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Abstract
We study the density fluctuations at equilibrium of the multi-species stirring process,
a natural multi-type generalization of the symmetric (partial) exclusion process. In
the diffusive scaling limit, the resulting process is a system of infinite-dimensional
Ornstein–Uhlenbeck processes that are coupled in the noise terms. This shows that
at the level of equilibrium fluctuations the species start to interact, even though at
the level of the hydrodynamic limit each species diffuses separately. We consider
also a generalization to a multi-species stirring process with a linear reaction term
arising from species mutation. The general techniques used in the proof are based on
the Dynkin martingale approach, combined with duality for the computation of the
covariances.

Keywords Equilibrium density fluctuations · Multi-species · Ornstein–Uhlenbeck ·
Reaction–diffusion

Mathematics Subject Classification 60K35 · 82C22

1 Introduction

The symmetric exclusion process is a famous and well-studied particle system, where
the hydrodynamic limit is the heat equation and where the stationary fluctuations
around the hydrodynamic limit are given by an infinite-dimensional Ornstein–
Uhlenbeck process [1–5]. The large deviations from the hydrodynamic limit are also
well studied [6], and because of integrability, in the simplest one-dimensional setting
with reservoirs the non-equilibrium steady state can be computed explicitly [7, 8], and
as a consequence, the large deviation around the stationary non-equilibrium density
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profile can be computed [9, 10]. Such explicit solvability of a model is very rare and in
the case of the symmetric exclusion process a consequence of the fact that the Markov
generator corresponds to an integrable spin chain (for the d = 1 nearest neighbor set-
ting) and that the model is self-dual (for the general symmetric model on any graph). A
simple and natural generalization of the symmetric exclusion process is the so-called
symmetric partial exclusion process, where every vertex admits at most 2 j particles,
j ∈ 1

2N. The model is then still self-dual but no longer integrable for j > 1/2. The
maximum number of particles can be chosen depending on the vertex, without loos-
ing self-duality. For all these generalizations of the symmetric exclusion process, the
hydrodynamic limit and the stationary fluctuations around the hydrodynamic limit can
be obtained and up to constants yield the same equations [11–15].

At present, there is a growing interest in models with multiple conserved quantities,
their hydrodynamic limit, and their fluctuations (often referred to as “nonlinear fluctu-
ating hydrodynamics”) [16, 17], as well as in “multi-layer” models, where effects such
as uphill diffusion can be observed [12, 18, 19]. From the point of view of integrable
systems or of systemswith duality—the latter being a larger class—the construction of
modelswith n conserved quantities is naturally linkedwith Lie algebras of higher rank,
such as su(n), with n > 2 (or the deformed universal enveloping algebra Uq(su(n))

for the asymmetric companion model). Several multi-species versions of the ASEP
process have been introduced and their dualities have been studied, such as the particle
exchange process (PEP) [20] or the multi-species ASEP (q,j) [21–23].

In the symmetric context, the simplest choice of a multi-species model is obtained
by considering the coproduct of the quadratic Casimir of su(n), copied along the edges
of a graph (see [24] for the model on a finite graph and [25] for the boundary-driven
version). If one chooses a spin j discrete representation, one arrives to the multi-
species stirring process, which is the most natural multi-species generalization of the
symmetric exclusion process. In this model, at each site there are at most 2 j particles
whose type (or color) can be chosen among n available types. In other words, each
site contains a pile of height 2 j which is made of particles of different types and some
holes.

The configuration space of the process is denoted SVn where V is the vertex set and
the single-vertex state space Sn is the set of n + 1 tuples of integers of which the sum
equals 2 j , i.e.,

Sn =
{

(η0, η1, . . . , ηn) : ηk ∈ {0, 1, . . . , 2 j} satisfying
n∑

k=0

ηk = 2 j

}
.

A configuration of particles at site x ∈ V is denoted by ηx = (ηx
0 , η

x
1 , . . . , η

x
n ) with

ηx
0 giving the number of holes and ηx

k specifying the numbers of particles of type k,
with k ∈ {1, . . . , n}. The rate at which a particle of type k at site x is exchanged with
a particle of type l at site y is given by

c(x, y)ηx
k η

y
l
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Fig. 1 Illustration of the multi-species stirring process with two colors (n = 2) and maximal occupation
equal to six ( j = 3). The two species are denoted by "1" and "2" and the holes by "0". We show the particle
configurations before and after the exchange of a particle of type 1 at site x with a particle of type 2 at site
x + 1. Before the transition, site x has occupations given by (ηx0 , ηx1 , ηx2 ) = (1, 3, 2) while site x + 1 has

occupation given by (ηx+1
0 ηx+1

1 , ηx+1
2 ) = (2, 0, 4). The transition occurs at rate ηx1η

y
2 = 3 · 4

where c(x, y) is a symmetric and non-negative conductance associated with the edge
(x, y). In our paper, the underlying vertex set will be always V = Z

d , and wewill only
allow nearest neighbor jumps. However, for the model to be self-dual, only symmetry
of c(x, y) is important. Notice that if we stop distinguishing species, we retrieve the
classical partial exclusion process. See Fig. 1 for an illustration of the process with
two colors.

In this paper, for the sake of simplicity, we study the multi-species stirring model
in the simplest setting where the vertex set is Z (proofs are similar if we choose Z

d ,
d > 1) with nearest neighbor edges, with a general number n ∈ N of species and
a general value of the spin j (or equivalently maximal occupancy 2 j). We consider
the stationary density fluctuation field (Y N ,t )t≥0 of the n species (only for species
different from 0, since the hole dynamics is determined by the dynamics of the other
types) and show that in the diffusive re-scaling of space and time, this field converges
as N → ∞ to the solution of a n-dimensional SPDE of Ornstein–Uhlenbeck type
given by

dY t = 2 j(AY tdt + √
2�∇dWt ) (1)

The operator-valuedmatrix A is simply given�I with I the identitymatrix and� =
∂xx and corresponds to the hydrodynamic limit, which is a system of uncoupled heat
equations (besides exclusion, the species do not interact). The matrix � is, however,
non-diagonal, showing that on the level of fluctuations interaction between the different
species becomes visible. The stationary distribution is a product of multinomials, and
the matrix� is the covariance matrix of a multinomial distribution. Equation (1) is the
natural generalization of the Ornstein–Uhlenbeck process which describes the density
fluctuations of the symmetric exclusion process, where the coefficient in front of the
conservative noise is the square root of the variance of Bernoulli distribution. This
can then be generalized to a setting where reactions (spontaneous species change)
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are allowed. Then also a non-conservative noise term appears and the operator A
corresponds to a (linear) reaction–diffusion system.

1.1 Organization of the Paper

The rest of our paper is organized as follows. In Sect. 2, we describe in detail the
multi-species stirring process on a line, together with its hydrodynamic limit, and we
state our main result, i.e., Theorem 2.4. The proof of this result is obtained in four
main steps that are presented in the subsequent sections. First, in Sect. 3 we prove
some convergence properties of the Dynkin’s martingales associated with the density
fluctuation field. This is used in Sect. 4 for the proof of tightness. In Sect. 5, we apply
duality to compute the covariances of the limiting process. Finally, in Sect. 6, we show
that the limit point (that exists because of tightness) is unique and solves themartingale
problem associated with the limiting process. In Sect. 7, we generalize Theorem 2.4 to
a multi-type stirring process where also a mutation of types (reaction) is also allowed.
In Sect. 8, we draw the conclusions of our analysis, and in Appendix A, we prove the
hydrodynamic limits.

2 The Equilibrium Fluctuation for the Stirring Process

2.1 Process Definition

The interacting particle system is defined on the regular one-dimensional lattice Z. At
each site and each time, we associate a vector ηx (t) = (

ηx
0 (t), . . . , η

x
n (t)

)
where the

α-th component ηx
α(t) denotes the occupation variable of the species α ∈ {0, . . . , n}.

The labels 1, . . . , n denote the "true" species, while the 0 plays the role of the hole
(absence of a particle). The process on the whole lattice is denoted by (η(t))t≥0. The
maximal occupation of each site is assumed to be fixed and equal to 2 j where j ∈ N

2 .
Therefore, at any time there can be at most 2 j particles at each site. This is encoded
in the state space definition

� := SZ

n =
{

(η0, η1, . . . , ηn) : ηk ∈ {0, 1, . . . , 2 j} satisfying
n∑

k=0

ηk = 2 j

}Z

.

(2)

Let us notice that the constraint expressed into the state space can be thought of as a
dependence of the number of holes on the other types, i.e., at each site x ∈ Z

ηx
0 = 2 j − ηx

1 − . . . − ηx
n . (3)

We assume nearest neighbor jumps. The infinitesimal generator of the process acting
on local functions f : � → R is given

L f (η) =
∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

[
f (η − δxk + δxl + δx+1

k − δx+1
l ) − f (η)

]
(4)
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where
(δxk )

y
l =

{
1 if l = k and y = x

0 otherwise.
(5)

The interpretation of this generator is that particles of species k, l ∈ {0, 1, . . . , n}
present at sites x, x + 1 ∈ Z, respectively, are exchanged with rate ηx

k η
x+1
l .

Remark 2.1 If we stop distinguishing the types of particles, we retrieve the partial
exclusion process (SEP(2j)), since the constraint becomes

ηx
0 = 2 j − ηx

1 ∀x ∈ Z; (6)

thus, the only nonzero rates are of the form ηx
1 (2 j − ηx+1

1 ).

As already proved in [24], the reversible measure of this process is

νp =
⊗
x∈Z

MN(2 j; p) (7)

whereMN(2 j; p) denotes the multinomial distribution with 2 j independent trials and
success probabilities p = (p0, . . . , pn) with p0 + p1 + . . . + pn = 1.

2.2 Hydrodynamic Limit

In Theorem 2.3, we state the hydrodynamic behavior of the multi-species stirring
process. The proof is based on standard arguments and is reported in Appendix A.
We introduce the density field of species α ∈ {1, . . . , n}. For any φ ∈ C∞

c (R), this
field is defined as

XN ,t
α (·) : C∞

c (R) → R

φ → XN ,t
α (φ) = 1

N

∑
x∈Z

φ(
x

N
)ηx

α(t N 2)
(8)

where N ∈ N is the scaling parameter. To state the hydrodynamic limit, we need an
assumption on the behavior of the density field at the initial time. This assumption is
written in Definition 2.2.

Definition 2.2 Let ρ̂(α) : R → [0, 2 j], with α ∈ {1, . . . , n}, be a continuous function
called the initial macroscopic profile of species α. A sequence (μN )N∈N of measures
on � is a sequence of compatible initial conditions if ∀α ∈ {1, . . . , n}, ∀δ > 0:

lim
N→∞ μN

(∣∣∣∣XN ,0
α (φ) −

∫
R

φ(u)ρ̂(α)(u)du

∣∣∣∣ > δ

)
= 0 (9)

with arbitrary φ ∈ C∞
c (R).

We state the following result
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Theorem 2.3 Let ρ̂(α) be an initial macroscopic profile of species α ∈ {1, . . . , N },
and let be (μN )N∈N a sequence of compatible initial measures. PN denotes the law

of the process
(
XN ,t
1 (φ), . . . , XN ,t

n (φ)
)
induced by (μN )N∈N. Then, ∀T > 0, δ > 0,

∀α ∈ {1, . . . , n} and ∀φ ∈ C∞
c (R)

lim
N→∞ PN

(
sup

t∈[0,T ]

∣∣∣∣XN ,t
α (φ) −

∫
R

φ(u)ρ(α)(u, t)du

∣∣∣∣ > δ

)
= 0 (10)

where ρ(α)(x, t) is a strong solution of the PDE Cauchy problem

{
∂tρ

(α)(x, t) = (2 j)�ρ(α)(x, t) x ∈ R, t ∈ [0, T ]
ρ(α)(x, 0) = ρ̂(α)(x)

(11)

2.3 Limiting Process of the Density Fluctuation Field

We consider the setting where the process (η(t))t≥0 starts from equilibrium, i.e., a
reversible measure where we have fixed the probabilities p = (p0, . . . , pn) once
for all. Then, the density fluctuation field for a species α ∈ {1, . . . , n} is a random
distribution, i.e., a random element of

(
C∞
c (R)

)∗ defined via:

Y N ,t
α (·) : C∞

c (R) → R

φ → Y N ,t
α (φ) = 1√

N

∑
x∈Z

φ(
x

N
)(ηx

α(t N 2) − (2 j)pα)
(12)

where (2 j)pα = Eνp

[
ηx

α

]
.We call QN the lawof the randomvector process (Y N ,t )t≥0

=
(
Y N ,t
1 , . . . ,Y N ,t

n

)
t≥0

andE the expectationwith respect to this law.Note that because

(η(t))t≥0 is initialized from the reversible measure (7), the process keeps the product
measure structure for every time t ≥ 0. We denote by

(
C∞
c (R)

)∗
n = (

C∞
c (R)

)∗ × . . . × (
C∞
c (R)

)∗︸ ︷︷ ︸
n times

(13)

the dual space of
(
C∞
c (R)

)n , i.e., the set of linear and bounded operators from
(C∞

c (R))n to R
n . Our main result is the following theorem.

Theorem 2.4 There exists a unique random element
(
Y t
1, . . . ,Y

t
n

)
t∈[0,T ] ∈ C ([0, T ];(

C∞
c (R)

)∗
n

)
with law Q such that

QN → Q weakly for N → ∞. (14)
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Moreover, for every α ∈ {1, . . . , n}, (Y t
α)t≥0 is a generalized stationary Ornstein–

Uhlenbeck process solving the following martingale problem:

Mt
α,φ := Y t

α(φ) − Y 0
α (φ) − (2 j)

∫ t

0
Y s

α (�φ) ds (15)

is a martingale ∀φ ∈ C∞
c (R) with respect to the natural filtration (Ft )t∈[0,T ] of

(Y t
1, . . . ,Y

t
n)t∈[0,T ] with quadratic covariation

[
Mα,φ, Mβ,φ

]
t = −2t(2 j)2 pα pβ

∫
R

(∇φ(u))2 du (16)

and quadratic variation

[
Mα,φ

]
t = 2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 du . (17)

Remark 2.5 The above martingale problem can be restated by requiring that (15) and

N t
α,β,φ = Mt

α,φM
t
β,φ + 2t(2 j)2 pα pβ

∫
R

(∇φ(u))2du (18)

N t
α,α,φ =

(
Mt

α,φ

)2 − 2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2du (19)

are martingales with respect to the natural filtration (Ft )t∈[0,T ].

Theorem 2.4 suggests that the limiting process

(Y t )t∈[0,T ] = (
Y t
1, . . . ,Y

t
n

)
t∈[0,T ] (20)

can be formally written as the solution of the distribution-valued SPDE

dY t = 2 j(AY tdt + √
2�∇dWt ) (21)

where
(Wt )t∈[0,T ] = (

(Wt
1, . . . ,W

t
n)
)
t∈[0,T ] (22)

is an n-dimensional vector of independent space–time white noises. The matrices are
the following

A =

⎛
⎜⎜⎜⎝

� 0 . . . 0
0 � . . . 0
...

...
. . .

...

0 0 . . . �

⎞
⎟⎟⎟⎠ � =

⎛
⎜⎜⎜⎝
p1(1 − p1) −p1 p2 . . . −p1 pN

−p1 p2 p2(1 − p2) . . . −p2 pN
...

...
. . .

...

−pN p1 −pN p2 . . . pN (1 − pN )

⎞
⎟⎟⎟⎠ (23)

and � is semi-positive definite. The covariances of (20) ∀t ∈ [0, T ] are given by:
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(i) when α 
= β

Cov
(
Y t

α(φ),Y 0
β (ψ)

)
= −(2 j)pα pβ〈Stφ,ψ〉L2(dx) (24)

(ii) when α = β

Cov
(
Y t

α(φ),Y 0
α (ψ)

)
= (2 j)pα(1 − pα)〈Stφ,ψ〉L2(dx) (25)

where (St )t≥0 is the transition semigroup of the Brownian motion (B2 j (t))t≥0 with
variance 2 j t .

The proof of Theorem 2.4 consists in the following steps: firstly we show that
the sequence of measures (QN )N∈N is tight and converges to a unique limit point
Q; secondly, we show that at the initial time t = 0 the process is Gaussian and has
covariances given by

Cov(Y 0
α (φ),Y 0

β (ψ)) = −(2 j)pα pβ〈φ,ψ〉L2(dx),

Cov(Y 0
α (φ),Y 0

α (ψ) = (2 j)pα(1 − pα)〈φ,ψ〉L2(dx). (26)

Finally, we prove that Q solves the martingale problem for any t ∈ [0, T ]. As shown
in Section 4, Chapter 11 of [1], these steps are equivalent to saying that Q is the unique
solution of the martingale problem, and furthermore, they allow to find the transition
probabilities of theMarkov process (Yt )t∈[0,T ]. We observe that the Gaussianity of the
limiting process at initial time t = 0 is a consequence of the central limit theorem and
of the fact that, for every x ∈ Z, ηx = (ηx

0 , . . . , η
x
n ) is distributed with the reversible

multinomial measure (7).
Preliminarily, we need some convergence properties of theDynkinmartingale asso-

ciated with the density fluctuation field. Thus, we split the proof as follows of Theorem
2.4:

1. L2 convergence of Dynkin’s martingale to (15), Sect. 3.
2. Tightness of (QN )N∈N, using the Aldous’ criterion [26], Sect. 4.
3. Space–time covariances. This will be done using duality, Sect. 5.
4. Uniqueness of the limiting distribution Q and solution of the martingale problem,

Sect. 6.

3 Convergence of Martingales

3.1 The DynkinMartingale

Werecall somebasic facts aboutDynkinmartingales associatedwithMarkovprocesses
(for details see [1]). Let G be the generator of a Markov pure jump process (θ(t))t≥0
with state space χ and transition rates c(θ, ξ) to jump from θ to ξ . The generator reads

G f (θ) =
∑
ξ

c(θ, ξ)( f (ξ) − f (θ)). (27)
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For a function f : χ → R, the following quantity is a Dinkin martingale with
respect to the natural filtration

M f
t := f (θ(t)) − f (θ(0)) −

∫ t

0
G f (θs)ds. (28)

The quadratic covariation is given by

[
M f , Mg

]
t
:=

∫ t

0
� f ,g,s(θs)ds (29)

where � f ,g is the Carré Du Champ operator defined as

� f ,g = (G f g) − g(G f ) − f (Gg). (30)

Using the form (27) of the generator, it is possible to rewrite the above expression as

� f ,g(θ) =
∑
ξ∈χ

c(θ, ξ) ( f (ξ) − f (θ)) (g(ξ) − g(θ)) . (31)

Applying the scheme above to the process (η(t N 2))t≥0 characterized by the generator
(4) and taking, for any φ ∈ C∞

c (R), the function f (η(t)) = Y N ,t
α (φ), we define the

following Dynkin martingale

MN ,t
α,φ := Y N ,t

α (φ) − Y N ,0
α (φ) −

∫ t

0
N 2LY N ,s/N2

α (φ)ds (32)

where Y N ,t
α (φ) denotes the equilibrium fluctuation field for the species α defined in

(12). Observe that the last term in the above martingale is defined as

∫ t N2

0
LY N ,s

α (φ)ds. (33)

Performing a change of integration variable, we obtain (32).
The quadratic covariation is

[
MN

α,φ, MN
β,φ

]
t
=
∫ t

0
N 2�

φ,s/N2

α,β ds (34)

where for a generic s ≥ 0

�
φ,t
α,β := L(Y N ,t

α (φ)Y N ,t
β (φ)) − Y N ,t

α (φ)L(Y N ,t
β (φ)) − Y N ,t

β (φ)L(Y N ,t
α (φ)). (35)
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Using (31), this can be written as

�
φ,s
α,β =

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

[
˜Y N ,s
α,k,l(φ) − Y N ,s

α (φ)

] [
˜Y N ,s
β,k,l(φ) − Y N ,s

β (φ)

]
(36)

where ˜Y N ,s
α,k,l(φ) is a shortcut for the equilibrium fluctuation field computed in the

configuration η(N 2s) − δxk + δxl + δx+1
k − δx+1

l
We further introduce the following family of Doob’s martingales

N N ,t
α,β,φ = MN ,t

α,φ MN ,t
β,φ −

∫ t

0
N 2�

φ,s/N2

α,β ds ∀α, β ∈ {1, . . . , n} (37)

which will be useful in the analysis.

Remark 3.1 Often, in the following to alleviate notation we do not write explicitly the
time dependence, i.e.,

�
φ
α,β = 1

N

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ηy

α − δxk + δxl + δx+1
k − δx+1

l ) − ηy
α

)⎤⎦

·
⎡
⎣∑

z∈Z

φ
( z

N

) (
(ηzβ − δxk + δxl + δx+1

k − δx+1
l ) − ηzβ

)⎤⎦
(38)

Remark 3.2 In principle, we should consider �
φ,ψ,s
α,β , underlining the fact that the test

function could depend on the species too. However, �φ,ψ,s
α,β is bilinear and symmetric

with respect the test function; therefore, by polarization identity, it is enough to evaluate
�

φ,φ,s
α,β .Wewill denote it by�

φ,s
α,β for the sake of notation simplicity. Bilinearity is clear.

We prove the symmetry. To alleviate the notation, we do not write here explicitly the
time dependence:

�
φ,ψ
α,β = 1

N

∑
x∈Z

n∑
k,l=0

ηxk ηx+1
l

⎡
⎣∑
y∈Z

φ
( y

N

) (
(η

y
α − δxk + δxl + δx+1

k − δx+1
l ) − η

y
α

)⎤⎦

·
⎡
⎣∑
z∈Z

ψ
( z

N

) (
(ηzβ − δxk + δxl + δx+1

k − δx+1
l ) − ηzβ

)⎤⎦

= 1

N

∑
x∈Z

n∑
k,l=0

ηxk ηx+1
l

[
φ
( x

N

)
(ηxα − δxk + δxl − ηxα)

+φ

(
x + 1

N

)
(ηx+1

α + δx+1
k − δx+1

l − ηx+1
α )

]

·
[
ψ
( x

N

)
(ηxβ − δxk + δxl − ηxβ) + ψ

(
x + 1

N

)
(ηx+1

β + δx+1
k − δx+1

l − ηx+1
β )

]
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= 1

N

∑
x∈Z

{
ηxαηx+1

β

[
φ
( x

N

)
(−1) + φ

(
x + 1

N

)
(+1)

]
[
ψ
( x

N

)
(+1) + ψ

(
x + 1

N

)
(−1)

]

+ ηxβηx+1
α

[
φ
( x

N

)
(+1) + φ

(
x + 1

N

)
(−1)

]
[
ψ
( x

N

)
(−1) + ψ

(
x + 1

N

)
(+1)

]}

= − 1

N

∑
x∈Z

(
ηxαηx+1

β + ηxβηx+1
α

) [
φ

(
x + 1

N

)
− φ

( x

N

)]
[
ψ

(
x + 1

N

)
− ψ

( x

N

)]
.

This expression is clearly symmetric in φ and ψ .

Remark 3.3 In the following, we will denote by C, (Ci )i∈N, Ĉ finite and positive con-
stants.

3.2 Convergence of Dynkin’s Martingale

Here we state and prove some convergence properties of the family of martingales(
MN ,t

α,φ

)
α∈{1,...,n} and

(
N N ,t

α,β,φ

)
α,β∈{1,...,n} when N → ∞.We formulate this in Propo-

sition 3.4. This result will be useful in the proof of tightness and uniqueness of the
limit point of the sequence of measures (QN )N∈N.

Proposition 3.4 For all φ ∈ C∞
c (R) and ∀t ∈ [0, T ], we have the following conver-

gences:

1. ∀α ∈ {1, . . . , n}

lim
N→∞ E

[(
MN ,t

α,φ − Y N ,t
α (φ) + Y N ,0

α (φ) + 2 j
∫ t

0
Y N ,s/N2

α (�φ)ds

)2
]

= 0

(39)
2. ∀α, β ∈ {1, . . . , n}

lim
N→∞ E

[(
N N ,t

α,β,φ −
(
Y N ,t N2

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)
(
Y N ,t

β (φ) − Y N ,0
β (φ) − 2 j

∫ t

0
Y N ,s/N2

β (�φ)ds

)

+2t(2 j)2 pα pβ

∫
R

(∇φ(u))2 du

)2
]

= 0

(40)
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when α 
= β and

lim
N→∞ E

[(
N N ,t

α,α,φ −
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)2

− 2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 dx

)2
]

= 0

(41)

when α = β.

To prove Proposition 3.4, we need two intermediate results that we state in Lemma
3.5 and in Lemma 3.6.

Lemma 3.5 For all φ ∈ C∞
c (R), for all α, β ∈ {1, . . . , n} we have

lim
N→∞ E

[(
N 2�

φ
α,β + 2(2 j)2 pα pβ

∫
R

(∇φ(u))2 du

)2
]

= 0 for α 
= β (42)

lim
N→∞ E

[(
N 2�φ

α,α − 2(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 du

)2
]

= 0 for α = β

(43)

Proof We will only prove (42), since the proof of (43) is similar. L2(νp) convergence
(42) is equivalent to showing the following L1(νp) convergence

lim
N→∞ N 2

E

[
�

φ
α,β

]
= −2(2 j)2 pα pβ

∫
R

(∇φ(u))2 du (44)

and a vanishing variance
lim

N→∞Var(N 2�
φ
α,β) = 0. (45)

We start by proving (44). Using (36), we write

�
φ
α,β = 1

N

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ηy

α − δxk + δxl + δxk − δxl ) − ηy
α

)⎤⎦

·
⎡
⎣∑

z∈Z

φ
( z

N

) (
(ηzβ − δxk + δxl + δxk − δxl ) − ηzβ

)⎤⎦

= − 1

N

∑
x∈Z

(
ηx

αηx+1
β + ηx

βηx+1
α

)(
φ

(
x + 1

N

)
− φ

( x

N

))2

.
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By the Taylor’s formula with the Lagrange remainder, we have

(
φ

(
x + 1

N

)
− φ

( x

N

))2

= 1

N 2∇φ
( x

N

)2 + 1

N 4

1

4

(
�φ

(
x + θ+

N

))2

+ 1

N 3

1

2

(
∇φ

( x

N

)
�φ

(
x + θ+

N

)
+ ∇φ

( x

N

)
�φ

(
x + θ+

N

))
(46)

where θ+ ∈ (0, 1). We thus obtain

N 2�
φ
α,β = − 1

N

∑
x∈Z

(
ηx

αηx+1
β + ηx

βηx+1
α

)
∇φ

( x

N

)2 + o

(
1

N

)
. (47)

Therefore,

lim
N→∞ N 2

E

[
�

φ
α,β

]
= lim

N→∞

[
− 1

N

∑
x∈Z

E

[
ηx

αηx+1
β + ηx+1

α ηx
β

]
∇φ

( x

N

)2]

= −2(2 j)2 pα pβ

∫
R

(∇φ(u))2 du (48)

and (44) is proved. To prove (45), we need the second moment. We have

E

[(
N 2�

φ
α,β

)2] = 1

N 2

∑
x,y∈Z

∇φ
( x

N

)2 ∇φ
( y

N

)2

E

[
(ηx

αηx+1
β + ηx

βηx+1
α )(ηy

αη
y+1
β + η

y
βηy+1

α )
]

+ o

(
1

N 2

)

= 4(2 j)4 p2α p
2
β

1

N 2

∑
x,y∈Z

∇φ
( x

N

)2 ∇φ
( y

N

)2 + o

(
1

N 2

)
.

By taking the limit

lim
N→∞ E

[(
N 2�

φ
α,β

)2] = 4(2 j)4 p2α p
2
β

(∫
R

(∇φ(u))2 du

)2

.

Therefore, using (48), we have

lim
N→∞Var

(
N 2�

φ
α,β

)
= lim

N→∞ E

[(
N 2�

φ
α,β

)2] − lim
N→∞

(
E

[
N 2�

φ
α,β

])2 = 0 . (49)


�

123



Journal of Theoretical Probability

Lemma 3.6 For all φ ∈ C∞
c (R), for all α, β ∈ {1, . . . , N } and for all t ∈ [0, T ] we

have

lim
N→∞ E

[{
MN ,t

α,φ MN ,t
β,φ −

(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)
(
Y N ,t

β (φ) − Y N ,0
β (φ) − 2 j

∫ t

0
Y N ,s/N2

β (�φ)ds

)}2
]

= 0 for α 
= β

(50)

lim
N→∞ E

[{
(MN ,t

α,φ )2 −
(
Y N ,t

α (φ) − Y N ,0
α (φ)

−2 j
∫ t

0
Y N ,s/N2

α (�φ)ds

)2
}2

⎤
⎦ = 0 for α = β (51)

Proof We prove only the convergence (51) since (50) can be proved similarly. By
Cauchy–Schwartz inequality

E

⎡
⎣
(

(MN ,t
α,φ )2 −

(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)2
)2

⎤
⎦

≤

⎛
⎜⎜⎜⎜⎝E

[(
(MN ,t

α,φ ) −
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

))4
]

︸ ︷︷ ︸
AN

⎞
⎟⎟⎟⎟⎠

1/2

·

⎛
⎜⎜⎜⎜⎝E

[(
(MN ,t

α,φ ) +
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

))4
]

︸ ︷︷ ︸
BN

⎞
⎟⎟⎟⎟⎠

1/2

.

Wewill prove that the term denoted by AN goes to zero when N → ∞while the term
BN remains finite.
Proof that limN→∞ AN = 0: we first compute the action of the generator on the
fluctuation field:

LY N ,·
α (φ) = 1√

N

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ηy

α − δxk + δxl

+δx+1
k − δx+1

l − 2 j pα) − ηy
α + 2 j pα

)]

= 1√
N

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

[
φ

(
x + 1

N

)(
(ηx+1

α + δx+1
k − δx+1

l ) − ηx+1
α

)
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+ φ
( x

N

) (
(ηx

α − δxk + δxl ) − ηx
α

)]

= 1√
N

∑
x∈Z

⎧⎨
⎩ηx

α

n∑
l=0 : l 
=α

ηx+1
l

[
φ

(
x + 1

N

)
− φ

( x

N

)]

+ηx+1
α

n∑
k=0 : k 
=α

ηx
k

[
φ
( x

N

)
− φ

(
x + 1

N

)]⎫⎬
⎭

= 1√
N

∑
x∈Z

{
ηx

α(2 j − ηx+1
α )

[
φ

(
x + 1

N

)
− φ

( x

N

)]

+ηx+1
α (2 j − ηx

α)

[
φ
( x

N

)
− φ

(
x + 1

N

)]}

= 2 j√
N

∑
x∈Z

ηx
α

[
φ

(
x − 1

N

)
+ φ

(
x + 1

N

)
− 2φ

( x

N

)]
.

Using Taylor’s series with Lagrange remainder implies

φ(
x + 1

N
)+φ(

x − 1

N
) − 2φ(

x

N
)

= 1

N 2�φ(
x

N
) + 1

6

1

N 3

[
φ(3)(

x + θ+

N
) − φ(3)(

x − θ−

N
)

]
(52)

where θ+, θ− ∈ (0, 1). Observing further that

∑
x∈Z

2 j pα

[
φ

(
x − 1

N

)
+ φ

(
x + 1

N

)
− 2φ

( x

N

)]
= 0 (53)

we obtain

N 2LY N ,·
α (φ) = (2 j)√

N

∑
x∈Z

(ηx
α − 2 j pα)�φ(

x

N
) + R1(φ, α, ·) (54)

where

R1(φ, α, ·) = (2 j)

N 3/2

∑
x∈Z

(ηx
α − 2 j pα)

[
1

6

[
φ(3)(

x + θ+

N
) − φ(3)(

x − θ−

N
)

]]
. (55)
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Therefore, we find an upper bound for AN

E

[(
MN ,t

α,φ −
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

))4
]

= E

[(∫ t

0
R1(φ, α, s)ds

)4
]

≤ C
∫ T

0
E

[
R1(φ, α, s)4

]
ds

(56)

where in the last inequality we used Fubini’s Theorem and Holder’s inequality with

coefficients 4 and 4/3. The set ∪2
k=0supp

(
dk

dxk
φ
)
is compact in R. We call

A := N

(
∪2
k=0supp

(
dk

dxk
φ

))
∩ Z. (57)

Then, we bound from above the expectation in the integral using the fact that φ(3) is
bounded

E

[
R1(φ, α, ·)4

]
≤ C

N 6

∑
x1,x2,x3,x4∈A

E

[
4∏

i=1

(ηxi
α − 2 j pα)

]

The only terms that survive in the average are:

(ηxi
α − 2 j pα)2(ηxk

α − 2 j pα)2 (ηxi
α − 2 j pα)4 ∀i, k ∈ {1, 2, 3, 4} : i 
= k.

The fourth-order mixed moments of the multinomial distribution can be written as

E

[
(ηx

α − 2 j pα)4
]

= f (pα, 4)

E[(ηx
α − 2 j pα)2(ηy

α − 2 j pα)2] = g(pα, 4)

where f (pα, 4), g(pα,4) are polynomials of fourth order in pα and bounded from
above by a proper finite and positive constant. The measure of the set A is bounded
by |A| ≤ CN . By consequence,

∑
x1,x2,x3,x4∈A

E

[
4∏

i=1

(ηxi
α − 2 j pα)

]
=

∑
x∈A

f (pα, 4) +
∑

x,y∈A
g(pα, 4) ≤ N 2C

Therefore,

E

[
R1(φ, α, ·)4

]
≤ N 2

N 6C
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and by taking the limit

lim
N→∞ E

[
R1(φ, α, ·)4

]
= 0 (58)

Recalling (56), this implies that limN→∞ AN = 0.
Proof that limN→∞ BN < ∞: for any real numbers a, b ∈ R,

(a + b)4 ≤ 8(a4 + b4). (59)

Applying this inequality

E

[(
MN ,t

α,φ + Y N ,t
α (φ) − Y N ,0

α (φ) − 2 j
∫ t

0
Y N ,s/N2

α (�φ)ds

)4
]

≤ 8

(
E

[(
MN ,t

α,φ

)4] + E

[(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
])

.

Applying again inequality (59), we have

E

[(
MN ,t

α,φ

)4] ≤ C
(
E

[
Y N ,t

α (φ)4
]

+ E

[
Y N ,0

α (φ)4
]

+ E

[(
(2 j)

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
]

+ E

[(∫ t

0
R1(φ, α, s)ds

)4
])

and

E

[(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
]

≤ Ĉ
(
E

[
Y N ,t

α (φ)4
]

+ E

[
Y N ,0

α (φ)4
]

+ E

[(
(2 j)

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
])

.

Arguing similar to before, we find

E

[
Y N ,·

α (φ)4
]

= 1

N 2

∑
x1,x2,x3,x4∈A

E

[
4∏

i=1

(
ηxi

α − 2 j pα

)] 4∏
i=1

φ
( xi
N

)

≤ C

N 2 ‖φ‖∞

⎛
⎝∑

x∈A
f (pα, 4) +

∑
x,y∈A

g(pα, 4)

⎞
⎠ < ∞

(60)
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then by taking the limit

lim
N→∞ E

[
Y N ,·

α (φ)4
]

≤ C1. (61)

Obviously, the same bound holds for E
[
Y N ,0

α (φ)4
]
. We can argue similarly and find

the following upper bound for the integral term

E

[(
(2 j)

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
]

≤ C
∫ T

0
E

[
Y N ,s/N2

α ((2 j)�φ)4
]
ds < ∞

then in the limit

lim
N→∞ E

[(
(2 j)

∫ t

0
Y N ,s/N2

α (�φ)ds

)4
]

= C2. (62)

By putting together (58), (61), and (62), we obtain that BN remains finite as N → ∞.

�

Proof of Proposition 3.4: To prove (39), we have that, by the expressions (54), (55),

lim
N→∞ E

[(
MN ,t

α,φ − Y N ,t
α (φ) + Y N ,0

α + 2 j
∫ t

0
Y N ,s/N2

α (�φ)ds

)2
]

≤ C lim
N→∞

∫ t

0
E

[
R1(φ, α, s)2

]
ds ≤ lim

N→∞
C1

N
= 0.

(63)

To prove (40), we only consider the case α = β, since the case α 
= β is proved
similarly. By the triangle inequality,

E

[(
N N ,t

α,α,φ −
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)2

−2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 du

)2
]

≤ E

⎡
⎣
{

(MN ,t
α,φ )2 −

(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)2
}2

⎤
⎦

+ E

[(
N 2

∫ t

0
�φ,s

α,αds − 2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 du

)2
]

.
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In the limit, we apply Lemma 3.5 and Lemma 3.6 and we obtain

lim
N→∞ E

[(
N N ,t

α,α,φ −
(
Y N ,t

α (φ) − Y N ,0
α (φ) − 2 j

∫ t

0
Y N ,s/N2

α (�φ)ds

)2

+ 2t(2 j)2 pα(1 − pα)

∫
R

(∇φ(u))2 du

)2
]

= 0

(64)


�

4 Tightness

In this section, we prove tightness for the sequence of probability measures
(QN )N∈N on the Skorokhod space (see [27] for details) of càdlàg trajectories
D
([0, T ], (C∞

c (R)
)∗
n

)
. A necessary and sufficient condition for tightness is given

by the following theorem proved by Aldous [26].

Theorem 4.1 (Aldous’ criterion) Consider a Polish space E , endowed with a metric
dE (·, ·)where we denote byμt the functions from [0, T ] to E . A sequence of probability
measures (PN )N∈N on the Skorokhod space D ([0, T ], E) is tight if and only if

1. ∀t ∈ [0, T ] and ∀ε > 0 ∃K (t, ε) ⊂ E compact such that

sup
N∈N

PN (μt /∈ K (ε, t)) ≤ ε (65)

2. ∀ε > 0
lim
δ→0

lim sup
N→∞

sup
τ∈TT , θ≤δ

PN (dE (μτ , μτ+θ ) > ε) = 0 (66)

where TT is a family of stopping times bounded by T .

In Proposition 4.2, we will apply Theorem 4.1 to prove tightness of the sequence
of measure (QN )N∈N. The computation can be done on the Skorokhod space
D([0, T ], R

n). Indeed,C∞
c (R) is a nuclear space (see [28] for details); then, it suffices

to prove tightness of the distribution of QN ◦ φ for arbitrary φ ∈ C∞
c (R).

Proposition 4.2 The sequenceofmeasure (QN )N∈N on the space D
([0, T ], (C∞

c (R)
)∗
n

)
is tight since the following statements are true for any φ = (φ, . . . , φ) ∈ (

C∞
c (R)

)n
:

1. ∀t ∈ [0, T ] and ε > 0 there exists a compact set K (ε, t) ∈ R
n such that

sup
N∈N

QN

(
Y N ,t (φ) /∈ K (ε, t)

)
≤ ε (67)

2. ∀ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT , θ≤δ

QN

(
‖Y N ,τ (φ) − Y N ,τ+θ (φ)‖S > ε

)
= 0 (68)
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where ‖Y N ,t (φ)‖S = maxα∈{1,...,n}
{|Y N ,t

α (φ)|} and TT is a family of stopping
times bounded by T .

Proof We show that the (67) and (68) are satisfied.
Proof of (67): we fix arbitrary t ∈ [0, T ] and ε > 0. We apply the central limit
theorem for the n-dimensional random vector Y N ,t (φ) taking values onR

n , observing
that the process (η(t))t≥0 has a product invariant distribution given by (7). To do this,
we need the expectation and the covariances under QN of the equilibrium fluctuation
field. We fix arbitrary α, β ∈ {1, . . . , n}. We have

E

[
Y N ,t

α (φ)
]

= 1√
N

∑
x∈Z

E

[
ηx

α(t N 2) − (2 j)pα

]
φ
( x

N

)
= 0

and

Var
(
Y N ,t

α (φ)
)

= 1

N

∑
x∈Z

φ2
( x

N

)
E

[
(ηx

α(t N 2))2
]

Cov(Y N ,t
α (φ),Y t,N

β (φ)) = 1

N

∑
x∈Z

φ2
( x

N

)
Cov

(
ηx

α(t N 2), ηx
β(t N 2)

)
.

Taking the limit, we obtain

lim
N→∞ E

[
Y N ,t

α (φ)
]

= 0, lim
N→∞Var

(
Y N ,t

α (φ)
)

= 2 j pα(1 − pα)

∫
R

(φ(u))2du

lim
N→∞Cov(Y N ,t

α (φ),Y t,N
β (φ)) = −2 j pα pβ

∫
R

(φ(u))2du

Therefore, the random vector Y N ,t converges in distribution to a centered Gaussian
random vector with covariance matrix K with elements

Kα,β = −2 j pα pβ

∫
R

(φ(u))2du, Kα,α = 2 j pα(1 − pα)

∫
R

(φ(u))2du. (69)

Thus, for arbitrary ε > 0 and ∀t ∈ [0, T ] we can choose K (ε, t) ⊂ R
n compact, such

that
sup
N∈N

QN

(
Y N ,t (φ) /∈ K (ε, t)

)
≤ ε.

Proof of (68): without loss of generality and for the sake of notation, here we will
work with a single species α ∈ {1, . . . , N }. For arbitrary stopping time τ ∈ T , We
write the process

Y N ,τ
α (φ) = MN ,τ

α,φ + Y N ,0
α (φ) +

∫ τ

0
N 2LY N ,s/N2

α (φ)ds.
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By Chebyshev and triangular inequalities,

QN

(
|Y N ,τ

α (φ) − Y N ,τ+θ
α (φ)| ≥ ε

)
≤ 1

ε2
E

[(
Y N ,τ

α (φ) − Y N ,τ+θ
α (φ)

)2]

≤ 2

ε2

⎛
⎜⎜⎜⎜⎝E

[(
MN ,τ

α,φ − MN ,τ+θ
α,φ

)2]
︸ ︷︷ ︸

AN

+ E

[(∫ τ+θ

τ

N 2LY N ,s/N2

α (φ)ds

)2
]

︸ ︷︷ ︸
BN

⎞
⎟⎟⎟⎟⎠

We first prove that AN goes to zero when N → ∞. By the martingale property, we
have

E

[(
MN ,τ

α,φ − MN ,τ+θ
α,φ

)2] = E

[(
MN ,τ+θ

α,φ

)2 −
(
MN ,τ

α,φ

)2]
.

By Doob’s decomposition theorem (see [29])

E

[(
MN ,t

α,φ

)2] = E

[∫ t

0
N 2�φ,s/N2

α,α ds

]
.

We write the following chain of inequalities by using Fubini theorem, Cauchy–
Schwartz inequality, optional stopping theorem for martingales (see [29]), and the

fact that, by Lemma 3.5; the sequence N 2�
φ,s/N2

α,α is uniformly bounded in N in
L2(νp)

sup
N∈N

E

[(
MN ,τ+θ

α,φ

)2 −
(
MN ,τ

α,φ

)2] = sup
N∈N

E

[∫ τ+θ

τ

N 2�φ,s/N2

α,α ds

]

≤ √
θ

(∫ T

0
sup
N∈N

E

[(
N 2�φ,s/N2

α,α

)2
ds

])1/2

≤ √
θC .

By taking the limits and by the above upper bound, we have

lim
δ→0

lim sup
N→∞

sup
τ∈TT , θ≤δ

AN ≤ lim
δ→0

lim sup
N→∞

sup
τ∈TT , θ≤δ

√
θC = 0,

and then, AN goes to zero as N → ∞.
Secondly, we prove that BN vanishes when N → ∞. By Cauchy–Schwarz inequality
and Fubini theorem,

E

[(∫ τ+θ

τ

N 2LY N ,s/N2

α (φ)ds

)2
]

≤ θ

(∫ T+θ

0
E

[(
N 2LY N ,s/N2

α (φ)
)2]

ds

)
.
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The integrand can be bounded from above as follows

E

[(
N 2LY N ,·

α (φ)
)2] = E

⎡
⎣( 1√

N

∑
x∈Z

(ηx
α − (2 j)pα)�Nφ

( x

N

))2
⎤
⎦

≤ C

N
‖�φ‖∞

∑
x∈A

E

[
(ηx

α − 2 j pα)2
]
.

where �N denotes the discrete Laplacian with spacing 1/N and A is the set defined
in (57). Therefore, arguing as in the proof of Lemma 3.6 and by taking the limits we
have

lim
δ→0

lim sup
N→∞

sup
τ∈TT , θ≤δ

E

[(∫ τ+θ

τ

N 2LY N ,s/N2

α (φ)ds

)2
]

≤ lim
δ→0

δC1 = 0.

Thus, BN vanishes as N → ∞. This concludes the proof of tightness of the sequence
(QN )N∈N. 
�

5 The Covariances of the Limiting Process

In this section, we compute the covariance of the limiting process, using duality. As
a corollary, this gives its covariances at the initial time t = 0, needed for the proof
of Theorem 2.4. By adapting the results of [25], the multi-species stirring process is
self-dual with duality function

D(η, ξ) =
∏
x∈Z

(
(2 j − ∑N

k=1 ξ xk )!
(2 j)!

N∏
k=1

ηx
k !

(ηx
k − ξ xk )!

)
. (70)

where we denote by (ξ t )t≥0 the dual process. The following proposition shows
that the covariances (24) and (25) of the limiting process can be computed via the
single-particle self-duality. Notice that because the limiting process is Gaussian, the
covariances uniquely determine the process.

Proposition 5.1 The covariances of the limiting process (Y t
1, . . . ,Y

t
n) are:

Cov
(
Y t

α(φ),Y 0
β (ψ)

)
= −(2 j)pα pβ〈Stφ,ψ〉L2(dx) α 
= β, (71)

Cov
(
Y t

α(φ),Y 0
α (ψ)

)
= (2 j)pα(1 − pα)〈Stφ,ψ〉L2(dx) α = β. (72)

Proof By the self-duality, the dual process initialized with one particle behaves as
an independent random walker (IRW) jumping at rate 2 j on Z. Thus, the following
computation holds for α 
= β:
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E

[
Y N ,t

α (φ),Y N ,0
β (ψ)

]
= 1

N

∑
x,y∈Z

φ
( x

N

)
ψ
( y

N

)
E

[
(ηx

α(t N 2) − 2 j pα)(η
y
β(0) − 2 j pβ)

]

= 1

N

∑
x,y∈Z

∫
�

νp(dη)Eη

[
(ηx

α(t N 2) − 2 j pα)
]
(η

y
β(0) − 2 j pβ)φ

( x

N

)
ψ
( y

N

)

= 1

N

∑
x,y∈Z

∫
�

νp(dη)(η
y
β(0) − 2 j pβ)

∑
z∈Z

pI RWtN2 (x, z)(ηzα(t N 2)

− 2 j pα)φ
( x

N

)
ψ
( y

N

)
= 1

N

∑
x,y,z∈Z

Cov(ηzα, η
y
β)pI RWtN2 (x, z)φ

( x

N

)
ψ
( y

N

)

= −(2 j)pα pβ

1

N

∑
x,y∈Z

pI RWtN2 (x, y)φ
( x

N

)
ψ
( y

N

)

where we denoted by pI RWt (·, ·) the transition kernel of the IRW jumping at rate 2 j .
By taking the limit on both sides and by the invariance principle, we have

lim
N→∞ E

[
Y N ,t

α (φ),Y N ,0
β (ψ)

]
= −(2 j)pα pβ〈Stφ,ψ〉L2(dx). (73)

For the case α = β, the proof is similar. 
�
By the following corollary, we find the covariances of the process at the initial time

t = 0.

Corollary 5.2 The covariance of the limiting process (Y 0
1 , . . . ,Y 0

n ) at time t = 0 is:

Cov
(
Y 0

α (φ),Y 0
β (ψ)

)
= −(2 j)pα pβ〈φ,ψ〉L2(dx) α 
= β (74)

Cov
(
Y 0

α (φ),Y 0
α (ψ)

)
= (2 j)pα(1 − pα)〈φ,ψ〉L2(dx) α = β. (75)

Proof The proof is straightforward from the properties of the semigroup (St )t≥0 and
by Proposition 5.1. 
�

6 Uniqueness and Continuity of the Limit Point

As shown in Sect. 4, the sequence of probability measures (QN )N∈N giving the law
of (Y N ,t )t∈[0,T ] is tight; then, the Prokhorov’s theorem [29] guarantees that every
sub-sequence (QNk )k∈N is convergent to a unique limit point that we denote by Q. It
remains to prove that, ∀α ∈ {1, . . . , n}, the limiting process (Y t

α)t≥0 has continuous
trajectory (Q-almost surely) and that Q solves the martingale problem introduced in
Theorem 2.4.
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The Q-a.s. continuity is proved in Proposition 6.1, while the solution of the mar-
tingale problem is proved in Proposition 6.2.

Proposition 6.1 For every T > 0, φ ∈ C∞
c and α ∈ {1, . . . , n}, the map [0, T ] � t �→

Y t
α(φ) is Q − a.s. continuous.

Proof We prove that the set of discontinuity points of Y t
α(φ) is negligible under Q.

We introduce the usual modulus of continuity for any fixed δ > 0:

ωδ(Yα(φ)) := sup
|t−s|<δ

|Y t
α(φ) − Y s

α(φ)| (76)

and the modified uniform modulus of continuity

ω
′
δ(Yα(φ)) := inf{ti }0≤i≤r

max
1≤i≤r

sup
ti−1≤s<t≤ti

|Y t
α(φ) − Y s

α(φ)| (77)

where the first infimum is taken over all partitions {ti , 0 ≤ i ≤ r} of the interval [0, T ]
such that

0 = t0 < t1 < . . . < tr = T with ti − ti−1 ≥ δ for all i = 1, . . . , r .

They are related (see [26] for details) by the inequality

ωδ(Yα(φ)) ≤ 2ω
′
δ(Yα(φ)) + sup

t
|Y t

α(φ) − Y t−
α (φ)|. (78)

Moreover, (see again [26]) it holds that for arbitrary ε > 0

lim
δ→0

lim sup
N→∞

QN

(
w

′
δ

(
Y N

α (φ)
)

≥ ε
)

= 0.

Furthermore, we have the upper bound

sup
t

|Y N ,t
α (φ) − Y N ,t−

α (φ)| ≤ 4 j ||φ||∞√
N

.

As a consequence of tightness, we have that for arbitrary ε > 0

lim
δ→0

Q (ωδ(Yα(φ)) ≥ ε) = lim
δ→0

lim sup
k→∞

QNk

(
ωδ(Y

Nk
α (φ)) ≥ ε

)
; (79)

therefore, by (78) we may write

lim
δ→0

Q (ωδ(Yα(φ)) ≥ ε) ≤ lim
δ→0

lim sup
k→∞

QNk

(
ω

′
δ(Y

Nk
α (φ)) ≥ ε

2

)

+ lim
δ→0

lim sup
k→∞

QNk

(
sup
t

|Y Nk ,t
α (φ) − Y Nk ,t−

α (φ)| ≥ ε

)
= 0.

(80)
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Thus, the almost sure continuity is proved. 
�
Proposition 6.2 For all φ ∈ C∞

c (R) and for all α, β ∈ {1, . . . , n}, the processes
(Mt

α,φ)t∈[0,T ] defined in (15) and (N t
α,β,φ)t∈[0,T ], (N t

α,α,φ)t∈[0,T ] defined in (18),

(19) are martingales with respect to the natural filtration Ft := σ
{
(Y s

1 , . . . ,Y s
n ) :

0 ≤ s ≤ t ≤ T }.
Proof The strategy of the proof is inspired by the proof of Proposition 2.3, Chapter 11
of [1] dealing with the mono-species zero-range process. The fundamental tools are
the Portemanteau theorem and Proposition 3.4. We further remark that the trajectories
of the process (Y N ,t

α )t∈[0,T ] are elements of the space D([0, T ],C∞
c (R)∗) that is not

metric; then, we cannot directly apply Portmanteau theorem. To overcome this issue,
we adapt the strategy used in Section 5 of [13]. The complete proof is reported for
the martingale (Mt

α,φ)t∈[0,T ] while, concerning the martingales (N t
α,β,φ)t∈[0,T ] and

(N t
α,α,φ)t∈[0,T ], we just give some estimates that allow to follow a similar strategy.

Moreover, only the case α 
= β is considered, since the case α = β is similar.
Proof for (Mt

α,φ)t∈[0,T ]: The process (Mt
α,φ)t∈[0,T ] defined in (15) isFt−measurable;

therefore, we only need to show that for arbitrary 0 ≤ s ≤ t ≤ T

EQ

[
Mt

α,φ |Fs

]
= Ms

α,φ (81)

The property (81) is equivalent to showing that

EQ

[
Mt

α,φI(Y )
]

= EQ

[
Ms

α,φI(Y )
]
. (82)

where the function I(Y ) is defined as follows. We fix m ∈ N, and we introduce the
vectors s = (s1, . . . , sm) with 0 ≤ s1 ≤ s2 ≤ . . . ,≤ sm ≤ s and H = (H1, . . . , Hm)

with H1, . . . , Hm ∈ (C∞
c )n . For arbitrary � ∈ Cb(R

m), we introduce the function
from (D

([0, T ], (C∞
c (R)

)∗)
)m to R

I
(
Y N ,·, H, s

)
:= �

(
Y N ,s1(H1), . . . , Y

N ,sm (Hm)
)

. (83)

For the sake of notation, we will denote this function with I(Y N ). Since (MN ,t
α,φ )t∈[0,T ]

defined in (32) is a martingale, it holds that

lim
k→∞ EQNk

[
MNk ,t

α,φ I(Y Nk )
]

= lim
k→∞ EQNk

[
MNk ,s

α,φ I(Y Nk )
]
; (84)

therefore, to conclude (82) it is enough to show that

lim
k→∞ EQNk

[
MNk ,t

α,φ I(Y Nk )
]

= EQ

[
Mt

α,φI(Y )
]
. (85)

For arbitrary φ ∈ C∞
c (R), we introduce

Mφ : D ([0, T ], (C∞
c (R

)∗) → D([0, T ], R)

Y ·
α → Mφ(Y ·

α) = Y ·
α(φ) − Y ·

α(φ) −
∫ ·

0
Yq

α (�φ)dq.
(86)
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Observe that for every t ∈ [0, T ]

Mφ(Y t
α) = Mt

α,φ; (87)

therefore, we need to show that

lim
k→∞ EQNk

[
MNk ,t

α,φ I(Y Nk )
]

= EQ
[
Mφ

(
Y t

α

)
I(Y )

]
. (88)

We prove this in two steps:

i)

lim
k→∞ EQNk

[
MNk ,t

α,φ I(Y Nk )
]

= lim
k→∞ EQNk

[
Mφ(Y Nk ,t

α )I(Y Nk )
]

(89)

ii)

lim
k→∞ EQNk

[
Mφ

(
Y Nk ,t

α

)
I(Y Nk )

]
= EQ

[
Mφ

(
Y t

α

)
I(Y )

]
. (90)

By Cauchy–Schwartz inequality, by the smoothness of � and by Proposition 3.4 we
obtain

lim
k→∞

∣∣∣EQNk

[
MNk ,t

α,φ − Mφ(Y Nk ,t
α )I(Y Nk )

]∣∣∣
≤ ‖�‖∞ lim

k→∞

(
EQNk

[(
MNk ,t

α,φ − Y Nk ,t
α (φ) + Y Nk ,0

α (φ)

+2 j
∫ t

0
Y
Nk ,q/N2

k
α (�φ)dq

)2
])1/2

= 0.

(91)

This implies (89); thus, the first step is proved. Furthermore, we have the following
upper bound

sup
k∈N

EQNk

[(
Mφ(Y Nk ,t

α )I(Y Nk )
)2] ≤ ‖�‖2∞ sup

k∈N

EQNk

[(
Mφ(Y Nk ,t

α )
)2]

< ∞
(92)

which implies that the family of martingales
(
Mφ(Y Nk ,t

α )I(Y Nk )
)
k∈N

is uniformly

integrable with respect to the law QNk . Then, to prove (90),
it is enough to show that Mφ(Y Nk ,t

α )I(Y Nk ) converges in distribution to
Mφ(Y t

α)I(Y ). To this aim, we define, for arbitrary test functions φ, H1, . . . , Hm ,

Pα
1 : D ([0, T ], (C∞

c (R)
)∗) → D ([0, T ], R)m+2

Y Nk ,· → Pα
1 (Y Nk ,·)

=
(
Y Nk ,·

α (φ),Y Nk ,·
α (�φ),Y Nk ,·(H1), . . . ,Y

Nk ,·(Hm)
)

(93)
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and

P2 : D ([0, T ], R)m+2 → R

Pα
1 (Y Nk ,·) → P2(P

α
1 (Y Nk ,·)) =

(
Mφ(Y Nk ,t

α )
)

�(Y Nk ,s1(H1) , . . . ,Y Nk ,sm (Hm))

(94)
in such a way that

Mφ(Y Nk ,t
α )I(Y Nk ) = P2 ◦ Pα

1 (Y Nk ,t
α ). (95)

Using Theorem 1.7 in [27], each component of P1 is continuous, and therefore,

Pα
1 (Y Nk ,t ) → Pα

1 (Y t ) as k → ∞

on the Skorokhod space D([0, T ], R)m+2. Since by Proposition 6.1 the limiting point
(Y t

α)t∈[0,T ] is a.s. continuous, the convergence holds also uniformly in time. Using the
continuity of �, we thus obtain

P2 ◦ Pα
1 (Y Nk ,t ) → P2 ◦ Pα

1 (Y t ) as k → ∞

uniformly in time. As a consequence, the set of discontinuity points of P2 under
QNk is a negligible set. By Portmanteau theorem, this implies thatMφ(Y Nk ,t

α )I(Y Nk )

converges in distribution to Mφ(Y t
α)I(Y ). Therefore, (90) is proved.

Proof for (N t
α,β,φ)t∈[0,T ] and (N t

α,α,φ)t∈[0,T ]: we have the following estimate using
Proposition 3.4

lim
k→∞ E

[(
N Nk ,t

α,β,φ −
(
Y
Nk ,t N2

k
α (φ) − Y Nk ,0

α (φ) − 2 j
∫ t

0
Y
Nk ,s/N2

k
α (�φ)ds

)
(
Y Nk ,t
β (φ) − Y Nk ,0

β (φ) − 2 j
∫ t

0
Y
Nk ,s/N2

k
β (�φ)ds

)

+2t(2 j)2 pα pβ

∫
R

(∇φ(u))2 du

)
I(Y Nk )

]

≤ ‖�‖∞ lim
k→∞ E

([(
N Nk ,t

α,β,φ −
(
Y
Nk ,t N2

k
α (φ) − Y Nk ,0

α (φ) − 2 j
∫ t

0
Y
Nk ,s/N2

k
α (�φ)ds

)
(
Y Nk ,t
β (φ) − Y Nk ,0

β (φ) − 2 j
∫ t

0
Y
Nk ,s/N2

k
β (�φ)ds

)

+2t(2 j)2 pα pβ

∫
R

(∇φ(u))2 du

)2
])1/2

= 0

(96)
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that implies the counterpart of (89). Moreover, we have the following upper bound

sup
k∈N

EQNk

[(
MNk ,t

α,φ MNk ,t
β,φ + 2t(2 j)2 pα pβ

∫
R

(∇φ(u))2 du

)2
]

≤ C sup
k∈N

{
EQNk

[(
Y Nk ,t

α (φ) − Y Nk ,0
α (φ) − 2 j

∫ t

0
Y
Nk ,q/N2

k
α (�φ)dq

)4
]

EQNk

[(
Y Nk ,t

β (φ) − Y Nk ,0
β (φ) − 2 j

∫ t

0
Y
Nk ,q/N2

k
β (�φ)dq

)4
]}

< ∞

(97)

where in the last inequality we used Proposition 3.4. This is the counterpart of (92)
and allows to show uniform integrability. The rest of the proof is similar. 
�

7 The Reaction–Diffusion Process

7.1 Description of the Process

In this section, we investigate a reaction–diffusion process. This process is a superpo-
sition of two dynamics: the multi-species stirring dynamics and a reaction dynamics
that, at constant rate γ > 0, changes each type to any of the another types. Therefore,
now only the total number of particles is conserved (this is different than in the pure
multi-species stirring, where the number of particles of each species is constant). We
will denote this process by (ζ t )t≥0. The state space is again � defined in (2), and the
generator reads

Lrd = L + Lr (98)

where L is the generator defined in (4), while for any local function f : � → R

Lr f (ζ ) = γ
∑
x∈Z

n∑
k,l=1

ζ x
k

[
f (ζ − δxk + δxl ) − f (ζ )

]
. (99)

This process admits a family of reversible measures that are characterized in Lemma
7.1.

Lemma 7.1 The reversible product measures of the generator Lrd are

� p̂ =
⊗
x∈Z

MN(2 j; p̂) (100)

whereMN(2 j; p) denotes the multinomial distribution with 2 j independent trials and
success probabilities p̂ = ( p̂0, p̂1 . . . , p̂1) with p̂0 + p̂1n = 1.

Proof For an arbitrary site x ∈ Z and for arbitrary α, β ∈ {1, . . . , n} such that α 
= β

we write the detailed balance condition between configurations ζ and ζ + δxβ − δxα
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with respect to the measure � p̂ defined in (100) and we obtain

ζ x
α

ζ x
α !ζ x

β ! = ζ x
β + 1

(ζ x
α − 1)!(ζ x

β + 1)!
p̂β

p̂α

(101)

that is true if and only if
p̂α = p̂β = p̂1. (102)


�

7.2 The Hydrodynamic Limit

Before proving the equilibrium fluctuation limit, we state the hydrodynamic result.
For N ∈ N, we consider the process (ζ t )t≥0 with generator (98) with γ = ϒ

N2 . For
arbitrary φ ∈ C∞

c (R), we introduce the density field

X N ,t
α (φ) := 1

N

∑
x∈Z

ζ x
α (t N 2)φ

( x

N

)
∀α ∈ {1, . . . , n}. (103)

Theorem 7.2 Let ρ̂(α) : R → [0, 2 j], with α ∈ {1, . . . , n}, be an initial macroscopic
profile and let (μN )N∈N be a sequence of compatible initial measures. Let PN be

the law of the process
(
X N ,t
1 (φ), . . . ,X N ,t

n (φ)
)
induced by (μN )N∈N. Then, ∀T >

0, δ > 0, ∀α ∈ {1, . . . , n} and ∀φ ∈ C∞
c (R)

lim
N→∞ PN

(
sup

t∈[0,T ]

∣∣∣∣X N ,t
α (φ) −

∫
R

φ(u)ρ(α)(u, t)du

∣∣∣∣ > δ

)
= 0 (104)

where ρ(α)(x, t) is a strong solution of the PDE

⎧⎪⎪⎨
⎪⎪⎩

∂tρ
(α)(x, t) = (2 j)�ρ(α)(x, t)

+ϒ
(∑n

β=1 :β 
=α ρ(β)(x, t) − ρ(α)(x, t)
)

x ∈ R, t ∈ [0, T ]
ρ(α)(x, 0) = ρ̂(α)(x)

(105)

where ϒ ∈ (0,∞).

Proof The proof is reported in Appendix A since the steps are a slight modification
of the proof done in [18]. As usual for reaction–diffusion systems [2], the diffusive
scaling has to be complemented with a weak mutation scaling γ = ϒ

N2 . 
�

7.3 The Density Fluctuation

We consider the process (ζ t )t≥0, with γ = ϒ
N2 , initialized from the reversible measure

� p̂ defined in (100). The density fluctuation field for a species α ∈ {1, . . . , n} is an
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element of the space
(
C∞
c (R)

)∗ defined, for any test function φ ∈ C∞
c (R), as

YN ,t
α (φ) := 1√

N

∑
x∈Z

φ
( x

N

) (
ζ x
α (t N 2) − (2 j) p̂1

)
(106)

where (2 j) p̂1 = E� p̂1

[
ζ x
α

]
. We call πN the law of the random process

(
YN ,t

)
t≥0 =((

YN ,t
1 , . . . ,YN ,t

n

))
t≥0

and EπN the expectation with respect to this law. The density

fluctuation field (106) satisfies the convergence result stated in the following theorem.

Theorem 7.3 There exists a unique
(
Y t
)
t∈[0,T ] = (

(Y t
1, . . . ,Y t

n)
)
t∈[0,T ] on the space

C
([0, T ]; (C∞

c (R)
)∗
n

)
with law π such that

πN → π weakly for N → ∞. (107)

Moreover,
(
Y t
)
t∈[0,T ] is a generalized stationaryOrnstein–Uhlenbeck process solving,

for every α ∈ {1, . . . , n}, the following martingale problem:

Mt
α,φ := Y t

α(φ)−Y0
α(φ)−(2 j)

∫ t

0
Ys

α(�φ)ds−ϒ

∫ t

0

⎛
⎝ n∑

β=1 :β 
=α

Ys
β(φ) − Ys

α(φ)

⎞
⎠ ds

(108)
is a martingale ∀φ ∈ C∞

c (R) with respect to the natural filtration of (Y t
1, . . . ,Y t

n)

with quadratic covariation

[
Mα,φ, Mβ,φ

]
t = −2t(2 j)2 p̂21

∫
R

(∇φ(u))2 du − 2 p̂1t(2 j)ϒ
∫

R

(φ(u))2du (109)

and quadratic variation

[
Mα,φ

]
t = 2t(2 j)2 p̂1(1 − p̂1)

∫
R

(∇φ(u))2 du + n p̂1t(2 j)ϒ
∫

R

(φ(u))2du. (110)

Therefore, the limiting process of Theorem 7.3

(Y t )t∈[0,T ] = (
(Y t

1, . . . ,Y t
n)
)
t∈[0,T ] (111)

can be formally written as the solution of the distribution-valued SPDE

dY t = AY t dt + 2 j
√
2�∇dWt + √

(2 j)ϒ
√
BdW (112)

where

(Wt )t∈[0,T ] = (
(Wt

1, . . . ,W
t
n)
)
t∈[0,T ] (113)

(W t )t∈[0,T ] = (
(W t

1, . . . ,W t
n)
)
t∈[0,T ] (114)
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are two n-dimensional vectors of independent space–time white noises. The matrices
read

A =

⎛
⎜⎜⎜⎝

(2 j)� − ϒ ϒ . . . ϒ

ϒ (2 j)� − ϒ . . . ϒ
...

...
. . .

...

ϒ ϒ . . . (2 j)� − ϒ

⎞
⎟⎟⎟⎠ (115)

� =

⎛
⎜⎜⎜⎝
p̂1(1 − p̂1) − p̂21 . . . − p̂21− p̂21 p̂1(1 − p̂1) . . . − p̂21

...
...

. . .
...

− p̂21 − p̂21 . . . p̂1(1 − p̂1)

⎞
⎟⎟⎟⎠ B =

⎛
⎜⎜⎜⎝

n p̂1 −2 p̂1 . . . −2 p̂1
−2 p̂1 n p̂1 . . . −2 p̂1

...
...

. . .
...

−2 p̂1 −2 p̂1 . . . n p̂1

⎞
⎟⎟⎟⎠ .

(116)

Proof of Theorem 7.3: The strategy is similar to the one used for Theorem 2.4. There-
fore, we only report the computation of the quadratic covariation (via the Carré Du
Champ operator denoted by �

φ,t
α,β ) of the Dynkin martingale associated with (ζ t )t≥0

�
φ,t
α,β = (

L + Lr ) (YN ,t
α (φ)YN ,t

β (φ)) − YN ,t
α (φ)

(
L + Lr ) (YN ,t

β (φ))

− YN ,t
β (φ)

(
L + Lr ) (YN ,t

α (φ))

= L(YN ,t
α (φ)YN ,t

β (φ)) − YN ,t
α (φ)L(YN ,t

β (φ)) − YN ,t
β (φ)L(YN ,t

α (φ))

+ Lr (YN ,t
α (φ)YN ,t

β (φ)) − YN ,t
α (φ)Lr (YN ,t

β (φ)) − YN ,t
β (φ)Lr (YN ,t

α (φ))

(117)
introducing

�
φ,t,reaction
α,β := Lr (YN ,t

α (φ)YN ,t
β (φ))−YN ,t

α (φ)Lr (YN ,t
β (φ))−YN ,t

β (φ)Lr (YN ,t
α (φ))

(118)
and recalling the definition of �

φ,t
α,β written in (35) we have that the Carré Du Champ

operator �
φ,t
α,β is the sum of the two Carré Du Champ associated with the generators

L and Lr , respectively, i.e.,

�
φ
α,β = �

φ,t
α,β + �

φ,t,reaction
α,β . (119)

Therefore, to perform the proofweonly need to compute�
φ,t,reaction
α,β . In the following,

by using the notation �
φ,reaction
α,β , we do not write the explicit dependence on time of

�
φ,t,reaction
α,β . We consider the case α 
= β (the case α = β is similar), and we compute

explicitly

N 2�
φ,reaction
α,β = ϒ

N 3

∑
x∈Z

n∑
k,l=1

ηx
k

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ηy

α − δxk + δxl ) − ηy
α

)⎤⎦
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⎡
⎣∑

z∈Z

φ
( z

N

) (
(ηzβ − δzk + δzl ) − ηzβ

)⎤⎦
= −ϒ

N

∑
x∈Z

(
ηx

α + ηx
β

)
φ2

( x

N

)
.

As a consequence, the limit of the first and second moment is given by

lim
N→∞ EπN

[
N 2�

φ,reaction
α,β

]
= −2p(2 j)

∫
R

(φ(u))2du (120)

and

lim
N→∞VarπN

(
N 2�

φ,reaction
α,β

)
= 4p2(2 j)2

(∫
R

(φ(u))2du

)2

(121)


�

8 Conclusions and Perspectives

In this paper, we considered amulti-species stirring process.We studied the fluctuation
of the density field around the hydrodynamic limit when the process is started from
equilibrium reversible measure. The main result (Theorem 2.4) shows that the limit of
the empirical fluctuation field behaves as a infinite-dimensional Ornstein–Uhlenbeck
process (see equation (21)). The interesting feature is that the space–time white noise
terms of different species are coupled, even though in the hydrodynamic equations
they are not. Moreover, we extended this result to a reaction–diffusion process. In this
last case, the SPDEs are coupled also because of a further space–time white noise
term, due to the reactions (change of species).

A future development will be the study of large deviations around the hydrody-
namic limit and of the fluctuations starting from a non-equilibrium initial measure.
Moreover, it would be interesting to investigate fluctuations and hydrodynamic limit
of the asymmetric multi-species stirring process. An other active field of study is the
one concerning the extension of hydrodynamic results to non-Euclidean geometry,
to random environments and to a segment with various type of boundary conditions.
Some examples in the single-species case are [13, 30–32]. In this paper, we studied
the first order fields; however, one more further development could be to push forward
the analysis for higher-order fields, similar to what have been done in [33, 34].

A Proof of the Hydrodynamic Limits

Proof of Theorem 2.3: The proof is based on the martingale techniques proposed in [1,
2, 35]. The aim is to show that the sequence of measure (PN )N∈N is tight and the limit
point has a density that is the solution of the PDE (11). We start by considering the
Dynkin’smartingale associatedwith the process (η(t))t≥0 defined, for anyφ ∈ C∞

c (R)
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and ∀α ∈ {1, . . . , n}, as

mN ,t
α,φ := XN ,t

α (φ) − XN ,0
α (φ) −

∫ t

0
N 2LXN ,s/N2

α (φ) ds. (122)

The action of the generator (4) on the density field (8) is

LXN ,·
α (φ) = 1

N

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ηy

α − δxk + δxl + δx+1
k − δx+1

l ) − ηy
α

)⎤⎦
= 1

N

∑
x∈Z

{
ηx

α(2 j − ηx+1
α )

[
φ

(
x + 1

N

)
− φ

( x

N

)]

+ηx+1
α (2 j − ηx

α)

[
φ
( x

N

)
− φ

(
x + 1

N

)]}

= 2 j

N

∑
x∈Z

ηx
α

[
φ

(
x − 1

N

)
+ φ

(
x + 1

N

)
− 2φ

( x

N

)]
.

By the Taylor’s series with Lagrange remainder computed in (52), we obtain

N 2LXN ,·
α (φ) = (2 j)

N

∑
x∈Z

(ηx
α − 2 j pα)�φ(

x

N
) + R0(φ, α, ·)

where

R0(φ, α, ·) = (2 j)

N

∑
x∈Z

ηx
α

[
1

6

1

N

[
φ(3)(

x + θ+

N
) − φ(3)(

x − θ−

N
)

]]
. (123)

with θ+, θ− ∈ (0, 1) and where φ(3) denotes the third derivative of φ. Observing that
φ ∈ C∞

c (R) and ηx
α ≤ 2 j , then R0(φ, α, ·) is infinitesimal when N → ∞. Therefore,

N 2LXN ,·
α (φ) = (2 j)

N

∑
x∈Z

ηx
α�φ(

x

N
) + o

(
1

N

)
. (124)

Replacing (124) in (122), we obtain

mN ,t
α,φ(X) + o

(
1

N

)
= XN ,t

α (φ) − XN ,0
α (φ) − (2 j)

∫ t

0
XN ,s/N2

α (�φ) ds (125)

where on the right-hand side we recognize the discrete counterpart of the weak for-
mulation of the heat equation with constant diffusivity 2 j for the species α. We shall
prove that

lim
N→∞ PN

(
sup

t∈[0,T ]

∣∣∣∣XN ,t
α (φ) − XN ,0

α (φ) − (2 j)
∫ t

0
XN ,s/N2

α (�φ) ds

∣∣∣∣ > δ

)
= 0.

(126)
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We find an upper bound by Chebyshev’s and Doob’s inequalities

PN

(
sup

t∈[0,T ]

∣∣∣∣XN ,t
α (φ) − XN ,0

α (φ) − (2 j)
∫ t

0
XN ,s/N2

α (�φ) ds

∣∣∣∣ > δ

)

≤ 1

δ2
EμN

[
sup
[0,T ]

∣∣∣mN ,t
α,φ

∣∣∣2
]

≤ 4

δ2
EμN

[∣∣∣mN ,T
α,φ

∣∣∣2] .

(127)

Moreover, by Doob’s decomposition

EμN

[∣∣∣mN ,T
α,φ

∣∣∣2] = EμN

[∫ T

0
N 2�φ,s/N2

α,α ds

]
(128)

where �
φ,s
α,α denotes the operator (35) but with the generator L acting on the density

field (8). Here, for the sake of notation, we do not write the time dependence. We then
obtain

�φ
α,α = 1

N 2

∑
x∈Z

n∑
k,l=0

ηx
k η

x+1
l

⎡
⎣∑

y∈Z

φ(
y

N
)
(
(ηy

α − δxk + δxl + δx+1
k − δx+1

l ) − ηy
α

)⎤⎦
2

= 1

N 2

∑
x∈Z

ηx
α

n∑
l=0 : l 
=α

ηx+1
l

[
φ(

x + 1

N
) − φ(

x

N
)

]2

+ 1

N 2

∑
x∈Z

n∑
k=0 : k 
=α

ηx
k η

x+1
α

[
−φ(

x + 1

N
) + φ(

x

N
)

]2

= 1

N 2

∑
x∈Z

⎛
⎝ηx

α

n∑
l=0 : l 
=α

ηx+1
l + ηx+1

α

n∑
k=0 : k 
=α

ηx
k

⎞
⎠[

φ(
x + 1

N
) − φ(

x

N
)

]2
;

by Taylor’s series with Lagrange remainder, we obtain

N 2�φ
α,α = 1

N 2

∑
x∈Z

⎛
⎝ηx

α

n∑
l=0 : l 
=α

ηx+1
l + ηx+1

α

n∑
k=0 : k 
=α

ηx
k

⎞
⎠ (∇φ(

x

N
))2 + o

(
1

N 2

)
.

(129)
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Using (128), (129), the boundness |ηx
α| ≤ n2 j ∀x ∈ Z and ∀α ∈ {1, . . . , N } and the

fact that ∇φ is smooth and has compact support we obtain

EμN

[∣∣∣mN ,T
α,φ

∣∣∣2] ≤ N
C

N 2 sup
x∈Z, t∈[0,T ]

EμN

⎡
⎣
⎛
⎝ηx

α

n∑
l=0 : l 
=α

ηx+1
l + ηx+1

α

n∑
k=0 : k 
=α

ηx
k

⎞
⎠
⎤
⎦

+ o

(
1

N 2

)

≤ C

N
+ o

(
1

N 2

)
.

(130)
Taking the limit and using (127) and (130)

lim
N→∞ PN

(
sup

t∈[0,T ]

∣∣∣∣XN ,t
α (φ) − XN ,0

α (φ) − (2 j)
∫ t

0
XN ,s

α (�φ) ds

∣∣∣∣ > δ

)

≤ lim
N→∞

C

N
= 0. (131)

With the above convergence and by standard computations, we can prove that the
sequence of measure (PN )N∈N defined in Theorem 2.3 is tight and that all limit points
do coincide with ρ(α)(t, x)dx with ρ(α)(t, x) is the unique solution of

{
∂tρ

(α)(t, x) = (2 j)�ρ(α)(t, x)

ρ(α)(0, x) = ρ̂(α)(x)
(132)

provided that ρ̂(α)(x) is compatible with the initial sequence of measures (μN )N∈N

in the sense of Definition 2.2. Finally, existence and uniqueness of a strong solution
of the above system of equations are standard. 
�

Proof of Theorem 7.2: the generator of the process is given by (98), i.e., it is given by
the sum of L defined in (4) and Lr defined in (99). Therefore, here we only need to
perform the computations for the second one. We diffusively scale the switching rate
γ = ϒ

N2 ; then, the generator reads

Lr f (ζ ) = ϒ

N 2

∑
x∈Z

n∑
k,l=1

ζ x
k

[
f (ζ − δxk + δxl ) − f (ζ )

]
(133)

where ϒ ∈ (0,+∞)
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We compute the action of this generator on the density field (103)

LrX N ,·
α (φ) = ϒ

N 3

∑
x∈�d

n∑
k,l=1

ζ x
k

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ζ y

α − δxk + δxl ) − ζ y
α

)⎤⎦

= ϒ

N 3

∑
x∈Z

⎛
⎝ n∑

k=1 : k 
=α

ζ x
k − ζ x

α

⎞
⎠φ

( x

N

)

= ϒ

N 2

⎛
⎝ n∑

k=1 : k 
=α

X N ,·
k (φ) − X N ,·

α (φ)

⎞
⎠ .

(134)

Then,

∫ t

0
N 2LrX N ,s/N2

α (φ)ds =
∫ t

0
ϒ

⎛
⎝ n∑

k=1 : k 
=α

X N ,s/N2

k (φ) − X N ,s/N2

α (φ)

⎞
⎠ ds.

(135)
Arguing as in the proof of Theorem 2.3, we need to bound the quadratic variation. We
explicitly compute

L(X N ,t
α (φ)X N ,t

β (φ)) − X N ,t
α (φ)L(X N ,t

β (φ)) − X N ,t
β (φ)L(X N ,t

α (φ))

= ϒ

N 2

∑
x∈Z

n∑
k,l=1

ζ x
k

⎡
⎣∑

y∈Z

φ
( y

N

) (
(ζ y

α − δxk + δxl ) − ζ y
α

)⎤⎦
2

= ϒ

N 2

∑
x∈Z

n∑
k=1

ζ x
k φ2

( x

N

)

≤ C

N 2 N .

(136)

Arguing as in the proof of Theorem 2.3, we can show that

lim
N→∞ PN

(
sup

t∈[0,T ]

∣∣∣∣X N ,t
α (φ) − X N ,0

α (φ) − (2 j)
∫ t

0
X N ,s/N2

α (�φ) ds

+
∫ t

0
ϒ

⎛
⎝ n∑

k=1 : k 
=α

X N ,s/N2

k (φ) − X N ,s/N2

α (φ)

⎞
⎠ ds

∣∣∣∣∣∣ > δ

⎞
⎠ = 0.

(137)

The proof of tightness for the sequence of measure (PN )N∈N defined in Theorem
(7.2) and the uniqueness of the limit point are standard and analogous to the ones of
Theorem 2.3. 
�
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