

Delft University of Technology

Lasagne
a static binary translator for weak memory model architectures
Rocha, Rodrigo C.O.; Sprokholt, Dennis; Fink, Martin; Gouicem, Redha; Spink, Tom; Chakraborty, Soham;
Bhatotia, Pramod
DOI
10.1145/3519939.3523719
Publication date
2022
Document Version
Final published version
Published in
PLDI 2022 - Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation

Citation (APA)
Rocha, R. C. O., Sprokholt, D., Fink, M., Gouicem, R., Spink, T., Chakraborty, S., & Bhatotia, P. (2022).
Lasagne: a static binary translator for weak memory model architectures. In R. Jhala, & I. Dillig (Eds.), PLDI
2022 - Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (pp. 888-902). (Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI)). ACM.
https://doi.org/10.1145/3519939.3523719
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3519939.3523719

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Lasagne: A Static Binary Translator for
WeakMemoryModel Architectures

Rodrigo C. O. Rocha∗

University of Edinburgh
United Kingdom

Dennis Sprokholt∗

TU Delft
Netherlands

Martin Fink
TUMunich
Germany

Redha Gouicem
TUMunich
Germany

Tom Spink
University of St Andrews

United Kingdom

Soham Chakraborty
TU Delft

Netherlands

Pramod Bhatotia
TUMunich
Germany

Abstract

The emergence of new architectures create a recurring chal-
lenge to ensure that existing programs still work on them.
Manually porting legacy code is often impractical. Static bi-
nary translation (SBT) is a process where a program’s binary
is automatically translated from one architecture to another,
while preserving their original semantics. However, these
SBT tools have limited support to various advanced archi-
tectural features. Importantly, they are currently unable to
translate concurrent binaries. The main challenge arises from
the mismatches of thememory consistency model specified by
the different architectures, especially when porting existing
binaries to a weak memory model architecture.
In this paper, we propose Lasagne, an end-to-end static

binary translator with precise translation rules between x86
and Arm concurrency semantics. First, we propose a con-
currency model for Lasagne’s intermediate representation
(IR) and formally proved mappings between the IR and the
two architectures. The memory ordering is preserved by in-
troducing fences in the translated code. Finally, we propose
optimizations focused on raising the level of abstraction of
memory address calculations and reducing the number of
fences. Our evaluation shows that Lasagne reduces the num-
ber of fences by up to about 65%, with an average reduction
of 45.5%, significantly reducing their runtime overhead.

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523719

CCS Concepts: · Software and its engineering → Com-

pilers; · Theory of computation→ Formal languages and

automata theory.

Keywords: Binary Translation, MemoryModel, Compiler

ACMReference Format:

RodrigoC.O. Rocha,Dennis Sprokholt,Martin Fink, RedhaGouicem,

TomSpink,SohamChakraborty, andPramodBhatotia. 2022.Lasagne:

A Static Binary Translator forWeakMemoryModel Architectures.

In Proceedings of the 43rd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’22), June

13ś17, 2022, San Diego, CA, USA.ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3519939.3523719

1 Introduction

The landscape of hardware is shifting with the evolution of
new computer architectures. Recently, processors based on
the Arm and RISC-V instruction set architectures (ISAs) are
emerging in consumer devices to servers running in data cen-
ters, disrupting the dominance that x86 once had [65]. There
are many benefits to using these modern architectures, in-
cluding increased performance, better power efficiency [23],
and better license stability.

However, amajor challenge is ensuring that existing legacy
applications can still continue to work on these new archi-
tectures. They provide different architectural features and
memory consistency models. Porting an application can be
as easy as recompiling for the new architecture, but older
applications may not have the source-code available, or they
may contain hard-coded architectural intrinsics that make a
source-code based recompilation approach non-viable [8].
Static Binary Translation (SBT) is a process for automat-

ically rewriting, ahead-of-time, the machine code from the
original architecture to a target architecture. Because SBT
works on themachine code itself, access to the original source-
code is not required. Crucially, the translation must preserve
the semantics of the original binary, as specified by the orig-
inal architecture, whilst also optimizing the target binary in

888

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3519939.3523719
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523719&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

a discernible way. Although SBT tools have gained popular-
ity [24, 25, 74, 75], their support of several advanced archi-
tectural features is often limited. For example, Microsoft’s
binary lifting prototype, calledmctoll, was unable to lift the
programs used in our evaluation.
Furthermore, these SBT tools are also unable to translate

concurrentbinaries [9, 12, 73].This is due to themismatchesof
theweak memory consistency model in different architectures,
which governs the valid orderings of memory accesses. To
address this problem, the translation tools must reason about
the consistency models for correct and efficient translation.
In this paper, we address the challenge of developing effi-

cient translation between x86 and Arm concurrency seman-
tics through LLVM’s intermediate representation (IR). The
x86 and Arm architectures have differentmemory ordering

semantics, which results in differentmemory ordering rules.
Therefore, we need a concurrency model for the LLVM prim-
itives that enables precisemapping schemes between LLVM
and these architectures, while also allowing for code trans-
formations. We note that none of the existing concurrency
models [17, 18, 29, 32, 51] suffice to satisfy all these require-
ments. Hence, to bridge this gap, we propose LIMM (LLVM
IR ConcurrencyMemoryModel).We use this model to design
precisemapping schemes and prove their correctness.
We implement our approach in Lasagne, an end-to-end

static binary translator. We extensively evaluate the effective-
ness of Lasagne using the Phoenix multi-threaded bench-
mark suite [56]. Our evaluation shows that Lasagne reduces
the number of fences by up to 65%, with an average reduction
of 45.5%; thus, significantly minimizing the fence overheads.
Overall, our paper makes the following key contributions1:
• Static binary lifting (§ 4): First, we build a Binary Lift-
ing tool capable of lifting concurrent binaries to the LLVM
IR, while supporting several challenging architectural fea-
tures. Our contributions have beenmerged intoMicrosoft’s
mctoll2, as these functionalities are not fully supported by
existing binary lifting tools.

• IR refinement (§ 5): Secondly, once the binary is lifted
to the LLVM IR, we propose IR refinements to enable sub-
sequent optimizations. Our IR refinement strategies are
based on peephole optimizations and pointer parameter
promotion. The IR refinementnot only enables the standard
LLVM optimizations for the target architecture, but it also
aids in a significant reduction in the number of fences.

• LLVM IR concurrencymemorymodel (§ 6ś 8): Lastly,
we propose the LLVM IR’s concurrency model, named
LIMM (§ 6). Based on LIMM, we design formally verified
precisemapping schemes and also prove the correctness of
the safe transformations in Agda (§ 7).We implement these
mappings and optimizations in Lasagne (§ 8).

1Artifact: https://doi.org/10.5281/zenodo.6408463
2Microsoft’smctoll: https://github.com/microsoft/llvm-mctoll

𝑋 =𝑌 =0

𝑋 =1;

𝑎=𝑌 ;

𝑌 =1;

𝑏=𝑋 ;

(SB)

𝑋 =𝑌 =0;

𝑋 =1;

𝑌 =1;

𝑎=𝑌 ;

𝑏=𝑋 ;

(MP)

Figure 1. Non-SC outcome 𝑎 = 𝑏 = 0 of SB program is
allowed in x86 and Arm. Outcome 𝑎 = 1, 𝑏 = 0 of MP
program is disallowed in x86 but allowed in Arm.

2 Background andMotivation

2.1 Concurrency in Architectures

A prevalent programming paradigm in modern multi-core ar-
chitectures is sharedmemory concurrency,where concurrently
running threads communicate through shared memory ac-
cesses.Thesearchitecturesprovide the followingconcurrency
primitives: (1) load (ld) that reads frommemory, (2) store (st)
that writes to memory, (3) atomic read-modify-write (RMW),
and (4) fence operations to order memory accesses.

Weak Memory Concurrency in Architectures. Concur-
rent programs are usually understood by execution interleav-
ing, where shared memory accesses in each thread execute
in program order, and threads interleave arbitrarily. This exe-
cution model results in sequential consistency (SC) [33]. How-
ever, many architectures exhibit additional program behav-
iors which cannot be explained by interleaving alone, mainly
due to out-of-order execution. These additional non-SC be-
haviors are known asweak memory behaviors.
SB shows an example comparing SC and weak memory.

While both architectures exhibit certain common weak mem-
ory behaviors, their weak consistency models vary signifi-
cantly. For instance, in x86, shared read-read and write-write
memory access pairs are ordered,which is not the case inArm.
As a result, a programmay exhibit different behaviors on dif-
ferent architectures. For example, the outcome 𝑎=1,𝑏=0 of
theMP program in Figure 1 is disallowed in x86 but allowed in
Arm. These subtle differences affect the correct translations
between architectures, and hence the architectures’ concur-
rency models require careful analysis.

x86. x86 provides mov instructions to perform ‘load from’
(ld) and ‘store to’ (st) operations. x86 also has a number of
operations for RMW accesses. For instance, lock cmpxchg per-
forms atomic compare-and-exchange operation on amemory
location. Finally, x86 provides the MFENCE instruction that
prevents memory accesses from being reordered across it.

Arm.Arm provides regular load (ld) and store (st) accesses,
and load-linked (ll) and store-conditional (sc) pairs to con-
struct RMW i.e. RMW ≜ ℓ : ll;cmp;bc ℓ ′;sc;bc ℓ ;ℓ ′ : where cmp

and bc are compare and jump instructions [32, 51]. Arm pro-
vides multiple fences such as DMBFF (full fence), DMBLD that
prevent load-load and load-store pairs from being reordered,
and DMBST that only orders store-store pairs. Arm also has
release and acquire accesses, which act as half fences. We
handle these accesses in details in Appendix A.

889

https://doi.org/10.5281/zenodo.6408463
https://github.com/microsoft/llvm-mctoll

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝑋 =1;

𝑌 =1;

𝑎=𝑌 ;

𝑏=𝑋 ;

(a) x86

mctoll
−−−−→

𝑋na=1;

𝑌na=1;

𝑎=𝑌na;

𝑏=𝑋na;

(b) Unoptimized LLVM IR

opt
−−→

𝑌na=1;

𝑋na=1;

𝑎=𝑌na;

𝑏=𝑋na;

(c)Optimized LLVM IR

codegen
−−−−−−→

𝑌 =1;

𝑋 =1;

𝑎=𝑌 ;

𝑏=𝑋 ;

(d)Arm

Figure 2. Example of incorrect x86 to Arm translation bymctoll + LLVM. Suffix na denotes the non-atomic accesses in LLVM
IR. Outcome 𝑎=1,𝑏=0 is disallowed in x86 program but allowed in the generated Arm program.

2.2 Binary Lifting

Our approach is based on static binary translation. Similar to
modern compilers, the architecture of modern static binary
translators also have a 3-phases structure. In both cases, their
first phase (the compiler frontend and binary lifter) translate
the input program to an intermediate representation (IR), e.g.,
LLVM IR. This IR code is then optimized and finally compiled
down to its final binary format for a given architecture. There
are two key benefits to this approach: First, the lifted code
can be re-targeted to multiple architectures. Second, existing
optimizations directly used on the lifted code.
The two fundamental principles of compilation [70] also

apply to binary translation. First, binary translationmust pre-
serve the semantics of the input program, and second, the
output programmust beoptimized in adiscernibleway. In this
paper, we address both principles for concurrent programs.

State-of-the-Art Binary Lifters. Lifting the source binary
requires thebinary translator to correctlymap target to source
instructions, discover global values, and reconstruct the con-
trol flow graph. Several state-of-the-art binary lifters target
an intermediate representation, e.g. LLVM IR, to ease this
process [9, 12, 14, 19, 26, 67, 68, 73, 75?]. Binary translators
can operate statically or dynamically. The former allowsmore
aggressive optimizations at the cost of being unable to handle
dynamic jumps known at run time only. The latter handles
those jumps but usually lifts at the basic block granularity,
hindering optimization capabilities.

Limitations. Lifting full programs is a challenging and labo-
rious task. Most existing tools are incapable of lifting the pro-
grams we use in our evaluation because they lack support for
floating-point operations, SSE-based packed instructions as
well as integer-based ones. The main difficulty in supporting
these operations stems from the lack of abstract information
in the source binary regarding types, control flow or function
calls. Additionally, these lifting tools primarily target sequen-
tial programs and do not handle concurrency, i.e., they ignore
the differences in memory consistency models altogether.

2.3 Motivation: Translation for Concurrent Binaries

It is well-known that any transformation (mapping or opti-
mization) written for sequential programs may not always
be correct for concurrent programs [16, 47, 62, 71]. We note
that the state-of-the-art SBT tools are written for sequential
programs [9, 12, 14, 67, 73].Hence, using themto translate con-
current programs may lead to erroneous program behavior.

As a concrete example, consider the translation in Figure 2.
mctoll [73] lifts the x86 program in Figure 2a to the LLVM

IR in Figure 2b, where it translates the shared variable ac-
cesses in x86 to non-atomic accesses. Next, LLVM reorders
the shared memory non-atomic accesses (na) and generates
the optimized IR in Figure 2c. Finally, LLVM generates the
Armprogram inFigure 2d thatmayexhibit programoutcomes
that were originally not allowed in x86.

The error results from the lack of reasoning about concur-
rency at the IR level. To do so, the IR needs a concurrency
model. Thus, the combination ofmctoll and LLVM raises a
question:What is the concurrency model of the IR?

Anaive answerwould be to insert full fences before or after
all memory accesses to preserve correctness. However, full
fences are costly in terms of performance and restrict a num-
ber of optimizations. To perform correct and efficient transla-
tion of concurrent programs, we require a concurrencymodel
for the IR which fulfills the following desired properties:
• Precise mapping schemes. The IR concurrency model
must facilitate precise mapping schemes from source to the
IR as well as from IR to the target.

• Optimized. The IR should allow common transformations
including shared memory access reordering, elimination
and redundant fence elimination. The correctness of these
transformations ensures that a compiler can safely apply
the respective compiler optimizations on the IR.

3 Overview

Our approach targets statically translating an existing binary
from a strong to weak memory model architecture. Figure 3
shows the overallworkflowofLasagne, our end-to-end static
binary translator between x86 and Arm. The x86 architecture
employs a strong Total Store Ordering (TSO) model whilst
Arm implements a weaker memory model [4, 5, 54].

The key aspect in supporting strong-to-weak binary trans-
lation is the strategic placement ofmemory fences to correctly
emulate the ordering behavior of the source architecture. Our
overarching goal is to support correct and optimized place-
ment of fences, so that we emulate the source architecture
faithfully, without introducing run-time overheads.

#1: Binary Lifting. First we lift x86 binaries into LLVM bit-
code. This is achieved by progressively raising the level of
abstraction of themachine code, throughmultiple passes over
the code andwith thehelp of different IRs. Themain challenge
in binary lifting comes from having to reconstruct, from the
machine, higher-level abstractions that have been lost in the
compilation process. While lifting the binary to LLVM IR, it
is important to identify these abstractions in order to enable

890

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

IR (§8) LLVM

Optimizations

IR (§8) LLVM

Backend
ARMx86

(§4) Binary

Lifting

IR (§5) IR

Refinement

IR (§8) Optimized

Fence Placement

(§6) LIMM: LLVM IR

Memory Model
(§7) Verified Mappings

and Transformations

Heavily modified
Novel contribution

Figure 3. Lasagne overview.

more aggressive optimizations by the following stages. We
address these challenges in Section 4.

#2: IR Refinement. Once the binary is lifted to the LLVM
IR, we perform some refinements to the code to better enable
the upcoming optimizations. In this paper, we are focused on
exposing pointer types throughout the lifted code, instead of
handling integer-based rawmemory addresses. Our approach
is two-fold: First, we propose some peephole optimizations
that reconstruct this information within functions; Second,
we propose pointer parameter promotion, which replaces in-
teger parameters that are used as rawmemory addresseswith
an appropriate pointer type. We discuss the IR refinement
process in Section 5.

#3:LIMM: IRConcurrencyModel.As Lasagne translates
fromastrong toweakmemorymodel, it insertsmemory fences
to achieve correctness. Excessively inserting fences degrades
performance, whereas too few (or too weak) fences will lead
to incorrect behavior. Approaching the minimum number
of fences requires a careful understanding of concurrency
models in different architectures.

We introduce LIMM (LLVM IRMemoryModel), which acts
as Lasagne’s formal concurrency model. LIMM extends the
concurrency primitives in the LLVM IR. The semantics of
LLVM non-atomic accesses differ from both the correspond-
ing x86 and Arm load and store accesses. In x86, ld-ld, ld-st,
st-st access pairs are ordered, whereas non-atomic load and
store accesses are always unordered. The Arm concurrency
model disallows the removal of false dependencies [54] as
these dependencies enforce certain orders between memory
accesses. In contrast, LLVMregularly removes falsedependen-
cies in various optimizations . To allow these optimizations,
LIMM does not order any accesses based on dependencies.
We describe the details of LIMM in Section 6.

#4: Translation Correctness in LIMM. Based on LIMM,
we define precise mapping schemes for translating between
architectures, and reason about the correctness of the com-
mon transformations on LIMM. More specifically, we identify
the safe/unsafe reordering of independent shared memory
accesses and fences. We also identify safe elimination of re-
dundant shared memory accesses. The main challenge is to
formally prove the correctness of the mapping schemes, and
the safe transformations. We discuss the mapping schemes
and the transformations in Section 7.

#5: ImplementingLIMMTranslations.Weimplementour
mapping schemes in Lasagne, which appropriately inserts
fences into the refined LLVM IR. In particular, these schemes

x86
Binary

Disassembler

MCInst

CFG

Construction

Function Type

Discovery

Binary Lifting

MachineInstr

Instruction

Translation IR
LLVM

Figure 4. Lasagne’s Binary Lifter based onmctoll.

demand leading or trailing fences for shared accesses. In Sec-
tion 7, we describe reordering and elimination transforma-
tions, which LLVM regularly performs; these remain correct
in LIMM. We discuss the further details in Section 8.

4 Binary Lifting

In this section, we describe the binary lifting component,
which we develop based onMicrosoft’smctoll [73]. Figure 4
shows the workflow for binary lifting, including the three
different IRs used throughout this process, namely, MCInst,
MachineInstr, and finally the LLVM IR. By lifting the bi-
nary to the LLVM IR, we are able to re-optimize the program,
enabling us to exploit features that are specific of the target
ISA [40, 46] or focus on a different objective function such as
code-size reduction [20, 57ś60].
First, the source binary is disassembled to an array of

MCInst, which is the lowest-level IR in LLVM, working as
an in-memory representation of the disassembled binary
code. Afterwards, this monolithic array of MCInst is pro-
cessed and control-flowgraphs (CFG) are reconstructed using
MachineInstr. These two low-level IRs are also used in the
LLVM backend during code generation; however in the re-
verse order. Finally, the LLVM bitcode is generated, function
by function, via multiple passes over the code, progressively
lifting the level of abstraction, as shown in Figure 4.We detail
each one of these components in the subsections below.

Our contributions tomctoll can be summarized as follows:
• We add support for floating-point arguments/return
types and tail-calls.

• Weaddsupport foraround100 instructions (400 instruc-
tion variants), mainly SSE instructions, which were not
supported before.

• We also add support for some of the affected flags, e.g.,
the parity flag.

• We implement additional x86 features such as global
variables declared in header files, e.g., stdout.

• Finally, we fix several bugs discovered when lifting
highly optimized programs, e.g., using -O3.

In total, we submitted 71 pull requests, 63 of which have been
merged into themctoll repository. Although we added sup-
port for almost 400 x86 instruction variants (or around 100

891

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

unique instructions) and several other x86 features,mctoll is
still a work in progress.

4.1 Function Type Discovery

Before lifting a function or its calls to a strongly-typed lan-
guage, such as LLVM IR, we need to know its function type,
i.e., the list of parameters and return types. This function type
discovery is based on the calling convention, which dictates
howparameters and return types are arranged in the registers
and stack memory. In this paper, we focus on the System-V
application binary interface (ABI) [?].

Type Discovery. First, we describe howwe derive the types
of a value in a specific register. This type discovery approach
is used for both the list of parameters and return type.
Values in general-purpose registers are of integer type,

with the width of the register as the width of the raised type,
e.g. EDI→ i32. As a result, pointers are also raised as raw
64-bit integer values, since pointers ś at the machine level ś
are always manipulated using the general-purpose registers.
We discuss this in more detail in Section 5.

For SSE registers, we need a different approach as theymay
hold eitherfloating-point (FP) or packedvalues [52, 53].While
we can derive the integer type from the general-purpose reg-
isters alone, this is not possible for SSE registers. To derive the
type of an SSE register, we need to analyze the instructions us-
ing it.We differentiate between two types of SSE instructions:
Packed instructions operate on vectors of integers or FP
values. The discovered type is a 128-bit wide vector, the
type and count of elements depends on the instruction, e.g.
ADDPD (add packed double)→ <2 × double>

Scalar instructions operate on single FP values. The discov-
ered type is either a float or a double, e.g., ADDSD (add
scalar double)→ double

Parameter Discovery. Detecting the parameters of a func-
tion involves a live variable analysis [6] of the registers’ usage
in the CFG. If a live register is one of the conventional pa-
rameter registers specified by the System-V ABI, and has no
reaching definition, it is considered to be a parameter register.
The System-V ABI allows for up to six integer and eight SSE-
based parameters to be passed via registers, while additional
ones will be spilled onto the stack.

Return Type Discovery. Discovering the return type of a
function involves determining if one of the conventional re-
turn registers, RAX or XMM0, is alive at all the exiting blocks
of the CFG. The return type can then be derived from such a
register, as explained in Section 4.1. For functionswhere no re-
turn register is found, the type is set to void. If a function has
multiple exit paths, the largest sized return type will be used.

4.2 Instruction Translation

In the last twopasses, all instructions are lifted to the LLVMIR.
Moreover, while traversing the CFG, we need to keep track of
the values stored in the registers and theprocessor statusflags,

so operands can be correctly translated. First, we only lift non-
terminator instructions. Then, the final pass lifts the termi-
nator instructions, connecting the CFG in the LLVM bitcode.

EachMachineInstr canbe translated to zero, one, ormore
LLVM instructions. Some instructions, such as copy opera-
tions, only update the internal record ofwhich value the desti-
nation register is currently holding, generating no instruction
in the lifted code. Instructions suchas addition,wherea simple
LLVM counterpart exists, translate to a single LLVM instruc-
tion. Lastly, instructions that implicitly set processor status
flags will result in more than one LLVM instruction. If any of
these lifted instructions are unnecessary, they become dead
code, later eliminated by traditional LLVM optimizations.

Programsmay also contain function calls, that do not trans-
late like instructions, as they take an arbitrary number of
arguments ś possibly of different types ś requiring more
consideration during translation.

4.2.1 Translating Function Calls. In order to translate
function calls, we examine the information gathered by the
function type discovery and standard library header files. Sim-
ilar to parameter discovery, the list of arguments passed in
a function call also accounts for the conventional parameter
registers specified by the System-VABI. The LLVMvalues ref-
erenced by the parameter registers are passed as arguments to
the function call. If the function returns a value, the tracking
record of the return register is also updated accordingly.

Call to Variadic Functions. Variadic functions can have a
different number of arguments passed in each callsite. All pa-
rameter registers alive at the callsite are passed an argument.

For SSE registers, the System-V ABI requires that the num-
ber of SSE-based arguments must be set in the AL register
while calling a variadic function. Most compilers, such as
LLVM, often explicitly assign a constant to the AL register.
We try to leverage this behavior whenever possible. If we find
a reaching constant value for the AL register, we look specifi-
cally for that amount of SSE registers. Otherwise, we fall back
to the same approach used for general purpose registers.

ChallengeswithParameterOrdering.When general pur-
pose and SSE registers are passed as arguments to a function,
we cannot reconstruct precisely the order of arguments from
the original source code. This can be problematic for some
variadic functions that depend on a specific argument order,
e.g.,printf fromtheCstandard library.Wecanonlypreserve
the order of the arguments within each group of registers.

In this paper, we assume that arguments passed via general
purpose registers come before those passed via SSE registers.
While this is not an issue when recompiling to ARM64 or
another architecture that has a similar distinctionbetween the
two register groups, this may be an issue in the general case.

4.2.2 Handling of SSE Register Values. As discussed in
Section 4.1, SSE registers can be interpreted in several ways

892

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

dependingon the instructions using them.Therefore,weneed
to cast the values stored in SSE registers accordingly.

For instructions operating only on the lower bits of an SSE
register, zeroing the remaining bits, e.g., most scalar FP in-
structions, we ignore the zeroed upper bits. This is beneficial
for consecutive SSE instructions that operate on the resulting
value in a similar manner.

For instructions that also operate on higher bits, however,
we cast the FP value to a vector type, zeroing the upper bits.
Since casting happens implicitly in x86, without modifying
any bit, we use bit-casts in LLVM.We have to handle three
cases in particular, with 𝑠𝑟𝑐 as the source type, 𝑑𝑠𝑡 as the
destination type, and |𝑥 | as the bit width of a given type 𝑥 .
1. |𝑠𝑟𝑐 | = |𝑑𝑠𝑡 |: In this case, a simple bitcast instruction is

used to cast the value to the desired type.
2. |𝑠𝑟𝑐 | < |𝑑𝑠𝑡 |: Since we assume missing bits to be zero, we

first create a 128-bit wide vector of the type <𝑛 × 𝑠𝑟𝑐>,

where 𝑛= |𝑑𝑠𝑡 |
|𝑠𝑟𝑐 | . Then, we insert the source value into po-

sition 0 of the created vector and bitcast the value to the
destination one.

3. |𝑠𝑟𝑐 |> |𝑑𝑠𝑡 |: Here, we first bitcast the source value to a bit

vector of type <𝑛 × 𝑑𝑠𝑡>, where 𝑛 = |𝑠𝑟𝑐 |
|𝑑𝑠𝑡 | and return the

element at position 0.
Although we currently only support SSE instructions, our

solution could be generalized to AVX2 and AVX-512. How-
ever, in this paper, we focus on SSE instructions used in the
context of scalar floating-point computations.

4.2.3 Handling the StackMemory. mctoll reconstructs
the stackmemory of a lifted function by allocating a byte (i8)
array. Offsets relative to the stack base pointer are translated
to indexing operations on the lifted byte array. After raising
all instructions in a function, the stack accesses are inserted
with indices relative to the end of the stack.

5 IR Refinement

After liftingaprogramtoLLVMIR,much informationremains
absent. For instance, in machine code, there is no difference
between integer values and pointers, even less what type is
pointed. However, this information can be represented in
LLVM IR, and is invaluable to enable standard LLVM opti-
mizations. Furthermore, this lack of information hinders our
optimized fence placement algorithm.We aim to rediscover
this informationÐin particular pointer arithmeticÐafter map-
ping to the IR, to enable optimizations.
Pointer parameters are lifted as 64-bit integer parameters

and inttoptr instructions are used to convert integer-based
addresses to pointer types just before aloadorstore instruc-
tion. Similarly, stack allocated memory has its base pointer
converted to an integer via the ptrtoint.
In this section, we propose transformations that address

this issue. Our approach is twofold. First, we use peephole op-
timizations to rewrite integer-based address computations to

%0 = ptrtoint i8* %stacktop to i64
%RBP = inttoptr i64 %0 to i32*

%RBP = bitcast i8* %stacktop to i32*
>

%tos = ptrtoint i8* %stacktop to i64
%0 = add i64 %tos, 16
%RBP = inttoptr i64 %0 to i32*

%0 = getelementptr i8, i8* %stacktop, i64 16
%RBP = bitcast i8* %0 to i32*

>

%0 = add i64 %arg, 8
%RBP = inttoptr i64 %0 to i32*

%0 = inttoptr i64 %arg to i8*
%1 = getelementptr i8, i8* %0, i64 8
%RBP = bitcast i8* %1 to i32*

>

Rule 1: Pointer casting

Rule 2: Stack offset

Rule 3: Parameter offset

Figure 5. Peephole optimizations on pointer arithmetic
instructions. %stacktop is a pointer to a stack allocated
memory, %arg is an integer parameter, %RBP holds the
resulting memory address. Note that %RBP could be a
pointer of any type.

their pointer-based counterparts. Second, all integer parame-
ters only used as input to inttoptr are modified to a pointer
type, possibly also introducing pointer casts where needed.

5.1 Exposing Pointers via Peephole Optimizations

The peephole optimizations comprise a collection of code
patterns replaceable with another semantically equivalent
piece of code. Figure 5 shows three examples of such patterns.

Thepatternsofcodecoveredbythesepeephole rulesmainly
comprise integer-based arithmetic operations on the raw
memory addresses. In this scenario, adding a number to a
rawmemory address is equivalent to offsetting an i8 pointer
by that amount through the getelementptr (GEP) instruc-
tion. The GEP instruction performs address calculation only,
and does not access memory. The address calculation is based
on the size of the base type, the base pointer, and the integer
indices provided. This equivalence is illustrated by transfor-
mation 3○ in Figure 5. In order to simplify our peephole rules,
we always use i8 as the base type of theGEP instructions, and
then cast the resulting pointer to the expected pointer type.

5.2 Promoting Pointer Parameters

Since all pointer parameters are lifted as integer parameters,
we need a way to identify when these integer parameters are
actually used to represent a raw memory address. As illus-
trated by rule 3○ in Figure 5, applying the proposed peephole
optimizations can expose such integer parameters.

Our pointer parameter promotionworks as follows: for each
integer parameter of a given function, we collect all its uses. If
all itsusersareinttoptr instructions,wemark it forapointer
type promotion, otherwise, we keep it as is. We choose the
pointer type depending on all the destination pointer types of
the inttoptr instructions. If all of them have the same des-
tination pointer type, we promote it to that type and simply

893

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

delete all its inttoptr instructions. Otherwise, we promote
it to an i8 pointer, replacing all the inttoptr instructions to
a bitcast to the appropriate destination pointer type.

6 LIMM: ConcurrencyMemoryModel

In this section, we describe our next contribution. Lasagne
translates concurrent programs from x86 to the IR to Arm.We
intend to ensure that the translation remains correct based on
the formal concurrency models. We first describe the general
components of axiomatic concurrency models. We then com-
pare the x86 and Arm axiomatic models. Finally, we propose
LIMMÐan axiomatic concurrency model for the LLVM-IR.

6.1 Axiomatic Model of Concurrency

In axiomatic semantics, a program is representedbya set of ex-
ecutions. An execution consists of a set of events and relations
between these events. Our notations are similar to the cat lan-
guage used for defining axiomaticmodels for concurrency [4].

Event. Anevent isgenerated fromtheexecutionofashared
memoryaccessor fence.Anevent is representedby ⟨id,tid,lab⟩
where id is a unique identifier, tid is the thread identifier, and
lab is the label of the event. A label lab= ⟨op,loc,val⟩ is a tuple
where op denotes the corresponding memory access or fence
operation. For memory accesses, loc denotes the correspond-
ing memory location, while val denotes the read or written
value. In case of fences, loc= val=⊥. We respectively denote
the set of read, write, and fence events by R,W, and F. Every
memory location is initialized at the start of the execution,
represented by a set ofwrite events (where tid is 0). Unless oth-
erwise mentioned, memory locations are initialized to zero.

Relation. Various binary relations connect the events in
an execution.Given a binary relation𝑆 , wewrite𝑆?,𝑆+,𝑆∗,𝑆−1

to denote its reflexive, transitive, reflexive-transitive closures,
and inverse relations respectively. Relation 𝑆imm denotes the
immediate relation: 𝑆imm (𝑎,𝑏) ≜ 𝑆 (𝑎,𝑏) ∧�𝑐 𝑆 (𝑎,𝑐) ∧𝑆 (𝑐,𝑏).
We write [𝐴] to denote the identity relation on a set 𝐴, i.e.
[𝐴] (𝑥,𝑦) ≜ 𝑥 =𝑦∧𝑥 ∈𝐴. Given two relations 𝑆1 and 𝑆2, we
denote their composition by 𝑆1;𝑆2. In the model, an execution
has the following relations between events:
• Relation program-order (po) is a strict partial order that
denotes the syntactic order between the events. It is a strict
total order on same-thread events.

• Relation reads-from (rf) relates every write event with the
read events that read from it. Every read event reads from
exactly one write event.

• Relation coherence-order (co) is a strict total order over
same-location writes.

• A successful RMW results in an rmw relation between a pair
of read andwrite events on the same locationwhich are also
in immediate-po relation; i.e. rmw ⊆ ([R];poimm;[W]) |loc
holds. A failed RMW results in only a single R event.

From these, we derive a number of other relations:

x86 axiom

(GHB) hb+ is irreflexive where

ppo≜ ((W×W)∪(R×W)∪(R×R))∩po

implid≜ po;[𝐴𝑡∪F]∪[𝐴𝑡∪F];po

where𝐴𝑡 ≜ dom(rmw)∪codom(rmw)

hb≜ ppo∪implid∪rfe∪fr∪co

Arm axiom

(external) ob is irreflexive where

ob≜(obs∪aob∪dob∪bob)+ where

obs≜ rfe∪coe∪fre

aob≜ rmw∪ ...

dob≜ addr ∪ data ∪ ctrl;[W] ∪ ...

bob≜ po;[F];po ∪ [R];po;[Fld];po ∪ [W];po;[Fst];po;[W] ∪···

Figure 6. Distinguishing axioms in x86 and Arm.
Both models satisfy sc-per-loc and atomicity axioms
(Section 6.2). Full Armmodel is in Appendix A.

• Relation from-read (fr) connects a pair of read and write
events accessing the same memory location: fr≜ rf−1;co. If
a read 𝑟 reads-from a write𝑤 , while write𝑤 ′ on the same
location is co-after𝑤 , then 𝑟 and𝑤 ′ are in fr relation.

• We categorize the relations in an execution as either inter-
nal or external. If a relation 𝑆 is between po-related events,
then it is an internal-𝑆 relation and otherwise an external-𝑆
relation. For instance, we categorize the rf, co, fr relations
in internal and external relations as follows:

rfi≜rf∩po coi≜co∩po fri≜fr∩po

rfe≜rf\po coe≜co\po fre≜fr\po

Execution. An execution X= ⟨E,po,rf,co,rmw⟩ is a tuple
where X.E is the set of events and X.po, X.rf, X.co, X.rmw are
set of po, rf, co, rmw relations between the events in X.E.

From Programs to Executions. A program consists of a
set of initialization writes on all shared memory locations
followed by a parallel composition of threads. In a program,
the concurrency primitives generate the following events and
relations during an execution:
• A store (st) thatwrites value 𝑣 on a sharedmemory location
𝑥 generates an event with labelW(𝑥,𝑣).

• Aload (ld) that reads value𝑣 froma sharedmemory location
𝑥 generates an event with label R(𝑥,𝑣).

• A successful RMWon𝑥 that reads value𝑣𝑟 andwrites value𝑣𝑤
generates events with labels R(𝑥,𝑣𝑟) andW(𝑥,𝑣𝑤) that are
rmw-related. If the RMW reads value 𝑣 ′ and fails, it generates
a single read event with label R(𝑥,𝑣 ′).

• A full fence, e.g., MFENCE in x86 or DMBFF inArm, generates
an event with label F.

Consistency. Axiomatic memory models define several
consistency constraints, which capture architectural proper-
ties. An execution satisfying these constraints is consistent.

894

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

[[P]]𝑀 denotes the set of consistent executions of program
P in memory model𝑀 .

Behavior. The behavior of a consistent execution is de-
fined by the final values of all memory locations; the values
written by the co-maximal writes (have no co-successors).

Behav(X) ≜ {⟨𝑒.loc,𝑒 .val⟩ |𝑒 ∈X.W∧[{𝑒}];X.co=∅}

We use these events, relations, and definitions in all concur-
rency models, including those for x86 and Arm.

6.2 Comparing x86 and ArmConcurrencyModels

We compare the axiomatic models of x86 and Arm [4, 5, 54].
The similarities and differences between these models guide
us in defining the IR concurrency model.

CommonAxioms. Both the x86 andArm architectures pro-
vide coherence and atomicity axioms. These properties are
captured by the axioms described below.

Coherence. In an execution, coherence enforces SC-per-
location: the memory accesses per memory locations are to-
tally ordered. We capture this property as follows:

(po|loc∪rf∪co∪fr)
+ is irreflexive. (sc-per-loc)

Atomicity. Suppose 𝑟 and𝑤 are the read and write events
generated from a successful RMW. These events are in rmw re-
lation. If there exists a write event𝑤 ′ between 𝑟 and𝑤 on the
same location, such that fre(𝑟,𝑤) and coe(𝑤 ′,𝑤) hold, then
the execution violates atomicity. Both x86 and Arm restrict
atomicity violation with the (atomicity) axiom:

rmw∩(fre;coe)=∅ (atomicity)

Differentiating x86 and Arm. In Figure 6, we state the dis-
tinguishing axioms between x86 and Arm. Axiom (GHB) in
x86 and axiom (external) in Arm enforce a global order on x86
and Arm executions, respectively.

x86. In x86, the read-read, read-write, write-write access
pairs are ordered by the ppo relation. The access pairs are also
ordered by the implid relation, an intermediate F event, or
the rmw relation. Relation x86-happens-before (hb) is defined
using ppo, implid, rfe, co, fr relations. Finally, axiom (GHB)
enforces a global order on x86 executions.

Consider the x86program inFigure 9 and its executionwith
theoutcome𝑎=1,𝑏=0. Theexecutioncontainsappo∪fre∪rfe
cycle which is disallowed according to the (GHB) axiom.

Arm. We follow the axiomatic model of Arm from Pulte
et al. [54]. Arm defines atomic-ordered-by (aob), dependency-
ordered-before (dob), barrier-ordered-by (bob), and observed-
by (obs) relations to define the (external) axiom in Figure 6.
Relations aob, dob, bob order po-related events. Relation

obs orders same-location events in different threads. Rela-
tion aob is based on rmw. Relation dob is defined using data,
address, and control dependencies. These dependencies are
captured by data, addr, and ctrl relations. Relation data, addr,

and ctrl order a read to a po-successor write, read or write,
and all events respectively. Relation bob is based on fences
and synchronizing memory accesses. Relation obs is thread-
external and relates same-location concurrent events. We use
these relation to define relation ob. Finally, (external) axiom
enforces a global order using the ob relation.
Unlike x86, the Armmodel allows the execution with 𝑎=

1,𝑏=0 outcomes in the Psrc program in Figure 9.

6.3 IR ConcurrencyModel

Primitives. We use LLVM primitives, in particular RMWsc
atomic accesses (i.e. RMWwith seq_cstmemory order), and
the non-atomic load (ldna) and store (stna) instructions.

To order the non-atomics, LIMM uses various fences, such
as Fsc (fence with seq_cstmemory order) to enforce a full
fence likeMFENCE in x86 andDMBFF inArm.LIMM introduces
Frm and Fww into LLVM IR, which are similar to the DMBLD
and DMBST fences in Arm. An Frm orders a load with its suc-
cessor memory accesses (M refers to any memory access).
Any Fww pair is ordered by an intermediate Fww fence.

Events.Given a program, we generate the following events
and relations in an execution:
• For the non-atomic load and store accesses, we generate
Rna (𝑥,𝑣) andWna (𝑥,𝑣) events respectively.

• A successful RMWsc (𝑥,𝑣𝑟 ,𝑣𝑤) generates a pair of Rsc (𝑥,𝑣𝑟)
andWsc (𝑥,𝑣𝑤) events which are rmw-related. If it reads 𝑣 ′

and fails, it generates a single Rsc (𝑥,𝑣
′). Relation rmw acts

as a full fence similar to that of x86.
• The Fsc, Frm, Fww fences generate fence eventswith labels
Fsc, Frm, Fww respectively.

Finally R=Rna∪Rsc andW=Wna∪Wsc hold in LIMM.

Relations.We define order (ord) and global-happen-before
(ghb) relations in Figure 7. The ord relation orders po-related
events. A pair of po-related events (𝑎,𝑏) are in ord relation in
the following scenarios.

(ord1) There is an intermediate Frm event where 𝑎 is a read
and 𝑏 is a memory access.
(ord2) 𝑎 and 𝑏 are writes with an intermediate Fww event.
(ord3) 𝑎 is a Fsc event or an event generated from RMWsc.
(ord4) Event𝑏 is an Fsc or a write generated from a success-
ful RMWsc access.

Note that we do not define any ordering based on depen-
dencies in the IR. This is because LLVMmay eliminate false
dependencies. Such eliminations could introduce disallowed
behavior, which would render the translations incorrect.

We can define a ghb relation on events across threads. On
an execution graph, ghb(𝑎,𝑏) implies a path from 𝑎 to 𝑏 by
the combination of ord and external relations rfe, coe, fre.

Axioms.We now define the consistency axioms in Figure 7.
The (sc-per-loc) and (atomicity) axioms are also present in
the x86 and Armmemory models. The (GOrd) axiom ensures
a global order between events.

895

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

(po|loc ∪ rf ∪ fr ∪ co) is acyclic. (sc-per-loc)

rmw ∩ (fre;coe)=∅. (atomicity)

ghb is irreflexive where (GOrd)

ghb≜(ord ∪ rfe ∪ coe ∪ fre)+ where

ord≜[R];po;[Frm];po;[R∪W] (ord1)

∪ [W];po;[Fww];po;[W] (ord2)

∪ [Fsc∪Rsc∪codom(rmw)];po (ord3)

∪ po;[Fsc∪Wsc∪dom(rmw)] (ord4)

Figure 7. LIMM Concurrency Model

x86 IR
ld ldna;Frm
st Fww;stna
RMW RMWsc

MFENCE Fsc

(a) x86 to IR

IR Arm
ldna ld
stna st
RMWsc DMBFF;RMW;DMBFF

Frm DMBLD

Fww DMBST

Fsc DMBFF

(b) IR to Arm

x86 IR Arm
ld → ldna;Frm → ld;DMBLD
st → Fww;stna → DMBST;st
RMW → RMWsc → DMBFF;RMW;DMBFF

MFENCE → Fsc → DMBFF

(c) x86 to IR to Arm

Figure 8. Verified mappings from x86 to Arm by the IR.

7 Translation Correctness

We use LIMM from the previous section to correctly reason
about concurrency in the IR. Our main objective is to define
a precise mapping from x86 to Arm, which goes through the
IR. We also define precise mapping from Arm to x86 through
the IR in Appendix B. Additionally, we reason about the IR to
IR optimizing transformations on LIMM. We mechanize the
correctness proofs in Agda.

7.1 Mapping Correctness

We propose the mapping schemes of the concurrency prim-
itives between x86 and Arm through the primitives in IR. For
each mapping scheme, we prove its correctness, as described
in Theorem 7.1 and show that the scheme is precise.

Theorem 7.1 (Mapping Correctness). Let Ms → Mt be a

mapping scheme which generates target program Pt from the

source program Ps. The scheme is correct if for each consistent

target execution Xt ∈ [[Pt]]Mt there exists a consistent source

execution Xs ∈ [[Ps]]Ms such that Behav(Xt)=Behav(Xs).

Definition 7.2 (Precise Mapping Scheme). A correct map-
ping scheme is precise if for each fence used in the mapping,
there exists a programwhere the fence is necessary and suffi-
cient to preserve correctness, i.e., noweaker fence is sufficient
and no stronger fence is necessary.

x86 toArmMappings.We obtain the x86 to Armmappings
in two steps: (1) x86 to IR and (2) IR toArm inFigures 8a and 8b.

𝑋 =𝑌 =0;

𝑋 =1;

𝑌 =1;

𝑎=𝑌 ;

𝑏=𝑋 ;

(a) x86

𝑋 =𝑌 =0;

𝑋na=1;

Fww;

𝑌na=1;

𝑎=𝑌na;

Frm;

𝑏=𝑋na;

(b) IR

𝑋 =𝑌 =0;

𝑌 =1;

DMBST;

𝑋 =1;

𝑎=𝑌 ;

DMBLD;

𝑏=𝑋 ;

(c)Arm

Figure 9. x86, IR, Arm versions ofMP program in x86 to
IR to Arm translations by the proposed mapping schemes.

x86 to IR. The load and store in the IR isweaker than those
of x86. So we map an x86 load to an IR load with a trailing
Frm. The Frm orders a load with successor memory accesses.
Similarly, an x86 store is mapped to an IR store with a leading
Fww. TheFwworders the storewith thepredecessor store.An
x86 RMW is mapped to an RMWsc in the IR. A successful atomic-
update acts as a full fence in both x86 and the IR. Finally, an
MFENCEmaps to an Fsc fence.

Theorem 7.3. The mapping scheme in Figure 8a is precise.

WeproveTheorem7.1 for themapping scheme in Figure 8a.
Now, we show that the Frm and Fww fences are required. In
Figure 9a and Figure 9b, we show thean x86 program and the
generated IR. The IR program disallows the outcome 𝑎=1,𝑏=
0 similar to the x86 program. The IR does not provide any
weaker fences than Frm and Fww. Without any of these two
fences, the outcomewould be allowed and themappingwould
be incorrect. Hence, the x86 to IR mapping scheme is precise.

IR to Arm. We map an IR load to Arm ld and IR store to
Arm st. IRRMWscmaps to anArmRMW primitive, aroundwhich
we insert leading and trailing DMBFF fences. Finally, we map
Frm, Fww, Fsc fences in IR to DMBLD, DMBST, DMBFF accesses.

Theorem 7.4. The mapping scheme in Figure 8b is precise.

We prove the correctness of the mapping scheme. In the
mapping, the leading and the trailing DMBFF fences are re-
quired and noweaker fence can be used as shown in Figure 10.
Hence the mapping scheme is precise.

x86 to IR to Arm. In Figure 8c, we compose the x86 to IR
and IR to Armmappings. The resulting x86 to IR to Armmap-
ping is also precise. Consider the x86 and Arm programs in
Figure 9a and Figure 9c. TheDMBLD andDMBSTArm fences are
required to preserve correctness. For the DMBFF fences with
RMW, we can follow a similar example as shown in Figure 10.
Hence the overall mapping is precise.

7.2 Correctness of Optimizing Transformations

Westudy the correctness of various transformationsonLIMM.
For the correct transformations, we show that the transfor-
mations preserve the following correctness theorem.

Theorem 7.5 (Transformation Correctness). Let Ps → Pt
be a transformation on a memory model 𝑀 . The translation

is correct if for each consistent target execution Xt ∈ [[Pt]]𝑀
there exists a consistent source execution Xs ∈ [[Ps]]𝑀 such that

Behav(Xt)=Behav(Xs).

896

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

𝑋 =𝑌 =0;

𝑋na=1;

RMWsc (𝑌,0,2);
𝑌na=1;

RMWsc (𝑋,0,2);
→

𝑋 =𝑌 =0;

𝑋 =1;

DMBFF;

RMW(𝑌,0,2);
DMBFF;

𝑌 =1;

DMBFF;

RMW(𝑋,0,2);
DMBFF;

Disallowed outcome𝑋 =𝑌 =2.

𝑋 =𝑌 =0;

RMWsc (𝑋,0,2);
𝑎=𝑌na;

RMWsc (𝑌,0,2);
𝑏=𝑋na;

→

𝑋 =𝑌 =0;

DMBFF;

RMW(𝑋,0,2);
DMBFF;

𝑎=𝑌 ;

DMBFF;

RMW(𝑌,0,2);
DMBFF;

𝑏=𝑋 ;

Disallowed outcome 𝑎=𝑏=0.

Figure 10. Role of DMBFF fences in IR to Armmapping. In
Arm, the intermediate DMBFF fences restrict the outcomes.
Any weaker (or no) fence would allow these outcomes in
Arm and the translations would be incorrect.

↓𝑎 \𝑏→ Rna Wna Rsc Rsc ·Wsc Frm Fww Fsc
Rna ✓ ✓ ✓ ✗ ✗ ✓ ✗

Wna ✓ ✓ ✓ ✗ ✓ ✗ ✗

Rsc ✗ ✗ ✗ ✗ ✓ ✓ ✓

Rsc ·Wsc ✗ ✗ ✗ ✗ ✓ ✓ ✓

Frm ✗ ✗ ✗ ✓ = ✓ ✓

Fww ✓ ✗ ✓ ✓ ✓ = ✓

Fsc ✗ ✗ ✗ ✓ ✓ ✓ =

(a) Reorderings 𝑎 ·𝑏{𝑏 ·𝑎.

R(𝑋,𝑣) ·R(𝑋,𝑣 ′){R(𝑋,𝑣) (RAR)

W(𝑋,𝑣) ·R(𝑋,𝑣){W(𝑋,𝑣) (RAW)

W(𝑋,𝑣) ·W(𝑋,𝑣 ′){W(𝑋,𝑣 ′) (WAW)

R(𝑋,𝑣) ·F𝑜 ·R(𝑋,𝑣
′){R(𝑋,𝑣) ·F𝑜 (F-RAR)

W(𝑋,𝑣) ·F𝜏 ·R(𝑋,𝑣){W(𝑋,𝑣) ·F𝜏 (F-RAW)

W(𝑋,𝑣) ·F𝑜 ·W(𝑋,𝑣 ′){F𝑜 ·W(𝑋,𝑣 ′) (F-WAW)

(b) Eliminations where 𝑜 ∈ {rm,ww} and 𝜏 ∈ {sc,ww}.

Figure 11. Reordering and elimination transformations
on LIMM. In reorderings 𝑎 and 𝑏 memory accesses are on
different locations and independent. 𝑎 ·𝑏 denotes that 𝑎
and 𝑏 are the labels of events that are related by poimm. Rsc

on its own represents a failed RMWsc read, while ‘Rsc ·Wsc’
corresponds to a successful RMWsc.

Reorderings.We study the correctness of the reordering of
an adjacent shared memory access or fence pair 𝑎 and 𝑏. In
Figure 11a, we mark the safe (✓) and unsafe (✗) reorderings.
Thenon-atomic accesses canbe reordered freely as performed
by LLVM. Non-atomic accesses cannot reorder with an RMWsc
operation, as that requires reordering with both events in
the rmw, which is disallowed by the reordering rules in Fig-
ure 11a. A store can reorder with a successor Frm and a load
can reorder with a predecessor as well as a successor Fww.
Any pair of fences can reorder safely.

We prove Theorem 7.5 to establish the correctness of the
safe reorderings. We show that a reordering does not remove
any ord relation from the target while defining the corre-
sponding source execution.

Memory Access Eliminations. Figure 11b enlists the safe
redundant access elimination transformations for read-after-
read (RAR), read-after-write (RAW), and write-after-write
(WAW) transformations. A RAR or RAW transformation elim-
inates the following read accesses and uses the value read or
written by the first access. In theWAW transformation, the
first write is redundant and can be eliminated safely. In these
three LLVM transformations, the shared memory accesses
are adjacent. In the next three transformations, the memory
accesses are non-adjacent, with fences between the memory
accesses.

Speculative Load Introduction. LIMM also supports spec-
ulative load introduction where a shared memory load access
is hoisted outside the conditional. The read value is used only
when the conditional holds. This transformation is regularly
performed in LLVM optimizations e.g. ‘SimplifyCFG’.
The transformation is correct on LIMM. A target execu-

tion contains the event corresponding to the speculative load
which is absent in the source execution. However, in this case,
the speculative load value remains unused and does not affect
the program behavior.

Fence Merging. We can safely merge a fence with an ad-
jacent same or stronger fence. It is also safe to strengthen
an Frm or Fww fence to a full fence Fsc. So given a pair of
adjacent Frm and Fww fences, we can strengthen and merge
them to create one Fsc, that is, Frm ·Fww→Fsc ·Fsc→Fsc.

Proof Strategy.We prove the theorems for the correct trans-
formations in the following steps. Given aMt-consistent ex-
ecution Xt of Ptgt, we (1) define a source execution Xs from
Psrc. Following the mapping scheme, the memory accesses in
Xs have corresponding accesses in Xt. Similarly, the mapping
ensures the rf, co, rmw relations in Xs correspond one-to-one
to those in Xt. Then, (2) we relate the Xs and Xt relations that
are used inMs andMt and show thatXs satisfies the axioms in
Ms. Finally, we (3) show the Xt .co and Xs .co relations match
and hence Xt and Xs have identical behaviors. In mapping
schemes the source and target models differ and for the trans-
formations on the IR bothMs andMt are LIMMmodel.
We mechanize the proofs for the mapping schemes and

transformations in about 12,000 lines of Agda [2].

7.3 Adopting LLVM Semantics

LLVM performs various optimizations based on undefined
behaviors [30, 34]. However, compiled x86 programs have a
defined behavior. Hence, performing these optimizations on
a lifted programmay result in unsound translation. Consider-
ing this issue, Lasagne assumes thatmctoll’s lifting is correct
and produces LLVM programs that are free from undefined
behavior. Lasagne also ensures sound translation for racy
programs as LIMM allows the optimizations.

897

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Benchmark Abbrv. # Functions LoC

histogram HT 4 171

kmeans KM 7 235

linear_regression LR 2 120

matrix_multiply MM 3 179

string_match SM 5 205

Table 1. Phoenix multi-threaded benchmark suite.

8 Implementing LIMM Translations

Lasagne is implemented on top of Microsoft’smctoll binary
lifting tool and the LLVM compiler framework, both open-
source projects. Most of our contributions have already been
accepted and incorporated in the mainmctoll repository.

Precise Fence Placement.We enforce x86 to IR mapping
from Figure 8a on the lifted code. We perform the fence inser-
tion in two steps.
1. For every load and store, we explore the use-def chain of

their pointer operand. In this exploration,we ignore bitcast
and getelementptr operations, looking for a potential
stack allocation. If the access is performed on a stack ad-
dress, thenno fence is inserted.Otherwise, theaccess is con-
servatively treated as a shared memory access and fences
are inserted following the mapping scheme from Figure 8a.

2. Wemerge pairs of fences in the same basic block if there
is no instruction in between that may access the memory.

LLVM optimizations.After fence placement, we apply the
LLVM optimizations. These optimizations are crucial to elim-
inate unnecessary code produced in the binary lifting process.
We evaluate the most impactful optimizations in Section 9.4.

CodeGeneration.Weimplement IR toArmmappingscheme
(Figure 8b) in the LLVM backend to generate Arm code.

9 Evaluation

9.1 Experimental Setup

Experimental Testbed.All x86 binaries are compiled on a
machine with a quad-core Intel Xeon CPU E5-2650, 64 GiB of
RAM, running Ubuntu 18.04.3 LTS. All Arm binaries are com-
piled on a machine with a 16-core Arm Cortex-A72, 32 GiB
of RAM, running Ubuntu 18.04.5 LTS.

Benchmarks.We base our evaluation on themulti-threaded
Phoenixbenchmarksuite [56],detailed inTable1.ThePhoenix
benchmark suite contains scalar floating-point computations
implemented as SSE instructions.Weomit twoprograms from
the suite asmctoll lifts them incorrectly, resulting in a seg-
mentation fault in one of them and an infinite loop in the
other. Our initial investigation suggests that this issue arises
from thewaymctoll handles some stack accesses through the
base pointer. Fixing this would have required to rewrite most
ofmctoll’s stack handling code.

Methodology. Tominimize the effect of measurement noise,
we repeat all experiments 25 times. We report the average
values and their 95% confidence intervals.

0

1

2

3

4

5

N
o
rm

a
li

z
e
d

 R
u

n
ti

m
e

1
.0

2
.8

9
1
.6

7
1
.6

2
1
.5

1

Native

Lifted

Opt

POpt

PPOpt

HT KM LR MM SM GMean

Figure12.Performancewithvarious level ofoptimizations
normalized w.r.t. Native execution. Lower is better.

Baselines.We compare five versions of Arm programs:
• Native is a direct compilation from the C source code to an
Arm binary with standard compiler optimizations.

• Lifted is a translation fromanx86binary toArmviaLasagne,
without re-optimizing the lifted LLVM IR. This version
also excludes our IR refinement strategies, and the fence
merging rules. It contains the unoptimized fence placement
algorithm, in order to preserve program correctness.

• Opt extends the Lifted version by re-optimizing the lifted
LLVM IR before re-compiling it down to Arm.

• (Proposed+Opt) (POpt) extends theOpt version by applying
the fence merging rules proposed in Section 7.

• Peephole+Proposed+Opt(PPOpt) extends the POpt version
with the IR refinement strategiesproposed inSection5.This
version includes all the components described in Figure 3.

9.2 Overall Runtime Performance

Figure 12 shows our main performance results comparing all
five versions described in Section 9.1. We report the normal-
ized run time with respect to the Native version.

As expected, the Native version is the fastest one. This ver-
sion has the benefit of compiling directly from the source code
to the final target architecture. Meanwhile, the other versions
must be translated in a conservative manner, following the
semantics of the x86 architecture, thus naturally introducing
some run time overheads. The unoptimized Lifted version is
the slowest among all evaluated versions since it includes a
significant amount of unnecessarily lifted code representing
processor flag computations and other x86-specific features.
All this unnecessary overhead is optimized away in theOpt
version. Finally, we have the two versions that include the
novel optimizations proposed in this paper, namely, POpt and
PPOpt. The version fully optimized by Lasagne, PPOpt, has
the best run time among all other translated variants, with an
average normalized run time of 1.51, compared to an average
of 2.89 of the unoptimized Lifted version.

Lasagne offers a statistically significant improvement for
the histogram (HT) and kmeans (KM) benchmarks. For KM,
in particular, the Opt version has a run time of around 3.85
seconds while the fully optimized PPOpt version has a run
time of around 2.95 seconds, i.e., a speedup of around 1.3×.

898

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

0

10

20

30

40

50

60
51.1

PPOpt

R
e
d

u
c
ti

o
n

 o
f

P
o
in

te
r

C
a
s
t

(%
)

HT KM LR MM SM GMean

Figure 13. Percentage of pointer casting instructions
removed relative to the unoptimized lifted code.

0

10

20

30

40

50

60

70

R
e
d

u
c
ti

o
n

 o
f

F
e
n

c
e
s
 (

%
)

6
.3

4
5

.5

POpt

PPOpt

HT KM LR MM SM GMean

Figure 14. Fence reduction relative to the unoptimized
lifted code with naive fence placement strategy.

9.3 Understanding the Impact of Each Optimization

Peephole Optimizations. Figure 13 shows the percentage
of inttoptr and ptrtoint instructions that can be opti-
mized away by our IR refinement strategies. Our results show
that abouthalf, 51.1%onaverage, of these integer-pointer cast-
ing operations are removed.Most of the remaining inttoptr
instructions belong to two different scenarios: (𝑖) an integer
parameter that could not be promoted to a pointer type; (𝑖𝑖)
some level of pointer indirection, e.g., a rawmemory address
loaded frommemory or returned by a function call which is
later converted to a pointer type.

Optimized Fence Placement. Figure 14 shows how the IR
refinement translates to fewer fences in the lifted LLVM bit-
code. Our fence merging rules alone are capable of reducing
the total number of fences by an average of 6.3%.However, the
IR refinement enables Lasagne to reduce the total number
of fences by an average of 45.5%. The IR refinement better
exposes pointers used by load and store instructions, allow-
ing our fence placement algorithm to avoid adding fences to
operations involving the stack memory.

Figure 15 isolates the overhead reduction achieved by sim-
ply removing unnecessary fences in the unoptimized Lifted
version. In this evaluation, we are excluding the impact of
reducing the number of fences on other LLVM optimiza-
tions. The goal is to analyze the performance improvement
of reducing the number of fences alone. Our results show
that our fence merging rules has a significant impact on the
histogram benchmark programwhile the IR refinement has
a bigger impact on the kmeans benchmark program.

0

2

4

6

8

10

12

14

16

R
u

n
ti

m
e
 R

e
d

u
c
ti

o
n

 (
%

)

2
.6

5 5
.6

3

POpt

PPOpt

HT KM LR MM SM GMean

Figure 15. Performance improvement achieved by reduc-
ing the number of fences on the unoptimized lifted code.

0

100

200

300

400

C
o
d

e
 I

n
c
re

a
s
e
 (

%
)

3
3
7
.8

8
5
.7

8
4
.4

6
8
.2

Lifted Opt POpt PPOpt

HT KM LR MM SM GMean

Figure 16. Code size increase, in terms of LLVM
instructions, relative to the native compilation in Arm.

in
st

co
m

bi
ne dc

e

ad
ce

lic
m

re
as

so
ci
at

e
gv

n

m
em

2r
eg

sr
oa

sc
cp

ip
sc

cp ds
e

0

10

20

30

40

50

C
o
d

e
 R

e
d

u
c
ti

o
n

 (
%

)

Figure 17. Code reduction on the kmeans benchmark
with each optimization pass in isolation.

9.4 Overall Impact on Code Size

We analyze the difference in code size of the lifted LLVM
bitcode with respect to the native version in Figure 16. All
versions of lifted LLVM bitcode are larger than their native
counterpart. The existing LLVMoptimizations alone are capa-
ble of greatly reducing the size of the lifted code,with an 84.4%
increase on average. However, the fully optimized version
PPOpt is the smallest among all the translated versions, with a
68.2% increaseonaverage.This reduction is a result of thecom-
bined effort of removing integer-pointer casting operations,
inserting fewer fences, and the existing LLVM optimizations.

We also study the individual impact of optimization passes
on the number of instructions on the kmeans program in
Figure 17. We apply each optimization in isolation on the
lifted LLVM bitcode after applying our IR refinement and
the optimized fence placement. We report only the most im-
pactful ones, as some of the optimizations either have no
impact or result in a small code size bloat. However, some
of the unreported optimizations might still be present in the

899

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

standard optimization pipeline, since they could improve run
time performance. The fourmost impactful optimizations are:
instcombine, LLVM’s general peephole optimizations; dce
and adce, basic and aggressive dead-code elimination; and
licm, loop invariant code motion. These four optimizations
alone reduce the total number of instructions, in the lifted
LLVM bitcode, by at least 35%.

10 RelatedWork

Concurrency Semantics. Correct and optimized compila-
tion of concurrency in programming languages is a well stud-
ied problem [5, 10, 11, 18, 29, 32, 50, 51, 61, 64]. These models
differ from LIMM in concurrency primitives and semantics.
Considering the primitives, there is a semantic gap between
the non-SC fences in C/C++/LLVM andArm. Podkopaev et al.
[51] propose an intermediate semantic model IMM that mod-
els C/C++ primitives. IMM use dependency-based ordering,
which disallowsmany dependency-breaking LLVM optimiza-
tions. As our proposed model (LIMM) has no dependency-
basedordering,wecansafelyapply thoseoptimizations.What
limits IMM for our use-case is two-fold: (1) Implementing
the IMM-specified dependency-based-ordering checking is
non-trivial. (2) LLVM optimizations have to be restricted to
preserve correctness in the presence of dependencies.
In C/C++ models [11, 17, 18, 29, 32], data races result in

undefined behavior . In LLVM, read-write race has defined
behavior where the racy read returns undef and write-write
races result inundefinedbehavior [17]. LIMMis closer tohard-
ware memory models and has no undefined behavior. Kang
et al. [29] is an operational model and [18] uses event struc-
ture to reason about multiple executions together whereas
LIMM follows per-execution based semantics.
Program transformations under weak memory models

have also beenvastly explored [16ś18, 27, 29, 36, 47, 62, 63, 71].
We analyze transformation correctness on IR concurrency
model and use the same model to enable mappings between
twodifferentmemorymodels, namely, x86 andArm.We show
the differences between x86 and Armmemory models, and
then propose and prove correct an precise mapping scheme
between them through proposed IR model.

Memory Semantics Enforcement. Robustness or stability
based approaches check, by exploring executions, if a given
program is SC-robust/stable againstweakermodels, inserting
fences otherwise [1, 3, 13, 15, 31, 35, 37ś39, 44, 49, 66]. Instead,
we define a mapping scheme for translation tools that is valid
for all programs and enforces x86 model instead of SC.

Binary Lifting.A number of static binary lifters target the
LLVM IR [9, 12, 14, 67, 73] for analysis and transformation.
Previouswork provided correct translations for SIMD [24, 25]
or floating point instructions [25, 75]. However, these trans-
lation tools do not support concurrency.

McSema is a static binary translator that uses LLVM as its
intermediate representation. Although McSema significantly

covers x86 features, it is unable to correctly handle concur-
rency. Our solution could also be implemented in other static
binary translators such asMcSema.However,we chosemctoll

because it is fully open-source, whereas McSema requires
third-party commercial components.

Dynamic Binary Translation. Binary lifting is also used
in a dynamic context, with cross-architecture binary or sys-
tem emulation [7, 19, 22, 25, 26, 43, 72, 74]. ArMOR [43] pro-
poses a framework to specify, compare and translate between
memory consistency models, in a over-conservative manner.
However, it lacks support for dependence-based orderings
and RMW accesses in Arm. Pico [19] follows the ArMOR trans-
lation for POWER to x86 translation. However, Pico does not
provide any formal guarantee of correctness. Lasagne differs
in its static approach, but we also analyze dependence-based
orderings and RMW accesses, while also providing a precise
mapping from x86 to ARMv8 .
Rosetta 2 is a commercial tool for Apple Silicon [7] that

translates x86 programs to theArm ISA,where x86 ordering is
enforced byApple hardware [28]. Rosetta uses both static and
dynamic translation. We are unable to compare with Rosetta
2, as it is not open-source and very little details have been
made public. Concurrency-wise, Rosetta 2 handles the mem-
orymodelmismatch by implementing bothArmand x86-TSO
models in hardware, whereas Lasagne is a purely software-
based solution. Moreover, Rosetta is platform-dependent (OS
XandAppleM1chips), preventingus fromrunningourbench-
marks targeting Linux ELF.

Peephole Optimizations. Peephole optimization is a well-
known technique used by optimizing compilers. Peephole
optimizations identify certain code patterns and replace them
with more efficient pieces of code [21, 45, 69]. Compilers may
apply peephole transformations at different levels, for ma-
chine independent as well as for machine specific optimiza-
tions. Efforts have also been made to prove the correctness
of peephole optimizations [41, 48].

11 Conclusion

In this paper, we present Lasagne, a static binary translator
for weak memory model architectures. Lasagne is able to lift
x86 binaries to LLVM IR and then compile it to Arm while
enforcing the x86 memory ordering model. We provide for-
mally verified mappings from x86 to LLVM IR to Arm and
transformations on the IR, as well as peephole optimizations
that drastically reduce the resulting binary’s size and enable
LLVM optimizations. We evaluate Lasagne and show that it
generates efficient code in terms of size and performance.

Acknowledgments

We thank S. Bharadwaj Yadavalli for reviewing our patches to
mctoll. We thank James Bornholt for shepherding our paper.
This work was supported by a UK RISE Grant.

900

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA R. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty, P. Bhatotia

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lång, and

Tuan Phong Ngo. 2015. Precise and Sound Automatic Fence Insertion

Procedure under PSO. In NETYS (Lecture Notes in Computer Science,

Vol. 9466). 32ś47. https://doi.org/10.1007/978-3-319-26850-7_3

[2] Agda Development Team. 2021. Agda 2.6.2 documentation.

https://agda.readthedocs.io/en/v2.6.2/

[3] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl.

2017. Don’t Sit on the Fence: A Static Analysis Approach to Automatic

Fence Insertion. ACM Trans. Program. Lang. Syst. 39, 2 (2017), 6:1ś6:38.

https://doi.org/10.1145/2994593

[4] Jade Alglave and Luc Maranget. 2022. herd7 consistency model

simulator. http://diy.inria.fr/www/.

[5] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding

cats: modelling, simulation, testing, and data-mining for weak

memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1ś7:74.

https://doi.org/10.1145/2627752

[6] F. E. Allen and J. Cocke. 1976. A Program Data Flow Anal-

ysis Procedure. Commun. ACM 19, 3 (mar 1976), 137.

https://doi.org/10.1145/360018.360025

[7] Apple. 2021. Rosetta 2 on a Mac with Apple silicon.

https://support.apple.com/fr-fr/guide/security/secebb113be1/web.

[8] Apple. 2022. Porting Your macOS Apps to Apple Silicon.

https://developer.apple.com/documentation/apple-silicon/porting-

your-macos-apps-to-apple-silicon.

[9] avast. 2022. A retargetable machine-code decompiler based on LLVM.

https://github.com/avast/retdec.

[10] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar,

and Peter Sewell. 2012. Clarifying and compiling C/C++ con-

currency: From C++11 to POWER. In POPL’12. ACM, 509ś520.

https://doi.org/10.1145/2103621.2103717

[11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In POPL’11. ACM, 55ś66.

https://doi.org/10.1145/1926385.1926394

[12] Lifting Bits. 2022. Framework for lifting x86, amd64, and aarch64

program binaries to LLVM bitcode. https://github.com/lifting-

bits/mcsema.

[13] Ahmed Bouajjani, Egor Derevenetc, and RolandMeyer. 2013. Checking

and Enforcing Robustness against TSO. In ESOP 2013. 533ś553.

https://doi.org/10.1007/978-3-642-37036-6_29

[14] Ahmed Bougacha. 2022. Binary Translator to LLVM IR.

https://github.com/repzret/dagger.

[15] Soham Chakraborty. 2021. Robustness betweenWeakMemory Models.

In FMCAD’21. 173ś182.

[16] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimiza-

tions of concurrent C/C++ programs. In CGO’16. ACM, 216ś226.

https://doi.org/10.1145/2854038.2854051

[17] Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the

Concurrency Semantics of an LLVM Fragment. In CGO ’17. IEEE,

100ś110. https://doi.org/10.1109/CGO.2017.7863732

[18] Soham Chakraborty and Viktor Vafeiadis. 2019. Ground-

ing Thin-Air Reads with Event Structures. 3, POPL (2019).

https://doi.org/10.1145/3290383

[19] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017.

Cross-ISAMachine Emulation for Multicores. In CGO’2017. IEEE Press,

210ś220. https://doi.org/10.1109/CGO.2017.7863741

[20] Thaís Damásio, Vinícius Pacheco, Fabrício Goes, Fernando Pereira,

and Rodrigo Rocha. 2021. Inlining for Code Size Reduction. In SBLP’21

(Joinville, Brazil). Association for Computing Machinery, New York,

NY, USA, 17ś24. https://doi.org/10.1145/3475061.3475081

[21] Jack W. Davidson and Christopher W. Fraser. 1980. The De-

sign and Application of a Retargetable Peephole Optimizer.

ACM Trans. Program. Lang. Syst. 2, 2 (April 1980), 191ś202.

https://doi.org/10.1145/357094.357098

[22] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching

Chung. 2011. PQEMU: A Parallel System Emulator Based on QEMU.

In ICPADS’11. 276ś283. https://doi.org/10.1109/ICPADS.2011.102

[23] Andrei Frumusanu. 2020. Amazon’s Arm-based Graviton2

Against AMD and Intel: Comparing Cloud Compute ś Anandtech.

https://www.anandtech.com/show/15578/cloud-clash-amazon-

graviton2-arm-against-intel-and-amd.

[24] Sheng-Yu Fu, Ding-Yong Hong, Yu-Ping Liu, Jan-Jan Wu, and

Wei-Chung Hsu. 2018. Efficient and retargetable SIMD translation in

a dynamic binary translator. Software: Practice and Experience 48, 6

(2018), 1312ś1330. https://doi.org/10.1002/spe.2573

[25] Yu-Chuan Guo, Wuu Yang, Jiunn-Yeu Chen, and Jenq-Kuen Lee.

2016. Translating the ARM Neon and VFP instructions in a binary

translator. Software: Practice and Experience 46, 12 (2016), 1591ś1615.

https://doi.org/10.1002/spe.2394

[26] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu,

Wei-Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching

Chung. 2012. HQEMU: A Multi-Threaded and Retargetable

Dynamic Binary Translator on Multicores. In CGO’12. 104ś113.

https://doi.org/10.1145/2259016.2259030

[27] Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an

Event Structures Model of Relaxed Memory. In LICS 2016. 759ś767.

https://doi.org/10.23638/LMCS-15(1:33)2019

[28] Saagar Jha. 2020. TSOEnabler ś Kernel extension that enables TSO for

Apple silicon processes. https://github.com/saagarjha/TSOEnabler.

[29] Jeehoon Kang, Hur, Chung-Kil, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In POPL’17. ACM. https://doi.org/10.1145/3093333.3009850

[30] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,

Steve Zdancewic, and Viktor Vafeiadis. 2015. A formal C memory

model supporting integer-pointer casts. In PLDI 2015. ACM, 326ś335.

https://doi.org/10.1145/2813885.2738005

[31] Ori Lahav and Roy Margalit. 2019. Robustness against re-

lease/acquire semantics. In PLDI 2019. 126ś141. https:

//doi.org/10.1145/3314221.3314604

[32] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In PLDI

2017. 618ś632. https://doi.org/10.1145/3062341.3062352 Technical

Appendix Available at https://plv.mpi-sws.org/scfix/full.pdf.

[33] Leslie Lamport. 1979. How toMake a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Trans. Computers

28, 9 (1979), 690ś691. https://doi.org/10.1109/TC.1979.1675439

[34] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy

Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming

undefined behavior in LLVM. In PLDI 2017, Albert Cohen and Martin T.

Vechev (Eds.). ACM, 633ś647. https://doi.org/10.1145/3062341.3062343

[35] J. Lee and D. A. Padua. 2001. Hiding relaxed memory consis-

tency with a compiler. IEEE Trans. Comput. 50, 8 (2001), 824ś833.

https://doi.org/10.1109/PACT.2000.888336

[36] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,

Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0:

Global Optimizations in RelaxedMemory Concurrency. In PLDI 2020.

362ś376. https://doi.org/10.1145/3385412.3386010

[37] Alexander Linden and Pierre Wolper. 2011. A Verification-Based

Approach to Memory Fence Insertion in Relaxed Memory Systems.

In SPIN’11. 144ś160. https://doi.org/10.1007/978-3-642-22306-8_10

[38] Alexander Linden and Pierre Wolper. 2013. A Verification-Based

Approach to Memory Fence Insertion in PSO Memory Systems. In

TACAS. https://doi.org/10.1007/978-3-642-36742-7_24

[39] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and

Eran Yahav. 2012. Dynamic Synthesis for Relaxed Memory Models.

In PLDI ’12. 429ś440. https://doi.org/10.1145/2345156.2254115

[40] Yu-Ping Liu, Ding-Yong Hong, Jan-Jan Wu, Sheng-Yu Fu, and

Wei-Chung Hsu. 2019. Exploiting SIMDAsymmetry in ARM-to-X86

Dynamic Binary Translation. ACM Trans. Archit. Code Optim. 16, 1,

901

https://doi.org/10.1007/978-3-319-26850-7_3
https://agda.readthedocs.io/en/v2.6.2/
https://doi.org/10.1145/2994593
http://diy.inria.fr/www/
https://doi.org/10.1145/2627752
https://doi.org/10.1145/360018.360025
https://support.apple.com/fr-fr/guide/security/secebb113be1/web
https://developer.apple.com/documentation/apple-silicon/porting-your-macos-apps-to-apple-silicon
https://developer.apple.com/documentation/apple-silicon/porting-your-macos-apps-to-apple-silicon
https://github.com/avast/retdec
https://doi.org/10.1145/2103621.2103717
https://doi.org/10.1145/1926385.1926394
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://doi.org/10.1007/978-3-642-37036-6_29
https://github.com/repzret/dagger
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1109/CGO.2017.7863732
https://doi.org/10.1145/3290383
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1145/3475061.3475081
https://doi.org/10.1145/357094.357098
https://doi.org/10.1109/ICPADS.2011.102
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://doi.org/10.1002/spe.2573
https://doi.org/10.1002/spe.2394
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.23638/LMCS-15(1:33)2019
https://github.com/saagarjha/TSOEnabler
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/2813885.2738005
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352
https://plv.mpi-sws.org/scfix/full.pdf
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1109/PACT.2000.888336
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1007/978-3-642-22306-8_10
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1145/2345156.2254115

Lasagne: A Static Binary Translator forWeakMemoryModel Architectures PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Article 2 (feb 2019), 24 pages. https://doi.org/10.1145/3475061.3475081

[41] NunoP. Lopes,DavidMenendez, SantoshNagarakatte, and JohnRegehr.

2015. Provably Correct Peephole Optimizations with Alive. In PLDI’15

(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery,

New York, NY, USA, 22ś32. https://doi.org/10.1145/2737924.2737965

[55]]system-v-2021 H.J. Lu, Michael Matz, Milind Girkar, Jan Hubička,

Andreas Jaeger, and Mark Mitchell. [n. d.]. System V Application

Binary Interface. https://gitlab.com/x86-psABIs/x86-64-ABI/-

/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf

[43] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret

Martonosi. 2015. ArMOR: Defending against Memory Consistency

Model Mismatches in Heterogeneous Architectures. In ISCA’15.

388ś400. https://doi.org/10.1145/2749469.2750378

[44] Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness

against a C11-Style MemoryModel. Proc. ACM Program. Lang. 5, POPL,

Article 4 (2021). https://doi.org/10.1145/3434285

[45] W. M. McKeeman. 1965. Peephole Optimization. Commun. ACM 8,

7 (July 1965), 443ś444. https://doi.org/10.1145/364995.365000

[46] Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe. 2019.

Revec: Program Rejuvenation through Revectorization. In CC’19

(Washington, DC, USA). Association for Computing Machinery, New

York, NY, USA, 29ś41. https://doi.org/10.1145/3302516.3307357

[47] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli.

2013. Compiler testing via a theory of sound optimisations

in the C11/C++11 memory model. In PLDI’13. ACM, 187ś196.

https://doi.org/10.1145/2499370.2491967

[48] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman.

2016. Verified Peephole Optimizations for CompCert. In Conference

on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). Association for Computing Machinery, New York,

NY, USA, 448ś461. https://doi.org/10.1145/2908080.2908109

[49] Jonas Oberhauser, R. Chehab, Diogo Behrens, Ming Fu, A. Paolillo,

Lilith Oberhauser, Koustubha Bhat, YuzhongWen, Haibo Chen, Jaeho

Kim, and Viktor Vafeiadis. 2021. VSync: push-button verification and

optimization for synchronization primitives on weak memory models.

ASPLOS’21 (2021). https://doi.org/10.1145/3445814.3446748

[50] Gustavo Petri, Jan Vitek, and Suresh Jagannathan. 2015. Cooking the

Books: Formalizing JMM Implementation Recipes. In ECOOP 2015,

Vol. 37. 445ś469. https://doi.org/10.4230/LIPIcs.ECOOP.2015.445

[51] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridg-

ing the Gap between Programming Languages and Hardware

Weak Memory Models. Proc. ACM Program. Lang. 3, POPL (2019).

https://doi.org/10.1145/3290382

[52] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W.

Góes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vec-

torization for Code Sequences Containing Operators and Their Inverse

Elements. InCGO 2019 (Washington, DC, USA). IEEE Press, Piscataway,

NJ, USA, 206ś216. https://doi.org/10.1109/CGO.2019.8661192

[53] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes.

2018. VW-SLP: Auto-vectorization with Adaptive Vector Width.

In PACT ’18. ACM, New York, NY, USA, Article 12, 15 pages.

https://doi.org/10.1145/3243176.3243189

[54] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit

Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency:

multicopy-atomic axiomatic and operational models for ARMv8.

PACMPL 2, POPL (2018), 19:1ś19:29. https://doi.org/10.1145/3158107

[55]]qemu QEMU. [n. d.]. the FAST! processor emulator.

https://www.qemu.org/.

[56] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R. Bradski,

and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-core

and Multiprocessor Systems. InHPCA. IEEE Computer Society, 13ś24.

https://doi.org/10.1109/HPCA.2007.346181

[57] Rodrigo C. O. Rocha, Pavlos Petoumenos, Björn Franke, Pramod Bha-

totia, andMichael O’Boyle. 2022. Loop Rolling for Code Size Reduction.

In CGO’22. 217ś229. https://doi.org/10.1109/CGO53902.2022.9741256

[58] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Mur-

ray Cole, Kim Hazelwood, and Hugh Leather. 2021. HyFM:

Function Merging for Free. In LCTES’21 (Virtual, Canada). Asso-

ciation for Computing Machinery, New York, NY, USA, 110ś121.

https://doi.org/10.1145/3461648.3463852

[59] Rodrigo C. O. Rocha, Pavlos Petoumenos, ZhengWang, Murray Cole,

and Hugh Leather. 2019. Function Merging by Sequence Alignment.

In CGO’19 (Washington, DC, USA). IEEE Press, Piscataway, NJ, USA,

149ś163. https://doi.org/10.1109/CGO.2019.8661174

[60] Rodrigo C. O. Rocha, Pavlos Petoumenos, ZhengWang, Murray Cole,

and Hugh Leather. 2020. Effective Function Merging in the SSA Form.

In PLDI’20 (London, UK). Association for Computing Machinery, New

York, NY, USA, 854ś868. https://doi.org/10.1145/3385412.3386030

[61] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter

Sewell, Luc Maranget, Jade Alglave, and Derek Williams. 2012.

Synchronising C/C++ and POWER. In PLDI’12. ACM, 311ś322.

https://doi.org/10.1145/2254064.2254102

[62] Jaroslav Sevcík. 2011. Safe optimisations for shared-

memory concurrent programs. In PLDI 2011. 306ś316.

https://doi.org/10.1145/1993498.1993534

[63] Jaroslav Sevcík and David Aspinall. 2008. On Validity of Program

Transformations in the Java Memory Model. In ECOOP 2008. 27ś51.

https://doi.org/10.1007/978-3-540-70592-5_3

[64] JaroslavSevcik andPeter Sewell. 2016. C/C++11mappings toprocessors.

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.

[65] Agam Shah. 2021. We’re closing the gap with Arm and x86, claims

SiFive: New RISC-V CPU core for PCs, servers, mobile incoming ś The

Register. https://www.theregister.com/2021/10/21/sifive_riscv_cpu/.

[66] Dennis E. Shasha andMarc Snir. 1988. Efficient and Correct Execution

of Parallel Programs that Share Memory. ACM Trans. Program. Lang.

Syst. 10, 2 (1988), 282ś312. https://doi.org/10.1145/42190.42277

[67] Bor-Yeh Shen, Jiunn-Yeu Chen,Wei-Chung Hsu, andWuu Yang. 2012.

LLBT: An LLVM-Based Static Binary Translator. In CASES 2012. 51ś60.

https://doi.org/10.1145/2380403.2380419

[68] Tom Spink, Harry Wagstaff, and Björn Franke. 2019. A Re-

targetable System-Level DBT Hypervisor. In USENIX An-

nual Technical Conference. USENIX Association, 505ś520.

https://doi.org/10.1145/3302516.3307357

[69] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Steven-

son. 1982. Using Peephole Optimization on Intermediate

Code. ACM Trans. Program. Lang. Syst. 4, 1 (Jan. 1982), 21ś36.

https://doi.org/10.1145/357153.357155

[70] Linda Torczon and Keith Cooper. 2007. Engineering A Compiler (2nd

ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

https://doi.org/10.1109/CGO51591.2021.9370308

[71] ViktorVafeiadis, ThibautBalabonski, SohamChakraborty, RobinMoris-

set, and Francesco Zappa Nardelli. 2015. Common Compiler Optimisa-

tions are Invalid in the C11 MemoryModel and what we can do about

it. In POPL’15. ACM, 209ś220. https://doi.org/10.1145/2676726.2676995

[72] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua

Zhang, andBinyuZang. 2011. COREMU: a scalable andportable parallel

full-system emulator. In PPOPP’11, Calin Cascaval and Pen-Chung Yew

(Eds.). 213ś222. https://doi.org/10.1145/1941553.1941583

[73] S. Bharadwaj Yadavalli and Aaron Smith. 2019. Raising Binaries

to LLVM IR with MCTOLL (WIP Paper). In LCTES 2019. 213ś218.

https://doi.org/10.1145/3316482.3326354

[74] Jiunn yeu Chen,Wuu Yang, Charlie Su, andWei Chung Hsu. 2008. A

static binary translator for efficient migration of ARM-based applica-

tions. InWorkshop on Optimizations for DSP and Embedded Systems.

[75] Yi-Ping You, Tsung-Chun Lin, and Wuu Yang. 2019. Translating

AArch64 Floating-Point Instruction Set to the X86-64 Platform. In ICPP.

https://doi.org/10.1145/3339186.3339192

902

https://doi.org/10.1145/3475061.3475081
https://doi.org/10.1145/2737924.2737965
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1145/3434285
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.4230/LIPIcs.ECOOP.2015.445
https://doi.org/10.1145/3290382
https://doi.org/10.1109/CGO.2019.8661192
https://doi.org/10.1145/3243176.3243189
https://doi.org/10.1145/3158107
https://www.qemu.org/
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1109/CGO53902.2022.9741256
https://doi.org/10.1145/3461648.3463852
https://doi.org/10.1109/CGO.2019.8661174
https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993534
https://doi.org/10.1007/978-3-540-70592-5_3
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.theregister.com/2021/10/21/sifive_riscv_cpu/
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/357153.357155
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3339186.3339192

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Concurrency in Architectures
	2.2 Binary Lifting
	2.3 Motivation: Translation for Concurrent Binaries

	3 Overview
	4 Binary Lifting
	4.1 Function Type Discovery
	4.2 Instruction Translation

	5 IR Refinement
	5.1 Exposing Pointers via Peephole Optimizations
	5.2 Promoting Pointer Parameters

	6 LIMM: Concurrency Memory Model
	6.1 Axiomatic Model of Concurrency
	6.2 Comparing x86 and Arm Concurrency Models
	6.3 IR Concurrency Model

	7 Translation Correctness
	7.1 Mapping Correctness
	7.2 Correctness of Optimizing Transformations
	7.3 Adopting LLVM Semantics

	8 Implementing LIMM Translations
	9 Evaluation
	9.1 Experimental Setup
	9.2 Overall Runtime Performance
	9.3 Understanding the Impact of Each Optimization
	9.4 Overall Impact on Code Size

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

