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Abstract 
This paper gives a theoretical basis for calculating Fraunhofer 
diffraction patterns of arbitrary polyhedron particles. It is 
shown that this solution can be used for calculating a scatter 
matrix adapted to the particle shape in a straightforward 
manner. Some simulations were made to show the difference 

between the size distribution by volume obtained with a scatter 
matrix for spheres and with that for the appropriate shape. 
Finally, some experimentally measured signatures from plate- 
lets and rods are evaluated in order to show that the spherical 
equivalent diameter could be accurately retrieved. 

1 Introduction 

Many researchers have seen peculiar effects in the particle size 
distribution when measuring platelets or elongated particles 
with commercial laser diffraction instruments [ 11. Particle 
shapes which differ strongly from a spherical shape cause the 
appearance of tails in the volume distribution, either in the 
small particle size classes (platelets or tablets) or in the large 
particle size classes (elongated shapes). These effects are the 
result of the assumption of spherical particles which is 
currently employed by all the instrument manufacturers. 
Diffraction theory for arbitrarily sharp-edged particles allows 
the calculation of scatter matrices which are specially adapted 
to particles of a polyhedron shape. It was shown that particle 
shape can have a much stronger effect on the radial intensity 
profiles than the refractive index [2]. This paper presents both a 
theoretical and an experimental study to show that the 
diameter of the equivalent circle by area can be obtained by a 
commercial laser diffraction instrument if the particle shape is 
taken into account in the calculation of the scatter matrix. The 
equivalent spherical diameter by volume can, of course, also be 
determined. Since diffraction particle sizing is based on the 
projected particle area, the equivalent circle diameter of 
differently shaped particles was determined by a commercial 
laser diffraction instrument. 

2 Calculating the Fraunhofer Diffraction Matrix 

The Fraunhofer solution for forward light scattering from 
arbitrarily shaped objects is a straightforward solution for 
calculating a scatter matrix. The solution is especially useful, 
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because it is invariant in the quantity p = a sin0, where 
a = nx/X is the dimensionless particle size and 8 is the radial 
scatter angle. The quantity x is the equivalent circle area 
diameter. This invariance is not valid for the anomalous 
diffraction solution and for the general Lorenz-Mie solution, 
because these calculations are strongly influenced by particle 
size-dependent phase effects of light passing through the 
particle [2]. The restrictions of diffraction theory can be 
summarized as follows: 

r > > x ,  
Q: << r / x ,  
the light beam must have a homogeneous intensity over the 
illuminated particle area, 

where r is the observation distance. The Fraunhofer solution 
for an arbitrary polygonal particle contour will be derived 
below in an easier form than in Reference [ 2 ] .  The Kirchhoff 
diffraction integral [3] 

+'"(Q, 'p) = & J ~eJkAxe*kBydxd Y 
S 

A = cos 4 sin 8 
B = sin q5 sin 8 

describes the complex diffraction amplitude in the far-field 
approximation. Eq. (1) is known as the scalar diffraction 
approximation, which does not take polarization effects into 
account. The wavenumber is given by k = 2n/X, where X is the 
wavelength of the light. $ J ~  is the uniform complex amplitude in 
the aperture. The superscript F D  means Fraunhofer diffrac- 
tion. The integration is carried out over the polygonal surface S 
forming the projected particle shape with the additional 
requirement {(xi,yi); i = 1,. . . ,m}. The symbols are explained 
in Figure 1. 
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where 
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Fig. 1: 
a polygonal object. 

Geometrics involved in calculating the diffraction integral from 

The two-dimensional integral is transformed to a contour 
integral with a corollary of Green’s theorem [ 1: 

The function $“(0, p) is obtained with 

(3) 

substituted in the left-hand side of Eq. (2). The right hand side 
of Eq. (2)  provides a way of evaluating the integral over each 
side of the polygon, which is most easily done in the x’, y’-axis 
system: 

with 

A ’  = Acosy + Bsiny x’ = xcosy + ysin y 
B ’ =  -Asiny+Bcosy y ’ = - ~ s i n y + y c o s y ,  

Y 

Y ’  
\ 
\ 
\ 
\ 

(4) 

Pig. 2: 
line piccc. 

Graphical explanation of the reference axis rotation for a single 

The rotation angle y i  of the coordinate transformation is 
shown graphically in Figure 2. 
For A ’ # 0 the line integral was evaluated: 

J‘ g d 3  = J‘ - vdx’ d P  

I, I ; 

However, when A ’ =  0 or p = yi*7r/2, the line integral 
reads 

The diffraction integral of a polygon can now be written as the 
sum of line integrals over the line pieces between the corner 
points i = 1 ,  ..., in. For A ’  # 0 this reduces to 

The intensity distribution needed for obtaining the detector 
signals is calculated by the expression 

Since the calculation of a scatter matrix involves an integration 
of the intensity distribution over the surface of the photodiodes 
(scatter angles 6’ and p) and an integration over the particle 
size classes, it would be very time consuming to make the 
calculation for arbitrarily oriented particles. Only in the 
Fraunhofer approximation can another approach be taken. 
First the radial scatter profile was calculated, with Eq. (8), 
as a function of p, integrated over a sufficient number of 
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three-dimensional particle orientations. Second, this profile 
was fitted with a function which can be integrated twice 
over an interval fixed by the detector radii and the size class 
boundaries. Of course, numerical integration can also be 
applied but is less efficient in terms of computing time. In 
this work a polynomial fit was chosen to approximate the 
radial Fraunhofer scatter profile (averaged over p) from 
randomly oriented particles. The terms of the polynomial 
were integrated individually to obtain the scatter matrix 
elements. This procedure is illustrated for the case of 
spherical particles. The equation for a polynomial, fitted to 
the radial scatter profile of spheres, is expressed, in the 
Fraunhofer approximation, by 

This expression, including the Bessel function, is known as the 
Airy function. It has the value 1 for p = 0. Eq. (10) does not 
include the particle size dependence of the absolute scattered 
intensity. In fact, the constraint a. = 1 can be made for p = 0, 
but the angle Q = 0" falls out of the integration range, because 
of the central hole in the detector. Therefore, all the coefficients 
were varied to allow a best possible fit on the whole interval of 
p .  The important instrumental quantities I (detector radial 
coordinate from the central hole) and f (the focal length of the 
Fourier lens) are related by 

The particle size-dependent radial intensity profile is then 
described by 

n 
I (  p) 2 p2x4 c aj pi 

i=O 

The detector ring signal for a particular size follows from a first 
integration: 

The scatter matrix elements result from a second integration 
over the size intervals. An additional factor was included in the 
integration of particle size in order to calculate the scatter 
matrix on a volume basis. Therefore, the number-based size 
distribution function qo(x) was related to the volume-based size 
distribution function q3 ( x )  by the relationship 

It is assumed that the size class intervals are narrow enough 
to substitute the function value of q3(x) in the size class by 
q3(xI),  where X l  is the arithmetic mean size of the class. The 
volume-based matrix elements were then calculated with 

I iono  
I 

The size class boundaries were chosen according to 

YtnXf . _ _  
t 

7 l  

where ym = 1.357 is the maximum value of the function J :  
( y ) / y ,  which describes the average radial scatter intensity of a 
sphere. Eq. (16) reveals a size distribution vector containing as 
many elements as available ring signals, which is 31 for the 
instrument used in the experiments. 
The scatter matrices were calculated for the specific shape of 
the tailor-made particles which were used in the experiments 
and additionally for tetrahedrons. The particles were made of 
iron and copper to ensure that they were fully opaque and that 
the Fraunhofer model was applicable. The polynomial fit was 
calculated with the POLYFIT algorithm of the software 
package MATLAB version 4 .2~ .  The shape of all the tailor- 
made particles was approximated by cuboids, including the 
copper rods. The specific dimensions are given in Table 1 
together with an illustration. 
The equivalent circle diameter by area, x, of these particles is 
calculated with Cauchy's theorem, which states that the mean 
projected area of a convex particle is a quarter of its surface 
area. Table I also gives the circular equivalent area diameter, x ,  
of the measured particles. 
The radial scatter profile was a calculated average over 125 
random orientations of the cuboid. The polynomial expansion 
was fitted with 42 terms. Fewer terms produce worse fits and 
more terms give heavy oscillations for large values of p ,  
probably owing to limited number accuracy in the computer. 
The residuals of the polynomial fits were calculated with 

residual of fit = (17) 
# - n  

where # = 153, the number of fitted points, which is larger 
than the degree of the polynomial (n = 42). The residual was at 
a minimum value when the polynomial contained 42 terms. 
These minimum values of the residual are tabulated in Table 2. 
The quality of the fits for the different particle shapes, including 
the fitted profile for a sphere, is demonstrated in Figure 3. A 



214 Part. Part. Syst. Charact. 13 (1996) 271-279 

cylinder tetrahedron cube square tablet 

Table 1: The size of the tailor-made metal particles (see diagrams). All dimensions are in pm. 

Iron cubes Stainless-steel square tablets Cylindrical copper rods 

Dimensions c = 500 

Circular equiv. x = 691 
Dimensions 

area diameter 

e =  150 
h = 700 
x = 668 

tl = 40 
h = 250 
X =  104 

Table 2: The residual of the polynomial fits up to p = 19, calculated with Eq. (17). 
~~~ 

Spheres Cubes Square Square Tetrahedra 
tablets cuboids 

Residual of 1.6 ' 10-10 6.36. lo-'' 5.18. 8.77 lo-' 1.27 1 0-7 
polynom. fit 

(a) scatter intensity (b) scatter intensity 

loo I\ 

lo-' ' I 

0 5 10 15 

P 

(c) scatter intensity 

P 

(d) scatter intensity 

P P 
Fig. 3: Fraunhofer scatter profiles of randomly oriented particles; all figures contain the profile for spheres (clear fringe structure). The dotted lines 
represent the results of the polynomial fits. (a) Cubes, the dashed line is the asymptotic behaviour expressed by Eq. (18); (b) square tablets; (c) square 
cuboids of aspect ratio 5; (d) tetrahedra. 
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(4 
frequency non-negativity least square solution 

(b) 
frequency non-negativity least square solution 

1 o2 1 o3 
particle size [urn] 

Fig. 4: 
matrix for cubes. (a) Mono size; (b) size distribution (see text). 

Calculated particle volume distributions. Dashed line, cube signal 

logarithmic intensity scale was used. The Fraunhofer profiles 
where calculated at intervals of A p  = 0.125. 
The polynomial fit began to oscillate heavily for values of 
p > 19. The scatter intensity was set to 0 for all p > 19. This 
leads to a discontinuity in the columns of the scatter matrix for 
the elements belonging to the largest size classes and the large 
ring detectors. Better fits can probably be made with, for 
example, a Fourier expansion instead of a Taylor expansion. A 
Fourier expansion can also be integrated twice, but does not 
have the implicit asymptotic behaviour for p + 0. The 
expansion 

n 
ai cos(bi p) + ci sin(d p)  ( 1  8) 

1 
I (  p)  = p2x4 

1 + 0.29. p 3  i=o 

will be more suitable, but needs numerical integration to obtain 
the scatter matrix elements. 

3 Simulated Results from the Particle Size 
Inversion Step 

The scatter matrices were calculated using the dimensions of 
the Malvern 2600 semi-ring photo detector [4]. The particle 
distribution by volume of the artificial particles were simulated 
both by using the scatter matrix for spheres and by using the 
scatter matrix for the appropriate shape, see Figures 4-7. The 
inverted scatter signal was taken from one column of the scatter 
matrix for the appropriate shape. The inversion of the signal 
with the scatter matrix corrected for shape gives, therefore, a 
single sharp peak in the distribution. The inversion of the 
scatter matrices was achieved with the non-negativity least- 
squares method [5], since this method gives the best results 
when no measurement noise is present. Each of Figures 4-7 
shows an inversion of the signal from one size class in the 
middle size range (x,,ddle = 119.6 pm) and also an inversion of 
a log-normal distribution of particles centred around 119.6 pm 
with a width of 124.1 pm at 1/e of the peak height. 
The scatter matrices for cubes and for spheres do not produce 
very different particle size distributions compared with the 
tablets and the square cuboids of aspect ratio 5. The signals 
from the square tablets, inverted with the matrix for spherical 
particles, shows a distribution which has a noisy tail in the 

1 o2 1 o3 
particle size [urn] 

inverted with scatter matrix for spheres; solid line, signal inverted with scatter 

smaller size classes and the modal value is higher than the 
equivalent circle diameter by area. Froin all the calculations it 
can be concluded that the scatter matrix for spheres does not 
give a modal value matching the equivalent circle diameter, 
either for monosized particles or for a size distribution. The 
distributions resulting from the matrix for spherical particles 
look noisy. The non-negativity least-squares method gave a 
larger residual in the case when the scatter matrix for spheres 
was used, compared with the case of the tnatrix for the 
appropriate shape. The noise indicates the erroneous scatter 
model. The residual of the inversion has been defined as 

residual = ( M q  - L)T(Mq - L) .  (19) 

The vector L is the light energy signal that is deconvoluted. The 
residuals belonging to the distributions shown in Figures 4-7 
are tabulated, see Table 3. It must be noted that this definition 
of the residual is not normalized with the signal level of the 
light energies. The values in Table 3 therefore cannot be 
compared directly with the values for the actual measurements 
which are presented in Table 4. 
It is interesting to see that the residual obtained with the matrix 
for spheres is systematically lower for the size distribution (last 
row) compared to the mono size case (second row). The 
smoother profiles can thus be fitted more accurately when the 
scatter model for spheres is applied. 

4 Experimental Results and Discussion 

The measurements were made with a Malvern 2600C laser 
particle sizer equipped with anf = 1OOOmm Fourier lens. The 
instrument was chosen for its semi-ring detector design which 
averages out the azimuthal structure in the diffraction pattern 
even when the particles have a preferential orientation. The 
sample of tailor-made iron cubes was made with a laser cutter. 
The copper fibres were hand-made by cutting a thin copper 
wire. The light energy values on the detector of the tailor made 
steel tablets were taken from the paper by Gahas et al. [l]. They 
also used a Malvern 2600 instrument. The detector light energy 
values are shown graphically in Figure 8. The values have been 
corrected with a background measurement. The signals from 
the cubes and the tablets show an increasing level on the outer 
rings. This is due either to small particles present in the 
measurement cell or to changes in the background signals. The 
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(a) 
frequency non-negativity least square solution 

1 o2 1 o3 
particle size [urn] 

(b) 
frequency non-negativity least square solution 

. . . . .  . . . . .  
I I . I .  . . . . .  . . . . .  . . . . .  . . . . .  . . , . .  

................... 

1 o2 1 o3 
particle size [urn] 

Fig. 5: 
with scatter matrix for square tablets. (a) Mono size; (b) size distribution (see text). 

Calculated particle volume distributions. Dashed line, signal of square tablet inverted with scatter matrix for spheres; solid line, signal inverted 

(a) 
frequency non-negativity least square solution 
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Fig. 6: 
solid line, signal inverted with a scatter matrix for square cuboids. (a) Mono size; (b) size distribution (see text). 

Calculated particle volume distributions. Dashed line, signal from square cuboid with aspect ratio 5 inverted with scatter matrix for spheres; 

(4 (b) 
frequency non-negativity least square solution frequency non-negativity least square solution 
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Fig. 7: Calculated particle volume distributions. Dashed line, tetrahedron signal inverted with scatter matrix for spheres; solid line, signal inverted with 
scatter matrix for tetrahedra. (a) Mono size; (b) size distribution (see text). 

Table 3 

Distribution type scatter matrix Cubes Tablets Cuboids Tetrahedra 

The residuals of the inversion, for the calculations presented in Figures 4-7 
-~ _____. ~ ~~ _________ -~ 

Mono size: matrix for right shape 
Mono size: matrix for spheres 
Size distribution: matrix for right shape 
Size distribution: matrix for spheres 

1 .86.  1 0 - l ~  
3.99. 
8.00. 1 0 - l ~  

3.8s .  

1.04 . 5.80. I0-l' 8.10 ' 10-18 
1.01. 7.79 .10-~  1.87. 1 0 - ~  
5.18. 1 0 - l ~  8.31. lo-'' 5.25 ' 10-10 
1.97. 4.72. I .94 ' 10-6 
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effect appears as additional small particles present in the size 
distribution, see Figure 8. 
The particle volume distributions were calculated with the 
scatter matrix for spherical particles and with the scatter matrix 
for the corresponding particle shape. Both the results of the 
non-negativity least-squares method and the Chahine inversion 
scheme [4] are presented in Figure 9. The Chahine method was 
used, because it reacts more smoothly to noise present in the 
experimental signals. 
(4 
background corrected signal [a.u.] 

30 

20 

10 

0 

(b) 

5 10 15 20 25 30 
ring number 

background corrected signal [a.u.] 

100 

80 

60 

40 

20 

n 
0 5 10 15 20 25 30 

ring number 
(4 
background corrected signal [a.u.] 

140 

120 

100 

80 

60 

40 

20 

0 
0 5 10 15 20 25 30 

ring number 

Fig. 8: 
(a) Cubes; (b) square tablets; (c) cylinders of aspect ratio 5. 

Malvern 2600 detector signals corrected for background signal. 

The theoretical calculations and the size distributions obtained 
from the experimentally measured signals show identical 
behaviour. The tailor-made particles produce a narrow peak 
of the equivalent circle diameter by area, when using the 
appropriate scatter matrix. The residual of the inversion with 
the scatter matrix for the correct shape is, however, larger than 

Table 4: 
the experimental signals. 

The residuals of the non-negativity least-squares inversion of 

Residuals values of: Cubes Square tablets Rods 

Matrix for spheres 7.31 42.95 11.06 
Matrix for right shape 8.55 60.50 19.09 

the residual obtained with the scatter matrix for spheres, see 
Table 4. 
The reason for the higher residual when using the matrix for 
the appropriate shape cannot be attributed to a physical model 
error in this case. At least two causes were identified by Pvrss 
et al. for the remaining residuals [6]: 

0 The scattering model used is inadequate. Although the 
underlying physics of the model is correct, the selected size 
range and resolution may be inappropriate. 
The random errors in the measurement are, in reality, larger 
than observed. Probably more readings are required to 
make a proper estimate of the distribution. 

An explanation for the problem of the residual values is that 
the scatter matrix for cuboidal particles is less well conditioned 
for inversion [7]. The scatter matrices calculated for elongated 
particles have a less pronounced structure along the main 
diagonal. This can be improved to a small extent by taking a 
more appropriate value for the constant y,, = 1.357 used in 
calculating the size classes (see Eq. (16)), since this argument 
belongs to the maximum radial scatter signal for a sphere. 
However, when the residual of the non-negativity least-squares 
calculation is plotted against the aspect ratio of the square 
cuboid used in the matrix inversion, a minimum of the residual 
was observed at the proper aspect ratio of the measured copper 
rods, see Figure 10. 
Figure 10 reveals that an aspect ratio of 6.5 of the square 
cuboid is more suitable than the copper rods of aspect ratio 5 ,  
which is not surprising. This observation thus shows the 
possibility of using the residual as a criterion for selecting the 
optimum scatter matrix which can be derived from the radial 
light scattering measurement itself. 

5 Conclusion and Future Developments 

A commercial diffraction particle sizer was used to obtain the 
spherical equivalent diameter of particles having the approx- 
imate shape of a cuboid. To achieve this a scatter matrix which 
incorporates the shape of the particles was calculated. A 
generalized Fraunhofer theory for arbitrary sharp-edged 
particles was used to calculate the scatter matrix. Special 
attention is needed when the particles have a low refractive 
index; the Fraunhofer theory cannot be used in that case. The 
anomalous diffraction theory is an alternative, but the 
calculation of the scatter matrix is then much more compli- 
cated and time consuming. 
The difference between the particle size distribution by volume, 
obtained with a scatter matrix for spherical particles (as used in 
commercial diffraction instruments), and the distribution 
obtained with the scatter matrix for the correct particle shape 
is considered for platelets and elongated particles. For cubes 
the difference is negligible. The size distribution of copper rods 
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(4 
frequency "Chahine' particle volume distribution 

1 o2 109 
particle size [urn] 

(b) 
frequencv 'Chahine' particle volume distribution 

1 o2 1 o3 
particle size [um] 

(4 
frequency "Chahine" particle volume distribution 
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Fig. 9: Particle volume distributions obtained from the measurements of the tailor-made metal particles. The dashed lines present the inversion result 
with the matrix for spheres and the solid line is the result with the matrix of appropriate shape. (a) Iron cubes; (b) square tablets; (c) copper rods. 

50 

6o i 
20 

t 0 I 2  3 4 J 6 7 8 9 l O I I I 2 1 3 1 4 1 5  

aspect ratio of square cuboid 

Fig. 10: The residuals of the non-negativity 
least-squares inversion applied to the copper 
rod signals as a function of the aspect ratio of 
the square cuboid used for calculating the 
scatter matrix. 
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with an aspect ratio of 5 was successfully obtained by using a 
scatter matrix calculated for square cuboids of the same aspect 
ratio. The residual of the particle size inversion step provides 
a criterion of choosing the optimal scatter matrix. 
This work leads to a plausible proposal for selecting the 
appropriate scatter matrix for a particular measurement from 
the azimuthal intensity distribution in the diffraction patterns 
itself. This is a more convenient method than a visual 
observation of the (average) particle shape before measuring 
the particle size distribution with the diffraction instrument. 
The azimuthal intensity fluctuations in diffraction patterns of 
an ensemble of particles were processed to characterize the 
average shape of the particles [8]. The selection of the scatter 
matrix can be based on the azimuthal intensity measurements. 
This procedure would automate the selection of the 
appropriate scatter matrix from a database. For this intelligent, 
self-correcting particle sizer both the radial and azimuthal 
scatter signatures need to be measured at the same time with 
the aid of a dedicated detector array [4], which has still to be 
made. 

6 Symbols and Abbreviations 

an 
cy 

P 
Y 
x 

k 
L 
M 
m 

f 

coefficients of a polynomial 
dimensionless particle size (= ..c/X) 
instrumental constant (= T / X  f )  
rotation angle of coordinate system 
wavelength of the light source 
focal length 
wavenumber in vacuum 
measured radial scatter signature 
scatter matrix 
number of cornerpoints of projected particle contour 

number of terms of the polynomial 
size distribution vector 
size distribution function 
invariant quantity in Fraunhofer solution (= 
outer ring radius of ring k 
inner ring radius of ring k 
radial scatter angle 
circular equivalent area diameter 
upper diameter limit of size class 1 
lower diameter limit of size class I 

2 sin 0) 
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