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ABSTRACT

The present sh‘ell research activities at the Faculty of Aerospace Engineering of the Delft University
of Technology and at other private institutes and (semi) governmental agencies all over the world are
directed towards the development of improved shell design criteria, which incorporate the latest
theoretical findings -and makes efficient use of the currently available computational facilities.

. The establishment of an International Imperfection Data Bank is discussed. Characteristic initial
imperfection distributions associated with different fabrication techniques are shown.

Using the first-oder, second-moment analysis, a stochastic. method is presented, whereby the
stability of isotropic, orthotropic and anisotropic nominally ciréular cylindrical shells under axial
compression, external pressure and/or torsion possessing general nonsymmetric random initial
imperfections can be evaluated. Results of measurements of initial imperfections are represehted in
Fourier series and the Fourier coefficients are used to construct the second-order statistical properties
needed. The computation of the buckling loads is done with the computer codes SRA [1] and STAGS [2]
and include a rigorous satisfaction of the experimental boundary conditions.

It is shown that the proposed stochastic approach provides a means to combine the latest
theoretical findings with the practical experiences spanning about 75 years in an optimal manner via the
advanced computational facilities currently available.
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1. INTRODUCTION

With the arrival of the era of supercomputing there is a tendency to replac_e the relatively expensive
experimental investigations by numerical simulation. The use of large general burpose computer codes
for the analysis of different types of aerospace, marine and civil engineering structures is by now well
accepted. These programs have been used successfully to calculate the stress and deformation patterns
of very complicated structural configurations with the accuracy demanded in engineering analysis.

However there exist numerous complex physical phenomena where only a combined experimental,
analytical and numerical procedure can lead to an acceptable solution. One such problem is the
prediction of the behaviour of buckling sensitive structures under the different loading ponditions that can
occur in everyday usage.

The axially compressed cylindrical shell represents one of the best known examples of the very
complicated stability behaviour which can occur with thin-walled structures. For thin shells that buckle
elastically initial geometric imperfections [3,4] and the effect of different boundary conditions [5,6,7] have
been identiﬁed as the main cause for the wide scatter of the experimental results. However, this
knowledge has not been, as yet, incorporated into the current shell design manuals.

These design recommendations [8,9,10] all adhere to the so-called "Lower Bound Design

P'hilosophy" and as such recommend the use of the following buckling formula

Y : 1
P s_t_Pp (1)
8 g cmt
where
Pa = allowable applied load

Pcrﬂ = lowest buckling load of the perfect structure
Y == "knockdown factor"
F.S. =factor of safety

The empirical knockdown factor Y is so chosen that when it is multiplied with Pcrit' the lowest buckling
load of the perfect structure, a lower bound to all available experimental data is chtained. For isotropic shells
under axial compression this a::=::ach yields the lower bound curve shown in Figure 1.

It has been hoped that with the large scale introduction of advanced computer codes, which incorporate
the latest theoretical findings, an alternate design approach could be developed which would no longer
penalize innovative shell design because of the poor experimental results obtained elsewhere.

The main difficulty in applying these new analysis procedures lies in the fact that they require some
advanced knowledge of the initial geometric imperfections of the structure under consideration, which is
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rarely available. For a prototype the imperfections can be measured experimentally and then they can be
incorporated into the theoretical analysis to predict the buckling load accdrately. This approach, however, is
impractical for the prediction of the buckling load of shells manufactured in normal production runs. The best
one can hope to do for these shells is to establish the characteristic initial imperfection distribution [12,1'3,14]
which a given fabrication process is likely to produce, and then to combine this information with some kind of
statistical analysis of both the initial imperfections and the corresponding critical loads, a kind of Statistical

Imperfection-Sensitivity Analysis.
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Fig. 1. Test data for isotropic cylinders under axial compression [11]

The central goal of the shell research currently being carried out at the Faculty of Aerospace
Engineering of the TU-Delit is the development of such "Improved Shell Design Criteria". The improvements
with respect to the presently recommended shell design procedures are primarily sought in a more selective
approach by the definition of the "knockdown" factor Y. Thus, for instance, if a company takes great care in
producing its shells very accurately, and if it can show experimentally that the boundary conditions are
defined in such a way that no additional imperfections (especially at the shell edges) are introduced, then the
use of an improved (higher) "knockdown" factor %Y derived by a stochastic approach should be allowed. The

proposed new Improved Shell Design Procedure can be represented by the following formula

}»a .
Pa s—_P (2)

F.s. ©

where



Pa = allowable applied load,

Pc = lowest buckling load of the “perfect” structure computed via one of the shell codes

;”a = reliability based improved (higher) "knockdown" factor

F.S. =factor of safety.

The steps involved in the derivation of such a reliability based improved (higher) "knockdown" factor Ka

are the subject of this paper.

2. CHARACTERISTIC IMPERFECTION DISTRIBUTIONS

The use of the proposed Statistical Imperfection-Sensitivity Analysis depends strongly on the availability

of the so-called characteristic initial imperfection distributions. Thus the critical question is:

‘Can one associate characteristic initial imperfection distributions

with a specified manufacturing process?’

That the answer to this question is an unconditional yes will be demonstrated by a few examples.

t

.

Q

)

(
(

Circumferential angle (radians)

Fig.2 Measured initial shape of the stringer stiffened shell AS-2 [15)

2.1 Laboratory scale shells
Figure 2 shows the measured initial imperfections of the integrally stringer stiffened aluminium sheli AS-
2, which has been tested at Caltech [15]. Figure 3 shows the measured initial imperfections of a similar shell

KR-1 tested at Technion [13]. For  further analysis the measured initial imr:arfections
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Fig. 3 Measured initial shape of the stringer stiffened shell KR-1 [13]

are decomposed in a half-wave sine Fourier series

n n
1 M2
Wixy)=h = = sin¥%(c cos¥,p  sind) (3)
s Y °R TR TR |

For the sake of corhparison Figures 4 and 5 display the variation of the measured half-wave .sine Fourier
coefficients as a function of the circumferential wave numbers (2) for selected axial half-wave numbers (k)
for the shells AS-2 and KR-1. As one can see in both cases the amplitudes of the Fourier coefficients decay
with increasing wave numbers both in the axial and in the circumferential directions. The Donnell-imbert [16]

analytical imperfection model

= ]/ 2 2 X | -
gk!l.= Gk!;'*Dk!.= r,s @

k &

where the coefficients X, r and s are determined by least-square fitting the measured imperfection data
displayed in Figures [4] and [5], represents the variation of the harmonic components with axial (k) and
circumferential (£) wave numbers satisfactorily. Since both shells were machined out of seamless thick

walled 7075-T6 aluminium alloy tubihg, therefore the imperfection model given by Eq. (4) représents the
characteristic imperfection distribution for this fabrication procesé.
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Fig. 4 Circumferential variation of the half-wave sine Fourier representation (Shell AS-2)
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Fig.5 Circumferential variation of the half-wave sine Fourier representation (Shell KR-1)



2.2 Full scale shells

Tuming now to large scale or full scale shells, Figure 6 showsv the 3-dimensional plot of the measured
initial imperfections of a large scale shell (945.8 mm radius, 0.635 mm wall-thickness, 2743.2 mm length)
tested at the Georgia Institute of Technology [17]. This shell was assembled from six identical longitudinal
panels and reinforced by 312 closely spaced Z-shape stringers on the inside. One edge of each panel was
joggled and two stringers were riveted along each joint line. As can be seen from Figure 7 the shell was held
- circular by means of heavy rolled [-shape extermnal frames located 3.175 mm from each shell end. In addition
7 Z-shape equally spaced rings were riveted to the outer skin. As can be seen from Figure 8 the amplitudes
of the Fourier harmonics with a single half-wave in the axial direction have two distinct maxima, one at =2
(out of roundness) and another at £ = 6 (number of panels the shell is. assembled from). The Fourier
coefficients with more than a single-half-wave in the axial direction are in comparison much smaller.

In the last few years the Solid Mechanics Group of the Faculty of Aerospace Engineering at the Delft
University of Technology has carried out a numbér of imperfection surveys on the Ariane interstage Vil and
/1l shells [18). Figure 9 shows the 3-dimensional pldt of the Ariane interstage V1l shell AR23-1 (1300.0 mm
radius, 1.2 mm wall-thickness, 2730.0 mm length). These shells are assembled out of eight identical
longitudinal panels. The joints between adjacent panels are-joggled and one of the 120 equally spaced hat-
shape stringers are riveted along the'joint line on the outside. The shells are held circular by two precision-
machined end-rings on the outside and five equally spaced [-shape rings on the inside. As can be seen from
Figure 10 the amplitudes of the Fourier harmonics with a single half-wave in ihé axial direction this time have
a distinct maxima at £ = 8 (which corresponds io the number of panels the shell is assembled from). There
is also a sizeable £ = 2 (out of roundness) component.-All other Fourier coefficients are in comparison.much
smaller. ' '

- Thus, as has been pointed out by the first author in a recent survey lecture [12] it appears from the
results presented in Figures 8 and 10 that for full-scale aerospace shells assembled out of a fixed number of
curved panels the initial imperfections will be dominated by two components only, if the joints are riveted.
Using the half-wave sine axial representation both components will have a single half-wave in the axial
direction and, respectively, two and Np full-waves in the circumferential direction, whelje Np is the number of
full-length panels out of which the shelll is assembled. By using accurately machined rigid end rings the §=2
(out of roundness) component can be significantly reduced in siz_e. The variation of the measured Fourier

coefficients with axial half-wave (k) and circumferential full wave (1) numbers can be approximated by
expressions of type:

X X
= 2 2 1 1 2
= +D , =—{ + } (5)
R R 2 (1, 9)%420,17 |
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where the coefficients §1, >—(2. r,i 1 4 Py g 4 and §2 are determined by least-square fitting the measured data
displayed in figures 8 and 10. Thus EqUation (5) represents the characteristic imperfection distribution of full-

scale aerospace shells assembled out of a fixed number of full-length panels by riveted joints.

ba g

% W
w\g"\g e:’}R

Fig. 6 Measured initial shape of Horton's shell HO-1 17]

Fig. 7 Construction details of Horton's shell HO-1
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Fig. 9 Measured initial shape of the ARIANE Shell AR23-1 [18]
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Fig. 10 Circumferential variation of the half-wave sine Fourier representation (Shell AR23-1)
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The above examples demonstrate unequivocally that indeed characteristic initial imperfection
distributions can be associatevd with the different fabrication processes. It must also be clear that further
advances towards more accurate buckling load predictions of thin shells depend on the availability of
extensive information about realistic imperfections and their correlation with manufacturing processes.
Hence the need for the establishment of an International Imperfection Data Bank.

The purpose of creating this International Imperfecticsi Data Bank is twofoid:

1. All the imperfection data obtained at different laboratories by different investigators are presented in
identical format.

This makes the comparison and the critical evaluation possible resulting in characteristic imperfection

distributions for the different manufacturing prbcesses used.

2. For those who want to use the powerful nonlinear shell analysis codes on today's supercomputers the
much needed realistic imperfection distributions are made available.

Besides contributions by Caltech, the TU-Delft and Technion the International Impertection Data Bank
contains the results of initial imperfection surveys carried out at the University of Glasgow [19], at Det Norske
Veritas [20] and others.

3. STOCHASTIC STABILITY ANALYSIS

3.1 Some general concepts
it has been demonstratzd in the previous chapter that, indeed, one can associate characteristic initial
imperfection distributions with the different fabrication processes (see also Refs. 12, 13 and 14). The
question then arises
“Given a Characteristic Initial Imperfection Distribution, how does one proceed

to incorporate this knowledge into a Systematic Design Procedure?”

Since initial imperfections are obviously random in nature some kind of Stochastic Stability Analysis is
called for. The buckling of imperfection sensitive structures with small random initial imperfections has been
studied by several investigators like Bolotin [21], Fraser and Budianski [22], Amazigo [23], Roorda [24] and
Har:n [25], to name just a few. In the absencé of experimental evidence about the type of imperfections
that occur in practice and in order to reduce the mathematica; complexity of the problem all the above
named investigators' have worked with some form of idealized imperfection distribution.

In 1979 Elishakoff [26] proposed a generalization of the above methods which makes it possible to
introduce the results of the experimentally measured initial imperfections routinely into the analysis. The
proposed approach is based on the notion of a reliability function R(A), where by definition
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R(A) = Prob (A 2 1) , (6)
and

A = normalized load parameter (= P/Pc ) )
A = normalized random buckling load

R{A)=Prob{A.2))

1,0 =

-5
0. "Pc;

Fig. 11 Reliability function R(A) for a given R/h ratio

‘As can be seen from Fig. 11 the knowledge of the reliability function permits the evaluation of the
allowable load, defined as the load level la for which the desired reliability is achieved, for a whole ensemble
of similar shells produced by a given manufacturing pro;:ess. Notice that the allowable load level )‘a is
identical to the improved (higher) "knockdown" factor introduced in Eq. (2).

Initially Elishakoff suggested to utilize the Monte Carlo Method to obtain the reliability function R(X) fora
certain shell structure produced by a given fabrication procéss. In later papers it was shown that by replacing
the Monte Carlo Method by the First Order, Second-Moment Method [27] the number of deterministic
buckling Ioad calculations neéded to derive the reliability function R(A) is greatly reduced (from, say, 1089 to
13). | | |

in the preseht paper it will be shown that by using the first-order, second-moment method [27,28] it is
possible to develop a simple but rational method for checking the reliability of orthotropic shells using some
statistical measures of the imperfections involvéd, and to provide an estimate of the structural reliability

whereby also the boundary conditions are rigorously enforced.

3.2 First-Order, Second-Moment Method

The first-order, second-moment method is based on the state equation
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where the nature of the so-called performance function Z(...) depends on the type of structure and the limit
state considered, and where the basic random variables Xi are the Fourier coefficients of the initial

imperfections. According to the definition the equation

Z=0 | _ ' (8)

determines the failure boundary. Thus Z < 0 implies failure and Z > 0 indicates success. The use of the first-
order, second-moment method then requires linearization of the function Z at _the mean point and kr‘mowledge
of the distrib:3ion of the random vector X. Calculations are relatively simple if X is normally distributed. If X is
not normally distributed, an appropriate normal distribution has to be substituted instead of the actual one.

In the present case one is interested in knowing the reliability R(A) of the structure at any given load ;

that is, one wants to obtain

R(A) = Pr(Asz A) = probability that As 2 A . )]
In this case a function Z can be defined as
A <%= . 10
Z(JL)-AS k-\l’(x1,X2,...,Xn) A (10)

where As is the random buckling load and A is the applied nondimensional deterministic load. It is apparent
that in the absence of a straightforward deterministic relation connecting xs and the Xi's an analytical
solution is unfeasible. However, the first-order, second-moment analysis can be done nu::arically, as has
béen reported in Ref. 28 for a different problem. "

-To combine the use of numerical codes with the mean value first-order, second-moment method one
needs to know the lower order probabilistic characteristics of Z. In the firét approximation the mean value of
Z is determined as follows:

E@) =E()-2

= E[¥(X,, X

Py Xn)} -A : (

-
-
~—

~YIE(X,), E(X,), ... E(X )]- A

This corresponds to the use of the Laplace approximation of the moments of nonlinear functions. The value
of

HE(X, ). EX,), .., E(X )] (12)
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is calculated numerically by STAGS [2], the code that was chosen for the numerical work. It corresponds to
the deterministic buckling load of the structure possessmg mean imperfection amplitudes.

The variance of Z is given by

Var(Z) = Var(As)
(13)

3

n

~3 ¢ (&

) &) cov(X.X,)
=1 ka1 95 57EX) 98, 8 =E(Q) Tk

where cov (Xj,Xk) is the variance-covariance matrix. The calculation of the derivatives 0¥/d éj is performed

numerically by using the following numerical differentiation formula

v WEiby - B B AEE o B ) WE Ly 8

" | a5

(14)

at values of §. = E(X).
Having obtamed the quantmes E(Z) = E(As) - A and Var (Z) one can estimate the probability of failure
l:(JL) as

PF(X)=Pr(Z<0)=FZ(0)_ I £ (t)dt a . | (15)

where F (t) is the probability distribution function of Z and f (t) is the probability densny function of Z.
Assumlng that the performance function Z is normally distributed then

1 t-a2 '
exp [‘E(q') ] ' . (16)

(t)
o /2_

Zz

where a=E(Z) and cz = »/Var(Z). Further
F(0) = I Tt ot -z +e-2 ) =—-erf(— )= ¢(-B) (17)

where B = a/<sZ is the reliability index, ¢(B) is the standard normal probability distribution function and the
error function erf(B) is defined as
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B 2
el(B)=—— [ &' R g | - (18)
2t O

Finally the reliability R(A) will be estimated as

RO =1-PL(d) =1 - Pr(Z<0) = 1 - F, (0)
(19)
=2+ er(B) = 6(B)

3.3 Statistical measures of the Initlal imperfections
As can be seen from Eqs. 11 and 13, in order to be able to evaluate the mean value and the variance
of the performance function Z, one must know the mean values and the variance-covariance matrix of the
basic random variables x' Since in this case the basic random variables Xi represent the Fourier
coefficients of the initial imperfections, the above statistical measures can only be evaluated if a sufficiently
detailed initial imperfection data bank (see Refs. 29 and 30) is available.
- Thus, if complete initial imperfection surveys have been camied out on a small sample of N nominally

identical shells, then the measured data can be represented by the following truncated half-wave double

Fourier series

n
=(m) 1 (m) intx '
W xy)=h T A ' cos T ‘ (20)

i=1 :

n kmx (m) (m)

+h I }: sin— T (C R +Dk! sm—)
k=1 =1

where m=1 2,...,N. As pointed out in Refs. 29 and 30, the individual Fourier coeffnclentsAl( ) C'((;") and D'((T)

can be evaluated numerically from the measured imperfections data by harmonic analysis. For the szke of

simplicity one can written Eq. 20 in an alternate way, replacing the double summation in Eq. 20 by & single
summation

ny

WM™y =h = A™ cos 'f" (21)
i=1 : o

n

2 k nx Ly !y

+h X sin T (C(m) . D(m) sin L)
r=1 R r R
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where m=1,2,...,N. The quantities indexed by r are chosen so as to ensure the equivalence of the two series

given by Egs. 20 and 21 and n_. =n - n. Then for each shell the basic random variables are assigned as

2
follows
X1=A1 x2=A2 Xn =An
1 1

X =C e X =C (22)

n1 +1 1 n1 +n2 n2 ,

= D X = D
n1 +n2+1 1 n1 +2n2 n2

Their mean values are estimated by ensemble averaging yielding

1 N m
EX) =+ 2:1/\' i=1,2, ... N,
1 N (m) ' '
o —— .= . 2
EX) =y Z C =n 41, ..., n 40, (23)
m=1
: N
3 (m) . -
E(Xi)-N X Di : l-n1+n2+1,...,n1+2n2
m=1 S

Kaa X¥ac  Kap
| i i’s is
' K K K : :
| cov(X, ,xl) = CrAj . Crcs . CrDs | : (24)
Koa ¥pc  Xop
~ 1 s rs -

The elements of this matrix are once again estimated by using ensemble a\}eraging. Thus

1
KaA = N1

N
z
i) m=

1[A§""- E(A,)HAI""’-‘E(A,)J, - (259
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AC N1 T A -EAICS - ECI] ’
is m=1
Ky, . =t g A™. gayo™. g ) (25¢)
AD ~ N-1 i i"s s
i's m=1
K 1 2 ™. econe!™. e | | (25d)
CC “N-1 [r'(rms'(s)]
rs m=1
K S g ™. e ! ™. g (25€)
CD “N-1 [c, (r)][s '(~s)]
rs m=1
Ko o = g ™. oo™ o ) | (25)
DD N r r) s s

s N1y

Notice that these quantities represent unbiased estimates. An advantage of this method is that the statistical
parameters of the initial imperfections are estimated from the real measurements on the shell profiles. The

only assumption made is that the Fourier coefficients have a multivariate normal distribution.

3.4 Calculation of the derivatives a\y/‘ag

As mentioned earlier the calculation of the derivatives 8‘P/3§ is done numerically by using the
numerical differentiation formula given by Eq. 14. Thus, to find these denvatlves it is necessary to carry out
collapse load calculations with mean imperfections. In this study the computation of the collapse loads is
done with a modified finite difference version of the well known code STAGS which was originally develope:
in the early seventies for the nonlinear collapse ar{alysis of shells with general shapes.

The finite difference version of STAGS is based on a theory where the shell surface is subdivided, by
means of a finite difference grid, into a set of subareas. The strain energy density for each subarea is then
expressed in terms of displacement components and their derivatives. Next the derivatives are replaced by
their finite difference equivalents and the strain energy, together with the potential energy due to the applied
loads is summed over the shell surface. The total potential energy of :i:e shell is then minimized according to
familiar energy princigizs, and the resulting system of nonlinear alg:: - :ic equations are solved by a Newton-
Raphson technique. The nonlinear shell theory of Ref. 31 is used, and the boundary conditions are
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rigorously satisfied. With the aid of user-written subroutines very general initial imperfections can be
introduced. In the present work the initial imperfections are taken to be similar to Eq. 21. Increments of load,
increments of axial displacements, or increments of the ‘arc length' (see Ref. 32) can be used as the control

parameter.
4. NUMERICAL RESULTS

In the previous chapter the solution of the- stochastic stability problem of Eq. (6) has been reduced to a
series of N+1 deterministic buckling load analysis. Several of the currently available structural analysis
computer codes [2,33,34] have the capability to calculate the effect on buckling of given initial imperfections.
However, as has been pointed out by Arbocz and Babcock [35] the subcess of such deterministic buckling
load analysis depends very heavily on the appropriate choice of the model used, which in turn requires
considerable knowledge by the user as to the physical behaviour of the imperfect shell structure. This
knowledge can best be acquired by first using the series of imperfection sensitivity analysis of increasing

complexity that have been published in the literature [3,4,36,37].

4.1 Characterization of the test shells

For the statistical calculations thé data associated with the integrally stringer stiffened aluminium alloy
shells tested at CALTECH in 1969, the so-called AS-shells are used [29]. The shell properties are given in
Table 1. For the numerical computations the properties of shell AS-2 are used. |

Before the shells were buckled their initial imperfection was measured. Figure 2 displays the best fit
initial imperfe_ctibn of shell AS-2 [29]. The imperfection has been normalized by the shell thickness and is
rolled out to show the Circumferentiél and axial distribution. The largest deviation from the perfect shape is
0.93174-h mm. it has been shown in Reference 38 that for stringer stiffened shells satisfactory correlation
between theoretical predictions and experimental results requires the inclusion of both the initial
imperfections and the appropriate elastic boundary conditions in the analysis. To illustrate this effect
reliability functions will be derived for SS-3 (Nx=v=W=Mx=O), C-3 (Nx =v=W=W,x =0) and C-4 (u=v=W=Wk =0)
boundary conditions. The collapse load calculations are done according to the approach recommended in
Ref. 35, where it was pointed out that when one is studying the behaviour of an imperfect shell it is
necessary to determine first those buckling modes of the perfect shell which correspond to a few of the
lowest buckling loads. ’

The buckling behaviour of the stringer stiffened shell AS-2 has been studied extensively in the past
[12,35,38]. The results of Ref. 38 seem to indicate that the experimental boundary conditions of the test set-
up used to buckle the AS-shells at CALTECH [15] imposed elastic boundary conditions. This is contrary to
the earlier belief that it approached closely the fully clamped C-4 boundary condition.
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Table 1: Geometric and material properties and experimental buckling loads of the' AS-shells

2 2
t A1 e1 I11x10 lt1x10 d‘| PEXP
(om] | omd] | o] | ety [ ety | N]

AS-2 0.1966 | 0.7987 | 0.3368 | 1.5038 | 4.9448 | 8.0239 | 14286.3
AS-3 0.2807 | 0.7432 | 0.3614 | 1.2033 | 4.0146 | 8.0289 | 22357.1
AS-4 0.2593 | 0.4890 | 0.2758 | 0.3474 | 1.2383 | 8.0112 | 17074.9

For all shells E = 6.895 x 104 N/mm2 v=03
' R =101.60 mm L = 139.70 mm
NRxNC = 21x49 80 stringers

An eigenvalue map. of modes calculated using nonlinear prebuckling with simply supported SS-3
boundary condition is shown in Table 2. A similar map"for fully clamped C-4 boundary condition is displayed
in Table 3. Notice that these tables identify by circumferential wave number and order of eigenvalue those
modes that have buckling loads close to the lowest buckling load. Figures 12 and 13 show the axial
dependence of the critical buckling mode for the SS-3 and the C-4 boundary conditions, respectively. Notice
that the critical mode shapes may be symmetric or antisymmétric with respect to x=L/2. Thus it may not be

admissible to model only half the shell length.

Table 2: Buckling loads of the perfect AS-2 shell using nonlinear prebuckling
(SS-3 boundary conditions: Nx =v=W= Mx =0)

k|41=8 9 10 11 122 13 14 15

1| 1.2314 | 1.0416 | 1.000 1.0702 1.1791* | 1.1390* | 1.1475° | 1.1944"
2 1 1.7877* | 1.6158* | 1.4292* | 1.2756* | 1.2190 | 1.3252 1.2995 1.2783
3 | 21203" | 1.8867 | 1.7392 | 1.6002 | 1.4947 | 1.5140 1.5888* | 1.5511"
4 | 23068 | 2.0466* | 1.9570* | 1 .8530" | 1.7459* | 1.6546* | 1.6553 1.7333

Note: All eigenvalues are normalized by -223.960 Nicm

* Mode shape is antisymmetric at x = L2



19 o

Table 3:  Buckling loads of the perfect AS-2 shell using nonlinear prebuckling
(C-4 boundary conditions; u =v =W ='W.x =0)

K|2=11 12 13 14 15 16 17 18

1| 1.1316 1.0881 1.0265* | 1.0000" | 1.0041* | 1.0331* | 1.0659 1.0949
2 | 1.1973" | 1.0899* | 1.0723 1.0583 | 1.0486 1.0504 1.0811* | 1.1418°
3 | 1.3862 | 1.3182 1.3023 1.2576* | 1.2286" | 1.2159* | 1.2188" | 1.2381*
4 | 1.4518* | 1.3685° | 1.3038" 1.3413 1.3565 | 1.3515 1.3555 1.3688

Note: All eigenvalues are normalized by -316.890 N/icm

* Mode shape is antisymmetric at x = L/2

L] wm.-.hwj(x)cos%
1.01
, X
L
-1.0fF

Fig. 12  Axial dependence of the critical buckling mode using

Nx=v=W=Mx=0 (SS-3) boundary condition (NCR T 223.960 N/cm, 1 =10)

¥ wm=hw,(x) cos%

101

x

T

-1.0

Fig. 13  Axial dependence of the critical buckling mode using

u=v=W=W,x=0'(C-4) boundary condition (NCRIT= - 316.890 N/cm, 1 =14)




4.2 Analysis of the Imperfect shell

The buckling analysis of an imperfect shell can be carried out in a variety of wayé with varying degrees
of complexity. The purpose o‘f this section is to determine the success of these types of analysis in predicting
the buckling load of the test shell described in section 4.1. An additional purpose is to discover what each
analysis has to contribute to the next level of analysis complexify.

The simplest type of imperfection sensitivity analysis is that introduced in Ref. 3 and further developed
in Refs. 4, 12, and 39. In this analysis the sensitivity of the buckling load to a general single mode

asymmetric imperfection is studied. The results are expressed as
/2 2 ry )
(-09¥%- @2 Y/ - 30 1 - (Brogct-p ) €] (27)

where ps = NslNc and E is the normalized amplitude of the initial imperfection. The second postbuckiing
coefficient b and the first and second imperfection form factors o and B are calculated with ANILISA [39].
Assuming as a ‘worst type' of imperfection that Wis affine to the lowest buckling mode, then

W = Eh w(x) cos !R—’-' » (28)
However, considering the measured initial imperfections of the shells shown in Figs. 2 and 3 one could
also say that it appears from the Fourier representation of the measured data that sizeable imperfections

can best be represented by the following modal form
W=th sink—f} cos %Z (29)

where k and £ are integers. o ' .
For the shell AS-2 ANILISA [39] yields the following results:
1. Using rigorous prebuckling analysis and Nx=v=W=Mx=0 (SS-3) boundary conditions

for the affine imperfection of Eq. (28) ' a®b = -0.0254, B = 0.9395
for the modal impertection of Eq. (29) a2b =-0.0224, B =0.9102
withk=1,1 =10 '

Assuming that the amplitude of the imperfection is equal to the largest deviation from the perfect shape
found in Fig. 2, then E = 0.932 and Eq. (27) yields the following imperfect shell buckling loads

for the affine imperfection ps =0.616
for the modal imperfection - ps =0.618
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Notice that in this case ps = Ns/Nc is normalized by Nc = -223.960 N/cm, the critical buckling load of the
perfect AS-shell using the SS-3 boundary conditions.
2. Using rigorous prebuckling analysis and u=v=W=W,x=0 (C-4) boundary conditions

for the affine imperfection of Eq. (28) a2b =-0.1552, B =0.9711
for the modal imperfection of Eq. (29) - a2b =-0.0984, § =0.7805
withk=2, 4 =14

Using once again E 0.932, the largest deviation from the perfect shape found in Flg 2, then Eq. (27)
yields the following imperfect shell buckling loads

for the affing imperfection ps = 0.440
for the modal imperfection ps = 0.488

It is important to remember that in this case ps = NsINc; is normalized by Nc =-316.890 N/cm, the critical
buckling load of the perfect AS-2 shell using the C-4 boundary conditions.

Comparing the predicted buckling loads of NSS-3 =-137.959 N/cm and NC 4= -154.642 N/cm based on the
simple, single mode, asymmetric imperfection model with the experimental buckling load of NEXP =-223.793
N/em, one must conclude that the above predictions based on SS-3 or C-4 boundary conditions are overly
conservative, especially for weight sensitive applications. This implies fhat for better prediction a more
detailed imperfection model must be used.

The imperfect shell AS-2 has been analyzed in the past using other models of various degrees of

complexity. The most interesting results are displayed in Fig. 14. The interested reader should consult
References 12, 35 and 38 for further details and results.

Single Mode Imperfectuo 361
Ps

(axisymmetric half-wave sine)
1’0. Single Mode Imperfection®

laffine to lowest buckling mode)
“2-Modes” imperfection!36

Multi-Mode Analysis™”

05
- (7-Modes imperfection)

Fig. 14 Imperfection sensitivity for difterent imperfection models
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4.3 Use of STAGS [2] to derive reliabllity functions .

The highest level of complexity in analysis is to use a two dimensional nonlinear shell analysis code
such as STAGS. With the use of this type of numerical tool one can, in principle, determine the buckling load
of a complete shell structure including the effect of arbitrary prescribed initial imperfections represented by a
double Fourier series. The computations reported in this paper were carried out with a STAGS-A code [2]
modified so that besides increments of load and increments of axial displacement also increments of a 'path
parameter’ [32] can be used as a loading parameter.

. The number of imperfection modes included in the analysis is limited by practical considerations, like
the time required for obtaining the soluti_ons of all the buckling problems needed for the calculation of the
derivatives dy/o §i. Thus, since the shell buckling load is determined by solving the governing equations for
a particular set of initial imperfections, an attempt to select an optimal combination of these modes must be
made; that is there is a need to locate those imperfection modes which dominate the prebuckling and the
collapse behaviour of the shell.

Examples of attempts to locate ‘critical imperfection modes', defined as that combination of
axisymmetric and asymmetric imperfection modes which would yield the lowest buckling load have been
reported in the literature [35,36,37]. These studies have shown that in order to yield a decrease from the
buckling load of the perfect structure the initial imperfection harmonics used must include at least one mode
with a significant initial amplitude and an associated eigenvalue that is close to the critical buckling load of
the perfect structure. Relying on the results of earlier investigations of the buckling behaviour of the
imperfect AS-2 shell [40], it was decided to use the following initial imperfection model for the collapse load

calculations
W=hA, cos 2% (30)
2,0 L ‘ '
. WX 5 T ry ry - ra
-sxn—|_(§1'zoosae+§1'9cosse+ 1'10(>os106+ 1'"cos119+ 1’19cos196+ 121 cos210)

3 2 2
where §k'£ =Vck£ + Dkz and 6 = y/R.

Notice that the shape of this imperfection mode! is symmetric in the axial direction about the center of
the shell, hence only half of the shell length needs to be modeled. However, the imperfection model includes
modes with both even and odd number of circumferential waves. This implies that in order to be able to use
the symrrietry conditions at 8 = 0 and 8 = A9, half the shell perimeter must be modeled (A0 = 1800). Based
on the results of convergence studies published earlier [40], this leads to the use of the discrete model

shown in Fig. 15 consisting of 21 x 131 mesh points. The above imperfection model requires 8 collapse load
calculations in order to be able to evaluate the derivatives dy/dE..
- )
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Table 4: Values of the equivalent Fourier coefficients and the reduced sample mean vector

X AS-2 AS-3 AS-4 E()
Arg 1 0.00455 0.01378 | -0.01126 0.00236
£ 12 2 0.33691 0.08298 0.54217 0.32069
E1.9 3 0.08843 0.02445 0.00297 0.03862
B0 | 4 0.05524 0.03148 000414 | 0.03028
€. | 5 | oos494 | o0t912 0.00502 0.02636
T | © 0.01106 0.00689 0.00424 0.00740
oot | 7 0.00879 0.00475 0.00095 0.00483

Table 5: Derivatives of y with respect to the equivalent Fourier coefficients

(7-mode imperfection model)

X | dyidx,
SS-3 c3 C-4
Ay 1 -0.6354 . | -0.6460 - 0.5986
E1 0 2 0.1498 0.1522 0.1582
'51 o 3 0.6924 0.6863 0.3678
'51 0 | 4 0.9138 0.9344 0.6672
E1 |5 0.6233 10.7390 © 1.0844
Eip | 6 0.2449 0.2795 0.2922
E 121 | 7 0.1811 |  0.2591 0.4202

In order to épply the first-order, second-moment method the mean buckling load has to be
calculated first. Using the imperfection model of Eq. (30) with the mean values of the corresponding
equivalent imperfection amplitudes listed in Table 4 the result of the calculation is E(A ) = 0.87538,
whereby the mean buckling load is normalized by -223.079 N/cm, the buckling load of the perfect AS-2
shell computed using nonlinear prebuckling and SS-3 boundary conditions. In the following the
derivatives a\y/ag. are calculated. For the increment of the random variable in Eq. (14), 10% of the
original mean value of the corresponding equivalent Fourier coefficient is used, so that A§ 0.10 E(X ).
The calculated derivatives are listed in Table 5. In this study the increments of the path parameter are

chosen in such a way that the limit loads are found accurate to within 0.01%. Next, using the reduced
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sample variance-covariance matrix displayed in Table 6, one can evaluate the mathematical expectation
and the variance of Z. The results of these calculations are E(Z) = 0.87538-A and Var(Z) = 0.00486.

Finally the reliability for SS-3 boundary conditions is calculated directly from Eq. (19) and is plotted in Fig.

16. Notice that for a reliability of 0.98 one obtains a 'knockdown factor of la = 0.73, where in this case la
is normalized by -223.079 N/cm, the buckling load of the perfect AS-2 shell using the SS-3 boundary

conditions.

Boundary_conditions

®
@@@ symmetry

u#0, v=W= szo

Fig. 15 The discrete shell model and the boundary conditions used

Table 6: The reduced sample variance-covariance matrix (all terms are multiplied by 100)

[ 0.01604

0.28485
-0.02165
- 0.02122
-0.01354
- 0.00226
- 0.00303

N O A WN -

5.29110
-0.18590
- 0.28341
-0.12712
- 0.02590

-0.03884

0.19763
0.10789
0.11436
0.01511
0.01683

0.06537
0.06313
0.00866
0.01001

5 6 7
SYMMETRIC
0.06625
0.00879 0.00118
0.00983 0.00134 0.00154

Switching now to the C-4 boundary conditions and using the same imperfection model as ébove the
calculated mean buckling becomes E(As) = 0.96298, a value which is normalized by -315.323' N/cm, the
buckling load of the perfect AS-2 shell computed using nonlinear prebuckling and the same C-4 boundary
conditions. Next, proceeding as described above the derivatives ay/d §j are calculated. The values
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obtained are also listed in Table 5. The computation of the mathematical expectation énd the variance of Z
yield the values of E(Z) = 0.96298-A and Var(Z) = 0.00400, respectively. Using Eq. (19) to calculate the
reliability function R(A) for C-4 boundary conditions, the result is displayed in Fig. 17. Notice that in this case
for a reliability of 0.98 one obtains a 'knockdown factor' of ;'a = 0.84, where now )”a is normalized by
-315.323 N/cm, the buckling load of the perfect AS-2 shell using the C-4 boundary conditions.

Comparing the buckling loads predicted for a reliability of 0.98 of NSS-3 = -162.848 N/cm and
Nc- 4= -264.871 N/cm based on the 7-modes imperfection model of Eq (30) with the experimental buckling
load of NEXP =-223.793 N/cm, one notices that the calculated results seem to support the suggestion made in
Ref. [38] that the experimental boundary conditions of the test set-up used to buckle the AS-shelis at

CALTECH [15] imposed some sort of elastic boundary conditions.

R(N)=Prob{Az\)

10

' ' . A=—Ns
05 " 0 -223.079
Fig. 16 Reliability curve calculated via the First-Order, Second-Moment Method
(SS-3 boundary condition: N =v=W=M =0) '
R(\)=Prob(Az\)
10
S
0 Ay 10 )
Fig. 17 Reliability curve calculated via the First-Order, Second-Moment Method

(C-4 boundary condition: u=v=W=W,x=o_)



5. CONCLUSIONS

The results presented in this paper demonstrate conclusively that indeed it is possible to use the First-
Order, Second-Moment Method to derive improved reliability based "knockdown faétors" for orthotropic
shells under axial compression. In order to apply the method described in this study with confidence it is
necessary lhai sufficient experimental data be available so that the statistical properties of the random
variables involved can be estimated accurately. -

A comparison of the improved knockdown factors }"a obtained using SS-3 (see Fig. 16) and C-4 (see
Fig. 17) boundary conditions illustrates very effectively the statement made in Ref. 40, that the key to the
success of any stochastic stability analysis lies in the reliability and accuracy of the buckling load predictions
made by the deterministic buckling analysis used. Thus, in cases where besides initial imperfection the
collapse load of the structure is also greatly influenced by the type of boundary conditions used, one must
model the experimental boundary conditions accurately. This may imply the need for using elastic boundary
conditions in place of the idealized boundary conditions (SS-3 or C-4) used in this paper. For further details
on this subject the interested reader should consult References 7 and 41.

Itv is well known that the success of the deterministic buckling load analysis depends very.heavily on
the appropriate choice of the nonlinear model employed, which in turn requires considerable knowledge by
the analyst of the expected physical behaviour of imperfect shell structures. The authors wish to stress the
fact that only a shell design specialist, who is aware of the latest theoretical developments and who is
familiar with the theories upon which the nonlinear structural analysis codes he uses are based, can achieve
the accurate modeling of the collapse behaviour of ‘complex structures that guaranties a successful
application of the method described in this study. The danger of incorrect predictions lies in the use of
sophisticated oomputational_tools by persons of inadequate theoretical background.

It must also be stressed that in this case the development of the proper numerical simulation
procedure relies heavily on experimental data. Thus for a successful implementation of the proposed
improved shell design procedure the companies involved in the production of shell structures must be
prepared to do the initial investment in carrying out complete imperfection surveys on a small sample of
shells that are representative of their production line. With the modemn measuring and data acquisition
systems complete surface maps of very large shells can be carried out, at a negligibly smali fraction of their
production cost.

That the propoéed shell -design procedure is also applicable to composite shells has been
demonstrated in Ref. 42. In that case the random variables can represent not only initial imperfections but
also other phenomena that have a random character, such as delamination buckling. Further by using the
appropriate numerical tools one can also inciude in the analysis in addition to initial imperfections and

. (elastic) boundary conditions, other factors such as the effect of shear deformation or the effect of plastic
yielding, if so desired.
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Finally, it is believed that as the amount of data on characteristic initial imperfection distributions

classified according to fabrication processes increases, one shall succeed with the modern tools of
information science like data banks and computer networks to make the proposed improved shell design

procedure available to more and more shell designers. Thus, finally, the engineering community will be able

to point to the successful solution of one of the most perplexing problems in mechanics.
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