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A B S T R A C T

Deep learning models are widely used in traffic forecasting and have achieved state-of-the-art prediction accuracy.
However, their black-box nature presents challenges for interpretability and usability, particularly when pre-
dictions are significantly influenced by complex urban contextual features. This study aims to leverage an
explainable artificial intelligence (AI) approach, counterfactual explanations, to enhance the explainability of
deep learning-based traffic forecasting models and elucidate their relationships with various contextual features.
We present a comprehensive framework that generates counterfactual explanations for traffic forecasting. The
study first implements a graph convolutional network (GCN) to predict traffic speed based on historical traffic
data and contextual variables. Counterfactual explanations are generated through a multi-objective optimization
process, with four objectives, validity, proximity, sparsity, and plausibility, each emphasizing different aspects of
optimization. We investigated the impact of contextual features on traffic speed prediction under varying spatial
and temporal conditions. The scenario-driven counterfactual explanations integrate two types of user-defined
constraints, directional and weighting constraints, to tailor the search for counterfactual explanations to spe-
cific use cases. These tailored explanations benefit machine learning practitioners who aim to understand the
model's learning mechanisms and traffic domain experts who seek insights for necessity factors to alter traffic
condition. The results showcase the effectiveness of counterfactual explanations in revealing traffic patterns
learned by deep learning models and explaining the relationship between traffic prediction and contextual fea-
tures, demonstrating its potential for interpreting black-box deep learning models.
1. Introduction

Accurate traffic forecasting is integral to build intelligent trans-
portation systems, which can help alleviate traffic congestion, improve
traffic operation efficiency, and reduce carbon emissions (Meena et al.,
2020). Research on traffic forecasting has focused on capturing the
temporal and spatial dependencies in traffic data and predicting dynamic
traffic states such as traffic flow, traffic speed, and traffic demand. Over
the last few years, the focus of traffic forecasting methods has shifted
from using classical statistical techniques (Lee and Fambro, 1999; Wu
et al., 2004; Zarei et al., 2013) to data-driven machine/deep learning
methods such as recurrent neural network, long short-term memory, or
graph neural network (Polson and Sokolov, 2017). The performance of
traffic forecasting benefited significantly from the advancement of deep
learning techniques and artificial intelligence (AI) (Yin et al., 2022). A
considerable number of studies have demonstrated the exceptional
and Geoinformation, ETH Zurich
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performance of deep learning algorithms in reducing predictive errors in
traffic forecasting. However, challenges arise with the black-box nature
of these deep learning models. The lack of interpretability and explain-
ability makes it difficult for machine learning developers to understand
the learning mechanisms of these models (Xin et al., 2023). Furthermore,
it is also challenging for domain experts to utilize these models and
derive insightful understandings of traffic dynamics due to the opacity of
the models (Jonietz et al., 2022). These challenges hinder the adoption of
deep learning models in practice (Fernandez et al., 2020).

Recently, the issues of interpretability and explainability in AI gained
increasing attention from researchers (Marcinkevics and Vogt, 2023). To
address this challenge, explainable artificial intelligence (XAI) tech-
niques are proposed to enhance machine learning (ML) models' inter-
pretability and explainability, making the output of these models more
comprehensible to humans (Edwards and Veale, 2017). XAI methods are
generally categorized into two types: global explanations and local
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explanations. Global explanations provide insights into the overall model
behavior, identifying which input variables have a significant influence
on the model's predictions. However, applying global explanations to
neural networks is challenging due to the vast number of parameters and
the complexity of their nonlinear relationships. This limitation prompts
the use of local explanations instead. Local explanations, on the other
hand, focus on interpreting the model's behavior within a specific region
of interest. These methods typically involve using simpler surrogate
models to approximate the complex model's decisions at a local level,
providing more interpretable information such as feature importance
scores (Lundberg and Lee, 2017). However, these techniques suffer from
an inherent fidelity-interpretability trade-off due to the use of a simpler
model for generating explanations.

In traffic domain, road-traffic management, including tasks like traffic
flow forecasting and congestion control, involves high-stake decisions
that impact public safety and efficiency. Traditional deep learning
models, while accurate, often function as “black boxes”, making it diffi-
cult for traffic managers and policymakers to understand and trust their
decisions.

Counterfactual explanations (CFEs) as a local explanation method can
maintain consistency with the original machine learning model, offering
insights into the inner workings of machine learning models (Wachter
et al., 2018). CFEs reveal the minimal changes required in the original
input features to alter the model's prediction, thus providing under-
standing without sacrificing fidelity or complexity.

In our study, CFEs are particularly advantageous since we are inter-
ested in determining the minimal change in the input to obtain a desired
alternative prediction. CFEs are straightforward to understand and can be
used to provide users with a course of action to alter the prediction if they
receive unfavourable decisions. These explanations establish a relation-
ship between the input features and the decision, making them highly
valuable for users to comprehend, interact with, and utilize these models.

Currently, there is a significant lack of study in applying XAI tech-
niques in the domain of traffic forecasting (Li et al., 2023; Xin et al., 2022;
Yang et al., 2023). It is not straightforward to apply counterfactual
methods developed in non-spatial domains to spatiotemporal data anal-
ysis due to the high complexity and dimensionality of spatiotemporal
data (Xin et al., 2022). Moreover, due to the complex spatial and tem-
poral dependency in traffic domain, single feature change can induce
effect on different spatial and temporal dimension, which also requires
more comprehensive study. Thus, one of the core objectives of this study
is to explore the potential and limitations of counterfactual explanations
in deep learning-based traffic forecasting applications.

The study is guided by the following research questions.

⋅ What is the impact of input variables on deep learning-based traffic
forecasting?

⋅ How can we modify the input variables to achieve the desired pre-
diction for various scenarios?

This study involves training and explaining a deep-learning model for
traffic forecasting. Particularly, by applying the XAI technique, the study
contributes to our understanding of how the model produces predictions,
and how variations in input contextual features can affect predicted re-
sults. The second key contribution of our study is the application of CFEs
on spatiotemporal prediction tasks, where the spatiotemporal de-
pendencies are critical. In this context, we conduct a thorough evaluation
of the impact of the counterfactual features on the spatiotemporal traffic
dynamics. Another contribution of this study is the proposal of scenario-
driven counterfactual explanations, where we demonstrate and validate
different methods to integrate user prior knowledge or constraints in
generating counterfactuals.

In summary, this study proposes a framework to tackle the lack of
explainability of black-box traffic forecasting models. By streamlining the
procedures of generating and examining counterfactual explanations in
deep learning-based traffic forecasting, this study offers valuable insights
2

for future studies in this direction.

2. Related work

2.1. Deep learning in traffic forecasting

It is an important research topic to analyze the non-linear and com-
plex spatiotemporal patterns of traffic dynamics in order to make accu-
rate traffic predictions (Yin et al., 2022). Statistical and traditional
machine learning models are two major representative data-driven
methods for traffic prediction. This includes methods such as historical
average (HA), auto-regressive integrated moving average (ARIMA)
(Williams and Hoel, 2003), support vector regression (Chen et al., 2015),
and random forest regression (Johansson et al., 2014). However, one of
the disadvantages of traditional approaches is that most of the applied
features need to be carefully selected and processed by a domain expert
to reduce the complexity of the feature space and make the underlying
patterns easier to extract.

Over the last few years, deep learning-based methods have unlocked
the potential of artificial intelligence in traffic prediction (Lv et al.,
2015). Deep learning models exploit much more features and complex
architectures than classical methods and can achieve better performance.
Recurrent neural networks (RNNs) stand out as particularly effective in
time series forecasting (Prasad and Prasad, 2014; Ramakrishnan and
Soni, 2018). Additionally, a series of studies have applied CNN to capture
spatial correlations in traffic networks from two-dimensional spatio-
temporal traffic data (Li and Shahabi, 2018). However, the CNN-based
approach is not optimal for traffic foresting problems that have a
graph-based data type.

Over the past few years, graph neural networks (GNNs) have emerged
as a cutting-edge deep learning technique, demonstrating state-of-the-art
performance in numerous applications (Wu et al., 2019a,b). Due to their
capability of modeling non-euclidean graph structures, GNNs are
particularly well-suited for traffic forecasting tasks where complex
spatial dependencies need to be captured (Jiang and Luo, 2021). These
include, for instance, the diffusion convolutional recurrent neural
network (DCRNN) (Li et al., 2017), temporal graph convolutional
network (T-GCN) (Zhao et al., 2018), and graph WaveNet (Wu et al.,
2019a,b) models.

In traffic prediction studies, contextual data has been widely recog-
nized as an important input to improve traffic prediction performance
(Zhang et al., 2023, 2024). Some commonly used external variables
include weather conditions, events, and time information (Yin et al.,
2022). One previous study (Liao et al., 2018) incorporated auxiliary data,
such as crowd map queries and road intersections, along with
geographical and social variables, into an encoder-decoder sequence
learning framework for traffic forecasting. In another study (Zhu et al.,
2020), researchers categorized these influencing factors as either dy-
namic or static attributes and designed an attribute-augmented unit that
seamlessly integrates these variables into a spatiotemporal graph
convolution model, which enhanced the model's forecasting capabilities.
Classifying contextual data into spatial and temporal contextual features,
Zhang et al. (2023) proposed a multimodal context-based graph con-
volutional neural network (MCGCN) to embed spatial and temporal
contexts and incorporate them into traffic speed prediction for better
performance.

2.2. Explainable AI in traffic domain

Previous studies have demonstrated the value of XAI in traffic ap-
plications (Gaur and Sahoo, 2022). For example, Xu et al. (2014)
developed an interpretable model to predict short-term traffic flow,
helping identify key road segments contributing to congestion, but their
model lacks the flexibility to analyze hypothetical scenarios. Similarly,
Kruber et al. (2018) used a modified random forest to categorize traffic
situations, creating static visual representations that do not suggest
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specific actions to improve conditions. SHAP has been applied to deep
learning models like LSTMs to explain feature contributions in traffic
prediction (Barredo-Arrieta et al., 2019), but it is limited to post-hoc
interpretations and cannot capture complex feature interactions or pro-
vide guidance on altering inputs. Ma et al. (2017) used gradient boosting
trees to prioritize factors influencing incident clearance times, but this
only highlights feature importance without exploring the effects of
feature changes.

In contrast, counterfactual explanations (CFE) overcome these limi-
tations by not only identifying key features but also suggest what should
be different in the input instance to change the outcome of an AI system
(Diakopoulos, 2020; Wachter et al., 2018). However, there is lack of
study on counterfactual explanations in traffic domain.

In recent years, CFEs have been applied in various tasks to enhance
the interpretability of machine/deep learning models (Fernandez et al.,
2020). It has already been widely used in image classification, where
generative models such as GANs and variational autoencoders (VAE) are
used to implement interventions and generate realistic CFEs (Covert
et al., 2021; Liu et al., 2019; Parafita and Vitri�a, 2019; Singla, 2022).
Other than image data, CFEs have also been utilized for text data (Jung
et al., 2022), speech data (Zhang and Lim, 2022), time-series data (Ates
et al., 2021), graph data (Prado-Romero et al., 2022), etc.

Numerous methods are developed for generating CFEs, each with its
specific focus and application. For instance, the FACE method (Poyiadzi
et al., 2020) aims to produce plausible CFEs by building feasible paths
between data points associated with opposing predictions. On the other
hand, DiCE (Mothilal et al., 2019) is designed primarily for differentiable
models and is especially useful for handling continuous features. Another
innovative approach is the Bayesian-optimization-based counterfactual
explanations (Spooner et al., 2021), which employ probabilistic methods
to generate counterfactuals. Additionally, multi-objective counterfactual
(MOC) (Dandl et al., 2020) was proposed recently that conceptualizes the
counterfactual search as a multi-objective optimization problem, which
broadens the scope and applicability of CFEs in complex scenarios. In this
study, we used MOC due to its ability to produce a varied set of coun-
terfactuals, offering multiple options for actionable feature adjustments
based on different objective trade-offs.

3. Methods

3.1. Traffic forecasting model

Graph convolutional networks (GCNs) have demonstrated significant
efficacy in traffic forecasting tasks as discussed in Section 2.1. In this
study, the traffic forecasting model is built to predict the future traffic
Fig. 1. Architecture of the deep learning mode
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speed for each road segment of the traffic graph. Specifically, the defi-
nitions of traffic graph and graph-based traffic forecasting are as follows.

⋅ Traffic graph: A graph G ¼ (V, E, A) can be utilized to describe the
topological structure of the road network, and each road segment is
treated as a node, where V is a set of road nodes, V ¼ {v1, v2, …, vN},
where N is the number of the nodes, and E is a set of edges. The ad-
jacency matrix A is used to represent connections between road
segments, A 2 RN�N.

⋅ Graph-based traffic forecasting: The spatiotemporal traffic forecasting
task can be defined as to find a function f which generates y ¼ f(χ, ε;
G), where y is the traffic state to be predicted, χ ¼ {χ1, χ2,…, χT} is the
historical traffic state defined on graph G, T is the number of time
steps in the historical window size, and ε represents the external
factors.

Inspired by the temporal graph convolutional network model (Zhao
et al., 2018) and AST-GCN model (Zhu et al., 2020), this study adopted a
similar model. Fig. 1 shows the architecture of the deep learning model
we used.

For each input unit at time step t, traffic speed data χt and contextual
data εt are concatenated as enhanced feature matrix Xt. Together with
adjacency matrix A, they are fed into the graph convolutional network
(GCN), which can capture the spatial dependence of the data. The
modeling process of GCN can be expressed as Zhu et al. (2020):

gclþ1 ¼ σ
�eD�1

2eAeD�1
2gclWl

�
(1)

where σ is the activation function; eA ¼ Aþ I represents a matrix with

self-connection structure; eD is a degree matrix; Wl denotes the weight
matrix of the l-th convolutional layer; cl is the output representation; and
gc0 ¼ X, X is the feature matrix.

To capture the temporal features, the architecture combines GCN and
GRUmodels. Specifically, the feature matrics are fed into a series of GCNs
to generate time-varying features. Then the feature series are used as
input of GRUs to model the temporal dependence and derive hidden
traffic states.

As shown in Fig. 2, ht�1denotes the output at time t � 1, gc is graph
convolution process, ut and rt are update gate and reset gate at time t, and
ht denotes the output at time t. The specific calculation process is shown
below, where W and b are the weights and deviations in the training
process:

ut ¼ σðWu � ½gcðXt;AÞ; ht�1� þ buÞ (2)
l used in this study for traffic forecasting.



Fig. 2. Architecture of the gated recurrent unit (GRU) model.
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rt ¼ σðWr � ½gcðXt ;AÞ; ht�1� þ brÞ (3)

ct ¼ tanhðWc � ½gcðXt;AÞ; ðrt; ht�1Þ� þ bcÞ (4)

ht ¼ ut � ht�1 þ ð1� utÞ � ct (5)

During the training process, the loss function is set to minimize the
variation between the real traffic speed and the predicted speed.

Loss ¼ kyt � bytk þ λLreg (6)

where yt and byt are the ground truth and prediction, respectively, Lreg is
the L1 regularisation term to avoid overfitting, and λ is a hyperparameter.

The following metrics were used to evaluate the prediction accuracy
of the model.

⋅ Root mean squared error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

t¼1

ðyt � byt Þ2
s

(7)

⋅ Mean absolute error (MAE):

MAE ¼ 1
n

Xn

t¼1

jyt � byt j (8)

⋅ Accuracy:

Accuracy ¼ 1� jj y� by jj F

jj y jj F
(9)

where jj � jj F is the Frobenius norm.

⋅ Coefficient of determination (R2):

R2 ¼ 1�
P

t¼1ðyt � byt ÞP
t¼1ðyt � ytÞ (10)

⋅ Explained variation (VAR):

Var ¼ 1� Varðy� byÞ
VarðyÞ (11)

This measures the proportion to which the proposed model accounts
for the variation in real traffic states, which is mainly used to measure the
4

predictive ability of the model.
3.2. Multi-objective optimization to select CFEs

Counterfactual explanations (CFEs) provide insights into what mini-
mal changes in input features can lead to a desired alternative prediction.
Given a classifier b that outputs the decision y ¼ b(x) for an instance x, a
counterfactual explanation seeks to find an instance x0 such that the
decision for b on x0 is different from y, i.e., b(x0) 6¼ y, while the difference
between x and x0 is minimal.

When generating CFEs, there can be multiple possibilities to conduct
changes in input features to achieve the desired alternative prediction.
Therefore, different criteria or objectives are proposed to help select
optimal CFEs. Existing approaches to generate counterfactual explana-
tions often rely on optimizing a single weighted sum of multiple objec-
tives, making it difficult to balance different objectives. Following the
approach proposed by (Dandl et al., 2020), this study considers the task
of generating counterfactual explanations as a multi-objective optimi-
zation problem, which allows for the generation of a diverse set of CFEs.

Multi-objective optimization is a mathematical technique used for
solving problems involving competing objectives. In the context of
counterfactual explanations, the goal is to optimize for multiple criteria
simultaneously, rather than aggregating them into a single metric.

To guide the search for counterfactuals, we employed four key
criteria, which are

⋅ Validity: A counterfactual is valid if it produces a predicted outcome
closely approximating the target speed, which is an artificially
defined or desired speed that serves as a reference for model
predictions.

⋅ Proximity: The ideal counterfactual should differ minimally from the
original feature set, thereby ensuring that the changes suggested are
modest and realistic.

⋅ Sparsity: A counterfactual gains in feasibility when the number of
altered features is minimized.

⋅ Plausibility: For a counterfactual explanation to be considered
plausible, it should be close to the nearest observed data points.

It is important to recognize that a counterfactual example, while
perhaps optimal in feature space, may not be practically feasible due to
real-world constraints. Therefore, users should also have the flexibility to
specify constraints on specific features, including:

⋅ Range constraints: These define feasible ranges for each feature. For
instance, a constraint might specify that “Speed limit on the road
should be larger than 30 km/h.”

⋅ Mutable variables: Alternatively, users may specify which variable
can be altered in the search for a counterfactual explanation.
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The presence of multiple objectives in a problem gives rise to a set of
optimal solutions, known as Pareto-optimal solutions. Without additional
information, it is hard to say which Pareto-optimal solution is better than
the others. To efficiently address this problem, we used the non-
dominated sorting genetic algorithm II (NSGA-II), a fast multi-objective
evolutionary algorithm used in Deb et al. (2002).

In this study, the performance of a counterfactual is represented by a
vector of quantitative measures, corresponding to the criteria outlined
above. Lower values of the metrics signify better counterfactuals.

For the generation of counterfactuals, the search process plays a
critical role. In this study, Gaussian mutation is utilized, with predefined
standard deviations assigned to each feature. This process ensures that
only a small change will be added to the features each time. The process
of generating counterfactual explanations can be summarized into the
following steps.

1) Identify target outcome

Given that the entire road graph contains 3169 road segments, we
narrowed its focus to optimizing speed on a single, selected road segment
in each experiment. This targeted approach allows for a more manage-
able and detailed examination of the generated counterfactuals.

2) Determine search space

The search space under consideration is constrained by two key di-
mensions. The first involves identifying which nodes within the network
have features amenable to modification for generating counterfactual
explanations. The second aspect focuses on delineating the permissible
range within which these counterfactual features can be altered. By
establishing these constraints, we create a well-defined scope for gener-
ating meaningful and feasible counterfactual explanations.

3) Define objective function

In line with previously outlined criteria, the objective function is
constructed as follows:

Let f : X → R denote the prediction function, Xobs represents the
observed feature space, and ytarget is the predetermined target speed. A
counterfactual explanation x0 for a given observation x aims to meet four
key criteria: validity, proximity, sparsity, and plausibility. The over-
arching goal is to minimize a four-component loss function as defined by
Molnar (2022):

Lðx; x0 ; ytarget;XobsÞ ¼ �
o1ðf ðx0 Þ; ytargetÞ; o2ðx; x0 Þ; o3ðx; x0 Þ; o4ðx0

;XobsÞ� (12)

where each component captures one of the aforementioned criteria.

⋅ Validity: The objective function o1 evaluates the distance between
the predicted speed f(x0) and the target speed ytarget:

o1ðf ðx0 Þ; ytargetÞ ¼
��f ðx0 Þ � ytarget

�� (13)

⋅ Proximity: The objective function o2 measures the L1-norm between
the original and counterfactual features, x and x0:

o2ðx; x0 Þ ¼ kx� x
0 k1 (14)

⋅ Sparsity: The objective function o3 captures the sparsity of the
changes needed to convert x into x0 by computing the L0-norm:

o3ðx; x0 Þ ¼ kx� x
0 k0 (15)
5

⋅ Plausibility: The final objective o4 evaluates the plausibility of the
counterfactual explanation x0 within the observed feature space Xobs.
This is calculated by averaging the Euclidean distances between x0

and its k nearest neighbors in Xobs in an n-dimensional feature space:

o4ðx0 ;XobsÞ ¼ 1
k

Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
x0j � xobsnearest;i;j

�2vuut (16)

where k ¼ 3 in this study.

4) Searching the counterfactual explanations

The NSGA II is employed to generate a set of counterfactual expla-
nations that satisfy all four objectives. The selection of the most suitable
CFE from this set is also a crucial aspect of our approach. To facilitate
this, an evaluation score ye is defined, as shown in Eq. (17). This evalu-
ation score serves as a multi-objective trade-off criterion. Users can adjust
the weights λ1, λ2, λ3, λ4 to prioritize specific objectives. For instance, if
users value the effectiveness of a CFE in altering the predicted speed over
the cost incurred in modifying the features, they might assign a higher
weight to the validity objective (o1).

ye ¼ λ1
o1

maxðo1Þ þ λ2
o2

maxðo2Þ þ λ3
o3

maxðo3Þ þ λ4
o4

maxðo4Þ (17)

5) Evaluating the counterfactual explanations

After the generation and selection of counterfactual explanations, a
comprehensive evaluation is essential to understand the generated
counterfactuals and assess their performance. It is crucial to verify that
the counterfactual explanations actually achieve the desired speed
improvement for the targeted road segment. Beyond the targeted road
segment, it is also necessary to ensure that localized changes do not
negatively impact the speed prediction in other road segments of the
network.
3.3. Scenario-driven counterfactual explanations

To incorporate user prior constraints effectively, this study proposes
an adjustment to the cost function. Specifically, we modified the prox-
imity objective, as represented in Eqs. (18) and (19), to enable the
exploration of different scenario settings.

o
0
2ðx; x

0 Þ ¼
X
i6¼E

��xi � x
0
i

��þ λ
X
i¼E

ðdiðxi � x
0
iÞÞ (18)

o
0
2ðx; x

0 Þ ¼
X
i6¼E

��xi � x
0
i

��þ λ
X
i¼E

��xi � x
0
i

�� (19)

where E represents the feature space that the user wishes to remain
unchanged. By incorporating a large weight λ, we introduce a significant
penalty, steering the generated counterfactual explanations towards
user-defined preferences. For Eq. (18), di is a direction indicator, di ¼ 1 if
an increase in xi is preferred, di ¼ �1 if a decrease in xi is preferred. This
study proposes two distinct mechanisms for integrating user-specific
preferences into the counterfactual explanations.

⋅ Directional constraints: Users have the option to specify the direc-
tion—either increase or decrease—in which they would like specific
features to change. For instance, if the user wants to increase the
number of nearby POIs, by setting a large penalty for any generated
CFEs where the number of POIs is decreased, the algorithm can tend
to generate CFE with a larger number of nearby POIs.
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⋅ Weighting constraints: Users can assign weights to individual fea-
tures to prioritize their importance during the counterfactual gener-
ation process. For instance, if a user prefers not to alter the number of
lanes on road segments, applying a larger penalty for CFEs where the
number of lanes is modified will encourage the algorithm to generate
CFEs that maintain the current number of lanes, focusing changes on
other features instead.

4. Experiments and results

The traffic speed data was provided by HERE technologies,1 which
offers a record of traffic speed observations on different road segments.

In this study, the road graph is located in Thousand Oaks, California,
USA, as shown in Fig. 3, which consists of 3169 road segments. The data
were collected from January 1st to 30th, 2019, at 5-min intervals. Fig. 4
shows the average speed of all the road segments within the study period.
A noticeable temporal pattern emerges, where lower speeds appear
during the daytime and a distinct weekly pattern exists with different
speed variations between weekdays and weekends.

Contextual data is of great importance to traffic prediction. In this
study, several contextual features were collected, which can be classified
into static features and dynamic features. Static features are location-
based, which vary with regard to different road segments. Based on
findings from previous studies (Section 2.1), this study included nearby
POI data, speed limit data, and lane configuration of each road segment
as static features. Particularly, the POIs include the nearby gas station,
charging station, parking lot, and restaurant. Dynamic features are time-
based features that change over time. In our study, dynamic features such
as the day of the week, hour of the day, and weather condition data (e.g.,
temperature, wind speed, precipitation, humidity) are included. Table 1
summarizes all the contextual features involved in the study.

The overall performance metrics for the traffic forecasting model are
detailed in Table 2. The accuracy reached 91.24%, indicating a decent
prediction performance.

4.1. Generating counterfactual explanations

Fig. 5 displays the locations of Node A on a suburban road, Road I,
which are the focusing road segments in this experiment. Fig. 6 illustrates
the speed of each road segment on Road I from 6:00 to 8:00, January
10th, 2019.

Specifically, the target of this experiment is to increase the average
predicted speed for the road segment Node A from 28 to 56 km/h. The
prediction uses input data from 8:00 to 8:55 on January 10th, 2019 to
predict the traffic speed from 9:00 to 9:55. Modifications are restricted to
road segments situated within Road I. In this experiment, only the static
features of each road segment are considered for modification. Based on
feature values present in the dataset, the specific ranges for the
changeable features are set as follows.

⋅ Number of POIs: Range from 0 to 36.
⋅ Number of Lanes: Range from 1 to 6.
⋅ Speed Limit: Range from 40 to 120 km/h.

It is important to note that the speed limit is constrained to remain the
same across all segments within Road I to be more realistic.

4.1.1. Objective distributions and correlations
Fig. 7 shows the distribution of the objectives for the set of counter-

factual explanations generated in this experiment. The distribution pat-
terns reveal insights into the relationships among different objectives.

Validity–Proximity: As illustrated in Fig. 7a, there appears to be a
negative correlation between the validity loss and the proximity loss,
1 HERE Technologies: https://developer.here.com/products/platform/data.
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which suggests that as counterfactual predictions become closer to the
target speed, the divergence of the generated counterfactual features
from the original features increases. This relationship reflects a key
characteristic of the model: generally, larger changes in input features
tend to produce more significant differences in output results, thereby
increasing the likelihood of reaching the target outcome, and vice versa.
However, Fig. 7a also highlights a small subset of generated counter-
factual features that achieve both low validity and low proximity losses,
which is precisely the desired outcome. These instances demonstrate the
potential of our method to generate effective counterfactuals that are
both accurate and minimally divergent from the original input, thereby
preserving interpretability and usability.

Validity–Plausibility: Similar observations can be made from
Fig. 7b, where validity loss and plausibility loss are negatively correlated.
This implies that when the counterfactual predictions become closer to
the target speed, they tend to deviate more from observed points in the
feature space.

Proximity–Plausibility: Fig. 7c depicts an overall positive correla-
tion between proximity loss and plausibility loss. Generally, a greater
proximity loss is accompanied by a larger plausibility loss. However, an
interesting cluster of points exists in the bottom-right corner of this
figure. These points show that there are counterfactual explanations that
differ substantially from the original features but still maintain an overall
close distance to observed data points.

4.1.2. Evaluation of the most optimal counterfactual explanations
Different weight parameters can be assigned to each objective func-

tion in Eq. (17) to find the optimal counterfactual explanation for a
particular interest or purpose. As a case study, we investigated the results
where λ1 ¼ 1, λ2 ¼ 0.2, λ3 ¼ 0.2, and λ4 ¼ 0.6. This choice of weights
reflects the relative importance of different criteria in the evaluation
score. Particularly, validity is prioritized as the most critical factor and is
assigned the highest weight. Plausibility also holds significance, but to a
lesser extent, so it was assigned a weight of 0.6. Given that sparsity was
considered less crucial for this particular study, it was given a lower
weight of 0.2. Additionally, since proximity and plausibility are inter-
related, we assigned proximity a smaller weight of 0.2 to ensure a
balanced evaluation.

The optimal counterfactual explanation with the given weights pro-
duces the objective scores outlined in Table 3. The validity score shows a
minimal deviation of 1.3496 km/h from the target speed. Regarding
sparsity, a total of 32 features were altered across all road segments on
Road I.

Table 4 shows the speed prediction change with this optimal coun-
terfactual explanation. With the counterfactual features, the speed pre-
diction increases significantly and is very close to the target speed of 56
km/h.

Fig. 8 shows the comparison between original features and the
selected counterfactual features (the number of POIs and the number of
lanes) for each road segment on Road I. The counterfactual features in
Fig. 8 suggest that a general increase in POIs at certain locations of the
road network is associated with higher speed prediction. Given other
counterfactual features, the number of lanes only needs minor modifi-
cation at a few locations to achieve the target speed, as in Fig. 8b. The
original speed limit is 72 km/h, while the counterfactual speed limit is
105.62 km/h.

4.2. Spatial comparison

The type of road facility (e.g., highway, urban road, or suburban road)
is widely acknowledged as an important factor influencing traffic pat-
terns (Yazici et al., 2014). In light of this, to gain deeper insights into how
the deep learning model predicts speed differently across different types
of roads, this section compares the counterfactual explanations generated
for three distinct types of road segments, i.e., a suburban road, an urban
road, and a highway, represented by Node A, Node B, and Node C

https://developer.here.com/products/platform/data


Fig. 3. Location of road network (dark line).

Fig. 4. Average speed for all the 3169 road segments from January 1st to 30th, 2019.

Table 1
Summary of the contextual data in this study and their encoding method.

Class Contextual data Encoding method

Static feature Number of POIs Integer
Speed limit Integer
Number of lanes Integer

Dynamic feature Day of the week One-hot encoding
Hour of the day Sin-cos encoding
Temperature Float
Wind speed Float
Precipitation Float
Humidity Float

Table 2
Traffic forecasting model performance.

Metrics RMSE MAE Accuracy R2 VAR

Performance 5.7473 2.9876 91.24% 0.9282 0.9291
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respectively. Fig. 9 displays the locations of the two additional nodes,
Node B and Node C. Fig. 10 shows the speeds of the three nodes on
January 10th, 2019.

For all three road segments, the target was set identically: to increase
the predicted average speed on each node between 9:00 and 10:00 to
reach 56 km/h. The initial average speeds recorded were 28.2 km/h for
Node A, 49 km/h for Node B, and 20.18 km/h for Node C. To achieve the
target speed, counterfactual explanations were generated and selected
for each node following the procedures outlined in Section 3.2. To
7

compare the impact of the generated counterfactual features on the daily
pattern, we generate counterfactual predictions for each node for the
entire day and display the results respectively in Fig. 11.

Figs. 11a and 11b reveal that the generated counterfactual explana-
tions for node A (suburban road) and node B (urban road) managed to
increase the predicted speed, particularly for the targeted duration
(9:00–10:00). However, Fig. 11c shows that the counterfactual expla-
nation for node C (highway) did not result in a substantial speed increase.
This demonstrates that static features, including the number of POIs, the
number of lanes, and speed limits, do not exert a significant influence on
predicting highway speeds. Therefore, in the following experiments, we
will only focus on Node A and Node B for subsequent analyses.

Since we only generated counterfactual features at local road seg-
ments to increase the predicted speed on a particular node, it is uncertain
whether the generated counterfactuals will negatively impact predicted
traffic in other parts of the road network. In this section, we evaluate the
global impact of counterfactual explanations on the speed prediction for
the entire traffic network.

Fig. 12 shows the difference between the counterfactual speed pre-
diction and the original speed prediction. In Fig. 12a the speed increase is
mainly distributed on the urban road I. The counterfactual features only
have a minimal negative impact on the speed prediction of other loca-
tions, with a maximum decrease of 6.9 km/h in predicted speed. In
contrast, Fig. 12b shows that the counterfactuals generated for Node B on
the urban road also broadly change the predicted traffic speed in other
road segments. In addition, the negative impact caused by counterfac-
tuals at Node B (urban road) is larger than those at Node A (suburban
road). The largest speed decrease reaches 21.3 km/h with the counter-
factual features generated for urban roads.



Fig. 5. Location of Node A and Road I (a suburban road).

Fig. 6. Speed variation for each road segment on Road I on January 10, 2019.
The color bar indicates the speed (km/h), each column shows the speed for one
road segment, and the traffic flow is from the right side to the left side. Table 3

Objective value for the selected counterfactual explanation.

Validity, o1 Proximity, o2 Sparsity, o3 Plausibility, o4

1.3496 172.5508 32 0.9862

Table 4
Average speed prediction from 9:00 to 10:00, January 10th, 2019.

Original prediction Counterfactual prediction Target

30.10 km/h 54.65 km/h 56 km/h
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4.3. Temporal comparison

Temporal setting also significantly influences traffic patterns. To
examine these effects, we compared counterfactuals generated for five
time slots.

⋅ Morning Jan 10th (Thursday): 8:00–10:00
⋅ Noon Jan 10th (Thursday): 12:00–14:00
⋅ Afternoon Jan 10th (Thursday): 15:00–17:00
Fig. 7. Objective distribution for the group of counterfactual explanations. (a) Dist
plausibility; (c) distribution between proximity and plausibility.
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⋅ Evening Jan 10th (Thursday): 18:00–20:00
⋅ Weekend Jan 13th (Sunday): 8:00–10:00

We generated counterfactual explanations for Node A on the subur-
ban road and Node B on the urban road during each of these time slots.
The most optimal counterfactual explanations for each temporal setting
across all nodes in the road segment are selected. Summing over the
difference across all nodes, Fig. 13 compares the total difference between
the counterfactual features and original features for each setting.

4.3.1. Comparison of number of POIs
Fig. 13a illustrates the variations in the counterfactual number of

POIs for both Node A and Node B across the selected time slots.
Node A: The counterfactual features for Node A show a consistent

increase in the number of POIs across all time slots. This trend suggests
that the model associates a higher number of POIs with lower congestion
levels on suburban roads. This increase is more pronounced during
weekends, indicating that during weekends, the number of POIs has a
ribution between validity and proximity; (b) distribution between validity and



Fig. 8. Comparison between original features (in blue) and counterfactual features (in orange) for each road segment on Road I. The x-axis represents individual road
segments and is arranged to follow the direction of traffic flow. (a) Comparison of the number of POIs; (b) comparison of the number of lanes.

Fig. 9. Location of Node B and Node C. Node B is located on an urban road,
Node C is located on a highway.
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stronger influence on the speed of suburban roads.
Node B: On the other hand, for Node B, which is located on an urban

road, Fig. 13 reveals that the counterfactual explanations generally
advocate for a reduction in the number of POIs. This can be attributed to
the high original count of nearby POIs, which likely contribute to traffic
congestion. Thus, reducing the number of POIs is suggested to mitigate
Fig. 10. Speed of Node A, Node B, and Node C on January 10th, 2019. The gray da
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traffic demand. However, it is worth noting that, in the afternoon setting,
the counterfactual number of POIs stays relatively consistent, which can
be interpreted that in the weekday afternoon, the number of POIs has a
small impact on the traffic of urban roads.

4.3.2. Comparison of number of lanes
If we compare the difference between the counterfactual number of

lanes and the original number of lanes, as shown in Fig. 13b. There are no
substantial changes for most time slots in both Node A and Node B.
However, in the afternoon on the suburban road, the number of lanes
drops by 19 compared to the original number of lanes, with most
reduction occurring in the upstream part of the road segment. This can be
interpreted that in the afternoon on the suburban road, counterfactual
explanations suggest a decrease in the number of lanes (node index 0–10)
before node B (index 11), thereby limiting the volume of cars and
enabling smoother traffic flow.

4.3.3. Comparison of speed limit
Fig. 13c presents counterfactual speed limits for each setting. For

Node A, the speed limit increases for all time slots except on the weekend,
implying that changing the speed limit may not be effective on suburban
roads during this period. For Node B, the counterfactual speed limits
remain fairly consistent throughout weekdays but drop on weekends,
possibly due to lower congestion levels.
shed line indicates the target speed of 56 km/h for generating counterfactuals.



Fig. 11. Comparison of ground truth speed, original speed prediction, and counterfactual speed prediction for (a) Node A-suburban road, (b) Node B-urban road, and
(c) Node C-highway on January 10, 2019.

Fig. 12. Difference between original speed prediction and counterfactual speed prediction (km/h). Negative values indicate decrease in predicted speed, and positive
values indicate increase in predicted speed: (a) impact of CFE for Node A; (b) impact of CFE for Node B.

Fig. 13. Comparison of the difference between counterfactual and original features in different temporal settings for Node A and Node B. (a) Total difference in the
number of POIs; (b) total difference in the number of lanes; (c) counterfactual speed limit (the original speed limit on Node A is 72 km/h, and on Node B is 56 km/h).
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4.4. Experiments on scenario-driven counterfactual explanations

4.4.1. Directional constraints
Directional constraints allow users to specify the desired direction of

feature change—either an increase or a decrease. In the scope of this
experiment, several scenario-specific constraints are evaluated and
compared. We focus on Node A on the suburban road for demonstration.
The objective is to enhance the predicted speed between 9:00 and 10:00
to reach 56 km/h.

Despite the additional requirement on the direction of feature change,
we want to ensure that the generated counterfactual explanations
10
achieve the desired prediction (i.e., low validity loss) and are close to the
feature space of the observational data (i.e., low plausibility loss).
Therefore, we examined the validity and plausibility scores of scenario-
based counterfactuals, as shown in Fig. 14. Fig. 14 shows even with
the directional constraint, the distribution of the two objective scores
falls within a similar range as the one without directional constraint.

In addition, we examine the distribution of the counterfactual ex-
planations in terms of their total feature changes in Fig. 15 and the Ap-
pendix. The scatter plot visualizes the cumulative feature changes for
each generated counterfactual explanation. In the 2D scatter plot, the
axes represent the variations in the number of POIs and the number of



Fig. 14. Objective distribution (validity vs. plausibility) for different directional constraint settings: (a) no scenario constraint; (b) constraints on the number of POIs
decreasing and the number of lanes increasing; (c) constraints on the number of POIs increasing.
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lanes. Larger values on these axes signify greater differences between the
counterfactual and original features. The 3D scatter plot adds a z-axis to
display changes in speed limits. The color bar shows the validity score
associated with each counterfactual, with a brighter color denoting a
better performance of the counterfactual explanation. Detailed analyses
of the three scenarios are presented below.

Scenario A: No directional constraints In this baseline scenario,
counterfactual explanations were generated from Section 4.1. The scatter
plot and its corresponding linear interpolation suggest that counterfac-
tual explanations involving a greater increase in the number of POIs and
a decrease in the number of lanes tend to yield superior performance, as
evidenced by lower validity loss. This observation aligns well with pre-
vious findings specific to suburban roads. The 3D scatter plot illustrates
that the larger the increase in the speed limit, the better the performance
Fig. 15. Results for various directional constraints. Scenario A has no extra constrai
number of lanes; scenario C involves an increase in the number of POIs. The “Scatter
represents the validity score—the brighter the color, the better the counterfactual pe
the scatter plot data. The “3D Scatter” column presents a 3-dimensional scatter plot i
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of the counterfactual.
Scenario C: Increase in POIs City planners may, at times, wish to

enhance the infrastructure surrounding roads by introducing additional
amenities like parking spaces, restaurants, or gas stations. However, they
often aim to do this without adversely impacting road traffic. For this
scenario, the aim is to increase the number of POIs and see how it affects
the predicted traffic. Consequently, large penalties were applied to
counterfactual features that proposed a decrease in POIs. The scatter plot
indicates a shift in the distribution of the difference in the number of POIs
for the generated counterfactual explanations. This shift leans towards a
higher count, suggesting that the counterfactual explanations, under this
constraint, tend to propose a greater number of POIs compared to the
unconstrained baseline. Meanwhile, the distribution concerning the dif-
ference in the number of lanes remains unchanged.
nt; scenario B involves a decrease in the number of POIs and an increase in the
” column displays a scatter plot of the total feature change, where the color bar
rformance. The “Interpolation” column provides a linear interpolation based on
ncorporating total feature changes, including variations in speed limit as z-axis.
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4.5. Weighting constraints

User experience and expertise can guide the assignment of impor-
tance to different features, effectively serving as another layer of
constraint. In this study, the target is consistently set for node B, an urban
road. The aim is to improve the predicted speed between 9:00 and 10:00
to achieve a target speed of 56 km/h. Fig. 16 visualizes the results of the
generated counterfactual explanations under different constraints. It is
worth noting that the scatter plot in Fig. 16 displays the absolute dif-
ferences between the original and counterfactual features.

Scenario D: No Weighting Constraints In this scenario, the coun-
terfactual explanations generally perform better with a larger change in
the number of lanes, while there is no discernible trend for the change in
the number of POIs. As for the 3D scatter plot, it fails to indicate any
significant correlation between variations in speed limit and the perfor-
mance of the counterfactual explanations in terms of validity.

Scenario F: Preserve Number of Lanes In this setup, a higher weight
is allocated to the number of lanes with the objective of minimizing al-
terations to this attribute. Both the scatter plot and the interpolation
exhibit a constricted distribution range for the absolute difference be-
tween the original and counterfactual number of lanes. This outcome
substantiates the effectiveness of this weighting strategy. It is noteworthy
that when modifications to the number of lanes are restricted, the dis-
tribution of changes in the number of POIs also becomes more
condensed. Compared to Scenario D, the scatter points are markedly
clustered towards smaller differences in both lanes and POIs' counts.
Moreover, adding this constraint appears to enhance the overall validity
performance of the counterfactuals.

5. Discussion

5.1. Impact of contextual data on traffic forecasting

To affirm the assumption that incorporating contextual features en-
hances traffic forecasting, we undertook a systematic performance
evaluation of models trained on various datasets. All models underwent
training across 80 epochs for a fair comparison. The baseline model,
trained exclusively on speed data, serves as the point of reference. Sub-
sequently, we incorporated each contextual feature into the training data
at a time and compared the resultant model's performance with that of
the model trained using both speed and all contextual data.

As illustrated in Table 5, the comprehensive model that incorporates
all contextual features demonstrates best performance across all the
evaluation metrics. It exhibits the lowest values for RMSE (9.7578), MAE
(6.4914), and Loss (95.2140) while achieving the highest scores in Ac-
curacy (85.12%), R2 (0.7931), and VAR (0.7940). At the same time, the
model trained without any contextual data exhibited the least effective
performance. It is worth noting that although these contextual features
contribute to model accuracy, their overall enhancement of predictive
performance is relatively limited, resulting in a modest reduction of
merely 0.4 km/h in error, which suggests their role might be less critical
in terms of model training. However, the utility of these features is
notably underscored through the application of counterfactual explana-
tions. With CFEs, it is possible to alter the prediction results with minor
changes in the input contextual features, which can tell us the importance
of input features in terms of sensitivity.

5.2. Comparison of CFEs in various spatial and temporal configurations

5.2.1. Impact of contextual features on highway traffic
Counterfactual explanations generated for highway road segments

failed to yield improvements in speed. This suggests that the static fea-
tures investigated in this study, namely the number of POI, the number of
lanes, and speed limits, do not substantially influence traffic patterns on
highways within the scope of this road network.

In the case of nearby POIs, their presence appears to have negligible
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impact on highway speeds, as highways generally lack direct access to
these facilities. Regarding the number of lanes and speed limits, isolated
adjustments to these parameters on specific highway segments seem
ineffective at altering overall predicted speed. This is likely because
highway traffic speed at a specific time is highly dependent on near
historical traffic speeds and inflow conditions; altering the static attri-
butes of only a section of the highway would not significantly impact the
overall traffic demand or the carrying capacity of the entire highway
network. Therefore, it will not increase the predicted speed in this
situation.

5.2.2. Impact of contextual features on suburban road
When aiming to increase predicted speeds on suburban road seg-

ments, counterfactual explanations suggest an increase in the number of
POIs nearby. This is because the model associates road segments with a
higher density of nearby POIs with lower levels of traffic congestion.

The geographical location of a suburban road appears to significantly
influence its traffic patterns. For instance, suburban roads adjacent to
residential neighbourhoods may experience lighter traffic but with more
nearby POIs. In contrast, other suburban roads might be part of arterial
routes and, despite having fewer nearby POIs, experience higher traffic
volumes, leading to increased congestion or reduced speeds. It is likely
the deep learning model captured these associations, therefore the CFE
recommends increasing the number of nearby POIs when trying to
improve predicted speeds on specific suburban roads. This alteration
makes these road segments contextually similar to quieter, residential
suburban roads, where lower traffic volumes and less congestion are
observed.

With regard to the number of lanes, the CFE does not suggest any
significant modifications, except for the case of weekday afternoons,
when the original traffic is the most congested and experiences the lowest
speed. During these hours, the counterfactual explanations recommend
reducing the number of lanes. Specifically, by reducing the number of
lanes at the beginning of the road segment, less traffic would be able to
enter the road segment, leading to more free traffic flow and overall
higher speeds.

During weekends, the CFEs did not recommend alterations to the
speed limit. This suggests that speed limits are not a significant factor
affecting suburban road traffic forecasting during these times.

5.2.3. Impact of contextual features on urban road
In contrast to the suburban road, when targeting to increase speeds on

urban road segments, counterfactual explanations suggest a decrease in
the number of POIs nearby.

This discrepancy between urban and suburban roads could be inter-
preted in two ways. Firstly, it reflects the inherently different traffic
patterns between suburban and urban settings. Secondly, it is important
to note that the initial number of POIs near the studied urban road seg-
ments is already quite high. Unlike in suburban areas where an increase
in POIs seems to alleviate congestion, urban roads appear to benefit from
a reduction in POIs, presumably because fewer attractions would lead to
less traffic. Interestingly, an exception arises during weekday afternoons,
where the counterfactual explanations do not recommend a reduction in
the number of POIs for urban roads. This could be because, during these
peak hours, the number of POIs does not have a significant influence on
the speed of traffic on urban roads.

5.3. Effectiveness of scenario-driven counterfactual explanations

The experimental results, obtained by incorporating various scenario
constraints into the counterfactual explanation generation process, are
highly promising for several reasons.

Firstly, all generated counterfactual explanations demonstrate
reasonable validity and plausibility scores. This indicates that the method
retains its efficacy to reach the set target even when additional con-
straints are applied, thereby affirming the feasibility and effectiveness of



Fig. 16. Results for various weighting constraints. Scenario D has no extra constraint; scenario E preserves the number of POIs; scenario F preserves the number of
Lanes; scenario G preserves both the number of POIs and the number of lanes; scenario H preserves the speed limit.

Table 5
Traffic forecasting model performance with different training datasets. Baseline indicates the model trained with only speed data. Full data shows the model trained with
speed data and all contextual features. The “Loss” metric presents the loss value for the test data.

Metrics Baseline Number of
lanes

Number of
POI

Speed
limit

Temperature Precipitation Wind Humidity Hour of day Day of week Full data

RMSE 10.2676 10.1596 10.2214 9.9265 10.2018 10.2208 10.2025 10.2295 10.2362 10.1841 9.7578
MAE 6.8945 6.6427 6.7095 7.0003 6.6097 6.6260 6.6018 6.7878 6.8190 6.8221 6.4914
Accuracy 84.35% 84.50% 84.42% 84.87% 84.45% 84.42% 84.44% 84.40% 84.39% 84.47% 85.12%
R2 0.7709 0.7754 0.7727 0.7874 0.7738 0.7729 0.7737 0.7724 0.7722 0.7747 0.7931
VAR 0.7719 0.7754 0.7727 0.7939 0.7745 0.7732 0.7744 0.7727 0.7727 0.7757 0.7940
Loss 105.4242 103.2179 104.4773 98.5349 104.0777 104.4658 104.0910 104.6418 104.7800 103.7168 95.2140
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the approaches proposed in this study.
Secondly, some constraints facilitate more efficient counterfactual

generation. On the one hand, the collection of generated Counterfactual
Explanations generally exhibits lower validity loss, implying proper
performance in aligning the predicted speeds with target speeds. On the
other hand, underweighting constraints in Fig. 16, not only do the colors
in the set of CFEs become more vibrant, but the scatter points also
converge within a smaller area. This indicates increased efficiency after
adding the scenario constraint, as the algorithm is more adept at iden-
tifying optimal counterfactuals within a constrained search space.

In summary, the integration of user-defined prior knowledge into
post-hoc explanations has proven to be valuable. This not only addresses
the initial research questions posed but also has profound implications
for future work in the field of Explainable AI.
5.4. Limitations and potential work

The use of deep learning models, coupled with Counterfactual Ex-
planations, provides a powerful combination for uncovering complex
13
relationships between variables. These relationships may be too subtle or
intricate for humans to notice, thus highlighting the novel capabilities of
explainable AI and deep learning in data analysis.

However, similar to all data-driven approaches, the effectiveness of
this method depends on the quality and diversity of the training data. A
limitation of our study is that the generalizability of the model may be
constrained by the dataset, which is restricted to a limited number of
road segments and contextual features. While our results are promising,
broader applicability to different environments or traffic conditions may
require more diverse data to ensure robustness and transferability of the
generated counterfactuals.

One potential avenue for mitigating these limitations involves the
incorporation of domain-specific knowledge into the data-driven models.
This can enhance the generalizability and reliability of the model's rec-
ommendations. In light of this, scenario-driven counterfactual explana-
tions are proposed. While our work demonstrates that scenario-driven
counterfactual explanations offer considerable benefits in the context of
integrating prior constraints, a key question that remains is how to ensure
the practical utility and broader applicability of these methods in real-
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world settings.
While this study focuses primarily on the space of machine learning

models, it is important to note that the insights gained can still be highly
valuable in real-world applications. For instance, AI model developers in
traffic forecasting can leverage our approach to detect potential vulner-
abilities, prevent adversarial attacks, and enhance model robustness.
Similarly, urban planners can use our model to gain a deeper under-
standing of which factors exert the greatest influence on traffic pre-
dictions, supporting more informed decision-making. In future work, we
aim to refine our approach by collaborating more closely with practi-
tioners to explore the practical challenges of deploying counterfactual
explanations in real-world environments.

6. Conclusions

We introduce a comprehensive framework that advances the use of
counterfactual explanations in spatiotemporal prediction tasks, effec-
tively bridging the gap between theoretical understanding of models and
their practical implications for generating insights.

In this study, a deep learning-based traffic forecasting model was
trained at first, using the state-of-the-art architecture, attribute
augmented spatiotemporal graph convolutional networks. Subsequently,
we generated diverse sets of counterfactual explanations by targeting
various spatial and temporal settings.

On the one hand, by suggesting minimal alterations to input features,
counterfactual explanations enhance our understanding of the model's
behavior and elucidate the role of various contextual variables in deep
learning-based traffic forecasting. This provides invaluable insights for AI
practitioners, aiding in a deeper comprehension of what the model has
learned from the data. More specifically, by examining a variety of spatial
settings—such as suburban roads, urban roads, and highways, as well as
different time slots, this study reveals that the impact of static contextual
features on traffic speed is influenced by distinct spatial and temporal
conditions. On the other hand, this study advances the field by intro-
ducing scenario-driven counterfactual explanations, which offer domain
experts like urban planners insightful recommendations tailored to spe-
cific scenarios. By integrating user-defined constraints into our frame-
work, we can provide insights that are directly applicable to a range of
real-world conditions. Specifically, we introduce two methods for
incorporating these scenario constraints: directional and weighting
constraints. Both approaches effectively align the generated counterfac-
tual explanations with users' prior knowledge and expectations, thereby
making the search for optimal solutions more efficient. Importantly, we
observed that some scenarios, particularly those incorporating weighting
constraints, expedited the generation process and yielded more precise
and useful CFEs. This is manifested through a more focused distribution
of CFEs, indicating a clearer pathway for the algorithm to identify
optimal counterfactual conditions.

Although this study has successfully leveraged counterfactual expla-
nations to interpret traffic forecasting models and provided valuable
insights via scenario-driven counterfactuals, several promising avenues
for future research exist. Upcoming investigations could focus on.

⋅ Cross-validationwith Other Deep LearningModels Although CFEs
is a model agnostic method to generate explanations and this study
primarily contributes to the general approach of applying CFEs to
spatiotemporal prediction tasks, future research should expand this
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approach to other traffic forecasting models to evaluate and compare
the performance and interpretability across different architectures.

⋅ Geographic Generalizability: The current framework relies heavily
on data from a specific geographical region. Future studies should aim
to validate and adapt the model across diverse geographical settings,
thereby assessing its ability to generalize the identified correlations
between contextual features and traffic behaviors.

⋅ Fine-Grained Feature Analysis: While the present study broadly
examines the impact of POIs on traffic dynamics, subsequent research
should delve into how different categories of POIs individually in-
fluence traffic patterns.

⋅ Inclusion of Dynamic Temporal Elements: This study primarily
focuses on altering static features for generating counterfactuals.
Future research should expand the scope to include conducting
counterfactuals on time-dependent features, potentially unveiling
intricate, time-sensitive patterns that impact traffic conditions. This
would entail the development of time-series counterfactual explana-
tions, which is still an under-explored area in current literature.

⋅ Collaboration with Domain Experts: Future work should actively
involve domain experts, such as urban planners, to better incorporate
real-world insights and practical constraints in the modeling process.
This collaborationwill improve themodel's applicability and utility in
decision-making processes.
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Appendix. Results for directional constraints

Scenario A: No directional constraints In this baseline scenario, counterfactual explanations were generated from Section 4.1. The scatter plot and
its corresponding linear interpolation suggest that counterfactual explanations involving a greater increase in the number of POIs and a decrease in the
number of lanes tend to yield superior performance, as evidenced by lower validity loss. This observation aligns well with previous findings specific to
suburban roads. The 3D scatter plot illustrates that the larger the increase in the speed limit, the better the performance of the counterfactual.

https://github.com/RushanWang1/CFforTrafficForecast.git
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Scenario B: Decrease in POIs, increase in Lanes In this scenario, the counterfactual explanations are generated with directional constraints to
reduce the number of POIs and increase the number of lanes. Based on the results in Fig. A1, regarding the change in the number of POIs for each
counterfactual, the distribution range remains relatively stable. In contrast, the distribution range for the change in the number of lanes broadens, with
an increasing number of counterfactuals reflecting a lane increase. Another noteworthy observation is that when this constraint is applied, the resulting
counterfactual explanations tend to be associated with brighter colors on the validity score scale, implying lower validity loss. This suggests that these
constrained counterfactuals generally outperform those generated under the original, unconstrained setting.

Scenario C: Increase in POIs City planners may, at times, wish to enhance the infrastructure surrounding roads by introducing additional amenities
like parking spaces, restaurants, or gas stations. However, they often aim to do this without adversely impacting road traffic. For this scenario, the aim is
to increase the number of POIs and see how it affects the predicted traffic. Consequently, large penalties were applied to counterfactual features that
proposed a decrease in POIs.

The scatter plot indicates a shift in the distribution of the difference in the number of POIs for the generated counterfactual explanations. This shift
leans towards a higher count, suggesting that the counterfactual explanations, under this constraint, tend to propose a greater number of POIs compared
to the unconstrained baseline. Meanwhile, the distribution concerning the difference in the number of lanes remains unchanged.

Fig. A1. Results for various directional constraints.
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Fig. A2. Results for various weighting constraints.
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Fig. A2 visualizes the results of the generated counterfactual explanations under different constraints. It is worth noting that the scatter plot in Fig. A2
displays the absolute differences between the original and counterfactual features.

Scenario D: No Weighting Constraints In this scenario, the counterfactual explanations generally perform better with a larger change in the
number of lanes, while there is no discernible trend for the change in the number of POIs. As for the 3D scatter plot, it fails to indicate any significant
correlation between variations in speed limit and the performance of the counterfactual explanations in terms of validity.

Scenario E: Preserve Number of POIs In this configuration, we assign a higher weight to the number of POIs to discourage substantial alterations to
this feature. The scatter plot and its corresponding interpolation reveal a narrower distribution range for the absolute difference between the coun-
terfactual and original number of POIs, validating the efficacy of this weighting approach. Noticeably, when the changes to the number of POIs are
constrained, the distribution of alterations in the number of lanes tends to cluster towards the higher end of the range.

Scenario F: Preserve Number of Lanes In this setup, a higher weight is allocated to the number of lanes with the objective of minimizing alterations
to this attribute. Both the scatter plot and the interpolation exhibit a constricted distribution range for the absolute difference between the original and
counterfactual number of lanes. This outcome substantiates the effectiveness of this weighting strategy. It is noteworthy that when modifications to the
number of lanes are restricted, the distribution of changes in the number of POIs also becomes more condensed. Compared to Scenario D, the scatter
points are markedly clustered towards smaller differences in both lanes and POIs’ counts. Moreover, adding this constraint appears to enhance the
overall validity performance of the counterfactuals.

Scenario G: Preserve Both Number of POIs and Number of Lanes In this setup, significant weights are allocated to both the number of POIs and
lanes, guiding the model to focus onmodifying speed limits. Interestingly, the scatter plot shows that this constraint only moderately limits alterations in
the number of POIs. Moreover, it does not restrain changes in lane count. With respect to counterfactual performance, more effective counterfactuals
seem to be concentrated in areas showing larger differences in the number of POIs. As for the overall performance of the set of counterfactual ex-
planations, a decrease in validity loss suggests enhanced efficacy.

Scenario H: Preserve Speed Limit This scenario attaches a high weight to the speed limit, directing the model to search for counterfactuals that
predominantly alter other features while keeping the original speed limit intact. Based on the scatter plot, this constraint does not yield a noticeable
impact on themagnitude of changes in any specific counterfactual features. In terms of performance, higher-quality counterfactuals are more likely to be
located in regions showing substantial differences in the number of lanes.
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