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Preallocation and Planning
Under Stochastic Resource Constraints

Frits de Nijs, Matthijs T. J. Spaan, Mathijs M. de Weerdt
{f.denijs, m.t.j.spaan, m.m.deweerdt}@tudelft.nl
Delft University of Technology, The Netherlands

Abstract

Resource constraints frequently complicate multi-agent plan-
ning problems. Existing algorithms for resource-constrained,
multi-agent planning problems rely on the assumption that the
constraints are deterministic. However, frequently resource
constraints are themselves subject to uncertainty from external
influences. Uncertainty about constraints is especially chal-
lenging when agents must execute in an environment where
communication is unreliable, making on-line coordination
difficult. In those cases, it is a significant challenge to find
coordinated allocations at plan time depending on availabil-
ity at run time. To address these limitations, we propose to
extend algorithms for constrained multi-agent planning prob-
lems to handle stochastic resource constraints. We show how
to factorize resource limit uncertainty and use this to develop
novel algorithms to plan policies for stochastic constraints. We
evaluate the algorithms on a search-and-rescue problem and
on a power-constrained planning domain where the resource
constraints are decided by nature. We show that plans taking
into account all potential realizations of the constraint obtain
significantly better utility than planning for the expectation,
while causing fewer constraint violations.

Introduction
Planning for future uncertainties is an effective tool to in-
crease the utility of a system of multiple agents. Particularly
when the actions of agents are restricted by scarce resources,
planning for resource usage is an important challenge that
many authors have addressed (Adelman and Mersereau 2008;
Agrawal, Varakantham, and Yeoh 2016; De Nijs, Spaan, and
De Weerdt 2015; Gordon et al. 2012; Meuleau et al. 1998;
Wu and Durfee 2010; Yoo, Fitch, and Sukkarieh 2012). These
approaches have in common that they consider uncertainty in
state transitions, while assuming full knowledge about future
resource constraints.

However, resource capacity may itself be subject to uncer-
tainty. For example, the amount of power produced from
renewable sources such as wind turbines is a stochastic
quantity (Klöckl, Papaefthymiou, and Pinson 2008). Sim-
ilarly, when only a subset of agents participate in a traffic
congestion control system, the non-participants contribute
to congestion stochastically (De Weerdt et al. 2013). An-
other source of resource uncertainty may occur when an
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agent’s consumption itself is stochastic (Mausam et al. 2005;
Schaffer, Clement, and Chien 2005). Nevertheless, no earlier
work has addressed multi-agent planning for such stochastic
resources.

In several application domains where multiple constrained
agents must coordinate their actions, there may be known
fixed periods where communication between them is impos-
sible (such as with non-geostationary satellites), unadvisable
(such as in warfare), or too uncertain (as in hazardous envi-
ronments). In other domains the required response time for
actors maybe so short that planning and coordination needs
to be done a priori, such as in robot soccer, high-frequency
trading in multiple stock markets, or protection control in
electricity distribution networks. In all of these situations, an
approach is needed where coordinated policies are computed
for a number of sequential decisions that are taken without
further communication. Therefore, in this work we focus
on preallocation algorithms, which compute policies for a
given plan horizon by allocating resources to agents a priori,
thereby effectively decoupling the agents’ policies so that
they can be computed and executed independently.

Decoupling necessarily introduces an error, as agents can-
not respond to non-local realizations of uncertain transitions.
In this work, however, we show how to permit effective
decoupling even in the case of a tight and stochastic cou-
pling constraint. We extend Multi-agent Markov Decision
Processes (MMDPs) by a model of the resource constraint
realizations in a separate, orthogonal part of the state space.
This enables us to formulate novel approaches based on two
state-of-the-art planning algorithms that can deal with de-
terministic resource constraints. These algorithms represent
different solution categories: an optimal preallocation mixed-
integer linear program (Wu and Durfee 2010) which restricts
worst-case consumption, and the constraint relaxation ap-
proach Constrained Markov Decision Process (Altman 1999)
restricting average consumption.

We evaluate the benefit of planning for stochastic resource
constraints for both approaches by comparing to the state of
the art—i.e., planning for the mean constraint level—on a co-
ordinated search-and-rescue domain, demonstrating the need
to handle stochastic resource constraints. Subsequently, we
use a heater planning domain to demonstrate the scalability
of the approximations and their reduced resource violation
frequency in larger problems. We show that agents taking
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into account all potential realizations of the resource limit
obtain significantly better policies. Finally, we show that the
number of resource violations further decreases with more
frequent replanning.

Background

A Multi-agent Markov Decision Process (MMDP) models a
system consisting of n cooperative agents operating under
uncertainty (Boutilier 1996). Time in a finite-horizon MMDP
is discretized into h time steps. At each step the state�s of the
system describes all the relevant properties of all agents. We
require that the set S of possible discrete states of the system
is finite and known. A decision or action �a = 〈a1, . . . , an〉
of the agents describes for each agent i the selected control
input ai. The finite set A contains all potential joint actions.
For any given state-action pair, the transition function T :
S×A×S → [0, 1] gives the probability of reaching potential
future state �s ′. The performance of the agents is measured
by a reward function R : S × A → R which assigns a
real-valued instantaneous reward for every state-action pair.
Tuple 〈S,A, T,R, h〉 fully specifies an MMDP.

The goal of planning for an (M)MDP is to compute the best
action to take in order to obtain the highest possible expected
value, as defined through the Bellman equation (1957). The
optimal expected value function V is defined as

V [h,�s] = max
�a∈A

R
(
�s, �a

)
, ∀�s

V [t,�s] = max
�a∈A

(
R
(
�s, �a

)
+Q[t,�s, �a]

)
, 1≤ t<h, ∀�s

Q[t,�s, �a] =
∑
�s′∈S

T (�s, �a,�s ′)·V [t+1,�s ′]. 1≤ t<h, ∀�s, �a

A planner intends to find a policy π : {1, . . . , h}×S → A
mapping states to actions that maximizes the expected value
of the agents’ rewards over the horizon. Given a policy π,
we define the expected value Vπ of following that policy
analogously as

Vπ[h,�s] = R
(
�s, π(t,�s)

)
, ∀�s

Vπ[t,�s] = R
(
�s, π(t,�s)

)
+Qπ[t,�s, π(t,�s)], 1≤ t<h, ∀�s

Qπ[t,�s, �a] =
∑
�s′

T (�s, �a,�s ′)·Vπ[t+1,�s ′]. 1≤ t<h, ∀�s, �a

An optimal policy π∗ satisfying Vπ∗ [t,�s] = V [t,�s] for
all times t and states �s can be computed through dynamic
programming over time (Puterman 1994).

In large multi-agent systems, the requirement that agents
must be able to observe the state of the entire system can
be too strict (Becker et al. 2004). This motivates viewing
the problem as a decentralized MDP, in which the MMDP
model is factored such that each agent i only observes its
own part of the state space Si, with the joint space becoming
S = ×n

i=1 Si. Then we can identify for each agent i its
local state�si in the joint state (or action). When agents have
such a factored structure, and additionally satisfy reward
and transition independence, the model can be solved to
optimality in a decentralized fashion by solving the individual
agent MDP sub-problems.

However, this is not possible when the actions of the agents
require resources that are constrained on the total amount
consumed, as such constraints introduce dependencies be-
tween all agents. This forces optimal planners to consider
all agents jointly, thereby invoking the curse of dimension-
ality because the joint state space grows exponentially with
the number of agents. Therefore, decoupling is a common
paradigm to solve resource-constrained factored MMDPs. It
enables agent models to be planned individually while taking
into account the effects of others on the resource constraints
through proxy values such as a (Lagrangian Dual) cost of
consumption (Gordon et al. 2012), the probability of suc-
cessful consumption (De Nijs, Spaan, and De Weerdt 2015),
or action frequency counts (Varakantham, Adulyasak, and
Jaillet 2014). However, when resource constraints are uncer-
tain, and therefore part of the transition model of the MMDP,
these approaches result in a poor approximation of the true
problem and many constraint violations.

Problem Definition

In this section we define stochastic resource constraints more
formally. Then we introduce a generalization of a factored
MMDP model, called a Stochastic Resource-Constrained
Multi-agent Markov Decision Process (SRC-MMDP), where
such a constraint is modeled as a separate part of the factored
state space. In the remainder of the paper we then show how
to deal with these tight interactions while keeping the rest of
the planning problem decoupled.

Stochastic Resource Constraints

As running example, consider modeling an electricity grid
(partially) powered by renewable sources such as wind and
solar power. Because power grids require demand to be bal-
anced with supply at all times, the fluctuating supply of these
renewables must be buffered. This can be achieved by plan-
ning the demand of flexible devices such as heating, ventila-
tion and air conditioning (HVAC) units, or of electric vehicle
charging, taking into account the predicted production over
time as well as the operational requirements of the device.
Carpinon et al. (2010) show how predictive Markov Chain
models of the near-future power production of wind farms
can be constructed, which forms a stochastic resource con-
straint on the number of devices activated at each time step.

More formally, a stochastic resource constraint is a time
and state dependent hard constraint on the allowed actions.
The maximum amount a joint action is allowed to use of
the resource is given by a real-valued resource limit func-
tion L : {1, . . . , h} × S → R+. Each state-action pair may
require zero or more units of the resource, specified through a
resource usage function U : S ×A → R. Given a set of joint
actions A, we define the set of safe actions in joint state�s at
time t as

At,�s =
{
�a : �a ∈ A and U(�s, �a) ≤ L(t,�s)

}
. (1)

Any action that is not a member of the safe set is a violation of
the constraint. In the grid example, the set At,�s would contain
all permutations of {0, 1, . . . , L(t,�s)} devices switched on.
To ensure feasibility of the model, we require that the set
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of safe actions is not empty, meaning that at least one safe
action exists (e.g., all devices off).

SRC-MMDP

Two forms of uncertainty in the (satisfaction of) the stochastic
constraint can be identified: endogenous uncertainty caused
by the dynamics of the agents’ models, and exogenous uncer-
tainty induced by the stochastic resource constraint itself. In
the context of our grid example, endogenous uncertainty may
be caused by a house losing more temperature than expected,
thereby lowering the time until a heater must be powered.
Exogenous uncertainty comes from the uncertain realization
of the wind speed. Therefore, for the subsequent definition
of the Stochastic Resource-Constrained Multi-agent Markov
Decision Process, we factorize the resource limit and its tran-
sition function to be separate from the agents’ models.

Formally, we use SL to indicate the state space for the
resource limit, and let TL : SL×SL → [0, 1] describe the
exogenous transition probabilities over this space, defining
a Markov Chain. Furthermore, we define resource usage
functions Ui for the individual agents in a straightforward
manner, and overload L(t, sL) to mean L(t,�s).

Definition 1 A Stochastic Resource-Constrained Multi-
agent Markov Decision Process (SRC-MMDP) is represented
by a tuple 〈S,A, T,R, h, U, L〉 where 〈S,A, T,R, h〉 speci-
fies a MMDP as defined above, and the agents as well as the
resource constraint can be factored such that:

S = SL

n×
i=1

Si,

A =
n×

i=1

Ai,

U(�s, �a) =

n∑
i=1

Ui(sL, si, ai),

L(t,�s) = L(t, sL),

T (�s, �a,�s ′) = TL(sL, s
′
L)

n∏
i=1

Ti(si, ai, s
′
i).

(2)

where �s = 〈sL, s1, . . . , sn〉, �s ′ = 〈s′L, s′1, . . . , s′n〉, and �a =
〈a1, . . . , an〉. A centralized solution to an SRC-MMDP is
a policy π for the MMDP 〈S,A, T,R, h〉 that furthermore
is safe, i.e., for every state �s and time t, the chosen action
π(t,�s) ∈ At,�s. To summarize, an SRC-MMDP generalizes
the problem definition of (De Nijs, Spaan, and De Weerdt
2015; Wu and Durfee 2010) to include a stochastic model of
the exogenous uncertainty in the resource constraint.

Decentralized Resource Decoupling

Unfortunately, the optimal solution to a general SRC-MMDP
model requires communication, because the policy is con-
ditioned on the state of all agents as well as the state of
the resource limit. In our decentralized setting, the problem
needs to be decomposed into n single-agent sub-problems,
which we propose to do by augmenting the state space of

each agent with the current limit (captured in the state fea-
ture SL), so that the sub-problem of agent i becomes a tu-
ple 〈S̄i, Ai, T̄i, R̄i, h〉 with components

S̄i = SL × Si,

T̄i

(〈sL, si〉, ai, 〈s′L, s′i〉) = TL(sL, s
′
L) · Ti(si, ai, s

′
i),

R̄i

(〈sL, si〉, ai) = Ri(si, ai).

(3)

Intuitively, this decomposition states that each agent is able to
observe the phenomenon influencing their collective resource
constraint, in addition to their own local state. By merging the
constraint state into their individual state space, each agent
is able to condition their own policy on their shared obser-
vations (Becker et al. 2004). In the power grid example, all
the agents would receive the weather predictions, and have
access to a wind speed sensor. This transformation polynomi-
ally increases the size of all MDPs, provided that the number
of limit realizations is not itself exponential in the number of
agents. To compute optimal policies for these decoupled sub-
problems, we need to account for the effect of other agents
on resource availability, or risk significant overconsumption.

Algorithms for SRC-MMDPs

In this section we show how this stochastic constraint decou-
pling can be implemented in two state-of-the-art prealloca-
tion algorithms. Both algorithms merge the decoupled agent
sub-problems in a single ‘master’ problem of preallocating
resources to agents during planning. Therefore, because the
single-agent policies respect the allocations, merging them
in a joint policy can be done without risk of conflicts, and
thus these approaches can be used when communication is
not possible, not reliable, or not desirable. These algorithms
can be categorized in two groups: 1) a resource preallocation
Mixed Integer Linear Program (MILP) which computes deter-
ministic resource assignments that the agents respect in their
policies (Wu and Durfee 2010), and 2) a Constrained MDP
approach which relaxes the constraints to be sufficiently soft
that they only need to be met in expectation (Altman 1999).

Wu and Durfee (2010) show that an optimal resource pre-
allocation can be computed using a MILP. However, a major
drawback of this approach is that it consists of a model hav-
ing exponential run-time complexity growing in the number
of agents, the horizon, the number of limit realizations, and
the number of resource usage levels. Therefore, we also con-
sider CMDPs (Altman 1999), which relax the preallocation
to policies which meet their assigned (fractional) resource
allocation in expectation, by allowing for stochastic policies.
This can only be used in settings where a small and tempo-
rary violation of the constraint is not problematic. Briefly
exceeding the supply constraints would be allowed in any ro-
bust power grid, as stochastic production is typically backed
up by controllable fossil fuel-based generators and/or forms
of storage such as batteries. Nevertheless, we would pre-
fer to minimize the frequency of violations, since operating
back-up generators and batteries is costly, and batteries need
periods of overproduction to charge.

A naive approach to apply these algorithms to the stochas-
tic constraint problem is to determinize the stochastic con-
straint and apply the algorithms directly. Given the stochastic
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constraint Markov Chain, we compute the probability dis-
tribution over the limits P(sL | t), starting from the known
prior distribution T1(sL), giving the expected constraint

EL[t] =
∑

sL∈SL

P(sL | t)L(t, sL).

While we could have used other statistics, using for example
the minimum realization may result in highly pessimistic
policies when the worst-case outcome has a small likelihood.

Policies can be computed for the deterministic expected
limit using the original algorithms. However, we expect that
such a naive approach will not result in good policies; de-
pending on the realized sL, any policy using EL[t] either
leaves resources unused, lowering expected value, or over-
consumes resources, resulting in a constraint violation. By
the stochastic nature of the constraint, we expect that both
effects occur for policies planned for EL[t].

Therefore, we propose to modify the algorithms to explic-
itly reason about the realizations of the stochastic constraint.

Preallocation Mixed Integer Linear Program

We first present our extension of the optimal preallocation
MILP encoding. This extended model is shown in Algo-
rithm 1. The encoding contains variables xi

t,s,a ∈ [0, 1] which
give the (unconditional) probability that action a is chosen
in state s at time t by agent i. These variables are chained
together by probability conservation constraints (5) and (6)
encoding the transition function, which is initialized to a
prior over the initial states T1,i : S̄i → [0, 1]. In the original
binary consumption model of Wu and Durfee (2010) a binary
variable per agent per time step encodes whether a (single)
resource is allocated to that agent at that time, based on the a
priori (estimated) resource availability. Conflict-free policies
can be guaranteed by constraining the sum of binary con-
sumption variables over all agents for the respective times by
this resource availability.

However, we cannot simply generalize binary consumption
to the arbitrary consumption that we model in SRC-MMDPs,
and repeat the procedure, because consumption may differ per
action, and we aim to guarantee that the allocated resources
are sufficient for every action assigned a non-zero probability.
We therefore introduce a binary variable x̂i

t,s,a for each action
to denote that the action has non-zero probability. Let fur-
thermore Δi

t,sL denote the resources preallocated to agent i
at time t of resource state sL. To ensure now that no policy
uses an action that requires more than the resources allocated
to an agent i, we include constraint (6). The total resource
demand can then simply be bounded by the sum over all Δ
through constraint (7), for each time step. Furthermore, to
deal with multiple resource limit realizations, we repeat this
for each of these.

Constrained MDPs

The framework of Constrained MDPs allows arbitrary linear
constraints to be added to MDP models by encoding the con-
strained model as a linear program (Altman 1999). Instead
of restricting the worst-case resource consumption as is done

Algorithm 1 Resource allocation MILP for SRC-MMDP.

max
n∑

i=1

h∑
t=1

∑
s̄∈S̄i

∑
a∈Ai

xi
t,s̄,a · R̄i(s̄, a) (4)

s.t.
∑
a∈Ai

xi
t+1,s̄,a =

∑
s̄′∈S̄i

∑
a′∈Ai

xi
t,s̄′,a′ ·T̄i(s̄

′, a′, s̄) ∀i, t, s̄ ∈ S̄i

∑
a∈Ai

xi
1,s̄,a = T1,i(s̄) ∀i, s̄ ∈ S̄i

(5)

xi
t,〈sL,si〉,a ≤ x̂i

t,〈sL,si〉,a ∀i, t, sL, si, a
x̂i
t,〈sL,si〉,a · Ui(〈sL, si〉, a) ≤ Δi

t,sL ∀i, t, sL, si, a
(6)

n∑
i=1

Δi
t,sL ≤ L(t, sL) ∀t, sL

(7)

0 ≤ xi
t,s̄,a ≤ 1, x̂i

t,s̄,a∈{0, 1} ∀i, t, s̄, a

in the MILP, CMDPs restrict the expected resource consump-
tion of all agents taken together to be less than the constraint
in a state sL at time t by requiring that

n∑
i=1

∑
s̄∈S̄i

∑
a∈Ai

xi
t,〈sL,si〉,a · U(si, a) ≤ L(t, sL).

The challenge in the stochastic-constraint case is to ac-
count for the fact that only one out of |SL| constraints will
be ‘active’ at any time. By transforming the individual agent
problems as defined in equation (3), we keep track of the
active constraint through the state of the agents. Of course,
the sum of all occupancy variables relating to a limit lt will
only sum to the unconditional probability that limit state lt
will be reached. Therefore the consumption limit lt must be
normalized to the probability it will be reached, defined as

C̄(1, sL) = T1(sL), ∀sL ∈ SL

C̄(t+ 1, s′L) =
∑

sL∈SL

TL(sL, s
′
L) · C̄(t, sL).

Putting it all together, we obtain the linear program pre-
sented in Algorithm 2.

Discussion

We propose two new algorithms for solving multi-agent
resource-constrained planning problems with a stochastic
time-variable resource constraint, which compute policies
that are executable without requiring communication. Both
algorithms compute optimal policies, but with different con-
ditions on the resource constraint satisfaction: the MILP (Al-
gorithm 1) computes safe policies which never violate the
constraints, while the CMDP LP (Algorithm 2) computes
relaxed policies which satisfy the constraints in expectation,
allowing for occasional resource constraint violations.

4665



Algorithm 2 Constrained MMDP LP for SRC-MMDP.

max
n∑

i=1

h∑
t=1

∑
s̄∈S̄i,t

∑
a∈Ai

xi
t,s̄,a · R̄i(s̄, a) (8)

s.t.
∑
a∈Ai

xi
t+1,s̄,a =

∑
s̄′∈S̄i

∑
a′∈Ai

xi
t,s̄′,a′ ·T̄i(s̄

′, a′, s̄) ∀i, t, s̄ ∈ S̄i

∑
a∈Ai

xi
1,s̄,a = T1,i(s̄) ∀i, s̄ ∈ S̄i

(9)
n∑

i=1

∑
s̄∈S̄i

∑
a∈Ai

xi
t,s̄,a ·U(s̄, a) ≤ C̄(t, sL)·L(t, sL) ∀t, sL

0 ≤ xi
t,s̄,a ≤ 1 ∀i, t, s̄, a

While the CMDP algorithm computes policies which are
not completely safe, the trade-off is that the algorithm is
tractable; because MILP solvers have exponential complexity
in the number of integer variables, we expect that Algorithm 1
can only be applied to problems with a short planning horizon.
Nevertheless, many problems with constraints are tolerant
to occasional violations, motivating the use of Algorithm 2.
However, this also raises the question to what degree we ben-
efit from handling stochastic constraints explicitly. Therefore,
in the experimental evaluation we explore the frequency of
constraint violations compared to versions of the algorithms
planning for the weighted mean constraint.

Because the agents may still be able to communicate from
time to time, we also propose a replanning algorithm that
updates agent policies with each communication, based on
their current state. Because replanning incorporates new state
information, we expect that the coordination between agents
improves when they communicate more frequently, which
should result in fewer constraint violations.

Experimental Evaluation

In this section we evaluate the effect of planning for stochastic
resource constraints on a single time-step search and rescue
domain and on a longer horizon energy demand planning
problem. We compare the modified algorithms Preallocation
MILP and CMDP, designated P(X = x), with their original
versions planning for the expected resource limit, E(X). We
expect two beneficial effects of the stochastic variants: 1) a
better performance, and 2) fewer constraint violations.

Coordinated Search and Rescue Missions

First we consider a disaster response cooperative game as
an illustrative domain. Consider a group of countries that
collectively commits response teams in order to perform
expensive search-and-rescue (SAR) operations that would be
too costly to perform individually. Due to the urgent nature
of crises, each country must individually decide its response
level without time-consuming coordination. They do so in
accordance with a single time-step policy that they agreed on

Alg CMDP, P(X = x)
MILP, P(X = x)

CMDP, E(X)
MILP, E(X)
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Figure 1: Realized mean and standard errors of the
value, frequency of overcapacity, and runtime, comparing
mean (E(X)) with stochastic limit (P(X)) on SAR problem.

beforehand (e.g., at the previous summit).
The size of an operation that a country commits determines

the cost to that country, while the sum of all committed
operations influences the probability of successful rescues.
The cost of an operation of size j is simply j, where j ≤ 4,
which we assume to be the politically acceptable maximum
spending on rescue missions. The probability of retrieving a
survivor using an operation of size 1 is given by p, which we
assume to be 0.2. More generally, the number of survivors i
rescued, as a function of the sum of operation sizes j is given
by random variable W having probability distribution

P (W = i | j) =
(
j

i

)
pi(1− p)(j−i).

The reward for rescuing a survivor is 100.
In practice, the number of survivors that can be rescued is

bounded by the number of people affected, which informs the
stochastic constraint in this problem. Due to the high value
of rescuing survivors, countries are incentivized to deploy
all their resources in the first crisis in an uncoordinated set-
ting. To retain some resources for future calamities, countries
constrain their response to be sufficient for the size of the dis-
aster. Because the size of an unexpected disaster can only be
estimated when the disaster occurs, the number of potential
survivors x is learned only at the time mission size must be
determined. We assume that the probability density function
on the number of potential survivors of any potential disaster
is given by

P(X = x) ={0 : 0.05, 1 : 0.4, 2 : 0.3, 3 : 0.2, 4 : 0.05}.
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A centralized joint task force (without maximum operation
size) would thus aim to optimize the following function fx(j)
for each disaster size x.

fx(j) =

j∑
i=1

(
100 · P (W = i | j) ·min (x, i)

)
− j.

Since this set of functions attains maximum value at j =
{0, 14, 22, 30, 37}, for x = {0, 1, 2, 3, 4} respectively, the
joint task force should assign operation sizes to countries
such that their sum operation size matches these values. How-
ever, when the countries do not have time to communicate
their commitment, they must select their responses such that
the expected sum is equal to the optimal. We compare the
proposed coordination planning algorithms with versions that
condition their response on the mean disaster size:
1) Deterministic preallocation MILP, E(x): mean disaster sur-
vival rate is ≈ 1.8 survivors; thus a mission size is selected
such that the maximum number of survivors is at most 1.
2) Conditional preallocation MILP, P(x): depending on the
potential number of survivors x, the mission response size is
selected such that exactly x are rescued.
3) Deterministic preallocation CMDP, E(x): a mission size is
selected such that in expectation 1.8 survivors are rescued.
4) Deterministic preallocation CMDP, P(x): a mission size is
selected such that in expectation, x survivors are rescued.

Figure 1 presents the results, showing means and stan-
dard errors obtained, when each computed policy is sampled
100,000 times. We compute 100 policies per data point to
obtain significance with respect to the runtime. The value
reported is the observed value, given by the number of ac-
tual rescues minus the operational costs. As expected, the
value obtained when planning for just the mean (results with
E(X)) is significantly less than the value obtained through
taking into account the uncertainty in X for both algorithms
(results denoted by P(X = x)). Additionally, the frequency
of deploying more successful operations than there are poten-
tial survivors (i.e., overcapacity) is also significantly smaller
when planning for P(X = x) than for E(X). Planning for
the stochastic limit increases the required time to plan poli-
cies significantly, however this does not change the scalability
characteristics: the trends in the run time depending on the
number of agents are the same. Comparing the behavior of
the two different algorithms themselves, we observe that the
MILP trades off overcapacity probability (i.e., almost none)
for slightly reduced value and more significant runtime costs
compared to the CMDP approach.

Planning Thermostatically Controlled Loads

Next we compare the same methods for planning how ther-
mostatically controlled loads (TCLs) use a shared resource
for a longer horizon. TCLs are electric devices for managing
temperature, consisting of a controller and an electric heating
or cooling element. TCLs typically control insulated systems,
whose inertia gives the TCLs a degree of flexibility. This flex-
ibility can be employed to buffer for the fluctuating supply
of energy from renewable sources. By replacing the thermo-
stat controller with a policy anticipating energy availability,
we can unlock this flexibility while minimizing the impact
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Figure 2: Realized mean and standard errors of the ab-
solute error, violation frequency, and runtime, comparing
mean (E(X)) with stochastic limit (P(X)) on TCL instances.

on thermal comfort (De Nijs, Spaan, and De Weerdt 2015).
Because supply from renewable sources is typically not only
fluctuating but also uncertain, this domain naturally exhibits
stochastic constraints.

In our experiments we consider TCL problems with tem-
perature ranges discretized into 25 states, and with agents
having 4 actions, corresponding to switching a heater on for
{0, 5, 10, 15} out of 15 minutes per time step. The thermal
parameters are based on reference insulation levels of houses
equipped with heat-pumps. To model consumer behavior and
build quality variation, we add small Gaussian noise to the
parameters, resulting in a heterogeneous population of TCLs.

To obtain challenging instances of the TCL problem, we
generate resource limit scenarios such that each scenario is in
expectation sufficient to keep the temperature at the setpoint,
but has realizations that are far from the mean. We randomly
generate 10 such (deterministic) resource limit scenarios and
merge them together in a Markov chain by allowing for a
small probability of cross-over between scenarios.

For evaluating the quality of the proposed algorithms, we
define an error measure by the distance of the results from
a theoretical upper bound, which we obtain by computing
joint (centralized) policies with Value Iteration (Puterman
1994). Because this algorithm has exponential complexity in
the number of agents, we perform experiments for 3 agents
and an increasing length of the horizon. Figure 2 presents
the results, normalized by the horizon as each time step has
potential to incur error, and each constitutes a new resource
constraint that can be violated. The results show a similar
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trend as in the search-and-rescue instances. Planning for the
stochastic resource constraint P[X = x] increases the run-
time of the algorithms as a result of the increase in number
of states and constraints. This has the largest effect on MILP,
which also has exponential worst-case complexity when plan-
ning for the mean constraint. For both algorithms we observe
that planning for the stochastic constraint results in a signifi-
cant increase in the quality of the solution, resulting both in
lower error and in lower violation frequency.

Regarding scalability, we observe that the run-time mea-
surements of CMDP form almost a straight line in the log-log
plots in both experiments. We therefore conclude that this
run time scales polynomially with the number of agents in
the SAR domain (Figure 1) as well as with the length of the
horizon in the TCL domain (Figure 2).

Re-planning TCLs In the TCL domain, an important prac-
tical concern is that the heat-pumps should continue to op-
erate as normal when connectivity is briefly lost, for which
preallocation algorithms are suitable. For such settings an
approach is needed where coordinated policies are computed
for a number of sequential decisions that are taken without
further communication. However, we want to incorporate
new information when agents can have an opportunity to
communicate. Therefore we propose a re-planning algorithm
that uses the previously described algorithms as subroutines
and evaluate the effect of communication in the TCL domain.

Let ĥ ≤ h be the maximum time that agents may need
to operate without communication, and let time tc be any
time step in which communication is possible, and at which
point the agents are in state s̄c. Then, we adapt the algorithms
as follows: the algorithm objective functions (4) and (8) are
changed to range over the time from the communication point
until the next sync is guaranteed to happen,

n∑
i=1

min (tc+ĥ,h)∑
t=tc

∑
s̄∈S̄i,t

∑
a∈Ai

xi
t,s̄,a · R̄i(s̄, a),

while the initial conditions (5) and (9) are set to match the
current state,

∑
a∈Ai

xi
tc,s̄c,i,a = 1, ∀i.

In order to assess the effect of periodic coordination, we ap-
ply the re-planning algorithm to a TCL instance with horizon
h = 216 (9 days in hours) and re-planning horizon ĥ = 24.
We let the agents re-plan at a regular interval (the commu-
nication gap), and measure the number of violations as a
function of the length of the interval. Figure 3 shows the re-
sults, with the horizontal lines representing the baseline case
of coordinating only at the start. We observe that re-planning
can greatly reduce the number of violations. However, more
importantly, we also observe that planning for stochastic con-
straints is effective at reducing constraint violations even
when agents only need to bridge gaps of 3 steps, demonstrat-
ing the practical value of our algorithms.

Related Work

Handling stochastic resource constraints has to our knowl-
edge thus far been limited to scheduling under uncertainty,
in which case there is only a single agent and a predefined
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Figure 3: Effect of increasing the time between communica-
tion in the re-planning algorithm.

set of activities (Fink et al. 2006). Even though stochastic
resource constraints are not widely studied, there are several
other works that attempt to address deterministic resource
constraints through other means than decoupling. Meuleau
et al. (1998) consider large-scale planning problems with
instantaneous constraints; however their strategy for address-
ing them is to ignore them in the planning phase and only
enforce them at execution time. Such an approach would
require communication at execution time, which means that
it could not be applied in a decentralized setting.

The literature on Decentralized (PO)MDPs provides algo-
rithms that exploit the limited influence that agents might
exert on each other (Oliehoek, Witwicki, and Kaelbling
2012). However, our global resource constraints prevent
that agents can be easily decoupled using such models. Re-
lated to our re-planning algorithm are approaches that con-
sider intermittent communication (Nair et al. 2004) or de-
layed communication (Spaan, Oliehoek, and Vlassis 2008;
Oliehoek and Spaan 2012). These methods rely on a so-
lution of the underlying Multi-agent POMDP which is
exponentially-sized in the number of agents. Hence, scal-
ability is poor and they are typically only demonstrated for
two agents.

Conclusions

Stochastic resource constraints have not been widely studied
in multi-agent planning under uncertainty, although they oc-
cur naturally in domains where the resource constraint is a
natural process or results from unmodeled external influences.
Multi-agent systems are additionally typically expected to
operate decentrally for periods at a time, either because re-
planning time exceeds decision time, or because of commu-
nication restrictions. In this work we show how stochastic
resource constraints can be factored such that policies can
still be effectively decoupled. To demonstrate this we extend
two state-of-the-art decoupling algorithms for deterministic
constraints to handle stochastic constraints: a Mixed-Integer
Linear Program approach and Constrained MDPs.

In our experimental evaluation we observe that using our
extensions to plan for stochastic constraints results in sig-
nificantly better solutions than using the original algorithms
to plan for the expectation of the limit. We show that these
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results continue to hold when combined with an intermittent
replanning scheme, which allows the system to operate with
reduced violations over a longer horizon.

We observe that the CMDP and MILP algorithms have
their individual drawbacks; the MILP has worst-case com-
plexity exponential in the number of resource allocations,
which grows with the number of agents, while CMDP solu-
tions result in high probability of violations. Both drawbacks
have been addressed by related work for which we intend to
investigate the effect of our stochastic constraint setting in
future work. Agrawal, Varakantham, and Yeoh (2016) present
a Lagrangian decomposition of the MILP, which splits the
problem into n subproblems through dual pricing of resource
consumption. For CMDPs, De Nijs et al. (2017) present
algorithms to bound the probability of violations, through
reducing the resource capacities used in planning. We expect
that the same technique can be applied here, because our
approach does not change the underlying structure of the
constraints, and constraint realizations are independent.
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