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Abstract

High performance machines rely on fast moving parts and generally avoid resonance for improved accuracy.
To improve the dynamic properties of these high performance machines, their parts are optimized via a
lengthy iterative process. Topology optimization for vibrations problems could shorten this time consuming
design process and provide a more optimal design compared to the manual iteration process.
In the field of topology optimization for vibration problems there are various methods to solve a given
problem. The two most commonly used methods in recent research are the density approach and the
level-set approach. The characteristics of the density and level-set approach are well understood in context
of topology optimization for vibration problems, however a direct comparison between these two methods
has not yet been conducted. Several crucial aspects of topology optimization for vibration problems will
be investigated, such as localized eigenmodes, mode multiplicity, grey areas and efficiency for practical
applications. Additionally, the applicability of these aspects will be tested in the academic and industrial
field to determine their values when applied in industry. This thesis provides an extensive study of various
design cases in which the density and level-set topology optimization approaches are compared on their ability
to solve vibration problems. These design cases are based on frequently used design cases in literature which
are generally seen as benchmark problems.
For this thesis it is opted to have as many similarities between the density and level-set approach as possible,
to ensure a fair comparison between the two methods. To accomplish this, the level-set approach uses
a density based mapping in combination with material parameter sensitivities and the method of moving
asymptotes (MMA) to update the design variables. Furthermore, the level-set function is parameterized with
compactly supported radial basis functions (CSRBF). This leaves the difference that the density approach
uses element densities as design variables, whereas the level-set approach uses expansion coefficients as design
variables.
The design cases indicate that the density approach is versatile as it is able to solve a wide variety of
problems. Additionally, there are less parameters, which makes this method easier and faster to work within
an industrial setting. Furthermore, the method produces well-performing designs even with more difficult
tasks, such as a coarse mesh. Although occasionally localized eigenmodes occurred whilst using this method,
they do not seem to interfere with the final result. Thus, the density approach is less time consuming to setup
and needs less tuning of the method specific parameters. On the other hand, results from the design cases
also indicated that the level-set approach is able to produce designs with an improved objective function at
the cost of possibly more tuning of method specific parameters. Furthermore, the level-set approach is able to
solve all the design cases without the occurrence of localized eigenmodes. Although the level-set approach is
less optimal for coarse meshes, it outperforms the density approach at more refined mesh sizes. Additionally,
it features a crisp geometry description by the zero level-set contour. Thus, the level-set approach is able
to produce more optimal designs without the occurrence of local eigenmodes at the cost of more complexity
and possibly more tuning of the method specific parameters.
To conclude, both approaches have unique properties to be able to solve vibration problems. The density
approach is more applicable as a standard approach in an industrial setting due to it being more robust
and the method is less time consuming. However, the level-set approach should be opted for more complex
vibration problems due to the crisp geometry definition of complex geometric features and its ability to
outperform the density approach. A practical application has been solved with an optimization run, where
the use of a set of predefined parameters that solved the benchmark cases has been used. Additionally, an
optimization run where all parameters are optimized for the specific design case was performed to see the
ultimate performance. The level-set approach was able to outperform the density approach in the predefined
parameter case, whereas the ultimate performance case gave usable results for both methods. The differences
came down to a more improved objective function for the density approach, or a more simplistic and lighter
design for the level-set approach.
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1 Introduction

In many engineering problems, the attenuation of vibration, noise and dynamic responses is a major concern.
In the field of ultra-precision systems the position tolerances are within the nanometer magnitudes, while the
movement speed and acceleration can be up to 1 m/s and 40 m/s2 respectively. Such a system can be seen
in Figure 2. To obtain these high speed movements these systems must have a lightweight construction.
Such lightweight constructions have an inherent drawback: they lead to an increase in high frequency
disturbances. These disturbances are difficult to cancel out by design or active control. For lightweight
systems the controller and actuator bandwidth need to work at considerable high frequencies [Wang et al.,
2019]. This is either costly or impossible to implement. Therefore, the interest of this industry in structures
optimized for vibrations is continously increasing.

1.1 Problem formulation

Another field of application is making lighter electronic systems, such as portable electronic devices, micro-
electro-mechanical systems or implanted electronic devices. These devices rely on vibrations in a specific
range for their application. These vibrations will be applied via an actuator and a spring. Advances in
technology have resulted in smaller batteries and actuators, however more gains can be made by tuning the
spring for the specified application. A practical application of such a design case is the Chest Master, which
is a medical device used to treat patients with cystic fibrosis in the lungs. The Chest Master uses vibrations
to clear up mucus that builds up in the lungs. From experimental data it is found that a frequency of 12.5
Hz results in removal of the mucus in the lungs. A challenge from this device is that multiple actuators
need to be placed around the patients chest for a prolonged period of time. These actuators are heavy and
consume a considerable amount of energy. To make the system more energy efficient, it is wished that the
spring of the actuator resonates at the same eigenfrequency as the operating eigenfrequency. This in turn
results in less power input for the actuators and consequently a smaller and lighter device. An example of
this device is shown in Figure 3.
General methods to achieve such a specific frequency would be to produce geometric shapes in a trial and
error process or perform a size or shape optimization. The problem with a trial and error process is that there

Figure 2: Wafer positioning system that needs to avoid resonance for accurate positioning [Heertjes and
Vardar, 2013].
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Figure 3: Chest Master suit for cystic fibrosis patients [de Vlieger, 2014]

is no systematic improvement towards the eigenfrequency of interest. This holds especially when dealing with
optimizing a structure for its eigenfrequency, where it is difficult to realize design improvements due to the
complexity of the physics. Furthermore, the difficulty of size and shape optimization is that the results are
highly dependent on the initial inputs. As eigenfrequency optimization is a non-linear optimization process,
it makes solving such a design case even harder.

1.2 Topology optimization

A solution to such a problem would be to optimize the given geometry via the use of topology optimization.
Topology optimization is a methodical approach which gives the possibility to achieve a solution to such a
specific design case. One of the first methods presented to solve vibration problems in topology optimization
was proposed by Ma et al. [1993], where a frequency response problem of a vibrating structure is solved via
the homogenization method. In a work of Pedersen [2000] the density approach was proposed to solve a
vibration problem. Via the use of a slight variation of the solid isotropic material with penalization (SIMP)
model he maximized eigenvalues various design cases. A few years later Allaire and Jouve [2005] proposed
one of the first level-set approaches to solve topology optimization for vibration problems. A density based
mapping with the Hamilton-Jacobi update scheme was used. From here on the level-set approach is applied
in various forms to solve vibration problems with topology optimization. Nowadays, the density and level-set
approach are one of the most used methods to solve structural optimization problems for vibrations.
A well-known effect that results from the use of topology optimization in vibration problems is that the
computation time is a substantial burden. Moreover, sensitivity information at multiplicity and preventing
the occurrence of localized eigenmodes are common problems that need to be solved.
First of all, there are several solutions to reduce the computational burden of eigenvalues. They can be
listed as: model reduction schemes Li et al. [2021a], multi-level solution methods (also referred to as multi-
resolution or multi-grid) [Amir et al., 2014] and element removal methods as seen in Behrou et al. [2021] all
prove to be efficient techniques to reduce computation time.
Furthermore, sensitivity information of eigenvalues at multiplicity tends to be problematic, as the sensitivity
information is non-unique. A method to distinguish the sensitivities at multiplicity is proposed by Seyranian
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et al. [1994] and later implemented by Du and Olhoff [2007].
Localized modes are a consequence due to the existence of low density areas. These low density areas are
very flexible and thus control the lowest eigenmodes of the system. In a vibration finite element method
(FEM) analysis a set of eigenfrequencies are calculated to obtain the desired eigenfrequency range. When low
eigenfrequencies with mode shapes in the low density regions occur, they reduce the range of the structurally
relevant eigenfrequencies. There are various methods to handle such localized eigenmodes, for example by
removing elements [Yoon, 2010] or using a density approach that prevents a zero gradient of the elements
[Sigmund and Maute, 2013].
As topology optimization becomes more readily available in commercial finite element packages, there is a
rising interest into the possibilities of the available methods. Not only the possibilities are of interest, but
also the problems that can occur during an optimization run. A comparison between the most popular
methods and possible design cases could provide a basis for a guideline to make the tool more accessible to
the industry.

1.3 Comparisons in literature

The main objective of this thesis is to provide a comprehensive review of topology optimization problems
for vibrating structures, where the density based approach and level-set based approach are compared to
one another. Several past articles have focused on aspects of this topic. Rozvany [2009] provided a review
of the use of topology optimization in commercial software packages. The SIMP and evolutionary structural
optimization (ESO) methods have been compared to one another. The overall conclusion was that the
SIMP method is able to provide a solution near the global minimum for originally convex optimization
problems. However, SIMP is used in practise for highly non-convex optimization problems, therefore a global
minimum cannot be guaranteed. Furthermore, the ESO method is depicted as heuristic, computationally
inefficient, occasionally unreliable and chaotic. In Sigmund and Maute [2013] an overview, comparison
and critical review of different approaches, similarities, weaknesses, strengths and guidelines of topology
optimization is presented. The overall conclusion from this work was that all the available approaches
have similar performances and the nuances lie in the efficiency, general applicability, constraints, boundary
conditions, independence on starting guess, tuning parameters, mesh-independent convergence and ease of
use. Furthermore, Villanueva and Maute [2014] employed a practical comparison between the density and
level-set approaches. The two methods are compared to one another in 3D design cases with a compliance
optimization objective. They concluded that the implemented level-set approach describes the geometry
with a crisp result and an acceptable accuracy even on a coarse mesh. Another practical comparison of
the density, ESO and level-set methods from Dilgen et al. [2019] compares these methods for acoustic
mechanical interaction problems. It was found that the density-based approach resulted in the highest
performing designs. However, the level-set approach is favored due to the complex multi-physical nature of
the optimization problem, as the level-set method solves these physics problems with more ease. A lack of a
good continuation scheme in the level-set method resulted in poorer local minima compared to the density
method. Finally, Zargham et al. [2016] presented a comparative review of established literature of topology
optimization problems for structural designs under vibration problems.

1.3.1 Motivation and goals

Although the characteristics of the density and level-set methods are well understood in context of topology
optimization for vibration problems, a direct comparison between these two methods has not yet been con-
ducted.

The goals related to the objective of this thesis are:

• Presenting a numerical framework that closely relates the density and level-set methods to each other
to have the most fair comparison between the two approaches.

• Compare these two methods to common design cases in literature and additional alternative design
cases to highlight key features.

• Solve the design case of the Chest Master and compare the performance to existing solutions.
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1.4 Thesis outline

The remainder of this thesis is structured as follows: Section 2 introduces the key aspects of topology
optimization for vibration problems. The finite element model, algorithm, objective function and common
problems are presented. Section 3 describes the details for the implemented density method. This section
also describes the sensitivity analysis, which is also used in the level-set approach. The level-set approach is
described in Section 4. Furthermore, Section 5 presents the optimization strategy, comparison criteria and
benchmark cases. Where after Section 6 presents the overall results of the design cases with the use of the
density and and level-set approach. Section 7 shows the design case of the Chest Master, where two different
studies will show the differences with the use of both the density an level-set approach. Finally, Section 8
presents the conclusions and future research topics drawn from this study.
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2 Topology optimization

2.1 Structural optimization

Structural and multidisciplinary optimization is the field of optimization that spans a wide variety of methods,
which solve a given optimization problem for its structural performance. Such an optimization problem can be
classified into different disciplines including: mechanical, fluids, acoustics, biomedical, optics and more [Wang
et al., 2021]. They all have the same goal in common, which aims at optimizing the geometric features and the
connectivity within a design domain. Three common methods include: shape optimization, size optimization
and topology optimization. Shape optimization can be characterized as contour optimization of a structure,
without changing the connectivity of its structural members. Size optimization can be characterized as
optimizing the dimensions of structural members of a truss or shell structure by e.g. changing the length
or cross-sectional area. These two optimization methods are limited to the set of outcomes by their pre-
defined assumptions about the design space. This is where topology optimization can alleviate the problems
of shape and size optimization. Topology optimization is characterized by having more design freedom, as
the geometric features, their size and connectivity within the design domain is being optimized in a unified
framework. Additionally, it has the advantage that no initial design parameterization is needed, which in
turn can result in more complex final designs.

Figure 4: Comparison of different structural optimization techniques from Bendsøe and Sigmund [2004]

In this work, the optimization is focused on optimizing the performance of structures that are subjected to
vibrations. The three most frequently used techniques in literature to solve topology optimization problem
for vibrations are classified into:

• Evolutionary optimization,

• Density based optimization,

• Level-set based optimization.

In the evolutionary optimization method the material that contributes the least to the rejection criterion is
gradually removed. This process is repeated until the values of all elements are within a given range of the
rejection criterion. Density-based methods are the most widely used approach for topology optimization. It
defines a material density distribution with a value between zero and one. The specific properties that are
used in the problem depend on the relevant physics (e.g. elasticity, conductivity, etc.). In level-set based
topology optimization, the design geometry is defined by the iso-level of one or several level-set functions.
The material interface, that intersects this contour, is defined as the interface between the solid and void
regions.
In this work the use of the density based method (Section 3) and the level-set method (Section 4) will be
compared to one another, as they are superior in the last few years in the field of topology optimization.
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2.2 Finite element model

The finite element model is a key feature in topology optimization process, as the eigenvalues and eigenmodes
are calculated from this model. There are two types of elements that are used in this work, namely 2D 4-node
quadrilateral plane stress elements with 8 degrees of freedom (DOF) and 2D 4-node quadrilateral Mindlin-
Reissner plate elements with 12 DOF [Bathe and Brezzi, 1985] [Hassan et al., 2020]. These element types are
non Jacobian-integrated, therefore only simple geometric representations are shown in this work. With either
the plane stress or Mindlin-Reissner plate elements the elemental mass and stiffness matrix are constructed.
Thereafter, the global stiffness and mass matrix can be constructed, where the eigenvalue computation is
calculated from. With the obtained global mass and stiffness matrix the eigenvalues can be computed via
Equation 1.

Kϕj = λjMϕj , j = 1, .., J, (1)

ϕT
j Mϕk = δjk, j ≥ k, k, j = 1, .., J, (2)

Here K is the global stiffness matrix, M is the global mass matrix, ϕj is the jth eigenvector, ϕk is the kth

eigenvector, λj is the j
th eigenvalue, δjk is the Kronecker’s delta and J is the maximal amount of eigenvalues

that is taken into account. The dynamic Equation is represented by Equation 1 and it will be assumed that
the eigenvectors are orthonormalized via Equation 2. The eigenvalue is related to the eigenfrequency as

ωj =
√
λj (3)

Here ωj is the jth eigenfrequency in radians per second. Finally, the eigenvalue computation is performed
in a MATLAB [2021] environment though the sparse solver eigs. This in turn results in the eigenvalues and
eigenmodes for the specified geometry.

2.3 Algorithms

Most topology optimization problems rely on gradient based algorithms, because solving a large number
of function evaluations is an inefficient process. Gradient based algorithms use the function values and
their gradients to find the most optimal objective function for large dimensions and numerous constraints
[Kim et al., 2021]. Some gradient based algorithms use the information of the Hessian matrix, which can
accelerate convergence, but it requires a huge amount of memory and is computationally expensive to
calculate. Therefore, most topology optimization problems use Hessian free algorithms such as the optimality
criteria (OC) method, method of moving asymptotes (MMA) [Svanberg, 1987] or its globally convergent
counterpart (GCMMA) [Svanberg, 2007]. Other methods like convex linearization (CONLIN), interior point
optimizer (IPOPT) and sparse nonlinear optimizer (SNOPT) also use gradient based information. However,
the OC, MMA and GCMMA algorithms are often superior compared to CONLIN, IPOPT and SNOPT
[Sigmund and Maute, 2013]. In topology optimization for vibration problems, there are often multiple
constraints present during the optimization process. The OC is a robust algorithm, however it is limited to
only one cheap-to-evaluate equality constraint, which limits its functionality in vibration optimization. In
this work the use of MMA is used for its flexibility of using multiple constraints and general availability.

2.4 Problem formulations

Problems of topology optimization for vibration problems have various sorts of objective functions. The most
frequently used method is maximization of fundamental eigenfrequency. Other methods that have been used
in literature and whose will be used in this thesis are: bound formulation for maximizing the nth eigen-
frequency, maximizing a distance (gap) between two consecutive eigenfrequencies or synthesizing a specific
eigenfrequency. For convenience the eigenvalues are represented in the following problem formulations.
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2.4.1 Maximization of fundamental eigenvalues

Maximizing the fundamental eigenvalue is been widely considered in many papers, e.g. ([Ma et al., 1993],
[Ma et al., 1995], [Pedersen, 2000]). A frequently used formulation in literature to maximize a set of eigen-
frequencies is the sum of reciprocal eigenvalues [Ma et al., 1995]. However, in this work the use of a bound
formulation is adopted, as it is able to achieve more improved performance of the objective function [Du
and Olhoff, 2007]. In this formulation it is assumed that the damping can be neglected and only a volume
constrained is implemented.

max
ρ1,..,ρN

{ min
j=1,..J

{λj}} , (4a)

s.t. ∶ Kϕj = λjMϕj , j = 1, .., J, (4b)

ϕT
j Mϕk = δjk, j ≥ k, k, j = 1, .., J, (4c)

NE

∑
e=1

ρeVe − V
∗
≤ 0, V ∗ = αV0, (4d)

0 < ρmin ≤ ρe ≤ 1, e = 1,2, ...,Ne. (4e)

In these Equations λj is the jth eigenvalue and ϕj is the corresponding eigenvector, K and M are the
symmetric and positive definite stiffness and mass matrix of the whole structure, the value ρe is the elemental
density value, Ve is the elemental volumetric volume, V0 is the original volume and α is volume factor of
the structure. To avoid singularity in the stiffness matrix, a very small value for the elemental density is
taken as ρmin. In this work a value of ρmin = 10

−9 is taken. The value of Ne represents the total amount
of elements in the finite element model. It is assumed that the eigenvectors are mass orthonormalized via
Equation 2, where the δjk is the Kronecker delta. The J value is the maximal amount of eigenvalues to be
considered and can be represented as

0 < λ1 ≤ λ2 ≤ ... ≤ λJ .

2.4.2 Bound formulation for maximization of the nth eigenvalue

A more general approach of maximizing the nth order eigenvalue λn is to adopt the bound formulation
[Olhoff, 1989]. The bound formulation is more efficient for max-min and min-max optimization problems
than the optimization method of Equation 4a. The bound formulation is formulated as

max
β,ρ1,..,ρN

{β} , (5a)

s.t. ∶ β − λj ≤ 0, j = n,n + 1, .., J, (5b)

Constraints ∶ Equations(1-4e). (5c)

In this formulation the scalar variable β works as variable for the lower bound of the nth eigenvalue to
be optimized, as well for mode switching and multiplicity. Additionally, it plays the role as the objective
function to be optimized. The variable n in this formulation is the order of the eigenvalue to be optimized
i.e. n = 1 for the first order or n > 1 for higher order eigenvalues. The value for J is assumed to be larger
than the highest order of an eigenvalue that can exchange its order with order n that is to be optimized e.g.
if the first 2 modes have multiplicity during any point in the optimization than J ≥ 3 is to be considered.
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2.4.3 Bound formulation for maximizing the distance between two consecutive eigenvalues

The bound formulation can also be used to separate two adjacent eigenvalues [Jensen and Pedersen, 2006].
In this process two bound parameters are introduced where one acts to increase the eigenvalues of order
n + 1, whereas the other bound parameter decreases the eigenvalues below order n. This separation of two
eigenvalues can be formulated as

max
β1,β2,ρ1,..,ρN

{β2 − β1} , (6a)

s.t. ∶ λj − β1 ≤ 0, j = 1, .., n, (6b)

β2 − λj ≤ 0, j = n + 1, .., J, (6c)

Constraints ∶ Equations(1-4e). (6d)

2.4.4 Optimizing for a specific eigenvalue

There are applications where a certain eigenvalue must be synthesized for performance of the vibration
application. In this case, the square error of the specific eigenvalue must be minimized to synthesize a specific
eigenvalue. Unlike the previous formulation for maximizing the eigenvalues, this is the only minimization
problem. The optimization objective function is defined as

min
β,ρ1,..,ρN

⎧⎪⎪
⎨
⎪⎪⎩

(λk − λo)
2

λ2
o

⎫⎪⎪
⎬
⎪⎪⎭

, k = 1, (7a)

s.t. ∶ β − λj ≤ 0, j = k + 1, .., J, (7b)

Constraints ∶ Equations(1-4e). (7c)

In this formulation the term λo is defined as the objective eigenvalue, k is the first order eigenvalue that will
be synthesized to the objective eigenvalue, j is the order of the eigenvalue and J is the maximal order of
eigenvalues taken into account where J ≥ 2. In this thesis only the first eigenvalue will be synthesized for a
specific eigenvalue. It is possible to synthesize a higher order eigenvalue for a specific value, however that is
not within the scope of this thesis. Furthermore, the square terms are involved to keep the objective function
positive definite. Also, in the constraints the β term is still involved as seen with the bound formulation.
This term ensures that no higher order modes interfere with the specified eigenvalue.

2.5 Localized eigenmodes

In the context of topology optimization for vibration problems, the main problem that occurs is the presence
of localized eigenmodes. Localized modes are a consequence due to the existence of low density areas. These
low density areas are very flexible and thus control the lowest eigenmodes of the system. A visual example of
a localized eigenmode is shown in Figure 5. In a vibration FE analysis a set of eigenfrequencies are calculated
to obtain the desired eigenfrequency range. When low frequency eigenmodes occur, they reduce the range
of the original set of eigenfrequencies. In the post processing these can be easily identified, however more
eigenmodes have to be calculated to obtain the eigenmodes in the desired frequency range. Calculating more
eigenmodes is a computationally expensive process. There are many research papers that eliminate this
problem with different techniques. Techniques like removing the elements [Yoon, 2010], [Behrou et al., 2021]
or using a density approach that has a non zero gradient for ρ = 0 and keeps the ratio of stiffness and mass
of low density elements equal [Sigmund and Maute, 2013], [Kang et al., 2020], [Liao et al., 2021]. Although
there is a variety of literature that prevents the occurance of localized eigenmodes, there is still a possibility
that it occurs in density based topology optimization. Therefore, this thesis will investigate if the level-set
formulation can prevent the occurrence of these localized eigenmodes.
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Figure 5: Eigenmode representation of a localized eigenmode.

2.6 Multiplicity

Aside from the occurrence of localized eigenmodes in topology optimization for vibration problems, the
occurrence of multiplicity adds some extra complications in the optimization process. Multiplicity is the
condition where two or more eigenmodes have the same eigenvalue. This condition can occur at the start of
the optimization process due to e.g. structural symmetry, or it can happen during the optimization process
due to design changes. In general, multiplicity is preferably avoided in structural optimization, as the multiple
eigenvalue manifest itself in different eigenmodes. Obtaining sensitivities of a multiple eigenvalue introduces
some extra conditions to take into account (explained in Section 3.3.2), which increases the computation
time.
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3 Density based approach

One of the first methods to solve topology optimization problems was the homogenization technique pro-
posed by Bendsøe [1989]. In the homogenization method the structure is evaluated as a microstructure with
holes or squares. The structure elements are then penalized to converge to an optimal solution. There are
several variables per element and the microstructure needs to be updated every iteration. This makes the
homogenization method complex to implement and computationally expensive [Rozvany, 2009]. A problem
that arises is that converging to the optimal microstructure resulted in weak penalization of the elements.
Therefore, the final solution results in non-discrete solutions with a grey representation.

3.1 Material interpolation for vibrating structures

One of the most popular methods that is used nowadays in the field of topology optimization is the technique
proposed by Bendsøe [1989], which is based on the density of material elements. This new method would
later be called the solid isotropic material with penalization method (SIMP) by Rozvany et al. [1992]. It was
introduced to reduce the complexity of the homogenization approach and the convergence rate of the 0 (void)
- 1 (solid) solutions. In this method the elements of the discretized model are given a density that varies in
a continuous way between 0 and 1. By giving the elements this pseudo-density, the algorithm evaluates the
effects of adding or removing these elements on the objective function. The SIMP method is expressed as

M =

NE

∑
e=1

ρqeM
∗
e , K =

NE

∑
e=1

ρpeK
∗
e , 0 < ρmin ≤ ρe ≤ 1. (8)

Here ρe is the element density value, ρmin is the minimal value of the element density variable, Ne is the
total amount of elements in the design domain, M∗

e is the element mass matrix, K∗e is the element stiffness
matrix, q is the mass penalty factor and p is the stiffness penalty factor. A common value for q is 1, whereas
the value for p is either fixed at a value p ≥ 1 or increased in a continuation method. The penalization is
applied in the intermediate density areas, where the pseudo density gets a value between 0 and 1. These
intermediate density areas (grey areas) do not have a physical meaning, only the integer values of 0 and 1
represent a void or solid area. The bigger the penalty factor, the bigger the contrast is between the solid
and void areas. The penalty factor that is assigned is an arbitrary number and does not relate to a physical
value. A proper choice is dependent on the optimization problem and is non-unique.
A problem that can arise using the SIMP interpolation method, is that the penalized elemental stiffness values
can have a very low value compared to the elemental mass value. Therefore, the ratio of the stiffness and
the mass is very small. This may lead to the occurrence of localized eigenmodes with a low eigenfrequency.
There are various interpolation methods to eliminate the occurrence of localized eigenmodes. The most
frequently used methods in literature are: the modified SIMP by Tcherniak [2002] and by Pedersen [2000],
the rational approximation of material properties (RAMP) by Stolpe and Svanberg [2001] or the polynomial
interpolation by Zhu et al. [2009]. A detailed comparison of various material interpolation methods for
vibration applications is done by Huigsloot et al. [2018]. In this work it was found that a linear interpolation
method results in the best performing designs. The recommendation is to apply a penalization of intermediate
densities elsewhere.
In this work, the modified SIMP method proposed by Tcherniak [2002] is adopted. The method of Tcherniak
is based on setting the elemental mass value to 0 in elements with a low material density. This in turn results
in a large stiffness to mass ratio, therefore eliminating the spurious localized eigenmodes. The interpolation
Equation is described by Equation 9.

Me(ρe) =

⎧⎪⎪
⎨
⎪⎪⎩

ρeM
∗
e , ρe > 0.1.

ρreM
∗
e , ρe ≤ 0.1.

(9)

The value for r is chosen such that the penalization of the elements below the threshold value of 0.1, will
be penalized with a larger factor than the stiffness. As the stiffness penalization is chosen at a factor p = 3,
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the penalization of the mass is chosen as r = 6. The formulation in Equation 9 introduces a discontinuity at
the density value of 0.1. To solve this discontinuity, a continuous interpolation function for the mass is to
be implemented. This function is represented in Equation 10.

Me(ρe) =

⎧⎪⎪
⎨
⎪⎪⎩

ρeM
∗
e , ρe > 0.1.

(c1ρ
6
e + c2ρ

7
e)M

∗
e , ρe ≤ 0.1.

(10)

Here the two coefficients c1 = 6 × 105 and c2 = −5 × 10
6 ensures continuity at the value ρ = 0.1. Figure 6

shows the ratio of the stiffness over the mass of the SIMP and the modified SIMP technique. As the design
variable is reaching 0, the ratio of the becomes very large. This ensures that elements with a low density
value are very stiff relative to their mass, essentially preventing the occurrence of localized eigenmodes.
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Figure 6: Stiffness over mass ratio of the SIMP interpolation and modified SIMP interpolation function

3.2 Filtering

One of the very first filter schemes was proposed by Sigmund [1994]. The paper describes how the problem
of checkerboarding and mesh-dependency can be alleviated via filtering the optimization problem. From this
point on, several filtering techniques and schemes have been proposed. They all have different properties
and parameters to influence the final outcome of the design. In the “ideal filter method” one could say that
the following points are of interest [Sigmund, 2007]:

1. Mesh independence and checkerboard prevention

2. Discrete solutions in (0-1) form by removing grey areas

3. Manufacturability features

4. No extra constraints

5. Limited tuning parameters

6. Stability and fast convergence rate
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7. Robustness and general applicability

8. Simplicity and implementation friendly

9. Computation friendly

Depending on the design problem and the user application, e.g. from an academic viewpoint compared to
that for industrial use, the list can have a different priority order. In the following sections three common
filter types are presented, which will be applied in this thesis.

3.2.1 Density filter

The working principle of density based filters is to modify the element density based on its neighbourhood
element densities by some function. The filter has been proposed by Bruns and Tortorelli [2001] and is
described by the following Equation

ρ̃e =

∑
i∈Ne

w(xi)viρi

∑
i∈Ne

w(xi)vi
. (11)

The modified element density is denoted by ρ̃e and is a function of the neighbour elements by ρi∈Ne . Here
Ne is the set of elements within the filter radius R for domain element i, vi is the elemental volume and
w(xi) represents a weighting function that is described by a cone function

w(xi) = R− ∥ xi − xj ∥ . (12)

Here R is the filter radius and xi and xj represent the the central coordinates of the cell i and j respectively.
An important aspect of the density filter is that the volume is preserved in the filter operation. This means
that the volume before filtering must stay the same after the filtering. A modified density filter like the
Heaviside filter violates this rule. As long as the volume fraction constraint is modified accordingly such
that there are no fixed solid and void regions present in the design domain this should not impose a problem
[Sigmund, 2007].

3.2.2 Density filtering with a Heaviside step function

A downside of the density filter is that boundaries become blurry. To alleviate this problem a Heaviside
step function can be applied to the density filter. A Heaviside density filter [Guest et al., 2004] and a
Heaviside step with modified density filter [Sigmund, 2007] have been proposed in early literature. These
filters reduce the grey areas produced by the basic density filter. However, a downside of these two Heaviside
filters is that they can be prone to poor convergence, as there are volume preservation issues. To alleviate
the volume preservation problem, the development of a new filter based on the Heaviside function with
volume preservation is proposed by Xu et al. [2010]. Later this filter is simplified by Wang et al. [2011] and
represented in the following Equation

¯̃ρe =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1 − η))
. (13)

In this work the use of the Heaviside function in combination with the density filter will be referred to as
the Heaviside filter.

3.2.3 Sensitivity filter

The sensitivity filter was proposed by Sigmund [1997] and describes how the sensitivity of a function can be
used as a filter. The filter is represented in Equation 14.
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∂f̃

∂ρe
=

∑
i∈Ne

w(xi)ρi
∂f

∂ρi

ρe ∑
i∈Ne

w(xi)
. (14)

Where f is an objective function specified to the optimization problem and ρe in the denominator is a value
of max{ρe, ε} where ε is a very small number (e.g. ρmin). A key element of the elemental sensitivities is
that the design updates are based on filtered sensitivities, instead of real sensitivities. The filter blurs the
sensitivities over the neighbouring elements, due to the filter operator. nonetheless it has been very popular
in literature and is still used in recent literature, e.g. Zhou et al. [2017], Kang et al. [2020], Xia et al. [2021].

3.3 Sensitivity analysis

The sensitivities of eigenvalues can be divided into two parts: uni-modal (simple) eigenvalues and multi-
modal (multiple) eigenvalues. Simple eigenvalues impose no problem for the sensitivity calculation, as the
eigenmode is distinctive and differentiable. On the other hand, a multiple eigenvalue cannot be calculated
straightforward, because of the lack of usual differentiability properties of the subspace spanned by the
eigenvectors associated with the multiple eigenvalue [Du and Olhoff, 2007]. In this work, the sensitivity
analysis used in Seyranian et al. [1994], Jensen and Pedersen [2006] and Du and Olhoff [2007] will be
followed. The sensitivity analysis can distinguish sensitivities of simple and multiple eigenvalues.

3.3.1 Simple eigenvalues

Simple eigenvalues are relatively easy to solve, as the eigenvectors are unique. A simple jth eigenvalue is
defined as i.e. λj−1 < λj < λj+1 and has a corresponding eigenvector ϕj , which is unique. To determine the
sensitivity of the eigenvalues, Equation 1 is differentiated with respect to the design variable ρe resulting in

⎛

⎝

∂K

∂ρe
− λj

∂M

∂ρe
−
∂λj

∂ρe
M
⎞

⎠
ϕj + (K − λjM)

∂ϕj

∂ρe
= 0, e = 1, ..,Ne. (15)

Equation 15 can be further simplified by premultiplying by ϕT
j and make use of the normalization in Equation

2 and the vibration Equation 1 [Wittrick, 1962], [Courant and Hilbert, 2007]. This results in

∂λj

∂ρe
= ϕT

j

⎛

⎝

∂K

∂ρe
− λj

∂M

∂ρe

⎞

⎠
ϕj , e = 1, ..,Ne. (16)

The derivatives of the global mass and stiffness matrix can be obtained via the material model (see Equation
8) resulting in

∂K

∂ρe
= pρ(p−1)e K∗e ,

∂M

∂ρe
= qρ(q−1)e M∗

e , e = 1, ..,Ne. (17)

Combining Equation 17 and Equation 16 the resulting derivative for the vibration Equation becomes

∂λj

∂ρe
= ϕT

j (pρ
(p−1)
e K∗e − λjqρ

(q−1)
e M∗

e)ϕj , e = 1, ..,Ne. (18)

The sensitivities of simple eigenvalues in Equation 18 can be used as an input to solve a given vibration
problem via e.g. a mathematical programming algorithm such as MMA.
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3.3.2 Multimodal eigenvalues

Multiple eigenvalues manifest themselves in different ways during an optimization process. They can be
multiple from the beginning of the optimization due to structural symmetry, or they can coalesce during
the optimization process. In multiplicity conditions there is no unique eigenvector. This means that any
linear combination of the eigenvectors will satisfy the original eigenvalue problem [Seyranian et al., 1994]
i.e. this eigenvector of linear combination is also an eigenvector of the eigenvalue at multiplicity [Jensen
and Pedersen, 2006]. To determine whether eigenvalues are multimodal, a relative difference between the
eigenmodes is determined as

r =
∣λi+j − λi∣

λi
, i = 1, .., J − 1, j = 1, ..J − i. (19)

If the value for r is lower than a certain threshold value, which in this work is taken as r ≤ 0.05, then the
corresponding eigenvalues have multiplicity. The value J is the amount of eigenvalues in the optimization
process. When a solution of the generalized eigenvalue problem results in an M fold multiple eigenvalue

λ̃ = λi, i =m, ..,m +M − 1. (20)

Here λ̃ is the set of M fold multiple eigenvalue. The m is the first eigenvalue that has multiplicity and M is
the amount of eigenvalues in multiplicity e.g. if the third and fourth eigenvalue have multiplicity, then m = 3
and M = 2. To determine the sensitivities corresponding to the multiple eigenvalue, a set of eigenvectors
need to be found that satisfies the following conditions

i

∑
i=m

aiϕi = ϕ, i =m, ..,m +M − 1, (21)

i

∑
i=m

a2i = 1, ⇒ ϕ
T
Mϕ = 1. (22)

Here ϕi are the eigenvectors corresponding to the multiple eigenvalue, the coefficients ai are to be determined.

By inserting Equation 21 into Equation 16 and taking the extreme values for
∂λj

∂ρe
with respect to the constants

ai and setting this equal to zero the following expression is obtained

⎛
⎜
⎜
⎜
⎜
⎝

g1,1 g1,2 ⋯ g1,k
g2,1 g2,2 ⋯ g2,k
⋮ ⋮ ⋱ ⋮

gs,1 gs,2 ⋯ gs,k

⎞
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G matrix

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

a1
a2
⋮

ai

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0
0
⋮

0

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

, (23)

gsk = ϕ
T
s

⎛

⎝

∂K

∂ρe
− λj

∂M

∂ρe

⎞

⎠
ϕk, s, k =m, ..,m +M − 1 (24)

The values for s and k correspond to the eigenvectors in the multiple eigenvalue calculated in Equation 1
and the value for λj is chosen as the lowest value of λ of the multiple eigenvalues. The eigenvalue of the G
matrix defines the direction of each eigenvector corresponding to the multiple eigenvalue. Consequently, this
eigenvalue corresponds to the sensitivity of the multiple eigenmode.

det ([G −ΛI]) (25)

∂λj

∂ρe
= Λi, i =m, ..,m +M − 1. (26)
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In Figure 7 a flowchart for the computational procedure is represented. The first loop where the convergence

check is
∣∣∆λ∣∣

λ
< ζ has a lower error value than in the larger loop, where additionally the convergence of

the continuation is checked. The reasoning behind ζ > ε is that the final solution should have the highest
accuracy, whereas the intermediate updating steps can have a lower accuracy to speed up the simulation
time.

Define problem and choose initial values for the optimization 

e.g. filter type, filter radius etc.

Filter the design variables

Calculate the solution to the generalized eigenvalue problem
and detect possible multiplicity

Compute the sensitivities of the single and multiple eigenvalues
and update the design variables via MMA

Check for convergence of 


i.e. 

Update the value for the bound distance by decreasing the
value of the continuation  (if the Heaviside filter is used)



Check for convergence of  and 


i.e. 





Solution is converged

No

No
Heaviside filter used?

Yes

Yes

Yes

No

Figure 7: Flowchart of the density method with the update procedure.
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4 Level-set based approach

The level-set method (LSM) was first introduced by Osher and Sethian [1988] and works by tracking the
motion of moving fronts. Later it was exploited for topology optimization as it allowed moving front without
remeshing. This front is represented as an iso-level function c. It is common that the iso-level-set function
(LSF) has a value of c = 0. In 2D this boundary can be represented as a plane that intersects the LSF.
An advantage of using level-set for topology optimization problems is that it allows for a crisp descrip-
tion of interfaces and boundaries [Allaire and Jouve, 2005], [van Dijk et al., 2013], [Sigmund and Maute,
2013], [Zargham et al., 2016]. Furthermore, it is robust to solve different kinds of problems and associated
constraints. The geometry of a structure is represented by an iso-level of the level-set function as

ϕ(x) > 0 ∶ ∀x ∈ Ω (material domain),

ϕ(x) = 0 ∶ ∀x ∈ Γ (interface), (27)

ϕ(x) < 0 ∶ ∀x ∈D/Ω (void domain).

The LSM consists out of three general parts, namely the mechanical model, the parameterization and the
optimization procedure. The mechanical model includes the discretized structural model and the geometry
mapping of level-set function. The geometry mapping projects the parameterized model onto the discretized
model, where both the structural model and the geometry mapping influence the performance of the opti-
mization. The material mapping can consist out of 3 types, namely: conforming discretization, immersed
boundary with e.g. X-FEM or a volume-fraction-based material mapping called the Ersatz material model.
The three different approaches are shown in Figure 8, where the density-based representation is a represen-
tation of the Ersatz material model.

Figure 8: Representation of different geometry mappings for the level-set function, from van Dijk et al.
[2013]. The density-based mapping can also be referred to as the Ersatz material model.

The parameterization of the level-set function is controlled by the optimization variables and can be formu-
lated as e.g. FEM shape functions or radial basis functions (RBF). These have various support sizes, which
in turn influence the convergence rate, design detail and memory allocation. There are various solvers (e.g.
Hamilton-Jacobi methods or a mathematical update procedure) that can solve a level-set based topology op-
timization problem. These solvers are dependent on sensitivities of the objective function and the constraints
of the optimization. The sensitivities can be defined as e.g. Variational shape sensitivities, parameter shape
sensitivities, material parameter sensitivities, topological sensitivities or non-sensitivity information [?].

4.1 Level-set parameterization

A popular approach to represent the LSF is via the use of RBF. RBF are radially symmetric functions around
defined positions in the mesh to approximate the multivariate scattered data. There are several options to
choose from for the representation of the level-set function. Many popular types of parameterization are
available in literature, such as thin-plate splines, Gaussians, Compactly Supported Radial Basis Functions
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(CSRBF), Multi-Quadratic (MQ) Splines and Inverse Multi-Quadratic (IMQ) Splines [Wei et al., 2018].
These functions vary from local to global interpolation functions with different properties, as seen in Table
1. Local basis functions are often interpreted as FEM shape functions with minimal element overlap. Global
basis functions overlap the whole domain and give a non-zero function matrix. A result of this type of
interpolation is that all optimization variables have an influence on the change of the design domain. This in
turn results in a fast rate of change of the design variables, with the cost of design detail, memory allocation
and computation time. On top of that, the incremental step size for updating the design variables is chosen
rather arbitrarily, making it design specific to choose this parameter. Another type of basis functions are
mid-range basis functions. These basis functions are non-zero over a finite part of the design domain, however
they overlap each other by a defined amount of elements. The mid-range type of basis functions ensure a
faster rate of convergence compared to local basis functions, as more information of elements is taken into
account. Furthermore, these basis functions increase computation efficiency, as they are sparse and strictly
positive definite [van Dijk et al., 2013], [Luo et al., 2007]. An example of the overlapping of basis functions
is represented in Figure 9 and their corresponding properties Table 1. In this work the use of CSRBF are
employed for their numerical efficiency and tunability for design detail.

Figure 9: Representation of different sizes of basis functions. The black dots indicate how many basis
functions are non-zero at an arbirary location [van Dijk et al., 2013].

In some examples in this work, the level-set function is initially constructed as a function of geometric shapes.
These geometric shapes represent holes in the design domain by being cut through the zero level-set plane.
These geometric shapes represent the initial configuration of the design and can be altered by changing the
position of the circular holes and their radius.

Size of basis function Design detail Convergence rate Memory allocation

Local basis functions High Slow Low

Mid-range basis functions Medium/High Medium/High Low

Global basis functions Low High Very high

Table 1: Basis functions properties

4.1.1 Parameterization using CSRBF

In this work the CSRBF with 2k continuity from Wendland [1995], such as the C2, C4 and C6 functions
are implemented. The support radius for each CSRBF must be chosen accordingly and is specific for
each CSRBF. A trade-off must be made between computational efficiency and ensuring non-singularity.
Consequently, when a support radius is too small it will be ineffective to span the inner-constraint gaps with
the use of CSRBF, and when a support radius is too large it would increase the computation time [Luo et al.,
2007]. Experimental values have to be selected to calculate the most optimal value for the support radius
[Buhmann, 2000]. The CSRBF Wendland functions are defined by a radius of support in 2D Euclidean space
by

r =

√
(x − xi)

2 + (y − yi)2

dml
. (28)
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(a) C2 CSRBF representation.
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(c) C6 CSRBF representation.

Figure 10: 1D CSRBF representation of Equation 29.

Here (x, y) is the current sample knot of the RBF, (xi, yi) are the other knots in the design space and dml is
a scalar parameter that defines the amount of nearby elements that are supported in the radius. The larger
the value, the more knots are taken into the calculation of the RBF. The shapes of the CSRBF are defined
by Equation 29 and represented by Figure 10.

C2 ∶ gi(r) =max{0, (1 − r)}4 (4r + 1), (29a)

C4 ∶ gi(r) =max{0, (1 − r)}6 (35r2 + 18r + 3), (29b)

C6 ∶ gi(r) =max{0, (1 − r)}8 (32r3 + 25r2 + 8r + 1). (29c)

In general, the low-order CSRBF should have a larger support radius, whereas the higher order CSRBF
should have a smaller support radius. The higher order CSRBF might be more sensitive to a variation
of the support radius, whereas the lower order CSRBF is more robust to the element radius [Luo et al.,
2007]. With the radial basis functions obtained, the level-set function can be described by positioning the
basis functions at specified nodes in the design domain. Depending on the geometry mapping (see Section
4.2) a convenient position of the knots is chosen. In this work the density representation is used for the
geometry representation. Therefore, the level-set function is solved by the algorithm on the nodes of the
mesh elements, where after these nodal values are transformed to the center of the elements to obtain the
element density. This can be easily transformed via the G matrix as seen in Equation 31. The level-set
function is then defined by

ϕ(x) = G(x)Tα =
n

∑
i=1

gi(x)αi, n = 1, ..,Nn. (30)

Where the vector of RBF is defined as

G(x) = [g1(x), g2(x), ..., gn(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M×N

]
T , n = 1, ..,Nn. (31)

And the vector of the expansion coefficient as

α = [α1, α2, ..., αn]
T , n = 1, ..,Nn. (32)

Here α is the expansion coefficient of the CSRBF positioned at the knot i, Nn is the number of fixed
predefined knots (mesh nodes in this work) and M is the amount of center nodes of the mesh elements. The
G matrix acts as an transformation matrix between the mesh nodes and the mesh center elements.
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The variables in α are the new optimization variables. Since all knots will be fixed in the same design space,
the initial value for α can be determined by inverting the G matrix and multiplying it by the initial level-set
function. This is shown in Equation 33. This initial value of α is to be optimized by any updating procedure.

α =G−1ϕ. (33)

After the update procedure, that updates the new values of α, the level-set function is reconstructed via
substituting its value into Equation 30.

4.2 Ersatz material model

As this work is focused on the comparison between the density and the level-set method, a mapping type
that has the most similarities with the density method is preferred. In a conventional level-set mapping the
geometry mapping is a pure discrete representation of the material model, where Equation 28 defines if the
material is solid or void. To map the level-set geometry to a mechanical model using a density distribution,
the so called Ersatz material model is implemented [Wang et al., 2003], [Allaire et al., 2004]. The Ersatz
material model introduces intermediate densities ρ to represent the material phase by scaling their properties
(e.g. Young’s modulus), as with the density method. Therefore, the mapping of this material model has
similarities with the density based optimization method. In this work the density distribution 0 < η ≤ ρ(ϕ) ≤ 1
is used, where ρ(ϕ) is defined as

ρ(ϕ) =H(ϕ). (34)

Where H(ϕ) is the Heaviside function. In most topology optimization literature with the use of a level-set
function they incorporate the exact Heaviside function in Equation 35.

H(ϕ) =

⎧⎪⎪
⎨
⎪⎪⎩

0 for ϕ < 0,

1 for ϕ ≥ 1.
(35)

The exact Heaviside function produces a crisp black and white description of the design domain, however it
is non-differentiable. This can be inconvenient depending on the update procedure for the level-set function.
As the Ersatz model is adopted, a continuous representation of the Heaviside function prevents singularity
of the non-differentiability of the exact Heaviside function. The function is therefore often replaced by a
smooth approximation of the Heaviside function H̃(ϕ) that can be differentiated. The polynomial used in
this work is approximated by Equation 36.

H̃(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for ϕ < −h,

1

2
−
1

4
(
ϕ

h
)3 +

3

4
(
ϕ

h
) for − h ≤ ϕ ≤ h,

1 for ϕ > h.

(36)

In this equation, h is defined as the bandwidth of the level-set function. It is defined as half the distance
between a user-defined upper and lower bound h = ϕb/2

ϕb = ϕu − ϕl. (37)

The value for the upper bound ϕu and the lower bound ϕl is not the definition of the maximal and minimal
value of the level-set function, rather it indicates a range wherein the density of the elements should be
interpolated. This bound is the interface between the solid and void region of the domain. A representation
of this bound is shown in Figure 11.
To obtain a more discrete design, the bound parameter should be reduced during the optimization process.
Figure 11a starts of with a large bound value, which results in a lot of intermediate density areas (as shown in
the lower part of Figure 11a). All of the level-set function values are now considered during the optimization
process. Each element is thus a projection of a related level-set function value. This has a similar principle as
density based optimization, where the design variable is ρ and has a upper bound of 1 and a lower bound of
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Figure 11: Density interpolation scheme of the level-set band method by gradually reducing ϕb [Wei et al.,
2020]. (a) Case with a large level-set band between the upper and lower bounds in the beginning stage of
the optimization; (b) Case with a small level-set band after convergence.

ε. Unlike the density method, the band ϕb of the Heaviside function is reduced to a smaller value during the
optimization process, as shown in Figure 11b. When the band distance ϕb is considerably small e.g. as small
as one element in length, it ensures a more crisp description of the design domain with less intermediate
densities [Wei et al., 2020]. This technique has some similarities as with the filters of the density approach.
The projection filter, where the β parameter is increased to obtain a more discrete design, works in the same
sense. Start off with a large undefined design domain and slowly increase the discreteness to converge to a
final design.
There are two expected advantages of topology optimization with the use the level-set function and Ersatz
approach compared to conventional level-set approaches. Firstly, conventional level-set formulations update
the design by updating the boundary of the zero level contour. Consequently, the initial configuration of
the design domain is all-important for the final outcome after the optimization. As the presented technique
uses sensitivities of the whole design domain, the initial configuration is less dependent on the final outcome.
Additionally, new holes can be nucleated at desired locations without the use of additional techniques as
e.g. regularization or velocity extensions. Secondly, the objective function calculations are performed with
the interpolated density of the level-set function. This design has a lot of intermediate densities, but almost
never disconnected elements. During conventional level-set methods that interpolate over the zero level-set
plane, disconnected elements or cracks in the structure can occur as shown in Figure 12 and in Li et al. [2017].
These isolated islands and cracks can produce localized eigenmodes. By using the density representation
as geometry for the optimization this phenomena is more prevented, as the density representation is less
sensitive to the initial input.
An example of the representation used in this work is shown in Figure 12. There is a level-set representation,
which is fully discrete, a density representation used for the optimization and a level-set function of the
CSRBF is represented with the boundary layers ϕu, ϕl and the zero level plane in the middle. If the function
is above the zero level plane, the geometry is represented as fully solid material in the level-set representation
and below this plane is represented as void. For a fully solid material in the density representation the CSRBF
must be above the plane ϕu. Consequently, if the CSRBF is below ϕl the density representation is void.
Figure 12 clearly shows the expected advantage of the Ersatz model, as the density representation shows 4
connections to the side of the square, while the level-set representation shows an almost disconnected island
in the middle of the geometry. A FEM analysis of the zero level-set model would result in either localized
eigenmodes or rigid body modes.
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Density representation Zero-level set 

Level-set surface

Upper bound plane φu

Lower bound plane φl

Zero-level plane

Figure 12: Representation for the level-set optimization, where a density, level-set and zero level-set repre-
sentation is shown. The band of the upper bound and lower bound have a distance of ϕb = 4.

4.3 Computational procedure

The sensitivity calculation for the level-set method with the use of the Ersatz material model, which is
updated via MMA, is not too different from density based optimization approach used in this work. The
sensitivities with respect to the eigenvalues are the same as described in Section 3.3. The sensitivities of the
Heaviside function and the transformation of the CSRBF are described by

∂ρ

∂ϕ
=
∂H̃

∂ϕ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for ϕ < −h,

3

4
(
1

h
−
ϕ2

h3
) for − h ≤ ϕ ≤ h,

0 for ϕ > h,

(38)

∂ϕ

∂α
=G(x)

T
. (39)

The sensitivities with respect to the original design variables α is obtained by using the chain rule as

∂f

∂α
=
∂f

∂ρ

∂ρ

∂ϕ

∂ϕ

∂α
. (40)

Here
∂f

∂ρ
for simple eigenvalues is equal to Equation 18 and for a multiple eigenvalue it is equal to Equation

26. Consequently for the volume constraint, the sensitivity calculation is represented as

∂v

∂α
=
∂v

∂ρ

∂ρ

∂ϕ

∂ϕ

∂α
. (41)
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Here
∂v

∂ρ
is the volume derivative of an element, which is equal to 1. Now that we have all the ingredients to

solve the eigenvalue problem for the level-set formulation with the Ersatz material model, we can implement
this in the program. In Figure 13 a flowchart for the computational procedure is represented. The first loop

where the convergence check is
∣∣∆λ∣∣

λ
< ζ has a lower error value than in the larger loop, where additionally

the convergence of the bound is checked. The reasoning behind ζ > ε is that the final solution should have
the highest accuracy, whereas the intermediate updating steps can have a lower accuracy to speed up the
simulation time.

Define problem and choose initial level-set function e.g. holes, zero 

	 level-set etc.Setup the CSRBF and obtain the initial values for  


for the initial input in MMA

Transform the values for  to level-set values at the element
centers. Obtain density values  via the Heaviside function.

Calculate the solution to the generalized eigenvalue problem
and detect possible multiplicity

Compute the sensitivities of the single and multiple eigenvalues
and update the design variables via MMA

Check for convergence of 


i.e. 

Update the value for the bound distance by decreasing the
value of 

Check for convergence of  and 


i.e. 


Solution is converged

No

No

Yes

Yes

Figure 13: Flowchart of the Ersatz level-set method with a mathematical update procedure.
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5 Comparison setup

It is difficult to make a fair comparison between the density and level-set approach, as both methods have
different variables that can influence the optimization process. For sure, every design case can be optimized
to the fullest for every parameter, however that is not the scope of this thesis. The main goal of the thesis
is to display the differences of the presented approaches for their efficiency, stability and practicality in
an academic and industrial environment. To be able to tell if one optimization approach performs better,
comparable or worse than another, different benchmark cases from literature are used. These benchmark
cases have been used throughout literature in e.g. Du and Olhoff [2007], Zhou et al. [2017], Li et al.
[2021b] or Liao et al. [2021]. Furthermore, to minimize the influence of the variables and settings of the two
methods, a meticulous comparison strategy is presented. This strategy aims to obtain the most fair and
optimal comparison as possible between the two methods and their corresponding benchmark cases. Based
on this strategy, the most suitable optimization method will be used to solve the Chest Master design case
accordingly.

5.1 Comparison strategy

When it comes down to comparing the level-set and density method, numerous setups can be implemented
to showcase the differences between them. However, this would result in a long list of solutions, which is
impractical from a comparison standpoint. Therefore, a more systematic approach is proposed to highlight
the differences between these two approaches. The selection of objective functions, design cases and parame-
terization have been selected such that it spans a broad range of optimization scenario’s. This in turn reduces
the amount of results and gives a more concise overview of the differences between the applied techniques.
Furthermore, it is desired that the proposed strategy is applicable for future developed techniques to have a
similar comparison with the presented techniques. The proposed approach to setup the density and level-set
cases for the comparison can be formulated as:

• Firstly, in terms of design cases, there are two types of design problems considered: a 2D beam shape
and a 3D symmetric plate, see Figure 14. These benchmark examples have been frequently used
in literature, e.g. Du and Olhoff [2007], Yoon [2010], Zhou et al. [2017]. Hence it gives relevant
comparative results to existing and possibly newly produced optimisation techniques. There are a
variety of boundary conditions proposed to consider a larger set of results.

• Secondly, in terms of objective functions, the maximization of the fundamental eigenvalue is most
frequently used in literature. Therefore, this objective function will be used for the beam as well as for
the plate design example. Additionally, three objective functions will be included, namely maximization
of the second eigenfrequency, maximization of a bandgap and optimizing for a specific eigenfrequency.
The goal of using these objective functions is to highlight the differences between the density and
level-set approaches, if there are any.

• Thirdly, in terms of parameterization and regularization, to be able to do a concise comparison between
the density and level-set method, the amount of adjustable parameters, settings and initial designs
should be kept the same. However, as these techniques have method-specific parameters (e.g. design
variables), it is difficult to have identical parameter settings for both methods. To ensure a qualitative
comparison, it is opted that all methods should converge with minimal changes of the parameters.
The only parameters that can be adjusted are the algorithm settings and the continuation settings.
However, they are fixed as much as possible to the initially proposed settings in Section 5.4. Only at
the occurrence of convergence instabilities the parameters are slightly altered to be able to converge
for the given design case.

5.2 Comparison criteria

To compare the level-set and density methods, several criteria are formulated to show the differences of the
applied methods. These criteria can be categorized as qualitative or quantitative criteria.
Quantitative criteria are measurable and can be obtained from simulation data. The quantitative criteria
from Table 2a used in this work are implemented as follows:
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Table 2: Qualitative and quantitative criteria for the comparison.

(a) Quantitative criteria

Mnd Objective value Iterations
Unit % ω -

(b) Qualitative criteria.

Efficiency of applied method Problems encountered
Keywords Practicality, fine tuning, Convergence instability, grey areas,

sensitivity of parameters localized eigenmodes

• To measure the discreteness of the final design representation the so-called measure of non-discreteness
(Mnd) is used as defined in Equation 42. The formulation was first proposed by Sigmund [2007] and
is widely used in literature nowadays. In here n stands for the total amount of elements and ρ̃e are
the element densities. This evaluation of the design domain outputs a result between 0% and a 100%,
which indicates how much grey elements are still present. A value of 100% means that the design is
fully grey and a value of 0% means that the design is fully discrete.

Mnd =

n

∑
e=1

4ρ̃e(1 − ρ̃e)

n
× 100%. (42)

• The final value of the objective function shows if there is a significant difference in the final result of
a selected method. However, one should interpret these results with respect to designs where the final
design is not discrete (i.e. a Mnd ≥ 10%) carefully. If a design is not fully discrete the FEM analysis is
not accurate, as the grey areas are undefined material in the design domain.

• There are two convergence criteria proposed that will result in a discrete design and a stable objective
function. These criteria are the Mnd and the relative difference in objective function, which both have
to be satisfied to converge.

σ =
∣∆λ∣

λ
=
∣λi+1 − λi∣

λi
. (43)

Here i is the iteration number of the optimization run. In general, it was chosen that the relative
difference of the objective function should be σ ≤ 0.01% and the final design may not contain more
than 5% grey areas. The Mnd convergence criterion puts less emphasis on the importance of this
value for the quantitative criteria. However, it was opted as it results in a more discrete final design
representations. Moreover, it prevents early convergence due to the σ criterion, which could happen
early on in the optimization process.
Furthermore, the number of iterations to converge is an important parameter to take into account, as
it gives an interpretation of the efficiency and stability of the selected approach. The less iterations,
the more stable and efficient a selected approach is.

Convergence criteria Units
Frequency σ ≤ 0.01%
Discreteness Mnd ≤ 5%

Table 3: Convergence criteria of the design cases.
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The qualitative criteria cannot be measured and can be formulated as an observation made by the author
based on his interpretation of the result. These observations are categorized as:

• Efficiency for practical applications describes the process of setting up a simulation and fine tuning. If
an approach requires too much fine tuning of the parameters to work, it will probably not be worthwhile
to use in practise.

• Problems encountered during the optimization process (e.g. convergence instability and localized
eigenmodes). These problems are difficult to quantify, but they are easily found in the results of
the optimization process. For example, grey areas are easily seen in the final result of the geometry
representation. Or localized eigenmodes can be observed from the iteration history, where the objective
fluctuates between a high eigenfrequency and a frequency close to zero.

Finally, the sensitivity and Heaviside filter will be compared to one another, where after the best performing
design will be used for the density method comparison. The same goes for the level-set method. The
best performing CSRBF will be chosen, which will represent the level-set method for the comparison. The
iteration history of the chosen method will be shown for comparison.

5.3 Benchmarks

To compare the different optimization approaches, two different geometries of the design domain and various
boundary conditions are proposed. These examples have a simple geometric representation, whereby the
differences in design space are more distinct. The most frequently used design example in literature is a
simply supported beam with a size ratio of (8 ∶ 1). This is represented in Figure 14. Additionally, two extra
boundary conditions of this beam design example are used. Furthermore, two plate-like 3D design examples
are used to extend the results of the comparison. These 3D plates are also used for the case study in Section
7.

A B

A B

concentrated mass

concentrated mass

h

admissible design domain

admissible design domain

h

a

b

admissible design domain

admissible design domain

admissible design domain

1.

2.

3.

4.

5.

Figure 14: 1-3 Admissible design domain (a:b = 8:1) of a 2D plate like structure with plane stress elements
and three sets of different boundary conditions. 1. Simply supported at the ends. 2. One end clamped
and one end simply supported. 3. Both ends clamped. 4-5 Admissible design domain of a plate like 3D
structure (A:B:h = 1:1:0.01) with Mindlin-Reissner plate elements 4. Simple support on the four corners
and a concentrated mass at the centre of the plate of Mc = M0/10 (M0 is the total mass of the plate like
structure). 5. Same plate like structure, but the four edges are clamped. The concentrated mass is defined
as Mc =M0/10.
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Parameter Symbol Unit
Length L m 8 1
Width W m 1 1
X - elements nelx - 320 100
Y - elements nely - 40 100
Degrees of freedom DOF - 26,322 30,603
Thickness h m - 0.01
Concentrated mass M kg - M0/10
Volume fraction V ∗ % 50 50
Young modulus E Pa 1 × 107 1 × 107

Poison ratio ν - 0.3 0.3
Penalty - - 3 3
Density ρ kg/m3 1 1

Table 4: Problem settings for the design examples.

5.4 Parameters settings

To make a distinct comparison between the density and level-set method, a regularization approach is
implemented for the parameters (i.e. simplify the results by means of reducing the amount of adjustable
parameters). Regularization is useful for a comparison, as it makes the amount of changeable parameters
more concise. Consequently, the presented results may not be the most optimal, however it would be too
time consuming to find the most optimal result for all of the design cases proposed for the comparison. The
regularization results in two categories of parameters, which can be categorized into problem settings and
optimization parameters.

• The problem settings are defined as design case specific parameters. They are independent for the
comparison of the level-set and density method. Therefore, these parameters will be fixed throughout
all the simulations of a given problem. The standard parameters with their corresponding value for
the design examples are shown in Table 4.

• Optimization parameters are defined as method-specific parameters, which influence the optimization
process in terms of e.g. convergence rate, simulation time and final result. They are different for the
density and level-set approach. The goal of this work is not to compare these parameters to each other,
rather if a design is unstable or can not converge due to these specific parameters, it will be adjusted
for the given design case. The specific parameters are shown in Table 5.

– Continuation of β and ϕb: The continuation of the β parameter in the Heaviside filter and the
bandwidth ϕb in the level-set method play an important role in the convergence rate and design
detail of the final design. The continuation should increase after a convergence criterion is met,
which in this work is defined as σ < ζ, or after a certain amount of iterations. The value for ζ
is fixed throughout all simulations, however the criteria for amount of iterations can be changed
depending on the design case to prevent instabilities. The incremental step for β and ϕb and their
initial value is problem specific and must be tuned accordingly. In this work the starting value of
β = 1 and a starting value of ϕb = 6 elements. It is difficult to have these continuation strategies
work in exactly the same sense, as the smoothened Heaviside approach works different compared
to the bandwidth continuation approach. The bandwidth continuation is probably slower, due
to the fully discrete design occurring when the bandwidth is ϕb = 1, whereas the smoothened
Heaviside approach could be discrete at an earlier continuation step.
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Density method
Parameter Filter radius Initial β, η Amount Criterion [ζ] Criterion [It.] Remark

Sensitivity filter rmin = 3 - - - -

Heaviside filter rmin = 3
β = 1
η = 0.5

β = β ∗ 2 σ ≤ 1%
Beam = 30
Plate = 40

Level-set method
Parameter Support radius Initial ϕb Amount Criterion [ζ] Criterion [It.] Remark

C2 R = 6 ϕb = 6 ϕb = ϕb − 2 σ ≤ 1%
Beam = 30
Plate = 40 If ϕb is 2, final

continuation
step is ϕb = 1

C4 R = 6 ϕb = 6 ϕb = ϕb − 2 σ ≤ 1%
Beam = 30
Plate = 40

C6 R = 6 ϕb = 6 ϕb = ϕb − 2 σ ≤ 1%
Beam = 30
Plate = 40

Table 5: Optimization parameters for the optimization methods. The criterion columns are the update
criteria for the continuation, where ζ is the difference in eigenfrequency and It. is the amount of iterations.

Furthermore, the initial design for the density and level-set are chosen to be the same. For the density method
that is a design where each element has a density value equal to the specified volume fraction V ∗ = 50%.
The initial design input for the level-set approach is a zero level-set plane without any holes, which is equal
to an initial design input of a volume fraction of V ∗ = 50%. Most level-set approaches have an initial design
input with holes, however the proposed level-set approach is able to produce holes over the whole design
domain. Therefore, it was opted to not have an initial design input with holes.
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6 Results of design cases

6.1 2D beam example with simply supported ends

In this section the results of the boundary condition of Figure 14.1 with maximization of the first eigenfre-
quency are presented. The parameters of Table 3, Table 4 and Table 5 are used. The results are shown
in Table 6. From the results it is seen that the sensitivity and Heaviside filter have roughly the same per-
formance in terms of objective function and Mnd. However, the Heaviside filter converges better due to its
property of pushing element densities to either a void or solid state. Therefore, the Heaviside filter will be
selected for the density representation. The level-set results from Table 6 show that the Mnd convergence
criterion is met, furthermore the amount of iterations are roughly the same. However, there is a minor
spread in the objective function. All the level-set designs have converged to a discrete design, where the
higher order CSRBF perform best in this design case. The CSRBF 4 will be selected for the level-set repre-
sentation. Although this result has one of the highest iterations, the objective function is highest compared
to all designs.
This design case shows small deviations in the comparison criteria, but they are negligible. All of the designs
have converged to a discrete design and to the same value of the objective function. There was no tuning
needed for either of the techniques. Notably, the amount of iterations for the level-set method is slightly
higher compared to the density method. This was expected, as the continuation strategy of the level-set
bandwidth is slower than the Heaviside continuation, which is was expected (see Section 5.4).
An eigenfrequency iteration history of the design optimized using the density based approach is shown in
Figure 15(a). The first and second eigenfrequency start as distinct eigenfrequencies, but during the optimiza-
tion process they become multiple. The third eigenfrequency is also taken into account, so that the algorithm
can distinguish the higher eigenfrequencies from the lower ones. The continuation of the β parameter does
introduce some instability in the optimization process. At iteration 23 the eigenfrequencies dive down to a
local eigenmode, causing some parts of the geometry to be isolated and resulting in localized eigenmodes.
However, the solver seems to solve this problem in 4 incremental steps before the optimization process is
stable again. Although this is an unwanted occurrence for the optimization process, it does not seem to
interfere in the end result. Figure 15.(b) shows an iteration history for the level-set optimization. It can be
seen that just like the density method the first two eigenmodes have multiplicity during the optimization
process and the third eigenfrequency does not come to this eigenfrequency range. Interestingly, in contrast
to the density results, the level-set results do not show the occurrence of localized eigenmodes. These results
show similarities with the results in the work of Du and Olhoff [2007], which can be found in Appendix D.
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(a) Iteration history of a density optimization run with
the Heaviside filter and a radius of 3 elements.
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(b) Iteration history of a level-set optimization run
with CSRBF 4 and 6 elements for the support radius.

Figure 15: Optimization runs of the density and level-set method for a simply supported beam.
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Method Optimized result ω [rad/s] Mnd [%] Iterations

Density method

Sensitivity filter 172.8 3.97 77

Heaviside filter 173.2 1.37 46

Level-set method

CSRBF 2 (VF) 170.0 2.40 73

Zero level-set

CSRBF 4 (VF) 174.5 0.80 84

Zero level-set

CSRBF 6 (VF) 172.3 2.00 84

Zero level-set

Table 6: Results for maximizing the first eigenfrequency of the beam with boundary conditions of 14.1. The
methods with their corresponding numerical values are shown. The abbreviation (VF) refers to the Ersatz
volume fraction of the level-set approach.

6.2 2D beam with maximization of bandgap between the second and third
eigenfrequency

In this section the results of the 2D beam with boundary conditions of Figure 14.2 with a maximization of
the bandgap between the second and third eigenfrequency is presented. The parameters of Table 3, Table 4
and Table 5 are used. The optimization converges when the condition σ ≤ 0.01% is met, where σ is defined
as the maximal relative difference of the second or third eigenfrequency as seen in Equation 44.

σ =max

⎧⎪⎪
⎨
⎪⎪⎩

∣λ2
i+1 − λ

2
i ∣

λ2
i

,
∣λ3

i+1 − λ
3
i ∣

λ3
i

⎫⎪⎪
⎬
⎪⎪⎭

(44)

In here i refers to the iteration number of the simulation. The results for this design problem are shown
in Table 7. The sensitivity filter was unable to produce a design with a Mnd of less than 5%, therefore
its stopping criterion of the Mnd is increased to 10% to be able to converge. Furthermore, the sensitivity
and Heaviside filter again show practically similar performance, where the Heaviside filter outperforms the
sensitivity filter in the amount of iterations and slightly outperformed in the Mnd. The sensitivity filter
has a slightly better objective function, however it has more than 5% grey areas, making the results less
significant. In terms of the final design representation, both of the filters seem to converge to the same
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design. The Heaviside filter will be selected for the density representation.
The level-set results have considerable more deviation of the objective function compared to the density
method. It is very likely the result of the implemented support radius, which is not optimal for this design
case. This design example is rather difficult to solve for the level-set method, which resulted in the spread
of the objective function. A possible cause is that the support radius is not optimal for this design case.
Furthermore, the Mnd and iteration results are all rather similar. The CSRBF 6 will be selected for the
level-set representation, as it has the highest ratio of the eigenfrequencies and needed the least amount of
iterations.
The results show that the density method slightly outperformed the level-set method in terms of the objective
function (4.6%) and amount of iterations (11 iterations). From the iteration history in Figure 16(a) it can
be seen that the density method has a more stable convergence graph compared to the level-set method
in Figure 16(b). However, the higher order frequencies (3rd and higher) have multiplicity in the density
method, while the level-set method has no multiplicity in the higher order frequencies. Additionally, both
the density and level-set approach did not have any problems with localized eigenmodes.
Unlike the density method, the level-set method needed additional tuning to have a more stable convergence.
During the optimization process the level-set method had a tendency to disconnect on the thin parts at
roughly one third and two third of the design domain. This was caused at the updated continuation step,
which seemed to be too abrupt of an update step for this design case. Additional tuning of the algorithm was
implemented to prevent this behaviour. In the previous design example (Section 6.1) the level-set method did
not need any tuning, however this design case imposed some difficulties for the level-set method. This could
be due to the support radius, which is may be not ideal for this design case. The density method did not
impose this problem and had a more stable and faster convergence. Furthermore, in terms of discreteness,
both methods seem to converge to a low value of the Mnd.
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(a) Iteration history of a density optimization run with
the Heaviside filter and a radius of 3 elements.
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(b) Iteration history of a level-set optimization run
with CSRBF 6 and 6 elements for the support radius.

Figure 16: Optimization runs of the density and level-set method for a beam with boundary conditions in
14.2
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Method Optimized result ω2/ω3 [-] Mnd [%] Iterations

Density method

Sensitivity filter 9.72 6.01 54

Heaviside filter 9.53 3.52 35

Level-set method

CSRBF 2 (VF) 8.43 3.78 50

Zero level-set

CSRBF 4 (VF) 8.90 1.41 58

Zero level-set

CSRBF 6 (VF) 9.29 2.73 46

Zero level-set

Table 7: Results for the bandgap objective function, where the separation of the second and third eigenfre-
quency must be maximized. The boundary condition of 14.2 is used. The methods with their corresponding
numerical values are shown. The abbreviation (VF) refers to the Ersatz volume fraction of the level-set
approach.

6.3 2D beam optimized for specific eigenfrequency

In this section the results of the 2D beam with boundary conditions of Figure 14.3 are presented. The beam
is optimized for a specific eigenfrequency of ωo = 300 rad/s. The parameters of Table 3, Table 4 and Table
5 are used. There is one small change in the convergence criteria of the measure of discreteness, which is
now Mnd ≤ 10%. The reason for this change is that this design case proved to be difficult to converge to a
Mnd ≤ 5%. Therefore, the convergence criteria is increased to 10%.

The results for this design problem are shown in Table 8. The sensitivity filter shows a lot of grey areas
and was not able to converge. As the sensitivity filter only modifies the sensitivities, it has difficulties to
produce a discrete design in this design case. The filter is solely reliant on the penalization on the elements
for discreteness, which in this design example tends to result in excessive grey areas. On the other hand,
the Heaviside filter results in a crisp design representation and does converge due to the continuation. In
terms of the comparison, the Heaviside filter outperforms the sensitivity filter on all criteria except on the
objective function, although objective function of the sensitivity filter is marginally better. However, due
to the substantially high Mnd value, this value can not be interpreted as a reliable end objective function.
Therefore, the Heaviside filter is used for the comparison.
The continuation approach for the level-set method as described in Table 2.4.4 seems to result in conver-
gence instabilities for this design case. These simulations revealed that this design case is non-convex to a
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greater extend than previous design cases (Section 6.1 and 6.2). Therefore, the continuation strategy needs
to be adjusted to obtain convergence. This adjustment is implemented in the form of an extra step between
ϕb = 2 and ϕb = 1. An intermediate step of ϕb = 1.5 elements is implemented to smoothen the continuation.
Furthermore, the designs of the level-set method converge to different local minima. In the final design
representation there is a considerable amount of grey areas present, which confirms the non-convexity of this
objective function. Although the CSRBF 4 has a low Mnd value, the design representation has some complex
geometric features that connect via grey elements. Moreover, the CSRBF 4 is significantly better compared
to the CSRBF 2 and CSRBF 6 in terms of the comparison criteria. The CSRBF 6 is slightly better in the
objective function. However, the Mnd is larger than 5%, resulting in an unreliable result for the objective
function. To conclude, the CSRBF 4 results are used to represent the level-set approach for the comparison.

From the iteration history in Figure 17 it can be seen that both methods suffer from convergence instabilities
during the optimization process. However, as the design becomes more discrete, the optimization stabilizes.
In both the density and level-set method, the first and second eigenfrequency have multiplicity at the end
of the optimization. The density method did suffer from localized eigenmodes at iteration 35, 38 and 47.
However, this did not seem to cause any problems during the optimization. Furthermore, Table 8 show rather
similar performances for the density and level-set approach in terms of the quantitative criteria. The level-set
approach has a slightly better objective function and the density method has slightly better Mnd value and
needed less iterations, but they are not substantial. Moreover, in terms of the qualitative criteria, the density
method had a slight advantage over the level-set method in terms of tuning and the final geometric result.
The continuation of the Heaviside filter is smoother per update step, whereas the level-set method has a
more abrupt updating step. This update step of the level-set method needed extra tuning to converge with
the proposed criteria. The final design representation of the density method is highly defined, whereas for
the level-set method there are some geometric features that are connected via grey elements. The density
method proved to be more efficient than the level-set method, however these results need to be interpreted
with care. The objective function is non-convex to a great extent, which could favor the level-set approach
for more complex design cases.
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(a) Iteration history of a density optimization run with
the Heaviside filter and a radius of 3 elements.
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(b) Iteration history of a level-set optimization run with
CSRBF 4 and 6 elements for the support radius.

Figure 17: Optimization runs of the density and level-set method for obtaining a specific eigenfrequency of
300 rad/s. The geometry is a beam with the corresponding boundary conditions of Figure 14.3.
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Method Optimized result ω [rad/s] Mnd [%] Iterations

Density method

Sensitivity filter 295.9 64.00 500

Heaviside filter 304.7 0.26 64

Level-set method

CSRBF 2 (VF) 295.7 8.03 253

Zero level-set

CSRBF 4 (VF) 301.9 2.72 88

Zero level-set

CSRBF 6 (VF) 300.4 6.11 103

Zero level-set

Table 8: Results for obtaining an eigenfrequency of 300 rad/s with the boundary conditions of Figure 14.3.
The abbreviation (VF) refers to the Ersatz volume fraction of the level-set approach.

6.4 3D plate structure with simply supported corners

In this section the results of the boundary condition of Figure 14.4 with maximization of the first eigenfre-
quency are presented. The parameters of Table 3, Table 4 and Table 5 are used. The results of this design
example are shown in Table 17. The results show that the Heaviside filter is outperforming the sensitivity
filter in terms of the Mnd and the total amount of iterations, whereas the objective function is practically
the same. Although the final geometry representation converges to roughly the same local minimum, the
Heaviside filter significantly outperforms the sensitivity filter. Therefore, the Heaviside filter will represent
the density method for the comparison. The level-set method has comparable results in terms of the quanti-
tative results. Only the CSRBF 2 needs more iterations before convergence compared to the other CSRBF.
The objective function and Mnd have practically the same values. There is however one noticeable difference,
which is the final design representation. Interestingly, each of the level-set method converges to a different
local minimum. Although both the CSRBF 4 and CSRBF 6 results are suited for representing the level-set
method in the comparison, it was opted to choose the CSRBF 4 due to less iterations before convergence.
An iteration history is shown in Figure 18. In both of the simulations the second and third eigenfrequency
are multiple from the beginning and throughout the simulation. The iteration history of both examples show
no presence of localized eigenmodes and a stable convergence throughout the simulation. There is one small
remark regarding efficiency. The level-set method is slightly more stable for this design case compared to the
density method in terms of tuning. The level-set results did not need any tuning, whereas the density method
did need some additional tuning of the algorithm. To conclude, both methods do not seem to encounter
difficulties in this design case other than a marginally smaller Mnd value for the level-set approach.
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Method Optimized result ω [rad/s] Mnd [%] Iterations

Density method

Sensitivity filter 75.9 5.00 340

Heaviside filter 75.6 2.93 43

Level-set method

CSRBF 2 (VF) 75.8 1.31 75

CSRBF 4 (VF) 76.6 0.15 41

CSRBF 6 (VF) 76.3 0.22 56

Table 9: Results for maximizing the first eigenfrequency of the 3D plate with boundary conditions of 14.4.
The methods with their corresponding numerical values are shown. The abbreviation (VF) refers to the
Ersatz volume fraction of the level-set approach.
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(a) Iteration history of a density optimization run with
the Heaviside filter and a radius of 3 elements.
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(b) Iteration history of a level-set optimization run
with CSRBF 4 and 6 elements for the support radius.

Figure 18: Iteration history of the 3D plate, with simply supported ends. The second and third eigenfre-
quency are multiple in both examples from the beginning till the end.

6.5 3D plate with maximization of the second eigenfrequency

In this section the results of the boundary condition of Figure 14.4 with maximization of the second eigen-
frequency are presented. The parameters of Table 3, Table 4 and Table 5 are used. The results are shown
in Table 10. Remarkably, the sensitivity filter outperforms the Heaviside filter in this design example by
a significant margin. The Heaviside filter need fewer iterations than the sensitivity filter, however it is
insignificant as the objective function is significantly worse. The Heaviside filter has a tendency to create
small geometric features that did not improve the objective function after the continuation. This is probably
caused by the filter radius. Optimizing the filter radius for this design example could provide an improved
solution, however this is out of the scope for the proposed comparison set-up. Nevertheless, the sensitivity
filter outperforms the Heaviside filter and will represent the density method for the comparison.
The level-set method results show that the CSRBF 4 is outperforming the CSRBF 2 and CSRBF 6 in terms
of the objective function and amount of iterations before convergence. It needs the least amount of iterations
and has the highest objective function of the three methods. Remarkably, the final design of the CSRBF 4
and CSRBF 6 have rather different geometric features, but their objective function is practically the same.
Additionally, all the level-set designs are unsymmetrical. This is probably caused as the second and third
eigenmode are multiple from the beginning. These two eigenmodes have the same shape, however they are
orthogonal in their direction. This multiplicity condition during the whole optimization process probably
resulted in the unsymmetrical designs instead of a definite symmetric final design. Furthermore, the simu-
lations show that the Mnd is very low on all CSRBF results (i.e. Mnd ≤ 1%). For the representation of the
level-set method for the comparison the simulation of the CSRBF 4 is opted.
The iteration history of the sensitivity filter and the CSRBF 4 are shown in Figure 19. These two figures
confirm that both the methods are stable for this design case. The second and third eigenfrequency are
multiple from the beginning and throughout the simulation. Furthermore, the figures show that there are
no localized eigenmodes occurring during the simulation. Both the density and level-set approach are stable
in this design case and did not need additional tuning. Remarkably, the level-set method outperformed
the density method on all quantitative criteria. Especially the objective function of the level-set method is
significantly higher than the density method.
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Method Optimized result ω [rad/s] Mnd [%] Iterations

Density method

Sensitivity filter 701.9 3.63 75

Heaviside filter 650.0 0.01 65

Level-set method

CSRBF 2 (VF) 738.2 0.41 92

CSRBF 4 (VF) 756.7 0.17 62

CSRBF 6 (VF) 755.1 0.07 92

Table 10: Results for maximizing the first eigenfrequency of the 3D plate with boundary conditions of 14.4.
The methods with their corresponding numerical values are shown. The abbreviation (VF) refers to the
Ersatz volume fraction of the level-set approach.
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(a) Iteration history of a density optimization run with
the sensitivity filter and a radius of 3 elements.
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(b) Iteration history of a level-set optimization run
with CSRBF 4 and 6 elements for the support radius.

Figure 19: Optimization runs of the density and level-set method for a 3D plate with maximization of the
second eigenfrequency. The boundary condition of Figure 14.5 is used. The second and third eigenfrequency
are multiple from the beginning and throughout the simulation.

6.6 Mesh size influence

To further investigate the performance of the density and the level-set methods, a parametric study with
various mesh sizes is simulated. The design case for this comparison is the simply supported beam (boundary
conditions 14.1) with maximization of the first eigenfrequency as objective function. To compare the per-
formance in terms of number of iterations before convergence, several discretizations are proposed namely:
160×20, 320×40 and 640×80. Furthermore, all the values of Table 3, Table 4 and Table 5 are used, except for
the discretization, the filter radius and the support radius. One study consists of a mesh-independence study,
where the filter radii of the sensitivity and Heaviside filter are rmin = [2,4,8] for increasing discretizations.
This study should result in relatively consistent results. Furthermore, two additional studies are performed
where the filter radius is fixed at rmin = 2 and rmin = 4 elements throughout the discretizations. This study
is to show the influence of the filter radius on the various discretizations. Moreover, the level-set approach
has one study where the support radii are 7 for the CSRBF 2, 5 for the CSRBF 4 and 3 for the CSRBF 6.
This adjustment for the support radius has been implemented to have stability throughout the various dis-
cretizations. The results are shown in Table 11. The objective function, amount of iteration for convergence
and the time per iteration is taken into account for the results. There are a few interesting observations that
can be made based upon this design case.
Firstly, as the discretization increases, the objective function of both methods increases. The maximal and
minimal values per method with its corresponding discretization is shown in Figure 20. The results highlight
the importance of the discretization for the final result, as the worst performing (coarse mesh and level-
set CSRBF 6) and best performing (fine mesh and level-set CSRBF 4) studies have a difference of 9.1%.
Furthermore, the spread in each discretization is 4.5% for 160×20, 4.4% for 320×40 and 3.8% for 640×80,
which are small spreads.
The results of the simulations in Table 11 show that the mesh-independent study of the density approach
shows relatively consistent results over the various discretizations, as was expected. Furthermore, the Heav-
iside filter converges the fastest on a coarse discretization. Based on this observation it is slightly more
preferred to use the Heaviside filter when a coarse discretization is to be simulated. On the other hand,
the level-set method is slightly more preferred for finer discretizations in terms of the performance of the
objective function. The simulations consumed twice as much iterations compared to the density method,
however there are slightly more performance gains with the level-set approach. A possibility could be that
the support radius of the level-set approach results in more detailed geometry elements, which in turn could
results in an improved objective function. The density based study, where the filter radius is rmin = 2, should
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ω T/It. It. Mnd ω T/It. It. Mnd ω T/It. It. Mnd

Density Ωh 160 × 20, [rmin = 2] 320 × 40, [rmin = 4] 640 × 80, [rmin = 8]

Sensitivity filter 170.8 0.55 105 4.25 171.6 1.15 57 5.00 171.8 4.80 65 4.79
Heaviside filter 170.9 0.49 38 0.02 172.6 1.54 52 0.01 173.4 5.82 51 0.01

Density [rmin = 4] Ωh 160 × 20 320 × 40 640 × 80

Sensitivity filter 164.3 0.36 206 4.91 171.6 1.15 57 5.00 175.0 5.14 64 4.26
Heaviside filter 163.8 0.52 50 0.02 172.6 1.54 52 0.01 175.4 5.51 46 0.01

Density [rmin = 2] Ωh 160 × 20 320 × 40 640 × 80

Sensitivity filter 170.8 0.55 105 4.25 170.6 1.35 44 4.90 176.1 6.53 46 4.05
Heaviside filter 170.9 0.49 38 0.02 174.2 2.67 48 0.01 175.8 5.65 41 0.01

Level-set Ωh 160 × 20 320 × 40 640 × 80

CSRBF 2, [R = 7] 163.8 0.41 112 3.06 166.8 1.68 118 3.75 175.0 5.16 83 1.53
CSRBF 4, [R = 5] 168.4 0.35 121 1.29 173.8 2.46 100 1.36 178.4 6.54 76 0.40
CSRBF 6, [R = 4] 163.5 0.34 218 3.79 174.6 1.48 76 1.14 176.6 5.96 95 1.23

Table 11: Comparison of numerical performance of the density and level-set method. The value It. represents
the amount of iterations for convergence. The value rmin is the filter radius for the sensitivity and Heaviside
filter. The value R is the support radius for the CSRBF. The value T/It. represents the simulation time per
iteration in seconds, Ωh represents the discretization, the value ω is the objective function in rad/s and the
Mnd value is in percent.
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Figure 20: Minimal and maximal values of the results shown in Table 11. A larger discretization results in
an improved trend of the objective function.
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(a) Heaviside filter result with ω = 173.4, rmin = 8 and a discretization of 640×80.

(b) Heaviside filter result with ω = 175.4, rmin = 4 and a discretization of 640×80.

(c) Sensitivity filter result with ω = 176.1, rmin = 2 and a discretization of 640×80.

(d) CSRBF 4 volume fraction result with ω = 178.4, R = 5 and a discretization
of 640×80.

Figure 21: Final design representation of smallest mesh size of results in Table 11.

result in the best performing designs, as the most detailed design presentation can be found. However, it was
not able to outperform the level-set approach. To add to that, the support radii for the level-set approach
are not optimized for this design case, so it is possible there is still some performance to be gained for the
level-set approach. The final results of the smallest mesh size with their corresponding best result are shown
in Figure 21. These figures show that the filter radius of 8 elements results in less design detail. The filter
radius of 4 elements does result in more detailed geometry elements and the filter radius of 2 elements re-
sults in the most detailed geometry representation. The level-set result also shows a considerable amount of
detailed geometry elements and has some similarities with the filter radius of rmin = 2 and rmin = 4 elements.
Furthermore, the total amount of iterations decreased for the level-set approach as the discretization in-
creases, whereas the density method was relatively consistent in the amount of iterations over the various
discretizations. As expected, there is a positive correlation in the amount of time per iteration for larger
discretization. However, the level-set method needs slightly more time per iteration compared to the density
method for larger discretizations. This is probably caused by the mapping of the level-set function from the
elements to the nodes. Also, it could be caused due to additional multiplicity accidentally occurring during
the simulation. This causes longer computation times per iteration as additional eigenvalue computations
need to be calculated to compute the sensitivity during multiplicity (as explained in Section 3.3.2). Although
the time per iteration ramps up higher for the level-set method, it is not significantly different compared to
the density approach.
It must be noted that, as in previous design cases, the continuation of the level-set method is slightly slower
compared to the continuation of the Heaviside filter. Therefore, the amount of iterations is probably higher
compared to the Heaviside filter due to this continuation strategy. Furthermore, the support and filter radius
are not optimized for each discretization. This causes non-optimal result for this design study. However, the
goal of this study is to show the response to an increased discretization without any tuning of the parameters.
To conclude, this study showed that the density approach is slightly more favored for a coarse mesh and
the level-set approach is slightly more favored for a fine mesh. However, the differences are minor and no
significant conclusion can be drawn from these results.
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6.7 Discussion

From the design cases it is clear that the Heaviside filter for the density approach and the CSRBF 4 for the
level-set approach resulted in the best performing designs. A better overview of both of these approaches
and their results can be found in Appendix A.

6.7.1 Density method

The density approach is implemented with the use of the modified SIMP method combined with the sensi-
tivity filter and the Heaviside filter. The modified SIMP method did sometimes result in the occurrence of
localized eigenmodes. Although these localized eigenmodes occurred during an optimization run, they were
not a substantial problem in the convergence process.
The sensitivity filter is frequently used in literature as it is easy to set-up and limited tuning is needed.
However, the filter is often considered as heuristic and inconsistent for filtering, because the sensitivities are
blurred and inconsistent to the objective function. Nonetheless, due to the penalization power used in this
work (p = 3), the sensitivity filter is able to produce discrete designs (Mnd ≤ 10%) up to a certain degree.
To supplement the density method with an additional design representation, a Heaviside filter is added.
This filter provides consistent sensitivity information and, due to the Heaviside function, is better equipped
to produce discrete designs. This filter has the possibility to tune the update step of the β parameter,
giving more flexibility for the non-linear vibration problems. Furthermore, the Heaviside filter resulted in
a relatively quick convergence of the design cases. It was expected that it would outperform the sensitivity
filter, as a convergence criterion is the Mnd value, which is easier for the Heaviside filter to obtain. Also, it
was marginally faster than the level-set approach is most design cases. Although this looks like a promising
advantage of the Heaviside filter, it was probably the result of the chosen continuation strategy that resulted
in this speed up of the convergence. Therefore, this speed-up should be interpreted with care.
A drawback of the density method is that it is slightly more prone to converge to a poorer local minimum
compared to the level-set method. This could be caused due to the filter radius, however in the mesh study
of Section 6.6 the smallest filter radius was not able to outperform the level-set approach. Even though the
difference is minor, it was a small noticeable difference from all the design cases. Furthermore, the occurrence
of localized eigenmodes is still possible, even though the modified SIMP should prevent this. Remarkably,
these local eigenmodes only occurred in the 2D cases and not in the 3D cases. It is not clear if this is related
to the FEM formulation, design cases or just coincidence that it did not occur at the 3D cases. Although the
occurrence of local eigenmodes can occur during a simulation, it did not cause problems for the convergence
of the final result.
In general, the density approach is a versatile method that solves a wide variety of problems, with acceptable
performance and without much tuning. The results from Section 6.6 showed that the density method is more
preferred for simulations with a coarse mesh size compared to the level-set approach. The density approach
needs significantly less iterations and a slightly more improved objective function of 1.5% is found for a
coarse mesh size. However, as only one design case is tested for these results, the recommendation should
be interpreted with care.
From an industrial point of view, the technique is user-friendly, easier to grasp and implement. This char-
acteristic is useful, as not every user has a full understanding of topology optimization. It could be argued
that someone needs training before the use of topology optimization. However, it is becoming more readily
available in various software packages, therefore a robust and easy to understand method is preferred in
this area. A downside from the density method is that the final design representation is dependent on the
discretization. A coarse mesh results in a coarse geometry description and is therefore more difficult to
replicate in a computer aided design (CAD) environment. From an academic point of view, the density
approach is easy to set up, widely studied and most state of the art research is based upon the density
approach [Zargham et al., 2016]. Well-performing results can easily be achieved with large mesh sizes and
little amount of iterations.



6 RESULTS OF DESIGN CASES 45

6.7.2 Level-set method

Level-set based topology optimization entails a broad range of methods to solve a topology optimisation
problem. Three key aspects from the level-set approach can be categorized as: mechanical model, parame-
terization and optimization strategy. To have a fair comparison between the density method and the level-set
method, keeping as many similarities between the two methods as possible is desired. Therefore, material
parameter sensitivities in combination with MMA is used to update the design variables. Furthermore, a
density-based geometry mapping is applied. This update strategy together with the mapping results in an
almost similar structure as the density approach. The key difference lies in the parameterization of the
level-set function, where the CSRBF have been used. These functions span a mid-range area providing a
balance between design detail, memory allocation and convergence rate. Additionally, it is wished that there
is some variation in the design representation to minimize the influence of the fixed parameters. Therefore,
3 types of CSRBF have been considered to showcase various design representations.
Furthermore, most level-set approaches are supplied with an initial design that include holes at various
locations. The boundaries of these holes can be tracked by the level-set approach, which in turn change
the geometry. A disadvantage of tracking the boundaries is that new holes can not be nucleated in the
geometry. Regularization techniques need to be implemented to produce new holes in the geometry, which
could comprise the rate of convergence of the optimization process. Moreover, the final design becomes more
sensitive to its initial design and parameter input. In this work the level-set approach does not track the
moving boundaries, rather it uses the material parameter sensitivity information of the whole design domain.
This proves to be useful for producing new holes in the geometry, as sensitivity information of the whole
design domain is used. Moreover, the method is not dependent on an initial design with holes, rather it can
be a flat level-set surface. Thus it is less sensitive for the initial design input and no regularization is needed
for nucleating new holes.
A limitation of the implemented level-set approach is the construction of the connectivity matrix (see Section
4.1.1). This matrix maps the density design variables to the level-set design variables (i.e. the element values
are mapped to the nodes for the level-set function). Even though this is a sparse matrix, it consist ofM×N (M
= mesh elements) (N = nodes) matrix elements. Consequently, this matrix allocates a considerable amount
of computer memory and the construction of this matrix consumes a considerable amount of computation
time. There are probably more efficient ways to construct this connectivity matrix, which have not been
explored in this work. Another limitation from the level-set approach is that imposing a length scale is less
straightforward compared to the density approach. In Andreasen et al. [2020] this length scale control of the
level-set approach has been investigated, however this has not been implemented in this work.
The results from Section 6.6 show that the level-set approach works increasingly better with a finer mesh
compared to the density method. The objective function and total amount of iterations decrease with a finer
mesh. Other mapping methods could provide better results with a coarse mesh as shown in Villanueva and
Maute [2014], however this has not been tested in this work. Interestingly, the total time per iteration is
marginally larger compared to the density method. The average time per iteration for the density approach
for the fine mesh is 5.58 seconds per iterations, whereas for the level-set approach it is 5.89 seconds per
iteration, which is marginally larger. Remarkably, if the average time per iteration of the study with a filter
radius of rmin = 2 is taken, the average time per iteration is 6.09 seconds per iteration, which is even larger
than the level-set average time per iteration. It is probable that the density method suffered from more
multiplicity than the level-set approach during the simulations, which consequently increased the time per
iteration.
In general, the level-set approach is able to solve various vibration problems with the possibility to outperform
the density method by the proposed criteria. The method also did not encounter the occurrence of localized
eigenmodes, making this method more stable than the density method. Some simulations look unstable due
to the rapid change of the eigenvalues. However this is probably caused by the continuation step of two
elements, which could result in these rigorous eigenvalue changes.
From an industrial point of view, the level-set approach comprises more tuning possibilities (e.g. support
radius, CSRBF type, level-set input function, etc), to find the most optimal solution. However, the user
requires more understanding of the influence of the level-set specific parameters. Furthermore, an advantage
of the level-set approach is that it has a crisp geometry representation via the zero level-set plane. This
design representation is more convenient to replicate the obtained design in a CAD environment compared
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to the mesh element design representation of the density method. From an academic point of view, the
level-set approach is able to achieve more performance at the cost of possibly more tuning time to find the
optimal parameter settings. For example, finding the optimal support radius for the corresponding CSRBF
is an experimental trial and error process [Buhmann, 2000]. As most academic literature is more focused on
achieving the most optimal result for the presented method, the level-set approach is well-suited to achieve
this objective.

6.7.3 Limitations of the benchmarks

These benchmark cases give an insight in the results for the density and level-set approach and their respective
settings. Although several design cases are presented each with a different objective function, there is a
difficulty in comparing two different methods. There are many variables that play a role in the final result,
which could all be optimized per design case. This is the upside as well as the downside of optimization.
On one hand it provides the possibility to optimize every variable to come as close as possible to the global
optimum. On the other hand, from a comparison perspective, it would result in extensive simulations to
find the most optimal values. Therefore, some limitations are introduced due to the comparison strategy
proposed in this work.

• First of all, the most important limitation is the difficulty in comparing two methods that have different
parameters (e.g. design variables, support radius, filter radius). To develop a representative compar-
ison, it is wished that all the parameters are fixed throughout all simulations. This is unfortunately
not possible for all design cases, as it results in instabilities in the optimization process. Therefore, a
distinction between problem settings and optimization parameters is proposed. Only the optimization
parameters are slightly adjusted in the case of convergence problems for the optimized design case.
Although this strategy results in a meticulous approach that highlights the results of both methods,
it is likely that the performance of the solvers is affected and consequently does not represent the full
potential of both methods. Additionally, the support radius and the filter radius do not have the same
length scale implemented. This may lead to different objective results. A solution to this problem is
proposed by Andreasen et al. [2020], however this has not been implemented in this thesis.

• Furthermore, the design cases consist of simple geometric design domains and the structural analysis
is done via simple plane stress quadrilateral elements. Although more variety is implemented via the
use of Mindlin-Reissner plate elements, it does not encompass the performance difference for more
complicated design cases and a more comprehensive FE structural analysis.

• Moreover, given that the performance study of Section 6.6 is based on one design case, the results
regarding this simulation should be interpreted with care. In this design case it became clear that a finer
mesh favors the level-set approach slightly more and a coarse mesh favors the density approach slightly
more. However, as only one design case has been tested, it does not give a definitive recommendation for
all design cases. Not only the single sample size is a limiting factor, also the implemented quadrilateral
plane stress mesh elements could produce an error in the results for a coarse mesh discretization for
both methods.

• Finally, MMA is well suited to solve the optimization problems for the density and the level-set ap-
proach. However, both methods were sometimes prone to numerical oscillations. These oscillations are
probably caused by MMA due to its monotonicity property [Rojas-Labanda and Stolpe, 2015]. There-
fore, the GCMMA can provide a solution for these oscillations, however it can have problems with its
convergence. To remedy these problems, Zuo et al. [2007] proposed a hybrid algorithm consisting of
MMA and GCMMA, which could help in the convergence.
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7 Spring problem

As presented in the introduction, a design case of an out of plane membrane spring will be studied as a design
case to demonstrate the applicability of the presented approaches. The spring is subjected to an harmonic
external force that excites the spring in the out of plane direction. It is desired that the spring has the same
frequency as the driving frequency of the external force, as this makes the machine more energy efficient,
resulting in a smaller external motor and thus an overall compacter and lighter design. An example of the
actuator is shown in Figure 22. The overall optimization objectives and constraints are:

• Synthesize desired first out of plane eigenfrequency of f1 = 12.5Hz.

• Material properties of stainless steel (SS 301) are used for its fatigue strength.

• Mass of the actuator is 0.4 kg.

• The diameter of the spring is 60 mm and the thickness of the spring is 0.6 mm.

• The design should be as light as possible without sacrificing structural integrity.

• Increase higher order eigenfrequencies by a factor 2 of the synthesized eigenfrequency, so that multi-
plicity is avoided. This is shown in Equation 45, where fi is the eigenfrequency of order i and J is the
maximal amount of eigenfrequencies to be considered for this problem.

fi > 2 ∗ f1, i = 2,3, ..., J. (45)

7.1 Modeling approach

The objective function of this spring example is to synthesize the first eigenmode at an eigenfrequency of
12.5 Hz. The first eigenmode of the spring is an out of plane mode as shown in Figure 24a. This is also

Figure 22: Planar spring with actuator housing from Demcon [2021]
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the movement that is excited by the actuator. To prevent other modes from occurring during actuation
it is wished that the higher order modes should not become multiple with the first eigenfrequency. There-
fore, additional constraints of maximizing the higher order frequencies are incorporated. The mathematical
description of the objective function is defined as:

min
β,ρ1,..,ρN

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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, (46a)

Constraints ∶ β − λj ≤ 0, j = 2, .., J, (46b)

s.t. ∶ Kϕj = λjMϕj , j = 1, .., J, (46c)

ϕT
j Mϕk = δjk, j ≥ k, k, j = 1, .., J, (46d)

0 < ρmin ≤ ρe ≤ 1, e = 1,2, ...,Ne. (46e)

The volume constraint is less important for this design case. However, without this constraint, there is a
tendency to produce unwanted geometry elements that do not contribute to the objective. To remedy this,
a multi-objective function is implemented, where a small volume penalty term is added in the objective
function. This term removes unnecessary geometry elements. A small value of 0.1 is used for the weight
factor. Furthermore, the convergence criteria are listed in Table 12.

Convergence criteria Units
Frequency σ ≤ 0.05%
Discreteness Mnd ≤ 5%

Table 12: Convergence criteria for the Chest Master design case.

concentrated mass

w1

h

admissible design domain

w2

Figure 23: Boundary condition for the out of plane spring. The red side area is fully constrained (i.e. the
line indicated by w1). The location of the boundary conditions are defined by W1 = 6mm and W2 = 27
mm. A concentrated mass at the centre of the plate of Mc = 0.4 kg. The center of the concentrated mass
is defined in the center of the plate with a radius of r = 5 mm.
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(a) First eigenmode Matlab 29.58 Hz (b) First eigenmode Comsol 27.309 Hz

(c) Second eigenmode Matlab 82.04 Hz (d) Second eigenmode Comsol 84.585 Hz

Figure 24: First two eigenmodes for a fully solid plate with the presented boundary conditions. The red
dots show the boundary condition as explained in Figure 23.

Model 1st eigenfrequency 2nd eigenfrequency
Matlab 29.58 Hz 82.04 Hz
Comsol 27.31 Hz 84.59 Hz

Difference 8.3% 3.1%

Table 13: Eigenfrequency values of the Matlab simulation and the Comsol simulation.

The boundary condition used for simulating the spring is shown in Figure 23. The boundary conditions are
two fully constrained sides, defined by the red lines. The boundary conditions of Figure 23 are different
from the representation in Figure 22, as the placement of the boundary conditions are free to choose for
this design case. The material properties of stainless steel SS301 are a Young’s modulus of E = 200 GPa,
a density of ρ = 8000 kg/m3 and a Poisson’s ratio of ν = 0.3. Furthermore, the dimension of the plate
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is 60x60x0.6 mm and the discretization is 100x100 Reissner-Mindlin plate elements, which is simulated in
Matlab. A concentrated mass in the center of the plate of 0.4 kg is added to simulate the actuator. This
mass is spread across a ring of a radius of r = 5 mm. Moreover, the density with Heaviside filter and the
level-set with CSRBF 4 will be used to solve this problem. There are two different studies that are simulated
for this problem, as they produced the most optimal results for the design cases in Section 5. The following
optimization strategy is adopted:

• Firstly, the density and level-set approach will evaluate this design case with the parameters used in
previous design cases in this thesis, i.e. the values from Table 3 and Table 5. This study is intended
to simulate this design case for someone that solves this design case in an industrial environment (i.e.
with minimal adjustment of method specific parameters).

• Secondly, the design case is fully optimized for all method specific parameters by means of adjusting
the continuation settings, support and filter radius and algorithm settings. This is to find the ultimate
performance of both methods.

The initial two eigenfrequencies for a fully solid domain are verified in Comsol. The results are shown in
Table 13 and their corresponding eigenmodes are shown in Figure 24. There is a slight difference of the
Comsol model to the Matlab model, which is probably caused due to a difference in the discretization of the
Comsol model and a difference in the definition of the concentrated mass.

7.2 Results with method specific settings from Section 5

The results of this section reflect the implementation in an industrial setting, where the method specific
settings in Section 5 are used. The resulting designs for the density approach with Heaviside filter and the
level-set approach with the use of CSRBF 4 are shown in Table 14 and in Figure 25. It must be noted that
Figure 25.b shows a failed attempt of the density method. The iteration for both methods is shown in Figure
27.

Function 1st eigenfrequency [Hz] 2nd eigenfrequency [Hz] Mnd [%] Iterations
Density 10.22 54.16 0.08 86

Level-set 14.90 46.62 0.48 68

Table 14: Case study results with the use of parameters from Section 5.

Interestingly, both the methods diverged to a different final design. The density approach has considerably
more material compared to the level-set approach. The density representation has a small disconnection in
the top right part of the design. This in turn results in twisted eigenmode, which can be seen in Figure 26a.
On the other hand, the level-set result does have the correct out of plane direction for the first eigenmode,
as seen in Figure 26b. Furthermore, both methods have converged to a value of 10.22 Hz for the density
method, having an offset of 18.2%, and 14.90 Hz for the level-set method, having an offset of 19.2 %. This
is a considerable error for both methods for the desired eigenfrequency. Although the first eigenfrequency
has a considerable error for both methods, the second eigenfrequency of both methods are well above the
criterion of 2×f0. Also, the value for the Mnd is well below 5% for both methods. What is surprising is that
the density approach had difficulties to converge in this design case, so some modifications to the algorithms
were implemented to ensure a feasible result. A failed result can be seen in Figure 25.b. On the other hand,
the level-set approach did not have any difficulties in this design case and converged without any problems.
To conclude, the density representation is not suited for production, as it does have a considerable error
in the objective function. Also, due to the disconnected part in the top right corner of the geometry, the
direction of the eigenmode is changed, which makes it unsuited for this application. On the other hand, the
level-set results also has a considerable error in the objective function. Therefore, the design is not optimal
to use in a practical application. However, the final design is better suited to use in a practical application
compared to the density approach, as the eigenmode has the right out of plane direction.
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(a) Density approach representation. (b) Failed density approach representation.

(c) CSRBF 4 density representation. (d) CSRBF 4 zero level-set representation.

Figure 25: Results for the first case with the use of parameters from Section 5. The density method had
difficulties to converge for this design case, so a failed convergence has been added in Figure (b).

(a) First eigenmode of the density approach of 10.22 Hz,
where the disconnected part results in a hinged

eigenmodes.

(b) First eigenmode of the level-set approach of 14.90 Hz,
with a good out of plane direction.

Figure 26: Results for the first eigenmodes of the results from the optimization run with the same method
specific settings from Section 5. The red lines indicate the boundary condition of the plate.
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(a) Iteration history of the density optimization run
with a filter radius of 3 elements.
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(b) Iteration history of the level-set optimization run
with 6 elements for the support radius.

Figure 27: Optimization runs of the density and level-set method for the first study of the Chest Master
spring.

7.3 Results with optimized settings

For this design case both the density and level-set methods are optimized for the most optimal performance.
For the Heaviside filter the filter radius has been set to rmin = 2 to have the smallest length scale. Further-
more, the support radius for the level-set approach has been found experimentally, where a support radius of
5 elements seem to result in the best performing designs. The next step is to modify the continuation settings
for both methods. The Heaviside filter continuation updates after 20 iterations with a factor of β = β ∗ 1.5.
The bandwidth continuation is set to an update step of ϕb = ϕb −0.04 elements after every iteration, starting
at 20 iterations. It was opted for these continuation strategies, as large continuation steps would result in
instabilities in fast changing design changes. Due to the small incremental steps, the algorithm has time to
alter the design for the most optimal solution. The results for the optimized settings are shown in Figure 28
and Table 15. A validation of the correct eigenmodes is shown in Figure 29, which shows the first and second
eigenmode of both the density and level-set approach. The iteration history for both methods is shown in
Figure 30.
Some general observations can be made from these results. First of all, both the density and level-set approach
have similar design representations as in the first study of this design case in Section 7.2. Furthermore, the
results in Table 15 show that the first eigenfrequency now has an error of 0.08 % for both methods, which
is almost a negligible difference. The second eigenfrequency however is substantially larger for the density
approach compared to the level-set approach. Even though it is advantageous to have a higher second
eigenfrequency, the requirement of fi > 2 ∗ f1 is met for both cases. Finally, both of these results seem
feasible from a manufacturing perspective. The preference lies in difference between a more simple and
lightweight design, for the level-set approach, over an increased second order eigenmode for the density
approach.
To conclude, both methods seem feasible to be used in a practical application. The objective of synthesizing
the first eigenfrequency at 12.5 Hz is achieved with an error of 0.08%. The difference lies in a more improved
second eigenfrequency value for the density approach, or a more simplistic and lighter design for the level-set
approach.

Function 1st eigenfrequency [Hz] 2nd eigenfrequency [Hz] Mnd [%] Iterations
Density 12.51 61.55 0.28 107

Level-set 12.51 36.13 0.04 159

Table 15: Case study results where every parameter is optimized to achieve the best performance.
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(a) Density approach representation. (b) CSRBF 4 density representation. (c) CSRBF 4 zero level-set representation.

Figure 28: Results for the second case where every parameter is optimized to achieve the best performance.

(a) First eigenmode of the density approach. (b) Second eigenmode of the density approach.

(c) First eigenmode of the level-set approach. (d) Second eigenmode of the level-set approach.

Figure 29: Eigenmodes of the resulting designs of the density and level-set approach for the second study.
The red lines indicate the boundary condition of the plate.
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(a) Iteration history of the density optimization run
with a filter radius of 2 elements.
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(b) Iteration history of the level-set optimization run
with 5 elements for the support radius.

Figure 30: Optimization runs of the density and level-set method for the second study of the Chest Master
spring.
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8 Conclusion and recommendations

8.1 Conclusions

The set up
This study provides an extensive comparison of the density and level-set approach, which solve various
design cases with the use of topology optimization for vibration problems. The main objective of this
research is to compare the performance of both approaches and test their applicability in the academic and
industrial field. To be able to make a scientifically significant comparison, most of the features of the level-
set approach are similar to the density approach. This in turn results in most similarities between the two
approaches in terms of parameterization and computation strategy. The density approach uses the modified
SIMP method to resolve the occurrence of localized eigenmodes. On top of that, two different filters are
incorporated into the density approach to have an additional design representation. The density and level-
set approach have common features including material penalization, geometry mapping and using MMA as
the update procedure with the use of material parameter sensitivities. However, the level-set approach is
parameterized using three different CSRBF. These functions are chosen, as they provide a balance between
design detail, convergence rate and memory allocation. To ensure that this research solves scientifically sound
problems that are consistent with previous work in the topology optimization of vibrating structures, the
selected design cases are based on frequently used benchmark problems in literature. These benchmark cases
determine the most optimal settings for each of the density and level-set approach, where after an industrial
design case is solved with the use of these settings. The final results of each design case is compared via a
set of both qualitative and quantitative criteria. This structured approach highlights the differences in the
applied approaches. In general, this thesis shows that the density and level-set approach are both capable
of producing useful results in the field of topology optimization for vibration problems. However, there are
some pros and cons with the use of each method.

The density approach
The density method is able to produce well-performing designs over all the implemented design cases. Ad-
ditionally, the mesh size study revealed that a coarse mesh simulation favors the density method slightly
more, as it needs less iterations to converge and the results showed a slightly more improved objective func-
tion. Furthermore, the density approach has less method specific parameters, making this approach easier
to understand and less time consuming to implement. However, the density method is more prone to the
occurrence of localized eigenmodes. The localized eigenmodes did not seem to cause any problems during the
optimization processes, however it is something to be noted. Thus, the density method is a good all-round
method which is accessible in an industrial setting, that does not need much tuning of the method specific
parameters to work properly. From an academic viewpoint, the density approach is more easy to implement
and a variety of literature is available for extensions of the approach. However, the approach does not always
result in the most optimal performance for a given design case.

The level-set approach
The level-set approach slightly outperformed the density approach in most of the design cases. Furthermore,
the level-set simulations did not suffer from localized eigenmodes. On the other hand, this approach comprises
of more complex method specific parameters such as the support radius or type of CSRBF. However, the
design cases revealed that the CSRBF 4 with a support radius of 6 elements produced consistently well
performing results. Moreover, the results of the mesh size study reveal that a small mesh size results in a
slightly more improved objective function compared to the density approach. For an industrial environment,
the level-set approach has a major advantage in that the final design representation can be more easily
recreated in a CAD environment. Furthermore, the approach produces well performing designs with the
proposed parameters. For further improvements of the results, the level-set approach might take more tuning
time of the method specific parameters compared to the density approach. From an academic viewpoint,
the level-set approach has the ability to solve more complex vibration problems with more performance.
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Industrial design case
Finally, an industrial design case has been optimized with the use of topology optimization to prove its
versatility to solve complex problems. In this case a planar spring must have the first eigenfrequency at
f0 = 12.5 Hz and higher eigenfrequencies must be at least twice as high as the first eigenfrequency. The plate
used to be manually modified without a clear improvement of the objective function. Two design studies
have been evaluated, where one study (study 1) uses the parameters implemented at the comparison of the
design cases in Section 5 and another study (study 2) that looks for the ultimate performance. The results
of study 1 favored the level-set approach, as the final design of the density representation had a disconnected
part. This disconnection of the part resulted in a wrong shape of the first eigenmode. Study 2 revealed
that both the density and level-set approach could be used for the application. The differences lied in that
the density approach had a higher second order eigenfrequency, whereas the level-set approach has more
simple geometric features and a lighter design. This case study illustrates that topology optimization is not
a black box design tool that can be applied to any problem without thinking. To get the best out of both
methods, tuning of parameters is needed. This tuning will be more effective with more topology optimization
knowledge and experience.

Concluding
To conclude, both methods are well-suited to solve a variety of design cases in the field of topology opti-
mization for vibration problems. Key differences of the methods are the ability to obtain a more improved
objective function, occurrence of localized eigenmodes, complexity of the applied approach and design repre-
sentation. On one hand, the density approach is easy to implement and is slightly more favored for a coarse
mesh, however it can be more prone to instabilities and a less optimal objective function. On the other
hand, the level-set approach can have an improved objective function, has a crisp final design representation
and did not encounter local eigenmodes, however the method is more complex to tune the method specific
parameters.

8.2 Future research

This thesis can be used as a baseline for future studies on vibration problems. The sheer amount of design
cases used in this work can act as reference for newly developed techniques. Additionally, a small part of
the code that solves multiplicity is added in Appendix B

• Future work on the current topic (i.e. comparison of topology optimization for vibration problems)
should further validate the findings in this thesis with more complicated design cases in combination
with a more comprehensive FE analysis. This is most important regarding the performance study of
Section 6.6. This study could suffer from a poor FE analysis and only one sample has been tested.
Therefore, additional testing may find different results.

• Furthermore, the presented framework uses a level-set approach, which is based on the density method.
Although this mapping has most similarities with the density method, there are more mapping meth-
ods for the level-set approach (e.g. immersed boundary and conforming discretization) that could
outperform the density mapping.

• Moreover, the presented framework has no control over mode shapes. This type of optimization has
been investigated by Tsai and Cheng [2013], however the author could not replicate the techniques used
in this work. Mode shape optimization is useful for a variety of design cases, where specific positions
of the geometry need to contain nodes or anti-nodes. Further investigation of this type of vibration
optimization would solve recurrent design cases in industrial environments.

• Finally, the author believes that topology optimization should be more accessible for users in an
industrial environment. The tool would give an useful early insight in possible solutions to solve a
given design case, which is currently more difficult to realise. To make topology optimization more
accessible, it would be convenient that most, if not all, settings should be automatically provided by
the program based on the design input. A method like hyperparameter optimization could provide a
solution to make the parameters readily available.
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A Overall evaluation of best results

From the results it was found that the Heaviside filter and the CSRBF 4 produced the overall best result
from the design cases. This section provides a more clear overview of these obtained results from Section 6.

Method Optimized result ω [rad/s] Mnd [%] Iterations

Section 6.1

Density 173.2 1.37 46

Level-set (VF) 174.5 0.80 84

Zero level-set

Section 6.2

Density 9.53 3.52 35

Level-set (VF) 8.90 1.41 58

Zero level-set

Section 6.3

Density 304.7 0.26 64

Level-set (VF) 301.9 2.72 88

Zero level-set

Table 16: Results of the selected best performing method for the 2D in plane cases. The selected methods are
the Heaviside filer for the density approach and the CSRBF 4 for the level-set approach. The abbreviation
(VF) refers to the Ersatz volume fraction of the level-set approach.
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Method Optimized result ω [rad/s] Mnd [%] Iterations

Section 6.4

Density 75.6 2.93 43

Level-set (VF) 76.6 0.15 41

Section 6.5

Density 650.0 0.01 65

Level-set (VF) 756.7 0.17 62

Table 17: Results of the selected best performing method for the 3D plate cases. The selected methods are
the Heaviside filer for the density approach and the CSRBF 4 for the level-set approach. The abbreviation
(VF) refers to the Ersatz volume fraction of the level-set approach.
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B Multiplicity matlab code

This section shows a function of the matlab code, where a multiplicity condition of two eigenfrequencies
occurs. The code is meant to be used for future research.

function [dc] = Sensitivites_double(k,phi ,penal ,E0 ,Emin ,xPhys ,nelx ,nely ,...

KE ,ME ,labda ,edofMat)

% This function solves the sensitivities for a multiple eigenvalue of two
% adjacent eigenvalues. For an extension to three or more multiple

5 % eigenvalues the [g] matrix should be expanded accordingly
%
% k = lowest eigenmode of multiple eigenvalue
% phi = eigenmodes corresponding to the multiple eigenvalue
% penal = the penalty value of the modified simp

10 % E0 = Young’s modulus
% Emin = minimal Young’s modulus value
% xPhys = Element density
% nelx = amount of elements in x−direction
% nely = amount of elements in y−direction

15 % KE = elemental stiffness matrix
% ME = elemental mass matrix
% labda = eigenvalue of the multiple eigenvalue
% edofMat = the element node numbering
%% sensitivity calculation for adjacent frequencies

20 for k = k

for i = 1:nelx

for j = 1:nely

%%% Element numbering
el = (i-1)* nely+j;

25 %%% Sensitivities of the elemental matrices
delc = (penal*(E0-Emin)*xPhys(j,i).^( penal -1)*KE - labda(k)*ME);

%%% Setup the G matrix
g11(j,i) = phi([ edofMat(el ,:)],k)’ * delc* phi([ edofMat(el ,:)],k);

30 g12(j,i) = phi([ edofMat(el ,:)],k)’ * delc* phi([ edofMat(el ,:)],k+1);

g22(j,i) = phi([ edofMat(el ,:)],k+1)’* delc* phi([ edofMat(el ,:)],k+1);

A = [g11(j,i), g12(j,i); g12(j,i), g22(j,i)];

[VV ,WW] = eigs(A);

WW = diag(WW);

35

%%% new sensitivities matrix
for o = k:k+1

dc(j,i,o)= WW(o+1-k);

end

40 end

end

gg(:,:,1) = g11;

gg(:,:,2) = g22;

45 %%% check if off−diagonal terms are zero
if abs(sum(sum(g12 ))) < 1e-4

for o = k:k+1

dc(:,:,o) = gg(:,:,o+1-k);

end

50 fprintf(’No multiplicity %g.\n’);

else

fprintf(’Double Multiplicity %g.\n’);

end

end
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C FEM check

It is important to validate the implemented FEM to have representative results. The elements of the 8
DOF 4 node quadrilateral plane stress elements and the 12 DOF 3D 4 node quadrilateral Mindlin-Reissner
elements have been checked via COMSOL and the paper of Du and Olhoff [2007]. The simply supported
beam of Figure 14.1 is used with a density of ρ = 1, a Young’s modulus of E = 107 MPa, a Poisson’s ratio
of ν = 0.3, 240x30 quadrilateral plane stress elements and a dimension of 8x1 m. The results are shown in
Table 18 and the resulting first eigenmode in Figure 31.

Model Eigenfrequency [rad/s]
COMSOL 68.1537

Du and Olhoff [2007] 68.7
Current work 68.3209

Table 18: Eigenfrequency results for validation of plane stress FE.

(a) Comsol FEM check in plane (b) Matlab FEM check in plane

Figure 31: 2 Figures side by side

Furthermore, the out of plane Mindlin-Reissner elements are only validated via COMSOL. These results are
shown in Table 19 and visual results in Figure 32.

Model Eigenfrequency [rad/s]
COMSOL 106.1544

Current work 106.1518

Table 19: Eigenfrequency results for validation of the Mindlin-Reissner FE.

(a) Comsol FEM check out of plane (b) Matlab FEM check out of plane

Figure 32: 2 Figures side by side
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D Validating results with literature

This section validates the obtained results of the design case of the beam with simply supported ends, which
is the boundary condition of Figure 14.1. The results from Du and Olhoff [2007] are used to compare with.
The parameter settings used in this work are different from that in the work of Du and Olhoff. However, it
gives in indication in the corectness of the implemented approach.

Figure 33: Results for the simply supported beam from Du and Olhoff [2007] with the use of a sensitivity
filter.

Figure 34: Results for the sensitivity filter with a filter radius of 3 elements.

Figure 35: Level-set results of the CSRBF 4 and 6 elements support radius.
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E Filter and support radii study

This section represents the results for different filter and support radii and their corresponding results. The
study shows the influence of the filter and support radius for the design representation. All of these examples
have the objective function of maximizing the fundamental eigenfrequency for the boundary condition of
Figure 14.1 and the boundary condition of Figure 14.4 are used. All the parameters are fixed, except for
the filter and support radii. The density approach uses the filter radii of rmin = [1.5,2,2.5,3,4] elements
for all examples. The level-set approach uses R = [2,3,4,5,6,7,8] elements for the beam example and R =
[3,4,5,6,7,8] elements for the plate example.
The results of this study can be seen in Table 20 till 23. The results show the objective function, measure
of non-discreteness and amount of iterations until convergence. The results of these studies are not related
with the results obtained in section 8.

Elements Optimized result ω Mnd

Sensitivity filter

1.5 174.2 5.73

2 173.9 3.66

2.5 172.7 5.77

3 172.2 4.53

4 171.1 5.91

Heaviside filter

1.5 174.2 0.24

2 173.8 0.47

2.5 174.3 0.92

3 173.5 1.64

4 172.5 172.5

Table 20: Results for the beam like example. The density method and different filter radii for the sensitivity
and Heaviside filter are used. The corresponding values for ω [rad/s] and Mnd is [%] is behind the results.
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Elements Density representation Zero level-set ω Mnd

CSRBF 2

2 161.05 17.57

3 181.53 1.71

4 180.42 1.89

5 179.83 1.78

6 180.85 1.66

7 182.61 0.97

8 182.00 0.81

CSRBF 4

2 183.29 1.08

3 185.18 0.27

4 184.74 0.35

5 185.18 0.39

6 180.59 0.38

7 182.63 0.25

8 180.95 0.10

CSRBF 6

2 171.18 11.54

3 182.54 1.20

4 184.78 0.47

5 182.72 0.82

6 173.27 1.06

7 182.83 0.95

8 183.68 0.55

Table 21: Results for the beam like example of the level-set method and different radii for the CSRBF. The
corresponding values for ω [rad/s] and Mnd is [%] is behind the results.
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Elements Sensitivity filter Results Heaviside filter Results

1.5

ω=74.54

Mnd=9.86

ω=75.03

Mnd=0.57

2

ω=75.38

Mnd=6.30

ω=72.09

Mnd=0.14

2.5

ω=74.85

Mnd=9.96

ω=75.17

Mnd=0.64

3

ω=74.93

Mnd=9.97

ω75.04

Mnd=1.38

4

ω=74.74

Mnd=9.12

ω=75.60

Mnd=0.65

Table 22: Results for the density method and different filter radii for the plate like example. The corre-
sponding values for ω [rad/s] and Mnd is [%] is behind the results.
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Elements CSRBF 2 Results CSRBF 4 Results CSRBF 6 Results

3

ω=0.06

Mnd=15.03

ω=72.91

Mnd=0.38

ω=70.94

Mnd=2.08

4

ω=70.99

Mnd=3.92

ω=73.60

Mnd=0.18

ω=72.15

Mnd=1.12

5

ω=73.15

Mnd=1.65

ω=75.41

Mnd=0.06

ω=73.63

Mnd=0.26

6

ω=73.39

Mnd=1.61

ω=76.15

Mnd=0.08

ω=75.71

Mnd=0.16

7

ω=73.65

Mnd=1.01

ω=76.63

Mnd=0.11

ω=76.71

Mnd=0.09

8

ω=73.73

Mnd=1.09

ω=76.16

Mnd=0.22

ω=76.46

Mnd=0.14

Table 23: Results for the level-set method and different filter radii for the different CSRBF for the plate
like example. The corresponding values for ω [rad/s] and Mnd is [%] is behind the results. Only the density
representation of the level-set function is shown.
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