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Abstract
The active learning approach is a special case of semi-supervised machine learning which is able to
interactively query the user to reduce the uncertainty of the machine learning model. The approach
is useful to minimize the data labelling cost. The project aims to study and use this method to
characterize residential electricity users’ demand response to improve the prediction accuracy of energy
demand. During the trials, the policies which penalise or incentivize the users to change their behaviour
involve a cost associated with the grid management. Therefore, the experiments which include the
above-mentioned policies are considered as cost bearing experiments. The goal of this project is to
study the effect of selective sampling and random sampling of such cost bearing experiments on energy
consumption prediction accuracy in simulated residential energy consumption environment. Firstly,
we show the simulator design for simulating demand response of users under dynamic tariff policy.
Then, we investigate two selective sampling methods- variance reduction and novelty detection. The
performance of these methods under various criteria is analysed.
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1
Introduction

1.1. Background
Forecasting of residential users electricity consumption is a critical aspect of electricity retailer’s work.
The function of electricity retailing is to sell electricity to end-customer. Electricity retailing is the
fourth step after generation, transmission and distribution of electricity.

In traditionally regulated electricity markets, electricity retailers usually have vertical structure
i.e. they are also involved in generation, transmission and distribution of electricity. In this case,
the forecasting of user demand helps the retailer to set the generation of electricity accordingly. In
deregulated electricity markets, an electricity retailer is usually an independent entity which buys the
electricity from the wholesale market and sells it in the retail market. An electricity retailer has to bid
for electricity in advance. The forecast of electricity consumption of their users may help them evaluate
their needs and therefore, buy adequate electricity from the electricity generators.

Demand response is a tool to influence and alter the consumption pattern of end-users to match the
generation of electricity. Demand response schemes usually provide users with financial incentives to
alter their electricity consumption pattern. The users are usually guided with signals from an electricity
retailer. Dynamic tariff policies are one of such demand response schemes. In this scheme, the users
are charged with different tariff prices for their electricity consumption for different periods of a day.

The electricity consumption of users under dynamic tariff signals may change from their usual con-
sumption levels. Therefore, electricity retailers need to design ’experimental’ demand response schemes
to understand user electricity behaviour pattern under dynamic tariff schemes. The experiment in such
case can be a ’dummy’ dynamic tariff signal to observe the user response. When these experiments are
performed under a variety of conditions, they provide information about user responses under those
conditions. As in later chapters, we will know, these experiments are costly. Artificially changing user
behaviour by ’dummy’ dynamic tariff involves the cost of electricity grid management, balancing fees
[41] etc. Implementation of such experiment trials requires a lot of planning and careful execution.
Therefore, we cannot perform these experiments continuously.

This thesis deals with the following problem - how to improve the performance of the forecast-
ing model for electricity demand under dynamic tariff when the number of dynamic tariff signals is
constrained. The following section defines the problem that we will handle in this research project.

1.2. Problem definition
Weather conditions and seasonal habits of the users are important predictors of the usual electricity
consumption of residential user[43]. But unlike large industrial users, the residential users might change
their usual demand response behaviour for the sake of convenience[12]. The very common example of
such case is switching on the TV for an important broadcasting event. Although, individual television
is an insignificant load when considering the consumption of large cluster of users, the combined effect
of such actions by a large number of users has a significant effect on the overall consumption of such
cluster. This consumption behaviour thus evades any determinate prediction model and as a result,
exhibits a stochastic quality.

1



2 1. Introduction

To understand the consumption behaviour of residential users (which also changes based on geo-
graphical location, local culture and habits) the utility companies need to run pilot projects to carry
out experiments to understand the user demand response for various situations. We restrict ourselves
to system behaviours such as that of dynamic tariff signals as a means to analyze user response as a
function of changing financial incentives during a day. As these experiments can potentially affect the
operations and stability of entire electricity grid, planning and implementation of such pilot projects
place considerable stress on the resource availability - both financial as well as human - on an orga-
nization. Therefore, such projects are bound by the availability of resources and time. One also has
to consider the high cost of hardware per kW-Hr (kilo Watt Hour) consumption of electricity. Unlike
industrial users, the residential loads have a larger user base (number of users) but smaller individual
consumption. As a means to navigate these challenges, it becomes necessary for the utility companies
to improve the quality of each experiment conducted under the pilot project.

1.3. Problem statement
In this work, the author aims at analyzing and providing a mechanism for the easing of constraints faced
by the utility companies to process residential user demand response for dynamic tariff signals. The
problem of forecasting of demand response is constrained by the availability of the various resources
including human (experts from industry), material (required hardware and software for gathering the
data) and money (budget). It is assumed that the cost of each dynamic tariff experiment is equal and
does not need to be quantified in financial units.

Additionally, this research project presents a dynamic tariff response simulator for dealing with the
limited data of original dataset. Overall, the project captures the following main research questions
linked to the problem and the objective of the work:

• What are the methods used in demand response?

• What is the contribution of various weather conditions and calendar effects to the forecasting of
residential user electricity consumption?

• How does a simple regression forecasting model (baseline model) perform under a random selection
of experiment days?

• How to improve the selection of experiment days such that information gained from the experi-
ments would be maximized?

• How does the model with the selective sampling of experiment days perform compared to the
baseline model? How to quantify the performance in terms of budget?

Along with the reported research questions, the research project also focuses on the design and
development of a dynamic tariff demand response simulator due to the limited availability of the data.

• How to develop a dynamic tariff demand response simulator when limited data is available?

1.4. Research aim and contributions
While considering the overview of the project, the research aim and contribution in this project is
two-fold.

• The primary aim of the project is to develop a novel method for the selection of potential
information-rich experiment days to improve the accuracy of the overall demand response forecast.
We try to find algorithmic solutions to improve the existing forecasting models of demand response
of user consumption for a limited number of dynamic tariff experiments. In other words, to im-
prove the accuracy of the forecasting, we aim to intelligently select the experimental conditions
which would provide greater insights into user consumption habits.
The method of selective sampling of data label is known as active learning. Compared to re-
gression settings, more literature is available for the classification problems of active learning
framework[37]. however, the forecasting of a demand response consumption is a regression prob-
lem, which limits the available literature for this research work. We investigate the two selective
sampling methods for selecting the experiment days.
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• The secondary aim of this project is to develop a dynamic tariff demand response simulator to
tackle the problem of limited availability of the data. During the tenure of this research project,
unavailability of adequate data of dynamic tariff demand response has led to the development of
the simulator of the experiments. This simulator simulates the fixed tariff response and dynamic
tariff response of users for generated tariff policy. The project has used the dataset from ’Low
Carbon London’ (LCL) project [24] which collected the demand response consumption for a dy-
namic Time-of-Use (dToU) tariff policies. The data-driven simulator model is based on the LCL
dataset and it is designed based on the analysis and findings of the LCL project.

1.5. Thesis outline
The contents of the following chapters are discussed below. Each chapter follows a specific layout:
introduction and background, the main body of the topic, a brief conclusion summarizing the discussion
and the discussion addressing the research questions listed above.

Chapter 2 discusses the various available demand response methodologies and their effect on the
electricity grid. It also addresses the problem of residential demand response from the perspective of a
utility company or an electricity distributor. The chapter shows the effect of demand response for the
stability and uninterrupted operation of an electricity grid.

Chapter 3 dives into the domain of machine learning. It provides a brief introduction of machine
learning, followed by the introduction of decision trees and random forest models. It also describes the
one-class SVM models considered for the research project. Then, the chapter provides an introduction
to the three important active learning frameworks, namely, membership query synthesis, stream-based
selective sampling and pool-based selective sampling. The various methods of query formation are then
discussed followed by the discussion about the useful methods.

Chapter 4 gives a gentle introduction to the problem setup and design by introducing various
elements of the energy retail market and the Time-of-Use tariff policy. This chapter is a recommended
read for the readers who are not familiar with the electricity distribution domain. This chapter also
provides the assumptions considered in the design of the setup of this research project.

Chapter 5 provides details about the data used for the research project. The information about the
fixed tariff consumption dataset of choice is provided. The chapter also explains the weather data used
for the research. The chapter also discusses the information about the data manipulation process.

Chapter 6 shows the design and implementation of the dToU tariff demand response simulator.
It explains the limitations and inadequacy of the dataset used for the research project. The various
considerations for the simulator have been explained and the simulator algorithm and functional block
diagram are provided. Finally, the output of the simulator is discussed.

Chapter 7 investigates the forecasting of demand response based on a naive model which considers
a random selection of ToU tariff experiment days. Initially, a simple flat tariff energy consumption
forecasting model is explained. Then the model is improvised to forecast the consumption under the
ToU tariff demand response policy. The effect of the number of ToU tariff experiment days is examined.
The focus of the chapter is to provide a smooth introduction to the complex problem setting of the
research project.

Chapter 8 introduces the active learning methods. The ToU tariff consumption model developed in
chapter 7 is used to evaluate the performance of the algorithms. The implementation of the selective
sampling strategies is then shown and the results are analysed.

Chapter 9 provides conclusion of the research and provides recommendations for the further work.
Appendix A includes extra results.





2
Overview of demand response

A perfect balance of demand and supply is required for reliable operation of the grid. This means that
either generation has to follow demand or vice versa. Traditionally, utility companies used to balance
the grid using a vertical approach. This approach allowed the utility companies to match the demand
by controlling the generation of electricity.

But later it was realised that the most efficient way of balancing the grid is by keeping the fluctua-
tions in electricity demand minimum. Because fluctuating electricity demand results in the fluctuating
generation of electricity. Changing the generation capacity of the electric grid is a complicated and
costly process. Therefore, utility companies started exploring demand response strategies. Due to the
deregulated markets, this new approach created various demand response opportunities which incen-
tivised the market players to maintain the balance between demand and supply and reduce the demand
fluctuations.

Demand response can be defined as ‘the changes in electricity usage by end-use customers from their
normal consumption patterns in response to changes in the price of electricity over time’[9]. A demand
response strategy tries to lower the fluctuations in electricity demand. The electricity users are asked
to change their electricity consumption pattern. To guide the users, usually, electricity retailer provides
signals to their users via some communication device to guide users in required directions. These signals
are often related to incentives or penalties. From the infrastructure point of view, utilities need to have
a proper system in place to send the signals to their customers. For developing proper electricity price
structures, they also need advanced modelling, simulation, and optimization tools, which analyze the
interaction between humans, electricity infrastructure and local conditions.

With the rise of smart grid technologies [13], the coordination between users and utilities may
be automatic via two-way digital communication. Demand response programs are mostly financial
incentive-based energy consumption scheduling schemes which provide the users attractive opportunity
to freely participate by changing their electricity consumption. From the electric grid perspective, the
objective of the programs is to minimization of the energy cost of the system. Various forms of demand
response have helped to maintain the reliable operation and good health of the electric grids[13].

2.1. Electricity markets
The electricity markets have both wholesale and retail components. Like any other market, in the
wholesale market electricity is traded between electricity utilities and energy traders before it is eventu-
ally sold to the end customers. In the retail market, the electricity is sold to the customers by the energy
retailers. The wholesale and retail markets could be traditionally regulated or competitive markets.

The traditionally regulated wholesale market means that vertically-integrated utilities are responsi-
ble for the entire flow of electricity to consumers. Usually, the generation, transmission and distribution
systems are owned by the utilities in the traditionally regulated markets.

The competitive markets, on the other hand, are run by independent system operators. In the
competitive markets, usually, the responsibility of the utilities is to provide the retail electricity services
to customers. These utilities are less likely to participate in the generation and transmission services.

5
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2.2. Retail electricity market
The retail markets are defined by a government body for electricity. In the traditionally regulated
markets, customers do not have a choice of selecting their energy retailer or energy generator. In these
markets, the renewable power plants are owned by the utilities; Therefore, it is difficult and challenging
to develop large renewable power plants in the traditionally regulated markets.

In the competitive retail electricity markets, customers are allowed to choose between the retail
suppliers. The degree of deregulation is subjected to vary among the competitive markets. Some
markets may only allow the competitive markets at the retail end while having a state control over
the power generation and transmission infrastructure. Some markets may open the power generation
sector for independent producers while having control over the transmission phase. Other markets may
open the transmission along with the power generation and retailing. In some markets, customers also
have a choice over the selection of their power producer. For example, users can choose to get all of
their energy from renewable energy providers. The competitive markets provide greater flexibility in
the retail supply contract, type of generation plants and pricing of the electricity.

It is to be noted that markets may not always be divided clearly between the traditionally regulated
market and competitive markets. Some markets choose to have a structure of partially competitive
markets, where, only certain types of customers (usually, industrial customers) are allowed to engage
in the competitive retail market. All the other sectors of the energy retailing operate as traditionally
regulated market sectors.

2.3. Residential electricity market
The residential electricity market usually comes under the retail electricity market due to its distributed
nature of a large number of users with small consumption. These users are usually served by an
electricity retailer. These electricity retailers buy electricity from wholesale markets and sell it in the
retail markets. These markets can be traditionally regulated or restructured for competitive retailers.

Conventionally, the residential electricity markets were regulated, where, the electricity is provided
by a sole, usually, a state-sponsored retailer. In such a case, users do not have a choice of selecting
the electricity retailer. This type of environment does not usually provide a competitive environment
necessary for innovation-based growth. The traditionally regulated markets for residential users may
not be driven by profit maximization strategy.

On the other hand, when residential users are given a choice of choosing their electricity retailer in
a competitive market, the competition supports innovation and newer technologies which improve the
efficiency of distribution.

Next section will explain the residential user demand curve and the problem of peak power genera-
tion.

2.4. Residential energy consumption pattern
Many of the residential electricity markets offer the electricity under a fixed tariff. An electricity tariff
is the per unit (KW-hr) cost of electricity. Which means, that users will be charged equally throughout
the day, irrespective of the time of use. This tariff policy provides an advantage of simple and clear
calculation of energy consumption cost for an average user.

Although this method helps increase the transparency in the billing process of electricity usage, it
keeps the major problem of electric grid unsolved; Mostly, the electricity generation plants jointly to
generate the electricity to match the demand. For an electricity grid, demand and supply should always
be matched. This means that, during the peak electricity demand period, the electricity generators
need to generate a higher amount of power to match the demand. Figure 2.1 shows a typical residential
user demand. Typically, residential customers have peak electricity consumption during the evenings.
As we can see these peak demands typically last for a short time (usually 3-5 hours a day).

The power generation plants have varied capacity and response time. Response time is a time
required by a power plant to match the new level of power generation. This response time differs from
few minutes to few hours for various power plants. The response rate of a power plant decides the
flexibility of a power plant at the time of serving a fluctuating demand. For example, if the response
time of a power plant is slower than the change in the electricity demand, it creates imbalance situation
on the electricity grid, risking the grid stability.
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Figure 2.1: Usual residential user consumption pattern

In such cases, a spinning reserve is used. A spinning reserve is a generating capacity available to
the system operator within a short interval of time to meet demand in case a generator goes down
or there is another disruption to the supply. Figure 2.2 shows the generation distribution across the
energy resources for the UK. We see that the base electricity generation is handled by nuclear power
plants which have a slow response rate. Whereas, the peak demand is mainly handled by the gas power
plants which has a quicker response rate. But, the cost of operation of power generation is high for
gas-based power plants; which increases the cost of electricity for such plants. For a peak demand, the
cost of generation of electricity is the weighted sum of the cost of operation (and fuel) for all the power
sources. This makes the electricity at peak demand very expensive. Peaks of electricity demand are
usually undesirable as they increase the stress on the electricity grid infrastructure increasing the cost
of infrastructure and operations.

Figure 2.2: A 28 days electricity generation to match the user consumption, sorted by power sources[1]

This higher cost of electricity is directly or indirectly transferred to the end-users. It is directly
transferred to the end-users when the end-user buys electricity in a wholesale market. On the other
hand, if a user buys electricity from an energy retailer, the retailer sets the prices of electricity such
that the actual cost of electricity is compensated in their tariff policy (fixed or dynamic).

2.5. Demand response strategies
The following section provides details about various types of demand response strategies.

2.5.1. Control mechanism
The following section discusses the classification of the market based on the control strategy of demand
response[25].

Centralised control
Most of the traditional demand response schemes come under centralized control. The centralized con-
trol method consists of a central operator (usually utilities) who collects information about the customer
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response, electricity grid condition and then create a demand response scheme for the customers. Usu-
ally, the centralized control of demand response shows a slower response. This control can not follow
fast changes in the electricity grid conditions due to the hierarchical nature of the control. But the
predictability of the centralised control of demand response is much higher than decentralised control.

Decentralised control
In decentralised control, the demand response scheme is not centrally designed. In the decentralised
control, the function of utility or grid operator is to just provide the information about electricity prices.
The customers of decentralized demand response strategy only receive the electricity prices from the
operator. The prices are a function of aggregate user demand. users change their consumption pattern
based on the prices. The demand response in the decentralised case is much quicker than the centralised
control. But the response of the customers for decentralised control is complicated and predictability
of the decentralised control is lower than that of centralised control.

2.5.2. Demand response schemes
Demand response schemes [48] [3] are classified into incentive-based programs and price-based programs.
The incentive-based programs are more useful for industrial users while price-based programs are more
useful for residential users.

Incentive based programs(IBP)
In classical IBP, the participating users get incentives or discounts for participating in the demand
response schemes. In the direct control, utilities can control and manage the consumption of the
participating loads during the peak demand time blocks under short notice. The examples of such
loads are air conditioning, heating equipment etc. These loads can be controlled by the utility to
maintain the balance on the grid. As with Direct Load Control programs, customers participating in
Interruptible/Curtailable Programs participants are paid with a fixed amount. The participants are
then asked to change their load to a required value. The participants who do not follow the instructions
are penalized under this scheme.

In market-based programs, participants do not receive fixed payments, but receive payments for
their performance. In demand bidding program the customers have to bid in the market for a specific
amount of load reduction. The customers have to shave their loads according to their bids. If they
do not follow according to the accepted load reduction request, they are penalised. If they follow the
request then they are paid for their performance. In emergency DR, the users get paid for changing
their loads during the emergency situation. This scheme of demand response is beneficial for the users
who have a dedicated flexible load ready to be operated. Users need to react with a fast response as the
signals for such demand response scheme is provided on very short notice. Capacity market schemes
ask customers to reduce the consumption only in the case of grid congestion. These programs incentive
users when a part of the grid is facing contingency issues. Ancillary services provide incentives to users
who change their loads based on the spot prices.

Price based programs (PBP)
The price based programs (PBP) offer dynamic price electricity for various grid conditions. These
programs are as follows - the Time of Use (ToU) rate, Critical Peak Pricing (CPP), Peak Time Re-
bates(PTR), and Real-Time Pricing (RTP).

The Time-of-Use is one of the most popular and simple type of PBP. In the ToU scheme, the
customers are provided a dynamic tariff policy to affect their consumption pattern. The ToU tariff
policy usually consists of a two or more price levels which are designed such that they will follow
the real time prices of electric grid. For example, the during peak consumption period, the users are
provided with high tariffs. This type of price based motivation helps utilities to change user behaviour
as per the requirement. CPP is similar to ToU tariff policy but it is only implemented few times a
year for peak demand period. Usually the price rates of this scheme are higher that highest ToU tariff
prices as these signals are only provided at critical conditions of the grid. Peak Time Rebates(PTR)
asks users to shave the loads for high tariff prices on particular days. These prices are valid for entire
day. In the real time pricing (RTP) scheme, customers consume electricity based on real time prices.
This scheme is very similar to the decentralized control scheme shown above (only the purpose of the
classification differs in both the cases).
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2.5.3. Customer side strategies
The electricity user response can be achieved by three major actions[3]. Each of the response is a
combination of the signals sent by the utilities and available flexible loads of users.

Load shaving
Firstly, the customers can reduce energy consumption through load shaving strategies, i.e. during the
peak electricity demand period, users can choose to lower their loads. In this case, the customers do
not need to change their consumption behaviour during other periods (off-peak periods). This type of
response involves the temporary loss of comfort for the participating electricity users. This response is
most suited for residential and commercial users.

Load shifting
Secondly, customers can give another response by shifting their loads from the peak demand time blocks
to off-peak demand time blocks. The example appliances for this performance are dishwasher, washing
machines etc.

On-site generation
The third type of customer response is by using onsite generation. Usually, the financial benefit from
such response is lower than the above two responses. But this type of response is usually implemented
where the users suffer a lot by a reduction in their electricity consumption. The example of these type
of consumers are hospitals, industrial users etc.

2.6. Benefits of DR
The benefits of demand response are shown in figure 2.4. T

Economic benefits
The participating users can benefit from the demand response policies with incentives and reduction
bill payments. Along with peak load prices, many dynamic tariff policies allow users to use their
loads to different timings for lower tariff price. This means that users don’t have to reduce their load
consumption but just shift them to an alternate time period.

Figure 2.3: Benefits of demand response (DR)

Risk management and reliability
The demand response strategies improve the reliability of the grid as the proper allocation of penalties
and incentives reduce the likelihood of extreme grid stability.
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Reduction in price volatility
Another advantage of the demand response is the reduction in price volatility. As the users are guided
for the demand response, the responsiveness of the users reduces the electricity price volatility. Figure
2.3 shows the relation between the price of electricity and the quantity of electricity produced.

Figure 2.4: Reduction in price volatility by demand response schemes[2]

Improvement in market efficiency
The demand response programs allow the participants of the electricity grid to benefit from the actions
which improve the grid stability and performance. The financial incentive motivates improving the
current systems and implementing innovations which further improve the efficiency of the market.

Reduction in the cost of electricity grid
In the long run, the demand response reduces the cost of the system. As demand response schemes
create transparency in the operation, it motivates to change or remove the inefficient components of
the electric power system. This includes inefficient machinery, spinning reserves and other less efficient
activities.

Environmental impact
The energy sector is one of the largest sources of pollution. Removing such inefficiencies reduces the
wastage of energy and therefore reducing the environmental impact of the operations.

2.7. Demand forecasting
Understanding the effect of ToU tariff prices on electricity demand is a critical part of the operation of
an electricity retailer. That is why the retailer has to employ forecasting models to forecast the demand
for electricity for the given electricity tariff policy. The selection of these methods usually depends on
the availability of the data. Depending on which data is available, the forecasting model can be based
on a deterministic model or stochastic model or a combination of both. To improve the accuracy of
the forecasting, usually, more than one type of models are used. The electricity forecasting works for
multiple time periods - one model may forecast hour by hour consumption, whereas others may forecast
the monthly or annual electricity consumption. Usually, short term models are used for the electricity
trading purpose and long term models are used for forecasting the future trend and planning of the
infrastructure. In this section, we will look at the commonly used methods for forecasting of electricity.

2.7.1. Trend forecasting
The trend forecasting modelling falls under non-causal modelling. In non-causal modelling, the effect
of the value of variables on the predicted variable is not explained. In this method, the output target
variable is expressed purely as a function of time, rather than the other factors like - economic, policy,
demographic and technological variables etc. This type of trend forecasting which is obtained as a
function of time is best suited for a short term forecasting application.

As the method is less complicated than the other advanced modelling techniques, the main advantage
of the method is the simplicity and ease of use and understanding. However, as the function is only
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dependent on time, it ignores the possible effect of other variable conditions. For example, the role
of weather, pricing, population size, policy change etc, is ignored by the method. The trend analysis
assumes that the past pattern of a variable will continue in the future irrespective of the change of the
other factors. However limited is the forecasting accuracy of this method, it provides a preliminary
estimate of the forecasting of the target variable. As this method does not consider the influence of the
other methods, it is a useful cross-checking tool for other short-term forecasting methods.

2.7.2. Timeseries method
A timeseries is defined to be an ordered set of data values of a certain variable. The timeseries models
are the econometric models where the feature input variables used are an auto-regressive component
of the timeseries. The timeseries modelling approach assumes that the future target variable will be
a function of past observations of actual and predicted target demand consumption. Therefore, for
making a timeseries model, we require historical data of electricity consumption observations.

One of the most valuable applications of timeseries modelling the short-term forecasting of the
electricity demand. For long-term modelling econometric models are preferred over the timeseries
models as timeseries models do not consider the economic factors. Another advantage of auto-regressive
timeseries models is that it is simple to construct. As these models do not require any data from multiple
sources, observations of the target variable are sufficient for the modelling.

One disadvantage of the method is that it does not consider the cause and effect relationship of
other variables. Therefore, auto-regressive timeseries model can not make the appropriate relationship
with the external factors which affect the electricity consumption of the users.

To address this issue, a multivariate timeseries models are used. In the multivariate timeseries
models, instead of just using past values of the target variable, the model also uses the other input
variables such as calendar events, forecast of weather etc. This addition of new variables offers previously
discussed ’cause and effect’ relation for the target variable.

The following section discusses the demand forecasting case study of a recent paper[6], which at-
tempts to match the target electricity consumption by providing ToU tariff signals to a specific fraction
of users who are randomly selected.

2.8. Case study: ToU tariff user selection policy
Electricity management is classically performed by forecasting the demand and adjusting the production
accordingly. Smart meters or connected meters have created new opportunities for electricity manage-
ment. Smart meters improved the data quality for the electricity grid, improving the forecasting of
loads [10]. This has allowed non-intrusive load monitoring for industrial, commercial and residential
cases [52]. But demand response for a residential case is still an interesting domain as demand response
is still based on human preferences. Some preferences might be logical and can be identified by simple
cause and effect analysis of common variables e.g. higher thermal loads during winters. Other pref-
erences may not be so easy to identify and therefore create a potential risk of unknown response[28].
Therefore, performing the dynamic tariff experiments is necessary to provide information about the
causal relationships with the other variables which describe the local conditions.

Target tracking method with contextual bandits approach is shown in [6]. They implement contex-
tual bandit approach for incentive-based demand-side management. A target is set for each round and
the mean consumption is modelled as a complex function of the distribution of tariff prices and other
contextual variables like weather, temperature and so on. The paper tried to predict the fraction of
users required to match the target consumption. The mean consumption observed is equal to

𝑌 , =∑𝑝 , 𝜙(𝑥 , 𝑗) + noise

where, 𝜙 is some function associating with a context 𝑥 and a tariff 𝑗 providing expected consumption
𝜙(𝑥 , 𝑗). At instance 𝑡 the electricity provider sends tariff 𝑗 to a 𝑝 , fraction of the costumers. The
paper considered the population to be homogeneous, and therefore, it is unimportant to know which
customers receive a tariff signal.

The above model approaches the demand response with a contextual bandit method, where they
assumed that a target consumption pattern will be available for the tracking purpose.
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2.9. Summary
This chapter provided an introduction to demand response strategies. The various elements of the
residential electricity distribution are discussed. The various demand response strategies and their
description are provided. Then the benefits of demand response are discussed with the focus on resi-
dential users. Then various forecasting models and their properties are discussed. The advantages and
disadvantages of the models are provided. we discussed multivariate timeseries modelling as one of the
data-driven approaches. Then we have seen a case study of a demand forecasting approach presented
in [6] and discussed the assumptions made in the target tracking model.

This research project approaches the forecasting problem from a different perspective. In this re-
search project, the number of participating users is kept constant. Instead of tracking the target, the
author is more interested in improving the forecasting model by performing the ToU experiments on
‘more informative’ days. The selective sampling methods for selecting ‘informative’ data points are
discussed in the next chapter along with the machine learning basics.



3
Overview of machine learning

3.1. Machine learning
In the last two decades, machine learning has become a buzzword in the computer science community.
We can trace the academic interest in machine learning and artificial intelligence to the 1950s. The
trend in overall growth in AI-related interest, in terms of academic publications, is shown in figure
3.1. The figure shows the number of publications which contained the keywords related to AI such as
artificial intelligence, machine learning, deep learning, k-means, clustering and SVM. We see exponential
growth in the interest starting from the 1990s in AI-related research. The rise of the internet along
with exponentially decreasing prices of semiconductor devices have created enormous amounts of digital
data and also allowed the use of more and more powerful computing at an affordable cost.

Figure 3.1: Number of publications per year containing following keywords : artificial intelligence, machine learning, deep
learning, k-means, clustering and SVM.

This section will provide a basic overview of machine learning methods and terminologies for a novice
reader. Machine learning is a field of study which studies algorithms and various statistical methods
to perform specific tasks without any explicit instructions. The term machine learning was tossed by
Arthur Samuel in 1959 [33]. There is a significant overlap between statistics and traditional machine
learning methods. The more precise definition of the term is given by Mitchell [27] by the specific
way machine-based ‘learning’ takes place: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.”.

Machine learning algorithms are broadly classified into classification, clustering and regression al-
gorithms. All of these algorithms support ‘supervised learning’. Supervised learning algorithms build
a mathematical model based on the sample set of inputs and desired outputs. Most of the times, it

13
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is easier to get inputs than desired outputs. Therefore, for classification, we can have a partial set of
desired outputs for the given inputs, it is called as semi-supervised learning. In this method, some
portion of the input data does not have the desired output labels. The output labels can be chosen
randomly or with some selection strategy (next section covers the selection strategies). In unsupervised
learning, a mathematical model is developed only based on input variables and no desired output labels.
Unsupervised learning algorithms are used to find structure in the data, like grouping or clustering of
instances. Unsupervised learning can discover patterns in the data. But an unsupervised learning model
still has limited learning capacity as a real output of the given input is never introduced.

3.1.1. Random forest regression
Random forest is a bootstrapping algorithm with decision trees. Random forest builds multiple decision
tree models with different training samples and different initial parameters. Hence, the final prediction
of each decision tree is a function of these samples and model parameters. Therefore, the prediction of
each decision tree differs than other decision trees of the model. The final prediction (output) of the
random forest model is the mean of the predictions of the decision trees. In general, the more trees in
the forest the more robust the forest becomes. In the same way in the random forest regression, the
higher the number of trees in the forest gives high accuracy results.

Decision tree learning
The decision tree is also considered as a rule-based system. The decision tree algorithm will create some
set of rules for the provided training dataset of target variables and features. Then the same set of
rules are then used for predicting the target variables from the test dataset. The information gain and
gini index are calculated [30] to calculate the nodes and formation of rules. A random forest algorithm
is built on the slightly varied concepts of decision trees. In the random forest instead of calculating
information gain or gini index for calculation of roots nodes and splitting of the features, the process
randomly takes place.

Random forest is a combination or ensemble of tree predictors where, where each tree is a weak
predictor which is based on the independently sampled random vector of features. These weak learners
create an ensemble to form a strong learner. An important property of a random forest is that they do
not overfit.

Decision trees tend to overfit the data by growing deep. In other words, they overfit the training data
i.e. each tree forecaster has low bias and high variance. The random forest includes multiple numbers of
deep decision trees, which are trained on a different part of the training data. The final prediction value
of the random forest is an average of multiple trees. The random selection of training data for training of
different trees reduces the variance of overall random forest model [11]. This method has a disadvantage
of reducing bias and loss of interpretability, but the method usually boosts the performance of the final
model.

Bagging
Bootstrap Aggregation (or Bagging for short), is a simple and very powerful ensemble method. An
ensemble method is a technique that combines the predictions from multiple machine learning algorithms
together to make more accurate predictions than any single considered machine learning model. Bagging
can be used to reduce the variance for those algorithms that have high variance. One of such algorithms
that have high variance is decision trees. An individual decision tree usually overfits the data on which
it is trained. This means that for a different set of training data, the resulting decision tree will be very
different, providing completely different predictions. The bagging is a method which is used to improve
the accuracy of an ensemble of high variance machine learning models.

If we use a random forest regression model for prediction of a continuous type of target variable,
the bagging method will consider a mean of the output of the regression trees as the final output of the
model. Whereas for classification, it will consider most frequently predicted class. Bagging can also be
used for classification and regression. Random Forests are an improvement over bagged decision trees.

Simple decision trees perform greedily. Decision trees try to minimize the error at every split point
to select the variable. Unlike decision trees, random forest model does random sampling of features
instead of selecting the most optimal split-point for the feature variables.

The algorithm
The random forests algorithm (for both classification and regression) is as follows [23]:
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1. Draw 𝑛 bootstrap samples from the original data

2. Grow an un-pruned for every input sample such that at each node, rather than selecting the best
split among all the predictors, randomly select a subset of predictors and choose the best split
from among those variables.

3. Predict the test data by aggregating the results of 𝑛 number of trees. In the case of classification,
majority voting is considered. While, in case of a regression problem, the mean of all the prediction
is considered for a forecast of a continuous variable.

Variable importance
Once the random forest algorithm is trained, we can calculate the drop in error function (error at a
split and output) for a variable at every split point. Importance for each variable is calculated by
averaging the drop in error functions for those variables. The average drop in the error at each split
point and output are directly proportional to the variable importance index. For a regression forest, the
error function is calculated by taking sum squared error and for a classification setting it will be gini
score[23]. This procedure helps researchers identify the subset of input variables which maybe most or
least important for the prediction model. The selection of important features can be performed from
the above knowledge.

Another important machine learning model considered for the implementation of this research
project is one class SVM classifier. The next section provides the theoretical background of SVM.

3.1.2. Support Vector Machine
Support Vector Machine or SVM can create a non-linear decision boundary using the projection of the
data through a non-linear function 𝜙 to a space with higher dimensions. By this operation, the data
which could not be separated in their original space 𝐼, can be projected to a feature space 𝐹, where, the
data can be separated by a hyperplane which can separate the data points of one plane from another.
When the hyperplane is projected back to the input space 𝐼, this hyperplane forms a non-linear curve.
This hyperplane is represented by following equation[42],

𝑤 𝑥 + 𝑏 = 0

where, 𝑤 ∈ 𝐹 and 𝑏 ∈ 𝑅. The margin between the classes is determined by the constructed
hyperplane; the data points for one class are on one side, and all the data points for another class are
on the other side of the hyperplane. The distance of closest points from the hyperplane for both the
classes is equal; That is why SVM is also known as a margin maximization algorithm.

Slack variables 𝜉 are introduced to allow some data points to lie within the margin; this reduces
the chances of SVM getting overfitted by classifying the noisy data. The constant 𝐶 > 0 is defined
to determine the trade-off between the maximization of margin and number of training data in the
margin (soft margin) The following minimization formulation shows the objective function of the SVM
classifier[42]:

min
w ,b ,

||𝑤||
2 + 𝐶∑𝜉

For the one class classification algorithm, the quadratic programming minimization function is
slightly different than the above representation [35],

min
w ,b ,

||𝑤||
2 + 1

𝜈𝑛 ∑𝜉 − 𝜌

Subject to:
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(𝑤.𝜙(𝑥 )) ≥ 𝜌 − 𝜉
𝜉 ≥ 0

for all 𝑖 = 1,...,𝑛. In the previous formulation the parameter 𝐶 decided the smoothness. In this
formula 𝜈 is the parameter that characterizes the solution as,

• 𝜈 decides an upper bound on the fraction of outliers from the training data (also known as out-
of-class data points)

• 𝜈 creates a lower bound on number of training samples of the SVM

When Lagrange’s multiplier is used to solve this quadratic problem, the decision function (classifi-
cation) rule for a data point 𝑥 then becomes,

𝑓(𝑥) = sgn(∑𝛼 𝑦 𝐾(𝑥, 𝑥 ) + 𝑏)

For one class classification, by using Lagrange techniques and using a kernel function for the dot-
product calculations, the decision function becomes [35],

𝑓(𝑥) = sgn((𝑤.𝜙(𝑥 )) − 𝜌)

= sgn(∑𝛼 𝐾(𝑥, 𝑥 ) + 𝑏)

The SVM algorithm is a powerful model which can separate non-linear data. With the above
approach of SVM one-class classifier, we will attempt to find the out-of-class data points from our data.

But how do we optimise the machine learning model’s performance? We can optimise it either by
fine-tuning the model parameters or optimising the data. Optimising the model parameters has gained
high momentum in the early days of machine learning, but in recent years, there is a growing interest
in optimizing the data for improving model performance. Active learning is one of such methods. The
following section explains how active learning, a special case of machine learning selectively samples the
desired output labels.

3.2. Introduction to active learning
Active learning is a special case of semi-supervised learning where the instances for desired output
label are selected with some ‘intelligent’ strategy. One of the most popular ’intelligent’ strategies is
to evaluate the importance of data based on how much information it contains. For the following
discussion, An ‘instance’ is defined as a data point received by an algorithm, whose informativeness
has to be measured. The term ’query’ is defined as a request created by an algorithm for labelling of
an instance. The algorithm queries desired labels for a limited number of inputs to reduce the cost of
data. But what is meant by ‘cost’ associated with data? Let us go through an example. In the medical
field, we can use machine learning algorithms to classify MRI (Magnetic Resonance Imaging) images
as positive or negative for a particular disease. To train a machine learning model, we need input data
(i.e. MRI image) and desired output data (’positive’ or ’negative’ tag). In this case, getting thousands
of MRI images is quite cheaper when compared to getting labels for those images from professional
medical doctors. Therefore, in such cases, if we want to optimize the cost of the total sample set, we
need to reduce the number of queries we send to the doctors to label the output based on input tags.
Mind that the problem we are solving is not focused on cost reduction but constrained by it. The goal of
the active learning model is to achieve maximum accuracy with a limited number of output labels. So,
if we need to maximize the total accuracy of the model, we need to create a ’curious’ machine learning
model which intelligently selects the instances whose labels will maximize the information gain. We can
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create a specific strategy to choose such instances based on certain characteristics of machine learning
models and information theory. The study of these strategies is called active learning.

For many supervised learning tasks, getting a label is an expensive, time consuming and/or diffi-
cult process. Active learning tries to overcome this labelling bottleneck by asking queries for selected
unlabeled instances to be labelled by an oracle (i.e. a human expert). This way, an active learning
algorithm tries to improve the accuracy with a small number of labelled instances, hence reducing the
total cost of obtaining the labelled data.

But how does the current established problem of this thesis would be benefited from the active
learning techniques? As we discussed in previous chapters, the issue with deploying wide-scale dynamic
Time of Day tariff is that we do not know the effects of such implementation. So first, we need to design
some trial phases to understand user response to such tariff experiments. Setting up such trials is no
easy process. It involves the distribution of costly smart meters, design and implementation of response
measurement setup, extremely high coordination between various utility entities and most importantly,
unknown impact on the interconnected national/international grid. It will be an understatement to call
these trials anything less than elaborate multi-player scheme of complex experimental setups. There is
a high cost associated with every action performed under such trials. Therefore, one of the constraints
of such trials is to optimise the cost of the experiments. We can use aforementioned active learning
techniques to minimize this cost by reducing the number of total experiments while improving the
accuracy of the machine learning model which learns the demand response of tariff signals under given
conditions of the input for any day. By using a machine learning model for forecasting, we can further
reduce the dependence on the live trials for understanding future demand response.

For the selective sampling of an experiment day, we can use various methods explained in section
3.3. One way of approaching the selective sampling problem is by a concept called ‘informativeness
measure’. The idea is to calculate a measure which indicates the ‘information entropy’ of an instance.
The instances with more informativeness are often queried for labelling. Information entropy is a
function of negative logarithm of probability mass function of the value: 𝑆 = −∑𝑃 log𝑃 . So when
the probability of an instance is low, meaning the occurrence of such instance is low, then the negative
logarithm of probability function produces higher value when compared with high probability instance.
information entropy refers to uncertainty or disorder, and the concept is widely used in information
theory originally proposed by Shannon in 1948 [39]. Although, this is not the only method of quantifying
the ‘informativeness’ of an instance. Following chapter will provide other means of calculation of
’informativeness’.

Now as we know the role of active learning in the current project, let us dive into active learning
theory. In the active learning, we have three major scenarios where a learner (machine learning model)
can ask a query to label instances to an oracle (can be human or machine). These settings are given as -
i) Membership Query Synthesis[4], ii) Stream-based selective sampling[7] and iii) pool based sampling[8].
Figure 3.2 shows the illustrative framework for the above-mentioned settings.

Figure 3.2: Illustration of the active learning settings by Settles [36]

3.2.1. Membership query synthesis
We will start with a membership query synthesis framework discussion. Membership query returns only
the following information: if the given input instance is part of an unknown set or not. One of the
first elaborate discussion on the topic is traced back to 1988 [4]. The model can query a label for data
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point from oracle. The query data point is synthetically generated by the learner. For a non-uniform
distribution, this creates a problem. As the algorithm synthesises a query based on its hypothesis, the
generated query may not follow the underlying distribution of data. This will result in the generation of
an instance which may not make sense in the real world. For example, let us consider the classification
problem of handwritten numbers. If a membership synthesis learner queries a synthetic image, the
resulting ’digit’ of the image may not make any sense to an oracle. This results in the generation of
garbage data.

Jackson [17] shows the efficient and successful implementation of membership query function for
disjunctive normal form (DNF) formulas. Whereas, Valiant [47] provided a negative result of the mem-
bership query method and showed that general Boolean circuits are unpredictable under membership
query synthesis. He stated [47] that the learner’s knowledge about unnatural inputs is irrelevant and
there is a requirement for the learner to know every possible combination of the inputs.

But we can infer from the above discussion that this framework is not suitable for the proposed
project as it can only work infinite problem domain. For example, if we decide to use the above
framework on our problem, the learner will generate a synthetic instance (energy consumption for a
day) for which it has less clarity of the concept. We have no way to find out the demand response
for such a hypothetical day to improve the concept of learning. As it depends on the generation of
synthetic data, we can not incorporate the framework in a real-time system, where the inputs can not
be controlled.

3.2.2. Stream-based Selective sampling
The second type of active learning framework is stream-based selective sampling, where an instance
is selected for labelling, literally from a stream of samples. The learner one by one decides either to
accept or discard the sample instance for the labelling process. Usually, a collection of unlabelled data
is inexpensive. But labelling the data incurs high cost. Therefore, stream-based active learning is a
useful framework for a scenario where the learner can have a continuous stream of data. The method
analyses every instance of the stream. If the algorithm is uncertain about an input instance, it queries
label from an oracle.

For the uniform distribution of input samples, the stream-based selective sampling performs similar
to membership query learning. But the real advantage of stream-based selective sampling is that for a
non-uniform and unknown distributions query will be sensible as they are drawn from a real underlying
distribution.

Various approaches to form a query are discussed section 3.3. The information entropy-based im-
plementation is seen in Cohn [7]. Cohn handled the idea of selective sampling with a neural network,
where for binary classification, a regression model was used which provides output between [0,1]. Here
0 represents one class and 1 represents another class. By allowing continuous values between 0 and 1,
the uncertainty was quantified. When the model predicts value which is closer to either extremity, the
model shows high confidence on the concept that it has learned from training data. Whereas, when
the output lies near 0.5 value, the model is uncertain about either outcome. Therefore, from an active
learning perspective, these instances make a curious case for the exploration. The query generation, in
this case, can be handled with multiple criteria. The simplest criteria are to compare the model output
with a threshold.

Stream-based selective sampling can be approached by multiple methods. Zhu [50] showed the
active learning mechanism for a stream of data which is usually stored in chunks. The implementation
involved labelling of instances from a batch of data streams using uncertainty sampling. This kind of
implementation assumes that limited re-access to the data is possible. Another way of stream-based
query selection is performed in an online setting, where the labelling decision is made at the time of
scanning of each instance. The later type of implementation is found in Žliobait [51]. They also handled
the problem of concept drift using uncertainty sampling and dynamic allocation of labelling efforts by
randomization of search space.

Thompson used active learning for natural language parsing and information extraction [44]. They
claimed to achieve upto 44% annotation cost for speech dataset. [40] used stream-based active learning
for sentiment analysis in stock market prediction using a stream of twitter data.

In the last few years, interest in pool-based sampling has been renewed as computer vision and
image-based artificial intelligence has seen tremendous growth. The pool-based scenario is explained
here.
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3.2.3. Pool-based sampling
Lewis and Gabe [22] introduced pool-based selective sampling method in 1994. Today, it is very common
to have a large pool of unlabelled data. A large collection of digital images is a good example of such
a pool. This type of domains inspires the pool-based methodology. In this method, a learner which
has access to a pool of data can query labels for a limited number of unlabelled samples. This type
of active learning is more popular than the other two types shown above as nowadays it is possible to
have a large quantity of unlabelled data readily available.

In a general pool based method, the active learning algorithm is used to calculate the informativeness
of all the instances. There are several ways of calculating informativeness of an instance, which will be
discussed in section 3.3. Then, the queries are selected in a greedy manner where the instances with a
higher value of informativeness are selected first. The method can be implemented iteratively.

A pool-based recommender system is proposed by Rubens [32]. Tong used support vector machine
(SVM) based active learning for text classification [46]. Joshi [18] has shown a pool based sampling
method for image classification using SVM based probability estimation of class membership. The
pool-based selection method finds a lot of applications in the multimedia domain as the arrangement
of a large pool of data is possible for most of the multimedia applications. A literature survey by Wang
[49] focuses on the active learning techniques in the multimedia domain. A classic literature review by
Settles [37] shows a large number of examples of the pool-based method in the application domain of
images, text, audio, speech, video etc.

Out of the frameworks discussed above, stream-based and pool-based methods query a real instance
for labelling from the distribution, whereas membership query function will only query from real distri-
bution if the distribution is uniform. The main difference between stream-based and pool-based active
learning is about the availability of the data during query synthesis. In stream-based learning, data
is sequentially scanned and query decision is made individually. Whereas, in pool-based learning, the
complete set of available data is used to rank the complete dataset for selecting the best query. The
pool-based approach is much useful when working with offline dataset or availability of large computa-
tion power and large scale storage (e.g. servers and cloud computing), whereas stream-based method
works best for online situation (e.g. ToU tariff response problem of this thesis) or limited power and
storage capabilities (e.g. mobile and embedded devices).

3.3. Query strategy framework
All of the active learning frameworks evaluate the informativeness of an unlabelled instance. This
section provides an overview of the general strategies from the literature. From now on, 𝑥∗ is used to
refer to the most informative instance according to some query selection algorithm 𝐴. In the scope of
this project, the following are the related methods for obtaining the informativeness of input instance.

3.3.1. Uncertainty sampling
The label sampling under this query strategy is done by selecting the samples for which the model is
least certain about. This framework decides the informativeness of an instance based on the certainty
with which algorithm can label the instance. The approach is quite straightforward for a probabilistic
model for binary classification. For example, in a binary classification, for a particular instance, if a
probabilistic model shows 0.5 probability for both the classes, then the model is completely uncertain
about the label of that instance. The assumption is that knowledge about labels of these uncertain
instances will potentially improve the decision boundary of a classification problem.

Therefore, the concept of uncertainty sampling revolves around finding the instances which are closer
to the decision boundary, therefore harder to classify. In the SVM based classifier, Tong [46] proposed
a strategy which queries the instance which is closest to the decision boundary of SVM classifier.

Another popular uncertainty sampling measure uses information entropy [39] as an uncertainty
measure:

𝑥∗ = argmax−∑𝑃 (𝑦 |𝑥) log𝑃 (𝑦 |𝑥)

where 𝑦 ranges over all possible labels. Higher the amount of information entropy more is the
information in the distribution. In machine learning, this concept is used for calculation of uncertainty
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which is directly related to the informativeness of an instance. The entropy is equivalent to a margin
approach for a binary classification problem.

The uncertainty sampling methods for three or more classes are shown in Settles [37]. As the scope
of this thesis only has requirements for binary classification, we will limit the study of uncertainty
sampling for binary classification problem.

Let us consider the issues related to the uncertainty sampling approach. As this approach always
searches instances for which the model is least certain, it falls into the trap of greedy search, limiting
the exploration. Huang [15] found that the margin-based methods (as shown in this section) do not
perform well at the beginning of training session as for the lower number of training samples, the
decision boundary is often inaccurate.

3.3.2. Query by committee
Query by committee approach considers the ensemble of models for deciding query of a label for unla-
belled data. Let us consider a set of 𝑛 sub-models - 𝑓 (𝑥), 𝑓 (𝑥), ...., 𝑓 (𝑥). Where, 𝑥 is the input data and
𝑓(𝑥) is the output function of an 𝑖th sub-model. The ensemble of models is usually trained on a slight
variation of training data. The criteria for selection of the training data for each model in ensemble
depends on a method to method.

As every sub-model of the above ensemble is trained on slightly different data, each model has a
slightly different hypothesis. The hypothesis of a machine learning model is built on the training data.
This results in some degree of disagreement between the sub-models. The Query by committee method
tries to quantify the disagreement between the members (sub-models) of the committee (ensemble).

The QBC algorithm achieves the disagreement between the committee members by minimizing the
version space. The concept of version space was proposed by Mitchell in [27]. For a binary classification
problem, the committee of the 𝑛 models can create 𝑛 number of hypothesis. If we say that some of
the hypotheses provide more ‘tight’ boundary for positive training samples than other hypotheses, we
call such boundaries as ‘specific boundaries’ (SB). The other hypotheses which create boundaries which
contain positive samples as well as remaining feature space without including any negative samples, we
call them ‘general boundaries’ (GB). The goal of the query by committee algorithm is to constrain the
size of the area between two boundaries, such that the search of the queries is more precise.

In 1992, Seung [38] proposed this algorithm. The paper considered a committee of two models for
the classification problem. The query is chosen according to the principle of maximal disagreement [38].
The paper showed that the generalised decreases exponentially as the number of queries go infinite.
Seung found that the active sampling by QBC approach showed better results than random sampling.

The method is usually implemented for binary classification. The method also assumes that the
data is separable. The Gibbs training procedure is used to train the QBC model. The assumption that
Gibbs training procedure will be used makes the algorithm less useful for a deterministic component
learning problem. To solve this problem, [26] proposed two algorithms - Query by bagging and query
by boosting to construct a committee. The results of [26] show that the query by boosting achieves best
results followed by query by bagging and then traditional query by the committee for a deterministic
component learning problem.

The study by McCallum and Nigam [29] showed that a small number of labels queried by active
learning algorithm can reduce the prediction error by around 33%. The paper also provides a proof for
the value of unlabelled data in the active learning domain.

3.3.3. Variance reduction
As the problem setting of this research project deals with the regression model, we now consider a
regression setting. We can tweak the query by committee algorithm to incorporate the uncertainty of
the regression instance.

Let us consider a set of 𝑛 sub-models of an ensemble - 𝑓 (𝑥), 𝑓 (𝑥), ...., 𝑓 (𝑥). Where, 𝑥 is the input
data and 𝑓(𝑥) is the output function of an 𝑖th sub-model. In this case, the sub-models of ensemble
are regression models. We train each sub-model on slightly different regression data. The strategies to
select the training data for these sub-models may differ model to model.

The ensemble of the above models can be used to predict the actual value of the target variable
𝑦(𝑥). The ensemble of 𝑛 models is used to predict the target variable �̂�(𝑥) for given input 𝑥. The
output of the ensemble of weighted sub-models is mathematically shown by,
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�̂�(𝑥) =∑𝑤 𝑓(𝑥)

Now, as each model is trained on slightly different data, we again try to minimize the variance of
the ensemble by querying the instances which provide show a high degree of ambiguity. In the variance
reduction method, this ambiguity is quantified by the variance of the ensemble. Therefore, we calculate
the variance 𝑉 of the ensemble of 𝑛 models for input 𝑥 as,

𝑉 =∑𝑤 (𝑓(𝑥) − �̂�(𝑥))

In variance reduction method, we try to maximize the knowledge of the ensemble model by trying to
minimize the variance of the model. The reduction in variance is directly proportional to the confidence
of the model in certain common concept. Therefore, the objective of the variance reduction model is
to minimize the generalized error by querying the label of unlabelled instances with high prediction
variance. The terms ‘label’ and ‘unlabelled instance’ is borrowed from the classification domain. Under
the current setting, the term ‘label’ means the target variable and ‘unlabelled instance’ means the input
for which the target variable is not available.

Now, we will discuss various ways of ensuring the difference between the hypotheses of the sub-
models. One way of creating such a committee is by initiating the sub-models with different initial
conditions. This can be achieved by having a different set of hyperparameters for each sub-model.
Another way of achieving the difference in hypotheses is by selecting different training data for each
model such that models share minimum common knowledge about the feature space. The former
method was observed in neural network-based model ensemble implemented by Krogh and Vedelsby
[20]. They have used a committee of neural network models with different hyperparameter settings
for creating a disagreement between the models. The example of the other type of method to ensure
the disagreement between the users is shown by Raychaudhari and Hamey in [31]. They achieved the
ambiguity between the sub-models by providing separate training data. The paper claims that the
accuracy of their model is greater than [20]. Further discussion about the claim has not been found.

3.4. Discussion: Considered active learning methods
In this section, we will formulate the two active learning methods for the problem setting of the research
project. First, we will try to combine the knowledge of section 3.1.1 and section 3.3.3.

As discussed in section 3.1.1, the decision trees of the random forest algorithm are considered to
be ’weak learners’. They tend to have high variance and low bias in the output. This property of
the random forest algorithm can be exploited to find out the uncertainty in the output of the model.
Instead of averaging the output of the trees via the bagging process, we calculate the variance of the
ensemble of trees.

Secondly, we will consider a novelty detection algorithm based on SVM classifier. In this algorithm,
we will try to create a decision boundary which will separate novelty data points from the base dis-
tribution of the input data. Then we will calculate the distance of every instance from the decision
boundary and use that as a measure of selective sampling.

3.5. Summary
This chapter introduced the concept of machine learning. Then a special case of active learning was
discussed from the research project point of view. The working of a random forest and one-class SVM
classifier is discussed. We observed that active learning for classification problem setting has been well
developed, but they work in the regression domain is still limited. We then analysed the variance
reduction method for regression problem setting in detail. Finally, we revisited the random forest
method to give details about the implementation of the variance reduction method via high variance
decision tree ensemble of random forest algorithm. We also reviewed the novelty detection method using
SVM. In the next chapter, we will look at the design of the experiment setup of the research project.





4
Setup design

This chapter introduces the setup considerations for the research project and discusses the elements of
the setup. This is a stylised problem that aims to capture the main elements of the real challenge -
electricity retailer and residential users behaviours. The assumptions and considerations while modelling
both elements are considered in this chapter.

4.1. Introduction
One of the goals of the research project is to create a forecasting model to predict the energy consumption
of residential users under dynamic Time-of-Use (ToU) tariff policy. The electricity retailer provides the
ToU tariff signals to customers. Then the customer consumption pattern is influenced by the electricity
prices, usually bringing the demand down for HIGH price signals. The research project analyses the
effect of ToU tariff signals on the consumption pattern of the users and finds out the ways to improve
the forecasting of the demand by the means of active learning techniques explained in chapter 3.

Figure 4.1: Design of the setup of the research project

Figure 4.1 shows the schematic for the design of the experimental setup of this thesis. Let us discuss
each of the concepts introduced in the figure.

4.2. Electricity retailer
Electricity retailing is the final sale of electricity to the end-users. Energy retailers buy electricity from
the market usually at a day-ahead price in a spot market or hour-ahead prices in an intraday market
based on the forecasted demand.
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Let us consider the importance of a good forecaster. The end-users expect a reliable and uninter-
rupted supply of electricity from their electricity retailer. As we know that the demand and supply of
electricity have to match all the time. The electricity retailer bids electricity for the future time period
based on the expected demand for that time period. Therefore, if a retailer observes mismatch in the
actual demand and forecasted demand of the electricity, the retailer needs to ensure that the gap in the
demand of the electricity is reduced using various demand response strategies explained in chapter 2.

The failure to match the ordered electricity consumption results in imbalance on the electricity
grid. In that case, the responsible party has to pay the very expensive balancing cost. Therefore the
market players try to avoid the imbalance conditions. In our case, the electricity retailer can reduce the
balancing cost by having a good forecaster.

For this project, we are considering the case of forecasting electricity consumption under ToU tariff.
The electricity retailer decides a tariff policy for a day; the policy can be a ToU tariff or fixed tariff. The
expected user behaviour is that users will adapt their usual electricity consumption pattern to avoid
the higher electricity charges for the peak demand time period under the ToU tariff and will continue
the usual consumption under fixed tariff signals.

The peak demand prices help the utilities to reduce the demand at peak period. This is especially
useful when the transmission system faces issues like constraints. Under the constraints (related to
thermal, voltage or frequency) the transmission system reaches its peak power carrying capacity. In
other words, the transmission systems can not cater to higher power demand if required. This condition
creates instability on the grid. The utilities and grid operators try to avoid this condition. The dynamic
tariff demand response strategy is one of the methods which can reduce the congestion on the grid.

Now, we will look into various elements of the electricity retailer’s considered domain: forecaster,
decision-maker and tariff policy.

4.2.1. Forecaster
This thesis focuses on the design and implementation of a ToU tariff consumption forecaster and
decision-maker algorithm. The setting of the forecasting scenario is explained here. It is assumed
that the users are never subjected to a ToU tariff policy before starting the trials. Therefore, we do not
have any information about user response before the trials. The energy retailer will set ToU tariff on
some days and send the corresponding signals to all the users. On other days, the energy retailer sends
the fixed tariff signal to the users.

The forecasting model is then trained on the electricity consumption data gathered from the residen-
tial users with tariff signal and other variables as inputs features. The target variable is the electricity
consumption of the users (under ToU and fixed tariff policies). The feature variables consist of the tariff
signals and other variables which describe the local conditions. The detailed discussion on the feature
variables is done in chapters 5 & 7.

Considering the discussion on the demand response forecasting models in chapter 2, we will consider
a timeseries model for the forecasting purpose. As we have discussed in chapter 3, the collection of ToU
tariff electricity consumption data is an expensive task, we will use a combination of fixed tariff and
ToU tariff responses by the users.

4.2.2. Decision maker
The design of a decision-maker is the main aim of the research project. The function of a decision-maker
is to schedule ToU tariff experiments on certain days. For the prediction of the electricity consumption
under ToU tariff policy, the historical data corresponding to the same observation i.e. the observations
of electricity consumption under ToU tariff policy. The decision-maker is responsible for gathering that
data by performing the ToU tariff experiments.

As we are considering the cost for each ToU tariff experiment, we are constrained by the total
expenditure on the ToU tariff experiments. Therefore, electricity retailer can not have an unlimited
number of experiments but will have to choose specific days for ToU days. The decision-maker can
use various strategies for choosing the days for the experiments. For example, in the simplest case, the
decision-maker can randomly choose the days for ToU experiments without considering the impact of
external factors. In some other case, the decision-maker will consider the grid conditions while selecting
the experiment day. For example, the decision-maker will choose any day where the least impact on the
electricity grid is expected. Still, it will be random selection under that constraint, as the decision-maker
is not concerned with the actual day itself.
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This research project has the following consideration for the decision-maker. All the resources
required for performing a ToU tariff experiment is available to the electricity retailer when the decision-
maker asks the retailer to perform the experiment.

The random selection of experiment days is considered as a passive selection criterion. If the decision-
maker employs any ‘smart’ method for selection of an experiment day, then the selection method is called
selective sampling or active selection criteria. The thesis focuses on finding out the active selection
criteria for selecting experiment days which are more informative than others. In either case (active
selection or passive selection), the decision-maker is an algorithm which fulfils the given purpose.

4.2.3. Tariff policy
For the research project, the investigation of electricity consumption under Time-of-use (ToU) tariff
policy is considered. The design of ToU tariff policy is done by the electricity retailer, which includes
the size of each time block, levels of the tariff, price of electricity at those levels and duration of each
level of tariff for a ToU tariff day. Let us discuss each of the above-mentioned design aspects.

• Every day is divided into 48 half-hourly time blocks for the design of ToU tariff policy. The
electricity consumption readings are taken every half hour (with the unit, kW-hr per half hour).
The tariff policy is subjected to change at a particular time block of a day.

• The tariff prices are designed such that the residential users who do not participate in the ToU
tariff response, will not be penalised.

• The considered problem has the minimum ToU tariff price levels: NORMAL and HIGH. The
NORMAL price signal corresponds to a comparatively lower tariff time block, where the use of
electricity is charged with a lower tariff. The HIGH price time blocks of a day correspond to the
time period where the electricity retailer wants its users to reduce their electricity demand. The
HIGH price is sent to all users during peak hours, whereas the NORMAL price is sent to the
users at off-peak hours. Price of electricity for the NORMAL and HIGH levels is kept the same
throughout the trial, meaning, the user response is not affected any time during the trials due to
any change in the tariff prices.

• In theory, as the ToU tariff policy is divided into 48 time blocks, the electricity retailer can
generate a tariff policy which has multiple changeovers between NORMAL and HIGH price. But
by design, we will put a constraint of one HIGH price block per day. The consideration is inspired
by two reasons,

– Complex design of ToU tariff is difficult to follow for residential users, therefore, usually
simple peak and off-peak time blocks are defined for a day [24]

– Main focus of two-level ToU tariff is to reduce the peak electricity demand, which is observed
only once during a day

Due to this constraint, we will focus on reducing the peak demand of a day. Therefore, the HIGH
price will be set for a day such that the peak demand period is covered by the tariff. The users
will receive a NORMAL price for all the other time blocks of a day.

• The start time and duration of a HIGH price is randomly selected for a day and the resulting
policy is sent to the decision-maker to analyse. If the decision-maker decides to perform the ToU
tariff experiment, then for that particular day, the ‘observed’ electricity consumption for ToU
tariff is collected. If the decision-maker decides to not perform the ToU tariff experiment, the
generated ToU tariff is discarded and a flat tariff with all NORMAL signals is sent to the users
and the corresponding electricity consumption is collected. The input features corresponding to
the day under consideration is collected by the electricity retailer in either case.

This concludes the discussion on the various elements of considered electricity retailer domain. Next,
we will discuss the considerations for residential users of this trial design.
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4.3. Residential users
The residential users considered under this thesis are based in London. The research project is utilizing
the data of the Low Carbon London (LCL) project [24]. The dataset is explained in chapter 5. The
data from the Low Carbon London project is used to simulate the behaviour patterns of residential
users. Therefore, the data used for the research project is the simulated behaviour of the users. The
simulator design is explained in chapter 6. This section focuses on the assumptions and considerations
made about the residential users,

• The residential users are a homogeneous mixture of the residents of London [24].

• The input data for the data simulator is actual observations of fixed tariff electricity consumption
collected under Low Carbon London trials [24]. Therefore, the LCL fixed tariff data is used as a
base data for simulating the fixed tariff electricity consumption and ToU tariff demand response
for this setup.

• All the users of the given electricity retailer have selected to receive the ToU tariff signals a day
before the ToU tariff day.

• It is not mandatory for the users to engage in the demand response for ToU tariff. If a user
chooses not to participate, the user will continue with their usual consumption behaviour (i.e. a
consumption similar to that of fixed tariff consumption)

• If the users are interested in participating (will be called as participating users) in the demand
response, they will reduce their consumption during the HIGH price signal.

• Every participating user can lower their load in one step which is a fraction of their fixed tariff load.
The participating users will start reducing their loads at different times to create a smoothing
effect for the tariff response. Similarly, the participating users will stop responding to the tariff
at different times. The delay (positive and negative) around the start and stop time of a HIGH
price signal is calculated in the data simulator.

• The above participation rate is predefined for a trial. Therefore, a fraction of users will be
randomly selected for following the ToU tariff, while the other users will continue their normal
consumption pattern.

• The electricity retail will only receive the aggregate consumption of the users which is the sum of
electricity consumption of all the customers of the electricity retailer.

• The simulated demand response of the residential users is a function of their fixed tariff electricity
consumption. Therefore, for any particular day, the demand response quantity (in kW-hr) is only
dependent on the value of fixed tariff electricity consumption.

• The demand response calculations will only consider peak load shaving without shifting any load.
For example, when users receive a HIGH price, they will reduce their loads during the HIGH price
time block and will continue with their usual consumption once the NORMAL price resumes.

4.4. Summary
This concludes the chapter 4. In this chapter, we have seen the basic setup of the thesis research
work. The various aspects of the considered domain of electricity retailer are discussed while providing
the assumptions of the designed setup. The implementation of the electricity retailer’s forecaster and
decision-maker blocks are discussed in chapters 7 & 8. The considerations regarding the modelling of
residential users’ consumption behaviour are discussed. The residential consumption is modelled in
chapter 6. In the next chapter, we will discuss the data used for the research project.
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Data is an important part of the study of machine learning techniques. This chapter introduces the
data used for the evaluation of the proposed active learning methods. The research project uses two
datasets namely - Low Carbon London (LCL) ToU tariff trials dataset and MIDAS weather dataset.
The information about both datasets is presented in this chapter. As both datasets partially contain
redundant data, the data cleaning process is explained. Finally, the final dataset is introduced, which
will be used for the research project.

5.1. Low Carbon London Project
The demand response model used in the thesis is extensively based on the public data released Low Car-
bon London (LCL) project, which was the UK’s first residential sector, dynamic time-of-use electricity
tariff trial.

5.1.1. Background
During 2011-14, UK Power Networks (the Distribution Network Operator for London) ran the Low
Carbon London project which was funded by the Low Carbon Networks Fund (LCNF) run by OFGEM.
This project tested many low carbon technologies on London’s electric power grid [24]. Imperial College,
London gathered data from all the trials which were performed during the tenure of this project and
perform analysis to get insights from the data. The anonymous individual user energy consumption
data was gathered using smart meters. For the scope of this project, we will only consider the residential
dynamic tariff trials involved in LCL project. The following information is based on the report published
after the trials[34].

5.1.2. Experimental groups
The trial participant group consisted of 5,533 household users. These users were provided with the
smart meter which recorded their energy consumption during the tenure of the project. Out of 5,533
participants, 1,199 participants were chosen to participate in dynamic Time-of-Use tariff trials. The
remainder acted as a control group for the trials.

5.1.3. Experimental units
The experimental unit can be considered as a scope of a single experiment. Whenever we consider an
experiment which is performed on a large number of subjects, we have two main sources of uncertainty:
the variation in the response between various participants and variance caused due to difference in
surrounding conditions related to each day. Therefore, it is important to clarify what factors are to be
considered in an experimental unit.

The idea of a trial day is to set a standard time period in which various tariff prices can be provided,
independent of each other. The researchers thought that the sleep cycle of humans was a clear divider
of human days. Therefore, starting a morning (05:00) was considered as the start of a new trial day

For the current thesis work, the same definition of an experiment unit is used. But to model the
aggregate consumption, a bottom-up approach is used. That is based on the findings of the trials,
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we try to mimic the effect of individual households to obtain same aggregate level results i.e. every
household response is modelled individually, so that when we consider aggregate consumption, we will
see the same effect as seen in original trials (More on this topic in chapter 6).

5.1.4. Household sampling
The participants were recruited based on the opt-in process. The demographics of participants were
carefully selected to match the overall demographics of London. The participants who did not further
opt for dynamic tariff trials were then grouped under non-dynamic (fixed) tariff category. The fixed
tariff group was a control group which provided a baseline consumption to analyse demand response of
the dynamic tariff group. Figure 5.1 shows the individual user consumption of electricity under fixed
tariff policy.

Figure 5.1: Usual residential user consumption pattern

5.1.5. Parameterization of demand response
This section describes the parameters which were used to quantitatively describe the demand response
actions of users for a given dynamic tariff policy. The various parameters are given below -

• Electricity prices: The trials included following tariff price levels - LOW, DEFAULT and HIGH.

• Timing of an event: The event is selected based on time parameters such as time of day, day of
the week, seasons of year etc.

• Persistent of an event: Only three consecutive trial days were allowed.

5.1.6. Overall price schedule
As the LCL trial was first of its kind trial in the UK, there was a lot of ambiguity about the effect of
dynamic prices on the response. Therefore, the tariff price levels were set such that the expected user
response will be maximized.

The tariff price levels are decided such that if a user decided not to participate in the trials, the net
effect of their inaction will be zero. In other words, users will not be charged for not changing their
consumption for the dynamic tariff. The rates for price bands were as follows:

• HIGH: 67.2 pence/kWh

• DEFAULT: 11.36 pence/kWh

• LOW: 3.99 pence/kWh

The nonToU tariff group was charged at a fixed standard rate of 14.228 pence/kWh.
The actual price levels of tariff do not affect the implementation of our research project as we assume

that the rates are constant throughout the simulated trials of this research project. But it is interesting
to understand the economics and incentives related to the LCL trials. We could see the effect of revenue-
neutral policy on user behaviour. Around 50% users who actively opted-in, never actually participated
in any trials[45].
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5.2. Summary of LCL dataset
The above discussion on the LCL dataset is only limited for the scope of this research project. The
following table shows the summary of the considered part of the LCL dataset gathered during the
dynamic Time-of-Use tariff trials of LCL project.

Total number of users 5,533 users
ToU tariff users 1,199
Fixed tariff users 4334
Time period of the trial One year (2013)
Tariff levels 3 (LOW, NORMAL, HIGH)
Total HIGH tariff events 21

5.3. Weather data
The weather data like temperature and weather type is an important feature for the forecasting of
electricity consumption of the residential users. Therefore, we will explore the weather data as a
potential set of input features.

5.3.1. MIDAS dataset
The research project uses the MIDAS UK hourly weather observation data and contains meteorological
values measured on an hourly time scale. The measurements of the concrete state, wind speed and
direction, cloud type and amount, visibility, and temperature were recorded by observation stations
across the UK.

The MIDAS UK hourly weather observation data contains the weather data from all the weather
stations from the UK. As LCL trials were performed in London, the London based weather stations are
considered for the weather inputs. Due to the concerns of privacy, the exact location of the users is not
provided in the LCL data. The Heathrow (London) weather station data was found most complete with
some of the parameter logs lead back to 1948. Due to the reliability and availability of the data from
2011 to 2014 (the total period of LCL trials), Heathrow weather data is considered for this project.

5.3.2. Study of parameters
As they say, the machine learning task is 80% data processing and 20% fun. The UK hourly weather
observation data contains 104 parameters, including timestamp, weather id, device id, weather condi-
tions (like temperature, pressure, wind speed and dew point). Some of the important parameters are
described here,

• ob_time: Date and time of observation

• wind_speed: measured in knots

• visibility: measured in decameters

• msl_pressure: Mean sea level air pressure Unit=1 hpa to the nearest 0.1 hpa. Precision aneroid
barometers are now in general use for measuring pressure and a correction for altitude is applied
to obtain the value at mean sea level (MSL).

• air_temperature: Unit=1 deg C to the nearest 0.1 deg C

• dewpoint: Dew point temperature is the temperature to which the air must be cooled to produce
saturation concerning water at its existing atmospheric pressure and humidity. Unit=1 deg C to
the nearest 0.1 deg C

• wetb_temp: Wet-bulb temperature is the lowest temperature that can be obtained by evaporating
water into the air. It measures the humidity of the air. Unit=1 deg C to the nearest 0.1 deg C

• stn_pres: Station air pressure. Atmospheric pressure as measured at the station level. Correction
for altitude is not applied. Unit=1 hpa to the nearest 0.1 hpa.
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• alt_pres: Altimeter pressure. Unit=1 hpa to the nearest 0.1 hpa.

• wmo_hr_sun_dur: This gives the readings from the newer automatic sun sensor which has now
replaced the Campbell Stokes Recorder.

Of course, the dataset consisted of 94 more weather parameters, which are not essential for this
research project. Therefore, the data which is important from the perspective of the research project
had to be scrapped from the original dataset. and other parameters had to neglect. Finally, the
following set of parameters were selected from the MIDAS UK hourly weather observation data for the
years 2011 to 2014,

• ob_time

• wind_speed

• dewpoint

• stn_pres

• msl_pressure

• wetb_temp

• air_temperature

• wind_direction

• visibility

• wmo_hr_sun_dur

The above parameters are considered for the feature analysis in chapter 7.

5.4. Data cleaning and manipulation
Following data manipulation is performed to make the final dataset which will be used for the machine
learning and active learning analysis in this research project.

5.4.1. Discarding the ToU tariff experiment data from LCL dataset
The LCL project had a limited number of experiments during the year 2011. Only 21 HIGH tariff
experiments were carried out during the period of the LCL trials. As the number of trials was not
sufficient for training a forecasting model, the data regarding ToU tariff signals and corresponding ToU
response data is discarded. Also, the research project aims at selection methods for ‘informative’ ToU
tariff days, the use of ToU data from the LCL project would have biased the results of the selection
criteria. Therefore, we will only use fixed tariff data from the LCL dataset, discarding all the other
data.

5.4.2. Matching the date-time-stamp of two datasets
The data recorded in the LCL trials is half-hourly, whereas, the weather data is an hourly data. There-
fore, we need to match the timestamps of two datasets to make use of two datasets under one data
frame. We could either interpolate the weather data to generate the half-hourly observations or we can
skip every other energy consumption observation recorded in LCL trials to match the hourly resolution
of weather data. The latter option involves loss of data and potential information. Therefore, the
former method is chosen and all the continuous weather parameters are interpolated to double the time
resolution of the weather dataset. Now both the datasets (LCL and weather) have datetime indices
with the same timestamps.
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Column Datatype Description
Index datetime index Includes the date and time information with half

hourly resolution
Fixed tariff consumption (LCL) continuous Contains fixed tariff data of LCL users

consumption by the users (total 4,334 columns)
temperature continuous Interpolated AIR_TEMPERATURE parameter from

MIDAS dataset
dew point continous Interpolated DEWPOINT parameter from MIDAS

dataset
wind speed continous Interpolated WIND_SPEED parameter from MIDAS

dataset
Station pressure continuous Interpolated STN_PRES parameter from MIDAS

dataset
MSL pressure continuous Interpolated MSL_PRES parameter from MIDAS

dataset
Wet bulb temperature continuous Interpolated WETB_TEMP parameter from MIDAS

dataset
wind direction Categorical Interpolated WIND_DIRECTION parameter from

MIDAS dataset
visibility Continuous Interpolated VISIBILITY parameter from MIDAS

dataset
Sun duration Continuous Interpolated WMO_HR_SUN_DUR parameter from

MIDAS dataset
Hour of day Categorical Value of hour of a day calculated from 00:00 (time)
Day of week Categorical Day of week calculated from Sunday to Saturday
Month Categorical Month of year
Season Categorical Summer, Autumn, Winter or Spring

Table 5.1: The final data table with the description about the data
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5.4.3. Generating calendar features
The electricity consumption pattern of residential users is often periodic. Therefore, it is necessary to
inspect the effect of calendar effect on the performance of a forecasting model. The daily aggregate
electricity consumption pattern can be captured by hour-of-day categorical feature, which will show the
hour of a day based on the datetime index of a data point. Similarly, a weekly pattern can be captured
by the day-of-week categorical feature. The other categorical calendar features which are considered
are month and season of the year.

5.5. Final dataset
Table 5.1 shows the final data that will be used in this research project. As mentioned earlier, weather
data is interpolated to match the datetime index frequency of the electricity consumption data. This
dataset has a resolution of half-hour. The index matching is performed to match the appropriate
features with the fixed tariff data of LCL trial users.

5.6. Summary
This chapter has introduced the data that is used for the research project. The LCL data and MIDAS
weather data, both required tedious data cleaning and manipulation. The MIDAS weather dataset
had to be interpolated to match the index of LCL trials dataset. The table 5.1 shows the final dataset
which includes individual electricity consumption observations of 4,334 fixed tariff users of LCL project,
selected weather features from MIDAS dataset and generated calendar features. As mentioned in chapter
4 the research project considers the aggregate electricity consumption data of users for fixed as well as
ToU tariff policies. As of now, ToU tariff data and corresponding electricity consumption data used
in this thesis are not introduced. Next chapter (chapter 6) will introduce the data simulator, which is
designed for simulating aggregate fixed and ToU tariff response of the residential users.
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This chapter discusses the design and implementation of Demand Response Simulator. Firstly, the
limitations of the LCL (Low Carbon London) dataset are discussed. Secondly, the choices of the
simulator design are described. Then the simulator setup is described, explaining each block of the
simulator. Finally, the output of the simulator is explained.

6.1. Introduction
The electricity consumption data for this project is mainly based on the LCL project. The project
gathered real-time electricity consumption data for over 5000 trial participants. This thesis tries to
analyse the problem of forecasting electricity consumption under ToU tariff policy from energy retailer’s
point of view. Therefore, we are only concerned with the aggregate behaviour of users rather than
their individual consumption patterns. When working with aggregate data, we have to consider the
advantages and disadvantages of aggregating the data.

One of the major advantages of considering aggregate data is that combining the group of measure-
ments of energy users reduces the individual variance of energy consumption patterns. If we consider
an individual household for energy consumption prediction, then the variability in the user consump-
tion behaviour is too complex to be fully understood by a machine learning model. For example, if
a residential user may start charging their electric vehicle at any time between 19:00 to 22:00 (time),
this randomness of switching on such a large load can not be learned by a demand forecasting model.
But when we combine energy consumption of many such households, the variability in the consumption
reduces. This reduces the input noise or randomness in the data. The clear trend in the data can be
observed on the aggregate level. Therefore, forecaster learns concept with higher accuracy and with
fewer training samples.

The forecasting of individual energy consumption pattern does not get affected by a total number of
users. But when the number of participating users increase in the experiment, the variance of aggregate
consumption data reduces, improving the trend in the data. Therefore, for large scale measurements
of user energy consumption, forecasting of aggregate energy consumption is more accurate than the
summation of forecasting for individual user energy consumption [14].

One downside of using the aggregate data is that it is hard to assess the energy consumption pattern
of individual users. The individual assessment of the user consumption may help utilities to understand
trends in the user consumption pattern. Also, using appliance detection methods [16], it is possible
to calculate the per appliance consumption and provide energy consumption reports to users to help
them improve their demand response, in this case, for the ToU tariff signals. This non-intrusive type
of demand response scheme is out of the scope of this research project.

The following section discusses the problems associated with a direct user of LCL data for the
experiment setup of this thesis.

6.2. Limitations of LCL dataset
The energy consumption data collected in the LCL project was collected for four years (2011-14). Out
of those four years, the ToU tariff experiments were carried out only in one year (the year 2013). For
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the remaining three years, the irregularity in the data collection can be observed from the final dataset
provided by the LCL authority. Especially, in the years 2011 and 2012, we observe sparsity in the user
energy consumption data, which is not favourable for understanding the global user behaviour in the
LCL trials setting. The LCL trials took place with 5,533 London electricity users. ToU experiments
were carried out with only 20% of the total participants. All these conditions impose limitations on the
quality of information that the dataset can provide for this project. The main implications of the small
trial period (one year) are given below:

1. Seasonality, Trends of time series

2. The novelty effect

3. Limited ToU trials in LCL project

6.2.1. Seasonality, Trends of time series
Seasonality and trends are important characteristics of time series data. Seasonality can be defined as
the linear or non-linear component that changes over time and repeats periodically. For energy usage
time series data, the most visible seasonal factors are weekly seasonality and annual seasonal change
(winter, spring etc.). The figure 6.1 shows the data of aggregate energy consumption of normal tariff
users in LCL project collected from 2012 to 2014.

Figure 6.1: Seasonality of energy consumption pattern for residential users of LCL trials

The annual periodic changing pattern in energy consumption can be observed clearly. Usually,
during summers the overall energy consumption drops due to the rise in ambient temperature. Whereas,
during winters overall energy consumption increases due to falling in ambient temperature. These are
the findings limited to the UK based on data and overall weather conditions. This user behaviour
can be different for different regions/ countries based on local conditions. For this particular dataset,
the ToU trials were conducted for one year. It will be a risky assumption to consider this data to be
information-rich about user behaviour characteristics. In other words, even if the data captured the
annual seasonality of energy usage pattern, there is no way to cross-validate that claim.

Similarly, the trial period is insufficient to understand any trends in the data. In time series, the
trends are linear or non-linear components which do not repeat. In energy consumption data, trends
can be listed as an overall increase in energy consumption over the years due to digitalization, the rise
of electric vehicles and increased electric heating systems. Another example of a non-linear trend is
irregular load demand due to increasing rooftop solar installations.

6.2.2. novelty effect
The novelty effect is mostly seen in the introduction of a new system or a new technology. The novelty
effect represents a set of human traits which are motivated to act based on little or no experience
with the system which often results in some bias in the initial phases of the testing. In the support of
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this argument, the original findings of LCL learning report say, ”the performance is consistent with a
slight reduction in demand response magnitude for the trial”[24]. The participants of the LCL trials
were willingly participating in the project. The desire for active participation might have resulted in
biased outcomes during the initial weeks of trials. Therefore, using a machine learning model to learn
user behaviour based on the dynamic tariff behaviour of users might not reflect actual response when
implemented on a wide scale.

6.2.3. Limited ToU trials in LCL project
The Low Carbon London project carried out a limited number of ToU tariff experiments in one year
(total of 21 HIGH tariff ToU experiment days). The given number of ToU tariff experiments are not
enough to train a forecasting model with acceptable accuracy. Also, the purpose of active learning in
this thesis is to investigate the methods for selective sampling of days for ToU tariff experiments, which
can not be fulfilled by the use of existing data of HIGH tariff ToU experiments. The use of this data
may bias the active learning algorithm, therefore the use of this data is avoided.

All the evidence presented here suggests that a lack of adequate data would cause a problem in
implementing the machine learning framework. The two-fold problem has to be addressed before im-
plementing the machine learning algorithm - firstly the issue related to limited data has to be resolved,
and secondly, the inconsistency in the demand response by the users (novelty effect) has to be rectified.

6.3. Generating new ToU tariff trials
We will discuss the ways of creating additional ToU trials strictly from the thesis perspective i.e. with
very limited resources, time and budget etc. There are two straightforward ways of achieving the goal
of increasing the number of ToU tariff trials- 1) Perform trials in a real environment, and 2) Simulating
trials in the simulated environment. In an ideal scenario, trials in a real environment would produce the
most accurate and reliable results for ToU tariff signals. But this is not the most cost-effective solution.
As discussed in previous chapters, setting up an experiment of this size requires tremendous resources,
time and budget.

This thesis approaches the problem of limited data by creating data simulator. Conventional simu-
lators are based on little to no data, therefore makes the validation of the simulator difficult. Instead,
the proposed simulator is a data-driven simulator. The simulator utilises the fixed tariff electricity
consumption 1 data gathered during the LCL trials. The following section discusses the simulator setup
designed for the experiment.

6.4. Simulator setup
The simulator aims to generate ‘new’ ToU and fixed tariff days which would imitate real-world conditions
as close as possible. As the ‘new’ data is a processed subset of actual observations, the effect of weather
conditions, seasonality and various calendar effects such as weekends, holidays etc are already covered
by the original observations. Manually modelling with these parameters would require highly complex
simulator design. Therefore, in this project manual modelling of electricity consumption is avoided.

6.4.1. Generation of synthetic fixed tariff day instance
One of the common ways of generating a new instance of data is by adding noise in the original data.
Adding white noise will be one of the simplest implementations of this method. But, white noise
may erase some important information from the energy consumption data and will lead to a synthetic
consumption data which is not representative of real-world consumption. Therefore, synthetic data
generation by addition of noise is avoided.

Instead, we will take a subset of fixed tariff electricity users and treat it as a different data point. We
will randomly select a different set of users for calculating the average aggregate electricity consumption
data. As we are only concerned with the average value of aggregate consumption, instead of using the
full set of user, we will only consider 70% users for every new data point. By randomly selecting
different users for each round of data generation, we will have a different combination of electricity
consumption pattern which will lead to slight variation in the aggregate consumption. Therefore, we
can have multiple fixed tariff electricity consumption patterns for the same day. Of course, each of the
1The LCL project recorded electricity consumption of around 4,334 users who were subjected to fixed tariff
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newly generated aggregate consumption half-hourly energy consumption sequence will correspond to
the same weather and calendar conditions. Therefore, in a nutshell, we generate multiple instances of
a day by aggregating a random subset of individual user energy consumption.

Algorithm 1 User selection for calculating aggregate fixed tariff consumption
1: procedure Random User Selection(𝐶 )
2: Randomly select a day from the pool of LCL data 𝐶
3: Collect the consumption data of 𝑛 users for that day 𝑐
4: Randomly select 𝑢 users, where 𝑢 = 𝑛 ∗ 0.7
5: Calculate 𝑦fixed = ∑ 𝑐
6: Return 𝑦fixed

The process of generating new aggregate user consumption instance is shown in algorithm 1. The
input 𝐶 is the pool of actual fixed tariff electricity consumption data of 𝑛 users from LCL dataset.
The algorithm outputs 𝑦fixed which is an average of aggregate electricity consumption pattern of a day
under flat tariff. The 𝑐 is the 24 hours individual electricity consumption of 𝑖th user under flat tariff.
As the energy consumption data was observed half-hourly under LCL trials, 𝑦fixed and 𝑐 both are 48
element vector.

6.4.2. Generation of synthetic ToU tariff day instance
The algorithm 1 only shows the process of generation of fixed tariff electricity consumption for a day. The
process is comparatively straightforward as we are just aggregating the actual electricity consumption
of randomly selected users for a day from the given input dataset. As the dataset does not consist of
ToU tariff days, now we need to create a mechanism to synthesize a demand response for a ToU tariff
policy. Before proceeding to the actual calculation of demand response, we need to design a tariff policy.

The tariff policy
The overall design considerations of tariff policy are shown in chapter 4. To recap, only two tariff levels
are considered for the research project - 1) NORMAL tariff, and 2) HIGH tariff. We will focus on
reducing the peaks of residential energy consumption. Therefore, the HIGH tariffs will be sent only for
the duration of the peak energy consumption. Otherwise, NORMAL tariff will be sent for all the other
half-hourly time slots. For each new policy starting and ending of the peak hours are randomly chosen
from the set of available timings. Following equation shows the tariff policy

𝑇(𝜏) = {1, if 𝒳lower > 𝜏 > 𝒳higher
0, if 0 > 𝜏 > 𝒳lower OR 𝒳higher > 𝜏 > 48

(6.1)

Where, 𝒳lower ∼ 𝑈(33, 37) represent the starting of the HIGH tariff signal (randomly selecting time
between 16:30 (33rd slot of a day) and 18:30 (37th slot of a day) from discrete uniform distribution) and
𝒳higher ∼ 𝑈(43, 47) represent the ending of the HIGH tariff signal (randomly selecting time between
21:30 (43rd slot of a day) and 23:00 (47th slot of a day) from discrete uniform distribution) for a 48-
element vector representing half-hourly tariff policy. As the tariff policy design is now explained, let us
consider the modelling of user behaviour for any given tariff policy.

Modelling of user behaviour
The research project considers a single step change in the individual electricity consumption as a re-
sponse to the change in tariff level. For example, the participating users of the ToU tariff experiment
will reduce their loads by a single step (a predefined fraction of their potential fixed tariff consumption)
when HIGH tariff time block of a day starts. But if all the users start their demand response at the
same time, the aggregate demand response will be fairly mechanical (and may not reflect the real-world
behaviour).

To model user behaviour, the users’ load switching latency is considered. This can be explained by
the following example. Let us say, for a particular day, the high tariff prices will start from time 17:00.
In the real world, very few users will start reacting to the prices exactly at 17:00 o’clock. In most of
the cases, people will start the load switching operations either slightly before or after 17:00 o’clock.
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This behaviour is modelled by dynamically assigning the start and stop time of demand response to
individual users for the given tariff policy. As the simulator generates demand response only for HIGH
tariff time slots, the unique tariff signals for each individual user is calculated by,

𝑇user(𝜏) = {
1, if (𝒳lower + 𝛿 ) > 𝜏 > (𝒳higher + 𝛿 )
0, if 0 > 𝜏 > (𝒳lower + 𝛿 ) OR (𝒳higher + 𝛿 ) > 𝜏 > 48

(6.2)

Where, 𝛿 ∼ 𝑈(−3, 3) is the user latency variable, where 𝛿 is drawn from a discrete uniform
distribution to generate tariff policy profile 𝑇(𝜏) for user 𝑖. The purpose of the dynamic allocation of
demand response is to mimic the real-world behaviour of users and also to increase the complexity of
the demand response behaviour.

Calculation of ToU tariff response
In the design of this simulator, it is considered that only a fraction of residential users will participate in
the ToU tariff response while other users will continue with their usual electricity consumption pattern
as if it is a fixed tariff day. The consideration was inspired by the availability factor of the users. For a
given ToU experiment, some users may not be able to reduce their loads as they may not be available
for the HIGH tariff time period. Also, some users may not want to suffer through inconvenience on a
particular day. So, it is assumed that 70% users will participate in the ToU experiment response, while
other 30% will continue with their usual electricity consumption.

Finally, the demand under ToU tariff policy is calculated by following the findings of LCL trials.
LCL trials found that the average peak load shaving of 8% is observed during demand response for
HIGH tariff signals[24]. We assume that out of 𝑛 total users, only 𝑢 number of users will participate in
the ToU tariff response, where 𝑢 = 𝑛 ∗ 0.7. Therefore, when 𝑐 is the actual fixed tariff consumption of
𝑖th user from LCL dataset, we calculate the 24 hour ToU tariff electricity consumption 𝑦tou as,

𝑦tou =
1
2(
1
𝑢 ∑𝑐 ∗ 𝑇user(𝜏) ∗ (0.88) +

1
𝑛 − 𝑢 ∑ 𝑐 ) (6.3)

Where, 𝑇(𝜏) is a 1×48 tariff policy profile for user 𝑖. When 70% of users contribute to 8% of total
demand response, other 30% users will continue their normal fixed tariff electricity usage. Therefore,
to achieve an 8% overall demand response, 70% of the users will effectively have to contribute around
12% in the demand response. This way, the above equation is used to calculate the average aggregate
electricity consumption under ToU tariff policy. Next, we will look at the functional block diagram of
the complete process.

6.5. Final data generation process
Figure 6.2 shows the block diagram of the data generator design. The following section provides
information about the final dataset generation.

• As discussed previously, simulator accepts inputs of LCL fixed tariff electricity consumption data
for years 2013-14 and corresponding weather and calendar features 𝐹.

• A random date is selected from the datetime indices of the input data and the consumption data
𝐶 for the selected date is chosen for further process.

• Random subset of users is selected for generation of synthetic aggregate fixed tariff and ToU tariff
consumption.

• The fixed tariff consumption 𝑦fixed is calculated by aggregating the actual fixed tariff response of
the above subset of users.

• A random base tariff policy 𝑇(𝜏) is calculated with equation 6.1 The tariff policy profile for
participating users is then calculated as shown in equation 6.2.
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• Based on the policy profile of participating user, ToU tariff response of each participating user
is calculated. The Aggregate ToU tariff electricity consumption 𝑦tou is calculated as shown in
equation 6.3.

• The fixed tariff electricity consumption 𝑦fixed, ToU tariff policy 𝑇(𝜏) and corresponding ToU tariff
electricity consumption 𝑦tou is then combined with features 𝑓 which correspond to the selected
date. This 24-hour dataset (48 half-hourly values for each variable mentioned above) is the output
of the simulator.

This simulation process takes a long time to simulate the data for one synthetic day. Therefore,
to reduce the time for execution of each active learning model, a pool of synthetic data is generated
beforehand. The above process is repeated to simulate 10,000 synthetic days. The output of the
simulator after the generation of each new day is stored in a dataset. The final dataset has the output
data of 10,000 simulated days.

Figure 6.2: Block diagram of data simulator design

6.6. Discussion on Simulator output
• The output of the simulator is a 24-hour timeseries containing the energy consumption data along

with other input features for a selected day. The simulator synthesizes the following variables as
part of the output,

– Fixed tariff electricity consumption 𝑦fixed

– ToU tariff policy 𝑇(𝜏)
– ToU tariff electricity consumption 𝑦tou



6.6. Discussion on Simulator output 39

Figure 6.3: Baseline consumption and corresponding demand response consumption generated by the simulator

• The features for the model are classified as categorical and continuous variables. Continuous
variables are numeric variables that have an infinite number of values between any two values.
Most of the physical measurements of entities are continuous e.g. Temperature, Energy consump-
tion etc. Whereas, categorical variables contain a finite number of categories or distinct groups.
Categorical data might not have a logical order. The detailed information about the features and
criteria for feature selection is shown in chapter 7. The selected features are shown in table 6.1.

Feature name Feature type
Temperature continuous
Dew point continuous
Pressure continuous

Wind speed continuous
Sun duration continuous
Day-of-week categorical

Season categorical
Hour-of-day categorical

Month categorical

Table 6.1: The features for the synthetic electricity consumption data

These features are then correctly indexed with the data. Mind that, as we are synthesizing multiple
instances of a day from the limited actual data, a day may be repeated. In that case, multiple
instances will have the same input features as the underlying actual electricity consumption data
correspond to the same input conditions. Table 6.2 shows the contents of the final data frame
object output with their properties.

• The graphical timeseries illustration of baseline and demand response consumption is shown in
figure 6.3. The consumption pattern for 16 consecutive days is plotted in the figure. The X-
axis corresponds to the half-hourly time slots (no unit), and Y-axis corresponds to the average
half-hourly energy consumption per user in (kW-Hr per half hour). The fixed and ToU tariff
response energy consumption is plotted against the number of half-hourly time slots. Whereas,
tariff signal, being an unit-less binary variable, is plotted against the half-hourly time slots to
show the relationship between the demand response and the dynamic tariff signals.
From the plot, we can see that the demand response consumption deviates from baseline con-
sumption only when the HIGH tariff signal is provided. This is the desired output for a demand
response experiment. The tariff response smoothing effect can also be seen at either end of the
HIGH tariff period. The highest demand response (highest peak shaving) is observed mostly in
the middle of the HIGH tariff signal. Secondly, in some cases, the midpoint of HIGH tariff signal
and peak of the baseline consumption do not match. This will create an interesting case for the
training of machine learning model, reducing the chances of overfitting the data.
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Variable name Data type
Fixed tariff consumption continuous
ToU tariff consumption continuous

Tariff policy categorical
Temperature continuous
Dew point continuous
Pressure continuous

Wind speed continuous
Sun duration continuous
Day-of-week categorical

Season categorical
Hour-of-day categorical

Month categorical

Table 6.2: Contents of simulator output dataframe object. Each output simulator output contains the 48 entries of the
variables shown in above table for the a base day measured with the half hourly resolution.

6.7. Summary
The simulator provides an output which is based on the real-world energy consumption data. Therefore,
unlike a theoretical model which is based on a set of equations, the generated energy consumption profile
is closer to the real-world energy consumption. The simulator is used to generate the data for testing
the algorithms presented in chapters 7, 8.



7
Basic forecasting and analysis

This chapter introduces the implementation of the demand response forecasting model. This chapter
provides an introduction to the experimental setup of the considered demand response problem. The
feature selection process for the model is then explained. This chapter explains the forecasting model
used for predicting consumption of residential users under demand response of ToU tariff. The results
of the implementation are discussed at the end of the chapter.

7.1. Introduction
The demand profile forecasting for under the fixed tariff and ToU tariff is considered for generating
a baseline model. This forecasting model requires the knowledge of historic target parameters. In
this case, the target variable is the half-hourly measurement of the average consumption of electricity
(measured in kW-hr per half hour) by the particular set of users as a response to dynamic tariff policy.
The target variable depends on the feature variables which partially contain information about the
target variable. These features do not usually have one to one correlation between the target variable
and other individual feature variables. This chapter will first focus on feature selection and analysis,
followed by the machine learning implementation.

7.2. Feature selection
Timeseries regression data contains multiple observations of target variables and corresponding features.
It is important to choose the right features which can map the input space on the output target variable
of the training data. Following features are considered for implementing the forecasting model of the
demand profile.

• Weather dependent features: Weather parameters like temperature, dew point, pressure, wind
speed etc.

• Calendar dependent features: Day of week (S-M-T-W-T-F-S), Season of the year (Summer, Au-
tumn, Winter & Spring), Hour of the day, month of year

• Tariff for the residential electricity

The reasoning behind the selection of the above features is given below:

• The weather parameters highly affect the pattern of residential energy consumption [21]. Usually,
this effect is aligned with the comfort factor of residential energy usage. Usually, users tend to
change their energy usage pattern to adapt to surrounding ambient weather.

1. Most of the heating and cooling load consumption patterns have a high correlation with
ambient temperature. People tend to increase heating consumption during low tempera-
tures (usually, in winter) to maintain a comfortable temperature inside the closed walls of a
building. Similarly, during summers, the energy consumption is affected by higher outside

41
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temperature as people seek comfort in the cooler air of air conditioning. As heating and cool-
ing loads are one of the largest loads of residential users, the temperature is an important
indicator of the level of residential energy consumption. Refer to figure 7.1 for visualizing
the correlation between temperature and user energy consumption. The timeseries in the
plot are the scaled differences between the actual value and the rolling mean of the data.
Subtracting the rolling mean from the actual value improves the seasonality and removes the
trends from the timeseries. Scaling the data makes it easier to compare the two timeseries.

Figure 7.1: Correlation between temperature and and user electricity consumption. The plotted data is a difference
between the actual value and the rolling mean of the data

2. The dew point is the temperature to which air must be cooled to become saturated with
water vapour. When further cooled, the airborne water vapour will condense to form liquid
water. When air cools to its dew point through contact with a surface that is colder than
the air, water will condense on the surface. The dew point is a good indicator of humidity
of the air. During the rainy weather often high humidity is observed. Humans perceive the
temperature differently under different levels of humidity. Therefore, the dew point is an
interesting factor to put under research while modelling the users’ electricity consumption
profile.

3. The dew point, pressure and wind speed create a ‘chill factor’ which changes the perceived
temperature for the users.

• The energy consumption of residential users is highly dependent on calendar events. For example,
from the data it is observed that there is a significant difference in the peaks of weekdays and
weekends. Peak hours are usually observed during the evening times. Other than the ‘day of
week’ calendar factor, hour of day affects the energy consumption pattern. For example, during
the nights, energy consumption is often reduced as that time period coincides with ‘sleep time’
of the users. Other important calendar features are month and season of year, which incorporate
the yearly seasonal effects.

• Unlike the other two categories of the feature variables, electricity tariff is a human controllable
variable. The dynamic tariff effect on user energy consumption does not need any new introduc-
tion. The simplest form of dynamic ToU tariff policy includes two tariff levels - NORMAL and
HIGH, for off-peak and peak time periods respectively. Customers try to reduce their consump-
tion during peak time blocks to reduce electricity costs. In all the other time blocks, the users
will continue their usual pattern of energy consumption. Therefore, it is interesting to analyse the
relationship between the tariff signals and user consumption pattern during those tariff signals.
This research project only considers the binary ToU tariff case as described in chapter 4.
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7.2.1. Feature correlation
All the parameters satisfying above feature selection criteria are considered to calculate the correlation
plot for the features. Correlation is used as a method for feature selection and is usually calculated
between a feature and the output class (filter methods for feature selection). Pearson correlation is
one of the oldest correlation coefficients developed to measure and quantify the similarity between two
variables [5]. Formally, Pearson’s correlation coefficient is the covariance of the two variables divided
by the product of their standard deviations. Pearson correlation has the following limitations -

• Strong influence of outliers — Pearson is quite sensitive to outliers

• Assumption of linearity — The variables should be linearly related, therefore it does not work
with the categorical variables

• Assumption of homoscedasticity, meaning each random variable in the sequence has the same
finite variance.

The Pearson correlation makes the above assumptions. Therefore, it has limited applications where
the data is noisy or non-linear. But Pearson correlation provided some early insights about the data,
such as -

• Correlation can help to predict one variable from another variable (in case of missing values)

• Sometimes, correlation can indicate the presence of a causal relationship

Let us have a closer look at the various correlation types -

• Positive Correlation: It means that if feature A increases then feature B also increases or if
feature A decreases then feature B also decreases. In positive correlation, the variables have a
linear relationship.

• Negative Correlation: means that if feature A increases then feature B decreases and vice versa.

• No correlation

The correlation plot between the features used for current implementation is shown in figure 7.2. For
the features, the absolute correlation value is showed in the plot. The lighter shade represents a high
correlation between the features, whereas darker shades of blue indicate a lower correlation between the
features. Where the names and details of the features are explained in chapter 5.

We can see a very high correlation between the average energy consumption data (namely, ‘expected’
& ‘response’). This correlation is obvious as the two energy consumption data are essentially very similar
to each other; As the considered energy consumption observations for any day is equal for NORMAL
tariff signal, it was expected to observe high correlation between We can also see the correlation of
energy consumption data with temperature (‘AIR_TEMPERATURE’), dew point (‘DEWPOINT’),
air pressure (‘MSL_PRESSURE’) and wind speed (‘WIND_SPEED’). We will analyse these features
into details as it is observed that the electricity consumption of residential users is a function of weather
patterns [19]. From the categorical features, we will keep hour of the day (‘hod’) feature as from figure
7.1 shows that the there is a high correlation between electricity consumption and time of a day. We
will also keep tariff signals as a feature and we know that demand response under ToU tariff policy is
a function of tariff signals.

Now we will look at the simple forecasting model for energy consumption at the fixed tariff.

7.3. Forecasting of fixed tariff energy consumption
The forecasting of timeseries regression is a supervised machine learning process. In this section, we
will look at the basic machine learning model using random forest regression algorithm. The model
will be trained on the features selected in section 7.2.1 to predict the average energy consumption of
the users. We will only consider fixed tariff energy consumption for the problem. The following section
discusses the setting for the regression model.
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Figure 7.2: Data correlation plot (absolute correlation values are considered)

7.3.1. Problem setting
In this model, the aim is to implement the random forest regression model for predicting the average
energy consumption of users for the fixed tariff conditions. The basic working principles of the random
forest regression model is explained in chapter 3. As we will be predicting the future electricity demand
for ToU tariff policy, the weather inputs are usually predictions of the future weather. Of course, the
quality of the predictions of our forecasting model depends on the quality of the weather predictions.
But considering the scope of this project, we will consider that the weather forecasts are accurate and
base our results on the assumption. As an implementation detail, the actual electricity consumption
data used in the project is historic data and therefore, the weather parameters used in this thesis are
actual values of historic observations. The six inputs to the machine learning model are shown below:

• Weather inputs:

1. Air temperature (∘C)
2. Dew point (∘C)
3. Pressure
4. Wind speed (knots)

• Calendar inputs:

1. Hour of day
2. Day of week
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As explained in chapter 5, like all the other data, these inputs have half-hourly measurements. Mind
that, as the energy consumption data is ‘measured’ (simulated) under fixed tariff we will have a fixed
tariff for the entire data. Therefore, we are neglecting the tariff from potential feature list for the current
model.

The output of the model (target variable) is average energy consumption (kWh per half hour). The
target variable is of size 1 × 1. Therefore, using random forest regression model we try to map 1 × 𝑛
dimensional data of 𝑛 features to every target variable of size 1 × 1. As we are considering 6 features
for the specified model, we have 𝑛 = 6. Therefore, we will predict a 1×1 target variable for every input
of 1 × 𝑛 input feature variables.

7.3.2. Evaluation criteria
The evaluation criteria are required to evaluate the performance of a machine learning model. The
quality of the forecast can be assessed by the evaluation criteria. For this research project, we consider
the Mean Squared Error (MSE) as the performance evaluation criteria for the following machine learning
models. When �̂� the vector 𝑞 predictions are generated from 𝑞 data samples for the observed values
indicated by 𝑌 , then the MSE for the above setting is defined as:

MSE = 1
𝑞 ∑(𝑌 − �̂� )

MSE is simple to calculate and the analysis of the model over MSE is easy to understand. The
calculation of MSE requires actual observations.

Secondly, in the dynamic tariff scenarios, the experiments of a ToU trial are compared using dif-
ferent budgeting cases. For example, we will analyze how many fixed tariff days can bring the same
improvement in the energy consumption forecasting model which is brought by introducing a ToU tariff
experiment day.

7.3.3. Random forest model
The random forest model is considered with the following parameters. The number of estimators is
tuned and kept at 10. The mean squared error for the different number of training samples is calculated
and convergence of the model is checked. The previously mentioned feature set along with observed
target variable is used to train the random forest model. As a day has a fixed number of data samples
(48 samples), now onward, the data is measured in terms of ‘days’. Therefore, a day sample is defined as
48 electricity consumption observations (fixed & ToU tariff consumption) along with the corresponding
features of that day. The test data set of 500 fixed tariff days is kept constant throughout the process.

Figure 7.3 shows the predicted energy consumption of users along with the observed energy con-
sumption for the given input parameters. The plot is generated by the test dataset of 500 fixed tariff
days tested on the model with the training dataset of 640 fixed tariff days.

The machine learning model with the same hyperparameters is trained on the following number of
fixed tariff training days - [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 8000]. The training sample days
are randomly selected from the data pool generated by the simulator shown in chapter 6. Similarly
testing dataset is randomly selected before training the model and kept the same for one round of
training session (from 20 days to 8000 days). The average of MSE of 5 such training sessions is
calculated and plotted against the number of training days. The log-log plot of MSE over the various
number of training samples is shown in figure 7.4.

From figure 7.4 it is clear that increasing the number of training samples reduces the mean squared
error of predictions. This proves that the performance of the machine learning model increases with
the increase in the number of training samples. Increasing the number of training samples reduces the
MSE of the model further, indicating that the model can still learn with new training data. Obtaining
the absolute convergence requires a large amount of data which is not possible under the scope of this
thesis.

The post-training feature analysis is performed by plotting the feature importance of the machine
learning model with 5120 training days. The corresponding plot is shown in figure 7.5. We see the
similarity in the data correlation matrix shown in figure 7.2 and feature importance plot drawn from
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Figure 7.3: Predicted average fixed tariff energy consumption of users and observed actual consumption at 100 fixed tariff
days training size

Figure 7.4: Log-log plot of MSE over the number of training samples

the trained model shown in figure 7.5. Therefore we intend to keep the previously selected features for
further analysis of the problems and implementation of next algorithms.

Next, we will consider the dynamic tariff case. The following section covers the implementation and
results of the forecasting of the average energy consumption of users under ToU tariff prices.

7.4. Forecasting of ToU tariff energy consumption
For forecasting ToU tariff response, we need to modify the previous problem setting to incorporate the
dynamic tariff and the energy consumption related to the dynamic ToU tariff. As mentioned earlier,
the ToU tariff is binary including NORMAL and HIGH signals. The revised inputs are given as:

• Weather inputs:

1. Air temperature (∘C)
2. Dew point (∘C)
3. Pressure
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Figure 7.5: Feature importance plot for random forest regression model with 5120 training days

4. Wind speed (m/s)

• Calendar inputs:

1. Hour of day
2. Day of week

• half-hourly ToU Tariff policy for every day

Similar to the last case, each of the variables is available for half-hourly observations of average
electricity consumption. Therefore, data corresponding to each day includes 48 values of each input
variable. Now, with the introduction of ToU tariff as a feature, we want to predict the demand response
under the ToU tariff policy. The output target variable is of size 1×1 and corresponding input feature
variables are of size 1 × 𝑛, where 𝑛 is several features which is equal to 7.

In this section, we will consider three models-

1. Model 1 trained on ONLY fixed tariff energy consumption observations

2. Model 2 trained on ONLY dynamic ToU tariff energy consumption observations

3. Model 3 trained on fixed AND dynamic ToU tariff consumption observations (30% dynamic tariff
observations, 70% fixed tariff observations)

For the first two cases, the models will be purely trained either on the fixed tariff energy consumption
or on the dynamic ToU tariff energy consumption. The third model, however, is partially trained on
both types of energy consumption data. As shown in the input feature list (presented above), the tariff
is used as input for all three models. The tariff corresponding to the fixed tariff consumption will only
be considered at ‘NORMAL’ level. For dynamic ToU tariffs, the ‘HIGH’ level tariffs will be provided
during the peak time blocks an experiment day. These 24-hour tariff policies are pre-determined by the
simulated energy retailer (chapter 6). The more information on the design of tariff policies is provided
in chapter 4.

These three models are then tested on a dataset of dynamic ToU tariff experiment days. That is the
performance of these models evaluated for predicting the energy consumption during demand response
for the given ToU tariff policy. Mind that, for the prediction of energy consumption under ToU tariff
policy, we provide all the input feature variables including the ToU tariff policy for the subjected time
blocks. Figure 7.6 shows the comparison plot between the three models. The machine learning model
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with the same hyperparameters is trained on the following number of training days - [20, 40, 80, 160,
320, 640, 1280, 2560, 5120, 8000]. The training sample days are randomly selected from the data pool
generated by the simulator shown in chapter 6. Similarly testing dataset is randomly selected before
training the model and kept the same for one round of training session (from 20 days to 8000 days).
The average of MSE of 5 such training sessions is calculated and plotted against the number of training
days. Again, the MSE of the predictions and the observed target value is plotted against the number
of training samples.

We can see that all three models tend to reduce the prediction error by increasing the total number
of training samples; This effect is observed as by increasing the number of training samples, models
also learn the basic energy consumption pattern of the average demand of users. As discussed in
chapter 4, the customer behaviour does not alter for any other time blocks, except for the HIGH
tariff time block. Therefore, even if a model is trained on the fixed tariff samples, the model predicts
electricity consumption during off-peak time blocks with higher accuracy. Also, off-peak time block
usually occupies up to 75%-80% of the day time in some cases of dynamic ToU tariff policies.

Figure 7.6: The comparison plot of the effect of fixed tariff vs dynamic ToU tariff energy consumption training data on
the performance of the machine learning model.

We also see that the Model 1 (100% fixed tariff training samples) MSE performance settles on the
noise bed much faster than the model shown in figure 7.4. We see that the model slightly improves
with the increase in training samples. The model fails to achieve the prediction accuracy of the other
two models. This indicates that the newly introduces demand response behaviour of the users (from
test data) is outside the knowledge domain of the Model 1. But similar to the figure 7.4, the model
can improve the forecast of a day by improving the accuracy over NORMAL tariff time blocks. But
in Model 2 and Model 3, we see drastic improvement by the introduction of ToU tariff sample days.
Another important observation can be made by comparing the Model 2 and Model 3. The difference
between the MSE performance of Model 2 and Model 3 is quite low. Therefore, it can bee inferred
that the introduction of dynamic ToU tariff experiment days in the training data samples improves the
performance of a demand forecasting model. We see the improvement in the performance is assisted by
the fixed tariff sample days.

If we assume that fixed tariff samples have no information (or negligible information) about the ToU
tariff days, then Model 3 would require around 3 times more data points to achieve the same level of
performance of Model 2 (Model 3 has 30% ToU tariff days); which is not the case. The performance of
model 3 is quite similar to the Model 2.

From the above observations we can conclude the following things:

• The Model 1 improves the performance slightly before reaching the saturation, indicating that the
lack of information about the demand response from fixed tariff samples results in a knowledge
gap in the model.
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• But fixed tariff samples help the Model 2 to improve the performance and achieve similar results
as shown by Model 3. We can conclude that even if we have a small number of ToU tariff samples,
we can improve the overall performance of the ToU tariff demand forecasting model by providing
fixed tariff data.

• This does not necessarily mean that the Model 2 will perform equally well while predicting the
peak electricity consumption under HIGH tariff signal.

7.4.1. Budgeting factor
Let us now consider the budgeting factor. Let us assume that energy retailers have low operation
cost for the fixed tariff days and higher cost for the dynamic ToU tariff experiment days. We expect
some improvement after implementation of the demand response trials. This setup requires a lot of
resources, planning and operation costs. The assumption for the implementation of such projects is
that this initial innovation cost will be covered by the profits gained by future ToU tariff schemes using
the same infrastructure. The electricity retailer can buy electricity either in the spot market or in the
intraday market. So if electricity retailer has poor performing demand forecasting model, they might
need to buy electricity in the intraday market. As seen in the last section, the bottleneck of a forecasting
model performance is the peak load forecasting under ToU tariff policy, the electricity retailer will need
to buy electricity for peak hours in intraday, which is expensive. Therefore, having a better model
will improve the profits of the electricity retailer. Direct financial profits are easier to calculate. But
successful implementation of ToU tariff scheme can also reduce the cost of production and infrastructure
in the long term. Therefore, the implementation of ToU tariff policy could be a financially profitable
action for multiple electricity sector players.

The question then arises is that how much cost of an experiment is ‘acceptable’ considering the
improvement in the demand forecasting model performance? Here, we would like to observe the number
of fixed tariff data points required to attain the same level of performance for every dynamic ToU tariff
experiment data point.

For this analysis we consider three models:

• Model A is introduced to only 10 ToU tariff days (one day sample contains 48 data points)

• Model B is introduced to only 50 ToU tariff days

• Model C is introduced to 100 ToU tariff days

If the above models are trained on 1000 day samples, it means that the training data contains (1000
(minus) dynamic ToU tariff days) number of fixed tariff days. But if we consider 20 training samples
for all three models, the Model A will select 10 ToU tariff days and 10 fixed tariff days; whereas, other
two models (Model B (50 ToU days) and Model C (100 ToU days)) will only consider ToU days to fulfil
the requirement of 20 days samples. The machine learning model with the same hyperparameters is
trained on the following number of training days - [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 8000].
The training sample days are randomly selected from the data pool generated by the simulator shown
in chapter 6. Similarly testing dataset is randomly selected before training the model and kept the
same for one round of training session (from 20 days to 8000 days). The average of MSE of 5 such
training sessions is calculated and plotted against the number of training days. Figure 7.7 shows the
performance of all three modes. The performance of Model B and Model C for smaller training data
size is nearly equal.

Another observation is that Model A starts lagging in performance even for the smaller training
samples. We can see the effect of dynamic ToU tariff days in this case. As for training set of 20 days,
Models B and Model C contain all the observations from ToU tariff days; This provides the two models
with an early improvement in the performance. We also see that Model A converges early to attain the
equilibrium at the noise bed.

If we consider the performance of Model A at the saturation bed, it requires about 4200 more fixed
tariff day observation to achieve the same performance (MSE = 10 ) as of Model B and about 4400
more to achieve the performance of the Model C. For Model B to achieve the performance of Model C
at 1000 training samples mark, would require around double the training size.

From the current implementation, it can be seen that Model B requires 1000 more training days (i.e.
training samples) to match the performance of Model C at the training size of 1000 days. Therefore,
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Figure 7.7: The performance comparison of the three models each being trained on the datasets which include 10, 50 and
100 ToU tariff days respectively. When the number of dynamic ToU tariff days is kept constant, we observe the effect of
additional fixed tariff days

for the given case, the average effect of one ToU tariff experiment day is equal to 20 fixed tariff days.
Therefore, in the ideal situation, the utility company should maintain the cost of one ToU tariff exper-
iment day to be less than or equal to the cost of operation of 20 days of fixed tariff service to provide
profitable ToU tariff schemes.

Of course, these results are only valid for the given model and the given number of training samples.

7.5. Summary
This chapter provides the first insights into the implementation phase of this research project. The
chapter introduced the features and the feature selection process is explained. After selecting the
features, a simply fixed tariff electricity demand forecasting model is considered and then the features
importance plot is observed to verify the selection of the features. Then the problem setting is altered
to predict the dynamic ToU tariff average electricity demand of users. We have seen the effect of fixed
tariff days and ToU tariff days on the forecasting model. We have observed that increasing the number
of fixed tariff samples to the ToU tariff demand forecasting model improves the performance due to
the improvement of prediction for non-peak time blocks. In the next chapter, we will look into various
active learning methods and the implementation of the two methods for selective sampling.
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Active learning analysis

This chapter described the active learning methods used to selectively sample the ToU training samples
for the forecasting model shown in chapter 7. The goal is to design an algorithm which improves
the accuracy of a forecasting model with the limited budget of training ToU tariff experiment day.
The active learning algorithm may pose queries to perform ToU experiment on a specific day. To
improve the accuracy of the algorithm, it becomes essential to pick the ‘most interesting’ days, such
that, information gained from the ToU tariff experiment will be most valuable. In this chapter, such
algorithms are proposed and discussed. The chapter also discusses the machine learning framework
used for each algorithm. At the end of the Chapter, the method of performance evaluation is discussed.

8.1. Random sampling vs selective sampling
The previous chapter considered the forecasting of energy consumption under dynamic ToU tariff poli-
cies. The selection of these days for the ToU tariff consumption was done randomly. Random selection
of data may miss the important information hidden in the input subspace. Random selection of the
data points for a training set may not result in the optimal solution of a machine learning model. This
gives rise to the next important question; If we can only have limited number of ToU experiment days,
at the same time want to improve the accuracy of the model, how can we achieve that? One way of
achieving the goal is to carefully select the experiment days based on the potential information hidden
in those days.

This leads us to investigate the active learning algorithms for achieving the goal using the algorithmic
solution. Mind that, the forecasting model implemented in this chapter will be used to forecast the
average energy consumption of the users; Active learning algorithms will only be used to find the days
which will provide more information than other days and hence ToU tariff response for such days will
be considered. The data gathered from this process will be used as training data for the forecasting
model shown in the previous chapter.

8.2. General framework
As seen in chapter 3, there are three scenarios of active learning framework, namely - 1. Membership
Query Synthesis, 2.Stream-based Selective Sampling, and 3.Pool-based Sampling. Out of these three
frameworks, this research project uses a stream-based selective sampling method.

Let us consider the real-world scenario for the problem. The problem is best suited for online learning
framework, where a stream of data is constantly flowing. Similar to the online learning method, every
new energy consumption reading is generated at a particular interval (with 30 minutes interval). When
a ‘new’ day is queried, the algorithm randomly selects the next day for the active learning analysis. The
active learning algorithm then analyses the input feature space for the given tariff policy. If the algorithm
decides to perform the ToU tariff experiment, then the ToU tariff along with the corresponding demand
is considered for the sample day. Otherwise, the fixed tariff and corresponding fixed tariff demand are
considered. The details about the data is explained in the chapter 5 and chapter 6.

Another new concept we will discuss in this chapter is the concept of informativeness ℐ. The active
learning algorithm tries to quantify the informativeness of a data point with some measure; This measure
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is based on the method of active learning. The informativeness does not always directly indicate the
information content of a data point, but it could also be an indicator of interestingness which indirectly
provides knowledge of informativeness. For example, if a part of feature subspace is uncertain for the
model, querying information about such input space would likely to be beneficial.

The overall flow of the active learning framework is explained below. The selective sampling for
the Time-of-Use tariff experiments is a tricky concept as it is not just a single data point classification
problem for a timeseries data, but it is a classification of a set of 48 data points. The informativeness
ℐ of every energy consumption observation should be considered while calculating the informativeness
of a ToU experiment day. To recall the setting of ToU experiment setup, the energy consumption
observation of users was collected with a half-hourly frequency. As mentioned earlier in this paragraph,
the ’informativeness’ of each energy consumption sample is quantified based on the analysis of input
feature space. The average value of informativeness is then calculated by taking the mean of 48 values.
In general,

ℐ = 1
48 ∑ℐ (8.1)

The active learning algorithm queries the data from the data simulator presented in chapter 6. The
data simulator randomly selects the next day sample and processes the demand response for the day.
The active learning strategy then calculates the informativeness from the input space of the day sample
and then compares the threshold 𝒯. Then, based on the decision, it considers ToU tariff energy response
or fixed tariff energy response, respectively. For informativeness 𝐼, the decision about the ToU tariff
day is taken by using the following rule,

Selective sampling criteria ∶ {if 𝒯 < |ℐ|, then, perform ToU experiment day
if 𝒯 > |ℐ|, then, fixed tariff day

The threshold 𝒯 is manually set and decided as per the required number of ToU tariff samples.
Ideally, the active learning model is then re-trained after a specific number of such decisions to update
the knowledge of the environment. But, for understanding the fundamental differences between various
methods and input feature space, the model is not re-trained unless mentioned otherwise. The analogy
for this type of implementation is like follows - if a person is trained to press a big red button to
note some unknown interesting thing happening behind a glass window, how well he/she performs in
detecting valuable events. We can, therefore, assess the person’s ability based on the quality of training
given by training instructor (e.g. quality of training set) or the total time they spent in training (e.g.
a number of training samples) or how does their mind decide what is interesting (e.g. type of active
learning strategy).

Following pseudo-code shows the basic framework of active learning algorithm:

Figure 8.1: Active learning model design
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Algorithm 2 Active learning basic algorithm
1: procedure Active learning(target variable, input features)
2: Get 𝑛 initial random ToU tariff consumption samples
3: Get corresponding 𝑚 number of input features
4: Train active learning algorithm on the 𝑛 number of ToU tariff consumption samples
5: for i<total_days do
6: Select test data for a day
7: Calculate the informativeness 𝑙 value from the given input space of the day
8: if ℐ>𝒯 then
9: Consider the ToU response consumption under ToU tariff policy as a target variable

10: else
11: Consider fixed tariff energy consumption data as a target output variable
12: Change the dynamic tariff policy from input space to a fixed tariff policy
13: Save the electricity consumption, tariff and other weather and calendar features in a dataset
14: Train the forecasting algorithm on the generated dataset
15: Deploy the model (in our case, use test data) to analyse the performance

As we can see from the algorithm 2, we are using two models to implement the active learning
scheme. See figure 8.1 for reference. The selective sampling algorithm is trained on the randomly
selected ToU tariff days. This model is then used to calculate the informativeness of each training day
of the second model. The calculated informativeness is compared with the threshold 𝒯 and decision
about ToU tariff experiment is taken. According to the decision, corresponding data is stored in the
training dataset of the next model. The next model (which is an actual ToU tariff forecasting model)
is trained on that data. The performance of ToU tariff electricity consumption forecasting algorithm
depends on the quality of selection by selective sampling algorithm.

8.3. Active learning strategies
Following sections go through the implementation of the active learning strategies considered to study
under this research project.

8.3.1. Variance reduction
The first algorithm developed during the thesis is a novel adaptation of the QBC approach to incorporate
the regression type target observations of a complete day (48 data samples). The variance reduction
approach of active learning for regression setting is shown in section 3.3.3. In this method, the active
learning model queries about the instance which it considers hard to predict (uncertain about single-
point prediction). As seen in chapter 3, there are multiple ways to quantify the uncertainty. The focused
method considers the variance of predictions provided by the group of machine learning regression
models. Let 𝑥 be the input feature set of 1 × 𝑛 size which include the features mentioned in section
7.4 of chapter 7. For a given day, the machine learning model maps the input 𝑥 to target output 𝑦
and the function is given by,

�̂�(𝑥 ) = 𝑓(𝑥 ) for i = 1,2,...,48 (8.2)

Where, 𝑓(𝑥 ) is the machine learning model which takes half-hourly values of feature variables 𝑥
as an input to get predicted target variable �̂�(𝑥 ) for the actual target observation 𝑦(𝑥 ). To get the
variance of the output predictions, we need to create a committee of the machine learning models;
We will use random forest model with 𝑝 number of high variance decision trees which are trained on
slightly different data using the process called bagging, as explained in chapter 3. We then calculate
the variance of predictions using

ℐ = 1
48 ∑Var 𝑓 ∶ (𝑥 ) (8.3)
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Where, Var (�̂�(𝑥 )) is the prediction variance. But this is the prediction variance for a single data
point; We have 48 data points in a day. As our active learning strategy has to select a complete day, we
need to consider the prediction variance for a complete day. This requirement leads us to the following
equation which quantifies the informativeness of a day,

ℐ = 1
48 ∑Var 𝑓 ∶ (𝑥 ) (8.4)

(8.5)

The data for a random day is selected from the dataset. The informativeness for each day is
calculated using equation 8.5. Then the decision about considering the ToU tariff experiment is taken
by comparing the informativeness ℐ with a threshold; This threshold is a predefined constant value. If
ℐ is greater than the threshold then we will consider the energy consumption data related to the ToU
tariff for that day. The entire process of variance reduction algorithm is shown here, in the Algorithm
3.

Algorithm 3 Uncertainty Sampling: Variance Threshold Method
1: procedure Variance Threshold(𝐷(𝑦tou, q, 𝑦fixed, q, 𝑋 ))
2: Get 𝑛 initial random ToU tariff consumption samples 𝑦tou, of size 𝑚 × 1 (where 𝑛 < 𝑞)
3: Get corresponding 𝑚 number of features denoted by 𝑋 of size 𝑛 ×𝑚
4: Create a dataset 𝑑 (𝑦tou, , 𝑋 )
5: Train the committee of 𝑝 active learning models on 𝐷(𝑦tou, , 𝑋 ) as shown in equation 8.2
6: Set 𝑐𝑜𝑢𝑛𝑡 = 1 .
7: for count < total_days do:
8: Query the next day sample 𝑑 (𝑦tou, , 𝑦fixed, , 𝑋 ) from 𝐷(𝑦tou, q, 𝑦fixed, q, 𝑋 ), where dimen-

sions of 𝑋 are 48 × 𝑚
9: Get prediction variance ℐ from input space 𝑋

10: if ℐ > 𝒯 then
11: Choose the ToU response consumption under ToU tariff policy as a target variable 𝑦tou,
12: else
13: Choose fixed tariff energy consumption data 𝑦fixed, as a target output variable
14: Change the dynamic tariff policy from input space to a fixed tariff policy
15: Add the target variable and input data to the output dataframe 𝐷
16: Increment the 𝑐𝑜𝑢𝑛𝑡 by 1 and repeat.
17: Train the ToU tariff consumption forecasting algorithm on 𝐷
18: Deploy the model (in our case, use test data) to analyse the performance

The data 𝐷(𝑦(tou, fixed), 𝑋) is generated by the data simulator which will be discussed in chapter 6.
A day-wise data (the 48 observations of target variables and 48×𝑚 values of input features) is queried
from the above dataset for the inspection under the active learning algorithm. Once the data is queried,
it is removed from the original dataset 𝐷(𝑦(tou, fixed), 𝑋), making sure no sample is repeated.

8.3.2. Novelty detection
The hypothesis for the active learning algorithm based on novelty detection theory is that if a model can
identify rare (but potentially informative) events, then the model performance may improve for certain
days. In 1990, one of the biggest surges in sporting history still goes to the World Cup Semi-Final in
1990 - England v West Germany. The electricity demand was 2,800MW - equivalent to 1,120,000 kettles
being boiled. Such events are rare in reality but have a high impact on the operations of the grid.

Similarly, the month of August we usually get sunny weather in the Netherlands. If we observe
one heavy rain day during that month, it will be an interesting event to analyse the event as these
events are rare but still have a non-zero chance of occurrence. Providing the machine learning model
information about the feature subspace which was previously undiscovered may help us to improve the
overall performance of the model.
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Figure 8.2: Example of one class SVM classification for 2D feature space

The next active learning algorithm is a one-class classification algorithm. Figure 8.2 shows the
classification strategy for this method. The one class classifier is an unsupervised classifier which draws
a boundary between the inliers and outliers. From the literature point of view, this algorithm fits more
in the anomaly detection or novelty detection domain. The purpose of one-class classification is to find
the novel data in a stream of data or to find an anomaly in the pool of data. This research project
tries to analyze the effect of performing ToU tariff experiments on novel data points (days with unique
input conditions) on the performance of the forecasting model. We will use one-class SVM to find the
novelty in the input feature data. SVM with ’rbf’ kernel is used to implement the one-class classifier.

The SVM algorithm is trained on the random selection of ToU tariff response days. The trained
model forms a boundary line on the hyperplane of feature space. The decision function of an SVM
algorithm provides the signed distance to the separating hyperplane. Where the signed distance is
positive for an inlier and negative for an outlier. By considering the decision function of the SVM
algorithm, we can vary the number of selected novel data points by dynamically selecting the threshold.
The rest of the algorithm is similar to the variance reduction algorithm shown in the last section

Algorithm 4 shows the novelty detection algorithm.
This algorithm will make sure that the selected days for ToU tariff experiments are unique in the

input space. Therefore, we are expecting to see interesting results from this algorithm.
The following section will cover the results of both the methods and analysis of the results will be

presented.

8.4. Results
As shown in figure 8.1, we will use two model system for the active learning analysis. The purpose
of the first model is to selectively sample the days for ToU tariff experiments and the second model
is a ToU tariff consumption forecasting model, which is trained on the data collected by the selection
criteria of the first model. See algorithms 2, 3 and 4 for more information.

The performance plots are generated using the Random Forest regression model which forecasts
the ToU tariff consumption of users. The tariff policy is binary in the nature i.e. it only includes
’HIGH’ and ’NORMAL’ signals. Therefore, for a non-experiment day (i.e. a day with fixed tariff), only
’NORMAL’ signal is used to indicate the fixed tariff signal.

The following section will talk about the results obtained by the two selected methods - (i) Variance
reduction (ii) Novelty detection. First, we will see the compare the performance of our active learning
model with the two baseline models. Then we will consider the effect of the number of ToU tariff samples
(in the mixed training data of fixed and ToU tariff days) on the performance of active learning forecasting
model. Then the effect of training size for selective sampling algorithm is analyzed. Finally, both
variance reduction and novelty detection algorithm performance are compared with random selection
algorithm and the conclusions are drawn.
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Algorithm 4 Uncertainty Sampling: Variance Threshold Method
1: procedure Variance Threshold(𝐷(𝑦tou, q, 𝑦fixed, q, 𝑋 ))
2: Get 𝑛 initial random ToU tariff consumption samples 𝑦tou, of size 𝑚 × 1 (where 𝑛 < 𝑞)
3: Get corresponding 𝑚 number of features denoted by 𝑋 of size 𝑛 ×𝑚
4: Create a dataset 𝑑 (𝑦tou, , 𝑋 )
5: Train the one class SVM model on 𝐷(𝑌tou, , 𝑋 ∶ ) to generate a boundary on the SVM feature

hyperplane.
6: Set 𝑐𝑜𝑢𝑛𝑡 = 1
7: for count < total_days do
8: Query the next day sample 𝑑 (𝑦tou, , 𝑦fixed, , 𝑋 ) from 𝐷(𝑦tou, q, 𝑦fixed, q, 𝑋 ), where dimen-

sions of 𝑋 are 48 × 𝑚
9: Get the average distance 𝑙 of the input data 𝑋 from the decision boundary.

10: if 𝑙 > 𝒯 then
11: Consider the ToU response consumption under ToU tariff policy as a target variable 𝑦tou,
12: else
13: Consider fixed tariff energy consumption data 𝑦fixed, as a target output variable
14: Change the dynamic tariff policy from input space to a fixed tariff policy
15: Add the target and input data to the output data frame 𝐷
16: Increment the 𝑐𝑜𝑢𝑛𝑡 by 1 and repeat.
17: Train the ToU tariff consumption forecasting algorithm on 𝐷
18: Deploy the model (in our case, use test data) to analyse the performance

8.4.1. Comparison with baseline models
In this section, we will study the effect of selectively sampled data on the performance of the forecasting
model. We will consider various scenarios to investigate the performance of the forecasting model.

Experiment setting
For this experiment, we consider three models-

• (baseline 1): The model is trained ONLY on the ToU tariff observations

• (baseline 2): The model is trained ONLY on the fixed tariff observations

• Active learning model: The model is trained on selectively sampled ToU days (by variance reduc-
tion method)

All three models of this experiment use the same base data for training. Out of the three models,
Baseline 1 model is trained on ToU tariff data of the training days. Baseline 2 models are trained on
fixed tariff data of the training days. The active learning model uses a combination of ToU and fixed
tariff days. The process is explained below.

The selective sampling (variance reduction) algorithm of the active learning model is trained on
500 randomly selected ToU tariff days. This model is used to classify the training data of ToU tariff
consumption forecaster of the active learning model using the variance of predictions by the committee.
The threshold for classification is set at 𝒯 = 0.0004.

The three ToU tariff consumption models with the same hyperparameters are trained on the following
number of training days - [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 8000]. The models are then tested
on a common test set of 500 ToU tariff days. The MSE of the predictions is plotted against the number
of training samples. The above experiment is run 5 times and the average of the results is plotted in
figure 8.3.

Discussion: Overall results
The active learning model has classified 443 out of 8000 days for ToU tariff experimentation. Therefore,
this data includes 443 ToU tariff days and 7,557 fixed tariff days. The performance in figure 8.3
suggests that the active learning algorithm performed better than the baseline 1 algorithm, as expected.
In theory, the baseline 1 model should perform poorly as it has the least knowledge of the response
consumption of the energy users. Also, a supervised model should have superior performance as it has
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Figure 8.3: The above three models are trained on three types of data - Baseline 1: All ToU days, Baseline 2: No ToU
days and Active learning (variance reduction) : mixed days (ToU and Fixed). The active learning model has performed
443 total experiments in 8000 days of data. The mean squared error is the considered evaluation measure for all three
algorithms

the most knowledge about the response consumption for ToU tariff signals. The similar outcome can
be observed from the figure 8.3.

Discussion: Comparison of active learning performance with Baseline 1 performance
Now we will compare Baseline 1 and active learning (variance reduction) method by their mean squared
error plots. The active learning classified only 443 days for ToU tariff experiment. Therefore, the active
learning model is only introduced to 443 different ToU tariff policies. Even with so few numbers of ToU
experiments, we see that the active learning model improves the predictions with the help of fixed tariff
training days. Also, we see that the performance of both models is very similar for a small number
of training samples as both models include a high proportion of ToU tariff days in the training data.
After the first 443 ToU tariff days of training data, when the remaining training data are supplied with
fixed tariff days, we see a slight decline in the performance of the active learning model. The Baseline 1
model improves significantly over a large number of training days and saturated at a lower MSE value.
It is also worth noting that the active learning model’s performance for a large number of training data
(443 ToU days + other fixed tariff days) is a significant improvement over the Baseline 2 performance.

Discussion: Effect of ToU tariff signals on Baseline 2
It is an interesting detail of the above experiment. If the Baseline 1 model has never experienced HIGH
tariff, how will it respond to it? or would it respond at all? It should be considered that a tariff signal
is a categorical value and not continuous value. So, the mathematical relationship between a tariff
and output is non-linear. We know that the random forest model is based on decision trees, which
essentially create rule-based nodes. The various features will have various importance level in the trees.
For example, we know that mostly the largest residential loads are thermal loads. We also know that
temperature has a high influence on thermal load usage. Therefore, temperature as a feature should
have high importance in the above random forest model (and it has!). But the fixed tariff signal has no
information about electricity consumption. It will have the same fixed value for the lowest and highest
energy consumption points. Interestingly, the tariff signal has the least importance for Baseline 1 model
as shown in figure 8.4. The change in the value of tariff signal will have zero effect on the Baseline 1
model because the value of tariff signal does not have any effect on the Baseline 1 model.
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Figure 8.4: Feature importance chart for Baseline 2 model (No ToU tariff samples)

Figure 8.5: Effect of threshold on the performance of the active learning model

8.4.2. Effect of threshold on the performance of active learning
Next, we study the effect of threshold on the number of days which qualify for ToU experiments. The
data sampled by different values of the threshold is used to train forecasting models. The performance
of these models is then plotted.

Experiment setting
The selective sampling model is trained on 500 randomly selected ToU tariff days. 7 different values
of the threshold are considered. With each threshold value, the training data for the ToU forecasting
model is gathered as shown in figure 8.1. Then 7 ToU consumption forecasting models are run to
analyse the performance of models with each threshold level. The above experiment is run 5 times and
the results are averaged. Similar to the previous experiment setting, two baselines are considered - i)
no ToU days ii) all ToU days. MSE performances of these models for an increasing number of training
sets are plotted. The three ToU tariff consumption models with the same hyperparameters are trained
on the following number of training days - [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 8000]

Discussion: Threshold vs the number of qualified days
Table 8.1 shows the effect of threshold value on the number of ToU tariff experiment queries issues
by the algorithm. It is no wonder that as the threshold is decreased, more samples become qualified
for the ToU tariff experiment query. Figure 8.5 graphically shows the effect of the threshold on the
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Threshold 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
Queries per 1000 samples 478 231 119 51 17 7 3

Total queries 3822 1852 951 409 135 56 25

Table 8.1: Effect of active learning threshold value on a number of queries and performance of the algorithm. The total
queries are calculated for the sample size of 8,000 days.

performance of the algorithm. As the lower threshold qualifies more samples for ToU experiments, we
see that lower threshold results in lower MSE, thereby, increasing the accuracy of the model.

Discussion: Performance of models
The comparison between the performance of Baseline 2 and the performance of the algorithm (with
threshold = 0.0007) provides insights into the power of a few ToU tariff samples. The later algorithm
only issues an average of 3 queries per 1000 samples. Whereas Baseline 2 issues no queries at all, leading
to complete blind spot for ToU tariff conditions. Just with few queries, active learning algorithm, or
to more generalize, the semi-supervised algorithm can perform much better than a model which is not
exposed to ToU experiment conditions.

8.4.3. Trade-off between training size of selective sampling method and queries
The selective sampling (variance reduction) algorithm calculates the prediction variance of each input
day. This variance is dependent on the prediction confidence of a model. In this section, we see the
effect of the size of the training set on the output prediction variance of the selective sampling model.

Figure 8.6: Effect of number of training samples on prediction variance of selective sampling model(variance reduction).
The three selective sampling models are trained on following number of randomly selected ToU tariff days - 25, 50, 500

Experiment setting
(In the later phase of the thesis, it was found that the ToU tariff consumption forecaster algorithm
used during the implementation of this experiment had a faulty implementation. That implementation
randomly selected the training set and testing set from the same pool of data. Therefore, it was possible
to have the same data in training and testing dataset. Therefore, the results and discussion related
to the faulty implementation are omitted in the and attached in the Appendix. Following discussion
contains the results from the verified implementation)

The following experiment is carried out with three selective sampling models (variance reduction)
with a different number of random training samples. First selective sampling model (TS1) is trained
on only 25 randomly selected ToU days. The next model (TS2) is trained on 50 randomly selected
ToU days. The third model (TS3) is trained on 500 randomly selected ToU days. Then each model is
deployed to classify the 8,000 days into ToU experiment day and non-ToU experiment day. The results
are plotted on a histogram.
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Threshold Training samples Queries per 1000 samples Total Queries
TS 1 5E-4 25 348 2781
TS 2 5E-4 50 276 2210
TS 3 5E-4 500 17 141

Table 8.2: (Variance reduction model) Effect of a number of training samples on the number of queries and accuracy of
the models. The total queries are calculated for the sample size of 8,000 days.

Discussion: training set size vs number of ToU queries for the selective sampling algorithm
Figure 8.6 shows the histogram for the effect of a number of training samples for selective sampling
(variance reduction) model on the variance of prediction (a measure of informativeness ℐ). As we
increase the number of training samples for the selective sampling (variance reduction) model, the
confidence of model increases, resulting in lower prediction variance. The selective sampling model
trained on large training set will have higher confidence in the predictions, thus will classify a smaller
number of data points for ToU tariff experiments. Here, we see two different trade-offs- 1) between the
training samples and query samples 2) between quality and quantity of queries. If we try to cut the
cost of data labelling for training in an earlier stage, it will reflect in the higher cost of data labelling
for each query produces by the model.

To understand the effect more clearly, table 8.2 provides more insights about the effect of a number
of training samples on the number of sample queries and the final prediction error of the model. We see
that when the selective sampling model is trained on a higher number of training samples, the queries
generated by that model are low. When we increase the number of instances for query decision, we see
that TS3 queries much fewer labels than TS2 and TS3.

In the next section, we will analyse the random sampling and selective sampling criteria and will
observe the effect of training samples on the performance of the model.

8.5. Results: passive vs active learning
As the research project revolves around the selection of the data points for the ToU tariff demand
’labelling’, it is important to finally look at the performance of active vs passive ’label’ selection process.
In this section, we will compare the results of passive learning and active learning.

Figure 8.7: Performance of active and passive learning models

Experiment setup
The selective sampling (variance reduction and novelty detection) algorithms are trained on 500 days
of the average ToU tariff energy consumption. Then these algorithms are tested on the input feature
set of 8000 days. The threshold is set such that only top 10% days (800 days) will be qualified for the
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ToU tariff experiment days (for variance reduction model: threshold = 0.00035; for novelty detection
model:𝜈 = 0.1, 𝛾 = 0.1). Similarly, a third dataset is made from those 8000 samples by randomly
selecting 800 days for the ToU tariff experiment observations. The three ToU tariff consumption models
with the same hyperparameters are trained on the following number of training days - [20, 40, 80, 160,
320, 640, 1280, 2560, 5120, 8000]. The 10% of each training set is reserved for ToU tariff days. For
example, a training set of 20 days will contain 18 randomly selected fixed tariff days and 2 ToU tariff
days (selected either by active or passive selection criteria) and so on. Then these models are tested on
the 500 days of ToU tariff input features for predicting the ToU tariff demand observation. The above
procedure is repeated 5 times and the average of the MSE of each round is plotted against the size of
the training set.

The figure 8.7 shows the performance of the three forecasting model whose training data is generated
by various active and passive techniques explained above.

Discussion: overall results
For the smaller size of training sets, all three models show similar performance (with novelty detection
algorithm performing slightly better). But, as the number of samples increases, we see a steep decrease
in the MSE of variance reduction method, whereas, novelty sampling and random sampling show a
lower degree of decrements in the MSE of the prediction. The novelty detection method achieves the
saturation at much higher MSE value than random selection and variance reduction methods. Finally,
we see that the variance reduction algorithm performs best out of the three methods. Whereas, the
performance of novelty detection and random sampling is at a comparable level with the random
sampling achieving lower MSE above the training set of 5000 days.

Discussion: novelty algorithm performance
With the smaller size of training sets, the novelty detection algorithm performs slightly better than the
other two models. But when more training data is introduced to the models, the performance of the
forecasting model based on novelty detection samples starts declining. As we increase the number of
training samples, the novelty detection algorithm starts training its forecasting model on more number
of novelties. This leads the model to have a lot of information about novelties also known as out of
distribution data. The knowledge of this data may provide limited knowledge about the actual distri-
bution of data. Therefore, the knowledge pool of the novelty detection model has a large gap regarding
the ‘normal’ (in distribution) ToU day. More number of training samples with such information biases
the novelty detection model to have a stronger belief on a certain set of knowledge which may not be
true for most of the data. We can see that for a very large training set (above 2,000 days), the novelty
detection algorithm performs worse than the random selection strategy. The random selection criteria
make sure that for a large number of training samples, the selected ToU tariff days are (more or less)
uniformly picked from the distribution of underlying data. Therefore, for larger training sets random
selection method may have selected enough data points which can provide valuable information about
the significant number of ToU experiment test days. Therefore, we see that the performance of the
random selection model beats the performance of the novelty detection model.

8.5.1. Comparison of selective sampling by two methods
This section analyzes the data points which are selected by the two active learning algorithms. We will
analyze the two selective sampling algorithm outputs by the visualization of data.

The analysis of selective sampling algorithm (variance reduction) of the active learning model is
performed to check relation about prediction variance between the trees of random forest algorithm.
The selective sampling algorithm is trained on 500 randomly selected ToU tariff days. And the test data
of 500 separate ToU tariff days are used to calculate the prediction variance using the above model.
As we have actual observations of ToU tariff days, we can calculate the mean squared error of the
predictions. The scatter plot between the prediction variance and actual prediction MSE is shown in
figure 8.8. We see that as prediction MSE increases, the prediction variance also increases. It should be
noted that the relationship is not perfectly linear and the data points with very high prediction error
may not show high prediction variance.

Now, we compare the data points selected under the two strategies. Figure 8.9 shows the comparison
plot between the data selections by the novelty detection and variance reduction algorithms. The scatter
plots of prediction variance and MSE of predictions is shown in the figure. The electricity consumption
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Figure 8.8: Prediction variance vs prediction error scatter plot

for 500 days is considered for this selective sampling analysis. Now we see the effect of the threshold
level for the variance reduction and novelty detection criteria; For example, the 10% selective sampling
criteria are applied with novelty detection and variance reduction criteria, where each algorithm selects
50 most important days from the pool of 500 days according to their criteria.

Figure 8.9: The comparison of data points selected by variance reduction vs novelty detection from the same pool of 500
days. The subplots are the scatter plot of prediction variance vs MSE of predictions for the same pool of 500 days (data
points). Blue colour data points are selected under the novelty detection algorithm, orange colour data points are the
non-novelty data points. The size of the data point is directly proportional to the distance of the data point from the
decision boundary of SVM classifier.

The variance reduction algorithm selectively samples all the data points above the threshold (dotted
red line). The sampling by the novelty detection algorithm is shown by blue data points. The data
points which are not selectively sampled are shown in orange colour. These comparison plots show
us that both the algorithms sample a different set of days for ToU tariff experiments. Therefore, we
can expect the ToU tariff forecasting model to learn different information from this training data and
potentially have different results.

To investigate the selection criteria further, we will analyze the distribution plots of the features of
the selectively sampled features. The same set of 500 days of observations is considered for the following
plot. For this distribution plotting, mean values of temperature and dew point observations of every
day are considered; Whereas, the categorical variables like a day of week or month does not need any
alterations. Figure 8.10 shows the distribution plots of the following features - temperature, dew point,
day-of-week, month. The variance reduction and novelty detection algorithms are tested on the same
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500 days of data points shown in figure 8.9. The models are trained on randomly selected, unbiased
500 days from the pool of data generated by the data simulator from chapter 6.

Figure 8.10: Distribution of features of selectively sampled data points is observed for the same 500 data points analysed
in figure 8.9. Investigated features are (clockwise from top left) - temperature, month, dew point, day-of-week

It is interesting to see that the selective sampling by the variance reduction algorithm has the
distribution which is similar to the original distribution of the testing data. Whereas, the selectively
sampled data from the novelty detection algorithm has a distribution which is sharp and does not follow
the underlying distribution of test data. We see more winter data points are selected than any other
season. Perhaps, the selective sampling method focuses on the data with highly variable characteristics
i.e. winter. For example, the electricity consumption pattern is highly variable throughout the winter
day. This variation in electricity consumption might be categorised as a ‘novel’ situation. In any case, it
is interesting to see the focus of the novelty detection algorithm on the data points with highly variable
electricity consumption patterns.

8.6. Summary
In this chapter, the implementation of the active learning algorithm is discussed. The active learning
framework is explained for variance reduction and novelty detection algorithms. Then the performance
of the active learning algorithm is benchmarked with the supervised and unsupervised algorithms in
similar settings. The effect of training samples of the active learning model on the final forecasting
performance is evaluated. Finally, we compared the active learning algorithms with the passive learning
algorithm (where a day is randomly selected for ToU tariff experiment observations). We have seen
that the variance reduction algorithm performs better than the random selection criteria, but novelty
detection shows comparable performance for the given setting.
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Conclusion and future work

In this chapter, the conclusions of the research project are drawn. The conclusions and potential
improvements in the form of future work are presented in the following chapter. First, the primary
conclusions are discussed which mainly revolve around the performance of active learning models. Then
the secondary conclusions are presented.

9.1. Conclusions
The main aim of the research project was to investigate active learning strategies for ToU tariff experi-
ment day selection. The problem was not a traditional active learning classification problem. The prob-
lem setting was an active learning timeseries regression, the domain which has seen limited research[37].
Therefore, to tackle the unique nature of the problem, a novel QBC based algorithm was developed by
taking the inspiration from some of the work done in the regression domain with variance reduction
criteria[31]. One class classifier was another algorithm which was investigated to actively select the ToU
tariff experiment days.

The research problem has a distinct setting. Usually, in the active learning setting, classification
problems are solved by finding the most informative data points which are usually around the decision
boundary. Other than the queried data points, no other data point has labels. In our case, we have
two types of data points - ToU tariff consumption and fixed tariff consumption. We aim to forecast
electricity consumption under ToU tariff. In this setting, we do not have truly unlabelled data, as, the
fixed tariff consumption and ToU tariff consumption of the same day share about 75% of electricity
consumption observations (only the consumption at peak tariff prices is different).

This setting makes the research problem a difficult case for analysing active learning techniques.
Chapter 7 has shown that a model trained on 30% randomly selected ToU tariff days can perform quite
close to the model trained on all ToU tariff days. This result has shown that the introduction of any
random ToU tariff day to the model will improve the model performances significantly. Also, in the
case of the model with 30% randomly selected training samples, we see the fixed tariff training days
improve the accuracy of the model as we train the model on a higher number of samples. This effect
is seen clearly in figure 8.5, where a model trained with just 25 ToU tariff days (with rest of the fixed
tariff training days) improves the performance significantly and outperforms the model trained on fixed
tariff day by an adequate margin.

The same figure 8.5 shows a comparative study of multiple models with a different proportion
of ToU tariff samples in a training set. We see that the introduction of more ToU days results in
better performance. We need more analysis of the cost of an experiment to comment more about the
performance of additional experiment days.

The analysis of quality of samples vs quantity of samples has shown that the selective sampling
algorithm of active learning model trained on a small number of ToU training days will query more
days for the ToU tariff experiment as the variance of the ensemble model is large. In fact, we have seen
that the selective sampling model TS1 which was trained on randomly sampled 500 ToU tariff days,
queried 17 days per 1000 samples, which is much lower than other two query sizes: TS2 - 25 training
set, 348 queries per 1,000 samples and TS3: 50 training set, 276 queries per 1,000 samples. When
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we increase the number of training sample of a selective sampling model, we increase the confidence
of the model by generating strong causal relations between the input and target variable of the data.
Therefore, an ensemble model trained on a larger set of training data will lead to higher confidence
in the prediction of test data, lowering the prediction variance between the committee of the decision
trees. The histogram of the prediction variance shown in figure8.6 supports the above hypothesis.

We see that variance reduction algorithm performs better than the novelty detection algorithm.
To analyse the results, we plot the distribution of queries along with the distribution of base data
in figure 8.10. When we compare the distribution of queries by the algorithms, it is observed that
the distribution of variance reduction algorithm is in similar to the distribution of the original data.
Whereas, the distribution of novelty detection algorithm tries to capture the data which has a lower
probability of occurrence. It is also likely that the novelty detection algorithm queries the data points
which have high variation i.e. during the winter season the electricity consumption of residential users
vary much more than the other seasons.

This leads to a discussion about the selection criteria of the two methods. The variance reduction
method tries to query the data points which create high disagreement between the committee of decision
trees. Usually, this disagreement is inversely proportional to the confidence about the knowledge of that
feature subspace. Whereas, the novelty detection algorithm queries the unique data points. In other
words, the algorithm picks the data points which do not fit in the distribution of the base data. Now, as
we have discussed the underlying selective sampling philosophy of these methods, we try to formulate
a possible conclusion about the performance of three methods -

1. Variance reduction: The variance reduction method performs well when compared to the novelty
detection algorithm and random selection. Now, this result can mean one of two possibilities (or
the combination of both) - either the model is focusing on the less known feature space by querying
more data from low probability distribution area of the input space, or the model is trying to
learn the input data which has more complex relationship with the target variable. We observe
that the distribution of the queries by the variance reduction model is within the distribution of
the base data (figure 8.6). Therefore, it is concluded that the variance reduction model queries
the data point with input variables which have complex relationships with the target variable
(electricity consumption). The model does not focus the queries explicitly on unique or new data
i.e. out-of-distribution data.

2. Novelty detection: Unlike variance reduction method, the novelty detection algorithm explicitly
focuses the queries on the unique data. The poor performance of the novelty detection algorithm
can be traced to the figure 8.10 which shows the distribution of the input space of queries sampled
by novelty detection and variance reduction. This plot also provides the distribution of a base
dataset. We can see that novelty detection algorithm samples more days from low probability
region, as the low probability feature space qualifies for ‘novelty’. But, by training the active
learning model explicitly on the out-of-distribution days, the novelty detection model creates a
knowledge gap. If we increase the number of selectively sampled (by novelty detection) ToU
tariff days in the training data of training set of a forecasting model, the model builds high
confidence about the relation between input and output variables of the training data. This does
not guarantee the performance improvement of the model. The knowledge gain by this kind of
selection method (based on ‘uniqueness’) may not be completely useful as the test data may not
follow the same distribution. The test set is randomly selected from the pool of data. Therefore,
the test data follows the distribution of actual data and has the most data points which follow the
distribution of the actual data. As the distribution of test data is different than the distribution
of training data, we see comparatively poor results for novelty detection algorithm.
It is worth noting that even though the performance of the novelty detection algorithm is poorer
than the variance reduction algorithm, the performance of the novelty detection algorithm im-
proves by increasing the size of training data. This leads to another conclusion that the out-of-
distribution data also shares some concepts with the test set which is uniformly distributed over
the input dataset.

3. The random selection strategy shows mixed results for the implemented case. The random selec-
tion strategy works well for a lower number of training samples as well as a very high number
of training samples. First, we will focus on the performance of the model on a lower number of



9.2. Further work 67

training data. For training size of 20, 40 and 80 sample days, we get only 2, 4 and 8 ToU tariff
days respectively (10% of total data). For such a small number of ToU days, the queries generated
by active learning algorithm may not provide any significant information about the test data. As
we increase the number of training data, more number of ToU days qualify in the training set. As
the number of training samples increases, we see that the performance of the variance reduction
model improves much quicker than random selection model.
For a high number of training samples (larger than 2000), we see that the rate of improvement
for variance reduction method has slowed down, but random selection model has relatively better
rate improvement. In fact for the training set of 8,000 days with 10% ToU tariff days, the random
sampling method outperforms the novelty selection strategy by a significant margin. For a very
large training set with 10% ToU tariff days, random selection criteria samples ToU days (more
or less) uniformly from the distribution of input data. Therefore, forecaster based on randomly
selected ToU days may have a better knowledge of test data feature space than the ToU days
selected by the novelty detection algorithm.

9.1.1. Discussion on secondary outcomes of the research
This section focuses on the secondary outcomes of the thesis. These outcomes are discussed chapter by
chapter.

Chapter 6: Demand Response Simulator
The main outcome of the demand response simulator is the generation of ToU tariff policy and corre-
sponding electricity consumption of users. The motivation behind designing the load switching latency
was to reflect the complex user behaviour. In chapter 7, we observe the performance of the fixed tariff
consumption forecasting model and ToU tariff consumption forecasting model. The MSE curve of fixed
tariff consumption does not reach to noise bed after 8,000 training days, indicating that the model
can learn more about the consumption pattern by increasing the training samples. Whereas, the MSE
performance curve of ToU tariff consumption forecasting model reaches noise bed around 2,000 training
samples. This indicates that the complexity of the data can not be fully learned by the model. The
reader should mind that both the models are initialized with the same hyperparameters. The above
discussion provides validation for the design choices of demand response simulator.

Chapter 7: Basic forecasting and analysis
Firstly, we will talk about the results of feature importance plot for fixed tariff consumption forecaster
from chapter 7. It is observed that the hour-of-day and air temperature are the top features for the
fixed tariff consumption forecaster. We have already shown the causality between temperature pattern
and electricity consumption pattern in chapter 5.

Chapter 8: Active learning analysis
Let us discuss the dilemma of optimizing the number of labels for the active learning based forecasting
model. In the section 8.4.3 we have seen that, for the same threshold, lower training samples for active
learning algorithm results in a higher number of queries, whereas, a higher number of training samples
for active learning model will result in a lower number of queries. This optimization problem is very
hard to solve in a generalized manner. The subjective analysis of each problem setting will help provide
the optimal number of total labels.

9.2. Further work
Following are the suggestions for the future work:

• Due to lack of the data, a data simulator had to be developed during the implementation phase
of this project. Therefore, the results are limited by the design of the demand response simulator.
More reliable results can be obtained if real-world data for the ToU tariff policies are adequately
available for training a forecasting model with acceptable performance.

• This project considers a limited number of features, due to time and resource constraint of the
master’s thesis. More research can be done on the feature identification for ToU tariff consumption
forecasting. Also, as the weather data had to be gathered from another source, the exact location
of the weather station and the residential users may not have matched.
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• Instead of the binary tariff policy considered in the thesis, a more complex ToU tariff policy can
be implemented to improve the knowledge about the effect of the tariff policy on active learning
performance.

• The active learning models of this thesis are designed in two steps- The first step will be trained
on randomly selected ToU days to classify the test data into ToU and non-ToU experiment days
(refer figure 8.1). The classified data is used to train the ToU tariff consumption forecaster while
the original training data of the selective sampling model is discarded.
The above design was implemented to analyse the effect of queries on the final forecast of the
active learning models. This implementation can be improved to incorporate the initial training
data of selective sampling model into the training data for the forecasting model of the same active
learning algorithm. This implementation has the potential to change the results of the novelty
detection algorithm as currently the algorithm only considers out-of-distribution data for training
of the forecasting model.

• In the current implementation, the selective sampling model of active learning model is only
trained once at the start. By retraining the selective sampling and forecaster models of active
learning algorithm on the previous test data, we can improve the knowledge gain with the same
number of total queries. This iterative active learning model may potentially have a higher
convergence rate.

• Lastly, an investigation about the effect of the accuracy of selective sampling model on the final
accuracy of forecaster can be done. This approach can provide further information about the
importance of query quality
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(The following results are obtained from the faulty implementation of the ToU tariff forecasting model.
The implementation allowed the training data to be a part of the testing data. Therefore, the results
of the implementation are not reliable. This mistake was found in the later phase of the thesis. Due to
lack of time, the MSE performance plot could not be regenerated. Therefore, the following discussion
related to section 8.4.3 is attached in the appendix.)

The following experiment is carried out with three selective sampling models (variance reduction)
with a different number of random training samples. First selective sampling model (TS1) is trained
on only 25 randomly selected ToU days. The next model (TS2) is trained on 50 randomly selected
ToU days. The third model (TS3) is trained on 500 randomly selected ToU days. Then each model is
deployed to classify the 8,000 days into ToU experiment day and non-ToU experiment day. The results
are plotted in a histogram.

The three ToU tariff consumption models with the same hyperparameters are trained on the following
number of training days - [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 8000]. This experiment is repeated
10 times and the average of the MSE values are plotted in the performance plot.

Figure A.1: Effect of number of pre-training samples on final accuracy of the model

The effect of the number of initial training samples of the variance reduction active learning model
on the final accuracy of the ToU tariff demand forecasting model is graphically shown in figure A.1.
This figure showcases the results of three different active learning models (with a different number of
training samples). The x-axis shows the number of training samples for all three models. These training
samples are a mix of fixed tariff days and ToU tariff days. As shown in figure 8.6, as the active learning
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model is trained on the different number of training samples, the number of queries formed by these
models will vary for the three cases.

Figure A.1 shows the performance of all three models with MSE as a performance measure. The
models are trained on the mentioned number of ToU training days and other fixed tariff days. For
example, 100 training samples of TS1 will include 25 ToU tariff days and 75 fixed tariff days. The
models are tested on the test dataset of 500 ToU tariff days. The experiment is repeated 10 times with
randomised dataset and the mean of the results has been reported to reduce the variance in the results.
Interestingly, the active learning model trained on 25 ToU tariff samples (TS 1) performs better than a
model which is trained on 50 ToU tariff samples (TS 2). But how is it possible to get better results with
a model which is less informative about the feature space? The answer to this interesting fact lies in
the active learning theory and findings of the table 8.2. An active learning model creates queries which
represent the uncertainty of the model. The final machine learning model is trained on a collection of
queries created by the active learning model. Therefore, as seen in table 8.2, TS 1 creates the highest
number of queries followed by TS 2 and then by TS3. But as discussed at the starting of this section,
it is not just the quantity of data which matters, but the quality of data also matters. Even if TS
2 creates more number of queries than TS 3, that does not necessarily mean that the quality of the
queries is equal for both the models. Theoretically, TS 3 would produce higher quality queries as it is
trained on a much higher number of training samples. With this new and better understanding of the
setups, we can better understand figure A.1. For a lower number of samples, model based on TS 3 data
performs worse than the other two models. But as we increase the number of samples, we get to see
a clear trend that model based on TS 3 data performs the best, followed by TS 1 and TS 2. Here, we
see the trade-off between quantity and quality of data. It is easy to realise the cost associated with the
quantity of ToU tariff samples, but it should be noted that TS 3 samples with higher quality also have
hidden cost. We can not neglect the initial ToU tariff samples used for training of TS 3.
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