
https://doi.org/10.4121/d2726121-354d-444c-b859-3585d62811e5
https://github.com/QuTech-Delft/netqasm
mailto:secr-qutech@tudelft.nl

1 Introduction

References

(1]

(2]

[10]

[11]

A. Aguado, V. Lopez, J. P. Brito, A. Pastor, D. R. Lopez, and V. Martin. “En-
abling Quantum Key Distribution Networks via Software-Defined Networking”.
In: ONDM. IEEE, 2020, pp. 1-5. DOI: 10.23919/0NDM48393.2020.9133024.

M. Ben-Or and A. Hassidim. “Fast Quantum Byzantine Agreement”. In: STOC. ACM,
2005, pp. 481-485. DOI: 10.1145/1060590.1060662.

C. H. Bennett and S. J. Wiesner. “Communication via One- and Two-Particle Op-
erators on Einstein-Podolsky-Rosen States”. In: Physical Rev. Lett. 69.20 (1992),
pp. 2881-2884. pOoI: 10.1103/PhysRevLett.69.2881.

C. H. Bennett and G. Brassard. “Quantum Cryptography: Public Key distribution
and Coin Tossing”. In: Theor. Comput. Sci. 560.1 (2014), pp. 7-11. poI1: 10.1016/j .
tcs.2014.05.025.

A. Broadbent, J. Fitzsimons, and E. Kashefi. “Universal Blind Quantum Computa-
tion”. In: FOCS. IEEE, 2009, pp. 517-526. DOI: 10.1109/F0CS. 2009. 36.

A. M. Childs. “Secure Assisted Quantum Computation”. In: Quantum Inf. Comput.
5.6 (2005), pp. 456—466. DOI: 10.26421/QIC5.6-4.

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SIGCOMM. ACM, 2019, pp. 159—
173. DOI: 10.1145/3341302.3342070.

S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani. “Packet Switching in
Quantum Networks: A Path to the Quantum Internet”. In: Phys. Rev. Res. 4.4 (2022),
p- 043064. po1: 10.1103/PhysRevResearch.4.043064.

D. Dieks. “Communication by EPR Devices”. In: Physics Letters A 92.6 (1982),
pPp- 271-272. DOI: 10.1016/0375-9601(82)90084-6.

A. K. Ekert. “Quantum Cryptography Based on Bell’s Theorem”. In: Phys. Rev. Lett.
67.6 (1991), pp. 661-663. DOI: 10.1103/PhysRevLett.67.661.

D. Gottesman, T. Jennewein, and S. Croke. “Longer-Baseline Telescopes Using Quan-
tum Repeaters”. In: Phys. Rev. Lett. 109.7 (2012), pp. 070503-1-070503-5. DOI: 10 .
1103/PhysRevLett.109.070503.

L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
STOC. ACM, 1996, pp. 212-219. pOI: 10.1145/237814.237866.

H. Gu, Z.Li,R. Yu, X. Wang, F. Zhou, and J. Liu. “FENDI: High-Fidelity Entanglement
Distribution in the Quantum Internet”. 2023. arXiv: 2301.08269.

J. llliano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti. “Quantum Internet Protocol
Stack: a Comprehensive Survey”. 2022. arXiv: 2202.10894.

P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Serensen, J. Ye, and M. D. Lukin.
“A Quantum Network of Clocks”. In: Nature Phys. 10.8 (2014), pp. 582-587. DOIL:
10.1038/nphys3000.

W. Kozlowski, A. Dahlberg, and S. Wehner. “Designing a Quantum Network Proto-
col”. In: CoNEXT. ACM, 2020, pp. 1-16. DoI: 10.1145/3386367.3431293.

https://doi.org/10.23919/ONDM48393.2020.9133024
https://doi.org/10.1145/1060590.1060662
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.26421/QIC5.6-4
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1103/PhysRevResearch.4.043064
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/2301.08269
https://arxiv.org/abs/2202.10894
https://doi.org/10.1038/nphys3000
https://doi.org/10.1145/3386367.3431293

References 7

(17]

(18]

(19]

[26]

[27]

(28]

[29]

W. Kozlowski, F. Kuipers, and S. Wehner. “A P4 Data Plane for the Quantum Inter-
net”. In: EuroP4. ACM, 2020, pp. 49-51. URL: 10.1145/3426744.3431321.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S.
Uhlig. “Software-Defined Networking: A Comprehensive Survey”. In: Proceedings
of the IEEE 103.1 (2014), pp. 14-76. DO1: 10.1109/JPROC.2014.2371999.

Z.L1i, K. Xue, J. Li, N. Yu, D. S. L. Wei, and R. Li. “Connection-Oriented and Connec-
tionless Remote Entanglement Distribution Strategies in Quantum Networks”. In:
IEEE Network 36.6 (2022), pp. 150—-156. po1: 10.1109/MNET. 107.2100483.

R. Mandil, S. DiAdamo, B. Qi, and A. Shabani. “Quantum Key Distribution in a
Packet-Switched Network”. 2023. arXiv: 2302.14005.

T. Matsuo, C. Durand, and R. Van Meter. “Quantum Link Bootstrapping Using a
RuleSet-Based Communication Protocol”. In: Phys. Rev. A 100.5 (2019), p. 052320.
DOI: 10.1103/PhysRevA.100.052320.

L. R. Milgrom. “Patient-Practitioner-Remedy (PPR) Entanglement. Part 1: A Quali-
tative, Non-local Metaphor for Homeopathy Based on Quantum Theory”. In: Home-
opathy 91.04 (2002), pp. 239-248. DOI: 10.1054/homp. 2002 .0055.

A. Pirker and W. Diir. “A Quantum Network Stack and Protocols for Reliable
Entanglement-Based Networks”. In: New Journal of Physics 21.3 (2019), p. 033003.
URL: 10.1088/1367-2630/ab05f7.

M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S.
Wehner, and R. Hanson. “Realization of a Multinode Quantum Network of Remote
Solid-State Qubits”. In: Science 372.6539 (2021), pp. 259-264. po1: 10.1126/science.
abg1919.

S. Pouryousef, N. K. Panigrahy, and D. Towsley. “A Quantum Overlay Network for
Efficient Entanglement Distribution”. 2022. arXiv: 2212.01694.

L. G. Roberts. “The Evolution of Packet Switching”. In: Proceedings of the IEEE 66.11
(1978), pp. 1307-1313. por: 10.1109/PROC. 1978.11141.

J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-To-End Arguments in System Design”.
In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984), pp. 277-288. DO1: 10.
1145/357401.357402.

P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring”. In: FOCS. IEEE, 1994, pp. 124-134. po1: 10.1109/SFCS.1994.365700.

R. Van Meter and J. Touch. “Designing Quantum Repeater Networks”. In: IEEE Com-
munications Magazine 51.8 (2013), pp. 64-71. DOI: 10.1109/MCOM. 2013.6576340.

G. Vardoyan, M. Skrzypczyk, and S. Wehner. “On the Quantum Performance Eval-
uation of two Distributed Quantum Architectures”. In: Performance Evaluation 153
(2022), pp. 1-26. DOI: 10.1016/].peva.2021.102242.

S. Wehner, D. Elkouss, and R. Hanson. “Quantum Internet: A Vision for the Road
Ahead”. In: Science 362.6412 (2018), pp. 1-9. po1: 10.1126/science.aam9288.

10.1145/3426744.3431321
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/MNET.107.2100483
https://arxiv.org/abs/2302.14005
https://doi.org/10.1103/PhysRevA.100.052320
https://doi.org/10.1054/homp.2002.0055
10.1088/1367-2630/ab05f7
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://arxiv.org/abs/2212.01694
https://doi.org/10.1109/PROC.1978.11141
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/357401.357402
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/MCOM.2013.6576340
https://doi.org/10.1016/j.peva.2021.102242
https://doi.org/10.1126/science.aam9288

1 Introduction

W. K. Wootters and W. H. Zurek. “A Single Quantum Cannot Be Cloned”. In: Nature
299 (1982), pp. 802—-803. DoI: 10.1038/299802a0.

R. T. Braden. Requirements for Internet Hosts — Communication Layers. RFC 1122.
1989. URL: https://datatracker.ietf.org/doc/html/rfc1122.

International Organization for Standardization. Intermediate System to Intermediate
System Intra-Domain Routeing Information Exchange Protocol for Use in Conjunction
With the Protocol for Providing the Connectionless-Mode Network Service (ISO 8473).
ISO/IEC 10589:2002. 2002. URL: https://www.iso.org/standard/30932.html.

J. Moy. OSPF Version 2. RFC 2328. 1998. URL: https://datatracker.ietf.org/doc/
html/rfc2328.

J. Postel. Internet Protocol. RFC 791. 1981. URL: https: //datatracker.ietf.org/
doc/html/rfc791.

Y. Rekhter, S. Hares, and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 4271. 2006.
URL: https://datatracker.ietf.org/doc/html/rfc4271.

Available Pool of Unallocated IPv4 Internet Addresses Now Completely Emptied.
ICANN. URL: https://itp.cdn.icann.org/en/files/announcements/release-
03feb11-en.pdf (visited on Feb. 28, 2023).

Cisco Annual Internet Report (2018-2023) White Paper. Cisco. URL: https: / /www .
cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html (visited on Feb. 28, 2023).

Finish Quantum Dishwasher Tablets. Finish. URL: https://www.finishdishwashing.
com/products/detergents/quantum-detergent/ (visited on Feb. 28, 2023).

Introducing the New Firefox: Firefox Quantum. Mozilla. URL: https://blog.mozilla.
org/en/mozilla/introducing-firefox-quantum/ (visited on Feb. 28, 2023).

QFX5220 Switches. Juniper. URL: https://www . juniper . net/us/en/products/
switches/qfx-series/qfx5220-data-center-switches.html (visited on Feb. 28,
2023).

Tomahawk 5 Ethernet Switch Series. Broadcom. URL: https://www.broadcom. com/
products/ethernet-connectivity/switching/strataxgs/bcm78900-series (vis-
ited on Feb. 28, 2023).

https://doi.org/10.1038/299802a0
https://datatracker.ietf.org/doc/html/rfc1122
https://www.iso.org/standard/30932.html
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc4271
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.finishdishwashing.com/products/detergents/quantum-detergent/
https://www.finishdishwashing.com/products/detergents/quantum-detergent/
https://blog.mozilla.org/en/mozilla/introducing-firefox-quantum/
https://blog.mozilla.org/en/mozilla/introducing-firefox-quantum/
https://www.juniper.net/us/en/products/switches/qfx-series/qfx5220-data-center-switches.html
https://www.juniper.net/us/en/products/switches/qfx-series/qfx5220-data-center-switches.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78900-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78900-series

2

Quantum Networking:
Background and Challenges

Quantum networks are a fundamentally new paradigm of telecommunications, which promise
to enhance our classical networking primitives to achieve unprecedented tasks in various ar-
eas of communications and sensing. But how do quantum networks differ from their classical
counterpart? What makes them special, and at the same time challenging to manage? This
chapter provides useful background knowledge on quantum networking and recaps the pri-
mary challenges thereof.

This chapter is extracted from the article in preparation: C. Delle Donne, M. Iuliano, B. van der Vecht, M.
Skrzypczyk, I. te Raa, G. M. Ferreira, T. van der Steenhoven, A. R.-P. Montblanch, M. Pompili, S. L. N. Hermans, N.
Demetriou, B. van Ommen, T. H. Taminiau, P. Pawelczak, W. Kozlowski, R. Hanson, and S. Wehner. “QNodeOS:
An Operating System for Quantum Network Nodes”.

Contributions: S. Wehner conceived the project. C. Delle Donne, B. van der Vecht, W. Kozlowski, M.
Skrzypczyk, I te Raa, P. Pawelczak and S. Wehner analyzed the challenges and designed the OS. C. Delle Donne,
B. van der Vecht, W. Kozlowski, I. te Raa, G. M. Ferreira, T. van der Steenhoven, M. Skrzypczyk and P. Pawelczak
implemented the OS. M. Iuliano, A. R.-P. Montblanch, M. Pompili, S. L. N. Hermans, N. Demetriou and B. van
Ommen prepared the quantum physical layer apparatus. C. Delle Donne, M. Iuliano, B. van der Vecht, M.
Pompili, S. L. N. Hermans, W. Kozlowski, I. te Raa, R. Hanson and S. Wehner devised the experiments. C. Delle
Donne, W. Kozlowski, P. Pawelczak and S. Wehner wrote the manuscript with input from all authors. T. H.
Taminiau, R. Hanson and S. Wehner supervised the research.

10 2 Quantum Networking: Background and Challenges

BIQUITOUS internet connectivity has already unlocked a plethora of applications that
were not even conceived just years ago. Similarly, a future quantum internet [22,
44] aims to connect quantum devices — the end nodes — over large distances, in order
provide new internet functionality that is impossible to achieve using solely classical com-
munication. Examples of applications running on end nodes include security-enhancing
protocols such as quantum key distribution (QKD) [5, 16], improved clock synchroniza-
tion [23], support for distributed sensing [18] and distributed systems [4], as well as secure
quantum computing in the cloud [11, 12].

To run a general quantum networking application, the end nodes’ hardware-software
system needs to be capable of performing certain actions, as summarized in Figure 2.1.
First, nodes must be able to establish a quantum connection by generating quantum en-
tanglement between them. Entanglement is a special property of at least two quantum
bits — or qubits — one held by each end node. The entangled qubits are often measured
directly by the application, or may be used to transmit data qubits from one end node
to the other through teleportation [6]. Alongside entanglement, end nodes must be ca-
pable of executing local quantum operations on the qubits held by an end node, that is,
quantum gates and quantum measurements. For simple quantum applications such as se-
cure communication [5, 16] it is sufficient to produce entanglement and then perform a
local measurement at each end node. However, for more complex quantum applications
— enabled at higher stages of quantum internet development [44] — local operations can
include the execution of quantum gates and in fact full quantum computation on a quan-
tum processor. Finally, next to such quantum actions, most quantum applications known
to date require local classical processing, as well as classical communication between the
end nodes.

Abstractly, a quantum networking application consists of multiple programs, each run-
ning on one of the end nodes. The distinct programs only interact with one another by
means of entanglement generation and classical communication. This allows a program-
mer to realize security-sensitive applications just as in the classical domain, but prohibits
a global orchestration of the quantum execution as one might do in quantum computing.
The case of secure quantum computing in the cloud [11, 12] is an example of a quantum
networking application, schematically depicted in Figure 2.2. In blind quantum comput-
ing, a client node wants to perform a computation on a remote server node, the latter being

Program (node A) Program (node B)
g Communication | | Classical channel é Communication
%@ Processing é’) Processing
g Entanglement Quantum channel E Entanglement
§ Gates & meas. g Gates & meas.

Figure 2.1: A quantum networking application consists of separate programs running at two or more end nodes
that communicate via classical message passing and quantum entanglement. Local operations include quantum
operations (gates and measurements) as well as classical processing.

11

;; 4 Prepare | Entangle || Process qubits | : : | Compute value | | Send value
2 qubits with B [output bit: b] [v=r£(®)] [v=f(b)] 3
i . i1 | Use qubits
“ Persist qubits - L ;
3 Prepare | Entangle L Receive value _A_ﬁ Process qubits
2 qubits with A [v=f(b)] [gates: f(v)]
Quantum Classical (conditional) Quantum (conditional)

Figure 2.2: Structure of a typical quantum network application (blind quantum computation [11, 12]), which
consists of interleaved quantum processing blocks and classical processing blocks. Quantum processing blocks
include local quantum operations (gates and measurements, yellow boxes) and network operations (entangle-
ment generation, blue boxes). The execution of some classical and quantum blocks might be conditional on
classical and quantum data coming from previous blocks. Qubit states in quantum blocks may have to persist
(“Persist qubits”) to be used in later quantum blocks (“Use qubits”), e.g. following the reception of classical mes-
sages from the remote node.

a powerful quantum computer, without the server learning anything about the computa-
tion. Blind quantum computing illustrates the need for a continuing interaction between
the classical and quantum parts of the execution, such as waiting for a message from a re-
mote client before continuing the quantum execution at the server. It also highlights the
need for both classical and quantum state to be kept alive, for example such that future
quantum instructions can be executed depending on messages from remote end nodes.
This is in sharp contrast to quantum computing applications, where one can process the
entire quantum execution in a single batch.

Up to now, demonstrations of quantum networking beyond QKD focused on hardware
realizations. Different types of end node quantum hardware have been realized, ranging
from simple photonic devices on which the only operation is a measurement [39, 45], to
fully-fledged quantum processors with a network interface [7, 20, 29, 34, 37]. The largest
quantum network linking quantum processors to date connects three nodes [34] based on
nitrogen-vacancy centers in diamond (NV centers) at the physical layer. Demonstrations
of applications beyond QKD have been performed using several photonic devices [3, 9,
31, 38]. Central to all these demonstrations is that the software to control the hardware
was specific to the experiment setup, written to perform one single task (the experiment
itself) and programmed into low-level control devices. In fact, often applications were not
even actually fully realized towards a user, and instead they were meant to show that the
hardware is in principle good enough for that specific application [26, 46].

In order to advance quantum networks from a physics experiment to fully-fledged sys-
tems, we need a combined software-hardware system that is built as a series of abstraction
layers. These abstractions should expose a simple interface for the user to write applica-
tions in high-level, platform-independent software, and be able to interact with a variety
of candidate platforms for future quantum network hardware. When designing such a sys-
tem, many challenges arise (refer to Section 2.2 for details), which can be roughly classified
into three areas. First, there exist fundamental differences between classical and quantum
communication. A example of this is the concept of heralded entanglement generation,
which requires coordinated actions by both nodes involved — that is, the operations to
produce entanglement need to be scheduled at both nodes at the same time. Second, the
technological limitations of near-term quantum devices impose stringent demands on the

12 2 Quantum Networking: Background and Challenges

performance of such a system. One example is that the same quantum device is used for
processing as well as networking, which implies that local operations cannot be sched-
uled independently of network operations — which in turn depend on the remote node.
Finally, we remark that, unlike in the study of classical operating systems, which take ad-
vantage of the existence of advanced computer architectures defining a specific interaction
of software and hardware, there exists no general low-level quantum processor architecture.
Ideally, our system should be able to operate under the stringent constraints imposed by
current technological limitations, but should also not be tailored to near-term quantum
devices only.

2.1 Background

Here, we define some basic concepts of quantum networking hardware and performance
metrics, necessary to understand the remainder of this chapter and this thesis. We refer
the reader to the book Quantum Computation and Quantum Information by Nielsen and
Chuang [32] for a general introduction to quantum information, and to the article “A Link
Layer Protocol for Quantum Networks” by Dahlberg et al. [13] for more information on
quantum networking.

Quantum network nodes. Generally speaking, a quantum network node is a quantum
processor (or device) with an optical interface for external communication (entanglement).
The processor can perform operations on one or more qubits. Local quantum operations
range from simple qubit measurements [39, 45] to universal quantum computation [7, 20,
29, 34, 37]. Quantum networking operations allow certain qubits to produce entanglement
with a remote node. In practice, only some types of qubits are suited for entanglement
generation — we refer to such qubits as communication qubits — and only these qubits
have an optical interface to the outside world. Other types of qubits — referred to as
storage qubits — are instead more suited for storing quantum states for longer times (up to
seconds in some cases [1, 10]). Often, storage qubits can also be used to process quantum
information directly. On some quantum devices instead, for instance nitrogen-vacancy
centers in diamond (NV centers), communication qubits are also the main gateway for
local quantum gates, meaning that most processing operations need to step though these
qubits, and thus their usage needs to be shared between local quantum computation and
entanglement generation. What operations can be performed on what types of qubits
depends on the specific quantum device. We remark that, at this stage of technological
development, qubits, as well as any quantum operations applied on them, are not perfect.
In fact, their quality even depends on the specific device sample being used.

Timing constraints. Quantum devices are generally controlled using a variety of classi-
cal signal generators, depending on the quantum device itself. For instance, in NV centers,
the quantum device is controlled using microwave as well as laser pulses. The device-
level control must satisfy hard real-time constraints and timing precision — nanosecond
precision with sub-nanosecond jitter — and is realized using waveform generators, lasers,
and custom electronics assisted by a dedicated microcontroller. Entanglement generation
between two nodes connected by an optical fiber also requires the same scale of timing
synchronization between the two devices [13, 35]. The low-level control of other quantum
platforms is realized similarly [29, 37]. On top of those constraints, qubits have a limited

2.2 Challenges 13

lifetime — the states they hold must be processed before they become invalid. On some
devices, qubit lifetimes have been shown to exceed one second [1]. Nevertheless, the qual-
ity of a qubit state is not constant throughout its lifetime, but it decoheres (becomes worse)
at a certain rate. Qubit lifetimes and decoherence, however, are technological limitations,
rather than fundamental ones, and are expected to become more tractable in the future.

Performance metrics. Next to standard classical performance metrics such as latency
and throughput, the performance of quantum networking applications hinges on the qual-
ity of the quantum execution too. In the quantum networking domain, it is not generally
an objective to eliminate all errors towards the application level [13, 43], and hence the
performance of any operating system for quantum network nodes would be measured by
the execution quality, and by the trade-offs with classical performance metrics [13, 43].
This quantum quality is generally measured by the quantum fidelity F € [0,1], where a
higher value corresponds to higher quality. For a quantum state, F measures the quality
with respect to an ideal state. For a quantum gate or measurement, it measures the quality
of execution, averaged over all possible states that it could be applied to. For a specific
application, F can be translated into its quantum performance.

2.2 Challenges

Whilst the high-level goals for an operating system for quantum nodes mimic those of a
classical operating system, we face a number of general challenges that are inherent to
(near-term) quantum network nodes and network applications. Some of the challenges
are technological limitations of the quantum physical layer, and we expect them to be
less relevant in the future with further progress in quantum hardware development. To
a certain extent, these issues apply to quantum computing too, from which we can draw
some inspiration for their solutions. These challenges include:

1. limited available qubits, which imposes strict limits on the processing, networking, and
storage capabilities of networking nodes;

2. limited qubit lifetimes, which imposes strict deadlines on how fast the data must be
processed before it becomes useless;

3. noisy operations, which implies that applying operations on qubits degrades the quality
of the qubit states themselves.

Nevertheless, quantum networking comes with an additional set of fundamental chal-
lenges related to time and data synchronization at various levels. At the physical layer,
entanglement generation required both nodes involved to execute an operation at the
same moment in time, with sub-nanosecond precision. At higher layers in the stack, this
translates to the need for a network schedule that is shared among neighboring nodes —
even though at these layers the granularity of the synchronized schedule can be coarser if
the timing of the actual entanglement generation attempts can be fully coordinated at the
physical layer. Moreover, the cross-node data dependencies inherent to many networking
applications render time synchronization much more challenging, as the run-time sched-
ule of a node may end up being delayed when said node needs to wait for information
necessary to make logical decisions about next steps and such information comes from
a remote party. Quantum networking applications that have cross-node data dependen-

14 2 Quantum Networking: Background and Challenges

cies may incur more or less disruptive delays. Such applications are grouped into three
categories of varying data synchronization implications by Van Meter et al. [40] — some
applications allow post-selection of successful runs, some allow post-operation local cor-
rections, and some require completion of certain operations before proceeding. These
fundamental challenges can be summarized as:

4. cross-node scheduling dependencies, meaning that the operations on one node cannot
be scheduled independently of other nodes;

5. data dependencies between various parts of a program, which require keeping quantum
data alive in memory while waiting for an event to occur (in most cases, a message from
a remote network node).

The fourth challenge is inherent to the nature of entanglement generation and to the
physics of the devices currently in use. At this stage of development, the same quantum
device functions as the processing unit and as the network device, and consequently local
quantum operations (such as measurements and gates) and network operations cannot be
performed simultaneously [42]. This limitation, however, could be mitigated by a new
quantum hardware architecture separating the devices [43]. Finally, the fifth and last
challenge is a fundamental issue, as it applies to quantum network applications regard-
less of technological progress. Challenges four and five are both arising from the need
for information from a remote node at a certain level and with a certain degree of preci-
sion. However, the fourth challenge describes a distributed scheduling problem, whereas
the fifth encapsulates two local requirements — OS-level locking mechanisms and “good”
quantum memories. It is the last two challenges that fundamentally differentiate a quan-
tum networking node from a quantum computing system, and are the key driver for a
networked quantum node operating system.

2.3 Related Work

Relative to quantum networking, a substantial amount of software and systems work hap-
pens in the field of quantum computing. For example, operating systems for quantum
computers (without networking functionality) are under active development in research
and industry [24, 47]. Furthermore, extensive work exists on developing quantum com-
puting architectures [8, 17, 30]. We aim to address new problems that arise specifically
from the inclusion of quantum networking, which has not been considered at all in the
aforementioned OSes and publications.

Nevertheless, systems research in quantum networking has been growing as a field
as well. In particular, over the past several years there have been multiple proposals for
quantum network protocol stacks [13, 21, 33, 41] and quantum network architectures [2,
15, 19, 25, 27, 28, 36]. One of the proposed network stacks has even been demonstrated
experimentally on a state-of-the-art two-node network in a lab — as detailed in Chapter 4
— while the rest has only been validated in simulation. However, these works heavily
focus on the network protocol aspects and whilst some of them acknowledge that the
stacks will exist as a component in a bigger system, they do not tackle any of the related
issues, such as resource management or task scheduling.

Quantum network applications themselves have also been demonstrated on small net-
works in laboratories [3]. However, such demonstrations have always been ad hoc, and

References 15

scripted through low-level experimental controls as their purpose was to demonstrate
hardware technology milestones rather than develop general systems for multiple users.

References

(1]

(10]

(11]

(12]

M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and
T. H. Taminiau. “One-second Coherence for a Single Electron Spin Coupled to a
Multi-qubit Nuclear-spin Environment”. In: Nature Commun. 9.1 (2018), pp. 1-8.
DOI: 10.1038/s41467-018-04916-z.

A. Aguado, V. Lopez, J. P. Brito, A. Pastor, D. R. Lépez, and V. Martin. “En-
abling Quantum Key Distribution Networks via Software-Defined Networking”.
In: ONDM. IEEE, 2020, pp. 1-5. DOI: 10.23919/0NDM48393.2020.9133024.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther.
“Demonstration of Blind Quantum Computing”. In: Science 335.6066 (2012), pp. 303
308. DO1: 10.1126/science.1214707.

M. Ben-Or and A. Hassidim. “Fast Quantum Byzantine Agreement”. In: STOC. ACM,
2005, pp. 481-485. DOI: 10.1145/1060590.1060662.

C. H. Bennett and G. Brassard. “Quantum Cryptography: Public Key distribution
and Coin Tossing”. In: Theor. Comput. Sci. 560.1 (2014), pp. 7-11. po1: 10.1016/j .
tcs.2014.05.025.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.
“Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels”. In: Phys. Rev. Lett. 70.13 (1993), pp. 1895-1899. por: 10 . 1103/
PhysRevLett.70.1895.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau,
M. Markham, D. J. Twitchen, L. Childress, and R. Hanson. “Heralded Entangle-
ment Between Solid-State Qubits Separated by Three Metres”. In: Nature 497 (2013),
pp- 86-90. DOI: 10.1038/nature12016.

J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su,
B. Q. Baragiola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C. Menicucci, and L
Dhand. “Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer”. In:
Quantum 5 (2021), pp. 392-430. poI1: 10.22331/9-2021-02-04-392.

M. Bozzio, U. Chabaud, I. Kerenidis, and E. Diamanti. “Quantum Weak Coin Flipping
With a Single Photon”. In: Phys. Rev. A 102 (2020), p. 022414. po1: 10.1103/PhysRevA.
102.022414.

C.E.Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker,
M. Markham, D. J. Twitchen, and T. H. Taminiau. “A Ten-Qubit Solid-State Spin
Register with Quantum Memory up to One Minute”. In: Phys. Rev. X 9.3 (2019),
pp- 031045-1-031045-12. po1: 10.1103/PhysRevX.9.031045.

A. Broadbent, J. Fitzsimons, and E. Kashefi. “Universal Blind Quantum Computa-
tion”. In: FOCS. IEEE, 2009, pp- 517-526. DOI: 10.1109/F0CS. 2009. 36.

A. M. Childs. “Secure Assisted Quantum Computation”. In: Quantum Inf. Comput.
5.6 (2005), pp. 456—466. DOI: 10.26421/QIC5.6-4.

https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.23919/ONDM48393.2020.9133024
https://doi.org/10.1126/science.1214707
https://doi.org/10.1145/1060590.1060662
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/nature12016
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.1103/PhysRevA.102.022414
https://doi.org/10.1103/PhysRevA.102.022414
https://doi.org/10.1103/PhysRevX.9.031045
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.26421/QIC5.6-4

16

2 Quantum Networking: Background and Challenges

[13]

[16]

(17]

[27]

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SSIGCOMM. ACM, 2019, pp. 159-
173. DOI1: 10.1145/3341302.3342070.

S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani. “Packet Switching in
Quantum Networks: A Path to the Quantum Internet”. In: Phys. Rev. Res. 4.4 (2022),
p- 043064. por: 10.1103/PhysRevResearch.4.043064.

A. K. Ekert. “Quantum Cryptography Based on Bell’s Theorem”. In: Phys. Rev. Lett.
67.6 (1991), pp. 661-663. DOI: 10.1103/PhysRevLett.67.661.

X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L.
DiCarlo, and K. Bertels. “An Experimental Microarchitecture for a Superconducting
Quantum Processor”. In: MICRO. ACM, 2017, pp. 813-825. po1: 10.1145/3123939.
3123952.

D. Gottesman, T. Jennewein, and S. Croke. “Longer-Baseline Telescopes Using Quan-
tum Repeaters”. In: Phys. Rev. Lett. 109.7 (2012), pp. 070503-1-070503-5. DoI: 10 .
1103/PhysRevLett.109.070503.

H. Gu, Z.Li,R. Yu, X. Wang, F. Zhou, and J. Liu. “FENDI: High-Fidelity Entanglement
Distribution in the Quantum Internet”. 2023. arXiv: 2301.08269.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J.
Twitchen, M. Markham, and R. Hanson. “Deterministic Delivery of Remote Entan-
glement on a Quantum Network”. In: Nature 558.7709 (2018), pp. 268—273. DoOI: 10.
1038/s541586-018-0200-5.

J. llliano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti. “Quantum Internet Protocol
Stack: a Comprehensive Survey”. 2022. arXiv: 2202.10894.

H. J. Kimble. “The Quantum Internet”. In: Nature 453.7198 (2008), pp. 1023-1030.
DOI: 10.1038/natured7127.

P. Kémar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Serensen, J. Ye, and M. D. Lukin.
“A Quantum Network of Clocks”. In: Nature Phys. 10.8 (2014), pp. 582-587. DOIL:
10.1038/nphys3000.

W. Kong, J. Wang, Y. Han, Y. Wu, Y. Zhang, M. Dou, Y. Fang, and G. Guo. “Origin
Pilot: a Quantum Operating System for Effecient Usage of Quantum Resources”.
2021. arXiv: 2105.10730. URL: https://arxiv.org/abs/2105.10730.

Z.Li, K. Xue, J. Li, N. Yu, D. S. L. Wei, and R. Li. “Connection-Oriented and Connec-
tionless Remote Entanglement Distribution Strategies in Quantum Networks”. In:
IEEE Network 36.6 (2022), pp. 150-156. DO1: 10.1109/MNET. 107.2100483.

W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J. Fan, F. Xu, Q. Zhang, and
J.-W. Pan. “Toward a Photonic Demonstration of Device-Independent Quantum Key
Distribution”. In: Phys. Rev. Lett. 129.5 (2022), p. 050502. po1: 10.1103/PhysRevLett.
129.050502.

R. Mandil, S. DiAdamo, B. Qi, and A. Shabani. “Quantum Key Distribution in a
Packet-Switched Network”. 2023. arXiv: 2302.14005.

https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1103/PhysRevResearch.4.043064
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevLett.109.070503
https://arxiv.org/abs/2301.08269
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://arxiv.org/abs/2202.10894
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nphys3000
https://arxiv.org/abs/2105.10730
https://arxiv.org/abs/2105.10730
https://doi.org/10.1109/MNET.107.2100483
https://doi.org/10.1103/PhysRevLett.129.050502
https://doi.org/10.1103/PhysRevLett.129.050502
https://arxiv.org/abs/2302.14005

References 17

(28]

[29]

(30]

(35]

(39]

(40]

T. Matsuo, C. Durand, and R. Van Meter. “Quantum Link Bootstrapping Using a
RuleSet-Based Communication Protocol”. In: Phys. Rev. A 100.5 (2019), p. 052320.
DOI: 10.1103/PhysRevA.100.052320.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M.
Duan, and C. Monroe. “Entanglement of Single-Atom Quantum Bits at a Distance”.
In: Nature 449 (2007), pp. 68-71. DOI: 10.1038/nature@6118.

P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete.
“Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons
and Design Insights”. In: ISCA. ACM, 2019, pp. 527-540. po1: 10. 1145/ 3307650 .
3322273.

N.H. Y. Ng, S. K. Joshi, C. Chen Ming, C. Kurtsiefer, and S. Wehner. “Experimental
Implementation of Bit Commitment in the Noisy-Storage Model”. In: Nature com-
munications 3.1 (2012), pp. 1-7. poIL: 10.1038/ncomms2268.

M. A. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
American Association of Physics Teachers, 2002.

A. Pirker and W. Diir. “A Quantum Network Stack and Protocols for Reliable
Entanglement-Based Networks”. In: New Journal of Physics 21.3 (2019), p. 033003.
URL: 10.1088/1367-2630/ab05f7.

M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S.
Wehner, and R. Hanson. “Realization of a Multinode Quantum Network of Remote
Solid-State Qubits”. In: Science 372.6539 (2021), pp. 259-264. po1: 10.1126/science.
abg1919.

M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. M. Ferreira,
L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson,
and S. Wehner. “Experimental Demonstration of Entanglement Delivery Using a
Quantum Network Stack”. In: npj Quantum Information 8.1 (2022), p. 121. por: 10.
1038/s41534-022-00631-2.

S. Pouryousef, N. K. Panigrahy, and D. Towsley. “A Quantum Overlay Network for
Efficient Entanglement Distribution”. 2022. arXiv: 2212.01694.

A. Reiserer and G. Rempe. “Cavity-based Quantum Networks with Single Atoms
and Optical Photons”. In: Rev. Mod. Phys. 87.4 (2015), pp. 1379-1418. por1: 10.1103/
RevModPhys.87.1379.

C. Thalacker, F. Hahn,]J. de Jong, A. Pappa, and S. Barz. “Anonymous and Secret
Communication in Quantum Networks”. In: New Journal of Physics 23.8 (2021). DOI:
10.1088/1367-2630/ac1808.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi.
“Experimental Satellite Quantum Communications”. In: Phys. Rev. Lett. 115.4 (2015),
pp- 040502-1-040502-5. poI1: 10.1103/PhysRevLett.115.040502.

R. Van Meter, T. Satoh, S. Nagayama, T. Matsuo, and S. Suzuki. “Optimizing Timing
of High-Success-Probability Quantum Repeaters”. 2017. arXiv: 1701.04586.

https://doi.org/10.1103/PhysRevA.100.052320
https://doi.org/10.1038/nature06118
https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1038/ncomms2268
10.1088/1367-2630/ab05f7
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1038/s41534-022-00631-2
https://arxiv.org/abs/2212.01694
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1088/1367-2630/ac1808
https://doi.org/10.1103/PhysRevLett.115.040502
https://arxiv.org/abs/1701.04586

18

2 Quantum Networking: Background and Challenges

[41]

[42]

[46]

R. Van Meter and J. Touch. “Designing Quantum Repeater Networks”. In: IEEE Com-
munications Magazine 51.8 (2013), pp. 64—71. DOI: 10.1109/MCOM. 2013.6576340.

G. Vardoyan, S. Guha, P. Nain, and D. Towsley. “On the Stochastic Analysis of a
Quantum Entanglement Switch”. In: Perform. Eval. Rev. 47.2 (2019), pp. 27-29. DoTI:
10.1145/3374888.3374899.

G. Vardoyan, M. Skrzypczyk, and S. Wehner. “On the Quantum Performance Eval-
uation of two Distributed Quantum Architectures”. In: Performance Evaluation 153
(2022), pp. 1-26. DOI: 10.1016/j.peva.2021.102242.

S. Wehner, D. Elkouss, and R. Hanson. “Quantum Internet: A Vision for the Road
Ahead”. In: Science 362.6412 (2018), pp. 1-9. poI: 10.1126/science.aam9288.

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H.
Dai, G.-B.Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li,
J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L.
Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan. “Satellite-
Based Entanglement Distribution Over 1200 Kilometers”. In: Science 356.6343 (2017),
pp- 1140-1144. por: 10.1126/science.aan3211.

W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R. Schwonnek, F. Fertig, S. Eppelt,
W. Rosenfeld, V. Scarani, C. C.-W. Lim, et al. “A Device-Independent Quantum Key
Distribution System for Distant Users”. In: Nature 607.7920 (2022), pp. 687-691. DOT:
10.1038/s41586-022-04891-y.

Deltaflow.OS. Riverlane. URL: https://www. riverlane.com/products/ (visited on
Feb. 28, 2023).

https://doi.org/10.1109/MCOM.2013.6576340
https://doi.org/10.1145/3374888.3374899
https://doi.org/10.1016/j.peva.2021.102242
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1038/s41586-022-04891-y
https://www.riverlane.com/products/

19

Architecture of an
Operating System for a
Quantum Network Node

The end goal of an operating system (OS) for quantum network nodes is to bridge the gap
between user applications — written in high-level and platform-independent software — and
the underlying quantum hardware, to which the user is agnostic. How can one design a
control system that adheres to this objective, while addressing the challenges that come with
quantum networking? And what does an example architecture of such a system look like?
This chapter explores the cardinal design considerations that should drive the design of an OS
for quantum network nodes, and proposes a proof-of-principle architecture for such an OS.

This chapter is extracted from the article in preparation: C. Delle Donne, M. Iuliano, B. van der Vecht, M.
Skrzypczyk, I. te Raa, G. M. Ferreira, T. van der Steenhoven, A. R.-P. Montblanch, M. Pompili, S. L. N. Hermans, N.
Demetriou, B. van Ommen, T. H. Taminiau, P. Pawelczak, W. Kozlowski, R. Hanson, and S. Wehner. “QNodeOS:
An Operating System for Quantum Network Nodes”.

Contributions: as indicated in Chapter 2.

20 3 Architecture of an Operating System for a Quantum Network Node

N operating system (OS) is the cornerstone of a system’s control software: it marshals
A access to physical resources, abstracts low-level hardware functionalities into user-
friendly services, and provides an interface to users to program and run applications on
the system. Our goal here is to apply basic principles from classical OS design literature
to our novel use case of programmable and scalable quantum networking nodes, and to
(hopefully) create a framework where the challenges outlined in Chapter 2 can be studied
and addressed. We thus investigate the general requirements that such a system should
satisfy, illustrated with the example of a quantum processor based on nitrogen-vacancy
(NV) centers in diamond. This provides a guideline for future systems of this form. We
also propose the first proof-of-principle architecture for an operating system for quantum
network nodes, which we call QNodeOS. Our system’s capabilities include quantum mem-
ory management, scheduling different types of quantum operations on the device, as well
as an interface to different drivers addressing several possible quantum hardware archi-
tectures. On the quantum networking front, QNodeOS adopts the quantum network stack
and protocols proposed by Dahlberg et al. [2] and by Kozlowski et al. [8].

3.1 General Design Considerations

We assume that the OS builds upon a quantum hardware system capable of the execution
of physical instructions addressing specific qubits on the quantum chip. These physical
instructions may be dependent on the type of quantum hardware (e.g. NV in diamond, or
ion traps), and include instructions for initializing and measuring qubits on the chip, mov-
ing the state of a qubit to another location in the quantum memory, performing quantum
gates, as well as to make attempts at entanglement generation at the physical layer [10].
The quantum hardware furthermore exposes the capabilities of the quantum chip: (1) the
number of qubits (2) the type of each qubit (3) the memory lifetime of the qubits (4) the
physical instructions that can be performed on on the qubit(s) and (5) the average qual-
ity of these instructions (Chapter 2). We emphasize that, unlike in classical computing,
there is currently no established low-level microarchitecture that defines the line between
(quantum) hardware and software upon which such an OS would be built. We neverthe-
less expect that almost all of the below would be functions taken on by any OS, some of
which could possibly be shifted to control hardware in the future.

Each node in the network runs its own independent quantum network OS. Nodes may
interact with each other using both classical message passing as well as entanglement
generation. The goal of the combined system is to execute quantum network applications,
which themselves consist of separate programs running on the OS of two (or more) net-
work nodes. Such programs generally also communicate via classical message passing
and entanglement generation. Each program itself consists of both classical and quantum
blocks of code, where the quantum blocks of code may contain low-level classical logic
(specifically, branching on classical variables and loops). Classical blocks of code may
depend on quantum ones via classical variables generated during the quantum execution
(measurement results, notification of entanglement generation, and information on the
state of the quantum system such as the availability of qubits). Similarly, quantum blocks
may depend on variables set by the classical blocks, such as messages received from re-
mote network nodes. Finally, quantum blocks may themselves depend on other quantum
blocks via qubits in the quantum memory.

3.2 Key OS Components 21

Whilst the OS should understand dependencies and provide mechanisms to specify
them, a non-goal of the OS is to identify what is a classical block and what is a quantum
block — decomposing a program is not necessarily a trivial task, and might result in unwar-
ranted latency at the OS level. Similarly, we assume that it is not the OS’s responsibility to
determine deadlines or priorities in the execution, given that setting deadlines (e.g. when
too much time has elapsed for the qubits to be useful) is in general a computationally
expensive procedure, sometimes estimated by a repeated simulation of the execution. In-
stead, program decomposition and deadline estimation would be the compiler’s job, which
can leverage application-level information and knowledge of the quantum hardware (e.g.
memory lifetimes) to carry out these tasks. At the compiler level, latency is much less
an issue, and thus computing block boundaries and deadlines can be performed without
stringent time constraints. We remark that — especially in the near term — some of these
tasks might require the programmer’s intervention, at least until compilers for quantum
networking applications become more sophisticated. Specifying the compiler’s and the
programmer’s exact responsibilities is outside the scope of this work.

3.2 Key OS Components

We now describe the essential components we envision any OS for quantum network
nodes to have.

3.2.1 Memory Management Unit

Executing quantum network applications demands a continuing interaction between the
classical and quantum parts of the execution, including keeping qubits alive in memory to
take further actions depending on messages from remote network nodes. We thus require
persistent memory management capabilities. This may be taken up by a quantum mem-
ory management unit (QMMU). A QMMU has knowledge of the physical qubits available
on the underlying quantum hardware, and may store metadata such as qubit type (com-
munication or storage qubit) and qubit lifetime. A QMMU allows physical qubits to be
assigned to different applications or to the OS itself, and may allow a transfer of owner-
ship of the qubits from one owner to another. A QMMU may also provide abstractions
familiar to classical computing such as a virtual address space, where the applications refer
to virtual qubit addresses that are then translated to physical qubit addresses. This avoids
the situation in which physical qubit addresses must be bound at compile time, particu-
larly limiting when allowing multiple applications to concurrently run on the same node.
Advanced forms of a QMMU may also cater to the limitations of near term quantum de-
vices, by matching memory lifetime requirements specified by the application code to the
capabilities of the underlying qubits, as well their topology. While one cannot measure
the decoherence of a qubit during a general program execution on the quantum level,
the QMMU could also take into account additional information from the classical control
system to signal to the application that a qubit has become invalid.

3.2.2 Quantum Network Stack

The OS should include the capability for quantum communication with remote nodes in
the network, typically the generation of entanglement. We thus assume that the OS real-

22 3 Architecture of an Operating System for a Quantum Network Node

izes a quantum network stack that can be relied upon to enable entanglement generation,
where we refer to Ref. [2] for design considerations of quantum network stacks them-
selves. The network stack allows an application to request a certain number or rate of
entangled pairs to be produced with remote nodes with a specified quality (i.e. fidelity) of
entanglement. The stack is responsible for ensuring the delivery of the entanglement. One
possible quantum network stack can be found in Ref. [2] including the first link layer pro-
tocol now realized on quantum hardware [10] (as described in Chapter 4), and a network
layer protocol (as proposed in Ref. [8]).

To successfully produce entanglement, the network stack needs access to a communi-
cation qubit, resulting in two requirements for the rest of the system:

1. A scheduler should take into account that generating entanglement at the physical
layer between two nodes directly connected by a physical communication medium re-
quires that the two nodes apply a series of physical operations with very precise tim-
ing synchronization between them (nanosecond precision with sub-nanosecond jitter).
Therefore, entanglement generation across a link with an adjacent node must always
be scheduled in a synchronized manner between the two adjacent neighbors. Simi-
larly, due to limited memory lifetimes, generating entanglement with the help of an
intermediary node at the network layer [8] requires specific operations (entanglement
swapping) to be scheduled at all three nodes within a time window allowed by the
memory lifetimes.

2. On some quantum hardware systems (e.g. NV in diamond), the communication qubit
is in general needed to enable the execution of quantum gates on and in-between stor-
age qubits. This has implications both on the scheduler (local instructions cannot be
scheduled concurrently to networked ones), as well as on the QMMU, which needs to
allow qubit ownership transfer between applications and the network stack. A typical
use case of such ownership transfer would occur when the network stack claims the
communication qubit for entanglement generation, and then yields it to an application.

3.2.3 Scheduler

In order to maximize the usage of resources, we envision the OS to include a scheduler.
This may be a single scheduler, or more likely several schedulers that address scheduling
at different levels. In general, we may consider scheduling at the level of applications, at
the level of blocks of quantum code, and at the level of instructions, each level not being
independent of one another.

General considerations. A scheduler for quantum network nodes should be capable of
managing the limited physical resources to achieve the desired performance. The perfor-
mance of any form of scheduling method in the quantum domain is assessed not only by
existing classical metrics — like throughput and latency — but also by quantum metrics
(see Chapter 2). At the level of the application, latency can be measured in terms of the
success probability of the quantum network application. At the level of an operation (or
a block of operations) it may be measured by the quality (fidelity) of the quantum states
and operations performed. We remind that due to limited memory lifetimes, delays have
always a direct impact on the quantum performance, resulting in general in trade-offs
between classical and quantum performance metrics when assessing any scheduler.

3.2 Key OS Components 23

Practically, the scheduler in question should allocate the underlying physical resources
— most importantly, the qubits — based on a set of well-defined constraints:

1. Synchronized network schedule: due to the bilateral nature of entanglement, each node
will have its quantum networking activity synchronized with its neighbors, meaning
that a missed synchronization window on one node results in a waste of resources on
remote nodes too.

2. Local quantum computation: in addition to quantum networking, a node’s resources
must also be reserved for local quantum gates, which are integral parts of quantum
networking applications.

3. Inter-block dependencies: quantum and classical processing blocks of an application
may depend on results originating from other blocks, and thus cannot be scheduled
independently.

4. Multitasking: for a node to be shared by multiple users, the scheduler should not allo-
cate all the available resources to a single application indefinitely, and instead it should
be aware of the presence of multiple applications and multiple users.

Additionally, scheduling at any level could optionally process another set of input
variables, where we generally assume that the compiler provides aggregate advice based
on these input variables to the OS:

1. Duration of operations: local quantum operations typically take a fixed amount of time
and always succeed. Entanglement, on the other hand, is a probabilistic process, and
generating an entangled pair can take an indefinite (and large) number of attempts.
Scheduling decisions may factor this in to yield better performance.

2. Decoherence: as already stated, the fidelity of a quantum state stored in a qubit is not
constant, and it also degrades due to physical noise induced by other qubits and by
operations applied on such qubits. An advanced scheduler could use knowledge of
qubit lifetimes and elapsed time to dynamically re-prioritize application demands based
on the advice of the compiler.

Scheduling of applications. In an OS allowing the execution of concurrent quantum
network applications, the task of an application-level scheduler would be to decide which
application to schedule next. We remark that a compiler aware of the underlying capabil-
ities of the hardware system (e.g. memory lifetimes) can provide advice in the form of a
deadline by which the network application must have completed in order to be successful.
To allow for potentially time-consuming classical pre- and post-processing, it is natural
to apply such deadlines not for the entirety of the application, but for the period between
initializing the qubits and terminating the quantum part of the execution. This suggests in
general using real-time schedulers for quantum network applications, taking inspiration
from the extensive work on this topic in classical systems (see e.g. Ref. [9]). While outside
the scope of this work, we remark that this type of scheduling offers to inspire interesting
new work in a form of “quantum soft-real time” scheduling, where deadlines may occasion-
ally be missed at the expense of reduced application performance (success probability), to
maximize the overall performance of the system in which applications are typically ex-
ecuted repeatedly. A benchmark for the quantum performance of any application-level

24 3 Architecture of an Operating System for a Quantum Network Node

scheduler is the quality of the quantum execution when the entire system (all nodes) are
reserved for only one application at the time.

Scheduling of quantum blocks. Scheduling can also (additionally) be performed on the
level of quantum blocks of code. This can in principle also take the form of a (soft) real-time
scheduler that schedules blocks of the currently running application, or schedules blocks
of several applications (potentially independently of any application level scheduling) de-
pending on the availability of resources on the quantum hardware system. This form of
scheduling may be appealing for efficiency reasons, depending on where what parts of
the OS are executed, where some parts are closer to the underlying hardware system than
others (see e.g. Section 3.3).

Scheduling of operations. Finally, scheduling can be performed at two levels of oper-
ations: First, one can consider the problem of scheduling local versus networked instruc-
tions, where one simple way of realizing a schedule that respects the constraints inherent
to such a schedule is presented in Section 3.3. Second, one can consider scheduling any
form of operation on the underlying quantum processor. While our current realization of
QNodeOS achieves this by populating an instruction queue in software, we envision that
this form of scheduling would later be moved from QNodeOS to a hardware module in a
microarchitecture for quantum network nodes, as for instance in the work by Fu et al. [6].

3.3 QNodeOS Design

QNodeOS is an OS for quantum network nodes, designed to address the challenges de-
scribed in Chapter 2. It includes all the identified key components, plus some additional
convenience abstraction layers. The current design of QNodeOS is considered best-effort
— it is meant to explore the main design aspects of an OS for quantum networks, and to
provide a minimum working system.

3.3.1 Full Stack of a Quantum Network Node

As described in Chapter 2 and illustrated in Figure 2.2, a quantum network application
consists of programs running on different end nodes, composed of blocks of quantum code
and blocks of fully-classical code. In fact, quantum code blocks may also contain simple
classical logic — like simple arithmetic and branching instructions — used for flow control.
These blocks do not have any dependencies on data originating from other nodes. Fully-
classical code blocks — which include local processing and communication with other
end nodes — mainly produce input data for the next quantum code blocks. That is, a
classical code block typically precedes a quantum code block whose instructions depend
on external data coming from a remote end node. In our implementation, quantum code
blocks are expressed in NetQASM [3]. NetQASM is an open-source software development
kit (SDK) and instruction set for quantum applications [12]. The NetQASM SDK compiles
a quantum network application, written in Python, into a series of classical and quantum
code blocks. The instruction set used for the quantum code blocks is similar to other QASM
languages [1, 5, 7], but it is extended to include instructions for quantum networking.
NetQASM is not a strict requirement of QNodeOS — one can implement it to support
other low-level languages as well — but it does impose certain conventions (described in
Ref. [3]) on a particular implementation of the system.

3.3 QNodeOS Design 25

[Host env. | User app. | | User app. %:
Classical channel

Jl Quantum blocks to other end
node’s app

Host

ONodeOS (End node API handler)

(Proc. manager)4—(Q. net. stack
Classical channel

Create / enqueue / Transfer to neighbor's
| activate process 4 ownership 3 net stack

(Scheduler) (QMMU)
l Assign process T Allocate
(Processor)

© QNPU ---oemmemmemmmem oo

Quantum instr.

(QDevice driver (NV /ion trap / ...))

i Classical channel
JL Quantum instr. to neighbor’s
QDevice control

ODevice (Classical control):

Quantum channel
(Quantum hardware):m

Figure 3.1: Full-stack architecture of a quantum network node. User applications start in the host environment,
which runs classical code blocks and offloads quantum code blocks to the QNPU. QNodeOS, lying at the top
of the QNPU, processes quantum code blocks and invokes the quantum device (QDevice) to run the actual
quantum instructions. QNodeOS consists of an end-node API handler, a quantum network stack (Q. net. stack),
aprocess manager (Proc. manager), a quantum memory management unit (QMMU), a scheduler, a processor, and
a QDevice driver to communicate with the QDevice itself. The host shares a classical communication channel
with other end nodes’ hosts for application data. QNodeOS shares a classical channel with its neighbors. The
QDevice shares a classical channel for coordination and a quantum channel for entanglement with its neighbors.

In principle, classical and quantum code blocks can be run on a single system, pro-
vided that this has a connection to the quantum device to execute the actual quantum
instructions. However, in the interest of a simpler implementation, where each system
has a scoped responsibility, we opted to map classical and quantum blocks onto two dis-
tinct environments. Classical blocks are run on a system that features a fully-fledged OS
(like Linux), with access to high level programming languages (like C++ and Python) and
libraries. Quantum blocks are delegated to the quantum network processing unit (QNPU),
which is a system capable of interpreting quantum code blocks and managing the re-
sources of a quantum device. In our design, a quantum network application starts on the
general-purpose OS — that we call the host — which runs classical code blocks internally,
and offloads quantum code blocks to the QNPU. QNodeOS is the topmost component of
the QNPU. It runs the quantum code blocks, relying on the underlying quantum device —
denoted as QDevice — to execute the actual quantum operations.

The architecture of a quantum network node is depicted in Figure 3.1. An alternative
architecture could merge host and QNodeOS into the same system, potentially enabling
some performance optimizations, at the cost of a higher system complexity. We also note
that the host, QNodeOS and the classical control modules of the QDevice can be deployed

26 3 Architecture of an Operating System for a Quantum Network Node

on distinct physical devices, or combined in some way.

3.3.2 Processes

A quantum network application starts on the host — there, the host environment compiles
it into classical and quantum code blocks, and creates a new process associated with the
application. The host then registers the application with QNodeOS (through QNodeOS’s
end-node API), which, in turn, creates its own process associated with the registered ap-
plication. The process on the host is a standard OS process, which executes the classical
code blocks and interacts with the counterpart process on QNodeOS (by means of a shared
memory, as defined in NetQASM [3]). On QNodeOS, a process encapsulates the execution
of quantum code blocks of an application with associated context information, such as
process owner, ID, process state and priority.

The execution time of an application is typically dominated by that of quantum blocks,
as entanglement generation is a time-consuming operation, and its duration grows expo-
nentially with the distance between the nodes. For this reason, in this work we focus on
the scheduling of quantum blocks only, and thus we only discuss QNodeOS processes from
this point onward. Again, this does not exclude that, in a future iteration of the design,
host and QNodeOS could be merged into one system, and therefore classical and quantum
blocks would be scheduled jointly.

User processes. QNodeOS allocates a new user process to each quantum network appli-
cation registered by the host. A user process becomes active (ready to be scheduled) as
soon as QNodeOS receives a quantum code block from the host. Multiple user processes
— relative to different host applications — can be concurrently active on QNodeOS, but
only one can be running at any time (multi-core support is in principle possible, but not
included in this version of QNodeOS). A running user process executes its quantum code
block directly, except for entanglement requests, which are instead submitted to the quan-
tum network stack and executed asynchronously.

Network process. QNodeOS also defines kernel processes, which are similar to user pro-
cesses, but are created by default (on boot) and have different priority values. Currently,
the only existing kernel process is the network process. The network process, owned by
the quantum network stack, handles entanglement requests submitted by user processes,
coordinates entanglement generation with the rest of the network, and eventually returns
entangled qubits to user processes. The activation of the network process is dictated by a
network-wide entanglement generation schedule. Such a schedule defines when a partic-
ular entanglement generation request can be processed, and therefore it has intersecting
entries on adjacent nodes (given that entanglement is a two-party process). The sched-
ule can be computed by a centralized network controller [11] or by a distributed proto-
col [2]. In our design, the network process follows a time-division multiple access schedule,
computed by a centralized network controller (as originally proposed by Skrzypczyk and
Wehner [11]) and installed on each QNodeOS node.

Process states. A QNodeOS process can be in any of the following states: (1) idle: when
it exists but it is not active; (2) ready: when it is active and ready to issue instructions;
(3) running: when it is running on QNodeOS; (4) waiting: when it is waiting for some event
to occur. User processes enter the waiting state when they need one or more entangled

3.3 QNodeOS Design 27

User process Network process

Request entanglement

Do local operations '

Needs ent. qubit, enter waiting state

Attempt entanglement generation ﬂ
(until QDevice returns ent. qubit)

<—(Entanglement ready, transfer ent. qubitj—o

Exit waiting state

Consume ent. qubit, release qubit

Figure 3.2: Flow of execution between a user process requesting entanglement and the network process respon-
sible for generating entanglement. The user process starts by issuing an asynchronous entanglement request.
Once issued, it is free to continue with other local operations or classical processing. Once it reaches a point
in its execution where entanglement is required the process enters the waiting state. The network process is
then scheduled once the appropriate time bin starts, as determined by the network schedule. Once it is running,
the network process attempts entanglement generation until entanglement success (or until a set timeout). The
entangled qubit is then transferred to the user process. This unblocks the process which consumes the entangle-
ment and releases the qubit.

pairs to proceed, and become ready again once all the requested pairs are delivered by the
network process.

Inter-process communication. At the moment, QNodeOS does not allow for any ex-
plicit inter-process communication. The only indirect primitive available to processes to
interact with one another is qubit ownership transfer, used when a process produces a
qubit state which is to be consumed by another process. In particular, the network pro-
cess transfers ownership of the entangled qubits that it produces to the process which
requested them.

Process concurrency. The strict separation between local quantum processing and quan-
tum networking is a key design decision in QNodeOS, as it helps us address the scheduling
challenge described in Chapter 2. A user process can continue executing local instructions
even after it has requested entanglement. Conversely, networking instructions can exe-
cute asynchronously of local quantum instructions. This is rather important in a quantum
network, since entanglement generation must be synchronized with the neighboring node
(and possibly the rest of the network [11]). Additionally, separating user applications into
user processes also allows QNodeOS to schedule several applications concurrently.

Process flow. Figure 3.2 illustrates the typical control flow between a user process and
the network process. User processes are free to execute any non-networked instructions
independently of the network process and other user processes. Once the application

28 3 Architecture of an Operating System for a Quantum Network Node

Process P enters Find process Communication qubit yes Select first
new state S to schedule Q. available? process

no

yes yes
Queue empty? re(zg;/nierf gﬁg% 2 Select owner of Q.

idle or waiting

T no no
P busy? Queue contains process Y (Select process that
Tocessor busy: that doesn't need Q.? doesn't need Q,

no

Assign process
to processor

Figure 3.3: Flowchart representation of the scheduling algorithm employed by QNodeOS. The scheduler is ac-
tivated when a process P transitions to a new state S. If S is idle or waiting, the process has (temporarily)
terminated its execution, and thus relinquished the processor, in which case the scheduler can proceed. If S is
ready, the process is added to the prioritized ready queue, and if the processor is not already busy, the scheduler
can proceed again. When the ready queue is not empty, the scheduler looks for the next scheduling candidate as
follows: (1) if the communication qubit is available, the scheduler simply selects the highest-priority process in
the ready queue; (2) otherwise, if the process owning the communication qubit is waiting in the ready queue, the
scheduler selects this process as the scheduling candidate; (3) as a last resort, the scheduler searches the ready
queue for a process that does not need the communication qubit. At the moment, the scheduling algorithm is
tuned to NV center-based quantum platforms, where the communication qubit plays a rather central role in both
entanglement generation and local quantum computation.

reaches a point in its execution where an entangled qubit is required, the process enters
the waiting state and is flagged as waiting for entanglement. When the network process
is scheduled, it issues network instructions and generates entanglement as requested by
the user process. Once an entangled pair is generated by the network process, the qubit is
handed over to the waiting user process. When all the entangled pairs that the user process
was waiting for are delivered, the user process becomes ready and can start running again.

Process control block. Each process has a process control block (PCB) assigned to it. The
PCB stores metadata including process ID, process priority, process state and process data.
Additionally, the PCB of a process maintains a flag that is set when the process tries to
issue a quantum instruction that needs the communication qubit and such a qubit is not
available. This flag is checked by the scheduler when a process needs to be selected for
execution, to avoid scheduling processes that need a resource that is not available.

3.3.3 Process Scheduling

As previously mentioned, we focus our attention on the quantum blocks of an application,
and thus we only discuss the scheduling of QNodeOS processes. At present, the QNodeOS
scheduler does not give any guarantees on when a process is scheduled — for that, one
would need to define concrete real-time constraints to feed to the scheduler. Instead, the
current version of QNodeOS implements a scheduler that offers a best-effort service, where
processes are selected on the basis of their priority, and preemption is not allowed. The
scheduling algorithm is represented in the flowchart in Figure 3.3.

3.3 QNodeOS Design 29

Priority scheduling. QNodeOS schedules ready processes using a priority-based algo-
rithm. In particular, the network process is assigned the highest priority, and is given
precedence whenever the network schedule activates it [11]. Prioritizing entanglement
generation over local operations is key for a node to be able to fulfill its networking duty,
and to avoid peer nodes to waste their resources.

Ready queue. The main data structure supporting the functioning of the scheduler is
a ready queue. This is essentially an ordered list of processes ready to be selected for
execution. When a process becomes ready, it is inserted into the appropriate location in
the queue, according to the properties specified in its PCB. The ready queue is sorted by
process priority. Processes of the same priority are stored first-in first-out.

Shared resources. The most important resources to be shared among processes are qubits
— in particular, the communication qubit. In the current design, there is only one ready
queue. The scheduler selects the queue’s head for execution, unless that process needs
the communication qubit and this is not available — in which case, the queue is searched
either for the communication qubit’s owner process, or for a process that does not need
the communication qubit. An alternative design could have two ready queues, where one
is dedicated to processes that do not need the communication qubit. In this case, when the
communication qubit is available, the scheduler would need to look up both queues, and
select the appropriate process according to priority and time of arrival. In either case, the
scarce availability of the shared resource (the communication qubit) might result in the
high-priority network process to become blocked until a lower-priority user process relin-
quishes the resource, if such a process owns the resource itself. In a more sophisticated
design, one should make sure that low-priority processes always relinquish the shared
resource within a finite amount of time.

No preemption. To avoid context switching overhead, potentially leading to degraded
fidelity, the QNodeOS scheduler is cooperative. That is, once a process is scheduled, it gets
to run until it either completes all of its instructions or it blocks waiting for entanglement.
Processes of the same priority are selected first-in first-out, and they are not executed in a
round-robin manner — again, that would require preemption. Allowing process preemp-
tion would need a definition of critical section and could potentially impact the quality
of the affected qubit states. However, no preemption means that the execution of the
high-priority network process might get delayed by a long-running user process. Again,
a future version of QNodeOS could time-cap the execution of user processes when these
are blocking the network process.

3.3.4 QNodeOS Architecture

We refer again to Figure 3.1, which illustrates the internals of QNodeOS, and outlines
the interactions with the rest of the components of a quantum network node. At its top,
QNodeOS implements an end-node API handler to process requests from the host. Inter-
nally, QNodeOS features a quantum network stack, a process manager, a process scheduler,
a quantum memory management unit (QMMU), and an instruction processor. Actual quan-
tum instructions are offloaded to the underlying quantum device (QDevice) through the
QDevice driver.

30 3 Architecture of an Operating System for a Quantum Network Node

We note that QNodeOS itself is an entirely classical system that interacts with the
quantum hardware (the QDevice). At the moment, our implementation of QNodeOS is
fully software, including the instruction processor. In general, the system may be imple-
mented entirely in software running on a classical CPU, or parts of its functionality may
be implemented in classical hardware (e.g. FPGA or ASIC).

End-node API. Each user application is registered on QNodeOS by the host through
the end-node API. Using the same API, the host can then send quantum code blocks and
receive their results (like measurement outcomes and entanglement generation informa-
tion). Upon registration of an application, QNodeOS allocates a new user process. Upon
reception of a quantum code block, the related user process is activated and made eligible
for scheduling.

Process manager, scheduler, processor. The QNodeOS process manager keeps track of
existing user and kernel processes and their execution context. Upon activation, processes
are added to a scheduling queue. When selected by the scheduler, a process is assigned
to the QNodeOS processor, which (1) executes classical control-flow instructions directly,
(2) offloads local quantum computation to the QDevice, and (3) registers entanglement
requests with the quantum network stack.

Quantum network stack. The role of the quantum network stack in QNodeOS is to ab-
stract the unreliable entanglement attempts that the QDevice offers into a robust, multi-
node network service. The network stack can handle entanglement generation requests
which specify a number of parameters — including source and destination, desired fidelity,
and number of entangled pairs — and returns the entangled pair(s) described by an identi-
fier and the generated Bell state. The quantum network stack owns the network process,
whose activation is dictated by a network-wide entanglement schedule. The quantum net-
work stack in QNodeOS is based on the model outlined by Dahlberg et al. [2], and features a
link layer protocol — presented in the same work, and recently evaluated on hardware [10]
(Chapter 4) — and a network layer protocol — as designed by Kozlowski et al. [8].

Quantum memory management unit. QNodeOS’s QMMU implements basic memory
management functionality: virtual address spaces and qubit ownership transfer. A virtual
quantum memory address space is akin to a classical virtual address space, but it isolates
the qubit address spaces of QNodeOS processes. Ownership transfer is an indirect type
of inter-process communication (IPC) mechanism for passing quantum data between pro-
cesses. Since quantum states cannot be copied due to the no-cloning theorem, this is the
only valid IPC for passing quantum data between address spaces. Ownership transfer is
only logical — only the data’s owner is updated — rather than it being a physical move
of quantum data in the memory. This way we can avoid issuing a QDevice instruction
which would cause degradation in fidelity due to hardware imperfections and additional
processing time. The current QMMU is rather simple due to the fact that our current
quantum nodes have only have a few qubits each. Features like decoherence tracking and
topology-based allocation can be part of a later version of the QMMU.

3.4 Discussion 31

3.4 Discussion

We have discussed general design considerations for an OS for quantum network nodes,
and identified the fundamental components of such an OS. We have also presented a ref-
erence architecture that abides by these requirements. Whilst our architecture is a proof
of concept, and is not meant to deliver optimal performance, we implement it and test it
to run simple quantum networking applications.

References

(1]

(2]

A.W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. “Open Quantum Assem-
bly Language”. 2017. arXiv: 1707.03429.

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SSIGCOMM. ACM, 2019, pp. 159-
173. DOI: 10.1145/3341302.3342070.

A. Dahlberg, B. van der Vecht, C. Delle Donne, M. Skrzypczyk, L. te Raa, W. Ko-
zlowski, and S. Wehner. “NetQASM—A Low-Level Instruction Set Architecture for
Hybrid Quantum—Classical Programs in a Quantum Internet”. In: Quantum Science
and Technology 7.3 (2022), p. 035023. DOI: 10.1088/2058-9565/ac753f.

X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf,
R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N.
Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels. “¢QASM: An Executable
Quantum Instruction Set Architecture”. In: HPCA. IEEE, 2019, pp. 224-237. por:
10.1109/HPCA.2019.00040.

X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L.
DiCarlo, and K. Bertels. “An Experimental Microarchitecture for a Superconducting
Quantum Processor”. In: MICRO. ACM, 2017, pp. 813-825. po1: 10.1145/3123939.
3123952.

N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, and
K. Bertels. “cQASM v1.0: Towards a Common Quantum Assembly Language ”. 2018.
arXiv: 1805.09607.

W. Kozlowski, A. Dahlberg, and S. Wehner. “Designing a Quantum Network Proto-
col”. In: CoNEXT. ACM, 2020, pp. 1-16. DOI: 10.1145/3386367.3431293.

C. L. Liu and J. W. Layland. “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment”. In: 7. ACM 20.1 (1973), pp. 46—61. DO1: 10. 1145/
321738.321743.

M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. M. Ferreira,
L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson,
and S. Wehner. “Experimental Demonstration of Entanglement Delivery Using a
Quantum Network Stack”. In: npj Quantum Information 8.1 (2022), p. 121. por: 10.
1038/s41534-022-00631-2.

https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1145/3123939.3123952
https://arxiv.org/abs/1805.09607
https://doi.org/10.1145/3386367.3431293
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1038/s41534-022-00631-2

32 3 Architecture of an Operating System for a Quantum Network Node

[11] M. Skrzypczyk and S. Wehner. “An Architecture for Meeting Quality-of-Service Re-
quirements in Multi-User Quantum Networks”. 2021. arXiv: 2111.13124.

[12] NetQASM SDK. QuTech. URL: https://github.com/QuTech-Delft/netgasm (visited

on Feb. 28, 2023).

https://arxiv.org/abs/2111.13124
https://github.com/QuTech-Delft/netqasm

33

Entanglement Generation With a
Quantum Networking Stack

Entanglement generation has already been demonstrated a few times by now, at various
node-to-node distances, on several quantum physical platforms, and mostly on small-scale
quantum networks. Scaling current quantum communication demonstrations to a large-scale
quantum network will require not only advancements in quantum hardware capabilities, but
also robust control of such devices to bridge the gap in user demand. Moreover, the abstraction
of tasks and services offered by the quantum network should enable platform-independent ap-
plications to be executed without the knowledge of the underlying physical implementation.
In this chapter, we experimentally demonstrate entanglement generation through QNodeOS
and its quantum networking stack. The link layer abstracts the physical-layer entanglement
attempts into a robust, platform-independent entanglement delivery service. The system is
used to run full state tomography of the delivered entangled states, as well as preparation
of a remote qubit state on a server by its client. Our results mark a clear transition from
physics experiments to quantum communication systems, which will enable the development
and testing of components of future quantum networks.

This chapter is based on the article: M. Pompili, C. Delle Donne, . te Raa, B. van der Vecht, M. Skrzypczyk, G. M.
Ferreira, L. de Kluijver, A.]. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson, and S. Wehner.
“Experimental Demonstration of Entanglement Delivery Using a Quantum Network Stack”. In: npj Quantum
Information 8.1(2022), p- 121. DOI: 10.1038/541534-022-00631-2.

Contributions: M. Pompili, C. Delle Donne, 1. te Raa, W. Kozlowski, R. Hanson and S. Wehner devised the
experiment. M. Pompili, C. Delle Donne, L. te Raa and L. de Kluijver carried out the experiments and collected
the data. M. Pompili, L. de Kluijver, A. J. Stolk and S. L. N. Hermans prepared the quantum-platform apparatus. C.
Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. Ferreira, P. Pawelczak and W. Kozlowski prepared the
platform-independent apparatus. M. Pompili, C. Delle Donne, R. Hanson, and S. Wehner wrote the manuscript
and the supplementary materials with input from all authors. M. Pompili, C. Delle Donne, I. te Raa and L.
de Kluijver analyzed the data and discussed them with all authors. R. Hanson and S. Wehner supervised the
research. M. Pompili and C. Delle Donne contributed equally to this work.

https://doi.org/10.1038/s41534-022-00631-2

34 4 Entanglement Generation With a Quantum Networking Stack

EAR-TERM quantum networks have already yielded successful experimental results to-
wards a future quantum internet. Fundamental primitives for entanglement-based
quantum networks have been demonstrated across several physical platforms, including
trapped ions [25, 37], neutral atoms [18, 32], diamond color centers [5, 19, 21, 30], and
quantum dots [13, 38]. To scale up such physics experiments to intermediate-scale quan-
tum networks, researchers have been investigating how to enclose the complex nature of
quantum entanglement generation into more robust abstractions [2, 3, 4, 11, 22, 23, 29].

A common way to facilitate the scalability of complex systems is to break down their
architecture into a stack of layers. Each layer in such a stack is characterized by a specific
service that it provides to the high layers, reducing complexity for the higher layers, which
can subsequently rely on this service. Moreover, the higher layers need no knowledge of
the specific protocol and physical realization that a lower layer uses to realize the specified
service. An example from classical networking is the TCP/IP stack used on the present
day internet. In this stack, the link layer enables reliable transmission of data between
two network nodes that are directly connected by an unreliable physical medium such as
fiber or radio. Higher layers can rely on errors being detected by the link layer, and are
agnostic about whether the underlying link layer protocol is Ethernet or Wi-Fi.

Several network stacks have been proposed for quantum network nodes [11, 22, 29],
like the one depicted in Figure 4.1. These draw inspiration from classical architectures like
the TCP/IP stack or the more generic Open System Interconnect (OSI) model. Specifically,
the functional allocation of the stack proposed in Ref. [11] conceptually mirrors the TCP/IP
stack in that the link layer ensures reliable (quantum) communication between adjacent
nodes, and the network layer extends this service to nodes not directly connected by a
physical medium themselves. We emphasize that of course no quantum data is passed up
and down the layers of the stack, but only qubit metadata. Very intuitively, such metadata
is similar to passing only references to an address in a physical memory up and down the
stack (similar to what happens in many implementations of the TCP/IP stack in practice),
while in the classical case data may of course also be copied up and down layers.

We also note that the quantum internet, and the associated quantum network stack,
do not aim to replace the classical internet — they will likely coexist, as the quantum in-
ternet cannot operate without classical communication in practice. In addition to classical
information used to facilitate entanglement generation, we also expect classical communi-
cation at the level of the quantum application itself (e.g. quantum key distribution), which
would for practical reasons be performed using the classical internet. Finally, in a quan-
tum network, classical communication could also be used to realize controllers like those at
the core of software-defined networking (SDN) [14] to distribute information for resource
scheduling and quality of service [35]. The proposed quantum network stack architecture,
along with proposals for resource scheduling and routing techniques (e.g. 8, 9, 10, 17, 28,
34, 35, 40]), pave the way for larger-scale quantum networks.

In this work we experimentally demonstrate a link layer protocol for entanglement-
based quantum networks. The link layer abstracts the generation of entangled states be-
tween two physically separated solid-state qubits into a robust and platform-independent
service. An application can request entangled states from the link layer and then, in addi-
tion, apply local quantum operations on the entangled qubits in real-time. Using the link
layer, we perform full state tomography of the generated states and achieve remote state

4.1 Quantum Link Layer Protocol 35

Node 1 Node 2
== C(lassical channel
Application Application AW Quantum channel
- - ubit
Iransport Iransport thansmission
End-to-end Platform-
Network Network entanglement independent
generation stack
Robust direct
Link Link entanglement
generation
Attempt
. . uantum
Physical Physical | entanglement Q
INANANANANA : platform
generation

Figure 4.1: Quantum network stack architecture. At the bottom of the stack, the physical layer (red), which is
highly quantum platform-dependent, is tasked with attempting entanglement generation. The link layer (yel-
low) uses the functionality provided by the physical layer to provide a platform-independent and robust entan-
glement generation service between neighboring nodes to the higher layers. Network and transport layer (not
implemented in this work, grayed out) will support end-to-end connectivity and qubit transmission. Applica-
tions (blue) use the services offered by the stack to perform quantum networking tasks. Based on Ref. [11].

preparation — a building block for blind quantum computation — as well as measuring the
latency of the entanglement generation service.

To evaluate correct operation and performance of our system, we measure (1) the fi-
delity of the generated states and (2) the latency incurred by link layer and physical layer
when generating entangled pairs. For both fidelity and latency, we find that our system
performs with marginal overhead with respect to previous non-platform-independent ex-
periments. We also identify the sources of the additional overhead incurred, and propose
improvements for future realizations.

4.1 Quantum Link Layer Protocol

Remote entanglement generation constitutes a fundamental building block of quantum
networking. However, for a user to be able to integrate it into more complex quantum
networking applications and protocols, the entanglement generation service must also
be: (1) robust, meaning that the user should not have to deal with entanglement failures
and retries, and that an entanglement request should result in the delivery of an entangled
pair; (2) quantum platform-independent, in order for the user to be able to request entan-
glement without having to understand the inner workings of the underlying physical im-
plementation; (3) on-demand, such that the user can request and consume entanglement
as part of a larger quantum communication application. Robust, platform-independent,
on-demand entanglement generation must figure as one of the basic services offered by
a system running on a quantum network node. In other words, establishing a reliable
quantum link between two directly connected nodes is the task of the first layer above the
physical layer in a quantum networking protocol stack, as portrayed in Figure 4.1. Follow-
ing the TCP/IP stack nomenclature, we refer to this layer as the link layer. We remark that,
in the framework of a multi-node network, a quantum network stack should also feature

36 4 Entanglement Generation With a Quantum Networking Stack

a network layer (called internet layer in the TCP/IP model) to establish links between non-
adjacent nodes, and optionally a transport layer to encapsulate qubit transmission into a
service [11, 22, 29] (as shown in Figure 4.1).

Link layer service. The service provided by a link layer protocol for quantum networks

should expose a few configuration parameters to its user. To ensure a platform-independent
interaction with the link layer, such parameters should be common to all possible imple-
mentations of the quantum physical device. In this work, we implement a revised version

of the link layer protocol proposed — but not implemented — in Ref. [11], with the follow-
ing service description. The interface exposed by the link layer should allow the higher

layer to specify: (1) Remote node ID, an identifier of the remote node to produce entangle-
ment with (in case the requesting node has multiple neighbors); (2) Number of entangled
pairs, to allow for the creation of several pairs with one request; (3) Minimum fidelity, an in-
dication of the desired minimum fidelity for the produced pairs; (4) Delivery type, whether

to keep the produced pair for future use (type K), measure it directly after creation (type

M), or measure the local qubit immediately and instruct the remote node to keep its own

for future use (type R, used for remote state preparation); (5) Measurement basis, the basis

to use when measuring M- or R-type entangled pairs; (6) Request timeout, to indicate a
time limit for the processing of the request. After submitting an entanglement generation

request, the user should expect the link layer to coordinate with the remote node and to

handle entanglement generation attempts and retries until all the desired pairs are pro-
duced (or until the timeout has expired). When completing an entanglement generation

request, the link layer should then report to the above layer the following: (1) Produced
Bell state, the result of entanglement generation; (2) Measurement outcome, in case of M-

or R-type entanglement requests; (3) Entanglement ID, to uniquely identify an entangled
pair consistently across source and destination of the request.

Quantum link layer protocol. A design of a quantum link layer protocol that offers
the above service is the quantum entanglement generation protocol (QEGP) proposed by
Dahlberg et al. [11]. As originally designed, this protocol relies on the underlying quan-
tum physical layer protocol to achieve accurate timing synchronization with its remote
peer and to detect inconsistencies between the local state and the state of the remote
counterpart. To satisfy such requirements, QEGP is accompanied by a quantum physical
layer protocol, called midpoint heralding protocol (MHP), designed to support QEGP on
heralded entanglement-based quantum links.

Entanglement requests and agreement. QEGP exposes an interface for its user to sub-
mit entanglement requests. An entanglement request can specify all the aforementioned
configuration parameters (remote node ID, number of entangled pairs, minimum fidelity,
request type, measurement basis), and an additional set of parameters which can be used
to determine the priority of the request. In the theoretical protocol proposed in Ref. [11],
agreement on the requests between the nodes is achieved using a distributed queue pro-
tocol (DQP) which adds the incoming requests to a joint queue. The distributed queue,
managed by the node designated as primary, ensures that both nodes schedule pending
entanglement requests in the same order. Moreover, QEGP attaches a timestamp to each
request in the distributed queue, so that both nodes can process the same entanglement
request simultaneously.

4.2 Revised Protocol 37

Time synchronization. Time-scheduling entanglement generation requests is neces-
sary for the two neighboring nodes to trigger entanglement generation at the same time,
and avoid wasting entanglement attempts. QEGP relies on MHP to maintain and dis-
tribute a synchronized clock, which QEGP itself uses to schedule entanglement requests.
The granularity of such a clock is only marginally important, but its consistency across
the two neighboring nodes is paramount to make sure that entanglement attempts are
triggered simultaneously on the two ends.

Mismatch verification. One of the main responsibilities of MHP is to verify that both
nodes involved in entanglement generation are servicing the same QEGP request at the
same time, which the protocol achieves by sending an auxiliary classical message to the
heralding station when the physical device sends the flying qubit. The heralding station
can thus verify that the messages fetched by the two MHP peers are consistent and corre-
spond to the same QEGP request.

QEGP challenges. We identify three main challenges that would be faced when deploy-
ing QEGP on a large-scale quantum network, while suggesting an alternative solution for
each of these. (C1) Using a link-local protocol (DQP) to schedule entanglement requests,
albeit sufficient for a single-link network, becomes challenging in larger networks, given
that a node might be connected to more than just one peer. In such scenarios, the schedul-
ing of entanglement requests can instead be deferred to a centralized scheduling entity,
one which has more comprehensive knowledge of the entire (sub)network [35]. (C2) En-
trusting the triggering of entanglement attempts to QEGP would impose very stringent re-
al-time constraints on the system where QEGP itself is deployed — even microsecond-level
latencies on either side of the link can result in out-of-sync (thus wasteful) entanglement
attempts. While Dahlberg et al. [11] identify this problem as well, the original MHP proto-
col assumes that both QEGP peers issue an entanglement command to the physical layer
at the same clock cycle. In this scheme, MHP initiates an entanglement attempt regardless
of the state of the remote counterpart. We believe that fine-grained entanglement attempt
synchronization should pertain to the physical layer only, building on the assumption that
the real-time controllers deployed at the physical layer of each node are anyway highly
synchronized [30]. (C3) Checking for request mismatches at the heralding station requires
the latter to be capable of performing such checks in real-time. Given that the two neigh-
boring MHP protocols have to anyway synchronize before attempting entanglement, we
suggest that, as an alternative approach, consistency checks be performed at the nodes
themselves, rather than at the heralding station, just before entering the entanglement
attempt routine.

4.2 Revised Protocol

To address the present QEGP and MHP challenges with the proposed solutions, we have
made some modifications to the original design of the two protocols. In particular, we
adopted a centralized request scheduling mechanism [35] to tackle challenge (C1), we
delegated the ultimate triggering of entanglement attempts to MHP as a solution to chal-
lenge (C2), and we assigned request mismatch verification to the MHP protocol running
on each node, rather than to the heralding station, to address challenge (C3).

38 4 Entanglement Generation With a Quantum Networking Stack

Centralized request scheduling. To avoid using a link-local protocol (DQP) to sched-
ule entanglement requests, our version of QEGP defers request scheduling to a centralized
request scheduler, whereby a node’s entanglement generation schedule is computed on
the basis of the whole network’s needs. Delegating network scheduling jobs to central-
ized entities is, albeit not the only alternative, a common paradigm of classical networks,
and especially of software-defined networking (SDN) — a concept that has been recently
investigated in the context of quantum networking [2, 23]. In large networks, such con-
trollers are logically centralized, but physically distributed, to ensure their reliability and
availability in spite of possible failures. In our system, the centralized scheduler produces
a time-division multiple access (TDMA) network schedule — one for each node in the
network — where each time bin is reserved for a certain class of entanglement generation
requests [35]. A class of requests may comprise, for instance, all requests coming from the
same application and asking for the same fidelity of the entangled states. While reserving
time bins may be redundant in a single-link network, integrating a centralized scheduling
mechanism early on into the link layer protocol will facilitate future developments.

MHP synchronization and timeout. Although centralized request scheduling makes
the synchronization of QEGP peers easier, precise triggering of entanglement attempts
should still be entrusted to the component of the system where time is the most determin-
istic — in our case, the physical layer protocol MHP. In contrast to Ref. [11], once MHP
fetches an entanglement instruction from QEGP, the protocol announces itself as ready to
its remote peer, and waits for the latter to do so as well. After this synchronization step
succeeds, the two MHP peers can instruct the underlying hardware to trigger an entan-
glement attempt at a precise point in time. If, instead, one of the two MHP peers does not
receive announcements from its remote counterpart within a set timeout, it can conclude
that the latter is not ready, or temporarily not responsive, and can thus return control to
QEGP without wasting entanglement attempts. This MHP synchronization step is also
useful for the two sides to verify that they are processing the same QEGP request, and
thus catch mismatches.

The MHP synchronization routine inherently incurs some overhead, which is also
larger on longer links. We mitigate this overhead by batching entanglement attempts
— that is, the physical layer attempts entanglement multiple times after synchronization
before reporting back to the link layer. The maximum number of attempts per batch is a
purely physical-layer parameter, and it has no relation with the link layer entanglement re-
quest timeout parameter described in Ref. [11] — although batches should be small enough
for the link layer timeout to make sense.

The original design of the QEGP and MHP protocols, as well as our revision, specifies
the conceptual interaction between the two protocols and the service exposed to a higher
layer in the system, but does not impose particular constraints on how to implement link
layer and physical layer, how to realize the physical interface between them, and how to
configure things such as the centralized request scheduler and the entanglement attempt
procedure. Figure 4.2 gives an overview of the architecture of our quantum network nodes.
We briefly describe our most relevant implementation choices here and in the physical
layer section.

Application processing. At the application layer, user programs — written in Python
using a dedicated software development kit [45] — are processed by a rudimentary com-

4.2 Revised Protocol 39

g
b= Entangle
Q Gate
& Measure
<
~ Network Controller Centralized
§ request
2 Instruction processor scheduler
=}
§ 1 Create entanglement
L
&
E Link layer TDMA sched.
T
E protocol Ent. requests
< LAN
f Gate (appl.) Ent. attempt
Measure Gate (Pauli corr.)
é Quantum platform driver |
jas)
— Shared
5 Device Controller clock
Command Ent. sync. I|
processor DIO
- G
t | Ent. attempt I|
E DIO
= | Qubit protection
s Optics apd .
=
~

Long-distance
entanglement

Figure 4.2: Quantum network node architecture. From top to bottom: At the application layer, a simple
platform-independent routine is sent to the network controller. The network controller implements the platform-
independent stack — in this work only the link layer protocol — and a hardware abstraction layer (HAL) to inter-
face with the physical layer’s device controller. An instruction processor dispatches instructions either directly
to the physical layer, or to the link layer protocol in case a remote entangled state is requested by the application.
The link layer schedules entanglement requests and synchronizes with the remote node (on a local area network)
using a time-division multiple access (TDMA) schedule computed by a centralized scheduler (external). At the
physical layer, the device controller fetches commands from — and replies with outcomes to — the network
controller. Driven by a clock shared with the neighboring node, it performs hard-real-time synchronization for
entanglement generation using a digital input/output (DIO) interface. By controlling the optical and electronic
components (among which an arbitrary waveform generator, AWG), the device controller can perform universal
quantum control of the communication qubit in real-time, as well as attempt long-distance entanglement gener-
ation with the neighboring node.

Communication qubit

pilation stage, which translates abstract quantum networking applications into gates and
operations supported by our specific quantum physical platform. Such gates and opera-
tions are expressed in a low-level assembly-like language for quantum networking appli-
cations called NetQASM [12]. As part of our software stack, we also include an instruc-
tion processor, conceptually placed above the link layer, which is in charge of dispatching

40 4 Entanglement Generation With a Quantum Networking Stack

entanglement requests to QEGP and other application instructions to the physical layer
directly.

Interface. Ref. [11] did not provide a specification of the interface to be exposed by the
physical layer. We designed this interface such that the physical layer can accept com-
mands from the higher layer, specifically: (1) qubit initialization (INI), (2) qubit measure-
ment (MSR), (3) single-qubit gate (SQG), (4) entanglement attempt (ENT, or ENM for M- or
R-type requests), (5) pre-measurement gates selection (PMG, to specify in which basis to
measure the qubit for M- or R-type requests). For each command, the physical layer re-
ports back an outcome, which indicates whether the command was executed correctly, and
can bear the result of a qubit measurement and the Bell state produced after a successful
entanglement attempt. Our software stack also comprises a hardware abstraction layer
(HAL) that sits below QEGP and the instruction processor. The HAL encodes and serial-
izes commands and outcomes, and is thus used to interface with the device controller.

TDMA network schedule. Designing a full-blown centralized request scheduler is a
challenge in and of its own, outside the scope of this work. Instead of implementing such
a scheduler, we compute static TDMA network schedules [35] and install them manually
on the two network nodes upon initialization. TDMA network schedules are redundant
in a one-link network. Time-binning network activity also forces nodes to only process
entanglement requests at the beginning of a time division, thus introducing latency and
idle time. Particularly, longer time bins potentially result in entanglement requests to wait
longer to be processed. However, an application asking for multiple entangled pairs with
just one request would experience smaller average latencies, as all pairs—but the first one
—would be generated in close succession.

TDMA schedules for our simple single-link experiments are quite trivial, as the net-
work resources of a node are not contended by multiple links. In particular, schedules are
just a constant division of 20 ms time bins, each of which is reserved to the only applica-
tion running. We chose the duration of the time-bin — somewhat arbitrarily, given the
small effect on our experiments — to be equal to 1000 communication cycles between the
device controller and the network controller (20 ms = 1000 x 20 ps).

Entanglement attempts. Producing entanglement on a link can take several attempts.
To minimize the number of ENT commands fetched by MHP from QEGP, as well as to
mitigate the MHP synchronization overhead incurred after each entanglement command,
we batch entanglement attempts at the MHP layer, such that synchronization and outcome
reporting only happens once per batch of attempts.

Delivered entangled states. In our first iteration, we implemented QEGP such that it
always delivers |®") Bell states to the higher layer. This means that, when the physical
layer produces a different Bell state, QEGP (on the node where the entanglement request
originates) issues a single-qubit gate — a Pauli correction — to transform the entangled
pair into the |®*) state (we abbreviate the four two-qubit maximally entangled Bell states
as |®*) = (|00) £]11))/v2 and |[¥*) = (J01) £ [10))/+2). A future version of QEGP could
allow the user to request any Bell state, and could extract the Pauli correction from QEGP
so that the application itself can decide, depending on the use case, whether to apply the
correction or not.

4.3 Physical Layer Control in Real-Time 41

Mismatch verification. As per our design specification, MHP should also be responsible
for verifying that the entanglement commands coming from the two QEGP peers belong
to the same request. We did not implement this feature yet because, in our simple quantum
network, we do not expect losses on the classical channel used by the two MHP parties to
communicate — a lossy classical channel would be the primary source of inconsistencies
at the MHP layer [11]. However, we believe that this verification step will prove very
useful in real-world networks where classical channels do not behave as predictably.

Deployment. We implemented QEGP as a software module in a system that also includes
the instruction processor and the hardware abstraction layer. QEGP, the instruction pro-
cessor and the hardware abstraction layer, forming the network controller, are implemented
as a C/C++ standalone runtime developed on top of FreeRTOS, a real-time operating sys-
tem for embedded platforms [44]. The runtime and the underlying operating system are
deployed on a dedicated Avnet MicroZed — an off-the-shelf platform based on the Zyng-
7000 SoC, which hosts two ARM Cortex-A9 processing cores, of which only one is used,
clocked at 667 MHz. QEGP connects to its remote peer via TCP over a Gigabit Ethernet
interface. The interface to the physical layer is realized through a 12.5 MHz SPI connec-
tion. The user application is sent from a general-purpose 4-core desktop machine running
Linux, which connects to the instruction processor through the same Gigabit Ethernet
interface that QEGP uses to communicate with its peer.

4.3 Physical Layer Control in Real-Time

In this section, we outline the design and operation of the physical layer, which executes
the commands issued by the higher layers on the quantum hardware and handles time-
critical synchronization between the quantum network nodes. The physical layer of a
quantum network, as opposed to the apparatus of a physics experiment, needs to be able
to execute commands coming from the layer above in real-time. Additionally, when per-
forming the requested operations, it needs to leave the quantum device in a state that
is compatible with future commands (for example, as discussed below, it should protect
qubits from decoherence while it awaits further instructions). Finally, if a request cannot
be met (e.g. the local quantum hardware is not ready, the remote quantum hardware is
not available, etc.), the physical layer should notify the link layer of the issue without
interrupting its service.

Our quantum network is composed of two independent nodes based on diamond NV
centers physically separated by ~2m (see Figure 4.2 for the architecture of one node). We
will refer to the two nodes as client and server, noting that this is only a logical separa-
tion useful to describe the case studies — the two nodes have the exact same capabilities.
On each node, we implement the logic of the physical layer in a state-machine-based
algorithm deployed on a time-deterministic microcontroller, the device controller (Jager
ADwin Pro II, based on Zyng-7000 SoC, dual-core ARM Cortex-A9, clocked at 1 GHz).
Additionally, each node uses an arbitrary waveform generator (AWG, Zurich Instruments
HDAWGS, 2.4 GSa/s, 300 MHz sequencer) for nanosecond-resolution tasks, such as fast
optical and electrical pulses; the use of such a user-programmable FPGA-based AWG,
as opposed to a more traditional upload-and-play instrument (such as the ones used in
Ref. [30]), enables the real-time control of our quantum device.

42 4 Entanglement Generation With a Quantum Networking Stack

Single node operation. On our quantum platform, before a node is available to execute
commands, it needs to perform a qubit readiness procedure called charge and resonance
check (CR check). This ensures that the qubit system is in the correct charge state and that
the necessary lasers are resonant with their respective optical transitions. Other quantum
platforms might have a similar preparation step, such as loading and cooling for atoms
and ions [32, 37]. Once the CR check is successful, the device controller can fetch a com-
mand from the network controller. Depending on the nature of the command, the device
controller might need to coordinate with other equipment in the node or synchronize with
the device controller of the other node.

For qubit initialization and measurement commands (INI and MSR), the device con-
troller shines the appropriate laser for a pre-defined duration (INI~100 ps, MSR~10 ps). Both
operations are deterministic and carried out entirely by the device controller.

Single qubit gates (SQG) require the coordination of the device controller and the AWG.
For our communication qubits, they consist of generating an electrical pulse with the AWG
(duration ~100 ns), which is then multiplied to the qubit frequency (=2 GHz), amplified and
finally delivered to the quantum device. The link layer can request rotations in steps of
/16 around the X, Y or Z axis of the Bloch sphere (here we implement only X and Y
rotations, Z rotations will be implemented in the near future, see Appendix C). When a
new gate is requested by the link layer, the device controller at the physical layer informs
the AWG of the gate request via a parallel 32-bit DIO interface. The AWG will then select
one of the 64 pre-compiled waveforms, play it, and notify the device controller that the
gate has been executed. The device controller will in turn notify the network controller
of the successful operation.

After the rotation has been performed, our qubit — if left idling — would lose coher-
ence in ~5 us. A coherence time exceeding 1 s has been reported on our platform [1] using
decoupling sequences (periodic rotations of the qubit that shield it from environmental
noise). By interleaving decoupling sequences and gates, one can perform extended quan-
tum computations [6]. These long sequences of pulses have in the past been calculated and
optimized offline (on a PC), then uploaded to an AWG, and finally executed on the quantum
devices with minimal interaction capabilities (mostly binary branching trees, see [30]). In
our case, it is impossible to pre-calculate these sequences, since we cannot know in ad-
vance which gates are going to be requested by the link layer. To solve this challenge, we
implement a qubit protection module on the AWG, that interleaves decoupling sequences
with the requested gates in real-time. As soon as the first gate in a sequence is requested,
the AWG starts a decoupling sequence on the qubit. Then, it periodically checks if a new
gate has been requested, and if so, it plays it at the right time in the decoupling sequence.
The AWG will continue the qubit protection routine until the device controller will ask for
it to stop (e.g. to perform a measurement). This technique allows us to execute universal
qubit control without prior knowledge of the sequence to be played, and — crucially — in
real-time.

Entanglement generation. Differently from the commands previously discussed, at-
tempting entanglement generation (ENT) requires tight timing synchronization between
the device controllers — and AWGs — of the two nodes. In our implementation, the two
device controllers share a common 1 MHz clock as well as a DIO connection to exchange
synchronization messages (see Ref. [30]). When the device controllers are booted, they

4.3 Physical Layer Control in Real-Time 43

synchronize an internal cycle counter that is used for time-keeping, and is shared, at each
node, with their respective network controllers to provide timing information to the link
layer and the higher layers. Over larger distances, one could use well-established proto-
cols to achieve sub-nanosecond, synchronized, GPS-disciplined common clocks [46].

When a device controller fetches an ENT command, it starts a three-way handshake pro-
cedure with the device controller of the other node. If the other node has also fetched an
ENT command, they will synchronize and proceed with the entanglement generation proce-
dure. If one of the two nodes is not available (e.g. it is still trying to pass the CR check) the
other node will time out, after 0.5 ms, and return an entanglement synchronization failure
(ENT_SYNC_FAIL) to its link layer. The duration of the timeout is chosen such that is com-
parable with the average time taken by a node to pass the charge and resonance check
(if correctly on resonance). This is to avoid unnecessary interactions between physical
layer and link layer. After the entanglement synchronization step, the device controllers
proceed with an optical phase stabilization cycle [30], and then the AWGs are triggered
to attempt entanglement generation. In our implementation, one device controller (the
server’s) triggers both AWGs to achieve sub-nanosecond jitter between the two AWGs
(see Appendix C for a discussion on longer distance implementation). Each entanglement
attempt lasts 3.8 ys, and includes fast qubit initialization, communication-qubit to flying-
qubit entanglement, and probabilistic entanglement swapping of the flying qubits [30].
The AWGs attempt entanglement up to 1000 times before timing out and reporting an en-
tanglement failure (ENT_FAIL). Longer batches of entanglement attempts would increase
the probability that one of the nodes goes into the unwanted charge state (and therefore
cannot produce entanglement, see Appendix C). While in principle possible, we did not im-
plement, in this first realization, the charge stabilization mechanism proposed in Ref. [19]
that would allow for significantly longer batches of entanglement attempts.

If an entanglement generation attempt is successful (probability =5 x 107°), the com-
munication qubits of the two nodes will be projected into an entangled state (either |¥*)
or |¥7), depending on which detector clicked at the heralding station). To herald success
of the entanglement attempt, a CPLD (Complex Programmable Logic Device, Altera MAX
V 5M570ZF256C5N) sends a fast digital signal to both AWGs and device controllers, to
prevent a new entanglement attempt from being played (which would destroy the gener-
ated entangled state). When the heralding signal is detected, the AWGs enter the qubit
protection routine and wait for further instructions from the device controllers, which in
turn notify the link layer of the successful entanglement generation, as well as which state
was generated.

To satisfy M- or R-type entanglement requests, the link layer can instruct the physical
layer to apply an immediate measurement to the entangled qubit by means of an ENM
command. Up until heralding of the entangled state, the physical layer operates as it does
for the ENT command. When the state is ready, it proceeds immediately with a sequence
of single qubit gates (as prescribed by an earlier PMG command) and a qubit measurement.
The result of the measurement, together with which entangled state was generated, is
communicated to the link layer. It is worth noting that the two nodes could fetch different
types of requests and still generate entanglement. In fact, this will be used later in the
remote state preparation application.

44 4 Entanglement Generation With a Quantum Networking Stack

4.4 Evaluation

To demonstrate and benchmark the capabilities of the link layer protocol, the physical
layer, and of our system as a whole, we execute — on our two-node network — three
quantum networking applications, all having a similar structure: the client asks for an
entangled pair with the server, which QEGP delivers in the |®*) Bell state, and then both
client and server measure their end of the pair in a certain basis. First, we perform full
quantum state tomography of the delivered entangled states. Second, we request and
characterize entangled states of varying fidelity. Third, we execute remote preparation of
qubit states on the server by the client. For all three applications, we study the quality of
the entangled pairs delivered by our system. Additionally, we use the second application to
assess the latency incurred by our link layer, and to compare it to the overall entanglement
generation latency, including that of the physical layer. Crucially, the three applications
are executed back-to-back on the quantum network, without any software or hardware
changes to the system — the only difference being the quantum-platform-independent
application sent to the instruction processor.

The sequence diagram in Figure 4.3a exemplifies the general flow between system com-
ponents during the execution of an application. At first, the instruction processor issues a
request to create entanglement to link layer (CREATE). Then, the client’s link layer forwards
the request with the server’s counterpart (Forward CREATE). The request is processed as
soon as the designated time bin in the TDMA schedule starts, at which point the first
entanglement command (ENT) is fetched by physical layer. After an entangled state is
produced successfully (PSI_PLUS), the link layer of the client issues, if needed, a Pauli
correction (;r rotation around the X axis, SQG X180) to deliver the pair in the [®*) state.
Finally, the instruction processor issues a gate (/2 rotation around the X axis, SQG X90)
and a measurement (MSR) to read out the entangled qubit in a certain basis, and receives an
outcome from the physical layer (0). Figure 4.3b illustrates the actual latencies between
these interactions in one iteration of the full state tomography application.

For all our experiments, we configured TDMA time bins to be of 20 ms. In a larger
network, the duration of time bins should be calibrated according to the average time it
takes, on a certain link, to produce an entangled pair of a certain fidelity [35]. By doing
so, one can maximize network usage and thus reduce qubit decoherence on longer end-to-
end paths. However, in our single-link network, the duration of time bins only influences
the frequency at which new entanglement requests are processed. Our time bin duration
accommodates up to four batches of 1000 entanglement attempts.

Full quantum state tomography. The first application consists in generating entangled
states at the highest minimum fidelity currently available on our physical setup (0.80), and
measuring the two entangled qubits in varying bases to learn their joint quantum state.
We measure all 9 two-node correlators ((XX),(XY), ..., (ZZ)) as well as all their + variations
(+X+X),(+X -X), etc.) to minimize the bias due to measurement errors. For each of the
9 x4 = 36 combinations, we measure 125 data points, for a total of 4500 entangled states
generated and measured.

The collected measurement outcomes are then analyzed using QInfer [16], in partic-
ular the Monte Carlo method described in Ref. [15] for Bayesian estimation of density
matrices from tomographic measurements. The reconstructed density matrix is displayed

4.4 Evaluation 45

(@) (c)
Instruction Link layer Physical layer Physical layer Link layer
processor (client) (client) (server) (server) 050
(client) , ,
! CREATE ' '
— ! Forward CREATE ! 025
| ! Startof time bin ! I
Z
' ' ' & 0.00
' ENT ' 1 ENT
' 1 1
' | Ent. |
! ENT_FAIL ! attempts ! _ENT_FAILL ~025
| ENT ! ! ENT (00|
| ' Ent. ' Instruction 050
' PSI_PLUS 1 attempts 1+ PSI_PLUS processor
1 «€ 1 1 » (server)
! SQG X180 ! ! '
1 1 I SQG +X90 H
I SQG +X90 _ 1 | e——! ()
—_—, ! MSR !
' MSR ' —
—_ . '
1 1 l 1 !
0 —_— 4000 -
' | 1 ! 2
[e — 1 ! g
g
(b) E 3000
CREATE { & e B
ENT f 3 i
ENT_FAIL A A A A sAA AL 5 2000
PSI_PLUS A ia a 3
SQG X180 | £ 1000
SQG +X90 A ia a z
MSR ia a
0 AL A 0
T T T u T T T T T T T T T T
0 20 40 60 56 57 0 250 500 750 1000 1250 1500 1750
Time since CREATE (ms) Wall clock time (s)

Figure 4.3: Full state tomography with the quantum network stack. (a) Sequence diagram of the communication
steps across the network stack and the two nodes to perform one repetition of the tomography application (in
particular, measurement of the (YY) correlator). The coloring follows that of Figure 4.1. CREATE: entanglement
request, ENT: entanglement attempts request, ENT_FAIL: failed the batch of entanglement attempts, PSI_PLUS:
successful entanglement attempt with generated state ¥*, SQG: single-qubit gate, X180: 180° rotation around
X axis, MSR: qubit measurement, 8/1: qubit measurement outcome. Note that the client’s link layer protocol
requests a X180 gate after entanglement generation to deliver the |®*) Bell state to the higher layer. (b) Example
time trace of (a) for the client. Several batches of entanglement attempts are required before an entangled state
is heralded. On the right, a zoomed-in part of the trace (corresponding to the dashed box in the left plot). (c)
Reconstructed density matrix of the states delivered by the link layer. Only the real part is plotted (imaginary
elements are all ~0, see main text). We estimate a fidelity F with |®*) of F = 0.783(7). (d) Total number of
delivered states over time. The occasional pauses in entanglement delivery (plateaus) are due to the client’s NV
center becoming off-resonant with the relevant lasers (see Appendix C). Differences in slope are due to changes
in resonance conditions that increase the time necessary to pass the charge and resonance check.

in Figure 4.3c (only the real part is shown) and its values and uncertainties are

0.442(6) 0.003(3) 0.003(2) 0.328(5)

0.003(3) 0.033(6) -0.023(5) -0.000(5)
Relpl =1 003(2) -0.023(5) 0.056(4) -0.003(4) |’

0.328(5) -0.000(5) -0.003(4) 0.469(7)

0 -0.014(3) -0.005(7) 0.032(5)
0.014(3) 0 ~0.002(4) 0.001(5)
Im[p] =\ 005(7) 0.002(4) 0 -0.000(7) |
-0.032(5) -0.001(5) 0.000(7) 0

Here p;j mn = (ij| p |mn), with i, m (j, n) being the client (server) qubit states in the compu-
tational basis. The uncertainty on each element of the density matrix is calculated as

46 4 Entanglement Generation With a Quantum Networking Stack

the standard deviation of that element over the probability distribution approximated
by the Monte Carlo reconstruction algorithm (probability distribution approximated by
1x 10° Monte Carlo particles [15]). It is then possible to estimate the fidelity of the deliv-
ered entangled states with respect to the maximally entangled Bell state, which we find
to be F = 0.783(7). The measured fidelity is slightly lower (»3 %) than what measured
in Ref. [30] without the use of the QEGP abstraction (and the whole network controller
where QEGP runs). This discrepancy could be due to the additional physical-layer decou-
pling sequences required for real-time operation (300 ps) and the additional single-qubit
gate issued by the link layer to always deliver |®*) (the physical layer can produce either
[¥*) = (J01) +]10))/ /2 or [¥7) = (J01) - |1))/ V2, see Refs. [19, 30]).

It is to be noted that, in order to obtain the most faithful estimate of the generated
state (see Section 4.5 for details), the measured expectation values are corrected, in post-
processing, to remove known tomography errors of both client and server [26], and events
in which at least one physical device was in the incorrect charge state.

Finally, we show, in Figure 4.3d, that our system can sustain a fairly stable entangle-
ment delivery rate over 30 min of data acquisition — plateaus and changes in slope can
be attributed to varying conditions of resonance between the NV centers and the relevant
lasers (see Appendix C).

Latency VS fidelity. The QEGP interface allows its user to request entangled pairs at
various minimum fidelities. For physical reasons, higher fidelities will result in lower
entanglement generation rates [19, 38]. The trade-off between fidelity and throughput is
particularly interesting in a scenario where some applications might require high-fidelity
entangled pairs and are willing to wait a longer time, while others might prefer lower-
fidelity states but higher rates [11]. Clearly, for the link layer to offer a range of fidelities to
choose from, the underlying physical layer must support such a range. We benchmark the
capabilities of the link layer and of the physical layer to deliver states at various fidelities
in a single application by measuring the (XX), (YY) and (ZZ) correlators (and their +
variations, as we did above, for a total of 3 x 4 = 12 correlators) for seven different target
fidelities, (0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80). We generate 1500 entangled states per
fidelity, for a total of 10 500 delivered states. With this case study, we analyze both the
resulting fidelity and the system’s latency for different requested fidelities.

The results for measured fidelity versus requested fidelity are shown in Figure 4.4a. It
is worth noting that the application iterates over the range of fidelities in real-time, and
thus the physical layer is prepared to deliver any of them at any point. We calibrate the
physical layer to deliver states of slightly higher fidelity than the requested ones (0.03
more), since entanglement requests specify the minimum desired fidelity. The measured
fidelities are — within measurement uncertainty — always matching or exceeding the re-
quested minimum ones (the dashed gray line in Figure 4.4a is the y = x diagonal). As in
the previous application, measurement outcomes are post-processed to eliminate tomog-
raphy errors and events in which the physical devices were in the incorrect charge state
(we refer to the latter as charge state correction). For arbitrary applications that use the
delivered entangled states for something other than statistical measurements, applying
the second correction directly at the link layer might prove challenging, since the infor-
mation concerning whether to discard an entangled pair is only available at the physical
layer after the entangled state is delivered to the link layer (when the next CR check is

4.4 Evaluation 47

()
0.80 Targeted
. ¢ Measured ' L
0.75 4 ® w/o charge state correction ¢ %]
oy
E 0.70 ’ *
3 065 i
2
$ 0.60 ‘ *
=
0.55
0.50 *

T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80

Requested fidelity

(b)

0.35 4

Link layer protocol

0.30 - Interface V
VA Physical layer (CR check) /

0.25 - Physical layer (entanglement)
0.20 4

Latency (s)

0.15 4

0.10 +

0.05 4

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Requested fidelity

Figure 4.4: Performance of the entanglement delivery service. (a) Measured fidelity of the states delivered by the
link layer for varying requested fidelity. Targeted fidelity at the physical layer is 0.03 higher than the link layer
protocol’s minimum fidelity request. When not correcting for wrong charge state events, fidelity is reduced by
a few percents (see Section 4.5). Error bars represent 1 s.d. (b) Average latency of the entanglement delivery
per requested fidelity, broken down into sources of latency. Entanglement generation and charge and resonance
check at the physical layer are the largest sources of latency (at higher fidelities, more entanglement attempts are
required before success). Running the link layer protocol introduces a small but measurable overhead (=10 ms)
to the entanglement generation procedure, which does not depend on the requested fidelity, and that could be
mitigated by requesting multiple entangled states in a single instruction. The communication delays between
quantum network controller and quantum device controller (Interface) introduce negligible overall latency.

performed). However, a mechanism to identify bad entangled pairs retroactively at the
link layer — like the expiry functionality included in the original design of QEGP [11] —
could be used to discard entangled states after they have been delivered by the physical
layer. For completeness, we also report, again in Figure 4.4a, the measured fidelity when
the wrong charge state correction is not applied.

For each requested fidelity we also measure the entanglement generation latency [11],
defined as the time between the issuing of the CREATE request to the link layer, until the
successful entanglement outcome reported by the physical layer (refer to Figure 4.3a for
a diagram of the events in between these two). Figure 4.4b shows the measured average
latency, grouped by requested fidelity and broken down into the various sources of la-
tency. When calculating the average latencies, we have ignored entanglement requests
that required more than 10s to be fulfilled. These high-latency requests correspond to

48 4 Entanglement Generation With a Quantum Networking Stack

Establish Client
entanglement outcome

) ®
1)
4 Qubit protection H Tomography ‘

Measure in X Measure in Y Measure in Z

Figure 4.5: Tomography of states prepared on the server by the remote client. For each chosen measurement
axis of the client (X, Y, Z), and for each obtained measurement outcome at the client (|0), |1)), a different state
is prepared on the server. Plotted on the Bloch spheres are the results of the tomography on the server’s qubit.
Uncertainties on each coordinate are ~0.05 (see Section 4.5). We find an average fidelity of F = 0.853(8).

the horizontal plateaus of Figure 4.3d. The main contribution to the total latency comes
from the entanglement generation process at the physical layer, followed by the NV center
preparation time (CR check). Both latency values are consistent with the expected number
of entanglement attempts required by the single-photon entanglement protocol employed
at the physical layer [19]. The link layer protocol adds, on average, ~10 ms of extra la-
tency to all requests, regardless of their fidelity. This is due partly to the synchronization
of the CREATE request between the two nodes (i.e. a simple TCP message), but mostly to
the nodes having to wait for the next time bin in the network schedule to start. We re-
mark that, by requesting multiple entangled states in a single CREATE, one can distribute
this overhead over many generated pairs, to the point where it becomes negligible. While
our applications did not issue multi-pair CREATE requests, this would be the more natural
choice for real applications, and would result in better utilization of the allocated time
bins. Finally, the overhead incurred by the interface between microcontrollers is rather
small (barely visible in Figure 4.4b), but could however be further reduced by integrating
device controller and network controller into a single device. It is worth mentioning that,
in our simple scenario in which each entanglement request is only submitted to QEGP
after the previous one completes, and thus the request queue never grows larger than one
element, throughput happens to be almost exactly the same as the inverse of latency, and
hence it is not reported here.

Overall, we observe that the extra entanglement generation latency incurred when
deploying an abstraction layer (QEGP) on top of the physical layer, while not too modest,
is only a small part of the whole, particularly at higher fidelities. Nevertheless, optimizing
the length of TDMA time bins could result in an even smaller overhead.

Remote state preparation. One of the use cases of the QEGP service is to prepare quan-
tum states on a remote server [11]. Remote state preparation is a fundamental step to
execute a blind quantum computation application [7], whereby a client quantum com-

4.5 Results With and Without Corrections 49

puter with limited resources can run applications on a powerful remote quantum server
using the many qubits the server has, while keeping the performed computation private.

Remote state preparation is different from the previous two cases in that the client can
measure its end of the entangled pair as soon as the pair is generated, while the server has
to keep its qubit alive waiting for further instructions. For such a scenario, the client can
make use of QEGP’s service to issue R-type entanglement requests, so that the local end of
the entangled pair can be measured (in a certain basis) as soon as it is generated, while the
server’s qubit can be protected for later usage. An R-type entanglement request results in
an ENM command on the client and an ENT command on the server. For this type of requests
(as well as for M-type ones), since the local end of the pair is measured immediately, the
client’s QEGP can skip the Pauli correction used to always deliver |®*), and can instead
apply a classical correction to the received measurement outcome.

To showecase this feature of QEGP we use the client node to prepare the six cardinal
states on the server (|£x), |+y), [0) and |1)) by having the client measure its share of the
entangled state in the six cardinal bases. We then let the server measure the prepared
states — again in the six cardinal bases — to perform tomography. For each client mea-
surement basis, and for each server tomography basis, we deliver 125 entangled states
at a requested fidelity of 0.80, for a total of 6 x 6 x 125 = 4500 remote state preparations.
The results are presented in Figure 4.5, which displays the tomography of the prepared
states on the server, for the three different measurement axes of the client and the two
possible measurement outcomes of the client. The prepared states are affected by the mea-
surement error of the client (F, = 0.928(3), F; = 0.997(1)): an error in the measurement of
the client’s qubit results in an incorrect identification of the state prepared on the server.
By alternating between positive and negative readout orientations, we make sure that the
errors affect all prepared states equally, instead of biasing the result. We note that we
exclude, once again, events in which at least one of the two devices was in the wrong
charge state, and we correct for the known tomography error on the server (results with-
out corrections are in Section 4.5). Overall, we find an average remote state preparation
fidelity of F = 0.853(8). The asymmetry in the fidelity of the |0) and |1) states is caused by
the asymmetry in the populations (01| p |01) vs (10| p |10) of the delivered entangled state,
which in turn is due to the double |0) occupancy error of the single-photon protocol used
to generate entanglement [19, 30].

4.5 Results With and Without Corrections

The data presented in the main text is corrected for known measurement errors, and events
in which at least one of the two devices was in the wrong charge state are removed (the
CR check following the delivery of entanglement reports zero counts). While it is useful to
correct for such errors in order to obtain the most faithful reconstruction of the delivered
states, these errors cannot always be avoided in a real network scenario. For completeness,
we report here the results first without any corrections applied, and then with only the
measurement error correction applied. All the results, the raw datasets, and the software
to analyze them, are available at Ref. [43].

Full quantum state tomography. The events in which the two devices generated 0 pho-
ton counts in the following CR check were 37 for the client and 380 for the server (out of

50 4 Entanglement Generation With a Quantum Networking Stack

the 4500 total). When combined, (client or server in the wrong charge state), we obtain
417 events (in zero events both client and server were in the wrong charge state). With-
out any corrections (tomography errors or wrong charge state), we obtain the following
density matrix (which has a fidelity with the target Bell state F=0.681(16)):

0397(9) 0.011(9) 0.001(7) 0.256(14)

0.011(9) 0.058(14) -0.005(13) —0.007(9)
Relpl =1 0001(7) -0.005(13) 0.092(12) —0.027(13)

0.256(14) —0.007(9) -0.027(13) 0.452(9)

0 0.000(18) -0.029(9) 0.036(9)

[-0.000(18) 0 0.010(12) -0.002(8)

Imlpl =0 02009) —0.010(12) 0 ~0.000(8)
~0.036(9) 0.002(8) 0.000(8) 0

Only applying tomography error correction (but not removal of wrong charge state
events) yields the following density matrix (fidelity F=0.744(11)):

0.421(7) -0.001(4) -0.013(5) 0.300(8)

| -0.001(4) 0.022(8) -0.020(6) -0.021(7)
Relpl =1 _0013(5) —0.020(6) 0.091(5) -0.015(5)
0.300(8) -0.021(7) -0.015(5) 0.466(5)

0 0.004(4) -0.018(3) 0.032(6)
| -0.004(4) 0 0.021(6) 0.002(5)
Im(p] = 0.018(3) -0.021(6) 0 0.002(5)

-0.032(6) —0.002(5) -0.002(5) 0

Fidelity VS rate. The events in which the two devices generated 0 photon counts in the

following CR check were 74 for the client and 709 for the server (out of the 10 500 total).

When combined, (client or server in the wrong charge state), we obtain 781 events (there

were two events in which both client and server were in the wrong charge state). Without

any corrections (tomography errors or wrong charge state), we obtain the following de-
livered fidelities: 0.454(18), 0.540(18), 0.548(17), 0.596(17), 0.640(16), 0.674(16), 0.679(15).

Only applying tomography error correction (but not removal of wrong charge state events)

yields the following fidelities: 0.485(15), 0.591(14), 0.592(14), 0.652(13), 0.705(13), 0.741(12),
0.753(11).

Remote state preparation. As mentioned in the main text, for the remote state prepara-
tion analysis, we only apply the tomography error correction for the server, while remove
wrong charge state events of both the server and the client. The events in which the two
devices generated 0 photon counts in the following CR check were 29 for the client and
365 for the server (out of the 4500 total). When combined, (client or server in the wrong
charge state), we obtain 394 events (there were zero events in which both client and server
were in the wrong charge state). Following are the numerical values that result in the plot
in the main text (average fidelity F=0.853(8)):

4.6 Discussion

51

Client Server

(X) (Y) (Z) Fidelity
Measured [+X) 0.634(48) —0.123(62) —0.004(59) | 0.817(24)
Measured |+Y) -0.028(58) -0.650(45) 0.005(61) | 0.825(23)
Measured |+Z) ~0.081(65) —0.083(66) 0.849(31) | 0.924(16)
Measured [-X) | —0.645(43) 0.135(59) 0.030(63) | 0.823(22)
Measured |-Y) 0.026(65) 0.719(40) -0.013(61) | 0.860(20)
Measured |-Z) 0.032(58) —0.069(58) -0.736(39) | 0.868(19)

Without any corrections (tomography errors or wrong charge state), we obtain the

following prepared states, with average fidelity F=0.807(10):

Client Server

(X) (Y) (Z) Fidelity
Measured |x) 0.534(55) -0.090(62) 0.009(62) | 0.767(27)
Measured |y) 0.024(60) -0.582(51) -0.013(62) | 0.791(26)
Measured |0) ~0.073(69) -0.072(69) 0.786(42) | 0.893(21)
Measured |-x) ~0.552(49) 0.143(61) 0.055(63) | 0.776(24)
Measured |-y) 0.052(64) 0.623(47) -0.018(62) | 0.811(23)
Measured |1) 0.030(57) -0.028(55) -0.606(46) | 0.803(23)

When only applying tomography error correction,

fidelity F=0.829(9):

we find an average preparation

Client Server

(X) (Y) (Z) Fidelity
Measured [x) 0.573(49) -0.096(59) 0.010(58) | 0.786(24)
Measured |y) 0.025(56) —0.624(45) -0.014(59) | 0.812(23)
Measured |0) ~0.078(64) -0.077(65) 0.843(32) | 0.921(16)
Measured |-x) ~0.592(44) 0.153(57) 0.059(59) | 0.796(22)
Measured |-y) 0.056(61) 0.667(41) -0.020(59) | 0.834(20)
Measured |1) 0.032(54) -0.030(53) -0.650(40) | 0.825(20)

4.6 Discussion

In summary, we have demonstrated the operation of a link layer and a physical layer
for entanglement-based quantum networks. The link layer abstracts the entanglement
generation procedure provided by the physical layer — implemented here with two NV
center-based quantum network nodes — into a robust platform-independent service that
can be used to run quantum networking applications. We performed full quantum state
tomography of the states delivered by the link layer, tested its ability to deliver states at
different fidelities in real-time, and verified remote state preparation of a qubit from the
client on the server, a fundamental step towards blind quantum computation [7]. We have
shown that our implementation of link and physical layers can deliver entangled states at
the fidelity requested by the user, despite some marginal inefficiencies — some of which

52 4 Entanglement Generation With a Quantum Networking Stack

can be addressed in a future version of the protocols (e.g. avoiding Pauli corrections unless
necessary). We have also quantified the additional latency incurred by deploying the link
layer protocol on top of the physical layer. Although not detrimental, the extra overhead is
still noticeable, but can also be scaled down by optimizing the scheduling of entanglement
generation requests. We also acknowledge that scheduling a quantum node’s resources
is still an open problem [35, 41, 42] and that the simple approach taken here is likely a
suboptimal choice for more advanced quantum networks. We emphasize, however, that
our link layer protocol is not tied to any particular scheduling algorithm or architecture
— it merely expects that the schedule of each node be matched with its peer. In Ref. [11]
for example, the schedule was instead formed via a distributed queue protocol, and in the
future other architectures and algorithms [35] may be more suitable for scaling to larger
networks.

Other research challenges posed by our work include an in-depth analysis of the se-
curity of quantum network implementations. For example, it is clear that if the classical
control messages used in our protocol are not authenticated, unwanted entanglement gen-
eration may be triggered at one of the nodes. In some physical layer implementations such
as the one considered here, this may negatively impact the quality of the qubits already
stored at the node [20], and hence impact availability. Initial work indicates that the per-
formance impact of adding authentication, however, is small (refer to Chapter 6).

The adoption of the techniques presented here (which are not specific to our diamond
devices) by other quantum network platforms [27, 32, 33, 36, 37, 38, 39] will boost the de-
velopment towards large-scale and heterogeneous quantum networks. Real-time control
of memory qubits, as well as the availability of multi-node networks and dynamic net-
work schedules, will enable demonstrations of the higher layers of the network stack [24],
which in turn will open the door to end-to-end connectivity on a platform-independent
quantum network.

References
[1] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and
T. H. Taminiau. “One-second Coherence for a Single Electron Spin Coupled to a
Multi-qubit Nuclear-spin Environment”. In: Nature Commun. 9.1 (2018), pp. 1-8.
DOI: 10.1038/s41467-018-04916-z.

[2] A. Aguado, V. Lopez, J. P. Brito, A. Pastor, D. R. Lopez, and V. Martin. “En-
abling Quantum Key Distribution Networks via Software-Defined Networking”.
In: ONDM. IEEE, 2020, pp. 1-5. DOI: 10.23919/0NDM48393.2020.9133024.

[3] M. Alshowkan, B. P. Williams, P. G. Evans, N. S. Rao, E. M. Simmerman, H.-H. Lu,
N. B. Lingaraju, A. M. Weiner, C. E. Marvinney, Y.-Y. Pai, B. J. Lawrie, N. A. Peters,
and J. M. Lukens. “Reconfigurable Quantum Local Area Network Over Deployed
Fiber”. In: PRX Quantum 2 (4 2021), p. 040304. URL: 10.1103/PRXQuantum. 2.040304.

[4] L. Aparicio, R. Van Meter, and H. Esaki. “Protocol Design for Quantum Repeater
Networks”. In: AINTEC. ACM, 2011, pp. 73-80. Do1: 10.1145/2089016.2089029.

https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.23919/ONDM48393.2020.9133024
10.1103/PRXQuantum.2.040304
https://doi.org/10.1145/2089016.2089029

References 53

(5]

(12]

(13]

(14]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau,
M. Markham, D. J. Twitchen, L. Childress, and R. Hanson. “Heralded Entangle-
ment Between Solid-State Qubits Separated by Three Metres”. In: Nature 497 (2013),
pp. 86—90. DOI: 10.1038/nature12016.

C.E.Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker,
M. Markham, D. J. Twitchen, and T. H. Taminiau. “A Ten-Qubit Solid-State Spin
Register with Quantum Memory up to One Minute”. In: Phys. Rev. X 9.3 (2019),
pp. 031045-1-031045-12. DOI: 10.1103/PhysRevX.9.031045.

A. Broadbent, J. Fitzsimons, and E. Kashefi. “Universal Blind Quantum Computa-
tion”. In: FOCS. IEEE, 2009, pp- 517-526. DOI: 10.1109/F0CS. 2009. 36.

M. Caleffi. “Optimal Routing for Quantum Networks”. In: IEEE Access 5 (2017),
pp- 22299-22312. po1: 10.1109/ACCESS.2017.2763325.

K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner. “Entanglement Distribution
in a Quantum Network: A Multicommodity Flow-Based Approach”. In: IEEE Trans-
actions on Quantum Engineering 1 (2020), pp. 1-21. DOI: 10.1109/TQE. 2020.3028172.

K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner. “Distributed Routing in
a Quantum Internet”. 2019. arXiv: 1907.11630.

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SIGCOMM. ACM, 2019, pp. 159-
173. DOI: 10.1145/3341302.3342070.

A. Dahlberg, B. van der Vecht, C. Delle Donne, M. Skrzypczyk, L. te Raa, W. Ko-
zlowski, and S. Wehner. “NetQASM—A Low-Level Instruction Set Architecture for
Hybrid Quantum—Classical Programs in a Quantum Internet”. In: Quantum Science
and Technology 7.3 (2022), p. 035023. DOI: 10.1088/2058-9565/ac753f.

A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu. “Generation of
Heralded Entanglement Between Distant Hole Spins”. In: Nat. Phys. 12.3 (2016),
pp- 218-223. DOI: 10.1038/nphys3605.

A.D.Ferguson et al. “Orion: Google’s Software-Defined Networking Control Plane”.
In: NSDI. USENIX Association, 2021, pp. 83-98. URL: https://www . usenix.org/
conference/nsdi21/presentation/ferguson.

C. Granade, J. Combes, and D. G. Cory. “Practical Bayesian tomography”. In: New
Journal of Physics 18.3 (2016), p. 033024. DOI: 10.1088/1367-2630/18/3/033024.

C.Granade, C. Ferrie, I. Hincks, S. Casagrande, T. Alexander, J. Gross, M. Kononenko,
and Y. Sanders. “QlInfer: Statistical Inference Software for Quantum Applications”.
In: Quantum 1 (2017), p. 5. DOL: 10.22331/9-2017-04-25-5.

L. Gyongyosi and S. Imre. “Decentralized Base-Graph Routing for the Quantum
Internet”. In: Phys. Rev. A 98.2 (2018), p. 022310. URL: 10.1103/PhysRevA.98.022310.

J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, and H. We-
infurter. “Heralded Entanglement Between Widely Separated Atoms”. In: Science
337.6090 (2012), pp. 72-75. DOI: 10.1126/science.1221856.

https://doi.org/10.1038/nature12016
https://doi.org/10.1103/PhysRevX.9.031045
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.1109/ACCESS.2017.2763325
https://doi.org/10.1109/TQE.2020.3028172
https://arxiv.org/abs/1907.11630
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1038/nphys3605
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://doi.org/10.1088/1367-2630/18/3/033024
https://doi.org/10.22331/q-2017-04-25-5
10.1103/PhysRevA.98.022310
https://doi.org/10.1126/science.1221856

54

4 Entanglement Generation With a Quantum Networking Stack

[19]

[23]

[24]

[25]

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J.
Twitchen, M. Markham, and R. Hanson. “Deterministic Delivery of Remote Entan-
glement on a Quantum Network”. In: Nature 558.7709 (2018), pp. 268—273. poI: 10.
1038/s41586-018-0200-5.

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson. “Dephasing Mechanisms of
Diamond-Based Nuclear-Spin Memories for Quantum Networks”. In: Phys. Rev. A
97.6 (2018), p. 062330. DOI: 10.1103/PhysRevA.97.062330.

N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H.
Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson. “Entan-
glement Distillation Between Solid-State Quantum Network Nodes”. In: Science
356.6341 (2017), pp. 928-932. pOI: 10.1126/science.aan0070.

W. Kozlowski, A. Dahlberg, and S. Wehner. “Designing a Quantum Network Proto-
col”. In: CoNEXT. ACM, 2020, pp. 1-16. DOI: 10.1145/3386367.3431293.

W. Kozlowski, F. Kuipers, and S. Wehner. “A P4 Data Plane for the Quantum Inter-
net”. In: EuroP4. ACM, 2020, pp- 49-51. URL: 10.1145/3426744.3431321.

W. Kozlowski and S. Wehner. “Towards Large-Scale Quantum Networks”. In:
NANOCOM. ACM, 2019, pp. 1-7. DOI1: 10.1145/3345312.3345497.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M.
Duan, and C. Monroe. “Entanglement of Single-Atom Quantum Bits at a Distance”.
In: Nature 449 (2007), pp. 68-71. DOI: 10.1038/nature@6118.

B. Nachman, M. Urbanek, W. A. de Jong, and C. W. Bauer. “Unfolding Quantum
Computer Readout Noise”. In: npj Quantum Information 6.1 (2020), pp. 1-7. DoI:
10.1038/s41534-020-00309-7.

C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse, D. S. Levonian, E. N.
Knall, P. Stroganov, R. Riedinger, H. Park, M. Lon¢ar, and M. D. Lukin. “Quantum
Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Inter-
face ”. In: Phys. Rev. Lett. 123.18 (2019), p. 183602. URL: 10.1103/PhysRevLett.123.
183602.

M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S.
Guha. “Routing Entanglement in the Quantum Internet”. In: npj Quantum Informa-
tion 5.1 (2019), pp. 1-9. DOI: 10.1038/541534-019-0139-x.

A. Pirker and W. Diir. “A Quantum Network Stack and Protocols for Reliable
Entanglement-Based Networks”. In: New Journal of Physics 21.3 (2019), p. 033003.
URL: 10.1088/1367-2630/ab05f7.

M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S.
Wehner, and R. Hanson. “Realization of a Multinode Quantum Network of Remote
Solid-State Qubits”. In: Science 372.6539 (2021), pp. 259-264. DoI: 10.1126/science.
abg1919.

https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1103/PhysRevA.97.062330
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1145/3386367.3431293
10.1145/3426744.3431321
https://doi.org/10.1145/3345312.3345497
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/s41534-020-00309-7
10.1103/PhysRevLett.123.183602
10.1103/PhysRevLett.123.183602
https://doi.org/10.1038/s41534-019-0139-x
10.1088/1367-2630/ab05f7
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919

References 55

(32]

(37]

(38]

(39]

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Miicke, E.
Figueroa, J. Bochmann, and G. Rempe. “An Elementary Quantum Network of Single
Atoms in Optical Cavities”. In: Nature 484.7393 (2012), pp. 195-200. po1: 10.1038/
nature11023.

B. C. Rose, D. Huang, Z.-H. Zhang, P. Stevenson, A. M. Tyryshkin, S. Sangtawesin,
S. Srinivasan, L. Loudin, M. L. Markham, A. M. Edmonds, D. J. Twitchen, S. A. Lyon,
and N. P. de Leon. “Observation of an Environmentally Insensitive Solid-State Spin
Defect in Diamond”. In: Science 361.6397 (2018), pp. 60—-63. DOI: 10.1126/science.
2a00290.

S. Shi and C. Qian. “Concurrent Entanglement Routing for Quantum Networks:
Model and Designs”. In: SIGCOMM. ACM, 2020, pp. 62—75. po1: 10.1145/3387514.
3405853.

M. Skrzypczyk and S. Wehner. “An Architecture for Meeting Quality-of-Service Re-
quirements in Multi-User Quantum Networks”. 2021. arXiv: 2111.13124.

N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M.
Niethammer, J. Ul Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, and
D. D. Awschalom. “Developing Silicon Carbide for Quantum Spintronics”. In: Appl.
Phys. Lett. 116.19 (2020), p- 190501. DOI: 10.1063/5.0004454.

L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K.
Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance. “High-Rate, High-Fidelity
Entanglement of Qubits Across an Elementary Quantum Network”. In: Phys. Rev.
Lett. 124.11 (2020), p- 110501. po1: 10.1103/PhysRevLett.124.110501.

R. Stockill, M. J. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. J. Miller, C.
Matthiesen, C. Le Gall, and M. Atatiire. “Phase-Tuned Entangled State Generation
between Distant Spin Qubits”. In: Phys. Rev. Lett. 119.1 (2017), p. 010503. por: 10.
1103/PhysRevLett.119.010503.

M. E. Trusheim, B. Pingault, N. H. Wan, M. Giindogan, L. De Santis, R. Debroux,
D. Gangloff, C. Purser, K. C. Chen, M. Walsh, J. J. Rose, J. N. Becker, B. Lienhard,
E. Bersin, 1. Paradeisanos, G. Wang, D. Lyzwa, A. R.-P. Montblanch, G. Malladi,
H. Bakhru, A. C. Ferrari, I. A. Walmsley, M. Atatiire, and D. Englund. “Transform-
Limited Photons From a Coherent Tin-Vacancy Spin in Diamond”. In: Phys. Rev.
Lett. 124.2 (2020), p. 023602. DOI: 10.1103/PhysRevLett.124.023602.

R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto. “Path Selection
for Quantum Repeater Networks”. In: Networking Science 3.1 (2013), pp. 82-95. DOI:
10.1007/s13119-013-0026-2.

G. Vardoyan, S. Guha, P. Nain, and D. Towsley. “On the Capacity Region of Bipartite
and Tripartite Entanglement Switching”. In: SIGMETRICS Perform. Eval. Rev. 48.3
(2021), pp- 45-50. DOI: 10.1145/3453953.3453963.

G. Vardoyan, S. Guha, P. Nain, and D. Towsley. “On the Stochastic Analysis of a
Quantum Entanglement Switch”. In: Perform. Eval. Rev. 47.2 (2019), pp. 27-29. DOIL:
10.1145/3374888.3374899.

https://doi.org/10.1038/nature11023
https://doi.org/10.1038/nature11023
https://doi.org/10.1126/science.aao0290
https://doi.org/10.1126/science.aao0290
https://doi.org/10.1145/3387514.3405853
https://doi.org/10.1145/3387514.3405853
https://arxiv.org/abs/2111.13124
https://doi.org/10.1063/5.0004454
https://doi.org/10.1103/PhysRevLett.124.110501
https://doi.org/10.1103/PhysRevLett.119.010503
https://doi.org/10.1103/PhysRevLett.119.010503
https://doi.org/10.1103/PhysRevLett.124.023602
https://doi.org/10.1007/s13119-013-0026-2
https://doi.org/10.1145/3453953.3453963
https://doi.org/10.1145/3374888.3374899

56

4 Entanglement Generation With a Quantum Networking Stack

[45]

[46]

M. Pompili, C. Delle Donne, I. te Raa, B. van der Vecht, M. Skrzypczyk, G. M. Ferreira,
L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson,
and S. Wehner. Data and software supporting "Experimental Demonstration of Entan-
glement Delivery Using a Quantum Network Stack”. 2021. por: 10.4121/16912522.

FreeRTOS Real-Time Operating System for Microcontrollers. Amazon Web Services.
URL: https://www.freertos.org/ (visited on Feb. 28, 2023).

NetQASM SDK. QuTech. URL: https://github.com/QuTech-Delft/netgasm (visited
on Feb. 28, 2023).

The White Rabbit Project. CERN. URL: https://white-rabbit.web.cern.ch/ (visited
on Feb. 28, 2023).

https://doi.org/10.4121/16912522
https://www.freertos.org/
https://github.com/QuTech-Delft/netqasm
https://white-rabbit.web.cern.ch/

57

Quantum Networking With an
Elementary Operating System

An operating system (OS) for quantum network nodes should provide more than just net-
working functionalities. Ultimately, it should enable quantum networking applications to
be written in high-level, platform-independent software, and should be able to manage the
resources of the underlying device when deployed in a multi-node and multi-user quantum
network. This chapter discusses our implementation of QNodeOS, an OS for quantum network
nodes, which includes a quantum network stack for entanglement generation, as well as re-
source management and scheduling features that allow the concurrent execution of multiple
applications. We also design and propose a set of benchmarks which will be used to quan-
tify — in upcoming work — the performance of the OS on state-of-the-art quantum network
hardware based on nitrogen-vacancy centers in diamond.

This chapter is extracted from the article in preparation: C. Delle Donne, M. Iuliano, B. van der Vecht, M.
Skrzypczyk, I. te Raa, G. M. Ferreira, T. van der Steenhoven, A. R.-P. Montblanch, M. Pompili, S. L. N. Hermans, N.
Demetriou, B. van Ommen, T. H. Taminiau, P. Pawelczak, W. Kozlowski, R. Hanson, and S. Wehner. “QNodeOS:
An Operating System for Quantum Network Nodes”.

Contributions: as indicated in Chapter 2.

58 5 Quantum Networking With an Elementary Operating System

HE preliminary experiments conducted in Chapter 4 showcased elementary quantum
T networking functionalities through a platform-independent control system — mainly,
the quantum networking stack embedded in QNodeOS. Nevertheless, entanglement gen-
eration is just one of the blocks constituting fully-fledged quantum communications ap-
plications, which also include local quantum processing and classical communication and
processing, as shown in Figure 2.2. With QNodeOS, we aim to take the state of the art
of quantum networking experiments one step further, and demonstrate the execution of
complete applications, some of which comprise quantum and classical processing and com-
munication. We also include one case study that serves as a proof-of-concept demonstra-
tion of the usefulness of a multitasking-ready OS, to be expanded on when investigating
multi-user quantum networks more in depth. In this chapter we describe the proposed test
applications, which will serve as case studies for the upcoming evaluation of QNodeOS
on NV center devices. Prior to that, we also give an overview of the implementation of
QNodeOS and the underlying QDevice. Refer to Appendix A for additional details on the
implementation of the components of QNodeOS and their interfaces, and to Appendix B
for the specification of the interface to the QDevice.

5.1 Implementation

Figure 5.1 outlines software and hardware implementation of QNodeOS and the whole
node system. QNodeOS is implemented in C++ on top of FreeRTOS [4], a tiny operating
system for microcontrollers. The stack runs on a dedicated MicroZed [5] — an off-the-
shelf platform based on the Zyng-7000 SoC, which hosts two ARM Cortex-A9 process-
ing cores, of which only one is used, clocked at 667 MHz. QNodeOS connects to peer
QNodeOS systems via TCP over a Gigabit Ethernet interface. We opted for a device like
the Zyng-7000 SoC for its advantageous trade-off between high flexibility and moderate
cost (around € 100 in the Netherlands at the time of writing). Whilst more concrete device
requirements may arise from our future benchmarking of QNodeOS, we believe that the
selected SoC provides enough computational bandwidth for the envisioned tasks, and it
also offers the possibility to implement optimized hardware modules on its FPGA fabric.
We however remark that the design of QNodeOS is in no way tied to a certain computing
architecture. For the QDevice, we replicated the setup used for Chapter 4, which mainly
consists of: (1) an ADwin-Pro II [3] acting as the main orchestrator of the setup; (2) a

Host ONodeOS QODevice
(Runtime (Py)] (Stack (C++)) [QDevice stack)

(FreeRTOS (C)) ADwin-Pro 11

MicroZed i
_________ (Zynqg-7000)
EPTO peer Pllag
! node | |« EL Qubit control

Figure 5.1: Node deployment overview. Our quantum network node consists of a desktop machine for the host
runtime, a Zyng-7000 SoC for QNodeOS, and a series of digital and analog controllers for the QDevice.

5.1 Implementation 59

Lines of code

Component File type Files Total Blanks Comments Code
C/C++ 85 16273 2779 1953 11541
Core code C/C++ header 121 13281 2418 4188 6675
CMake 25 486 99 43 344
Assembly 1 141 15 0 126
C/C++ 57 21849 3842 2195 15812
Test code C/C++ header 17 1725 288 177 1260
Python 14 2577 527 427 1623
CMake 25 483 97 22 364

Estimated schedule effort (COCOMO) 15.47 months
Estimated people required (COCOMO) 11.81

Table 5.1: Code metrics for QNodeOS core code and testing code, including number of files per language, lines
of code, and constructive cost model (COCOMO) effort estimates [1], generated using scc [6]. The COCOMO
metrics were generated using the “Semi-detached” model, meaning that the estimated are computed assuming
that the project requires a certain level of expertise and creativity and the problem is not well understood (i.e.
there is research involved).

series of subordinate devices responsible for qubit control, including laser pulse genera-
tors and optical readout circuits; (3) the quantum physical device, based on NV centers,
counting one single (communication) qubit for each node. The QDevice is where the time-
critical qubit control lies. QNodeOS interfaces with the QDevice’s ADwin-Pro II through
a 12.5 MHz SPI interface, used to exchange 4-byte control messages at a rate of 50 kHz.
Finally, the host layer is a Python runtime running on a general-purpose 4-core desktop
machine running Linux. The host machine connects to QNodeOS via TCP over the same
Gigabit Ethernet interface that QNodeOS uses to connect to its peers (average ping RTT
of 0.1 ms), and sends application registration requests and quantum code blocks over this
interface (10 to 1000 bytes, depending on the length of the block).

QNodeOS is a complex project, developed by multiple researchers and engineers over
the course of around three years and counting. Its test infrastructure is also relatively
large, with a continuous-integration pipeline consisting of an extensive set of unit tests
for each of the OS core components and some system-level application tests. Table 5.1
reports code metrics for QNodeOS code code and testing code, including number of files
per language, lines of code, and constructive cost model (COCOMO) effort estimates [1],
generated using scc [6]. Although these metrics do not fully capture the research ef-
fort put into QNodeOS, they are an indicator of the amount of engineering work in-
volved. We also point out that QNodeOS builds on top of existing real-time software frame-
works — namely, FreeRTOS. We implemented QNodeOS on top of FreeRTOS to avoid
re-implementing standard OS primitives like threads and network communication. FreeR-
TOS provides basic OS abstractions like tasks, inter-task message passing, and the TCP/IP
stack. The FreeRTOS kernel — like any other standard OS — cannot however directly
manage the quantum resources (qubits, entanglement requests and entangled pairs), and
hence its task scheduler cannot take decisions based on such resources. QNodeOS adds

60 5 Quantum Networking With an Elementary Operating System

these capabilities and takes care of the scheduling of quantum code blocks based on the
status of the quantum resources.

5.2 Test Cases

We propose a set of benchmarks that are to be used to verify the functioning of QNodeOS.
These four case studies are aimed at validating (1) single-node execution, including qubit
initialization, gates, and measurements, (2) entanglement generation, (3) delegated quan-
tum computation, and (4) multitasking.

5.2.1 Single-Qubit Gate Tomography

Our first case study is a simple local application where a single gate is applied to a qubit
initialized in the |0) state, and then the qubit is measured in a number of bases. This
translates to one or more single-qubit gates and one qubit measurement. The application
is run several times to assess the quality of the prepared state, and various qubit states are
analyzed. This single-qubit gate tomography is the simplest application QNodeOS can run
— there is a single user process running, and the network process is not even activated,
given that entanglement is never requested.

Configurations and expected results. This application is configured to apply six dif-
ferent gates in separate runs: Ry(7), Ry(7/2), Re(7/4), R, (7), R)(n/2), Ry(n/4). Each
resulting state is measured in all six cardinal bases. This application is run 1000 times for
each combination of gate and readout basis. We expect the measured state fidelity to be
in line with what the quantum hardware is capable of delivering, demonstrating that the
overhead incurred by QNodeOS is negligible, at least when running local applications.

5.2.2 Entanglement Generation

The second test case is an application that generates an entangled pair between two nodes
and then measures the generated state. This is a distributed application, where both nodes
are active — they engage in entanglement generation, and they both measure their end of
the entangled pair. As the user can specify the requested fidelity of the entangled pairs, this
application is to be run for various target fidelities. This time, all QNodeOS components
are at work. Since entanglement is requested, the quantum network stack is triggered, and
thus the network process becomes active, competing for resources with the user process.
The QMMU is also invoked by the network process to transfer ownership of the entangled
qubit to the user process (the inter-process communication primitive of QNodeOS).

Configurations and expected results. Entanglement generation is run for a range or
target fidelities: 0.50, 0.55, 0.60, 0.65, 0.70, 0.75 and 0.80. Entangled pairs are read out in
various bases to measure their correlators (XX), (YY) and (ZZ) (and their * variations, for
a total of 12 correlators). The application is run 125 times for each combination of target
fidelity and correlator, for a total of 10 500 entangled pairs. We expect the measured fidelity
to be at least matching — within measurement uncertainty — the requested minimum
fidelity, if the quantum hardware is capable of delivering such requested fidelities.

5.2 Test Cases 61

—~ Wait for 0, o, m %f(e, a, mg)

Entangle

>

Figure 5.2: Schematic of delegated computation application. The client wishes to have the server perform a
quantum computation on a certain data qubit. To do so, the two nodes establish entanglement, then the client
processes and measures its end of the entangled pair, sends the computation parameter to the server, which
finally executes the delegated computation. Blue boxes represent quantum code blocks. The client’s application
is composed of a single block, while the server’s consists of one block for entanglement and one block for the
quantum computation, interleaved by a classical code block (the reception of the computation parameter).

5.2.3 Delegated Computation

With this case study we aim to showcase a more complex quantum network application,
schematically depicted in Figure 5.2. Here, one node acts as the client, and the other as
the server. The client’s goal is to delegate a certain quantum computation on some data
qubit to the server, while keeping the server agnostic to the computation. To perform
the desired computation, described by a parameter «, the two nodes follow these steps:
(1) the two node establish an entangled pair, (2) the client “encodes” its qubit by means of
a series of local gates, described by a parameter 6, (3) the client measures its end of the en-
tangled pair and stores the classical outcome m,. (4) the client communicates the delegated
computation parameter, which is a function of «, 6 and m, (5) the server performs the
computation, (6) the server measures its end of the entangled pair and sends the classical
outcome my back to the client. In this scheme, the client application consists of a single
quantum code block and an additional classical code block that communicates the compu-
tation parameter to the server. More interestingly, the server application comprises two
quantum code blocks — the first is the establishment of the entangled pair, and the sec-
ond is the delegated computation — interleaved by a classical code block that receives the
computation parameter from the client. This is the first example of an application with
inter-block and inter-node data dependencies, where the execution (on the server) spans
more than one quantum code block, and thus the quantum state generated in one block
has to persist and remain valid for the other block too.

Configurations and expected results. The delegated computation is run for various
values of & (7, 7/2) and 6 (, /2, 7/4). The application is run 500 times for each combi-
nation of « and 0. The metrics of interest are: (1) the measured fidelity of the qubit state
after the delegated computation for each of the computation values, (2) a breakdown of
the average application latency, to give an indication of where time is spent during exe-
cution. We expect the fidelity to be somewhat lower than the best-case performance due
to the communication latency incurred at the application level — the “Wait for 0, a, m.”
block in Figure 5.2. In the latency breakdown, we also expect this classical communica-
tion step at the application level to be the dominating factor. These delays are expected
to manifest in distributed applications. The resulting idle times can be allocated to other
pending applications.

62 5 Quantum Networking With an Elementary Operating System

5.2.4 Multitasking

One of the core features of modern OSes is the ability to run several applications con-
currently, a key aspect in multi-user nodes and networks. QNodeOS is designed with
multitasking capabilities — not only can it multiplex a user process and the network pro-
cess, but it also allows for multiple user processes to run at the same time. This means that
multiple users can submit their applications simultaneously, and QNodeOS will service all
pending user processes based on resource availability, in order to increase the utilization
of the QDevice and to limit idle time and average application latency. One possible short-
coming of multitasking on a quantum network node is the trade-off between concurrency
and fidelity: applications that have active data in the quantum memory, and that are wait-
ing to be scheduled while other applications are in progress, may experience lower-quality
qubit states, given that such quality degrades due to the passing of time and to the noise
induced by operations on other qubits.

We aim to demonstrate the multitasking capabilities of QNodeOS by having multiple
users run independent applications concurrently. In our case study, a pool of users runs
the delegated computation application, while the rest of the users runs the local single-
qubit gate tomography application. Multitasking is evaluated on the client node, while the
server just runs its part of the delegated computation application. The idle time resulting
from running the delegated computation application on the client is a perfect candidate
for scheduling other pending applications. The multitasking performance of QNodeOS is
assessed under various system load conditions, which essentially depend on the number
of users submitting applications QNodeOS at the same time. We note that, even though a
higher degree of concurrency should in principle results in better device utilization, this
is limited by the scarce physical resources available on the underlying QDevice.

Configurations and expected results. Device utilization and average application la-
tency are measured on the client, for various configurations of users and applications:
N users, with N € {2,3,5,10}, half (rounded up) of which running the local single-gate
tomography application, and the remaining half (rounded down) running the delegated
computation application. To measure the performance benefit of multitasking, we also
run the same set of applications with multitasking disabled — on QNodeOS, this means
that a user process can only be scheduled if no other user processes are either running
or waiting for entanglement generation. We expect the fidelity of the states measured at
the end of both applications to be somewhat comparable across the configurations with
and without multitasking enabled, given that the underlying QDevice has a one-qubit
memory at the moment, and thus the level of concurrency is fairly limited. On the other
hand, we expect device utilization and average application latency to be affected by the
multitasking capabilities of QNodeOS. Whilst this is a relatively simple benchmark and
the degree of concurrency is highly limited by the available quantum memory, this case
study should exemplify why it is important for an OS for quantum network nodes to be
multitasking-capable, and how such an OS can take advantage of idle times.

5.3 Discussion

The test cases discussed in this chapter complement those of Chapter 4, and represent
a milestone for the evaluation of operating systems for quantum network nodes. These

References 63

experiments are planned for QNodeOS for the near future. The results of this experimental
effort will primarily showcase certain aspects of the importance of software abstractions
for quantum networking. Additionally, the outcome will provide insights into design and
implementation strengths an pitfalls on QNodeOS, and establish a baseline performance
for similar studies involving future versions of our system or alternative designs.

In the next and final chapter of this thesis we analyze the impact of data origin authen-
tication of classical messages exchanged at the quantum network stack level. The results
of this investigation will serve as guidelines for incorporating data origin authentication
mechanisms into more advanced designs of QNodeOS.

References
[1] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.

Madachy, D. J. Reifer, and B. Steece. Software Cost Estimation with COCOMO II.
Prentice Hall Press, 2009.

[3] ADwin-Pro II. Jager GmbH. URL: https://www.adwin.de/us/produkte/proII.html
(visited on Feb. 28, 2023).

[4] FreeRTOS Real-Time Operating System for Microcontrollers. Amazon Web Services.
URL: https://www. freertos.org/ (visited on Feb. 28, 2023).

[5] MicroZed Development Board. Avnet. URL: https: //www. avnet.com/wps/portal/
us/products/avnet-boards/avnet-board-families/microzed/ (visited on Feb. 28,
2023).

[6] scc: Code Counter With Complexity Calculations and COCOMO Estimates. Ben
Boyter. URL: https://github.com/boyter/scc (visited on Feb. 28, 2023).

https://www.adwin.de/us/produkte/proII.html
https://www.freertos.org/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/
https://github.com/boyter/scc

65

Data Origin Authentication in the
Quantum Networking Stack

Quantum networking protocols make use of classical communications to coordinate entan-
glement generation and other tasks. In this chapter, we discuss the need for authentication
of classical messages exchanged at the quantum network stack level, with focus on concrete
protocol proposals. We then experimentally measure the overhead incurred by sending authen-
ticated classical messages through an authentication system that uses key material supplied
by an MDI-QKD system. We use this information to simulate the performance of a quantum
link whose protocol stack uses an authenticated classical channel, and compare that to exist-
ing simulations of the same protocol stack. We find that message authentication overhead is
not detrimental to entanglement generation and to the fidelity of the entangled pairs.

This chapter is based on the article in preparation: J. S. Abrahams, C. Delle Donne, P. Brussee, T. Middelburg,

R. C. Berrevoets, J. A. Slater, and S. Wehner. “Data Origin Authentication in the Quantum Network Protocol
Stack”.

Contributions: J. S. Abrahams, C. Delle Donne, J. A. Slater and S. Wehner designed the research. J. S. Abrahams
researched and implemented MACs. P. Brussee, T. Middelburg and R. C. Berrevoets prepared the authentication
proxy. J. S. Abrahams and C. Delle Donne prepared the framework to measure RTT delays. J. S. Abrahams
and C. Delle Donne ran the simulations. J. S. Abrahams, C. Delle Donne, J. A. Slater and S. Wehner wrote the
manuscript with input from all authors. J. A. Slater and S. Wehner supervised the research. J. S. Abrahams and
C. Delle Donne contributed equally to this work.

66 6 Data Origin Authentication in the Quantum Networking Stack

P until now, several proposals have been put forward as to how quantum networks
U should be structured [9, 16, 17]. Researchers are also investigating how to abstract
the complex physics of quantum network devices so as to provide platform-independent
services to the end user (7, 8, 13] — one very basic service would be the distribution of
entanglement between network nodes, that is, entanglement generation. To coordinate
this, and other activities, proposals for a quantum network stack have provided outlines
of the layers and the separation of responsibilities, as well as protocols to populate these
layers [7, 10]. Within the proposed stack, each layer makes use of the service exposed by
the layer below, and provides a higher-level service to the layer above [7]. This stack is
inspired by classical architectures like the well-known TCP/IP network stack or the more
generic Open System Interconnect (OSI) model, and is illustrated in Figure 6.1. Each layer
and protocol within the quantum network stack makes use of classical control messages,
exchanged over a classical network, to coordinate the quantum communication activities.
These messages from the control protocols form what we refer to as the classical data plane
— which lives alongside the quantum data plane, in which information encoded in quan-
tum systems is transmitted.

When designing control protocols for quantum networks, one should carefully esti-
mate various key performance indicators, such as their impact on the end-to-end latency
of quantum services, such as entanglement generation between network nodes. One ob-
vious reason to assess the impact on latency, is the fundamental aspect of quantum infor-
mation which happens to impose strict constraints on end-to-end latency: decoherence.
Storing quantum data reliably for extended periods of time is non-trivial. Qubits have rel-
atively short lifetimes, usually of the order of milliseconds, or at best of a few seconds [1,
5]. Therefore, not only can high end-to-end latency affect the quality of the service offered
by the network, but in some cases it may result in no service at all. Classical processing
and communication overhead must, thus, be kept to a minimum, such that the generated
entangled qubits can be used as quickly as possible.

On top of that, control messages must be transmitted in a secure manner for a quantum
network to function reliably. Satoh et al. [15] list forged classical messages as a general
concern for quantum networks. To prevent such forgeries, quantum network nodes may
employ data origin authentication (DOA) cryptography suites, to distinguish between gen-

Application
Transport Qubit transmission
Platform
Network Long-distance entanglement independent
:) stack
Link Robust entanglement generation
’ Physical I Attempt entanglement generation Quantum
platform

Figure 6.1: Functional allocation of layers in a quantum network stack, adapted from Ref. [7]. The physical layer
is quantum platform-dependent. The link layer provides platform-independent robust entanglement generation.
All subsequent layers are therefore also platform independent, including the network and optionally transport
layers which facilitate end-to-end entanglement between non-adjacent nodes. The application layer uses the
services offered by the stack to perform quantum networking tasks.

6.1 Related Work 67

Sender Receiver
[y T e
v R
[| CID @ <[« |
v o
[1og |-~ -> g =

Figure 6.2: General structure of a message authentication code (MAC), where sender and receiver have a shared
key. The receiver checks the output of the MAC to verify that the message was not modified in transit.

uine and fraudulent control messages. DOA is performed using a secret that is shared
between two parties. Then, a message authentication code (MAC) algorithm can produce
a tag for each control message both at the sending and at the receiving end, to verify that
the message contents (1) were not altered and (2) were produced by a party which owns
the shared secret. This process — known as authentication — is illustrated in Figure 6.2.
Inevitably, performing DOA on control messages would incur some computation and
communication overhead. Such latency is typically neglected when modeling, simulat-
ing, or experimentally validating network protocols for quantum communications. In this
work, we examine the effects of latency caused by classical DOA on a simulated quantum
network link requested to generate entanglement between two nodes (henceforth referred
to as the simulated quantum link). First, we experimentally measure the latency incurred
by a DOA system using QKD-powered authentication algorithms. We then analyze the
behavior of the simulated quantum link — using a simulator for quantum networks [6] —
where the model of the control channel of the network includes the measured latencies
incurred by the QKD-powered DOA. The contributions of this work are as follows:

1. We provide a concise motivation for why DOA is a necessary component to uphold
the availability of system-level protocols of the quantum network stack, and to help
maintain the integrity of quantum data.

2. We experimentally measure the added latencies incurred by DOA, performed using a
QKD-based authentication system, when run on a classical communication link.

3. We offer a quantitative analysis of the impact of DOA, using the latencies measured as
per the previous point, when applied to the quantum network protocols of a simulated
quantum link (such link was first studied by Dahlberg et al. [7]).

6.1 Related Work

Conventional networking technology is an essential component of quantum networks and
quantum networking applications. Kozlowski and Wehner mention that the security of
classical communications is of concern when designing a quantum network [11]. Satoh
et al. present a general motivation for authenticating the control channel of a quantum
link [15]. They model attack vectors on quantum communications through the lens of
confidentiality, integrity, and availability. Without any security measures in place, an

68 6 Data Origin Authentication in the Quantum Networking Stack

attacker may:
« Disrupt the network in any number of ways, affecting its availability.
« Interfere with data sent via the network, hampering the integrity of quantum data.

« Read out quantum data through the accompanying classical control data, affecting the
confidentiality of quantum data.

All identified proposals of quantum network designs and quantum network protocols
use some form of conventional communication to control and coordinate quantum com-
munication [7, 9, 10, 11, 13, 16, 17]. In this work, we investigate one such proposal for a
quantum network stack: the one put forth by Dahlberg et al. [7], which has been evaluated
in simulation, as well as on hardware [14], and extended by Kozlowski et al. [10].

The proposed protocol stack for quantum networks includes physical, link, network,
transport, and application layers, as illustrated in Figure 6.1. The physical layer pro-
tocol, called midpoint heralding protocol (MHP) [7], performs heralded entanglement
generation attempts. At the link layer, the quantum entanglement generation protocol
(QEGP) [7] protocol has an internal retry mechanism and performs coordination between
adjacent nodes to provide more robust entanglement generation. QEGP accepts two types
of requests from the layer above: (1) create and keep (CK), to create an entangled pair and
store it in memory; (2) measure directly (MD), to create entangled pair, but measure it im-
mediately, and report its outcome. At the network layer, the quantum network protocol
(QNP) [10] protocol coordinates entanglement generation and swap operations on a chain
of nodes between two non-adjacent end nodes.

In this work, we simulate the three service-level protocols MHP, QEGP, and QNP.
In the next section, we explain why data origin authentication (DOA) is important for
these protocols to function, mostly focusing on availability of the network and integrity
of quantum data.

6.2 Why Data Origin Authentication

We investigate the applicability of data origin authentication to three system-level proto-
cols for quantum network stacks: MHP, QEGP and QNP [7, 10]. Quantum applications
and their protocols themselves lie outside the scope of this work. Here, we provide a non-
exhaustive example list of actions that a malicious actor may perform if they were able to
forge or modify classical messages exchanged at the control protocol level. We mention
whether each action affects the availability of the link or network, or the integrity of the
quantum data sent via the network.

Physical layer. MHP operates at the physical layer. Hardware vulnerabilities of the
physical entanglement generation process are outside the scope of this work.

Example 6.2.1. Availability. Change a successful heralding signal to an error code such
Alice and Bob falsely conclude that entanglement has failed.

Example 6.2.2. Integrity. Modify a signal from a heralding station by changing the state
announcement such that Alice or Bob apply the wrong Pauli corrections to their qubits.

6.2 Why Data Origin Authentication 69

Example 6.2.3. Integrity. Interfere with mismatch verification [7, 14] such that Alice
and Bob falsely conclude that a MHP request belongs to the same QEGP request, thus
hampering the integrity of quantum data due to cross-process interference.

Link layer. QEGP operates at the link layer [7]. As proposed in Ref. [7], it is used to
synchronize entanglement requests, and to communicate the number of available memory
qubits and the expiration of requests.

Example 6.2.4. Availability. Continually send requests for entanglement, exhausting the
resources of nodes receiving them [11].

Example 6.2.5. Availability. When advertising the number of available communication
qubits or storage qubits, set either to 0. The receiving node then assumes that there are
no communication or storage qubits available on the sending node.

Example 6.2.6. Integrity. Change the qubit identifier of an entanglement generation
request such that Alice and Bob entangle the wrong data qubits, causing cross-path or
process interference.

Network layer. QNP operates at the network layer. Conceptually, it allows non-adjacent
nodes in a quantum network to coordinate entanglement generation. This is akin to the
internet protocol (IP) in the classical stack. It makes use of FORWARD and TRACK messages to
track entanglement generation [10, Figure 6]. FORWARD messages are used to communicate
entanglement requests, and TRACK messages contain classical correction information for
both end-nodes in the network.

Example 6.2.7. Availability. Modify FORWARD message so that intermediary nodes do not
receive entanglement swap instructions.

Example 6.2.8. Integrity. Modify TRACK messages such that the end-nodes of a path do
not receive the correct entanglement swap outcome, and thus apply the wrong corrections
to their qubits.

We illustrate the concerns of availability and data integrity in a quantum network
stack in Figure 6.3. Such security threats are addressed in part by using data origin au-
thentication, which can prevent modification and forgery of classical control messages. It
should be noted, however, that availability may still be hampered by an adversary capable
of halting transmission of classical control messages outright. Furthermore, if a malicious
actor were to gain access to a node itself then this might circumvent many or all security
mechanisms in place, including DOA, and should therefore also be prevented.

In general, we also note that classical control messages might reveal information about
who is using the network and the types of operations being performed. Therefore, in a
more mature network, it will likely be worthwhile to also encrypt the contents of control
messages. Satoh et al. [15] mention tracking as a general concern for inter-node classical
communication within the quantum stack. Encryption combined with transmission of
random noise could address tracking concerns.

70 6 Data Origin Authentication in the Quantum Networking Stack

. | link coordination

Layer (protocol) Potential vulnerabilities
Application CIA: application-specific
Transport D opt S
=1 = oo z X
P - BE(| £
9 | Integrity: lazy =5 =3
Vg =3 w
Network (QNP) Pn entanglement g = 2
= tracking < 23
P8 53
PE dabili ® 2
) :
Link (QEGP) = | % ||, Availability %3
PE
HNC
PO

Integrity: state Availability:

Physical (MHP) announcements, announce failed

synchronization | | swaps, sync, etc.

Figure 6.3: A summary of example effects of tampering with control messages at each layer of the quantum
network stack through the lens of confidentiality, integrity, and availability (CIA). We take as examples concrete
implementations of quantum network protocols — including QNP, QEGP and MHP [7, 10] — to highlight the
potential vulnerabilities at each layer of the stack. In this work, we do not focus on confidentiality issues, as
identified by Satoh et al. [15].

6.3 Experimental Methodology

We aim to examine the effects of data origin authentication, and the total latency incurred
by the classical control messages, on the performance of a hypothetical quantum link. To
limit the scope of our investigation, we focus on the performance of link and physical layer
protocols as proposed by Dahlberg et al. [7], and we extend the simulation therein such
that it fully captures (1) classical transmission overhead, roughly defined as the latency
of classical messages through the network and all networking equipment, and (2) DOA
overhead, roughly defined as the processing time required by the DOA systems.

Instead of modeling transmission and authentication overhead analytically, we mea-
sure it experimentally over a real-world, physically deployed network, consisting of mul-
tiple datacenter locations, sample quantum node controllers running FreeRTOS [18] on
a MicroZed board [19], and complete DOA servers. The DOA servers exist at both ends
of our real-world network, and run message authentication protocols. From a network-
ing perspective, these servers act like transparent proxy servers, and are thus generally
unknown and unseen to the quantum controllers, but do authenticate control messages
between the two ends of our real-world deployed network. The DOA servers authenticate
(and validate) control messages using key material obtained from a physically-deployed
QKD system, also running between the datacenter locations. The QKD devices form a
measurement-device independent quantum key distribution (MDI-QKD) network, based
on the work by Berrevoets et al. [4]. The QKD devices run next to the DOA servers, and
deliver QKD-key material via standard interface protocols.

We recorded round-trip time (RTT) statistics of sample control messages sent between
the quantum controllers — and thus through the message authentication protocols of the
QKD-powered DOA servers. We then injected these RTT data, along with other simula-
tion parameters described below, to extract metrics, as done in Ref. [7], and assess the

6.3 Experimental Methodology 71

Bob.

Fia

Nie, u_wegeiﬁ

g . 3 Center Node

8 Groenekan

Figure 6.4: Physical layout of Alice and Bob nodes. Alice is located in Groenekan, the Netherlands, while Bob is
in Nieuwegein, the Netherlands. The optical fiber connecting Alice to the center node is 20 km in length, whereas
the connection between Bob and the center node is 22 km.

performance of a simulated quantum entanglement generating link The measured con-
trol communication overheads is reported in Section 6.4, while the simulation results are
presented in Section 6.5.

DOA servers. We collect control communication latency measurements under three dif-
ferent configurations of the DOA servers:

1. Bypass servers: at first, we bypass the DOA servers altogether. This is useful to mea-
sure baseline communication latency, excluding all computation delays that would be
introduced by the servers.

2. No MAC: this time, the DOA servers are configured to skip the authentication (and
verification) step, but packets do go through the servers’ processing pipelines. Results
for this configuration give us insights into the overhead of processing packets on the
DOA servers, excluding the computation latency incurred by the MAC authentication
(and verification) step.

3. Poly1305-AES: finally, we configure the DOA servers to use Poly1305-AES [3], which is
a popular, fast, and computationally secure MAC. In this configuration, a DOA server
attaches a 128-bit mac to each outgoing message.

We do not report on a configuration where the DOA servers use an information-
theoretically secure MAC, as such an authentication scheme would consume considerably
more key material than the QKD system could deliver. We did verify this assessment by
configuring the DOA servers to use VMAC [12] — an information-theoretically secure
MAC — during which the DOA servers attempted to use considerably more key material
than available.

Network topology. In our network deployment, we name the two end locations Alice
and Bob. As is normal in MDI-QKD, each end location is connected to a center hub. In the
real-world network, the link connecting Alice to the center hub runs for 20 km, whereas
the link between Bob and the center hub is 22 km in length. Thus, the RTT we measure
is for a link of a total length of 42km. The topology of Alice, Bob, and the center hub
of the MDI-QKD system is illustrated in Figure 6.4. The control communication overhead

72 6 Data Origin Authentication in the Quantum Networking Stack

Alice Bob

Quantum node
controller

Quantum node
controller

Authenticated classical control

QKD QKD

control control

Qubits Qubits
DOA server DOA server

Figure 6.5: Experimental setup used to measure the end-to-end delays of transmitting an authenticated classical
message from Alice to Bob with 42 km of fiber-optic cables between them. Classical messages go through a DOA
server that tags messages using MDI-QKD-generated key material.

measured in Section 6.4 will be scaled to simulate quantum links of various lengths (2.5 km
to 75 km) in Section 6.5.

6.4 Classical Communication Latency

In order to obtain an estimate of the expected latency incurred by classical control mes-
sages in a quantum network stack, we measure the round-trip time (RTT) of a sample of
messages when sent through an authenticated classical channel in the field. The messages
are ICMP (ping) packets, sized to mimic MHP and QEGP packets. The authentication
mechanism is external to the controllers exchanging ping messages, and runs on trans-
parent DOA proxy servers between them. The DOA server next to the sender calculates a
MAC tag over the sent message, forwards the message and the tag to the receiver, whose
DOA servers verifies the tag before delivering the message to the destination controller.
The experimental setup is depicted in Figure 6.5.

Ping messages are exchanged between two real-time classical network nodes similar to
those used in the experimental validation of QEGP [14] — MicroZed boards [19] running
a FreeRTOS [18] application — connected to the DOA servers via Gigabit Ethernet inter-
faces. The sending node records the RTT of the message, and computes various statistics
on these timestamps, most notably average and standard deviation. We use these statistics
to extrapolate the expected control communication latency for the various quantum link
simulation scenarios presented in Section 6.5.

The message authentication code (MAC) on both ends retrieves authentication keys
from a local QKD node running a QKD key server, which contains key material identical to
its counterpart at the other end. Key material is produced by an MDI-QKD implementation
deployed in the Utrecht area, in the Netherlands. The MDI-QKD system is very similar to
the one implemented in Ref. [4].

Rate and size of messages. When using our particular DOA servers, one cannot trans-
mit a classical message more than once every 10 ms without experiencing detrimental
packet loss. The reason for this is that the DOA servers run prototype software designed
for research purposes, and have not been optimized for performance. We thus transmit
ping messages at a rate of 100 Hz. Moreover, the employed DOA servers can only authen-
ticate packets with a payload that is small enough to be accommodated (together with all

6.4 Classical Communication Latency 73

Server Payload RTT [us]
configuration [Bytes] mean std
Bypass servers 12 3657 23
P 1200 3881 22
12 14 036 797
No MAC 1200 14 089 767
12 14 099 861
Poly1305-AES 1200 14015 729

Table 6.1: Mean and standard deviation of round-trip time (RTT) for different configurations of the DOA servers
and for different message sizes. Measurements for the “Bypass servers” configuration follow a simple Gaussian
distribution. Measurements for the other two configurations can be approximated by bimodal Gaussian distri-
butions, with one of the two modes strongly dominating over the other. This table reports mean and standard
deviation of the strongest modes of each distribution. In the “Poly1305-AES” configuration, the DOA servers
attaches a 128-bit key to each message.

protocol headers and the MAC tag) in a single Ethernet frame. Therefore, we send ping
messages with payloads of (1) 12 bytes, which is the size of the smallest QEGP message,
and (2) 1200 bytes, which is close to the maximum allowed by the DOA server. The second
configuration is useful to examine how much RTTs depend on the size of the message.

Results. We record the round-trip time of 360,000 ping messages per configuration (DOA
server configuration and size of message). Mean and standard deviation of the measured
RTTs are reported in Table 6.1, whilst the raw distributions of RTT measurements are
presented in Appendix D.

When bypassing the DOA servers altogether, RTT delays follow a simple Gaussian
distribution, with a mean of less than 4ms and a standard deviation of around 20 ps.
When messages go through the DOA servers (configurations “No MAC” and “Poly1305-
AES”), RTT measurements can be approximated by bimodal Gaussian distributions (see
Appendix D). This bimodal distribution is likely the result of some caching behavior ex-
hibited by the DOA servers. For both configurations, one of the two modes strongly dom-
inates over the other, with the mean of this mode (around 14 ms for all configurations and
sizes) being approximately equal to the overall mean of the entire distribution (+2 % dif-
ference at most). Table 6.1 reports mean and standard deviation of the strongest modes of
each distribution, which are deemed to be the most representative statistics to use in our
simulations. Refer to Appendix D for a more in-depth analysis of the RTT distributions.

The noticeable gap between “Bypass servers” and the other two configurations is an
indicator of the suboptimal packet processing performance of the DOA server, which is
merely a soft-processing packet pipeline implemented in Python. The computational over-
head introduced by the actual MAC is overshadowed by the baseline latency of the DOA
servers, as observed in the “Poly1305-AES” configuration. Interestingly, the size of mes-
sages does not appear to be a noticeable factor in the mean end-to-end latency.

We can therefore conclude that latency is dominated by two main factors: (1) the per-
formance of any classical networking hardware and the length of the classical link, which

74 6 Data Origin Authentication in the Quantum Networking Stack

depend on the network technology and topology, and (2) the packet processing perfor-
mance of the DOA servers. However, in a real production network, it is fair to assume that
packets will be processed at a much faster rate, and thus result in an end-to-end latency
that is much more similar to that of the “Bypass servers” configuration. Considering also
that authentication does not incur any noticeable overhead — as shown by the difference
between the “No MAC” and “Poly1305-AES” configurations — these results support the
case for both the use of DOA in quantum networks, as well as the use of DOA supported
by QKD in present-day, real-world production networks.

6.5 Simulation Results

We quantify the effects of using an authenticated classical channel for control messages
exchanged at the quantum network stack level. In particular, we augment the model used
by Dahlberg et al. [7] to simulate the performance of physical (MHP) and link (QEGP)
layer control protocols within the quantum network stack. As opposed to the original
work, we model the classical control communication latency to also include transmission
and authentication overhead as experimentally measured in our real-world network, and
presented in Section 6.4. We report the throughput of the quantum link, expressed as
number of entangled pairs generated per second.

We use RTT statistics from Table 6.1 for our simulations. As described in Section 6.4,
RTT measurements for the “Bypass servers” configuration can be approximated by a Gaus-
sian distribution. RTTs for the “No MAC” and “Poly1305-AES” configurations instead fol-
low bimodal Gaussian distributions, with one of the modes dominating over the other. For
these two configurations, we use mean and standard deviation of the strongest mode.

Configurations. We run our simulations for two types of configurations: (1) To begin
with, we analyze the quantum link throughput for several node-to-node distances (2.5 km
to 75 km), at a fixed requested fidelity (Fy,i, = 0.65). For the various distances, we scale the
classical delays measured in Section 6.4 accordingly. For this configuration, we compare
our augmented model with the original baseline, in which transmission and authentication
delays were not modeled [7]. (2) Furthermore, we analyze the quantum link throughput
at a fixed node-to-node distance (42 km between the two nodes, same as in the real-world
network in Section 6.4), but this time varying the requested fidelity at the QEGP layer
(fidelity 0.50 to 0.85). This time, we compare three models, corresponding to the three
configurations of the DOA servers as per Section 6.4: “Bypass servers”, “No MAC”, and
“Poly1305-AES”.

For each of the above configurations, we perform 20 simulation runs, each consist-
ing of 20 minutes of continuous use of the quantum link. We then calculate the average
throughput over all runs for each configuration with a confidence interval of 95 %.

Results. The results for throughput versus distance are illustrated in Figure 6.6. For mea-
sure directly (MD) type requests (for which entanglement can be measured directly, as
described in earlier), mean throughput is approximately equal across the two models of
added latency. This is to be expected, given that these types of requests can be effectively
pipelined — that is, the next entanglement request can be initiated right after the previ-
ous one without the need to wait for any acknowledgment messages from a heralding
station — and thus throughput is mostly dominated by the physical entanglement gen-

6.5 Simulation Results 75

Throughput over several distances

102 .
E -O- MD, Simulated RTT
] —@— MD, Poly1305-AES RTT
o] CK, Simulated RTT
= CK, Bypass servers RTT
=
5 10! 4§ CK, Poly1305-AES RTT
2 E
B] \
3]
=]
=
10° 4

T T T T T T T T
10 20 30 40 50 60 70

Distance between A and B [km]

o

Breakdown of distance A — B [km]

A-M 15 3 6 9 15 22 30 45
M-B 1 2 4 6 10 20 20 30

Total 2.5 5 10 15 25 42 50 75

Figure 6.6: Throughput (rate) of entangled pair generation for multiple distances between node A and B, with
a single midpoint station in between and for a requested fidelity of F,; = 0.65. Classical communication de-
lays were modeled using latency measurements collected as described in Section 6.4 — configurations “Bypass
servers” and “Poly1305-AES” — as well as replicated from the original simulations of QEGP and MHP [7]. The
simulated RT T configuration represents the best-case scenario, given that only propagation delays are modeled
in this one. The configuration “Poly1305-AES” is the worst-case scenario instead, given that it models delays
measured on the field, including the overhead incurred by the slow packet processing pipeline. For MD type
requests, only the best case and the worst case are plotted, since they practically overlap, and thus any other
scenario in between best and worst would not result in any significant difference. The table below the plot shows
how distance is distributed between A, B, and the midpoint station M. The 25 km data point is equivalent to the
QL2020 hypothetical setup simulated in Ref. [7].

eration procedure, and not as much by classical communication latency. On the other
hand, create and keep (CK) requests (for which entanglement must be stored while wait-
ing for acknowledgment messages, as described earlier) show a variation in throughput
that depends on the delay model. The best-case scenario — corresponding to the original
simulations of MHP and QEGP [7] (“Simulated RTT”) — results in the highest throughput,
which peaks at around 6.47 pairs per second at the shortest distance. This is followed by
the scenario with “Bypass servers” delays, where classical communication latency has a
higher overhead than the previous case, but is more realistic. In this case, the shortest
link can deliver around 1.42 entangled pairs per second. Finally, the worst-case scenario
of “Poly1305-AES”, where classical communication delays also include the overhead of
the slow packet processing pipeline of the DOA servers, can yield a little less than one
pair per second. This decrease in throughput is expected, but fortunately, it is also not
detrimental to the point that the quantum link becomes non-functional altogether. Natu-
rally, final numbers depend strongly on the quantum properties of the quantum memories
(quantum coherence time). Conceivably, if the coherence time of the quantum memories
was longer than the added latency of DOA servers, the decrease in performance would be
less significant.

The results for throughput versus fidelity are shown in Figure 6.7. Again, the outcome

76 6 Data Origin Authentication in the Quantum Networking Stack

MD requests CK requests
—8— Bypass servers —8— Bypass servers
14 i
\ No MAC 0625 No MAC
g 12 o A/‘—A— Poly1305-AES | 0.600 o —A— Poly1305-AES
5 10 \. 0.575
g N
2 g ; 0.550
o
F 6 05257 ‘Y\ﬂ—\/‘
4 0.500 -
T T T T T T T T T T T T T T T T
05 06 07 08 05 06 07 08
Fmin Fmin

Figure 6.7: Throughput (rate) of entangled pair generation for multiple requested fidelities, with 20 km between
node A and the midpoint station, and 22 km between the midpoint station and node B, and for three configu-
rations of the proxy as per Section 6.4: Bypass servers, No MAC, and Poly1305-AES. The solid line represents
mean throughput, the colored area around it depicts the 95 % confidence interval. Measure directly (MD) type
requests are not as heavily affected as these are pipelined. Create and keep (CK) type requests are performed
sequentially, and thus increases in classical delays have a more profound impact on throughput.

matches our expectations. MD requests are not significantly affected by classical commu-
nication, and their throughput only decreases when higher-fidelity entangled pairs are
requested. CK requests, instead, are more affected by classical communication latency,
and their throughput is a lot lower than that of MD requests. Additionally, throughput
also decreases when classical messages go through the DOA servers (“Bypass servers” ver-
sus “No MAC”). As expected from the results in Table 6.1, the extra latency incurred by
the actual MAC computation are negligible, and its effect on throughput not noticeable
(“No MAC” versus “Poly1305-AES”).

To summarize, our experiments and simulations demonstrate that (1) in real-world
quantum links, throughput is likely to be worse than what results from simulations that
do not fully model transmission delays of messages stemming from latencies of conven-
tional communication networks, (2) the overhead incurred by classical communications
is sizeable, but does not outright disrupt the operation of quantum links, and (3) delays
incurred by data origin authentication are negligible.

6.6 Discussion

We have shown how the classical data plane of a quantum network stack presents a signif-
icant attack surface for confidentiality, integrity, and availability of the quantum link and
data therein. To address these concerns one must employ, among other things, data ori-
gin authentication on the classical control messages exchanged at the quantum network
stack level. We conclude that data origin authentication is necessary to both uphold the
integrity of quantum data and the availability of the quantum network itself.

We have also simulated the performance of a hypothetical quantum link under the
assumption that control messages are authenticated by conventional DOA techniques.
Here, we modeled classical communication latency, including authentication overhead
and transmission delay, using metrics collected from a real-world communication link,
authenticated using DOA servers, using key material sourced from a QKD system. If we

References 77

disregard the large packet processing delays incurred by the DOA servers itself — the
delays of the servers packet pipeline, and not the delays of the authentication software
running on the server — we observe that an authenticated classical control channel intro-
duces a negligible amount of extra classical overhead.

However, we have also seen that even just transmission delays have a noticeable ef-
fect on the performance of a quantum link, whether or not data origin authentication
is applied — entanglement generation throughput drops when classical communication
delays are larger. Nevertheless, we have observed in our simulations that even when the
entangled qubits must be stored in quantum memories with limited lifetimes, the quantum
link remains operational.

References

[1] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and
T. H. Taminiau. “One-second Coherence for a Single Electron Spin Coupled to a
Multi-qubit Nuclear-spin Environment”. In: Nature Commun. 9.1 (2018), pp. 1-8.
DOI: 10.1038/s41467-018-04916-z.

[3] D.J.Bernstein. “The Poly1305-AES Message-Authentication Code”. In: FSE. Springer,
2005, pp. 32-49. DOI: 10.1007/11502760_3.

[4] R.C.Berrevoets, T. Middelburg, R. F. Vermeulen, L. D. Chiesa, F. Broggi, S. Piciaccia,
R. Pluis, P. Umesh, J. F. Marques, W. Tittel, and J. A. Slater. “Deployed Measurement-
Device Independent Quantum Key Distribution and Bell-State Measurements Coex-
isting With Standard Internet Data and Networking Equipment”. In: Communica-
tions Physics 5.1 (2022), pp. 1-8. DOIL: 10.1038/542005-022-00964-6.

[5] C.E.Bradley,]. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker,
M. Markham, D. J. Twitchen, and T. H. Taminiau. “A Ten-Qubit Solid-State Spin
Register with Quantum Memory up to One Minute”. In: Phys. Rev. X 9.3 (2019),
pp. 031045-1-031045-12. pOI: 10.1103/PhysRevX.9.031045.

[6] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. Oliveira, M. Papen-
drecht, J. Rabbie, F. Rozpedek, M. Skrzypczyk, L. Wubben, W. de Jong, D. Podare-
anu, A. Torres-Knoop, D. Elkouss, and S. Wehner. “NetSquid, a NETwork Simulator
for QUantum Information using Discrete events”. In: Communications Physics 4.1
(2021), p- 164. DOI: 10.1038/542005-021-00647-8.

[7] A.Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SSIGCOMM. ACM, 2019, pp. 159-
173. DOI: 10.1145/3341302.3342070.

[8] J.Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti. “Quantum Internet Protocol
Stack: a Comprehensive Survey”. 2022. arXiv: 2202.10894.

[9] S.K.Joshi, D. Aktas, S. Wengerowsky, M. Loncari¢, S. P. Neumann, B. Liu, T. Scheid],
G. C. Lorenzo, Z. Samec, L. Kling, A. Qiu, M. Razavi, M. StipCevi¢, J. G. Rarity, and
R. Ursin. “A Trusted Node—Free Eight-User Metropolitan Quantum Communica-
tion Network”. In: Science Advances 6.36 (2020), eaba0959. por: 10. 1126 /sciadv .
aba0959.

https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1007/11502760_3
https://doi.org/10.1038/s42005-022-00964-6
https://doi.org/10.1103/PhysRevX.9.031045
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1145/3341302.3342070
https://arxiv.org/abs/2202.10894
https://doi.org/10.1126/sciadv.aba0959
https://doi.org/10.1126/sciadv.aba0959

78 6 Data Origin Authentication in the Quantum Networking Stack

[10] W. Kozlowski, A. Dahlberg, and S. Wehner. “Designing a Quantum Network Proto-
col”. In: CoNEXT. ACM, 2020, pp. 1-16. DOI: 10.1145/3386367.3431293.

[11] W. Kozlowski and S. Wehner. “Towards Large-Scale Quantum Networks”. In:
NANOCOM. ACM, 2019, pp. 1-7. DO1: 10.1145/3345312.3345497.

[12] T. Krovetz. “Message Authentication on 64-Bit Architectures”. In: Selected Areas in
Cryptography. Springer, 2007, pp. 327-341. DOI: 10.1007/978-3-540-74462-7_23.

[13] A. Pirker and W. Diir. “A Quantum Network Stack and Protocols for Reliable
Entanglement-Based Networks”. In: New Journal of Physics 21.3 (2019), p. 033003.
URL: 10.1088/1367-2630/ab05f7.

[14] M.Pompili, C.Delle Donne, L te Raa, B. van der Vecht, M. Skrzypczyk, G. M. Ferreira,
L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawelczak, W. Kozlowski, R. Hanson,
and S. Wehner. “Experimental Demonstration of Entanglement Delivery Using a
Quantum Network Stack”. In: npj Quantum Information 8.1 (2022), p. 121. po1: 10.
1038/s41534-022-00631-2.

[15] T.Satoh, S. Nagayama, S. Suzuki, T. Matsuo, and R. Van Meter. “Attacking the Quan-
tum Internet”. In: IEEE Transactions on Quantum Engineering 2 (2021), pp. 1-17. por:
10.1109/TQE.2021.3094983.

[16] E.Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner. “Shortcuts to Quan-
tum Network Routing”. 2016. arXiv: 1610.05238.

[17] R.Van Meter and J. Touch. “Designing Quantum Repeater Networks”. In: IEEE Com-
munications Magazine 51.8 (2013), pp. 64-71. DOI: 10.1109/MCOM. 2013.6576340.

[18] FreeRTOS Real-Time Operating System for Microcontrollers. Amazon Web Services.
URL: https://www.freertos.org/ (visited on Feb. 28, 2023).

[19] MicroZed Development Board. Avnet. URL: https: //www . avnet . com/wps/portal/

us/products/avnet-boards/avnet-board-families/microzed/ (visited on Feb. 28,
2023).

https://doi.org/10.1145/3386367.3431293
https://doi.org/10.1145/3345312.3345497
https://doi.org/10.1007/978-3-540-74462-7_23
10.1088/1367-2630/ab05f7
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1109/TQE.2021.3094983
https://arxiv.org/abs/1610.05238
https://doi.org/10.1109/MCOM.2013.6576340
https://www.freertos.org/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/

79

Conclusion

osT of the results obtained in this thesis were aimed at laying the foundations for a
M quantum internet where nodes are programmable, and can be interacted with by
anyone with basic knowledge of quantum networking, as opposed to only being operable
by quantum physics experts. Whilst this is merely a single step towards more scalable
quantum networks, we have demonstrated the importance of abstractions in this emerging
field, and we hope this work can be of inspiration to future research seeking to continue
on this path.

7.1 Summary of Results

The primary focus of this work was to design, build and experimentally validate software
abstractions for programmable quantum network nodes. Here we recap the main results
of our investigation.

Design considerations. To begin with, we have explored the fundamental reasons that
make quantum networking challenging, and why classical networking and operating sys-
tem (OS) research fall short of such challenges. We have thus laid out general design
considerations to be addressed when thinking about abstractions for quantum network
nodes. With respect to that, we have also put forward a shortlist of the main constituent
parts of an OS for such nodes — which include a network stack for quantum communi-
cations, a process scheduler, and a quantum memory management unit. These design
considerations were presented in Chapter 3.

Design of an operating system for quantum network nodes. Following our design
considerations, we have produced a first design of an OS for quantum network nodes. Our
system, which we call QNodeOS, includes all the components as per the design consider-
ations, and represents a fully-functional proof of concept to be used for further research
on the topic. Key design points of QNodeOS are: (1) the integration of a state-of-the-art
quantum networking stack, to coordinate entanglement generation in a platform-indepen-
dent manner; (2) the separation of quantum networking and local operations into distinct
processes, to allow for better scheduling decisions and higher concurrency; (3) the isola-
tion of quantum platform-specific abstractions into a device driver, called QDevice driver,

80 7 Conclusion

to enable deploying QNodeOS onto various quantum platform with minimal effort. Our
design was presented in Chapter 3.

Entanglement generation. As afirst case study of QNodeOS, we tested its quantum net-
working capabilities by means of three simple applications centered around entanglement
generation. We have implemented the quantum networking stack proposed in recent pub-
lications [1, 2], integrated it into QNodeOS, and demonstrated its operation on a two-node
state-of-the-art quantum network based on NV center technology. With these preliminary
tests, we showed how OS abstractions can simplify the programming of quantum network
nodes at a minimal, almost negligible, performance cost. We in fact found that, while the
quantum networking stack introduces latency as compared to “bare-metal” entanglement
generation at the physical layer, the application-level fidelity of the delivered states is not
much affected by this overhead. These results were presented in Chapter 4.

Quantum networking applications and multitasking. To further showcase the ser-
vice offered by QNodeOS and to establish a performance baseline for an OS for quan-
tum network nodes, we proposed a set of fully-fledged quantum networking applications,
which will be tested on QNodeOS as part of upcoming work. These test cases consist
of delegated quantum computation protocol, as well as the concurrent execution of mul-
tiple applications, which will leverage the multitasking capabilities of QNodeOS. Once
obtained, the results of this evaluation will assert the importance of a robust stack of ab-
straction layers for quantum networking. We presented these test cases in Chapter 5.

Data origin authentication in quantum networking. In perspective of a large-scale,
fully-operational quantum network, where classical communications ought to be more
secure than in a laboratory, we have also analyzed the performance penalty that would
be incurred if classical messages exchanged at the quantum networking stack were to be
authenticated so as to ensure integrity. Using a combination of experimentally-measured
authentication delays and the simulation of a quantum link, we have shown that the de-
lay incurred by data origin authentication would not be detrimental to the fidelity of the
delivered entangled states. This topic was investigated in Chapter 6.

7.2 Future Work

We hope that our work and results open the door to further research on the topic of OSes
for quantum networking. On that regard, we have identified a few areas of this field that
would benefit from a deeper investigation.

Further experimental validation of QNodeOS. The natural next step for the evalua-
tion of QNodeOS is to run the test cases presented in Chapter 5 to push the boundaries of
experimental demonstrations of quantum networking even further. As discussed already,
this experimental validation will serve both to construct a baseline performance overview
of OSes for quantum networking and to demonstrate the capabilities of such systems.

Quantum network node architecture. In our design, we have defined a certain archi-
tecture of a quantum network node, and we have not investigated possible alternatives. In
particular, the separation between host, QNodeOS and QDevice determines which com-
ponent is responsible for which task, and limits certain scheduling decisions to certain

References 81

components. In the future, one might want to explore other solutions and examine sce-
narios in which, for instance, resource allocation and scheduling decisions are not only
taken on QNodeOS.

Scheduling of processes and applications. The rudimentary process scheduler embed-
ded in QNodeOS is just good enough to guarantee concurrency and to prioritize what in
general is deemed to have higher priority in quantum networking applications — that
is, entanglement generation. Nevertheless, an optimal scheduler might need to factor in
more run-time data to take better scheduling decisions that are context-dependent. For
instance, one could well imagine a scheduler which is aware of the approximate dura-
tion of the tasks to be scheduled, as well as of the current level of decoherence of the
quantum states in memory, and thus re-compute task priorities at run-time when needed.
Additionally, as the responsibilities of QNodeOS and host might be redefined (see previ-
ous paragraph), one could design the host such that it takes part in making scheduling
decisions, or at least supporting QNodeOS with application- and device-specific hints.

Integration with control plane. At the moment, the interactions of QNodeOS with the
control plane of a quantum network are mostly one-sided — the control plane installs
network schedules on QNodeOS, mostly. In a future iteration of QNodeOS, and in a full-
blown implementation of a control plane, the former could feed a set of run-time statistics
back into the control plane scheduler, so as to provide an up-to-date picture to the latter,
which can in turn refine the computing of the network schedule in real-time.

Smart quantum memory management unit. The quantum memory management unit
(QMMU) implemented on the first version of QNodeOS is rather basic. As discussed in
Chapter 3, a more advanced iteration of the QMMU might feature smart mechanisms for
tracking (estimating) qubit decoherence to offer better run-time scheduling support. Ad-
ditionally, it could have access to device-specific descriptions of the underlying quantum
memory to improve allocation strategies that better cater to memory lifetime requirements
and to the limitations of near-term quantum devices.

Larger-scale experimental validation and benchmarking. As quantum networks be-
come larger in scale, and the nodes therein begin to offer a larger set of quantum resources,
a natural experimental follow-up of this thesis would see QNodeOS, or any future OS for
quantum networks, be tested again more complex quantum networking applications, es-
pecially those requiring more qubits, and those involving more parties within a network.
Along the same lines, a great addition to this work would be a set of experimental tests
where QNodeOS is deployed on a larger variety of quantum physical platforms, eventually
even on a heterogeneous network of several different devices.

References
[1] A.Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SIGCOMM. ACM, 2019, pp. 159-
173. por: 10.1145/3341302.3342070.

[2] W.Kozlowski, A. Dahlberg, and S. Wehner. “Designing a Quantum Network Proto-
col”. In: CoONEXT. ACM, 2020, pp. 1-16. Do1: 10.1145/3386367.3431293.

https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1145/3386367.3431293

83

ONodeOS Components and
Interfaces

We provide additional details on the components of the QNodeOS architecture and their
interfaces. Figure A.1 gives an overview of all the components of QNodeOS. The pro-
cess manager marshals accesses to all user and kernel processes. The scheduler assigns
ready processes to the processor, which runs quantum instructions through the underly-
ing QDevice, processes classical QASM instructions locally, and registers entanglement
requests with the entanglement management unit (EMU). The EMU maintains a list of
EPR sockets and entanglement requests, forwards the latter to the quantum network stack,
which, in turn, registers available entangled qubits with the EMU. Finally, the quantum
memory management unit (QMMU) keeps track of used qubits, and transfers qubit owner-
ship across processes when requested.

Process manager. The process manager owns QNodeOS processes and marshals accesses

to those. Creating a process, adding a routine to it and accessing the process’s data must

be done through the process manager. Additionally, the process manager is used by other

components to notify events that occur inside QNodeOS, upon which the state of one of

more processes is updated. Process state updates result in a notification to the scheduler.
The process manager exposes interfaces for three services:

« Process management (interface @ in Figure A.1): to create and remove processes, and to
add routines to them. When the user registers an application, the QNodeOS API Handler
uses the process manager to create a QNodeOS user process. The returned process ID
can be later used to add a routine to that process, or to remove the process once all its
routines are fully processed.

« Event notification (interface @ in Figure A.1): to notify that an event has occurred inside
QNodeOS, including the addition of a routine, the completion of a routine, the schedul-
ing of the process, the hitting of a wait condition, and the generation of an entangled
qubit destined to the process. Some events trigger follow-up actions — for instance,
when a process that was waiting for an event becomes ready, it gets added to the queue
of ready processes maintained by the scheduler.

84 A QNodeOS Components and Interfaces

QNodeOS API handler QNodeOS peers
Manage process QNodeOS core Register EPR socket (6) Sync ent. requests ({0
ProcMgr | Notiy processsiate [~ Scheduler EMU Registersnt- 4. [~ QetStack

N/
EPR sockets @
Notify ent. avail.
Ent. available Allocate qubit

Process @
database

Process
P1

Figure A.1: QNodeOS core components and internal interfaces. The core layer includes: (1) a process manager
(ProcMgr), which owns and manages access to QNodeOS processes; (2) a scheduler, responsible for selecting the
next process to be run; (3) a processor, which processes routines’ instructions; (4) an entanglement management
unit (EMU), which keeps a list of entanglement requests and available entangled qubits; (5) a quantum network
stack (QNetStack), whose responsibility is to coordinate with peer nodes to schedule quantum networking in-
structions; (6) a quantum memory management unit (QMMU), which keeps a record of allocated qubits.

e
ent. request
Access §§Assign
process data
©) Processor

Process data

Transl. address
)

© Qubit map

2
Notify event‘t

« Process data access (interface ® in Figure A.1): to access a process’s routines and its
classical memory space, mostly used while running the process (through the processor).

Scheduler. The QNodeOS scheduler registers processes that are ready to be scheduled,
and assigns them to the QNodeOS processor when the latter is available. Ready processes
are stored in a prioritized ready queue, and processes of the same priority are scheduled
with a first-come-first-served policy.

The scheduler only exposes one interface for process state notifications (interface @
in Figure A.1), used by the process manager to signal when a process transitions to a new
state. When a QNodeOS process transitions to the ready state, it is directly added to the
scheduler’s prioritized ready queue. When a process becomes idle, or is waiting for an
event to happen, the scheduler simply registers that the processor has become available.

Processor. The QNodeOS processor handles the execution of QNodeOS user and kernel
processes, by running classical instructions locally and issuing quantum instructions to the
QDevice driver. While executing a process, the processor reads its routines and accesses
(reads and writes) its classical memory. The processor implements a specific instruction
set architecture dictated by the QASM language of choice.

The processor exposes one interface for processor assignment (interface ® in Fig-
ure A.1), used by the QNodeOS scheduler to activate the processor, when it is idling, and
assign it to a QNodeOS process.

Entanglement management unit. The entanglement management unit (EMU) main-
tains a list of open EPR sockets and a list of entanglement requests, and keeps track of
the entangled qubits produced by the quantum network stack. Received entanglement re-
quests are considered valid only if an EPR socket associated to such requests exists. Valid
requests are forwarded to the quantum network stack. Entangled qubit generations are
notified as events to the process manager.

The EMU exposes interfaces for three services:

85

« EPR socket registration (interface ® in Figure A.1): to register and open EPR sockets be-
longing to an application, and to set up internal classical network tables and to establish
classical network connection.

« Entanglement request registration (interface @ in Figure A.1): to add entanglement re-
quests to the list of existing ones, to be used when matching produced entangled qubits
with a process that requested them.

« Entanglement notification (interface ® in Figure A.1): to register the availability of an
entangled qubit, produced by the quantum network stack, and to link it to an existing
entanglement request.

Quantum network stack. The quantum network stack on QNodeOS follows the model
presented in Ref. [1] which is based on the classical OSI network stack model for separation
of responsibilities. In particular, data link layer and network layer protocols are part of the
quantum network stack on QNodeOS. The physical layer is implemented on the QDevice,
the application layer is part of the Host, and all remaining layers are not currently part of
the stack.

The quantum network stack component has an associated QNodeOS kernel process, cre-
ated statically on QNodeOS. However, this process’s routine is dynamic: the instructions
to be executed on the processor depend on the outstanding entanglement generation re-
quests received from EMU and network peers.

The quantum network stack exposes interfaces for two services:

« Entanglement request registration (interface ® in Figure A.1): to add entanglement re-
quests coming from the EMU to the list of existing ones, which are used to fill in the
quantum network stack process’s routine with the correct instructions to execute.

« Entanglement request synchronization (interface @ in Figure A.1): similar to the entan-
glement request registration interface, but to be used to synchronize (send and receive)
requests with QNodeOS network peers.

Quantum memory management unit. The quantum memory management unit (QMMU)
receives requests for qubit allocations from QNodeOS processes, and manages the subse-
quent usage of those. It also translates QASM wvirtual qubit addresses into physical ad-
dresses for the QDevice, and keeps track of which process is using which qubit at a given
time. In general, a QMMU should take into account that the topology of a quantum mem-
ory determines what operations can be performed on which qubits, and thus allow pro-
cesses to allocate qubits of a specific type upon request. An advanced QMMU could also
feature algorithms to move qubits in the background — that is, without an explicit instruc-
tion from a process’s routine — to accommodate an application’s topology requirements
while not trashing the qubits being used by other QNodeOS processes. Such a feature
could prove crucial to increase the number of processes that can be using the quantum
memory at the same time, and to enhance multitasking performances.

The QMMU exposes interfaces for three services:
« Qubit allocation and deallocation (interface @ in Figure A.1): a running process can ask

for one or more qubits, which, if available, are allocated by the QMMU, and their physical
addresses are mapped to the virtual addresses provided by the requesting process.

86 A QNodeOS Components and Interfaces

« Virtual address translation (interface @ in Figure A.1): before sending quantum instruc-
tions to the QDevice driver, the processor uses virtual qubit addresses specified in QASM
to retrieve physical addresses from the QMMU, and then replaces virtual addresses with
physical addresses in the instructions for the QDevice driver.

« Qubit ownership transfer (interface @ in Figure A.1): qubits are only visible to the process
that allocates them. However, in some cases, a process may wish to transfer some if its
qubits to another one. A notable example is the quantum network process transferring
an entangled qubit to the process that will use it.

References
[1] A.Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A.
Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho, R. Hanson, and S. Wehner. “A
Link Layer Protocol for Quantum Networks”. In: SIGCOMM. ACM, 2019, pp. 159—
173. Do1: 10.1145/3341302.3342070.

https://doi.org/10.1145/3341302.3342070

87

BEI

QDevice Interface

The implementation of a QDevice depends on a number of factors. Most importantly, the
physical signals that are fed to the quantum processing and networking device, and those
that are output from the device, are specific to the nature of the device itself. Different
qubit realizations require different digital and analog control. For instance, manipulating
the state of a spin-based qubit (e.g., in a nitrogen-vacancy center processor) and that of
an ultracold atom qubit (e.g., in a trapped ion processor) are two physical processes that
vastly differ in a number of complicated ways.

For QNodeOS to be portable to a diverse set of quantum physical platforms, there
needs to be a common QDevice interface that QNodeOS can rely on, and that each QDevice
instance can implement as it is most convenient for the underlying quantum device. This
interface need be quite general, to be able to express all quantum operations that different
quantum devices might be capable of performing, and rather abstract, so that two different
implementations of a well-defined qubit manipulation operation can be expressed with
the same instruction on QNodeOS. Nevertheless, an interface that is too general could
result in a high implementation complexity on the QDevice, as it might have to transform
high-level instructions in a series of native operations on the fly. Other than complexity
of implementation, a very high-level set of QDevice instructions might compromise the
compiler’s ability to optimize an application for a certain physical platform, as reported
by Murali et al. [1].

Defining a set of instructions to express abstract quantum operations as close as possi-
ble to what different quantum physical platforms can natively perform is, to some extent,
an open problem. While this is outside the scope of this work, we have made an effort to
specify an interface which is a good compromise between generality and expressiveness.
The QDevice interface is essentially a set of instructions that QNodeOS expects a QDevice
to implement. To be precise, a QDevice might implement a subset of the interface, accord-
ing to what native physical operations it can perform. The Host compiler must then have
knowledge about the set of instructions implemented by the underlying QDevice, so that
it can decompose instructions that are not natively supported.

Even though this interface does not impose any formal timing constraints, it is impor-
tant to note that a QDevice implementation that tries to guarantee more or less determin-

88 B QDevice Interface

Instruction Description

INI Initialize a qubit to default state

SQG Perform a single-qubit gate

TQG Perform a two-qubit gate

AQG Perform a gate on all qubits

MSR Measure a qubit in a specified basis

ENT Attempt entanglement generation

ENM Attempt entanglement and measure qubit
MOV Move qubit state to another qubit

SWP Swap the state of two qubits

ESW Swap qubits belonging to two entangled pairs
PMG Set pre-measurement gates

Table B.1: Summary of QDevice instructions defined in the QDevice interface. A specific QDevice might imple-
ment a subset of these, depending on the underlying quantum physical device and on other design constraints.

istic instruction processing latencies can prove more beneficial to the real-time require-
ments of QNodeOS. Particularly, it would be advisable to time-bound the processing time
of operations whose duration is by nature probabilistic — most notably, those involving
entanglement generation. Creating an entangled pair may involve a varying number of
attempts. Sometimes, if the remote node becomes unresponsive for a period of time, the
number of necessary attempts can increase by a large amount. Capping the number of
attempts could, for instance, provide a more deterministic maximum processing latency
for entanglement instructions, which in turn might help QNodeOS react more timely to
temporary failures or downtime periods of remote nodes. Also, unbounded entanglement
attempts affect the state of other qubits in memory, because of both passive decoherence
and cross-qubit noise.

Table B.1 lists the complete set of instructions defined in the QDevice interface. In-
structions can have operands, whose range of valid values depends on the underlying
QDevice. For instance, an operand that specifies which qubit to apply an operation to can
only have as many valid values as there are physical qubits in memory. Details for each
instruction and its operands are given below.

Qubit initialization (INI). The INI instruction brings a qubit to the |0) state. On some
physical platforms, single-qubit initialization is not possible, thus this instruction initial-
izes all qubits to the |0) state.

Operand Description

qubit Physical address of the qubit to initialize, ignored on platforms where
single-qubit initialization is not possible

Single-qubit gate (SQG). The SQG instruction manipulates the state of one qubit. The gate
is expressed as a rotation in the Bloch sphere.

89

Operand Description

qubit Physical address of the qubit to manipulate
axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)

Two-qubit gate (TQG). The TQG instruction manipulates the state of two qubits. The gate
is expressed as a controlled rotation, with one qubit being the control and the other one
being the target.

Operand Description

qub_c Physical address of the control qubit

qub_t Physical address of the target qubit

axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)

All-qubit gate (AQG). The AQG instruction manipulates the state of all available qubits.
The gate is expressed as a rotation in the Bloch sphere.

Operand Description

axis Rotation axis, can be X, Y, Z or H (support is QDevice-dependent)
angle Rotation angle (granularity and range are QDevice-dependent)

Qubit measurement (MSR). The MSR instruction measures the state of one qubit in a spec-
ified basis. A qubit measurement is destructive — that is — the qubit has to be reinitialized
before it can be used again.

Operand Description

qubit Physical address of the qubit to measure
basis Measurement basis, can be X, Y, Z, H (support is QDevice-dependent)

Entanglement generation (ENT). The ENT instruction performs a series of entanglement
generation attempts, until one succeeds, or until a maximum number of attempts is reached
(the behavior is QDevice-dependent).

Operand Description

nghbr Neighboring node to attempt entanglement with, if the local QDevice has
multiple quantum links
fid Target entanglement fidelity (granularity and range are QDevice-

dependent)

90 B QDevice Interface

Entanglement generation with qubit measurement (ENM). The ENM instruction per-
forms a series of entanglement generation attempts followed by an immediate measure-
ment of the local qubit, until one succeeds, or until a maximum number of attempts is
reached (the behavior is QDevice-dependent).

Operand Description

nghbr Neighboring node to attempt entanglement with, if the local QDevice has
multiple quantum links

fid Target entanglement fidelity (granularity and range are QDevice-
dependent)

basis Measurement basis, can be X, Y, Z, H (support is QDevice-dependent)

Qubit move (MOV). The MOV instruction moves the state of one qubit to another qubit.
A qubit move renders the state of the source qubit undefined, and the qubit has to be
reinitialized before it can be used again.

Operand Description

qub_s Physical address of the source qubit
qub_d Physical address of the destination qubit

Qubit swap (SWP). The SWP instruction swaps the state of two qubits.

Operand Description

qub_1 Physical address of the first qubit
qub_2 Physical address of the second qubit

Entanglement swap (ESW). The ESW instruction is effectively a Bell state measurement
executed on two qubits — each of which belongs to an entangled pair shared between the
local node and a remote counterpart — resulting in an entangled pair shared between the
two remote nodes. The outcome of the measurement is typically used by the quantum
network stack to issue appropriate Pauli corrections on one of the end nodes in order to
deliver the desired state.

Operand Description

qub_1 Physical address of the first qubit
qub_2 Physical address of the second qubit

Pre-measurement gates setting (PMG). The PMG instruction allows for a set of (up to)
3 rotations to be performed before a qubit measurement (MSR or ENM). If the axis of the
second rotation is orthogonal to the axis of the first and the third rotation, these gates can
be used to perform a qubit measurement in an arbitrary basis, given that most likely a
QDevice can natively measure in a limited set of bases.

References 91

Operand Description

axes Combination of orthogonal axes to use for the three successive rotations,
can be X-Y-X, Y-Z-Y and Z-X-Z (support is QDevice-dependent)

ang_1 Rotation angle of the first gate, relative to the first axis in axes (granularity
and range are QDevice-dependent)

ang_2 Rotation angle of the second gate, relative to the second axis in axes (gran-
ularity and range are QDevice-dependent)

ang_3 Rotation angle of the third gate, relative to the third axis in axes (granularity

and range are QDevice-dependent)

References
[1] P.Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete.
“Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons

and Design Insights”. In: ISCA. ACM, 2019, pp. 527-540. po1: 10 . 1145/3307650 .
3322273.

https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1145/3307650.3322273

93

Implementation of the Quantum
Physical Layer

We provide additional details concerning the implementation of the quantum physical
layer used for our experiments.

Single qubit gates. At the physical layer, we implement real-time rotations around the
X and Y axes of the qubit Bloch sphere, using a resolution of 7/16 =11.25°. That is, the
upper layer can request any rotation that is a multiple of 7/16 around either the X or Y
axis. The different rotations are performed using Hermite-shaped pulses (as described in
Ref. [1]) of calibrated amplitude. The choice of X(Y) rotation axis is implemented using
the I(Q) channel of the microwave vector source.

While supported on QNodeOS, our physical layer currently does not implement Z-axis
rotations. Such rotations around the Z axis could be implemented by virtual rotations of
the Bloch sphere: a 7 pulse around the Z axis is equivalent to multiplying future I and Q
voltages by —1. By keeping track of the accumulated Z rotations, and by adjusting I and Q
mixing accordingly, one can perform effective Z rotations with very high resolution and
virtually no infidelity. The AWGs currently in use have the required capabilities, and the
implementation of said Z gates is planned for the near future.

Clock sharing and AWG triggering over longer distances. One of the technical chal-
lenges of realizing a large scale quantum network is synchronizing equipment at the phys-
ical layer across nodes. The synchronization is required to generate entanglement — the
photons from the two nodes need to arrive at the same time at the heralding station (com-
pared to their duration, 12 ns for NV centers in bulk diamond samples); failing to do so
would reduce (or even remove) their indistinguishability, which is required to establish
long-distance entanglement [1]. Our two nodes are located in a single laboratory, on the
same optical table, approximately 2 m apart. This allows for some simplifications, for the
purpose of demonstrating entanglement delivery using a network stack, which would not
be possible over longer distances. Specifically:

94 C Implementation of the Quantum Physical Layer

1. We use a single laser — the client’s — to excite both nodes, as in Ref. [1]. Over longer
distances, one would need to phase-lock the excitation lasers at the two nodes to ensure
phase-stability of the entangled states.

2. The Device Controllers (ADwin Pro II microcontroller [2]) are triggered every 1 s by
the same signal generator, advancing the state machine algorithm that implements the
physical layer. This ensures that the two microcontrollers have a common shared clock.
Over longer distances, one could use existing protocols (and commercially-available
hardware) to obtain a shared clock [3], and use that to trigger the microcontrollers.

3. The two AWGs need to be triggered to play entanglement attempts. In our implementa-
tion, one device controller — the server’s — triggers both AWGs. This ensures that the
triggering delay between the two AWGs is constant, and we can therefore calibrate it
out. Triggering the AWGs with two independent microcontrollers would result in jitter
(realistically on the order of nanoseconds). Over larger distances, one could derive —
from the shared clock — a periodic trigger signal that is gated by the microcontroller
at each node. In this way the microcontroller can decide whether the AWG will be trig-
gered on the next cycle, but the accuracy of the trigger’s timing will be derived from
the shared clock between the nodes, rather than from the microprocessor.

4. The phase stabilization scheme we use, developed in Ref. [1], is designed to work at a
single optical frequency (in our case, the 637 nm emission frequency of the NV center).
Over longer distances, conversion of the NV center photons to the telecom band will
be necessary to overcome photon loss. The phase stabilization scheme will therefore
need to be adapted to new optical frequencies used.

For reference, our client (server) is based on node Charlie (Bob) of the multi-node
quantum network presented in Ref. [1].

NV center resonance control. The two quantum network nodes use different tech-
niques to control the resonance of their NV centers (see Ref. [1] for implementations
details). The server uses an off-resonant charge randomization strategy: when its NV
center is not on resonance (it does not pass the charge and resonance check), it can apply
an off-resonant (green, 515 nm) laser pulse to shuffle the charge environment and proba-
bilistically recover the correct charge and resonance state. The server cannot get stuck in
a non-resonance state: in a few tens of failed CR checks and green laser pulses (overall
less than 1 ms) the NV center will be in resonance again.

The client, which needs to be tuned in resonance with the other node, uses a resonant
strategy. When in the wrong charge state (zero counts during CR check), it applies a reso-
nant laser pulse (yellow, 575 nm, NV zero-phonon line) to go back to NV~. To bring NV~
in resonance with the necessary lasers, it adjusts a biasing voltage applied to the diamond
sample, which shifts the resonance frequencies. This process is mostly automated. How-
ever, occasional human intervention is still required when the resonance frequencies of
the NV center shift too far — for example due to a charge in the vicinity of the NV center
changing position in the lattice — for the automatic mechanism to find its way back. Peri-
ods of inactivity in entanglement generation are due to the jumps in the client’s NV optical
transitions, which then require manual optimization of the laser frequencies and/or the
diamond biasing voltage — depending on the magnitude of the frequency shift, it requires

References 95

tens of seconds to a few minutes to recover the optimal resonance condition.

References
[1] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N.
Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S.
Wehner, and R. Hanson. “Realization of a Multinode Quantum Network of Remote
Solid-State Qubits”. In: Science 372.6539 (2021), pp. 259-264. po1: 10.1126/science.
abg1919.

[2] ADwin-Pro II. Jager GmbH. URL: https://www.adwin.de/us/produkte/proII.html
(visited on Feb. 28, 2023).

[3] The White Rabbit Project. CERN. URL: https://white-rabbit.web.cern.ch/ (visited
on Feb. 28, 2023).

https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://www.adwin.de/us/produkte/proII.html
https://white-rabbit.web.cern.ch/

97

Raw Distributions of RTT
Measurements

We plot in Figure D.1 the raw distributions of RTT delays measured in Chapter 6. As
already mentioned, the RTT measurements for the “Bypass servers” configuration can be
approximated by a single-mode Gaussian distribution, with small standard deviation and
negligible outliers. Such a clean distribution is an indicator of the stable performance of the
real-world classical network used in our experiments and of the fairly constant traffic on
such network. On the other hand, measurements for the “No MAC” and “Poly1305-AES”
configurations are better approximated by bimodal Gaussian distributions, with negligible
differences in mean and variance of each mode across the two configurations. These more
stark variations in RTT for these two configurations are most likely to be attributed to
some caching behavior in the packet processing pipeline. Nevertheless, the overall mean
RTT for each configuration is approximately equal to the mean of the strongest mode.
The following tables report mean and standard deviation for all configurations, and for all
modes of the distributions — where these are bimodal.

Server RTT mean [ps] RTT std [ps]
configuration Scope Pl 12 Pl. 1200 Pl 12 Pl. 1200
Bypass servers Overall 3657 3881 23 22
Overall 13 821 13 993 3142 2876
No MAC First mode 14 036 14 089 797 767
Second mode 11 251 11 400 446 397
Overall 14 387 13 959 5044 2867
Poly1305-AES First mode 14 099 14 015 861 729
Second mode 11 300 11 442 398 356

Table D.1: Mean and standard deviation of RTT for different configurations of the DOA servers and for all modes
of the analyzed distributions, for payloads of 12 bytes (Pl 12) and 1200 bytes (P1. 1200).

98

D Raw Distributions of RTT Measurements

Bypass servers

Payload [bytes]
3000 - . 12
1200
€
S 2000
(o}
o
1000 -
0 L T T T
3500 3600 3700 3800 3900 4000 4100
Round trip time [us]
No MAC
12000 Payload [bytes]
. 12
10000 — 1200
< 8000 —
3
S 6000 -
4000
2000
0 ‘Imu HHI‘M Al
8000 10000 12000 14000 16000 18000
Round trip time [us]
Poly1305-AES
15000 Payload [bytes]
12500 - S
1200
10000 -
o
[=4
3 7500
5000 -
2500 -
0 ol ‘HIMM i
8000 10000 12000 14000 16000 18000

Round trip time [us]

Figure D.1: Distribution of RTT measurements for the “Bypass servers”, “No MAC” and “Poly1305-AES” config-
urations, for message payloads of 12 and 1200 bytes. Each histogram consists of 200 bins.

99

101

API application programming interface
ASIC application-specific integrated
circuit

AWG arbitrary waveform generator

CK create and keep

CPLD Complex Programmable Logic
Device

CPU central processing unit

CR check charge and resonance check

DIO digital input/output
DOA data origin authentication
DQP distributed queue protocol

EMU entanglement management unit
FPGA field-programmable gate array
GPS Global Positioning System

HAL hardware abstraction layer

ICMP internet control message protocol
IP internet protocol

IPC inter-process communication

IPv4 Internet Protocol version 4

ITS information-theoretic security

MAC message authentication code
MD measure directly

MDI-QKD measurement-device
independent quantum key distribution
MHP midpoint heralding protocol

Glossary

NL network layer
NV nitrogen-vacancy

OS operating system
OSI Open System Interconnect

PCB process control block
Poly1305-AES Poly1305-AES message
authentication code

QDevice physical-layer quantum device
QEGP quantum entanglement
generation protocol

QKD quantum key distribution

OMMU quantum memory management
unit

QNodeOS operating system for
quantum network nodes

QNP quantum network protocol
ONPU quantum network processing
unit

RTT round-trip time
SDK software development kit

SDN software-defined networking
SPI Serial Peripheral Interface

TCP Transmission Control Protocol
TCP/IP Internet protocol suite
TDMA time-division multiple access

VMAC VMAC message authentication
code

ISBN 978-94-6384-457-4

	Summary
	Samenvatting
	Acknowledgments
	Curriculum Vitæ
	List of Publications
	1 Introduction
	1.1 Networking and Quantum Networking
	1.2 Research Goals
	1.3 Data and Software Availability
	1.4 Thesis Outline
	References

	2 Quantum Networking: Background and Challenges
	2.1 Background
	2.2 Challenges
	2.3 Related Work
	References

	3 Architecture of an Operating System for a Quantum Network Node
	3.1 General Design Considerations
	3.2 Key OS Components
	3.2.1 Memory Management Unit
	3.2.2 Quantum Network Stack
	3.2.3 Scheduler

	3.3 QNodeOS Design
	3.3.1 Full Stack of a Quantum Network Node
	3.3.2 Processes
	3.3.3 Process Scheduling
	3.3.4 QNodeOS Architecture

	3.4 Discussion
	References

	4 Entanglement Generation With a Quantum Networking Stack
	4.1 Quantum Link Layer Protocol
	4.2 Revised Protocol
	4.3 Physical Layer Control in Real-Time
	4.4 Evaluation
	4.5 Results With and Without Corrections
	4.6 Discussion
	References

	5 Quantum Networking With an Elementary Operating System
	5.1 Implementation
	5.2 Test Cases
	5.2.1 Single-Qubit Gate Tomography
	5.2.2 Entanglement Generation
	5.2.3 Delegated Computation
	5.2.4 Multitasking

	5.3 Discussion
	References

	6 Data Origin Authentication in the Quantum Networking Stack
	6.1 Related Work
	6.2 Why Data Origin Authentication
	6.3 Experimental Methodology
	6.4 Classical Communication Latency
	6.5 Simulation Results
	6.6 Discussion
	References

	7 Conclusion
	7.1 Summary of Results
	7.2 Future Work
	References

	A QNodeOS Components and Interfaces
	References

	B QDevice Interface
	References

	C Implementation of the Quantum Physical Layer
	References

	D Raw Distributions of RTT Measurements
	Glossary

