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Abstract—Differently from conventional procedures, the pro-
posed solution advocates for a groundbreaking paradigm in water
quality monitoring through the integration of satellite Remote
Sensing data, Artificial Intelligence techniques, and onboard pro-
cessing. While conventional procedures present several drawbacks
mainly related to late intervention capabilities, the objective of
what proposed is to offer nearly real-time detection of contami-
nants in coastal waters addressing a significant gap in the existing
literature and allowing fast alerts and intervention. In fact, the
expected outcomes include substantial advancements in environ-
mental monitoring, public health protection, and resource conser-
vation. Namely, the specific focus of our study is on the estimation
of Turbidity and pH parameters, for their implications on human
and aquatic health. Nevertheless, the designed framework can
be extended to include other parameters of interest in the water
environment and beyond. Originating from our participation in the
European Space Agency OrbitalAI Challenge, this article describes
the distinctive opportunities and issues for the contaminants’ mon-
itoring on the Φsat-2 mission. The specific characteristics of this
mission, with the tools made available, will be presented, with the
methodology proposed by the authors for the onboard monitoring
of water contaminants in near real-time. Preliminary promising
results are presented, along with an introduction to ongoing and
future work.

Index Terms—Artificial intelligence (AI), coastal water
contaminants, earth observation, machine learning, onboard
processing, remote sensing (RS).

I. INTRODUCTION

THE pressing challenges arising from population growth,
escalating water demands for agriculture, energy, and in-

dustry, coupled with climate change impacts, underscore the
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urgent necessity to meticulously monitor and evaluate trends in
water resources worldwide [1], [2], [3], [4], [5], [6], [7].

This proactive approach ensures the establishment of a solid
foundation for water security, guaranteeing sustainable access
to safe and usable water. Effective, integrated monitoring of the
water cycle’s trends and variations, encompassing both quantity
and quality, requires combining satellite and in situ observations,
data assimilation, and models. A review of existing observational
systems underscores the imperative need for a new, integrated
monitoring capability dedicated to water security. The required
components for such a capability already exist and can be seam-
lessly integrated through collaborative efforts among national
observational programs as shown by Lawford at el. [8].

Furthermore, as the global population grows, particularly in
developing countries where problems, such as water scarcity
and quality concerns, are expected to intensify, tensions among
different sectors (e.g., agriculture versus urban users) and obsta-
cles to balancing human needs and ecological requirements are
inevitable. Tragically, over one and a half million individuals
face severe health issues or perish annually due to the lack of
access to safe drinking water and sanitation [9]. Given the esca-
lating pressures on water resources, monitoring assumes critical
significance across spatial and temporal scales, providing a
systematic and transparent approach to addressing water-related
challenges.

The United Nations and their 2030 Agenda, adopted in
September 2015, with the Sustainable Development Goals, out-
line several key points, among which ensuring access to water
and sanitation for all is crucial [10].

The issue of water pollution presents a considerable challenge
to both human health and the environment across numerous
countries. Therefore, the importance of monitoring contami-
nants in water areas cannot be understated, as it is instrumental
in seeking effective and meaningful solutions to address both
natural and human-induced problems. The importance of the
topic is so remarkable because marine environments suffer from
a lack of sufficient sampling, and the prolonged effectiveness of
environmental monitoring programs is impeded by inadequate
funding. Given all the above, monitoring water contaminants
in coastal areas is crucial, as highlighted in numerous scien-
tific articles addressing this issue and emphasizing the main
causes and effects for each of them [11], [12]. Indicators of
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water quality, such as its physical, chemical, and biological
characteristics, are typically provided by gathering samples in
the field and analyzing them in a lab. However, this proce-
dure is impractical, and providing a simultaneous water quality
database on a regional scale demands significant labor and time,
primarily based on in situ measurements. Furthermore, conven-
tional ground-based point-sample techniques face challenges in
capturing the spatial and temporal variations in water quality,
crucial for comprehensive assessment and effective waterbody
management. This limitation underscores the necessity to ex-
plore innovative monitoring methods for detecting contaminants
in water. It is important to note that there are numerous existing
methods that leverage Remote Sensing (RS) techniques and
satellite data, which will be discussed in greater detail in the
following Section II. Specifically, in our approach by integrating
RS techniques with in situ measurements, we can effectively
monitor water contaminants. We propose a promising approach
that involves implementing a monitoring process. This process,
which relies on predefined acceptable thresholds for water qual-
ity parameters, can provide near real-time alerts to emerging
risks. The strength of our research lies in its ability to offer
timely and proactive risk management, enhancing the overall
responsiveness and effectiveness of water quality monitoring
systems.. This establishes an alert system aimed at safeguarding
both human health and the well-being of aquatic ecosystems.
Consequently, there is an increasing demand for smart detection
methods that can offer valid solutions to the problem described.

The contribution of our work represents an answer to this
challenge and aims to realize an innovative method for moni-
toring near real-time coastal water contaminants, as described
ahead in this article.

Onboard applications may be optimal for early alert systems,
such as volcanic eruption detection [13], vessel detection [14],
cloud detection [15], and fire smoke detection [16]. Yet there
are few studies on onboard marine quality such as [17] and [18].
Compared to terrestrial counterparts, in a properly designated
mission, the immediacy of detection can significantly reduce
latency in notification [19], [20] [13], [21]. The artificial intel-
ligence (AI) model we designed and proposed in this article is
engineered to deliver nearly real-time detection of coastal water
pollutants through the utilization of satellite data and advanced
Machine Learning (ML) algorithms, to be processed on board.
Our innovative solution and its monitoring capabilities can be ex-
tended to encompass open seas, safeguarding economically vital
assets such as fisheries and tourism. This pioneering application
of AI and satellite data significantly diminishes response times
for pollution detection, because by performing the processing
onboard, anomalies can be identified and transmitted to the
ground in real-time. This eliminates the need to wait for the
satellite data to be first sent to the ground and then processed,
significantly reducing the overall response times. An example
of this can be found in the study conducted by [22], which
discusses the importance of onboard processing for improving
response times in remote sensing applications. The use of AI
onboard satellite offers Governments and decision-makers a tool
to ensure the protection of public health. Our solution adds value
to the existing state-of-the-art (SOTA); our onboard AI-powered

solution elevates environmental monitoring by furnishing real-
time insights, extending coverage, and contributing to a healthier
planet. Existing solutions for water quality monitoring rely
on water sampling campaigns and/or involve the use of water
quality equipment, leading to substantial operational resources
and costs. Simultaneously, conventional approaches are limited
to detecting water anomalies after their occurrence, typically
when it is too late to implement preventive measures to protect
public health or businesses. On the contrary, we aim to find a near
real-time solution proposed as shown in Fig. 1, demonstrating
how the process involves extracting parameters from an image,
identifying anomalies, and transmitting only anomalous data
toward the ground stations. The main contributions of this work
are as follows.

1) Onboard AI Processing: This work pioneers the use of on-
board AI processing for near real-time monitoring of water
quality, specifically focusing on turbidity and pH levels.
By performing data processing directly on the satellite, we
significantly reduce the latency compared to traditional
methods that rely on ground-based postprocessing.

2) Integration with ΦSat-2 Mission: The proposed method-
ology is implemented and tested on the hardware of the
ΦSat-2 mission, part of the ESA OrbitalAI Challenge.
This demonstrates the feasibility and effectiveness of our
onboard AI approach in a real-world satellite mission.

3) Improved Response Time: Our approach enables much
faster detection and response to water quality issues, which
is critical for early warning systems and timely interven-
tion in coastal areas.

4) Scalability and Extensibility: While this study focuses on
turbidity and pH parameters, the onboard AI framework
is designed to be scalable and extensible to other water
quality parameters and environmental monitoring tasks.

5) Promising Preliminary Results: The initial results from
our onboard processing framework show great promise,
and we outline potential future work to further refine the
model and extend its applications to other environmental
monitoring challenges.

6) Advancement in Environmental Monitoring: By leverag-
ing advanced AI algorithms and the processing capabili-
ties of modern satellite missions, this work aims to advance
the SOTA in environmental monitoring, contributing to
public health protection and resource conservation.

The rest of this article is organized as follows. Section II
illustrates a wide analysis of the SOTA for the detection of water
contaminants, focusing on AI-based techniques. In Section II-A,
the main parameters monitored and presented in SOTA are
introduced and discussed. The choice of turbidity and pH as
the first parameters to study is also justified by their relationship
with many other contaminants. A description of the futureΦsat-2
mission is given in Section II-B and II-C to furnish important
information on its characteristics to interested researchers, in-
cluding the details of the processor and the simulator that will
work on board. In Section III, details on the Myriad 2 device
are given. Section IV describes the dataset creation, based on
in situ data of Ligurian ARPA used as Ground Truth (GT) and
the Φsat-2 satellite data made available through its simulator.
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Fig. 1. Top Workflow (conventional approach): Data is acquired and minimally preprocessed on the satellite before being transmitted to the ground station,
where in-depth analysis for anomalies is conducted. Bottom Workflow (our proposed procedure): The satellite extracts parameters and detects anomalies onboard,
transmitting only the relevant anomaly data to the ground station, reducing data transmission and enabling faster detection.

The proposed methodology is explained in Section V, high-
lighting the strengths of onboard AI processing in delivering
near real-time solutions for monitoring water contaminants,
by filling a gap in the present literature. The models are also
introduced in this section with the proposed AI for Early De-
tection of Environmental Threats (AI4EDoET) architecture and
there is also a brief introduction to the metrics. Section VI
discusses the results reported for both cases: Results with CPU in
Section VI-A and results with Myriad 2 Section VI-B. Finally,
Section VII concludes this article.

II. BACKGROUND

The integration of RS techniques enhances water quality
assessment by overcoming traditional limitations, as highlighted
in [23]. RS, when combined with in situ measurements, of-
fers significant advantages for monitoring Ocean Water Qual-
ity (OWQ) parameters on both large and coastal scales. This
approach is based on the optical measurability of most water
quality parameters from satellite data. The review covers OWQ
parameters such as chlorophyll-a (Chl-a), colored dissolved
organic matter, Secchi disk depth, turbidity, total suspended
sediments (TSS), SST, and chemical oxygen demand (COD),
along with monitoring models utilizing various RS datasets.
Semianalytical models coupled with multivariate statistical anal-
ysis have gained attention due to their advantages over analytical
approaches, which are deemed complex. Empirical and semiem-
pirical models, though easy to implement, require sufficient in
situ measurements for coefficient estimation. Efforts have been
made to integrate RS datasets with alternative environmental
models to address limitations. Adjovu et al. [24] emphasizes
the integration of multispectral sensors for water quality mon-
itoring, particularly beneficial in developing regions. However,
challenges arise with coarse-resolution images, necessitating
refinement through atmospheric correction models and explo-
ration of high-resolution and hyperspectral imagery. In addition,
the evolution of ML models and their integration into RS have
introduced a novel dimension to water quality metrics.

For example, Kwong et al. [25] utilized Sentinel-2 satellite
imagery and Google Earth Engine to monitor marine water
quality in Hong Kong. They applied artificial neural network
(ANN) models, achieving an root mean square error (RMSE)
of 1.954 Nephelometric Turbidity Unit (NTU) for turbidity,
RMSE of 4.513 mg/L for suspended solids (SS), and RMSE
of 2.18 µg/L for Chl-a. These results highlight the effectiveness
of ANN in providing continuous and updated insights into water
quality. In contrast, the Cubist Model (ML-CB) used in the study
proposed by Do et al. [26] combines both optical and SAR
data (Sentinel-2A and Sentinel-1A) to estimate surface water
pollutants such as TSS, COD, and biological oxygen demand
(BOD). The accuracy of this model was validated against field
survey data using regression models, demonstrating its robust
performance in pollutant estimation and its potential for effective
water quality management. Another significant contribution is
the study proposed by Hibjur et al. [27] that applies RS-derived
indices and ML algorithms to analyze spatio-temporal changes
in surface water bodies in the lower Thoubal river watershed.
By integrating Landsat data from multiple years and applying
ML techniques, this study highlights the random forest model’s
superior performance in accurately extracting surface water
across different seasons. Furthermore, Nazeer et al. [28] showed
that ML methods, particularly neural networks (NN), surpass
empirical predictive models in estimating SS and Chl-a in com-
plex water bodies. Moreover, Vakil et al. [29] explored the use of
ANN and linear regression models to determine the relationship
between Landsat 8 Operational Land Imager data and total nitro-
gen (TN) and total phosphorus (TP) concentrations. Compared
to LR models, the ANN model showed higher accuracy in the
testing phase, with R values of 0.81 for TP and 0.93 for TN. In
addition, Sharaf El Din et al. [30] employed a Back-Propagation
Neural Network (BPNN) framework to measure surface water
quality parameters, focusing mainly on local oceanographic
processes. This study reported high R2 values—ranging from
0.930 to 0.991—for turbidity, TSS, COD, BOD, and dissolved
oxygen, illustrating the BPNN model’s effectiveness in assess-
ing surface water quality. Our study introduces AI onboard
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TABLE I
COMMON TURBIDITY VALUES IN NATURAL ENVIRONMENTS, REPORTED IN NTU (NEPHELOMETRIC TURBIDITY UNITS) [31]

for contaminant detection, a pioneering approach unmatched
in existing literature. This methodology not only accelerates
anomaly detection, but also offers a forward-looking solution,
qualifying for potential deployment in space missions like
Φsat-2 or the International Space Station, following participa-
tion in the OrbitalAI Challenge endorsed by ESA Φ-lab.

A. Water Contaminants Parameters

With a focus on key parameters such as Temperature, Dis-
solved Oxygen, pH, Turbidity, Macroinvertebrates, Escherichia
coli (E. coli), Nutrients, Habitat Assessment, and Metals, the
rationale behind this monitoring approach is rooted in extensive
research, notably drawing inspiration from the U.S. Environ-
mental Protection Agency (EPA) [32] where the detailed reasons
are described. In a particular way, turbidity, a pivotal parameter,
is intricately connected to TSS, functioning as a key indicator
of shared water quality characteristics. The impact of elevated
turbidity levels on aquatic health is profound, affecting fish gills,
visibility for predators, light penetration for aquatic plants, and
fish resistance to disease. A variety of factors, both natural and
human-induced, contribute to turbidity changes, underscoring
the imperative need for continuous monitoring [33], [34]. Un-
derstanding typical turbidity values for various scenarios [31]
is paramount as shown in Table I. Constant vigilance in mon-
itoring turbidity is crucial for safeguarding water ecosystems
and ensuring the well-being of both aquatic life and human
populations. For this reason, considering thresholds established
by international governmental entities facilitates the alert sys-
tem process, thereby contributing to mitigating risks to human
health [35]. Ensuring water quality involves vigilant monitoring
of various parameters affecting turbidity, with pH standing out
as a critical factor. In fact, the logarithmic nature of the pH
scale emphasizes its importance, where even a slight one-unit
change signifies a ten-fold shift in acidity. The pH not only
influences water chemistry and toxicity, but also affects the
solubility and toxicity of metals. Fluctuations in pH levels are
a daily occurrence in lakes and rivers, influenced by factors
like photosynthesis, respiration of aquatic plants, and human
activities and in a specific way we can consider common value
of pH as shown in Table II.

When https://www.fondriest.com/environmental-measure
ments/parameters/water-quality/ph/pH levels dip below 7.6,
coral reefs are prone to collapse due to insufficient calcium
carbonate. Freshwater species with heightened sensitivity,
like salmon, thrive in pH levels ranging from 7.0 to 8.0.
Exposure to levels below 6.0 can result for salmons in severe

TABLE II
TYPICAL PH VALUES FOUND IN NATURAL ENVIRONMENTS [36]

distress and physiological damage caused by the absorption
of metals. The significance of pH monitoring extends to its
impact on marine and freshwater ecosystems. In coastal areas,
continuous monitoring of turbidity and pH is imperative for
safeguarding both human health and the delicate balance of
aquatic ecosystems. Furthermore, the inclusion of additional
parameters, such as E. coli, adds another layer of importance
to water quality assessment. E. coli serves as a vital indicator
of fecal contamination, providing insights into the potential
presence of disease-causing bacteria and viruses in freshwater.
Elevated levels of E. coli pose risks to individuals engaging
in recreational activities, leading to symptoms like vomiting
and diarrhea [37], [38]. The interconnectedness of E. coli
concentrations with various parameters like turbidity, TSS,
phosphorus, nitrate, and BOD underscores the comprehensive
approach needed for effective WQ management. Monitoring E.
coli levels alongside these parameters is crucial for public health
and environmental considerations, ensuring the safety of water
bodies for recreational activities and maintaining the overall
well-being of ecosystems. Having established the crucial role
that monitoring contaminants in coastal waters plays in our
society, the next Section V will delve into the methodology and
application context of our study, which has yielded promising
initial results.

B. Φsat-2 Mission

AI onboard for EO has recently gained a huge interest for
the positive impacts on many monitoring applications over our
planet. ESA was a pioneer in taking the initial steps in this
extremely difficult area of research with the Φsat-1 satellite
launched on September 3, 2020. This was the first of two 6
Units CubeSats that make up the Federated Satellite System
(FSSCat) mission, also known as the FSSCat. Regarding the
second mission, https://platform.ai4eo.eu/orbitalai-phisat-2 the
Φsat-2 satellite, the scheduled launch date is August 2024,
with an operation time planned for 10.5 months, potentially
extendable by 3–8 months. This mission will integrate onboard
processing capabilities, including AI, along with a Visible to
Near Infra-Red (VIS/NIR) multispectral instrument capable of

https://www.fondriest.com/environmental-measurements/parameters/water-quality/ph/
https://www.fondriest.com/environmental-measurements/parameters/water-quality/ph/
https://platform.ai4eo.eu/orbitalai-phisat-2
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TABLE III
MULTISCAPE100 SPECTRAL BANDS

Fig. 2. This image depicts the Φsat-2 spacecraft in its deployed configuration.
The spacecraft is a 6U CubeSat, constructed using the standard Open Cosmos
OpenSat 6U platform, optimized for space missions requiring compact and
efficient satellite solutions [39].

Fig. 3. Ground projection of the Φsat-2 spacecraft’s imaging system. The
MultiScape100 instrument, developed by Simera Innovate GmbH, is a push-
broom imager that captures continuous line-scan images across 8 spectral bands
in the visible and near-infrared (VNIR) range [39].

acquiring 8 bands (7 + Panchromatic) at a medium to high
resolution. These functionalities will be allocated to a set of
specialized applications designed to operate on the spacecraft.
The satellite is a 6U CubeSat utilizing the established OpenSat
6U platform from Open Cosmos. Fig. 2 illustrates the Φsat-2
spacecraft in its deployed configuration.

Specifically, concerning the payload aspect, the Multi-
Scape100 instrument developed by Simera Innovate GmbH
operates as a push-broom imager. This device ensures contin-
uous line-scan imaging across the 8 spectral bands within the
VIS/NIR spectral range. The push-broom instrument captures
images by scanning along the ground track while the spacecraft

orbits the Earth, as illustrated in Fig. 3 below. This scanning
process is conducted separately for each spectral band.

Detailed information on each spectral band, including its
corresponding line number on the detector plane, is presented
in Table III.

C. Φsat-2 Simulator

Within the framework of the OrbitalAI Challenge, a pivotal
simulator for Φsat-2 has been released on GitHub [40], to
assist participants in crafting authentic applications. The
primary objective is to provide users with an intuitive tool
proficient in realistically simulating diverse products generated
on board, unfettered by geographical or temporal coverage
constraints. The simulator caters to the necessity of simulating
any Area of Interest (AOI) without the encumbrance of cost
or commercial license restrictions, mandating the utilization
of Sentinel-2 data as the primary input. The spectral and
spatial attributes of Sentinel-2 furnish a robust underpinning
for Φsat-2, notwithstanding disparities in spatial resolution.
The spectral bands of Φsat-2 exhibit a significant higher spatial
resolution (in meters) than Sentinel-2 as shown in Table IV.
In addition, the available products on board Φsat-2 include
those of levels L1A, L1B, and L1C. In our investigation, we
employed L1C products, characterized by Top of Atmosphere
Reflectance in sensor geometry, precise georeferencing, and
fine band-to-band alignment (RMSE < 10 m). It is important
to note that, in contrast to https://sentinel.esa.int/documents/
247904/685211/Sentinel-2-Products-Specification-Document
Sentinel-2 nomenclature, https://ai4eo.eu/wp-content/uploads/
2023/02/Phisat-2_Mission_Overview_Web.pdfΦsat-2
products at this level are not orthorectified.

The operation of the simulator can be summarized as fol-
lows: First, the Sentinel-2 L1C bands (“B02,” “B03,” “B04,”
“B08,” “B05,” “B06,” “B07”) and the Scene Classification mask
are retrieved, with additional details accessible regarding the
bands. Subsequently, separate arrays are generated for the cloud,
cloud shadow, and cirrus masks. Optionally, time-frames may
be filtered based on data coverage, and metadata concerning
solar irradiance and Earth–Sun distance are then acquired. Ra-
diances are computed from reflectances, and a pan-chromatic
image is generated through a linear combination of the input
bands. Spatial resampling is conducted to align with the pixel
size of Φsat-2 and band-to-band misalignment at the L1A/L1B
level is simulated, along with signal degradation attributable to
Signal-to-Noise Ratio and Module Transfer Function. For L1C,
reflectances are simulated from radiance values, and the AOI
is partitioned into a more compact set of image chips. Finally,

https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://ai4eo.eu/wp-content/uploads/2023/02/Phisat-2_Mission_Overview_Web.pdf
https://ai4eo.eu/wp-content/uploads/2023/02/Phisat-2_Mission_Overview_Web.pdf
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TABLE IV
COMPARISON BETWEEN THE MULTISPECTRAL PAYLOADS OF SENTINEL-2 AND Φ SAT-2 AT A HIGH LEVEL, ASSUMING AN ORBITAL HEIGHT

OF 500 KM AND A CONSISTENT GROUND SAMPLING DISTANCE (GSD) OF 4.75 M ACROSS ALL EIGHT BANDS

bands and masks for these image chips are saved, culminating
in the creation of an AI-ready dataset.

III. MYRIAD 2 DEVICE

The AI processing engine integrated into Φsat-2 is based
on the Myriad 2 Vision Processing Unit (VPU). The https://
ark.intel.com/content/www/us/en/ark/products/122461/intel-
movidius-myriad-2-vision-processing-unit-4gb.htmlMyriad 2
VPU is a specialized hardware accelerator designed by
Intel/Movidius for handling computer vision and deep neural
network tasks. It is part of the Myriad family of VPUs and
is specifically tailored for applications such as image and
video processing, object recognition, and other vision-related
tasks. This multifaceted device, with its compact dimensions,
exemplifies a sophisticated and versatile solution for a range of
AI applications [41].

Several studies investigate the capabilities of Myriad 2, com-
paring it with other solutions and applying it in various contexts.
It has flight heritage with Φsat-1 and is energy-efficient, with
a low development time [42]. The benefits of using Myriad 2
over traditional field programmable gate arrays and CPUs are
assessed by the authors in [43]. Other research works, like [44],
holds significant importance in this context introducing con-
volutional neural network (CNN) accelerators using Myriad 2
through two design approaches: 1) deploying CNNs on a power-
efficient System on Chip (SoC); and 2) implementing a VHDL
application-specific design with a corresponding FPGA archi-
tecture. Both systems aim to optimize time performance for spe-
cific dataset applications. In current advancements, additional
benefits are investigated within the state-of-the-art framework
that focuses on enabling an efficient Support Vector Machines
implementation on an ultra-low-power multicore SoC, specifi-
cally the Intel/Movidius Myriad 2 [45].

IV. DATASET CREATION

To create an onboard AI system for the detection of water
pollutants using satellite RS data, we built a regression model
considering the Φsat-2 spectral bands as independent variables
and the in situ data measurements as dependent variables. In
this section we present a suitable dataset created to perform
our task. For in situ data measurements (chosen as dependent
variables), an open-access database is made available by https://
www.arpal.liguria.it/ARPA Liguria containing measurements of
the quality of the Ligurian Sea in waters, sediments, and marine
organisms for the verification of the health status of the coastal

Fig. 4. Distribution of the 76 monitoring stations in the Liguria region,
collecting multiple data points daily, with contaminant levels assessed at the
sea surface to construct the ground truth (GT).

ecosystem and the monitoring of bathing waters. A monitoring
network consisting of stable detection points enables retrieval
of different parameters, belonging to different environmental
matrices, that are periodically analyzed: Water, plankton, sedi-
ments, and benthonic biocenoses. The sampling points, called
stations, are identifiable through a description that shows in suc-
cession the name of the municipality of belonging, the location
name, the distance from the coast, and the environmental matrix
under investigation. Since 2007, the Liguria coastal waters have
been divided into 26 macroarea where the waters, sediments,
and animal and plant populations are periodically analyzed
(see Fig. 4)1.

We consider 76 different stations which are located 500, 1000,
and 3000 m from the coast. For each monitoring station, different
dates of acquisition for the parameter under test are present,
and these dates appear repeated several times because, on the
same day, different acquisitions were made at different heights
of the sensor. In our case, the value of the contaminants has
been assessed at the sea surface level to construct the GT. The
ground data points are designed to match the satellite data for
accurate comparison and analysis. Consequently, their number
corresponds to the number of satellite data. For the creation
of the dataset, the first step involved selecting in situ data of
to the Liguria region. Subsequently, the identified data were
downloaded from the Arpa database. After that, we moved to
the simulator Python API and we adjusted the bounding box
size from 20140 to 1216 m, creating a square around the Point of
Interest (PoI). We considered only a restricted area surrounding

1The visualization of Fig. 4 integrates a base map from OpenStreetMap (https:
//www.openstreetmap.org/#map=8/43.894/4.890), overlaid using the Python
library contextily with the OpenStreetMap Mapnik provider. The graph was
constructed by the authors with pandas for data manipulation, GeoPandas for
geospatial operations, and matplotlib for graphical rendering. Shapely was used
for handling geometric objects, facilitating accurate spatial representation of the
data.

https://ark.intel.com/content/www/us/en/ark/products/122461/intel-movidius-myriad-2-vision-processing-unit-4gb.html
https://ark.intel.com/content/www/us/en/ark/products/122461/intel-movidius-myriad-2-vision-processing-unit-4gb.html
https://ark.intel.com/content/www/us/en/ark/products/122461/intel-movidius-myriad-2-vision-processing-unit-4gb.html
https://www.arpal.liguria.it/
https://www.arpal.liguria.it/
https://www.openstreetmap.org/#map$=$8/43.894/4.890
https://www.openstreetmap.org/#map$=$8/43.894/4.890
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the PoI, generating a single patch of dimensions 256×256 pixels
(considering a spatial resolution of 4.75 m). Reducing a patch
to 256 × 256 pixels is also done to accommodate the limited
memory requirements of accelerators. It is typical for edge ap-
plications [46]. Specifically,Φsat-2 data temporally and spatially
aligned with the in situ data were selected (a temporal tolerance
of 3 days has been taken into account, considering the revisit
time of Φsat-2). The implemented code, which will be made
available after publication, allows for automated downloading
of additional Φsat-2 data temporally and spatially aligned with
new in situ data. The result is a dataset of 1805 unique samples
defined by latitude and longitude coordinates, where each of
these areas covers a spatial expanse of 1216 km × 1216 km.

Xlat,lon ∈ RW ·H·B (1)

where lat and lon are the center coordinates, W the width of
the image (256 px), H the height of the image (256 px), and
B the number of bands of the image (8). The data processing
level chosen is L1C (without atmospheric correction). We used
L1C data instead of atmospherically corrected data because the
correction process is computationally intensive to perform on
board. Furthermore, as shown in Razzano et al. [47], using
atmospherically corrected data does not yield significant im-
provements.

V. METHOD PROPOSED

Since punctual data are available, we started from a Re-
gression model, which is fully connected and subsequently,
we parallelized it, by transferring the information to a CNN
that allowed us to calculate the regression efficiently. The final
network is a CNN that has not been directly trained, but whose
weights have been transferred by a regression neural network.
The proposed network has been defined as the AI4EDoET.
The proposed method has been implemented in Python through
PyTorch and the code will be made available after publication.

1) Fully Connected Neural Network Regression Model: Our
starting AI model is a Fully Connected Neural Network for
regression, an ANN specifically designed to solve regression
problems. The goal is to predict pH and turbidity values, given
Φsat-2 bands as input.

2) AI4EDoET: Our AI4EDoET network is CNN-based
model and processes input image with a shape of 256 × 256
× 7. It produces as output a 25 × 25 matrix. Each output matrix
element contains estimates of one water pollutant over 10 × 10
pixels of the input patch. The first convolutional layer performs
spatial averaging over a 10 × 10 window. In the regressor
network, averaging over a 10 × 10 pixel window was performed
as a preprocessing step. In our CNN, this operation is handled by
the first layer, which emulates the averaging. It is worth noting
that the choice of window size is justified by the fact that initially,
on Sentinel-2 data with a spatial resolution of 10 m, averaging
over 4 pixels was performed. Now, with PhiSat-2 data, which
has a resolution of 4.75 m, we have transitioned to averaging
over 10 pixels. Moreover with this choice of the window size
all satellite data corresponding to the 76 ground stations are
situated in the sea. Thenth convolutional layer (n > 1)maps the
(n− 1)th fully-connected layer in the corresponding regression

network by utilizing 1 × 1 kernels with no spatial averaging. In
Fig. 5 it has shown that the network has N+1 layers, where N is
the starting regression network layer number, and +1 indicates
that the first layer is a convolutional layer that emulates the
spatial average made to calculate the data to train this network.
The number of output channels is set equal to the number of
neurons in the corresponding fully connected layer, while the
number of input channels matches the number of neurons in the
preceding fully connected layer.

We adopted two different models: one for the estimation of
pH and one for the Turbidity (the hyparameters setting is the
same, but the output weights are different). The entire workflow
of our proposed approach is schematized in Fig. 6. Since on
board, the entire Φsat-2 tile is available, the initial operation
involves tiling the image, resulting in single patches that can be
processed by the CNN. Subsequently, binary maps are generated
by applying a specified threshold, classifying values as either
0 or 1, based on the alert value of the contaminant. The final
step involves reconstruction through a de-mosaicking process,
aimed at restoring the complete input tile of Φsat-2. However,
the demosaicking part was not considered in our work because,
in the subsequent phase of the mission launch, it will be imple-
mented by other companies. In the context of our participation
in OrbitalAI Challenge, Ubotica has provided us the access to
Rupia, an application designed for remote execution of models
on the Myriad 2 device. Rupia introduces a virtual environment
tailored for running inference models on Ubotica’s Space-ready
platforms. This platform allows for remote execution of Edge
AI inference without the need for additional hardware. It is
supported by a robust and extensively tested backend infras-
tructure and seamlessly integrates with existing workflows for
Φsat-2. The implementation on Myriad 2 involved conversion
first to ONNX and then through Rupia, with rigorous testing
throughout the process. The choice of the CNN framework for
our study is primarily influenced by the constraints associated
with onboard implementation. Specifically, to deploy a model on
the Φsat-2 satellite, it must be converted from Python to ONNX
and subsequently to Rupia. The conversion process is well-
supported for CNN models, which facilitated their integration
into the satellite’s system. Other frameworks, such as Catboost
Regressor, were also tested in our research, as mentioned in
Razzano et al. [47]. However, at present, integrating Catboost
Regressor into the satellite system is not feasible. Therefore, to
ensure compatibility and successful deployment, we opted for
the CNN framework, which aligns with the current technical
requirements and available support tools.

VI. RESULTS

This section is divided into two subsections. The first subsec-
tion includes the results obtained for the estimation of Turbidity
and pH values using CPU hardware. The second subsection con-
tains the results obtained through Myriad 2 hardware. Table V
provides a summary of the layers and configuration details of
the Fully connected Neural Network while Table VI provides a
summary of the configuration details of the CNN.

The models performances are assessed using appropriate re-
gression metrics, such as RMSE and the Mean Absolute Error
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Fig. 5. AI for early detection of environmental threats (AI4EDoET)—the proposed neural network.

Fig. 6. Final schematic about the workflow for the implementation of AI4EDoET model on board for Turbidity estimation.

TABLE V
FULLY CONNECTED NEURAL NETWORK’S SETTINGS

TABLE VI
CONVOLUTIONAL NEURAL NETWORK’S SETTINGS

(MAE). The choice is also based on the need for consistency
and comparability with existing literature or benchmark studies,
ensuring a standardized approach to evaluating and communi-
cating the performance of models or methods [25], [48] [49].
In particular, Kwong et al. [25] leveraged Sentinel-2 satellite
imagery and Google Earth Engine to automatically map and
monitor marine water quality in Hong Kong, providing continu-
ous and updated insights using ANN models. These models are
optimized through cross-validation and involve a wide range
of input variables and neurons selected for different parameters.
Similarly, Hafeez et al. [48] compared ML algorithms to retrieve
water quality indicators from satellite data in Hong Kong’s
complex Case-II waters, aiming to improve the accuracy and
reliability of RS techniques. Their study includes ANN, Random
Forest, Cubist regression (CB), and support vector regression
models. Reflectance data from Landsat (5, 7, and 8) were
compared with in situ reflectance measurements to assess the
performance of the ML models. In addition, Pereira et al. [49]
utilized cloud-based processing of Landsat images to estimate
pH levels of lakes in the Brazilian Pantanal, introducing a new
classification system that enhances ecological understanding

and supports conservation efforts. They predict pH values by
applying linear multiple regression and symbolic regression
based on genetic programming (GP), a powerful ML modeling
technique introduced by Koza et al. [50].

A. Results With CPU

With regard to the outcomes presented in this section, a quali-
tative and quantitative analysis is provided concerning Turbidity
and pH parameters. The proposed model is composed of five
hidden layers with [512, 512, 512, 512, 43] nodes. Several
simulations were performed to set the number of nodes and
hidden layers, in such a way as to minimize the root mean square
error (RMSE) between the prediction and the GT.

Furthermore, the data are systematically prepared, incorporat-
ing a suitable splitting between training, testing, and validation
sets with percentages of 55%, 20%, and 25%, respectively.
We compare the metrics of our results with other approaches
reported in the SOTA that monitor the same contaminants us-
ing alternative AI-based frameworks. However, our model not
only introduces a valuable innovation in a social context by
addressing the issue of onboard water monitoring via satellite
in real-time, but it also yields superior results when compared
to the mentioned studies against which comparisons are made.
It should also be noted that for the proposed model no atmo-
spheric correction of the data is foreseen and this represents a
further advantage compared to the other methods present in the
SOTA, as the atmospheric correction operation is heavy to do
on board [51].

In Figs. 7 and 8 are illustrated qualitative results by depicting
the distributions of predictions on the training, validation, and
test sets, juxtaposed with the expected distributions of Turbidity
and pH parameter (Ground Truth). As can be seen from the
graphs, the estimated distributions well map the trends of the
GT distributions, indicating accurate mapping by the model.

In a quantitative way, the validation metrics (RMSE and
MAE) for Turbidity and pH values are reported in Tables VII
and VIII. These results are compared with other approaches
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Fig. 7. Qualitative results for Turbidity distributions of predictions across
the training, validation, and test sets, compared to the expected Ground Truth
(GT) distributions. The graphs demonstrate that the predicted distributions align
closely with the trends observed in the GT distributions.

Fig. 8. Qualitative results for pH distributions of predictions across the train-
ing, validation, and test sets, compared to the expected Ground Truth (GT)
distributions. The graphs demonstrate that the predicted distributions align
closely with the trends observed in the GT distributions.

TABLE VII
COMPARISON OF TURBIDITY METRICS WITH OTHER STUDIES

REVEALS THE SUPERIOR PERFORMANCE OF OUR ANALYSIS

Fig. 9. Results for final AI onboard-based application confirming the feasibil-
ity through Myriad 2 implementation of the proposed model.

TABLE VIII
COMPARISON OF PH METRICS WITH OTHER STUDIES REVEALS

THE SUPERIOR PERFORMANCE OF OUR ANALYSIS

([25], [48] and [49]), to show the better performances of our
method.

Making comparisons with pH parameters comparable to the
case study proposed in our work has proven challenging from our
knowledge. It has been difficult to find an article that addresses
a study comparable to ours. This once again highlights the
potential of our model and our application, which we propose as
an onboard system alert for the upcoming Φsat-2 mission. It is
also important to point out that as regards the feasibility of the
model, our model has a size of approximately 4 MB, measured
after the conversion to FP 16 used for the Myriad 2, and therefore
we are well below the constraint set by ESA of 250 MB. Power
constraint is fundamental for onboard application. In this case,
no power constraint for the selected hardaware was specifically
provided by ESA. Indeed, as discussed in the work by Furano
et al. [21], the inferences on Myriad 2 of different models
(models with sizes much larger than the one we considered)
all result within a 1.2-W power envelope. Because of the high
energy efficiency of the selected hardware and limited impact
of the choice of the model on power results, no power test was
performed.



16764 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

B. Results With Myriad 2

As this operation is intended to be conducted on boardΦsat-2,
to demonstrate the functionality of the inference part on board
Φsat-2, we present in this section some examples of images (in
Fig. 9) computed as the output of our CNN on our CPU and the
output calculated through the implementation on Myriad 2. The
implementation on Myriad 2 involved conversion first to ONNX
and then through Rupia, with rigorous testing throughout the
process. From these qualitative results, it is clear that we could
reproduce the same outputs obtained on the CPU also through
Myriad 2; therefore the feasibility of the onboard model was
successfully verified. Indeed, in support of the feasibility and
compactness of our model, the inference time is 40.5 ms per
inference, with a throughput of 24 Frame Per Second.

VII. CONCLUSION

The degradation of both water quality and quantity had been
a pressing concern, with various human activities such as resi-
dential, agricultural, mining, industrial, power generation, and
forestry operations having negatively impacted the aquatic en-
vironment. This phenomenon had been particularly pronounced
in coastal areas, where marine contamination had manifested
through a multitude of factors affecting the physical, chemical,
and bacteriological properties of water, all of which had been
linked to intended use and quality standards. The primary objec-
tive of this study has been to employ onboard AI techniques to
monitor and detect contaminants in real-time since there are no
methods available to do that on board satellite. This proposed
approach represents a significant milestone in the context of
real-time monitoring of water contaminants. As a result, it can
facilitate the rapid generation of alerts and swift interventions
when potentially hazardous events are on the horizon. In fact, the
proposed approach, which involves processing data directly on
board the satellite, allows for real-time responses and enhances
the ability to manage environmental disasters. Among the main
contributions of our work, it is worth underlining how our
approach significantly diminishes response times for pollution
detection. By performing the processing on board, anomalies
can be identified and transmitted to the ground in real time.
This eliminates the need to wait for the satellite data to be first
sent to the ground and then processed, significantly reducing the
overall response times. An example of this can be found in the
study already introduced of Garcia et al. [22], which discusses
the importance of onboard processing for improving response
times in remote sensing applications.

The genesis of this endeavor has been traced back to the Or-
bitAI Challenge initiated by ESAΦ-lab, with the ultimate goal of
deploying an AI-based application on board the Φsat-2 mission.
There are several solutions that, stemming from this potential
study on AI onboard techniques for contaminant monitoring,
could be applied for advancements in future research. One such
solution is represented by the employment of a different model
such as the CatBoost Regressor. However, as illustrated in the
previous sections, at present, integrating the Catboost Regressor
into the satellite system is not feasible. From initial analyses,
it is apparent that attention must be given not only to model
goodness, assessed through metrics, but also to issues related

to implementability on Myriad 2 for on board compatibility.
Therefore, to ensure compatibility and successful deployment,
we opted for the CNN framework, which aligns with the current
technical requirements and available support tools. Yet, we are
currently evaluating other regression models and conducting
comparisons to determine if these models yield improved results.
Therefore, we are proceeding with a series of analyses involving
multiple ML and Deep Learning techniques. The objective is not
only to extend the application to additional parameters, but also
to identify new models capable of performing more accurate
simulations. Another aspect may be related to expanding the
dataset to enhance the network’s generalization and yield more
accurate results. Furthermore, given the network’s capacity to
generate valuable predictions for coastal monitoring, it could
prove to be a significant asset in regions where acquiring these
parameters is challenging. The transferability of the model, in
fact, could be one of its major strengths, assisting in contaminant
monitoring across various water zones. Another perspective
development will entail broadening the monitoring scope to
include the collection of chemical contaminants that directly
impact human health, such as E. coli. In addition, future work
could focus on comparing our model with others to identify
the optimal solution for enhancing this study. In conclusion,
this research not only provides valuable insights into coastal
water quality monitoring, but also underscores the potential for
cutting-edge technology and AI to make a meaningful contri-
bution to safeguarding our precious coastal environments and
ensuring the well-being of our Planet.
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