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Let W be a finitely generated right-angled Coxeter group with group von Neumann 
algebra L(W ). We prove the following dichotomy: either L(W ) is strongly solid or 
W contains Z ×F2 as a subgroup. This proves in particular strong solidity of L(W )
for all non-hyperbolic Coxeter groups that do not contain Z × F2.
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

r é s u m é

Étant donné un groupe de Coxeter à angles droits W et L(W ) l’algèbre de von 
Neumann associée, nous montrons l’alternative suivante : L(W ) est fortement solide 
ou alors Z ×F2 est un sous-groupe de W . En particulier, cela implique que les groupes 
de Coxeter non-hyperboliques qui ne contiennent pas Z ×F2 ont une algèbre de von 
Neumann fortement solide.
© 2024 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

In their seminal paper [21] Ozawa and Popa gave a new proof of the fact that the free group factors 
L(Fn) do not possess a so-called Cartan subalgebra. This result was obtained earlier by Voiculescu [29]
using his free entropy. In fact Ozawa and Popa proved a stronger result: they showed that whenever A is a 
diffuse amenable von Neumann subalgebra of M := L(Fn) then the normaliser of A in M (see preliminaries) 
generates a von Neumann algebra that is still amenable. The latter property was then called ‘strong solidity’ 
after Ozawa’s notion of solid von Neumann algebras [20]. Nowadays there are many examples of strongly 
solid von Neumann algebras. In particular in [6], and afterwards also [25], it was proved that the group von 
Neumann algebra of any hyperbolic icc group is strongly solid.

A (finitely generated) right-angled Coxeter group W with finite generating set Γ subject to the relations 
that any two generators are either free, or they commute. This can also be described as follows. Let Γ be a 
simple graph (finite, undirected, no double edges, no self-loops) and also write Γ for its vertex set. Then W
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is the finitely presented group with generating set given by the vertices of Γ subject to the relations that 
u2 = e for all u ∈ Γ and u, v ∈ Γ commute if they share an edge, and otherwise they are free. In terms of 
graph products [9] this means that W = ∗ΓZ2 where Z2 is the group with 2 elements and ∗Γ denotes the 
graph product over Γ, with all vertex groups equal to Z2.

It is natural to ask which properties of a graph and its vertex groups are reflected in the graph product 
von Neumann algebra. In the extreme case that Γ has no edges this leads to the free factor problem [8], 
[26], [4, Paragraph before Definition 2.2] and one may wonder how far a general Coxeter group is away from 
this situation. More precisely, our aim is to understand how much of the graph Γ, and thus commutation 
relations, can be recovered from L(W ). Such rigidity questions are relevant for general graph products of 
operator algebras [3] and recent rigidity results have been obtained in [2], [19], [17], [15], [16]. In particular 
in [15], [16] rather strong rigidity results are obtained in case the graph Γ as a particular flower-type shape 
and the vertex groups are certain property (T) generalized wreath products. This paper concerns the other 
extreme case: the vertex groups are as small as possible and we try to recover some of the structure of Γ.

The main result of this paper completes the classification of right-angled Coxeter groups W for which 
L(W ) is strongly solid. This result completely clarifies [2, Remark 5.6]. Namely we prove the following 
dichotomy.

Theorem A. Let W be a finitely generated right-angled Coxeter group. Then one of the following two holds:

(1) W contains Z × F2 as a subgroup.
(2) L(W ) is strongly solid.

In fact our main theorem is stronger, see Theorem 4.5, which also shows that Z ×F2 must in situation (1)
be located in a special subgroup. It easily follows that if W contains Z × F2 then L(W ) cannot be strongly 
solid. The difficult part is to show that this is the only obstruction. Our strong solidity result is new in case 
W is not hyperbolic and not equal to some free product of amenable Coxeter subgroups. There are many 
such Coxeter groups. Indeed, Z2 ∗ Z2 = D∞ where D∞ is the infinite dihedral group. Then D∞ ×D∞ is 
not hyperbolic and nor is any W that contains D∞ ×D∞.

Our proof is based on rigidity of amalgamated free products and uses some of the main results of Ioana 
[13] and Vaes [28]; in particular we use the three alternatives of [28, Theorem A]. We show that these results 
can be exploited in a clean and elegant way to get stronger results by combining multiple amalgamated 
free product decompositions at the same time. This requires to have sufficient control over embeddings 
of normalizers in graph products and relative amenability with respect to various subgroups; we obtain 
such results in Sections 2 and 3. We recommend the reader to look at the proof of the main theorem first 
(Theorem 4.4) which contains most conceptual parts of the proof strategy. Then in Sections 2 and 3 we 
collect the necessary results on the location of normalizers and we prove a result on relative amenability for 
graph products, which is of independent interest.

1. Preliminaries

1.1. Von Neumann algebras, Jones projection, normalizers, strong solidity

Let B(H) denote the bounded operators on a Hilbert space H. The group von Neumann algebra of a 
discrete group G is denoted by L(G). Let M be a von Neumann algebra which in this paper is always assumed 
to be finite with faithful normal tracial state τ . Let M ′ denote the commutant of M . We call M diffuse if M
does not contain minimal non-zero projections. For an inclusion Q ⊆ M of finite von Neumann algebras we 
write EQ : M → Q for the normal trace preserving conditional expectation. For a unital inclusion Q ⊆ M
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we let eQ : L2(M) → L2(M) be the Jones projection which is the orthogonal projection onto L2(Q). Then 
the von Neumann algebra generated by M and eQ denoted by 〈M, eQ〉 is called the Jones extension, see [18]. 
There exists a normal faithful semi-finite operator valued weight [10], [11] TrQ from a domain in 〈M, eQ〉
to M for which all operators xeQy, x, y ∈ M are in this domain and such that TrQ(xeQy) = xy. We then 
set the trace Tr = τ ◦ TrQ.

For a von Neumann subalgebra A ⊆ M we denote

NorM (A) := {u ∈ M unitary | uAu∗ = A}

qNor(1)M (A) := {x ∈ M | ∃x1, . . . , xn ∈ M, s.t.Ax ⊆
n∑

i=1
xiA}

qNorM (A) := qNor(1)M (A) ∩
(
qNor(1)M (A)

)∗

which are called the normalisers, one-sided quasi-normalisers and quasi-normalisers respectively. We remark 
that NorM (A) is a group, qNor(1)M (A) is an algebra and qNorM (A) is a ∗-algebra. Furthermore we see that 
NorM (A) ⊆ qNorM (A). We have that A and A′ ∩M are contained in the von Neumann algebra NorM (A)′′.

Definition 1.1. (Amenability) A von Neumann algebra M ⊆ B(H) is called amenable if there exists a 
(possibly non-normal) conditional expectation E : B(H) → M , i.e. E is a completely positive map that 
restricts to the identity on M .

Definition 1.2 (Strong solidity). A von Neumann algebra M is called strongly solid if for every diffuse 
amenable unital von Neumann subalgebra A ⊆ M the normalizer NorM (A) generates an amenable von 
Neumann algebra.

We remark that amenability passes to von Neumann subalgebras and therefore if M is strongly solid, 
then so is every von Neumann subalgebra of M .

1.2. Intertwining-by-bimodules

We recall Popa’s intertwining-by-bimodules theory [22], [23].

Definition 1.3 (Embedding A ≺M B). For von Neumann subalgebras A, B ⊆ M we will say that a corner of 
A embeds in B inside M (denoted A ≺M B) if one of the following equivalent statements hold:

(1) There exist projections p ∈ A, q ∈ B, a normal ∗-homomorphism θ : pAp → qBq and a non-zero partial 
isometry v ∈ qMp such that θ(x)v = vx for all x ∈ pAp.

(2) There exists no net of unitaries (ui)i in A such that for every x, y ∈ M1B we have that ‖EB(xuiy)‖2 → 0.

Remark 1.4. In Definition 1.3 (1) the range projection vv∗ is contained in θ(pAp)′. We may further assume 
without loss of generality that q equals the support of EB(vv∗).

1.3. Graphs

Let Γ be a simple graph (undirected, no double edges, no edges whose startpoint and endpoint are the 
same) with vertex set Γ and edge set EΓ. Note the mild abuse of notation as we write Γ for both the vertex 
set as well as the graph, which should not lead to confusion. We will not further use the edge set in our 
notation.
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For a non-empty subset S ⊆ Γ we will denote

Link(S) = {v ∈ Γ | v and s share an edge for all s ∈ S} (1.1)

We note that Link(S) =
⋂

s∈S Link(s). Furthermore, for a vertex v ∈ Γ we denote Star(v) = {v} ∪ Link(v). 
We will write Λ ⊆ Γ and say that Λ is a subgraph of Γ in case the vertex set of Λ is a subset of the vertex 
set of Γ and two vertices in Λ share an edge if and only if they share an edge in Γ. In other words, subgraphs 
are understood to be complete subgraphs. We remark that our notation Link(S) always stands for the Link 
of the set S w.r.t. the large graph Γ that is fixed, and not w.r.t. subgraphs of Γ.

1.4. Coxeter groups

To every finite simple graph Γ we associate a right-angled Coxeter group W := WΓ given by the following 
presentation:

WΓ = 〈Γ | v2 = e for v ∈ Γ, vw = wv for v, w ∈ Γ sharing an edge〉.

Then WΓ is the graph product over Γ with Z2 as each of the vertex groups [9]. For Λ ⊆ Γ then WΛ is a 
subgroup of WΓ; we call such a subgroup a special subgroup.

We will write MΓ := L(WΓ). If Λ ⊆ Γ then MΛ ⊆ MΓ. Throughout the paper Γ will always denote a 
fixed graph of which we shall consider various subgraphs and therefore we sometimes write W for WΓ. Note 
that WΓ consists of words with letters in Γ which will typically be denoted by boldface letters. For u ∈ W

we denote |u| for the length of u, i.e. the minimal number of letters needed to represent the word. We will 
say that a letter a ∈ Γ occurs at the start (resp. end) of u ∈ W if |au| < |u| (resp. |ua| < |u|).

We state the following proposition from [3, Theorem 2.15] that shows that graph products can be decom-
posed as amalgamated free products. Note that we only apply this theorem to Coxeter groups and therefore 
the proposition can also be verified directly by checking that WΓ = WΓ1 ∗WΓ1∩Γ2

WΓ2 .

Proposition 1.5 (Decomposition as amalgamated free product). Let Γ be a finite simple graph. Fix v ∈ V

and set Γ1 = Star(v) and Γ2 = Γ \ {v}. Then

MΓ = MΓ1 ∗MΓ1∩Γ2
MΓ2

1.5. Word combinatorics

We collect some lemmas that give control over translations and conjugates of Coxeter subgroups.

Lemma 1.6 (Proposition 3.4 of [1]). Let Γ1 ⊆ Γ be a subgraph and let g ∈ WΓ. Then there exists Γ2 ⊆ Γ1
and h ∈ WΓ1 such that

WΓ1 ∩ gWΓ1g−1 = hWΓ2h−1

Lemma 1.7. Let Γ1, Γ2 be subgraphs of Γ. Let w ∈ WΓ1 , u, u′ ∈ W be such that (1) u and u′ do not have 
a letter in Γ1 at the start, (2) u and u′ do not have a letter in Γ2 at the end, (3) u−1wu′ ∈ WΓ2 . Then, 
w ∈ WΓ1∩Γ2 , u = u′ and u (and thus u′) commutes with w.

Proof. Suppose that w contains a letter b in Γ1 which is not contained in Γ2, say that we write w = w1bw2
as a reduced expression. We may assume that w1 does not end on any letters commuting with b by moving 
those letters into w2. Then as u′ does not have letters from Γ1 at the start we see that wu′ contains the 
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letter b; more precisely we may write a reduced expression wu′ = w1bw3u′′ where w3 is a start of w2
and u′′ is a tail of u′. Since u−1wu′ is contained in WΓ2 the letter b cannot occur anymore in its reduced 
expression. We have u−1wu′ = u−1w1bw3u′′ (possibly non-reduced). Now if a letter at the end of u−1

deletes the letter b then this would mean that u has a letter in Γ1 up front (either b itself or a letter from 
w1) which is not possible. We conclude that w ∈ WΓ1∩Γ2 .

Write u = vu1 and u′ = vu′
1 (both reduced) where u1, u2 ∈ W and where v ∈ W such that v commutes 

with w. Moreover we can assume that u1, u2, v are chosen such that |v| is maximal over all possible choices. 
Now, suppose that u′

1 �= e. Let d be a letter at the end of u′
1. Then d �∈ Γ2 by assumption on u′ (as d is 

also at the end of u′). Now u−1
1 wu′

1 = u−1wu′ ∈ WΓ2 , which implies that d is deleted, i.e. u−1
1 wu′

1 is not 
reduced. Thus a letter c at the start of u1 must delete a letter at the end of u−1

1 w. If c deletes a letter 
from w then in particular c ∈ Γ1 ∩ Γ2 (as w ∈ WΓ1∩Γ2). However, as u′ does not start with letters from 
Γ1 this implies that |v| ≥ 1. Now, every letter of v commutes with the letters from w (by assumption on 
v). However, not every letter of v commutes with c, since c is not at the start of u′. From this we conclude 
that c is not a letter of w, a contradiction. We conclude that c is not deleted by a letter from w, and thus 
that c must commute with w, and that c deletes a letter at the end of u−1

1 i.e. a letter at the start of u1. 
Hence, we can write u1 = cu2 and u′

1 = cu′
2 (both reduced) for some u2, u′

2 ∈ W . But then u = vcu2 and 
u′ = vcu′

2 and we have that vc commutes with w. This contradicts the maximality of |v|. We conclude that 
u′

1 = e. Now as u−1
1 w = u−1

1 wu′
1 = u−1wu′ lies in WΓ2 by assumption and as w ∈ WΓ1∩Γ2 we obtain that 

u−1
1 ∈ WΓ2 . But u1 does not end with a letter from Γ2 by assumption on u (since letters at the end of u1

are also at the end of u). This implies that u1 = e. This shows u = v = u′ and that u (= v) commutes 
with w. �
2. Embeddings of quasi-normalizers in graph products

The main aim of this section is to prove (2) of Proposition 2.3 below. This gives us control over embeddings 
of normalizers and quasi-normalizers in graph product. The proof is essentially a combination of arguments 
contained in [27] and [13] with a number of modifications that are particular to graph products.

The following lemma, for n = 1, is stated and proved in [14, Lemma 1.4.5] and occurs in many different 
forms in the literature (see for instance [27, Theorem 3.2.2]). For completeness we give the proof for arbitrary 
n here.

Lemma 2.1. Let A, B1, . . . , Bn, Q ⊆ M be von Neumann subalgebras with Bi ⊆ Q. Assume that A ≺M Q

but A �≺M Bi for any i = 1, . . . , n. Then there exist projections p ∈ A, q ∈ Q, a partial isometry v ∈ qMp

and a normal ∗-homomorphism θ : pAp → qQq such that θ(x)v = vx, x ∈ pAp and such that θ(pAp) �≺Q Bi

for any i = 1, . . . , n.

Proof. As A ≺M Q we may take p ∈ A, q ∈ Q, a partial isometry v ∈ qMp and a normal ∗-homomorphism 
θ : pAp → qQq such that θ(x)v = vx, x ∈ pAp. Without loss of generality we may assume that q equals the 
support projection of EQ(vv∗), see Remark 1.4. Now assume that Q1 := θ(pAp) ≺Q B for some B := Bi. 
Then there exist projections q1 ∈ Q1, r ∈ B, a partial isometry w ∈ rQq1 and a normal ∗-homomorphism 
ϕ : q1Qq1 → rBr such that ϕ(x)w = wx for all x ∈ q1Qq1. Using [7, I.4.4, Corollary], it follows that we can 
obtain a projection p1 ∈ pAp such that θ(p1) = q1. Then the composition ϕ ◦ θ yields a ∗-homomorphism 
p1Ap1 → rBr and we have ϕ(θ(x))wv = wθ(x)v = wvx. Let wv = u|wv| be the polar decomposition of wv
and let |wv|−1 be the operator that acts as |wv|−1 on ker(wv)⊥ and which has ker(wv) as its kernel. Then 
ϕ(θ(x))u = ϕ(θ(x))wv|wv|−1 = wvx|wv|−1 = wv|wv|−1x = ux for all x ∈ p1Ap1 as |wv| ∈ p1Ap′1. Finally 
we claim that wv, and therefore u, is non-zero. Indeed, if wv would be 0 then wEQ(vv∗) = EQ(wvv∗) = 0
which implies that w is zero as we assumed that the support of EQ(vv∗) equals q, contradiction. This 
concludes the proof. �
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To proceed we recall the following lemma giving control over quasi-normalizers.

Lemma 2.2 (Lemma 2.7 of [5] and [23]). Let G1 ⊆ G be countable groups and let P ⊆ L(G1). Assume that 
P �≺L(G1) L(G1 ∩ gG1g

−1) for all g ∈ G \ G1. Then if x ∈ L(G) satisfies xP =
∑n

i=1 L(G1)xi for some 
x1, . . . , xn ∈ L(G) then we obtain x1P ∈ L(G1).

The following proposition concerns a result that is well-known for amalgamated free products, see [14, 
Theorem 1.2.1], of which we obtain the analogue for graph products. Our result also generalizes some recent 
results in the literature [15, Lemma 2.9].

The second statement of the following proposition should also be compared to [13, Lemma 9.4]. In the 
present paper the inclusion MΛ ⊆ MΓ is usually not mixing, but for graph products we still have enough 
control over the (quasi-)normalizers of subalgebras.

Proposition 2.3. Let Λ be a subgraph of Γ and set M = MΓ. Let A ⊂ M be a von Neumann subalgebra and 
let P = NorM (A)′′. Let r ∈ P ∩ P ′ be a projection. The following statements hold true.

(1) If A ⊆ MΛ and A �≺MΛ MΛ̃ for all strict subgraphs Λ̃ � Λ then qNorM (A)1A ⊂ MΛ∪Link(Λ).
(2) If rA ≺M MΛ and rA �≺M MΛ̃ for all strict subgraphs Λ̃ � Λ then rP ≺M MΛ∪Link(Λ).

Proof. (1) Under the isomorphism MΛ∪Link(Λ) � MΛ ⊗ MLink(Λ) the inclusion A ⊆ MΛ ⊆ MΛ∪Link(Λ)

becomes A ⊗1 ⊂ MΛ⊗MLink(Λ). As A �≺MΛ MΛ̃1
for any strict subgraph Λ̃1 ⊆ Λ it follows from Definition 1.3

(2) that

A⊗ 1 �≺MΛ⊗MLink(Λ) MΛ̃1
⊗MΛ̃2

for any strict subgraph Λ̃1 of Λ and any (non-strict) subgraph Λ̃2 of Link(Λ).
We now aim to apply Lemma 2.2 applied to G = W , G1 = WΛ∪Link(Λ) and P = A. Take g ∈

W\WΛ∪Link(Λ). By Lemma 1.6 we see that

WΛ∪Link(Λ) ∩ gWΛ∪Link(Λ)g−1 = hWΛ̃h−1, (2.1)

for some h ∈ WΛ∪Link(Λ) and Λ̃ ⊆ Λ ∪ Link(Λ).
We claim that Λ̃ does not contain Λ. Indeed, if we would have Λ ⊆ Λ̃, then (2.1) implies that WΛ∪Link(Λ)∩

gWΛ∪Link(Λ)g−1 ⊇ hWΛh−1 = WΛ. That is gWΛ∪Link(Λ)g−1 ⊇ WΛ. We may write g = g1g2g3 with 
g1 ∈ WΛ, g3 ∈ WΛ∪Link(Λ) and g2 having no letters from Λ at the start and no letters from Λ ∪ Link(Λ) at 
the end. Then g2WΛ∪Link(Λ)g−1

2 ⊇ WΛ and then Lemma 1.7 implies that g2 ∈ WLink(Λ∪Link(Λ)) ⊆ WLink(Λ). 
It follows that g ∈ WΛ∪Link(Λ), contradiction. It follows that Λ̃ does not contain Λ.

If A ≺MΛ∪Link(Λ) MΛ∪Link(Λ) ∩ gMΛ∪Link(Λ)g−1, then it follows that A ≺MΛ∪Link(Λ) hMΛ̃h−1, equiva-
lently A ≺MΛ∪Link(Λ) MΛ̃. This is excluded by assumption and the previous paragraphs. So A �≺MΛ∪Link(Λ)

MΛ∪Link(Λ) ∩ gMΛ∪Link(Λ)g−1 and the assumptions of Lemma 2.2 are satisfied. That lemma concludes that 
qNorM (A)1A ⊆ MΛ∪Link(Λ).

(2) We start by observing that r is in particular central in A which we will use a number of times in 
the proof. The assumptions imply by Lemma 2.1 that there exist projections p ∈ rA, q ∈ MΛ a non-zero 
partial isometry v ∈ qMp and a normal ∗-homomorphism θ : pAp → qMΛq such that θ(x)v = vx for all 
x ∈ pAp and such that moreover θ(pAp) �≺MΛ MΛ̃ for any strict subgraph Λ̃ of Λ. From (1) we see that 
qNorM (θ(pAp))θ(p) ⊆ MΛ∪Link(Λ).

Now take u ∈ NorM (A). We follow the proof of [23, Lemma 3.5] or [13, Lemma 9.4]. Take z ∈ A a central 
projection such that z =

∑n
vjv

∗
j with vj ∈ A partial isometries such that v∗j vj ≤ p. Then
j=1
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pzupz(pAp) ⊆ pzuA = pzAu = pAzu ⊆
n∑

j=1
(pAvj)v∗ju ⊆

n∑
j=1

(pAp)v∗ju,

and similarly (pAp)pzupz ⊆
∑n

j=1 uvj(pAp). We conclude that pzupz ∈ qNorpMp(pAp).
Now if x ∈ qNorpMp(pAp) then by direct verification we see that vxv∗ ∈ qNorqMq(θ(pAp))θ(p). It follows 

that vpzupzv∗, with u ∈ NorM (A) as before, is contained in qNorqMq(θ(pAp))θ(p) which was contained 
in MΛ∪Link(Λ) by the first paragraph of the proof of (2). We may take the projections z to approximate 
the central support of p and therefore vuv∗ = vpupv∗ ∈ MΛ∪Link(Λ). Hence vNorM (A)′′v∗ ⊆ MΛ∪Link(Λ). 
Set p1 = v∗v ∈ pA′p. Note that p1 ≤ p ≤ r. As both A and A′ are contained in NorM (A)′′ we find that 
p1 ∈ NorM (A)′′ (as p ∈ A). So we have the ∗-homomorphism ρ : p1 NorM (A)′′p1 = p1rNorM (A)′′p1 →
MΛ∪Link(Λ) : x �→ vxv∗ with v ∈ qMp1 and clearly ρ(x)v = vx. We conclude that rNorM (A)′′ ≺M

MΛ∪Link(Λ). �
3. Relative amenability

We start with introducing the notion of relative amenability. Let M be a finite von Neumann algebra with 
faithful tracial state τ and let Q, P ⊂ M be von Neumann subalgebras and assume the inclusion Q ⊆ M is 
unital. Let

TQ : L1(〈M, eQ〉,Tr) → L1(M, τ),

be the unique map defined through τ(TQ(y)x) = Tr(yx) for all y ∈ L1(〈M, eQ〉, Tr), x ∈ M . Then TQ is 
the predual of the inclusion map M ⊂ 〈M, eQ〉 and thus is contractive and preserves positivity. For the 
following definition of relative amenability we refer to [24, Proposition 2.4].

Definition 3.1. We say that P is amenable relative to Q inside M if there exists a P -central positive functional 
on 1P 〈M, eQ〉1P that restricts to the trace τ on 1PM1P .

Remark 3.2. Assume the inclusion P ⊆ M is not unital. Let p = 1M −1P . Set P̃ = P ⊕Cp which is a unital 
subalgebra of M . We claim: P is amenable relative to Q inside M if and only if P̃ is amenable relative to 
Q inside M . Indeed, for the if part, choose a P̃ -central positive functional Ω̃ on 〈M, eQ〉 that restricts to τ
on M . Set Ω to be the restriction of Ω̃ to 1P 〈M, eQ〉1P which then clearly witnesses relative amenability 
of P . For the only if part, let Ω be a P -central positive functional on 1P 〈M, eQ〉1P that restricts to τ on 
1PM1P then we set Ω̃(x) = Ω(pxp) + τ̃((1 − p)x(1 − p)) for any positive functional τ̃ extending τ from 
(1 − p)M(1 − p) to (1 − p)〈M, eQ〉(1 − p). Clearly Ω̃ witnesses the relative amenability of P̃ .

Proposition 3.3 (Proposition 2.4 of [24]). Assume P, Q ⊆ M are unital von Neumann subalgebras. Then P
is amenable relative to Q inside M if and only if there exists a net (ξj)j ∈ L2(〈M, eQ〉, Tr)+ such that:

(1) 0 ≤ TQ(ξ2
j ) ≤ 1 for all j and limj ‖TQ(ξ2

j ) − 1‖1 = 0;
(2) For all y ∈ P we have limj ‖yξj − ξjy‖2 = 0.

The aim of this section is to prove Theorem 3.7 for which we need a number of auxiliary lemmas. Before 
we state the following lemma, we recall that we identify the vertices of the graph Γ with the generators 
of the vertex groups. Recall further that for Λ ⊆ Γ we set Link(Λ) =

⋂
v∈Λ Link(v). Then for v ∈ W we 

let Link(v) = Link(Λv) where Λv is the set of all letters that occur in v. Alternatively, Link(v) can be 
described as the set of all w ∈ Γ\Λv such that wv = vw.
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Lemma 3.4. Let Γ1, Γ2 be subgraphs of Γ. Let v, u ∈ W and write v = vlvcvr, u = ulucur where vl, ul ∈
WΓ1 , vr, ur ∈ WΓ2 and vc, uc has no letters from Γ1 at the start and no letters from Γ2 at the end. Then, 
for x ∈ M ,

EMΓ2
(λ∗

vEMΓ1
(x)λu) =

{
λ∗
vr
EMΓ1∩MΓ2∩MLink(uc)(λ∗

vl
xλul

)λur
if uc = vc,

0 otherwise.

Proof. We have

EMΓ2
(λ∗

vEMΓ1
(x)λu) = λ∗

vr
EMΓ2

(λ∗
vc
EMΓ1

(λ∗
vl
xλul

)λuc
)λur

. (3.1)

In case uc �= vc Lemma 1.7 shows that EMΓ2
(λ∗

vc
EMΓ1

( · )λuc
) is the zero map. In case uc = vc Lemma 1.7

shows that

EMΓ2
(λ∗

vc
EMΓ1

( · )λuc
) = EMΓ2

(λ∗
vc
EMΓ1∩MΓ2∩MLink(uc)( · )λuc

).

= EMΓ1∩MΓ2∩MLink(uc)( · )

So continuing (3.1) we get

EMΓ2
(λ∗

vEMΓ1
(x)λu) = δuc,vc

λ∗
vr
EMΓ1∩MΓ2∩MLink(uc)(λ

∗
vl
xλul

)λur
,

which is the desired equality. �
Remark 3.5. In Lemma 3.4 in the decomposition v = vlvcvr the word vc is unique and therefore the 
statement of the lemma is well-defined. Note that vl and vr may not be unique. The same holds for u.

Let M, Q, N be tracial von Neumann algebras and let MHQ and QKN be bimodules. Recall that a vector 
ξ ∈ H is called right Q-bounded if there exists C > 0 s.t. ‖ξy‖ ≤ C‖y‖ for all y ∈ Q. For a right Q-bounded 
vector ξ ∈ H we define L(ξ) ∈ B(L2(Q, τ), H) as L(ξ)x = ξx where x ∈ Q. Then, for right Q-bounded 
vectors ξ, η ∈ H we have that L(η)∗L(ξ) ∈ Q. We denote by H0 ⊆ H the subspace of all right Q-bounded 
vectors. We equip the algebraic tensor product H0 ⊗K with the (possibly degenerate) inner product

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉H0⊗QK := 〈L(ξ2)∗L(ξ1)η1, η2〉K . (3.2)

The Connes tensor product H ⊗Q K is the Hilbert space obtained from H0 ⊗alg K by quotienting out the 
degenerate part and taking a completion. The Hilbert space H ⊗Q K is a M -N bimodule with the action

x · (ξ ⊗Q η) · y = (xξ) ⊗Q (ηy).

Remark 3.6. We calculate the operator L(ξ2)∗L(ξ1) for certain bimodules and vectors ξ1, ξ2 ∈ H0. Let (M, τ)
be a tracial von Neumann algebra and let P, Q ⊆ M be von Neumann subalgebras with Q unital. Consider 
the bimodule PL2(M, τ)Q. Let x, y ∈ M . Then x, y are right Q-bounded and thus L(x), L(y) : L2(Q, τ) →
L2(M, τ) are well-defined. We calculate L(x)∗L(y). For q1, q2 ∈ L2(Q, τ) we have

〈L(x)∗L(y)q1, q2〉 = 〈yq1, xq2〉 = τ(q∗2x∗yq1) = τ(q∗2EQ(x∗y)q1) = 〈EQ(x∗y)q1, q2〉. (3.3)

Thus L(x)∗L(y) = EQ(x∗y).
Let R ⊆ M be a unital von Neumann subalgebra and let N = 〈M, eR〉, where eR denotes the Jones 

projection of the inclusion R ⊆ M . We consider the bimodule PL2(N, Tr)Q. For x, x′, y, y′ ∈ M we have that 
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xeRy and x′eRy′ are right Q-bounded vectors as they are elements in N . We calculate L(xeRy)∗L(x′eRy′). 
For q1, q2 ∈ Q we have,

〈L(xeRy)∗L(x′eRy
′)q1, q2〉 = 〈x′eRy

′q1, xeRyq2〉
= Tr(q∗2y∗eRx∗x′eRy

′q1)

= Tr(q∗2y∗ER(x∗x′)eRy′q1)

= τ(q∗2y∗ER(x∗x′)y′q1)

= τ(EQ(q∗2y∗ER(x∗x′)y′q1))

= τ(q∗2EQ(y∗ER(x∗x′)y′)q1)

= 〈EQ(y∗ER(x∗x′)y′)q1, q2〉.

Thus we obtain L(xeRy)∗L(x′eRy
′) = EQ(y∗ER(x∗x′)y′).

The proof of the following theorem follows [24, Proposition 2.7] but in our case the subalgebras are not 
regular.

Theorem 3.7. Let Γ1, Γ2 be subgraphs of Γ. Suppose that P ⊆ M := MΓ = L(W ) is a von Neumann algebra 
that is amenable relative to Qi := MΓi

= L(WΓi
) inside M for i = 1, 2. Then P is amenable relative to 

Q1 ∩Q2 = MΓ1∩Γ2 inside M .

Proof. By Remark 3.2 we may assume without loss of generality that the inclusion P ⊆ M is unital and 
use the characterisation of relative amenability given by Proposition 3.3.

As before, let Ti = TQi
: L1(〈M, eQi

〉) → L1(M) be the contraction determined by τ(Ti(S)x) = Tri(Sx)
for S ∈ L1(〈M, eQi

〉) and x ∈ M . Since P is amenable relative to Qi, Proposition 3.3 implies the existence 
of nets (μi

j)j in L2(〈M, eQi
〉)+ satisfying

0 ≤ Ti((μi
j)2) ≤ 1, ‖Ti((μi

j)2) − 1‖1 → 0, ‖yμi
j − μi

jy‖2 → 0, for all y ∈ P, (3.4)

where the limits are taken over j. Consider the M -M bimodule

H = L2(〈M, eQ1〉) ⊗M L2(〈M, eQ2〉).

Claim: As in [24] we claim that tensor products μj := μ1
j1
⊗μ2

j2
∈ H for certain j = (j1, j2) can be combined 

into a net such that

‖yμj − μjy‖ → 0, |〈xμj , μj〉 − τ(x)| → 0,

for all y ∈ P , x ∈ M , where the limit is taken over j. Let us now prove this claim in the next paragraphs 
which repeats the argument used in [24, Proposition 2.4].

Proof of the claim. Take F ⊆ P, G ⊆ M finite and let ε > 0. Set G1 := G and fix j1 such that ‖yμ1
j1
−μ1

j1
y‖2 ≤

ε for all y ∈ F and |〈xμ1
j1
, μ1

j1
〉 −τ(x)| ≤ ε for all x ∈ G1. As 0 ≤ Ti((μi

j1
)2) ≤ 1 and as Ti preserves positivity, 

it follows that for x ∈ M the element T1(μ1
j1
xμ1

j1
) ∈ L1(M) is bounded in the uniform norm and thus belongs 

to M . Set G2 := T1(μ1
j1
G1μ1

j1
) ⊆ M , which is finite. We may proceed from F and G2 to find j2 such that 

‖yμ2
j2

− μ2
j2
y‖2 ≤ ε for all y ∈ F and |〈xμ2

j2
, μ2

j2
〉 − τ(x)| ≤ ε for all x ∈ G2. Put j = (j1, j2) and set 

μj = μ1
j ⊗ μ2

j .

1 2
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It follows by the triangle inequality that for y ∈ F we have

‖yμ− μy‖ ≤ ‖(yμ1
j1 − μ1

j1y) ⊗M μ2
j2‖ + ‖μ1

j1 ⊗M (yμ2
j2 − μ2

j2y)‖ ≤ 2ε.

Now, by construction of the sets Gi and the vectors μi
ji

we see that for x ∈ G that

|〈xμ, μ〉 − τ(x)| ≤ |〈xμ, μ〉 − 〈xμ2
j2 , μ

2
j2〉| + |〈xμ2

j2 , μ
2
j2〉 − τ(x)|

≤ |〈T1(μ1
j1xμ

1
j1)μ

2
j2 , μ

2
j2〉 − 〈xμ2

j2 , μ
2
j2〉| + |〈xμ2

j2 , μ
2
j2〉 − τ(x)|

≤ 2ε

Taking j = j(F , G) with increasing sets F and G as before gives a net of vectors μj ∈ H with the property 
that

‖yμj − μjy‖ → 0, |〈xμj , μj〉 − τ(x)| → 0

for all y ∈ P and x ∈ M . This proves the claim.

Remainder of the proof. The net (μj)j in particular shows that the bimodule ML2(M)P is weakly contained 
in MHP . Denote Q0 := Q1 ∩Q2 and put K := L2(M, τ) ⊗Q0 L

2(M, τ). We show that MHM is contained in 
the bimodule ML2(M) ⊗Q0 KM . Let

V = {v ∈ W | v does not start with letters from Γ1 and does not end with letters from Γ2}.

Observe that the subspace

H0 := Span{xeQ1λv ⊗M eQ2z | x, z ∈ M,v ∈ V }

is dense in H. Indeed, it is clear that the span of vectors xeQ1λv ⊗M eQ2z with x, z ∈ M and v ∈ W is 
dense in H. For v ∈ W we can write v = vlvcvr with vl ∈ WΓ1 , vr ∈ WΓ2 and vc ∈ V . Therefore we obtain

xeQ1λv ⊗M eQ2z = (xλvl
)eQ1λvc

⊗M eQ2(λvr
z) ∈ H0

which shows density of H0 ⊆ H. Define U : H0 → L2(M) ⊗Q0 K as

xeQ1λv ⊗M eQ2z �→ x⊗Q0 λv ⊗Q0 z for x, z ∈ M,v ∈ V

We now use Lemma 3.4 and the calculations from Remark 3.6 to show that U is isometric. Indeed, for 
x, x′, z, z′ ∈ M and v, u ∈ V we find,

〈x′ ⊗Q0 λu ⊗Q0 z
′, x⊗Q0 λv ⊗Q0 z〉L2(M)⊗Q0K

= 〈EQ0(x∗x′)λu ⊗Q0 z
′, λv ⊗Q0 z〉K

= 〈EQ0(λ∗
vEQ0(x∗x′)λu)z′, z〉

= δv,u〈EQ0∩Link(v)(x∗x′)z′, z〉
= 〈EQ2(λ∗

vEQ1(x∗x′)λu)z′, z〉
= 〈TQ2(EQ2(λ∗

vEQ1(x∗x′)λu)eQ2z
′), z〉

= 〈TQ2(eQ2λ
∗
vEQ1(x∗x′)λueQ2z

′), z〉
= 〈λ∗

vEQ1(x∗x′)λueQ2z
′, eQ2T

∗
Q2

(z)〉
= 〈EMΓ(λ∗

vEQ1(x∗x′)λu)eQ2z
′, eQ2z〉

= 〈x′e λ ⊗ e z′, xe λ ⊗ e z〉
Q1 u MΓ Q2 Q1 v MΓ Q2 H
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Thus U extends to an isometry H → L2(M) ⊗Q0 K, which clearly is M -M -bimodular. We have shown that 
ML2(M)P is weakly contained in ML2(M) ⊗Q0 KP , which by [24, Proposition 2.4 (3)] means that P is 
amenable relative to Q0 = Q1 ∩Q2. �
4. Main theorem: classifying strong solidity for right-angled Coxeter groups

In this section we collect our main results. The proof is strongly based on the following alternatives for 
amalgamated free product decompositions.

Theorem 4.1 (Theorem A of [28]). Let (N1, τ1), (N2, τ2) be tracial von Neumann algebras with a common 
von Neumann subalgebra B ⊆ Ni satisfying τ1|B = τ2|B and denote N := N1 ∗B N2 for the amalgamated 
free product. Let A ⊆ N be a von Neumann subalgebra that is amenable relative to N1 or N2 inside N . Put 
P = Nor1AN1A

(A)′′. Then at least one of the following is true:

(i) A ≺N B,
(ii) P ≺N Ni for some i = 1, 2,
(iii) P is amenable relative to B inside N .

Recall also the following observation.

Proposition 4.2. Let N ⊆ M be a von Neumann subalgebra and assume N is strongly solid. Let A ⊆ M be 
diffuse amenable and let P = NorM (A)′′ and let z ∈ P ∩P ′ be a non-zero projection. Assume that zP ≺M N . 
Then zP has an amenable direct summand.

Proof. We follow [28, Proof of Corollary C]. As zP ≺M N , using the characterization [27, Theorem 3.2.2], 
(following [23]), there exists a non-zero projection p ∈ Mn(C) ⊗ N and a normal unital ∗-homomorphism 
ϕ : zP → p(Mn(C) ⊗ N)p. So ϕ(Az) is a diffuse amenable von Neumann subalgebra of Mn(C) ⊗ N and 
P̃ = Norp(Mn(C)⊗N)p(ϕ(Az))′′ contains ϕ(Pz). As N is strongly solid, so is its amplification p(Mn(C) ⊗N)p
[12, Proposition 5.2] and hence P̃ is amenable. So ϕ(Pz) is amenable and therefore Pz contains an amenable 
direct summand. �

Now let K2,3 be the complete bipartite graph of 2 + 3 vertices. More precisely, the graph with vertices 
a1, a2, b1, b2, b3 and with edges between each ai and bj for all i, j. We let K+

2,3 be K2,3 but with one extra 
edge connecting b1 and b2. Let L be the graph with 3 vertices and no edges and let L+ be the graph with 
3 vertices and 1 edge. So L is a subgraph of K2,3 and L+ is a subgraph of K+

2,3.
We first characterize amenability.

Theorem 4.3. Let W be a right-angled Coxeter group. Then the following are equivalent

(1) W is non-amenable
(2) W contains F2 as a subgroup
(3) Γ contains L or L+ as a subgraph.

Proof. (3) implies (2). Suppose Γ contains L or L+ as a subgraph. Then there are u, v, w ∈ Γ such that 
u, w �∈ Link(v). But then {uv, wv} generate F2, the free group of two generators.

(2) implies (1). Suppose F2 ⊆ W . Then since F2 is non-amenable also W is not amenable.
(1) implies (3). We prove the implication by induction to the size of the graph. Let Γ be a non-empty 

graph, and assume the claim has been proven for strict subgraphs of Γ. Suppose L and L+ are not subgraphs 
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of Γ. For every v ∈ Γ we have that Γv := Γ \ Star(v) contains at most 1 element. Indeed, if u, w ∈ Γv with 
u �= w then {u, v, w} is a subgraph of Γ that is either isomorphic to L (when u �∈ Link(w)) or to L+ (when 
u ∈ Link(w)).

Fix v ∈ Γ and set Λ1 := {v} ∪ Γv and Λ2 := Γ \ Λ1. We show WΓ = WΛ1 ×WΛ2 . Indeed, if Γv is empty, 
then Star(v) = Γ so that Λ1 = {v} ⊆ Link(Γ \ {v}) = Link(Λ2) from which the decomposition follows. 
Now suppose Γv is non-empty, then Γv = {w} for some w ∈ Γ \ Star(v) so that v �∈ Star(w) and thus 
v ∈ Γw. Hence Γw = {v} since it contains at most 1 element. Then as Γ = Γv ∪Star(v) = {w} ∪Star(v) and 
Γ = Γw∪Star(w) = {v} ∪Star(w) we obtain Λ2 = Γ \{v, w} ⊆ Star(v) ∩Star(w) ⊆ Link({v, w}) = Link(Λ1)
and the decomposition follows.

Observe that either WΛ1 = Z2 (when Γv is empty) or WΛ1 = Z2 ∗Z2 (when Γv is non-empty). In either 
case we obtain that WΛ1 is amenable (as it has polynomial growth). Furthermore, as Λ2 ⊆ Γ \{v} is a strict 
subgraph of Γ, and as Λ2 does not contain L or L+ as a subgraph (as this holds for Γ) we obtain by the 
induction hypothesis that WΛ2 is amenable as well. From the decomposition for WΓ it now follows that WΓ
is amenable. �

The following is the main theorem of this paper.

Theorem 4.4. Let W = WΓ be a right-angled Coxeter group with graph Γ. Suppose Γ does not contain K2,3
or K+

2,3 as a subgraph. Then L(W ) is strongly solid.

Proof. The proof is based on induction to the number of vertices of the graph. The statement clearly holds 
when Γ = ∅ since in that case L(WΓ) = C is strongly solid.

Induction. Let Γ be a non-empty graph, and assume by induction that Theorem 4.4 is proved for any strictly 
smaller subgraph of Γ, i.e. with fewer vertices. Assume K2,3 and K+

2,3 are not subgraphs of Γ. We shall show 
that MΓ := L(WΓ) is strongly solid. Let A ⊆ M be diffuse and amenable and denote P = NorM (A)′′. 
We will show that P is amenable. We put Γ′ :=

⋂
v∈Γ Star(v) which is a complete, possibly empty graph. 

Since Link(Γ′) = Γ \ Γ′ we have W = WΓ′ × WΓ\Γ′ and so MΓ = MΓ′ ⊗ MΓ\Γ′ . As WΓ′ is finite (by 
completeness of Γ′) we have that MΓ′ is isomorphic to a subalgebra of MatN (C), the space of N × N

matrices with N := |WΓ′ | being the size of WΓ′ . Moreover, if Γ′ is non-empty, then MΓ\Γ′ is strongly solid 
by the induction hypothesis, so that it follows from [12, Proposition 5.2] and the fact that strong solidity 
passes to subalgebras that MΓ ⊆ MatN (C) ⊗MΓ\Γ′ is strongly solid as well.

Hence we may assume that Γ′ = ∅. Thus for all v ∈ Γ we obtain Star(v) �= Γ (since otherwise v ∈ Γ′). Pick 
v ∈ Γ and set Γ1 := Star(v) and Γ2 := Γ\v. By Proposition 1.5 we can decompose MΓ = MΓ1 ∗MΓ1∩Γ2

MΓ2 . 
Moreover, as Γ1, Γ2 and Γ1 ∩Γ2 are strict subgraphs of Γ we obtain by our induction hypothesis that MΓ1 , 
MΓ2 and MΓ1∩Γ2 are strongly solid.

Let z ∈ P ∩ P ′ be a central projection such that zP has no amenable direct summand. Note that 
zP ⊆ NorzMΓz(zA)′′. As zA is amenable, it is amenable relative to MΓ1 in MΓ. Therefore by Theorem 4.1
at least one of the following three holds.

(1) zA ≺MΓ MΓ1∩Γ2 ,
(2) There is i ∈ {1, 2} such that zP ≺MΓ MΓi

,
(3) zP is amenable relative to MΓ1∩Γ2 inside MΓ.

We now analyse each of the cases.

Case (2). In Case (2) we have that Proposition 4.2 together with the induction hypothesis shows that zP
has an amenable direct summand in case z �= 0. This is a contradiction so we conclude z = 0 and hence P
is amenable.
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Case (1). In Case (1) we first prove the following claim.

Claim: At least one of the following holds:

(a) There is a vertex w ∈ Γ\Γ1 such that zP ≺MΓ MΓ\w.
(b) MΓ is amenable.

Proof of the claim. Since zA ≺MΓ MΓ1∩Γ2 but zA �≺MΓ C = M∅ there is a non-empty subgraph Λ ⊆ Γ1 ∩Γ2
such that zA ≺MΓ MΛ but zA �≺MΓ MΛ\{w} for all w ∈ Λ. There are two cases.

First assume that MΛ is non-amenable, equivalently, by Theorem 4.3, Λ contains L or L+. But then 
Link(Λ) must be a clique as otherwise K2,3 or K+

2,3 would be a subgraph of Γ. Recall that we fixed v ∈ Γ in 
the second paragraph of the induction part of this proof and we have set Γ1 = Star(v) and Γ2 = Γ\v. Now 
as Λ ⊆ Γ1 ∩ Γ2 = Link(v) we have v ∈ Link(Λ). Combining this with the fact that Link(Λ) is a clique it 
must follow that Link(Λ) ⊆ Star(v) = Γ1. As Γ\Γ1 was assumed to be non-empty we may pick any vertex 
in Γ\Γ1 and we have proved (a) by Proposition 2.3 where r = z.

Second, assume that MΛ is amenable. Note that Λ must contain at least two points not connected by 
an edge as otherwise MΛ is finite dimensional and zA ≺MΓ MΛ with zA diffuse leads to a contradiction. If 
Λ ∪ Link(Λ) is not equal to Γ then any w ∈ Γ\(Λ ∪ Link(Λ)) will yield (a) through Proposition 2.3 as in 
the previous paragraph and the claim is proved. So we assume Γ = Λ ∪Link(Λ). But then Γ\Γ1 contains at 
most one point, since otherwise it contradicts that K2,3 or K+

2,3 is not a subgraph of Γ. Since we assumed 
Γ\Γ1 is non-empty we see that Γ\Γ1 consists of exactly one point, say x. But then Γ = {v, x} × Link(v)
and MΓ = Mv,x ⊗MLink(v) which is amenable and we are in case (b).

Remainder of the proof of Case (1). In case (b) of the claim strong solidity is trivial. In case (a) of the 
claim it follows from Proposition 4.2 that zP with z �= 0 contains an amenable direct summand which is a 
contradiction. So z = 0 and P is amenable. This concludes the proof in case (1).

Remainder of the proof of the main theorem in the situation that Case (1) and Case (2) never occur. We 
first recall that if we can find a single vertex v as above such that we are in case (1) or (2) then the proof 
is finished. Otherwise for all vertices v ∈ Γ we are in case (3). So zP is amenable relative to MLink(v) inside 
MΓ. As 

⋂
v∈Γ Link(v) ⊆

⋂
v∈Γ Γ \ {v} = ∅ we obtain by using Theorem 3.7 repeatedly that zP is amenable 

relative to C, i.e. zP is amenable [21, Proposition 2.4 (2)]. So z = 0 and we conclude again that P is 
amenable. �

We now summarize our results.

Theorem 4.5. Let W = WΓ be a right-angled Coxeter group. The following are equivalent:

(1) MΓ = L(WΓ) is not strongly solid.
(2) WΓ contains Z × F2 as a subgroup.
(3) Γ contains K2,3 or K+

2,3 as a subgraph.

Proof. We first collect the easy implications. (3) implies (2) follows as the graph product ∗K2,3Z2 equals 
(Z2 ∗ Z2) × (Z2 ∗ Z2 ∗ Z2) � D∞ ∗ (D∞ ∗ Z2) and (D∞ ∗ Z2) contains F2 as a subgroup. We have that 
∗K+

2,3
Z2 = (Z2 ∗ Z2) × ((Z2 × Z2) ∗ Z2) which contains again Z × F2.

(2) implies (1) follows as L(Z ×F2) � L(Z) ⊗L(F2). As L(Z) ⊗ 1 is diffuse and amenable and its relative 
commutant contains L(Z) ⊗ L(F2) we see that its normalizer cannot generate an amenable von Neumann 
algebra. Therefore L(Z × F2) is not strongly solid and so neither is L(W ) as strong solidity passes to von 
Neumann subalgebras. (1) implies (3) is proved in Theorem 4.4. �
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Remark 4.6. In particular Theorem 4.5 implies the following purely group theoretical result. If W is a right-
angled Coxeter group that contains Z × F2 as a subgroup, then actually it contains D∞ × (Z2 ∗Z2 ∗Z2) or 
D∞ × (Z2 ∗ (Z2 × Z2)) as a special Coxeter subgroup.

References

[1] Yago Antolín, Ashot Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 2015 (704) (2015) 55–83.
[2] Martijn Caspers, Absence of Cartan subalgebras for right-angled Hecke von Neumann algebras (in English), Anal. PDE 

13 (1) (2020) 1–28.
[3] Martijn Caspers, Pierre Fima, Graph products of operator algebras (in English), J. Noncommut. Geom. 11 (1) (2017) 

367–411.
[4] Martijn Caspers, Adam Skalski, Mateusz Wasilewski, On MASAs in q-deformed von Neumann algebras (in English), Pac. 

J. Math. 302 (1) (2019) 1–21.
[5] Ionut Chifan, Adrian Ioana, Amalgamated Free Product Rigidity for Group von Neumann Algebras, 2017.
[6] Ionut Chifan, Thomas Sinclair, On the structural theory of II1 factors of negatively curved groups, Ann. Sci. Éc. Norm. 

Supér. (4) 46 (1) (2013) 1–33.
[7] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), reprint of the second 

(1969) edition, Les Grands Classiques Gauthier-Villars (Gauthier-Villars Great Classics), Éditions Jacques Gabay, Paris, 
1996, pp. x+367.

[8] Ken Dykema, Free products of hyperfinite von Neumann algebras and free dimension (in English), Duke Math. J. 69 (1) 
(1993) 97–119.

[9] Elisabeth Ruth Green, Graph Products of Groups, PhD thesis, University of Leeds, 1990.
[10] Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Funct. Anal. 32 (2) (1979) 175–206.
[11] Uffe Haagerup, Operator-valued weights in von Neumann algebras. II, J. Funct. Anal. 33 (3) (1979) 339–361.
[12] Cyril Houdayer, Strongly solid group factors which are not interpolated free group factors (in English), Math. Ann. 346 (4) 

(2010) 969–989.
[13] Adrian Ioana, Cartan subalgebras of amalgamated free product II1 factors, Ann. Sci. Éc. Norm. Supér. (4) 48 (1) (2015) 

71–130. With an appendix by Ioana and Stefaan Vaes.
[14] Adrian Ioana, Jesse Peterson, Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their 

symmetry groups, Acta Math. 200 (1) (2008) 85–153.
[15] Ionut Chifan, Michael Davis, Daniel Drimbe, Rigidity for von Neumann algebras of graph product groups. I. Structure of 

automorphisms, arXiv :2209 .12996.
[16] Ionut Chifan, Michael Davis, Daniel Drimbe, Rigidity for von Neumann algebras of graph product groups. II. Superrigidity 

results, arXiv :2304 .05500.
[17] Ionut Chifan, Srivatsav Kunnawalkam Elayavalli, Cartan subalgebras in von Neumann algebras associated with graph 

product groups, Groups, Geometry, and Dynamics 18 (2) (2023) 749–759.
[18] V. Jones, V.S. Sunder, Introduction to Subfactors, London Mathematical Society Lecture Note Series, Cambridge Univer-

sity Press, Cambridge, 1997.
[19] Matthijs Borst, Martijn Caspers, Mateusz Wasilewski, Bimodule coefficients, Riesz transforms on Coxeter groups and 

strong solidity, Groups, Geometry, and Dynamics 18 (2) (2023) 501–549.
[20] Narutaka Ozawa, Solid von Neumann algebras (in English), Acta Math. 192 (1) (2004) 111–117.
[21] Narutaka Ozawa, Sorin Popa, On a class of II1 factors with at most one Cartan subalgebra (in English), Ann. Math. (2) 

172 (1) (2010) 713–749.
[22] Sorin Popa, On a class of type II1 factors with Betti numbers invariants, Ann. Math. (2) 163 (3) (2006) 809–899.
[23] Sorin Popa, Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I, Invent. Math. 165 (2) (2006) 

369–408.
[24] Sorin Popa, Stefaan Vaes, Unique Cartan decomposition for II1 factors arising from arbitrary actions of free groups, Acta 

Math. 212 (1) (2014) 141–198.
[25] Sorin Popa, Stefaan Vaes, Unique Cartan decomposition for II1 factors (in English), J. Reine Angew. Math. 694 (2014) 

215–239.
[26] Florin Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free 

group, of noninteger index (in English), Invent. Math. 115 (2) (1994) 347–389.
[27] Stefaan Vaes, Explicit computations of all finite index bimodules for a family of II1 factors, Ann. Sci. Éc. Norm. Supér. 

(4) 41 (5) (2008) 743–788.
[28] Stefaan Vaes, Normalizers inside amalgamated free product von Neumann algebras (in English), Publ. Res. Inst. Math. 

Sci. 50 (4) (2014) 695–721.
[29] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. III: the absence 

of Cartan subalgebras (in English), Geom. Funct. Anal. 6 (1) (1996) 172–199.

http://refhub.elsevier.com/S0021-7824(24)00081-3/bibDE984603597D9ED26CAEB7E5A1DA5308s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8255EBEB076BE70FA9AF8DB1FB4AE652s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8255EBEB076BE70FA9AF8DB1FB4AE652s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib4FBC4ED86565B23EDB4F77BA635AC0E1s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib4FBC4ED86565B23EDB4F77BA635AC0E1s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib05BD3617CBCC8E9C756114603E061B3Es1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib05BD3617CBCC8E9C756114603E061B3Es1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib9F150C15FFEEA594F94581AA034EF555s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib9F150C15FFEEA594F94581AA034EF555s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib23B83CFA126F58710A3AD0019F35BB19s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib23B83CFA126F58710A3AD0019F35BB19s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib23B83CFA126F58710A3AD0019F35BB19s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib69C409DB4FD16D0F8698D6CCB75D5963s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib69C409DB4FD16D0F8698D6CCB75D5963s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib0C9F55B82C5513A060EA46B239CCAF99s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib3972756AA446359894B70D34A0470A54s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibD935D03547F8B6278E02A674B035EB2Cs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8EFF0690A0980A3A9382AA0ACD107FEEs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8EFF0690A0980A3A9382AA0ACD107FEEs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib5D85DE3B3A9C40FFF8CACEB77F87BFE2s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib5D85DE3B3A9C40FFF8CACEB77F87BFE2s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8FC64DA921229A0119E5241443C7E987s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8FC64DA921229A0119E5241443C7E987s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibA10ED397B5352B1B88275D59A0095C72s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibA10ED397B5352B1B88275D59A0095C72s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibE1933ADB2D5ECCED13C17FC8A87DDB6Bs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibE1933ADB2D5ECCED13C17FC8A87DDB6Bs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib581B45BFC3591552BD53888B7547293Cs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib581B45BFC3591552BD53888B7547293Cs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibDCCC3BE2362EA669E45685D8F554D0FEs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibDCCC3BE2362EA669E45685D8F554D0FEs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib23D2F92F6760BA719487EE94641E64F9s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib23D2F92F6760BA719487EE94641E64F9s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib12D85C5E98AC62EA839590B2AA0B6835s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib3EEF3808C1A55D89C97937882CD6F4FDs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib3EEF3808C1A55D89C97937882CD6F4FDs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib207B2579851D1125D69834B466718F9Fs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibC5864F45BF1B8FACE2254E5960D540C7s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibC5864F45BF1B8FACE2254E5960D540C7s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8B078E778FF8A2DEEF358F6EF5424ECDs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib8B078E778FF8A2DEEF358F6EF5424ECDs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib3A423F03CAC7FDB559C54FF7B287163Cs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib3A423F03CAC7FDB559C54FF7B287163Cs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib6B854D75700A35B11A0FEB5765805133s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib6B854D75700A35B11A0FEB5765805133s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib338DD222D3838087732107F6D43B9274s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bib338DD222D3838087732107F6D43B9274s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibA415DB6256B29263A732600808060788s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibA415DB6256B29263A732600808060788s1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibCE210E823C087A2C870564708667AFDDs1
http://refhub.elsevier.com/S0021-7824(24)00081-3/bibCE210E823C087A2C870564708667AFDDs1

	Classification of right-angled Coxeter groups with a strongly solid von Neumann algebra
	1 Preliminaries
	1.1 Von Neumann algebras, Jones projection, normalizers, strong solidity
	1.2 Intertwining-by-bimodules
	1.3 Graphs
	1.4 Coxeter groups
	1.5 Word combinatorics

	2 Embeddings of quasi-normalizers in graph products
	3 Relative amenability
	4 Main theorem: classifying strong solidity for right-angled Coxeter groups
	References


