2466
oS

Theorems belonging to the thesis
Process-based modelling of aeolian bedforms

JM.T. Stam

Considering the possible influence of the non-symmetrical character of
the large-scale permeability tensor on transport phenomena (Zijl et al.
1993), it seems advisable to develop fluid-flow simulators that account for
the off-diagonal terms of the permeability tensor.

Zijl, W. and Stam, J.M.T., (1993). Anisotropic block-scale permeability and
generalized principal directions: a correction to the direction of advective
transport. Proceedings of the Ground Quality Management 93 conference, Tallinn,
Estonia, September 1993. Ed. K. Kovar and J. Soveri. IAHS Publication no. 220,
pp.281-289.

Sand roses as defined by Fryberger (1979) do not give a good indication
of the sand transport within an area. It is preferable to use detailed wind
roses that include the wind force.

Fryberger, S.G., (1979). Dune forms and wind regime, in E.D. McKee , (Ed.), A
study of global sand seas, Geological Survey Professional Paper 1052,
Washington 1979, p. 137-169.

Wilson's graph relating grain size and wave-length (Wislon, 1972) is
often unjustly interpreted as a universal proof that dune-spacing is
controlled by grain size, for example by Lancaster (1988).

Wilson, 1.G., (1972), Aeolian Bedforms - Their development and origins,
Sedimentology, v. 19, p.173-210.

Lancaster, N., (1988). Controls of eolian dune size and spacing. Geology, v. 16, p.
972-975.

Before the sand transport of an area can be calculated with an empirical
or semi-empirical formula, a formula has to be chosen that either was
developed in an area with analogous climatic, humidity and vegetation
conditions, or else the coefficients of the formula should be recalibrated.

Convective wind acceleration is more important with respect to the
processes of dune formation than local wind acceleration.
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The concept of stratification is used in different scientific disciplines. It is
interesting, however, to observe that in sedimentology this generally
refers to layers with a thickness of the order of centimetres to metres,
while in the physics of magnetism (Stam et al., 1988) this refers to layers
with a thickness of the order of nanometres.

Stam, M. T.H.C.W., Gerritsma, G.J., Lodder, J.C., and Popma, Th.J.A.,
(1988). FMR Measurements on CoCr/NiFe Double Layers, IEEE
Transactions on Magnetics, vol. 24, no.2, p.1799-1801.

Considering the effects of the impact of the Shoemaker-Levi 9 comet on
Jupiter, it seems reasonable to assume that the impact of a comet of
smaller mass on the Earth, could have caused the extinction of many
species of the dinosaurs.

The period of time known in climatology as the "little ice age" has its
repercussions in contemporary Dutch and Flemish painting. This can be
seen by the number of winter landscapes where popular ice-activities
form the main subject.

The zarzuela evolved in Spain as a genre of operetta whose thematic and
musical inspiration is almost exclusively to be found in the national
culture. A clear indication of this is the reworking of fragments of older
zarzuelas that reappear as popular songs in modern zarzuelas.

Theresa of Avila is best known for her mystical experiences and visions.
It was however, through use of her realism and organizing talent, evident
in her many letters, that she was able to successfully reform the order of
Carmel.

There is an apparent contradiction between the politico-economic goal of
a unified Europe and local nationalistic aspirations. This, however, fits
the concept of a Europe in dynamic equilibrium the existance of which is
due to its own plurality (Ortega y Gasset, 1937).

Ortega y Gasset, J. (1937). La rebelion de las masas, in Revista de Occidente en
Alianza Editorial, 1990, Ed. Paulino Gerragorri.

Although the development of electric sabre fencing considerably
simplifies the task of judging, it has also resulted in a loss of playfulness
and a reduction in the variety of applied techniques.

Besides familiarity with European history and culture, it is advisable to
have a good knowledge of French language and literature to be able to
fully appreciate the adventures of Asterix.
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Gezien de mogelijke invloed die het niet-symmetrische karakter van de
grootschalige permeabiliteitstensor heeft op transportverschijnselen (Zijl
et al., 1993), verdient het aanbeveling om vloeistofstromingssimulatoren
te ontwikkelen die rekening houden met de niet-diagonale termen van de
permeabiliteitstensor.

Zijl, W. and Stam, JM.T., (1993). Anisotropic block-scale permeability and
generalized principal directions: a correction to the direction of advective
transport. Proceedings of the Ground Quality Management 93 conference, Tallinn,
Estonia, Sept. 1993. Ed. K. Kovar and J. Soveri. IAHS Publication no. 220,
p.281-289.

Zandrozen zoals gedefinieerd door Fryberger (1979) geven geen juiste
weergave van het zandtransport binnen een gebied. Het is beter hiervoor
gedetailleerde windrozen te gebruiken waarin ook de windkracht wordt
aangegeven.

Fryberger, S.G., (1979). Dune forms and wind regime, in E.D. McKee, (Ed.), A
study of global sand seas, Geological Survey Professional Paper 1052,
Washington 1979, p. 137-169.

Wilson's (1972) grafiek waarin een relatie wordt gelegd tussen
korreldiameter en golflengte wordt vaak ten onrechte geinterpreteerd als
een universeel bewijs dat spatiéring van duinen afhankelijk is van de
korreldiameter, zoals bij voorbeeld door Lancaster (1988).

Wilson, 1.G., (1972), Aeolian Bedforms - Their development and origins,
Sedimentology, v. 19, p.173-210.

Lancaster, N., (1988). Controls of eolian dune size and spacing. Geology, v. 16, p.
972-975.

Voordat het zandtransport van een gebied met behulp van een empirische
of semi-empirische transportformule berekend kan worden dient men:
ofwel een formule te nemen die in een analoog gebied qua
klimaatsomstandigheden, vochtigheid en vegetatie is ontwikkeld; ofwel de
coéfficiénten van de transportformule opnieuw te kalibreren.

De convectieve windversnelling is belangrijker ten aanzien van
duinvormingsprocessen dan de lokale windversnelling.
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Het begrip stratificatie wordt in verschillende wetenschappen gebruikt.
Het is echter opmerkelijk dat in de sedimentologie dit begrip in het
algemeen betrekking heeft op lagen met een dikte van centimeters tot
meters terwijl het in de magnetische fysica (Stam et al., 1988) om een
orde van nanometers gaat.

Stam, M. T.H.C.W., Gerritsma, G.J., Lodder, J.C., and Popma, Th.J.A., (1988).
FMR Measurements on CoCr/NifFe Double Layers, IEEE Transactions on
Magnetics, vol. 24, no.2, p.1799-1801.

Gezien de gevolgen van de inslag van de komeet Shoemaker-Levi 9 op
Jupiter, is het goed denkbaar dat de inslag van een komeet van beduidend
mindere massa op Aarde het uitsterven van vele soorten dinosauriérs
heeft veroorzaakt.

Het tijdperk dat in de klimatologie bekend staat als "de kleine ijstijd" vindt
zijn weergave in de contemporaine nederlandse en vlaamse schilderkunst.
Dit is te zien aan de hoeveelheid winterlandschappen waarin ijspret het
hoofdonderwerp is.

De zarzuela ontwikkelde zich in Spanje als een genre van operette dat zijn
thematische en muzikale inspiratie bijna uitsluitend in de nationale cultuur
vindt. Een aanwijzing hiervoor zijn de fragmenten van oudere zarzuelas
die in de moderne zarzuelas als gangbare liedjes terugkomen.

Theresia van Avila staat vooral bekend om haar mystieke belevenissen en
visioenen. Het is echter dankzij haar nuchterheid en organisatorisch talent,
die vooral blijken uit haar talrijke brieven, dat zij een hervorming van de
orde van de Carmel met succes kon doorvoeren.

Er is een schijnbaar contrast tussen het politiek economisch streven naar
een verenigd Europa en de lokale nationalistische ontwikkelingen. Dit past
echter volkomen in het begrip van Europa als een dynamisch evenwicht
dat bestaat dankzij zijn pluraliteit (Ortega y Gasset, 1937).

Ortega v Gasset, J. (1937). La rebelion de las masas, in Revista de Occidente en
Alianza Editorial, 1990, Ed. Paulino Gerragorri.

Ofschoon de ontwikkeling van het elektrische sabelschermen het jureren
aanzienlijk vergemakkelijkt, verliest het sabelschermen zelf hiermee aan
speelsheid en variatie van toegepaste technieken.

Behalve vertrouwdheid met de Europese geschiedenis en cultuur, verdient
het aanbeveling om een gedegen kennis van de Franse taal en literatuur te
hebben om de avonturen van Asterix volledig te kunnen appreciéren.
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Chapter 1

Introduction

1.1 Modelling the subsurface

One of the main problems regarding the exploitation and
management of the earth's natural resources (groundwater,
hydrocarbons and, to a minor degree, also coal, minerals etc.) is to
know the distribution and properties of reservoirs, aquifers and rocks
of economic value in the subsurface. The volumes of groundwater or
hydrocarbons that can be abstracted, the transport of pollutants in
groundwater, the extent of salt water intrusion in fresh groundwater,
are all influenced by the variability of the properties of the ground. The
use of fluid-flow simulators to study these problems requires
quantitative information of the subsurface properties at each point. Such
information can be obtained from four main sources: i) large-scale
information obtained from measurements such as seismics; i) local-
scale information from pumping-tests (in hydrology) or production data
(in petroleum engineering); iii) detailed information on selected points
from samples, well-logs or cores; iv) information obtained by
geologists from outcrops that have similar characteristics as the
reservoir or aquifer under consideration (these are called geological
analogues).

This information is integrated in a model of the subsurface, where
the properties are defined at every point. Different disciplines work
with different types of model. A general classification has been given in
Fig. 1.1.1, although some denominations can have different meanings in
different disciplines. A conceptual model (as used in a geological
context) is a scheme of reality. Physical models are usually scale
reproductions. Finally, mathematical models (used in an engineering
context) schematize reality in formulae. The general advancement of
computer methods and numerical techniques has led to the development
of mathematical computer models to simulate the architecture of the
subsurface. In this context, computer programmes that perform a
simulation are called simulators.

By the nature of their approach, mathematical models for the
subsurface can broadly be classified into stochastic and deterministic
models. Stochastic models give a whole range of possible solutions for a
set of input data, reconstructing spatial variability with the help of
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frequency distributions. Stochastic models are subdivided into object-
based models and sequence-based models (Dubrule, 1989). The former
generate random geometries in space (e.g. Boolean models) while the
latter generate the distribution of a property such as lithology or
permeability (e.g. geostatistical techniques).

conceptual
models physical stochastic / object-based
mathematical sequence-based -
deterministic< parametric < Zggﬁlréfgilal

process-based
Fig. 1.1.1 Classification of models by their approach.

Deterministic models give one unique solution for a specific input,
but can also be used in a stochastic framework by running the model
with different sets of statistically generated input data. The stochastic
character of the simulation is then given by the nature of the input data
and not by the computer model itself. Though computer programmes
increase the feasibility of this approach, this still depends on how much
time is required for a run of the computer model. Deterministic models
are parametric () when they are based on empirical or geometrical
relationships, and process-based when they are based on the physical
laws that govern the processes themselves. It should be noted that
physical laws may have constants that can be calibrated experimentally,
(e.g. Bagnold's sediment-transport formula, treated in section 3.4.2) but
they still describe essentially a physical process. The object of this thesis
is the development of a process-based model. Therefore the rest of this
introduction will concern this type of model.

1.2 Applications of process-based models

Process-based models are mathematical models that simulate the
physical processes. Such models have recently been developed in
hydrology (Abbot et al., 1986a and b and Bathurst, 1986 a and b), as
well as in geology (Tetzlaff and Harbaugh, 1989), but their application
in geosciences is still in a pioneering stage. Their objectives can be
summarized as follows:

(1) In an engineering context parametric models are generally referred to as conceptual models
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1) As a predictive instrument to judge the effect of geological
processes for engineering or environmental purposes. In this way it
is generally applied in engineering practice for short-term effects
of up to a maximum of about fifty years (e.g. river canalization),
but it can also be applied for long-term predictions (e.g.
desertification, safety of nuclear waste deposits).

ii) To test our assumptions about the real-world system. As process-
based models give a continuous quantitative description of the
subsurface, they can also be used to test the implication and
sensitivity of modelling assumptions, for example the upscaling of
permeabilities (Stam and Zijl, 1992).

iii) As a complement to models used in petroleum exploration. In
future they could complement stochastic models by helping to
determine realistic ranges for input parameters (e.g. characteristic
lengths, widths and thicknesses of sand bodies, clay layers etc.)
which at present are based on outcrop analogues. Process-based
models could also serve on a more deta led scale than is possible
with the actual resolution of seismic surveys. A difficulty in this
use of process-based models is that they require a large number of
input parameters of a climatic and hydrologic nature that is
generally not obtainable from subsurface data. A contribution in
this sense has been made by Koltermann and Gorelick (1992).

The general framework of this thesis is to develop and apply
process-based simulators of sedimentation as an aid in modelling
subsurface architecture and the resulting subsurface properties in terms
of porosity and permeability (i.e. objectives ii and iii listed above).
Simulating the succession and distribution of different genetic units is
only the first step towards this ultimate goal. Further steps that need to
be considered are:

1)  Simulating diagenetic processes® (i.e. compaction, cementation and
fracturing)

i1) Determination of the subsurface properties in terms of porosities,
permeabilities and storage coefficients

i1)  Quantification of the properties on the scale of grid-blocks as are
used in fluid-flow simulators.

A first approach towards treating these aspects in a complete study was

carried out by Stam et al. (1989) and a more detailed overview of the

problems has been given in Stam et al. (1993)

The research has been focused on the aeolian environment. Aeolian
sandstones are good hydrocarbon reservoirs because of their high
primary porosity (e.g. the gas-rich North Sea Basin deposits of the
Permian), and therefore are of interest to petroleum engineering. From

@ Typical geological terms have been included in a glossary
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a hydrological point of view, deposits of both coastal and desert dunes
play an important role as fresh water reservoirs and in the natural
purification of drinking-water (Stuyfzand, 1984). Dune morphology is
of interest to other disciplines also; for example they form an
ecologically important biotope, coastal dunes constitute an important
protective barrier against the sea while desert dunes play a role in
desertification and sand control in arid regions.

1.3 Scales of processes

The development of process-based models in geosciences would
ideally comprehend all the processes that occur from the deposition of
sediment by water or wind to burial, compaction, cementation,
fracturing etc. so that values of subsurface properties (i.e. porosity,
permeability and storage coefficient) can ultimately be obtained. This is
difficult because of the large number of processes that occur and
interact at different physical scales. In this context it is useful to
distinguish four scales (see Fig. 1.3.1). This classification is based on a
hierarchical sequence of heterogeneities developed by Weber (1986),
which has been illustrated with examples from the aeolian environment.
i) The grain scale: the distribution of different grain sizes results in a

determinate sorting and packing, which in turn affects anisotropy.

Grains and pores determine the capillary forces in multi-phase

flow, while cross-bedding results in anisotropy. Grain-scale

distribution is essentially the result of autocyclic processes, for
instance sediment which is transported by wind through saltation

(autocyclic processes are those where the sedimentation of the

depositing fluid itself is considered, without taking into account the

effects of external factors that cause the flow).

ii) The genetic unit scale: a genetic unit (e.g. a dune) is deposited by a
specific process. Genetic units display permeability zonations that
either belong to the autocyclic process or are allocyclic effects
(factors that affect the depositing agent, e.g. a change in wind
direction or in the groundwater level). In the aeolian environment,
dunes, draas and sand sheets are different genetic units, and
permeability zonation is caused by different types of strata in a
genetic unit (wind-ripple, grain-fall and grain-flow strata).

iii) The reservoir scale; the location, size and degree of connectedness
of genetic units are of importance, permitting assessment of the
reservoir volume and its exploitation. These properties are
determined by allocyclic influences on the deposition process. Ergs
(or sand seas, formed of draas and interdraa areas) are units at this
scale in the aeolian environment.
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Grain scale: packing and
sorting forms laminations

10-100 mm

grain-fall strata  grain-flow strata

dune interdraa ~—

10-500 m

300 - 5000 m -

Reservoir scale: ergs or sand seas composed of draas (large bedforms composed of
dunes) and interdraa areas

erg
/—/;\

draa interdraa

sand sheet
sabkha

100-1000 m

gl
-

1-10 km

-
Basin scale: showing schematically the different depositional
environments in a desert (ergs, wadis, sabkhas).

Fig. 1.3.1 Scales of processes in the aeolian environment.
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iv) The basin scale: processes at this scale include tectonics and
eustacy. Basins are essentially the largest units that include the
heterogeneities at all the smaller scales. Deserts are often located in
basins where the sand seas (ergs) are separated by ephemeral
streams (wadi systems) and where desert lakes with marginal
sabkhas form in the middle of the basin.

Purely process-based modelling implies simulating the physical
processes of sedimentation on a grain scale. Simulating large
depositional sequences on a grain-to-grain basis would create problems
of computer time and memory. The genetic unit scale is the next
smallest significant unit out of which, theoretically, a reservoir could
be built. Processes at this scale (e.g. bedforms such as dunes and draas)
result from the interaction between fluid flow and topography. The
physics of fluid flow at this scale has been well developed, and many
solution techniques exist. Sediment mechanics at grain scale is
generalized by using transport equations with sometimes empirically
calibrated parameters (e.g. Bagnold's sediment-transport equation).
Reconstruction of sequences occurs by repeating calculations through
successive time steps, or by extrapolating net accumulation rates over
longer time periods (days, months or years). These results can be
considered relevant at geological time scales, if it is considered that
accumulations preserved, for instance, over a hundred thousand years
result from processes of much shorter time lengths. These include
deposition and erosion in successive cycles (similar to tidal deposits),
and then preservation through larger-scale allocyclic effects (e.g. basin
subsidence, marine transgressions or climate changes). This can also be
taken into account for simulations at reservoir scale. At the reservoir
scale the effect of allocyclic processes has to be modelled, which is done
through initial or boundary conditions. Variation of these conditions
through time is generally calculated in a parametric way. Finally,
simulations at basin scale concentrate mainly on large-scale allocyclic
processes such as tectonic subsidence, eustacy etc. which are often also
modelled in a parametric way.

1.4 Scope of this thesis

This thesis will treat the modelling of the physics of aeolian
sedimentation at the genetic unit scale of dunes. Henceforth this will be
referred to as the dune scale. Many observational studies have been
made in sedimentology, and recently some simulation models have also
been developed (Wipperman and Gross, 1986; Rubin, 1987 and Weng et
al., 1991). The present research focuses on the problem of the
interaction of wind and topography and on the mechanisms for bedform
growth and migration. The author considers that addressing this subject



Introduction

from a physical basis will be a new contribution to the better
understanding and quantification of aeolian sedimentation processes, and
a step towards developing a process-based simulator for the aeolian
environment. The combination of sedimentological studies with
calculation methods from engineering applications is also a new
approach. A clear example of this is that the analytical solution
developed in this study is analogous to the analytical solutions used in
the calculation of long tidal waves. It is important to note that all these
calculations remain models (i.e. simplifications) of reality. The effects
and interactions of processes described from field observations are
much more complicated than the models. However, quantification of the
essential processes can help one to understand the more complex reality,
and this interdisciplinary relationship and would lead to an improved
understanding of the physical processes in the aeolian environment.

The thesis is divided into the following chapters:

Chapter 2 comprises a literature review of the aeolian environment,
concentrating mainly on bedform processes. This review shows that
there are many questions that have come forward in field studies, which
would be interesting to approach from a fundamental physical point of
view. These questions form the context both for the present research
and for future studies. A brief overview is also given of the
mathematical models that have been published to date.

Chapter 3 treats the basic equations used in this study for modelling the
genetic unit scale of dunes (sediment-continuity and sediment-transport
equations) and discusses the assumptions for modelling dune morpho-
dynamics. An analysis of the flow problem is made to understand the
expected behaviour from a fluid-dynamic point of view, and to assess
the possible limitations of the model developed in chapter 5.

Chapter 4 discusses models that result from simplifying the basic
equations to linear relationships (the resulting models are known as the
simple-wave equation and the kinematic-wave equation). This has three
purposes: a) to illustrate the importance of the flow model compared to
the sediment-transport equation; b) to evaluate the effects of linearizing
the sediment-transport equation and ¢) as a basic solution to test the
numerical scheme of the computer programme developed in chapter 6.

Chapter 5 develops a model based on a more detailed calculation of the
wind velocity over a gentle topography. An analytical solution is
developed for a sine-shaped dune. Analytical expressions are given for
the shear stress, the sediment transport, the topography through time,
the migration rate and the growth of sine-shaped dunes. These lead to a
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good understanding of the migration and growth of dunes, and also
serve to test the computer programme of chapter 6.

Chapter 6 generalizes the analytical solution for any gentle topography
using Fourier Transforms. A computer programme called EOLSIM is
developed for this, and solutions are devised for specific computational
problems. Avalanching is considered as a process that counters dune
growth and a simple avalanching routine is developed.

Chapter 7 summarizes the conclusions and discusses some of the possible
implications and extensions of this research.

Finally, in one of the appendices, an article is included in which the
author approaches the study of subsurface heterogeneities from the
aspect of its properties. The specific subject treated here is the
averaging of permeabilities in a layered subsurface. It was determined
to which degree heterogeneities within the layer: could be neglected and
an arithmetic and harmonic average could be used. This work has been
published as a journal article during this research period (Stam and Zijl,
1992). As topics such as this are a direct application of subsurface
modelling, this article has been included within the thesis.



Chapter 2

The aeolian environment

2.1 Introduction

This chapter gives a review of published studies on the aeolian
environment. First, an introduction is given of the general geographic
and hydrologic characteristics of deserts. After that, a summary follows
of the published studies on modern deserts, concentrated mainly on the
dune scale. This review is grouped into subjects that have been
highlighted during field studies and which have led to different
hypotheses on dune dynamics. The compilation of the studies presented
here is by no means complete, only the major studies having been
selected. They are meant to indicate potential areas of interest to model
from a mathematical-physical approach. The present study treats one of
these aspects, the interaction of wind and topography. It is a basis that
can be extended to treat further aspects of bedform dynamics. Finally, a
review is also given of the mathematical models on the dune scale
published so far.

2.2 General setting and characteristics of desert
environments

Aeolian deposits are wind-laid sediments that occur either near sea
shores, the shores of large lakes, or in arid deserts (in both hot and cold
climates). Although the description of the general setting and much of
the literature is focused on hot desert environments, the results of this
study are applicable to aeolian deposits in general.

Modern deserts cover 20% to 30% of the world's landsurface, as
shown in Fig. 2.2.2. They often occur in basins that have an internal
drainage system, with bordering mountain ranges obstructing the
passage of clouds so that these basins lie in a rain shadow (Glennie,
1970). Tectonics play an important role in the preservation of the desert
sediments, and in the distribution of the facies of the desert
environment. The basin topography determines the succession of facies
(ergs, wadis and sabkhas), while the preservation of aeolian deposits is
mainly due to basin subsidence.
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Fig. 2.2.1a Overview of a valley in a modern desert (Kelso dunes, Mojave desert,
Californid) showing different depositional environments: bordering mountain range in the
back (Granite mountains), fan aprons formed by the streams coming from the mountains
and dune field in the foreground.

Fig. 2.2.1b Dunes and interdune areas. The relatively flat areas between the dunes are
interdunes.
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Fig. 2.2.1c Dried bed of an arroyo, or ephemeral channel. Ephemeral channels form the
drainage system of the desert valley.

Fig. 2.2.1d Dried-up playa lake or sabkha; the evaporite deposits of the desert lake.
Note the typical dessication pattern formed by the saline crust.
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important mountain

and plateau areas + dry coastal areas

("~ maijor areas of desert simplified pattern
/ of prevailing winds
w2 desert with sand dunes

Fig. 2.2.2 Distribution of the world's major deserts. The pattern of prevailing winds
moves about 5° North of its mean position in July and 5° South in January. This
simplified pattern is further modified by the large land masses wich heat up more
rapidly in summer and cool more rapidly in winter than the adjacent oceans (after
Glennie, 1970).

Deserts are formed in arid climates, where potential evapo-
transpiration exceeds the precipitation, and the rainfall is insufficient to
support more than very limited plant growth (the mean annual
precipitation is usually less than 200 mm for semi-arid climates and less
than 100 mm for hyperarid climates). Typical arid climates have a small
amount of highly variable precipitation, both in space and in time.
Sudden storms with high precipitation rates produce peak surface run-
offs. Evapotranspiration rates are very high, so that ground-water
recharge is very low. Drainage consists mainly of ephemeral streams
(called wadis or arroyos) whose locations are sometimes inherited from
the Pleistocene topography (Reading, 1986). During the late Pleistocene
many of today's deserts also had a very arid climate, which became
more humid during the early Holocene (Glennie, pers. comm.). The
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upland drainage sections are formed by relatively well developed
channels, the midland tracts show a more diffuse local drainage while
the lowlands are practically riverless, and if there is sufficient rainfall,
salt lakes (called salinas) may form at the lowest points in the basin
(Slatyer and Mabbutt, 1964). Drainage is erosional in the uplands and
aggradational in the lowlands. Fluvial processes are generally more
evident in margins while aeolian sediments occur in the more central
parts (Reading, 1986). Figure 1.3.1, which gives a scheme of scales in
the aeolian environment, shows the distribution of depositional
environments in a basin. An example of the different depositional sites
in a modern desert (Kelso Dunes, California), with some characteristic
desert features (interdune areas, desert lake and ephemeral streams), can
be seen in Figs. 2.2.1a,b,c and d.

Normally, aeolian deposits are texturally characterised by clean,
well sorted and rounded grains, generally between 0.1 and 1 mm in
diameter. Coastal dunes are generally well sorted to very well sorted,
while inland dunes are moderately to well sorted (Ahlbrandt, 1979).
Sorting depends on the proximity to the source. A uniform sand will
indicate a long distance from the source, so that both the coarsest and
finest components will have been segregated. The source of the aeolian
sediment can be: a) chemical and mechanical weathering products of the
exposed rocks in the desert; b) unconsolidated sediments from alluvial
fans ¢) coastal beaches bordering the deserts (Glennie, 1970). The
original sources of the aeolian sediment can be located at great distance
from the actual depositional setting (Ahlbrandt, 1974).

2.3 Deposits in ancient aeolian environments

The distribution of facies in a desert environment, as has been
described above, is also recognizable in palacoenvironments, such as the
South Permian Basin, extending from the North Sea across to Poland.
This basin is of importance for its hydrocarbon reservoirs in the Upper
Rotliegendes formation. An interpretation of the distribution of the
main facies in the South Permian Basin during the Early Permian is
shown in Fig. 2.3.1 (after Glennie, 1984). These facies are: aeolian,
wadi, sabkha and desert lake. Figures 2.3.2a,b,c,d and e show examples
of the following characteristic features of some of these facies in cores:
i)  Aecolian facies (Figs. 2.3.2a and b) form the main reservoir rock

for the gas in the basin. They are characterized by clean sands

where clay intercalations are nearly absent (Van Veen, 1975).

Adjacent laminae of steeply dipping foresets show sharp grain size

differences. Note their truncation by less steep laminae. In the

aeolian facies interdune areas affected by groundwater can be
recognized (Fig. 2.3.2¢). These are damp sandflats showing

13
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horizontal laminae, alternating light and dark streaks. Small-scale
cross-bedding suggests local reworking by ephemeral streams.

ii) Sabkha deposits bordering the desert lake (Fig. 2.3.2d). These are
mudflats consisting of argillaceous sandstones showing a somewhat
chaotic structure, probably caused by adhesion of silts and clays to
a slightly damp salt-covered sabkha surface.

iii) Desert-lake facies (Fig. 2.3.2e) consisting of red-brown mudstone
formed by the clay deposits of the desert lake.

X

T

&}mhern Permian Basi

o

\London Brabant Platform

A

A Y

2 aeolian dunes - existing major faults

l:l aeolian dunes & wadi 11 Rotliegend depositional/
m sabkha erosional edge

/]
- lacustrine

pre-Permian outcrop

Fig. 2.3.1 Facies distribution and pattern of Early Permian (Rotliegend) in the North
Sea area (after Glennie, 1984). The square marks the approximate position of block
K, where the core of Fig. 2.3.2 is located.

2.4 The recent aeolian environment

2.4.1 Bedform types and patterns

Wind-blown sand accumulates into sand seas or ergs, where they
assemble into a complex variety of bedforms. Wilson (1972)
distinguishes three scales of aeolian bedforms: ripples, dunes and draas.




3076.80m

3157.00m

10

15

20

25

3160.50m

3185.50m D SN 3130.50m

(c) (d)

Fig. 2.3.2 Examples of a core showing distinct facies of an ancient desert system (Southern
Permian Basin). The core was taken with a deviation of approximately 20° The
approximate location of the core is indicated in Fig. 2.3.1. The scale is given in
centimetres. Photograph published by courtesy of NAM (Nederlandse Aardolie
Maatschappij);

(a) aeolian facies forming the main reservoir. Note the angle discordancy between the sets
of laminae; (b) aeolian facies; note how the laminae merge downward tangentially
together, a characteristic feature at the base of grain-flow strata; (c) aeolian facies; damp
sandflats (lower two-thirds); these are interdune areas affected by groundwater. Note the
characteristic light and dark low-angle laminae; (d) sabkha deposits bordering the desert
lake; These are mudflats consisting of argillaceous sandstones, showing a somewhat
chaotic structure. (e) desert-lake facies; consisting of red-brown mudstone formed by the
clay deposits of the desert lake.
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Table 2.4.1 Dimensions and migration rates of aeolian bedforms (after Wilson, 1972)

ripples dunes draas
wave-length [m] 0.15-2.50 3-600 300-5500
wave-height [m] 0.002-0.05 0.1-100 20-450
migration rate 1 m-h! 0.1 m-d-! 0.01 m-a’!

Ripples and dunes can be considered as separate categories because
no intermediate forms appear; i.e. the largest ripple is smaller than the
smallest dune. Draas are a more complex bedform. They are the largest
bedforms observed in aeolian accumulations. Though ripples and dunes
are also subagueous bedforms, draas are a typical aeolian bedform.
According to Wilson (1972) they originated by merging together of
juxtaposing dunes. They may have originated during earlier time
periods (15 to 20 thousand years ago) as large dunes, under the
influence of glacially-induced strong and persistent winds, and now have
smaller dunes migrating over their surfaces (Pugh et al., 1993). Table
2.4.1. gives dimensions for the three types of bedforms according to
Wilson (1972). An order of magnitude of their migration rates has also
been added.

Ripples, dunes and draas display a regular spacing and pattern.
This can be seen for dunes and draas on satellite images and aerial
photographs (see Fig. 2.4.1), but also observed on the ground with
small bedforms, such as smaller dunes and ripples. Wilson (1972) found
that by plotting the areal frequency versus the wave-length of different
bedforms the above three categories could be distinguished (Fig. 2.4.2a
and b). By analysing sand samples from the Sahara desert, he found,
moreover, that a plot of the bedform wave-lengths against grain-size
diameter also showed the three bedform groups. This is an interesting
result, although it should be taken into consideration that this
relationship only applies to the location where the samples were taken,
and is not necessarily a universally applicable relationship. Also, Wilson
did not distinguish between dunes and draas of different shapes (i.e.
longitudinal and tranversal), which have a notably different ratio
between their wave-length and height.

Anderson (1990) analysed ripples as a self-organizing system that
shows a spontaneous transition from a random distribution (where
ripples originate) to a regularly spaced pattern. He concluded that this
regularity results from the evolution of different sized ripples. Small
fast-moving ripples catch up on larger slow-moving ripples, and are
absorbed by them, resulting in the growth of the mean wave-length, and
a decrease in the variability of the wave-lengths. It is also considered
that migration rates of ripples are controlled by grain size; fast-moving
ripples being finer grained and slow-moving ripples being coarser
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grained (Glennie, pers. comm.). A similar self-organizing behaviour
was described by Kocurek et al. (1992) for the behaviour of incipient
dunes originating at random locations and migrating at different rates,
so that cannibalization, overtaking and complete incorporation of one
bedform in the other was observed, tending towards a state with fewer,
larger and more regularly spaced dunes.
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Fig. 2.4.2a Areal frequency of different wave-lengths (after Wilson, 1972) Wilson
calculates the areal frequency as dAj /dlog(A). Formally log(A) is calculated as
log(MAg). It is assumed that A9 = Icm in case of the ripples and Ay = I m in case of
the dunes and draas.
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Fig. 2.4.2b Bedform grain size plotted against wave-length (after Wilson, 1972). Three
categories can be distinguished (ripples, dunes and draas). Sand samples and
measurements were taken from one area (the Sahara). The lines dividing the clusters
were placed more or less arbitrarily to indicate a maximum for the ripples and a
minimum for the dunes and draas.
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2.4.2 Dune growth and development

Wilson (1972) describes the formation and development of aeolian
dunes in detail. An initial irregularity acts as a nucleus that starts the
development of a proto-bedform. Different sized nuclei lead to ripples,
dunes or draas. He gives the following possible nuclei for dune
formation:

1) A body or an obstacle standing out (e.g. a pebble)

1)  An inhomogeneity in the substratum leading to differential erosion

iii) The remnants of previous bedforms

1v) An irregularity produced by the flow (an eddy, a random feature
in the turbulence).

These coincide to a certain degree with nucleation sites observed by

Kocurek et al. (1992) associated with varying surface roughness, for

example areas with grass, areas adjacent to vegetated mounts, areas

within erosional depressions etc.

The further development of dunes has been observed in detail by
Kocurek et al. (1992), and is illustrated in Fig. 2.4.3. They describe five
stages:

1) Irregular patches of dry sand migrate from the original nucleation
site (Fig. 2.4.3a). They are a few centimetres high, lacking a
distinct crest and formed by wind-ripples. A slight acceleration and
deceleration of the wind velocity is noted.

1) These sand patches continue to migrate and develop into
protodunes, of a height of 10-35 c¢m (Fig. 2.4.3b). They show a
distinct crest line, but can have normal dune asymmetry, reversed
asymmetry, or be of symmetrical shape. The transport mechanism
is saltation, forming a deposit of wind-ripples.

iii) Protodunes continue to develop into a distinct asymmetrical shape.
Their height ranges between 25-40 ¢cm (Fig. 2.4.3¢). A distinct lee
face forms, where flow deceleration occurs, and sand grains
entrained over the crest fall on the slip-face by effect of gravity,
forming grain-fall strata.

1v) The dune develops into a definite barchan dune (Fig. 2.4.3d).
Separation of the flow occurs and a wake zone forms. At the slip-
face, the critical angle of repose (between 30° and 35°) can be
reached. Then, the weight of the sand deposit exceeds the sheer
stress and sand avalanches, forming grain-flow strata. Barchan
dunes as small as 40 cm height have been observed (Kocurek et al.,
1992), but their height can reach up to several tens of metres.

v) Barchan dunes merge laterally together, forming crescent-shaped
ridges (Fig. 2.4.3¢). If there is a sufficient availability of sand they
will continue to develop into transverse dunes, the largest of which
can be up to several kilometres long and up to 300 - 400 metres
high.

19
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(a) sand patch formed by wind-ripple strata

(b) protodune with a distinct crest and flow expansion
formation of wind-ripple strata

e

(C) protodune with an asymmetrical shape and greater flow expansion
formation of grain-fall strata

(d) dune with flow separation
formation of a slipface with grain-flow strata

(e) fully evolved dune with flow separation
formation of grain-flow strata

Fig. 2.4.3 Stages of dune evolution (after Kocurek et al., 1992).
2.4.3 Wind regime and dune shape

Wind regimes associated with dune types according to their shapes
were analysed by Fryberger (1979), who made the first attempt at
developing a standardized method to compare sediment transport in
different areas by means of sand roses. Sand roses are circular
histograms that represent the potential sediment transport, in different
directions, computed over a certain time interval. He associated wind
regimes with dune types: barchan and transverse dunes were associated
with narrowly unimodal wind regimes; linear dunes with bimodal wind
regimes and finally star dunes with winds of much wider directional
variability. More detailed results were obtained experimentally by
Rubin and Ikeda (1990). They reconstructed dunes of different shapes
by subjecting subaqueous dunes in a flume to flows that alternated
between two different directions. They found that transverse dunes were
formed when the angle between two equally important transport
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directions was less than 90°, when the angle was 180°, or at any angle
when there was a dominant transport direction. Longitudinal dunes
were formed when the angle between the flow directions was greater
than 90° and transport was equally dominant in both directions. Further
studies show us that the relationship between wind and dune shape is
more complicated than we were first led to believe, especially when
considering the three-dimensional character of the flow and bedforms.
Cooke et al. (1993, p.368-396) extensively discuss dune morpho-
dynamics and give an overview on the different theories of formations
of linear dunes.

Sand roses as developed by Fryberger (1979), have subsequently
often been used to characterize the sediment-transport regime of a
particular area, in an analogous way to the use of wind roses (Fryberger
et al., 1983 and 1984; Havholm and Kocurek, 1988 and Sweet et al.,
1988). Sand roses give an idea of the potential yearly sediment-transport
and can be used to compare different regimes or areas qualitatively. It
should be noted, however, that the quantified information is unsuitable
for further morphodynamical calculations. The main reason for this is
that two factors, the wind strength and the length of time the wind blew,
are merged together. Therefore it is impossible to distinguish if
sediment transport is due to a strong wind having blown a short period,
or a weaker wind having blown during a longer period. This type of
data would be important for a morphodynamical study of dunes. For
this type of study, wind roses divided into categories for different wind
strengths, as used in Kolm (1982), are preferable.

wind direction g

Fig. 2.4.4a Scheme showing the cross-bedding formed by a transverse dune (after
Weber, 1987). Note the low-angle cross-bedding perpendicular to the wind direction
(called festoon cross-bedding) and the steeply dipping cross-bedding parallel to the
wind direction.
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Fig. 2.4.4b Example of an outcrop showing steeply dipping cross-bedding formed parallel
to the wind direction in Zion National Park (Utah). Note the trees (approximately 2 m)
for scale. The bedding formed by an individual dune can clearly be seen at (a) and of
smaller dunes in (b) (¢) and (d). A horizon indicating exposure at a different angle is
marked by (f). A diagenetically altered zone is marked by (e).
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Dune types (oblique, transverse or longitudinal) have been
recognized in ancient acolian sandstones (Kerr and Dott, 1988;
Clemmensen and Blakey, 1989) by analysing palacowind directions. One
of the features that has always served to characterize aeolian sandstones
is the superposition of giant cross-bed sets. These cross-bed sets show a
characteristic geometry both perpendicular and parallel to the wind
direction (see Fig 2.4.4a,b and c). This has been observed in the Jurassic
Navajo Formation in Utah, U.S.A. (Doe and Dott, 1980; Weber, 1987).
Data on lengths, thicknesses and widths of the cross-beds was gathered
by Weber (1987) in the Canyon De Chelley (Arizona), and used as an
analogue for the aeolian facies of the Permian Rotliegendes. These giant
cross-beds may have been formed by much stronger winds than we
observe today, if we accept the hypothesis that high-latitude glaciations
during major glacial periods (Permo-Carboniferous and Pleistocene)
might have caused a squeezing together of the air-pressure belts that
control the wind pattern (Glennie, 1982 and 1984).

2.4.4 Wind velocity over bedforms

The velocity profile over a varying topography differs notably
from the logarithmic velocity profile of turbulent flow over a flat
surface (see section 3.3). Measurements of velocity profiles over dunes
were made by Bradley (1980), Mulligan (1988), Sweet and Kocurek
(1990) and by Arens (1994), while close-surface measurements of
variations of wind speed and calculations of sediment transport were
made for various flow models (Howard et al., 1978; Mikkelsen, 1989
and Weng et al., 1991). The acceleration that generally occurs at the
stoss side is sometimes quantified in a speed-up factor, or the ratio
between the wind velocity at the crest and that at the plinth of the dune
(Lancaster, 1985). Flow decelerates at the lee side, and usually flow
separation occurs and a wake zone forms with highly rotational tflow (as
was illustrated in Figs. 2.4.3d and ¢). This does not necessarily happen
though, as indicated by Sweet and Kocurek (1990). They noted that the
lee-face flow could be separated, but also attached without a wake, and
deflected along the slipface. This depended on the dune shape, on the
orientation of the dune brink in relation with the wind direction, and on
the atmospheric thermal stability (which would affect the velocity
profile). Sweet and Kocurek (1990) give empirically observed limits for
these controlling factors.

Sediment transport over a bedform will vary according to the
acceleration and deceleration of the flow velocity, causing the bedform
to migrate. Field measurements have been made on the rates of erosion
and deposition over a dune (Howard et al., 1978; Lancaster, 1985,
1988), but published data on migration rates is scarce and generally not
uniform or complete (e.g. migration rates are given without
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corresponding wind velocity or height of measurement). The most
complete and extensive data on migration rates is given by Long and
Sharp (1964), who published the migration rates of 47 barchan dunes in
the Imperial Valley in California. Dune heights ranged approximately
between 3 and 12 m. The migration rates were estimated from the
difference in location of the individual dunes in the course of seven
years. Estimated migration rates varied between 14 and 40 m-a-! with
an average of 25 m-a-l. Some orders of magnitude of bedform
migration rates are given in Table 2.4.1. Tt can clearly be seen that there
is a trend for small bedforms to migrate faster than large ones.
Migration rates for ripples are in the order of 1 m-h-1, for dunes in the
order of 0.1 m-d-! and for draas in the order of 0.01 m-a-!,

2.4.5  Stratification types in aeolian deposits

The identification of the thinnest recognizable depositional strata in
modern dunes results from the work of Hunter (1977). He described his
observations of the dune field on Padre Island (Texas), and classified the
strata into the following categories:

1) Planebed lamination forms by traction of sand grains. Wind
velocities are high so that small pre-existing ripples are flattened
out. However, after some time and under the same velocities, new
ripples form that are more widely spaced than the previous ones.
Hunter noted that the formation of planebed lamination was
observed only once during his field study.

ii) Ripple strata form on the stoss side of dunes and on gently sloping
lee sides (slopes smaller than the angle of repose; 34°). Ripples
forming on lee slopes can be caused by shifts in wind direction, or
by vortices in the wake zone. Ripples are formed by saltating
grains, and they are oriented perpendicular to the local wind
direction (Figs. 2.4.5 and 2.4.6 on page 34). They are therefore
indicators of the local wind direction. Ripples migrating on the
stoss surface of a dune generally cause erosion. Ripples can also
migrate on a hard flat surface without net deposition and they can
climb, which means they migrate while net deposition occurs. They
can have any wind-induced orientation relative to the slope attitude.

iii) Grain-fall laminae form in the lee of a dune crest, in the zone of
flow separation, where grains fall through the effect of gravity.
The laminae are parallel with gradational contacts, so that
individual laminae are difficult to identify. Therefore there is little
grain-size segregation. Hunter (1977) observed rates of grain-fall
deposition ranging from 1to 5 cm-h!at wind speeds of about
9 msl.

iv) Grain-flow cross-strata are caused by slump degeneration (through
loss of cohesion between sand grains), and scarp recession (where a
small sand flow occurs, which causes recession upslope and at the
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sides). The occurrence of avalanching leading to grain-flow can
also be seen in Fig. 2.4.5. Deposits formed by sand flow are shaped
as a tongue or cone. They are graded, with the coarser grains
concentrated near the base of the slipface as a result of shear
sorting. The grain-flow strata are usually preserved. and can be
identified in cores by its regular, steeply dipping cross-bed sets
without any shale intercalations (see Fig. 2.3.2a and b).

Fryberger and Schenk (1981) reconstructed the formation of wind-
ripple, grain-flow and grain-fall strata in a wind tunnel experiment,
gathering information on their formation and migration rates. These
experiments confirmed Hunter's (1977) observations. They concluded
that the rate of deposition, wind velocity and wind duration control the
specific sedimentary features of these strata. Wind velocities between
0.4 and 0.625 m-s-! (recorded at heights ranging between 0.165 and
0.26 m) resulted in deposition rates of wind-ripple strata varying
between 0.059 and 0.136 cm-min-!. The migetion rates varied between
0.9 and 1.6 cm'min-!.

The aeolian structures identified by Hunter (1977), proved to be
an additional means of distinguishing between subaqueous and aeolian
sandstones (Kocurek and Dott, 1981; Clemmensen and Abrahamsen,
1983). Outcrop measurements of permeabilities in the different facies of
the Page Sandstone (Northern Arizona) by Goggin et al. (1938) and
Chandler et al. (1989) revealed that differences by orders of magnitude
of permeability relate to the difterent stratification types. The lowest
permeabilities correspond to the interdune strata and the strata outside
the erg (averaging 665 mD)!, followed by the wind-ripple strata
(averaging 2289 mD). The highest permeabilities are found in the
grain-flow strata (averaging 7820 mD). The interdune strata (occurring
between dunes and also between ergs) are considered to be permeability
barriers that would compartmentalize the reservoir. Van Veen (1975)
described the permeability distribution of a core from the Rotliegendes
aeolian cross-beds in the Leman Gas-Field. An alternation of high- and
low-permeability streaks was observed. This was attributed to the
regular avalanching at the lee side of the dunes. Some permeability
measurements were taken of a small sample of the core. These varied
between 12-36 mD for the highly permeable streaks, and between 0.5-
2.5 mD for the poorly permeable streaks. These values are much lower
than those given by Goggin et al. (1988) and Chandler et al. (1989).
There may be many reasons for this difference, the main probably
being diagenetic effects that occurred in the Rotliegendes.

LimD = 10715 m2
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2.5 Preservation of bedforms

A question that has frequently been raised relates to how aeolian
deposits are preserved. Allen (1969) suggested that sets of cross-strata
are formed by trains of climbing bedforms. Rubin and Hunter (1982)
worked this out in a model. As a bedform migrates, it leaves a surface
that is defined by the apparent advance of the trough. If the erosion at
the stoss side equals deposition at the lee side, no net deposition occurs.
If the lee side deposits are not eroded away by a following trough, then
they are preserved, forming what is called a "climbing translatent
stratum” (Hunter, 1977). This is usually called the "climbing bedform
theory™.

third order second order first order
g
7,
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- - 7
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Fig. 2.5.1 Hierarchy of bounding surfuces (afrer Reading, 1986).

The trace that results from the migration of one bedform over
another is a bounding surface. Brookfield (1977) identified a hierarchy
of bounding surfaces, where a more important order of bounding
surface truncates other less important surfaces (see Fig. 2.5.1). They
mark a sequence where each process is overridden by another one
acting on a larger spatial scale. There has been some discussion on the
possible origins of these bounding surfaces, which is summarized by
Kocurek (1988). The smallest bounding surface is the third-order
bounding surface, caused by a reorientation of the lee face of a dune by
a shift in wind direction. Second-order bounding surfaces result from
dunes migrating over each other. First-order bounding surfaces can
originate by different mechanisms; draas migrating over draas
(Kocurek, 1981, 1988) or by a successive rise of the water table, where
the aeolian sediments above the groundwater table are eroded away
(Stokes, 1968). Figure 2.5.2 shows these two mechanisms. Finally
super-bounding surfaces represent a hiatus in the whole period of
aeolian deposition. They can be caused either by a climate change
resulting in a protective mantle of vegetation that stabilizes the dune
field (Talbot, 1985; Yang and Nio, 1993), or by a major marine
transgression that reworks the surface sediment but preserves the
deposits beneath (Glennie, 1970). First-order bounding surfaces and
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super-bounding surfaces are important features for correlating aeolian
units (Kocurek, 1988).

(A) Water-table controlled hypothesis (B) Climbing bedform hypothesis
view paralle! to wind direction view parallel to wind direction
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Fig. 2.5.2 Scheme showing preservation of aeolian deposits by (a) rise of
groundwater table and (b) by climbing bedforms, (after Kocurek, 1981). T1, T2 etc.
indicate different time steps.
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On the whole it should be stressed that the most important process
for preservation of aeolian deposits occurs at basin scale and is due to
subsidence. Modern deserts that do not occur in subsiding basins have
small preservation potential, while in the rapidly subsiding Rotliegendes
Basin preservation potential was very high.

2.6 Previously published mathematical models at bedform
scale

Much research has been undertaken at the grain scale, on the
physics of saltation (Bagnold, 1941; Anderson, 1987, 1988; Anderson
and Haff, 1991; McEwan and Willets, 1991). Anderson (1988)
developed his work on saltation to simulate the formation of grain-fall
strata at the lee side of a dune. The deposition rate showed a maximum
some decimetres from the brink, after which it decreased roughly
exponentially (Fig. 2.6.1). The characteristic decay length that results
from this exponential formula, was calculated to be of the order of one
metre for a typical shear velocity of 0.5 m-s-!. This, being less than the
slip-face length, leads to oversteepening and avalanching, so that the
point where avalanching started could be predicted.

100
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Fig. 2.6.1 Deposition rates as a function of distance down the lee face, for different
shear velocities ux . Note that the maximum deposition rate occurs some distance after

the apex (after Anderson, 19886).
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Hunter (1985) developed a kinematic model for calculating the
succession of grain-fall and avalanching occurring at the lee face of a
dune. It is a two-dimensional parametric model, where the rate of
formation of grain-fall strata is a negative power function of the
distance. Assumptions need to be made for the decline rate of this
negative power, and also for bedform migration rate, bedform height,
avalanching speed and angles. The model gives estimates for
proportions of bottomset and foreset deposits, and the ratio of grain-fall
and grain-flow strata in the foreset deposits. Structural differences
between subaqueous and aeolian lee-side deposits could be
reconstructed.

One of the first models to simulate the migration of a dune was
developed by Howard et al. (1978). They made a three-dimensional
simulation of a barchan dune migrating in equilibrium. A prototype
dune was chosen in Salton Sea (California). The velocity field over the
topography was obtained from measurements. With this velocity field
the sediment transport over the dune was determined using Bagnold's
sediment-transport equation (this will be treated in chapter 3) adapted
tor slopes. The erosion and deposition were calculated and compared to
measurements on the real dune. Corrections for surface slope and for
the lag between the transport rate and the change in wind velocity were
included in the sediment-transport formula, but neither of these two
corrections was found to be an improvement. The model by Howard et
al. (1978) was the first attempt at quantifying dune morphodynamics. It
did not include any fluid-dynamic calculation of the flow field. The
flow field was taken from measurements and considered unchanged
throughout the simulation. As the dune was assumed to be in
equilibrium this approximation is correct. Due to this static flow model,
Howard et al. (1978) had to make a somewhat artificial distinction
between the influence of the convergence and divergence of the
streamlines and of the variations of the shear stress over the dune,
which are two related aspects. This means, however, that it is difficult
to model the dynamic relationship between flow field and sediment
transport, (i.e. changes in dune morphology caused by changes in wind
velocity and vice versa). A later model was developed in Howard and
Walmsley (1985), using a flow model developed by Jackson and Hunt
(1975). Though the resuits were found encouraging it did not lead to a
stable simulation of a dune migrating in equilibrium.

Fisher and Galdies (1988) published the code ot a three-
dimensional geometrical model for simulating dune migration. The
geometry of the plan view of the dune was described with ellipses and
parabolae. In the vertical plane the dune was divided into triangular
cross-sections. The wind drag was calculated from the wind velocity
with the Prandtl-Von Kdrman logarithmic profile (see section 3.3). The
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sediment transport was determined with a variation of Bagnold's (1941)
formula. It is unclear how the rate of advance of the dune was
calculated in this model, but it depended on proportionality factors
determined by the dune geometry.

The first model to combine actual three-dimensional flow
calculations with a sediment-transport formula, was developed by
Wipperman and Gross (1986). Flow velocities were calculated for a
given topography with a numerical flow model. Erosion and deposition
were determined as well as the redistribution of sand at the slipface.
Their simulations showed how a conical heap of sand evolved to a
barchan dune in equilibrium with the wind regime. Different shapes
resulted from high and low wind velocities, the wings of the barchan
being much more developed under a high wind velocity. Wind velocity
and speed-up factors were compared with the measurements published
by Howard et al. (1978) and found to be in good agreement.

Another three-dimensional model was developed by Weng et al.
(1991). An important part of their research was concentrated on
revising and improving the flow model for the wind velocity over a
dune. It was a three-dimensional boundary-layer flow model, based on
the theory originally developed by Jackson and Hunt (1975). The flow
model simulates flow without boundary-layer separation. Wind velocity
and sediment-transport calculations were compared with their
measurements over a barchan dune in Oman and also with the
measurements by Howard et al. {1978). Their results were considered
encouraging.

There are few models that focus on ancient aeolian sandstones.
Rubin and Hunter (1982) developed a model for simulating bedclimbing
(referred to in section 2.5), from which the strata thickness left by a
migrating dune could be determined. Rubin (1987) developed a
geometric model to reconstruct ancient bedforms and cross-bedding.
Based on input parameters such as bedform spacing, steepness,
asymmetry, migration rate and direction, the bedforms were
reconstructed from two sets of sinusoidal curves at a different angle,
which represented the angle between the migration direction of two sets
of bedforms. This model serves as a very helpful tool for understanding
the complex three-dimensional geometry of bedforms and cross-bedding
that must sometimes be deduced from few sections and limited
information in the tield.
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2.7 Discussion
2.7.1 Concerning the results of field work

From the above summation it can be seen that a huge amount of
descriptive field work and measurements has been carried out. This has
led to a series of interesting questions and hypotheses that can be tested
by fluid-dynamic simulations. The present study focuses on one such an
aspect (the interaction of wind flow with topography). On the basis of
the results of this study some answers can be given to questions such as:
how does a dune evolve from a protodune to an equilibrium state where
it advances without changing shape? What are the controls on the
growth and migration rates of bedforms? There are still a number of
topics of considerable interest that remain to be explained; such as the
reason for the regular spacing of bedforms, and why smaller bedforms
are incorporated into larger ones. Also, the theory of climbing
bedforms (Rubin and Hunter, 1982} is not yet properly understood
from a fluid dynamic point of view. An apparent contradiction exists
between the assumption of equilibrium bedforms that migrate without
significant change of shape so that erosion on the stoss side equals
deposition on the lee side, and of bedforms that deposit sediment while
climbing.

2.7.2 Concerning the modelling of the physical processes

Most of the work on the physics of aeolian processes has been
undertaken at the grain scale (Werner and Haff, 1988; Andersen, 1987,
1990; McEwan and Willets, 1991). This has not been reviewed here
because it is not the theme of the present study.

The first models for simulating dune dynamics did not actually
calculate the velocity field over the topography and either assumed that
the dune is in equilibrium and migrates without changing its shape
(Howard et al., 1978) or formulated a geometrical relationship for the
sediment deposition (Fischer and Galdies, 1988). Neglecting to account
for the influence of topography on flow velocity is a serious limitation
when trying to understand the interaction of flow and dune morphology
(as would be necessary for some of the questions raised in the previous
section). These can be described as simulation models with a static flow
field.

A considerable advance was made with the models that included
three-dimensional flow calculations dynamically (Wipperman and
Gross, 1986; Howard and Walmsley, 1985 and Weng et al., 1991). Of
this group, two are based on Jackson and Hunt's (1975) flow model
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(Howard and Walmsley, 1985 and Weng et al., 1991). Both presented a
short simulation of a dune, giving the flow fields, sediment-transport
and migration rates. Howard and Walmsley (1985) had stability
problems after about 20 to 30 iterations in a simulation, therefore they
were unable to simulate longer time periods. Weng et al. (1991)
concentrated mainly on improving the flow model and less on making
morphodynamic predictions. In both cases simulations are a "snap shot"
of dune dynamics at a given instant. Wipperman and Gross's (1986)
model shows a morphodynamic simulation of a conical pile of sand
developing to a barchan dune. They used a numerical flow model for
their simulations.

It is the purpose of the present study to contribute to the
understanding of the physics of flow and bedform evolution in terms of
the fluid-dynamic controls of bedform growth and migration. Rather
than a detailed calculation of a flow field at a time step (as in Howard
and Walmsley, 1985 and Weng et al., 1991), long-term dune behaviour
and evolution is modelled. Simulations will be based on analytical rather
than on numerical methods (as in the model of Wipperman and Gross,
1986). A complete analytical solution is developed, which makes it more
appropriate for understanding the relationships between flow
parameters (e.g. wind velocity) and bedform response (migration and
growth rates). The generalization of this analytical solution resulted in a
simulation model. By including avalanching, the instability encountered
by Howard and Walmsley (1985) is partly avoided. The results of the
present work should help to test the concepts developed in field
observations and also serve as a guideline for improved field
measurement campaigns.

2.7.3 Concerning models for ancient aeolian deposits

Finally, the current models that relate modern processes to
structures recognizable in ancient sandstones are still based on
parametric assumptions (Rubin and Hunter, 1982; Hunter, 1985 and
Rubin, 1987), rather than on physical theory. These parametric models
improve our insight of the distribution of stratification and bedform
shapes, but in this area there is still a great deal of further research to
be carried out. It is considered that the model to simulate dune dynamics
presented in this study could be developed further to simulate aeolian
structures (e.g. grain-size distributions). Specific recommendations for
further research by which to achieve this are given in chapter 7. From
this it can become a tool for reconstructing ancient formations, though
in this respect there is still much work to be done.
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Fig. 2.4.5 Merging barchanoid dunes. Note the formation of ripples parallel to the crest
on the stoss side. The lee side shows the grain-flow tongues caused by avalanching. At the
toe of the dune wind ripples can be observed again. They were formed prior to the
avalanching strata. These ripples are oriented perpendicular to the dune crest, which
indicates that the wind direction at that moment differed from the general wind direction
responsible for the formation of the dune (photograph taken at the Kelso Dunes, Mojave
Desert, California).

Fig. 2.4.6 Formation of ripples on a transverse dune. Note that in this case the ripples
are oriented perpendicularly to the dune crest and migrate over the lee side of the dune.
This indicates that the actual wind direction differed from the general wind direction
responsible for the formation of the dune (photograph taken at the Kelso Dunes, Mojave
Desert, California).
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Basic equations and assumptions

3.1 Introduction

In this chapter the basic physical equations needed to describe the
dynamics of bedforms will be explained. The main equation to describe
bedform dynamics is the sediment-continuity equation, which will be
treated in section 3.2. An important part of the sediment-continuity
equation is determined by the sediment transport (the sediment in this
case being sand). This is generally calculated from a sediment-transport
equation, which depends mainly on the flow velocity. Therefore, section
3.3 will treat the fluid-mechanical aspects of flow over a dune. In
section 3.4 the sediment-transport aspects are discussed. As an
introduction to the sediment-transport processes at the dune scale, a
summary of the mechanisms of sediment transport at the grain scale will
be given. After this the sediment-transport formulae themselves, used
for modelling transport at the dune scale, will be discussed.

3.2 Continuity equation

The basic equation that describes the dynamics of sedimentation is
the sediment-continuity equation.

The sediment-continuity equation shows that a change in the rate of
sediment transport dg, and dg, during a time lapse ¢ results in a
change in topographic height dh over an area dx dy. This is
schematized in Fig. 3.2.1. The sediment-continuity equation is expressed
as:

ai:_l_ aqx + a([y)
ot o |\ dx ay (3.2.1.)
Where
h = topographic height [m]
t = time [s]
o = sediment density [kg-m3]
gx = sediment-transport capacity in the x-direction per unit

length in the y-direction [kg-m-1-s-1]
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gy = sediment-transport capacity in the y-direction per unit
length in the x-direction [kg-m-1-s-1 ]
Cartesian coordinates in the horizontal plane [m]

XY

| qy+aay |

rise of topography = sediment in - sediment out
oh 0x dy 6= - 99, dy ot - dq, IX ot

Fig. 3.2.1 Schematization of the sediment-continuity equation.

If erosion occurs, the change in topography in that time interval
oh 10t will be negative. This means that more sediment leaves the area
than enters it, and sediment transport will increase over an interval of
space, then the sum of dg, /dx and dg,/dy will be positive. In the same
way, if deposition occurs oh /dr will be positive so that sediment
transport decreases over an interval of space and the sum of dg, /dx and
dq, /dy will be negative. It must be noted that the sediment-transport
rates g,and g, are height-integrated values, which means the total
sediment transport along the vertical height in a specific direction. In
this study, the modelling has been simplified to a two-dimensional cross-
section with a length in the x-direction and a vertical height in the z-
direction, and a one-dimensional sediment-transport rate, which will be
designed as g= ¢, and g,= 0.

The physical process of sediment transport forms an important part

in the sediment-continuity equation. Wind can transport a certain

‘ amount of sediment, depending on its flow characteristics (velocity,
humidity etc.) and on the sediment parameters (grain size. density etc).

| The sediment-transport capacity can be considered an equilibrium value,
‘ and the air will erode or deposit sediment to maintain this equilibrium
|
|
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value. If it is assumed that there is always enough sediment available,
the real sediment transport can be taken equal to the sediment-transport
capacity. This implies that the air is always transporting the maximum
amount of sediment that is possible, and thus can be considered
saturated. Moreover, it will be assumed that this transport capacity
changes immediately when wind velocity changes, so that there is no lag
between sediment transport and wind velocity.

3.3 Flow characteristics

In this section the assumptions for fluid-flow modelling will be
discussed. This will help to understand the simplifications of the flow
models used in chapters 4 and 5. For this purpose, it is also useful to
explain several basic concepts in fluid mechanics which are sometimes
confused. They refer to laminar and turbulent flow, ideal and real fluids
and to the boundary-layer approach.

3.3.1 Laminar and turbulent flow

Flow can be laminar or turbulent. Laminar flow moves in parallel
layers, without any macroscopic mixing between them. Turbulent flow
i1s much more chaotic, and the fluid mixes perpendicularly to the mean
flow direction. The transition from laminar to turbulent flow depends
on the flow velocity and on the shape of the object in or around which
the fluid flows. The transition is characterized by the Reynolds number:

Re = ul
v (3.3.1)
where:
Re = Reynolds number [dimensionless]
u = flow velocity [ms-!]
L = characteristic length [m]
v = kinematic viscosity [m2-s-1]

Below a critical Reynolds number flow is laminar, while above it
becomes turbulent. The value of the critical Reynolds number depends
on the flow situation (flow through a pipe, around a sphere etc). For
flow over a flat plate of length L, the critical Reynolds number is 5-105.
Most flow occurring in nature is turbulent; this definitely applies to
fluids such as water and air. From Eq. (3.3.1) it can be seen that
laminar flow would occur only at an extremely low velocity or a high
viscosity (e.g. the kinematic viscosity of air at 20°C is 1.5-10-> m2-s-!
and that of water is 1.0-10-6 m2-s-1) .
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(a) Ideal flow: viscosity = 0; completely irrotational

- ——

(b) Real flow: irrotational outer region

viscous boundary layer

L
T

(C) Real flow: separation of the boundary layer

viscous boundary layer

point of flow
separation

Fig 3.3.1 Velocity profiles of (a) idealized flow past a solid object; (b) real flow past a
solid object; (c) schematization of the separation of the boundary layer.

By its chaotic nature, turbulent flow is not constant in time, and if
the flow velocity were to be measured at a certain point, it would show
random variations. In a statistical sense, however, it can be taken as
being steady with time (i.e. stationary), so that an average velocity can
be considered. In this way, an average velocity profile relative to the
height can be considered. The following two sections will treat the
average velocity profile in turbulent flow, which does not necessarily
show rotation or vorticity.
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3.3.2 Ideal and real fluids and the boundary-layer approach

Ideal fluids are those that have no viscosity. They slip past a solid
surface, with a non-zero velocity (Fig. 3.3.1a). The theoretical flow
behaviour of ideal fluids has been extensively studied and many solution
techniques have been developed in the past. Streamlines roughly follow
the solid object, and flow is irrotational (it is irrelevant whether flow is
laminar or turbulent). Irrotational flows can be solved using the Laplace
equation for the velocity potential (they are therefore sometimes called
potential flows). The pressure then follows from Bernoulli's equation
(this will be treated further in this section). Real fluids, however, have a
certain viscosity, due to which they will adhere to the surface of a solid
boundary, so that no slip occurs and the velocity at the solid surface is
zero (Fig. 3.3.1b). If the viscosity is small, its effect can be confined to
a thin layer around the boundary, called the boundary layer. With
boundary-layer models, it is assumed that viscosity effects are important
in the boundary layer and negligible outside the boundary layer. Outside
the boundary layer, therefore, the flow acts as that of an ideal
irrotational fluid, and can be solved using potential-flow theory. This
irrotational flow solution imposes pressure and velocity on the
boundary layer.

With certain shapes of the boundary (e.g. with blunt bodies), or
when flow velocities are high enough, the boundary layer separates
from the solid body and eddies are formed in the wake (Fig. 3.3.1¢). In
this case, rotational effects become important throughout the wake zone,
and boundary-layer assumptions are not valid any more. Upstream of
the point of tlow separation, however, boundary-layer theories are still
a good approximation of the flow behaviour.

3.3.3 The logarithmic velocity profile
A fully developed boundary layer of turbulent flow over a solid

surface parallel to the flow has a logarithmic velocity profile (as was
deduced by Prandtl and his pupil Von Kirman):

ulAz) = . In 82
Kooz (3.3.2)
where:
u(Az) = flow velocity [m's-!] at Az [m]
i = = shear velocity [m-s-1]. Bagnold (1941) called this the
friction velocity or drag velocity
K = Von Karman constant (=0.4)
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2y = roughness length [m], determined by the roughness
of the surface. For a horizontal surface, z,=d/30 is
usually taken (Bagnold, 1941 p.50), where d [m] is
the average grain diameter

Az =  height above the topography [m]
The shear velocity of the flow is defined as:
U x= L
p (3.3.3)
- where
7 = shear stress [Pa]
p = fluid density [kg-m3]

The shear velocity is a very important parameter. It has the same
dimension as the velocity, but it does not have a physical meaning. Its
importance comes from the fact that it chara.terizes the fluid velocity
independently of its height of measurement. The velocity profile
(Eq. (3.3.2)) for the wind is therefore completely defined by a wind
characteristic (#=) and a characteristic of the surface over which it
blows (the surface roughness, z,).

3.3.4 Qualitative analysis of airflow over a dune

In the preceding two sections it has been explained that a fully
developed boundary layer in a turbulent flow over a flat solid surface
has a logarithmic velocity profile, and that above this boundary layer
the flow velocity can be calculated from irrotational flow theory. In this
section the effect that a dune topography has on the boundary layer will
be discussed. This gives a first qualitative analysis of the behaviour of
the wind velocity and pressure over a dune topography.

To determine irrotational steady flow, the Euler equation for
inviscid steady flow can be used. The Euler equation is obtained from
the Navier-Stokes equation of motion, by assuming that the fluid is
incompressible and its viscosity negligible.

Ldp |y dU
p dx dx (3.3.4)
where
p = fluid density [kg-m-3]
p = fluid pressure [Pa]
U = flow velocity at the upper edge of the boundary layer
[m-s1]
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or from its integral form which is Bernoulli's law:

2
p + 1 p U = constant
2 (3.3.5)

Figure 3.3.2a illustrates the flow over a dune. On the stoss side of
the dune, before the apex, the streamlines converge and acceleration
occurs. According to Eq. (3.3.4) or (3.3.5) pressure will decrease, so
that dp/dx < 0. This is called a favourable pressure gradient because the
pressure gradient aids the flow in its motion. On the lee side the stream
lines diverge again, flow decelerates so that pressure increases, and
dp/dx > 0. This is called an adverse pressure gradient because the
pressure gradient opposes the flow. Figure 3.3.2.b illustrates the
velocity profiles that correspond to this flow. If the adverse pressure
gradient is large enough the flow reverses direction, and separation of
the boundary layer occurs (as in Fig. 3.3.1¢).

(a)  converging streamlines diverging streamlines
o (acceleration) -~ {deceleration) -
< — >
..
>

(b) favourable pressure gradient adverse pressure gradient

d_p <0 di >0
s d X g d X ..
K _— -

Fig. 3.3.2 Scheme showing (a) air flow over a dune; (b) velocity profiles of the
boundary layer with favourable and adverse pressure gradients.
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3.4 Sediment transport

Sediment grains are transported by wind. As an introduction to the
sediment-transport equation, this section will start by giving a review of
the sediment-transport mechanisms at the grain scale. The total mass
flux of all the sediment grains is expressed in a sediment-transport
equation. A great amount of research has been directed to developing
expressions for the calculation of sediment transport as a function of
wind velocity. One of the first transport equations was Bagnold's (1941
p.67). Most other formulae were later developed from the same basic
ideas. Bagnold's formula is still the one which is most frequently used,
and it has also been applied in this research. Therefore, this will be
treated more extensively. A short discussion of other transport formulae
will be given later in this section.

3.4.1 Sediment-transport mechanisms

Sediment is transported by fluids (air or water) through three
mechanisms: suspension, saltation and surface creep (Bagnold, 1941,
p.37). Sediment transported by suspension forms the suspended load,
while sediment transported by saltation and surface creep forms the
bed-load. Bagnold (1941), through his experimental work, made a
significant contribution to the understanding of grain mechanics.
Recently however, there has been considerable progress in this field
(for an overview see Anderson et al., 1991).

Suspension occurs when a sediment particle is completely
surrounded and carried by a fluid (air or water). This mode of
transport is more important in water than in air. The reason for this
being the difference in density between the two fluids, due to which the
drag force exerted on a sediment grain by water will be much higher
than by air. The particle in air will have a smaller buoyancy than in
water, so that only the smallest particles will be transported by air.
Transport through suspension is of lesser importance in beach and
desert environments (Bagnold, 1941; Illenberger and Rust, 1988)
although it plays a dominant role in loess deposits (Reading, 1986).

Saltation is generally better developed in air than in water. It is the
most important transport mechanism for sediment by wind. Saltation is
a bouncing motion (Fig. 3.4.1), where a sediment particle is projected
into the air by the momentum transmitted to it by another particle.
After receiving this momentum, the sediment particle rises in the air,
once free of the bed it is accelerated more easily by the wind and
carried for a small distance after which it strikes the ground again. On
striking the ground, part of the energy it has received by the air is spent
in ejecting other particles in the same type of movement. There has been
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some controversy whether the initial impulse that makes a grain rise in
saltation is air lift (Williams et al., 1990) or the impuise from other
saltating grains (Rumpel, 1985; Anderson, 1987 and Werner and Haff,
1988). Recent research indicates that it seems probable that, in the
absence of any other disturbance, particles are set in motion by the
wind, presumably some are lifted aerodynamically and others are
pushed forward by the wind before they take off (Nickling, 1988;
Anderson et al., 1991 and Willetts et al. 1991). Within seconds a steady
state is reached and air lift is rare (Anderson and Haff, 1988).

:

Fig. 3.4.1 Typical saltation trajectories of sand grains in air (after Bagnold, 1941).

1-10 cm

Sand grains can move forward under the force of impact of the
bombarding grains, without being affected by the wind. Bagnold (1941)
calls this surface creep, judging it to be a quarter of the sediment load.
Anderson et al. (1991) sharpen this definition and distinguish between
reptation and surface creep. Reptating grains are those that do not have
enough energy to eject other grains. They form an important part of the
cloud of sand in transport but contribute little to the actual transport
rate itself due to their short jump lengths (Anderson et al., 1991).
Surface creep is the transport mode where gravity forces and forces
from the contacts between grains dominate over forces from the fluid
(e.g. due to the rearrangement of the sand-bed caused by the saltation
and the grains rolling off the lee side of ripples).

3.4.2 Bagnold's sediment-transport formula
Effect of saltating sand on the wind velocity

According to Prandtl's logarithmic profile, the velocity of wind
over a flat surface varies logarithmically with the height. Bagnold noted
that the logarithmic velocity profile was affected by the saltating sand,
and he quantified this effect by including the threshold velocity of the
sand grains as follows:

s A
ulAz)=—In ﬁ'z + Uy,
K

Zr 34.1H
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where:

u'+ = saltation shear velocity [m-s!]

z', = roughness length during saltation, which is greater than
the roughness length (z,) of a fixed surface (i.e. a surface
without saltation). It is understood that Bagnold used the
ripple height {m]

uy, =  threshold velocity [m-s-1]

The shear velocity during saltation was defined as:

1

u's= l
P (3.4.2)
Where
T =  shear stress due to saltation [Pa]

The threshold velocity of a sand grain at a heizht Az can be obtained
from its threshold shear velocity by applying Ey. (3.3.2). The threshold
shear velocity, for d > 0.1 mm, is given by (Bagnold, 1941):

Uiy = A pspgd
(3.4.3)

where:
Uy = threshold shear velocity of a given grain size [m-s!]
A = constant [dimensionless].

= (.1 to initiate saltation (called the fluid threshold)

= 0.08 to maintain saltation (called the impact

threshold)
Os = grain density [kg-m-3]
g = gravitational acceleration = 9.81 m-s2
d = grain diameter [m]

The effects of the velocity profile for saltating sand in comparison to
the normal logarithmic velocity profile, are illustrated in Fig. 3.4.2.
The effect of the saltation is an increased roughness. The impact
threshold shear velocity is the minimum velocity necessary to keep
saltation going. At this velocity both profiles (with and without
saltation) coincide. The fluid threshold velocity is the minimum
necessary to dislodge a grain from its position (and so to initiate
saltation). This must necessarily be higher than the impact threshold
velocity. The distinction between the two threshold velocities is due to
Bagnold (1941), and is important when considering the initiation of
saltation. The fluid threshold velocity, however, does not have any
further consequences for this study on modelling bedforms, as saltation
in this case is considered as a continuous process.
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The sediment-transport equation

The basic form of Bagnold's transport equation is:

3
g=Ciq/ d Py
D g (3.4.4)

Where:
g = sediment-transport capacity [kg-m-l.s-1}
C; = anempirical dimensionless constant which is equal to:
1.5 for nearly uniform sands
1.8 for naturally graded sands as found in dunes
2.8 for sands with a very wide range of grain sizes
D = grain diameter of a standard 0.25 mm sand [m]

This equation was derived by considering the kinematics of saltation,
and by including the surface creep as a fraction of the saltation load.
The dependency on the square root of the grain diameter was derived
empirically.

By including the modified velocity profile Eq. (3.4.1), Bagnold
included the effect of the threshold velocity:

d 3
=C ¥£ (A)'tr
q 2VDg(u el -t (3.4.5)

where

Cr=Cy|—K

In (él—z-)
<r (3.4.5a)

This form of the transport equation permits us to quantify the effects of
different grain sizes. Larger grains have higher threshold velocities, so
the transport capacity for that diameter will be lower. As an example,
we can consider a case where wind of a constant velocity passes from a
surface covered with fine sand to a surface covered with coarser sand.
In the first place there will be a change in surface roughness, which will
affect the velocity profile Eq. (3.3.2) where z, will increase so that the
logarithm will decrease. This effect is only noted some distance
downstream of the change. The major effect is that the coarser grains
have a higher threshold velocity, so that the transport capacity will
decrease. The excess of sand will be deposited. It is important to note
that when using the transport equation as in Eq. (3.4.5), it is only valid
for horizontal surfaces, where the logarithmic velocity profile as in
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Eq. (3.3.2), or its modified form Eq. (3.4.1), applies. The transport
equation in the form of Eq. (3.4.4) using the shear velocity is
independent of any determinate velocity profile. It is therefore much

more generally applicable.
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Fig. 3.4.2 Logarithmic velocity profiles for different shear velocities, with and
without the effect of saltation. The variation of wind velocity with height according to
the logarithmic velocity profile has been indicated with u». These profiles have been
calculated with Eq. (3.3.2), assuming a surface roughness of 0.1 mm (an order of
magnitude corresponding to sand grains). Velocities converge at this focal point (O).
The velocity profile modified by Bagnold (1941) to account for saltation, is also shown
for the same shear velocities, and indicated with u'+ . These profiles have been

calculated with Eq. (3.4.1), assuming a surface roughness of 10 mm (an order of
magnitude corresponding to the ripple height) and a threshold velocity of 0.4 m-s' .
These profiles converge at a higher focal point (O'), which is the effect of the increased
surface roughness. The slight shifting to the right of the focal point is the effect of the

threshold velocity.
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3.4.3 Other sediment-transport formulae

Many other sediment-transport formulae were later developed. An
overview has been given in Table 3.4.1. Horikawa et al. (1983) and also
Sarre (1988) divide the sediment-transport formulae into three
categories: a) those where sediment transport is calculated as a simple
function of wind velocity, b) those where sediment transport is a
function of shear velocity and c) those that include the effect of a
minimum threshold shear velocity.

Sediment transport as a function of wind velocity:

These are the most simple expressions, empirical formulae that are
straightforward correlations between wind velocity occurring at a
datum height and the resulting sediment transport (O'Brien and
Rindlaub, 1936 and Boréwka, 1980).

Sediment transport as a function of shear velocity:

This category concerns expressions that, like Bagnold's, are based on
the shear velocity u'+ (Zingg(®), 1953; Williams, 1964 and Hsu, 1971,
1973). Their major disadvantage is that they always result in a positive
sediment transport, even for velocities under the threshold velocity.

Sediment transport including the effects of a threshold shear velocity:
The third category of sediment-transport formulae (Kawamura®), 1951;
Lettau and Lettau, 1977 and White, 1979) concern those expressions
that include the threshold velocity. Shear velocities below a threshold
shear velocity result in negative sediment transports. An extra condition
is usually included so that the sediment transport is zero for shear
velocities below threshold shear velocity.

3.4.4 Discussion of sediment-transport formulae

When applying empirical or semi-empirical formulae, it is
important to distinguish under what conditions they have been derived
and calibrated. These formulae can be divided into those derived from
wind-tunnel studies (Bagnold, Zingg, Williams and White) and those
derived from measurements of sediment transport on beaches (O'Brien
and Rindlaub, Boréwka, Lettau and Lettau, and Hsu). Formulae derived
from wind-tunnel studies must necessarily have scale inaccuracies
because it is virtually impossible to incorporate the effect of large-scale
turbulence in a wind-tunnel simulation. They have, however, the
advantage of isolating the phenomenon of sediment transport through
wind without including influences of changing atmospheric conditions

M) from Sarre (1988)
() from Horikawa et al. (1983)
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(air humidity, temperature etc.). In formulae derived from beach
studies, sediment-transport capacity is influenced by the capillary forces
on the moist surface layers of a wet beach (Svasek and Terwindt, 1974).
Sarre (1988) also observes this to happen when the moisture level is
above 14% in the top 2 mm .

The transport capacity has been calculated with the formulae of
Table 3.4.1, and is shown in Figs. 3.4.3a and 3.4.3b. Boréwka's (1980)
formula has not been included because it was expressed as sediment
transport per unit surface-area instead of per unit width (kg-m-2-s-1
instead of kg-m-!-s-!) and it was derived as a linear regression from
measurements over a small surface (only 20 cm?). Therefore it was
considered that by adapting the formula and including it in Figs.
3.4.3a,b it would not be compared objectively with the other formulae.
The transport capacity according to O'Brien and Rindlaub's (1936)
formula has been computed using the velocity according to Eq. (3.3.2).
The threshold shear velocities come from Eq. (3.4.3). Calculations have
been made for one grain diameter (0.25 mm). It can be seen that the
highest values are obtained with Lettau and Lettau's formula, and the
lowest with William's formula. Figure 3.4.3b shows the transport
capacity for a wide range of shear velocities (up to 1 m-s-! which is
equal to a wind velocity of about 16 m-s-! measured at 1 m height). It
can be seen that there are three groups of formulae, giving a high, a
middle and a low estimate of sediment transport. The high estimates are
given by Lettau and Lettau, Kawamura and White. Middle values are
given by the formulae of Bagnold and Zingg. Finally the low estimates
are given by O'Brien and Rindlaub, Williams and Hsu.

Sarre (1988) evaluates all the cited formulae with measurements on
Saunton Sands beach (South West England). He concludes that
Bagnold's, Zingg's and Hsu's formulae all underestimate sediment-
transport capacity. These are all formulae depending on shear velocity
only. Kawamura, Lettau and Lettau and specially White (whose
expressions include a threshold-velocity term) give the most accurate
estimates. Howard et al. (1978) also state that the largest inaccuracy
occurs at wind velocities near the threshold velocity. At those velocities,
sediment transport is underestimated by the formulae derived by
Bagnold, Zingg and Williams (all wind-tunnel derived formulae as a
function of shear velocity) and is better predicted by Lettau and Lettau
(who include a threshold velocity term). Horikawa et al. (1983)
compare Bagnold's and Kawamura’s formulae up to very high shear
velocities (ranging from 0.6 to 3 m-s-D. They conclude that the
predictions of both formulae are accurate for well sorted sands, but
underestimate the transport for widely distributed grain diameters
under high velocities. Svasek and Terwindt (1974) compare Bagnold's
and Kawamura's formulae with measurements on a Dutch beach,
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deriving the best fit by changing their coefficients. They state that close
to threshold velocities of u*;,= 0.4 m-s-! both formulae give great
discrepancies with their measurements. They attribute this to the
capillary forces of moist beaches.

Table 3.4.1 Overview of sediment-transport formulae

author sediment-transport formula comments
O'Brien and g=C u3
Rindlaub s 2 4 beach measurements
(1936) C=2.1873-10 kg s - m dependent on u
u measured at 1.524m
Bagnold dp 3 wind-tunnel derived
(1941) 9=C\p g dependent on u'
generally C=1.8[-]
Kawamura P 2,0, wind tunnel derived
(1951) (H g=C g(u gy (st includes u* gy term
C=278[]
Zingg 0.75 wind-tunnel derived
(1953) (3) g=C (g) P2 dependent on u"*
8
C=02383[]
Williams p ., wind-tunnel derived
(1964) g=A u's dependent on u"*
A=0.1702 [-] B=3.4222[]
Hsu \ 3 Ecuadorian beach
(1971) g=C Fr =C “ ) dependent on u'*
g’
-3 -1 -1 -
C=exp (—0.47 +4.97-10 d) 10 kg-m s
Lettau and d p,. 2 includes u*,, term
Lettau (1977) |4=C Y 5 g(“ el
C=42[]
White 2 wind tunnel derived
(1979) g=C L2y’ (1- ! *:thr) 14 Lrihr includes u*y, term
* U«
C=261[-]
Bordéwka _ 4.68 I S calculates the sediment
(1980) Q=Cu [kgm=-s71] transport per m? (Q)
c=2510" u measured at Im Baltic beaches

dependent on u

(1 from Horikawa et al. (1983).

(?) from Sarre (1988).

q = sediment-transport capacity [kg-m-!-s-1];
Q = sediment-transport capacity per surface unit [kg-m2-s-1]; C = general constant in

sediment transport formulae [variable]; Fr = Froude number; p = air density [kg:m3];
g = gravitational acceleration = 9,81 [m-s2]; d = grain diameter [m]; D = diameter of
standard 0.25 mm sand [m]; u%;;, = threshold shear-velocity [m-s-1]; '+ = saltation
shear velocity [m-s-!]; u = wind velocity [m-s-!].
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Fig. 3.4.3 Sediment-transport capacity according to different sediment-transport
Jormulae for (a) moderate shear velocities; (b) high shear velocities.

In the present study Bagnold's transport formula has been used

because it is the most popular one. Although it may underestimate the
sediment-transport capacity, there are no clear arguments favouring one
of the other specific formulae. Furthermore, considering the recent
development of research on the physics at the grain scale (Anderson and
Haff, 1991), it can be expected that more accurate expressions for the
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sediment transport capacity will be developed in the near future. It
should also be considered that the important parameter for erosion and
deposition is the spatial derivative of the sediment-transport capacity
(Eq. (3.2.1)). This means that the difference of sediment transport from
one point to another (which is mainly determined by the wind velocity)
is more important than the concrete value itself. It is also important to
use a formula that depends on the shear velocity and not on the velocity
measured at a specific height, because the shear velocity is a
characteristic parameter of the velocity profile, and independent of the
height of measurement. This is why Bagnold's original version of the
transport formula given in Eq. (3.4.4) has been preferred to Eq.
(3.4.5), even though it does not contain an explicit threshold velocity
term. It can be considered that this equation is applicable when saltation
occurs which is above the threshold shear velocity (Eq. (3.4.3.)). Below
the threshold shear velocity the sediment transport capacity would be
ZEro.
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Chapter 4

Bedform migration

4.1 Introduction

In the previous chapter it has been explained that the basic
equations describing the system of moving bedforms in a flow field are
the sediment-continuity equation and the sediment-transport equation,
which, for the one-dimensional case, can be written as:

onled _ 1 9glxg
o o ox (4.1.1)

and

qlet)=flrld) (4.1.2)

This system of equations forms a model for describing the
evolution of the topography through time. Though sediment transport
depends on many factors (e.g. humidity, grain diameter) it is mainly
determined by the wind velocity (or a related parameter such as the
shear stress). If we consider the wind velocity as a steady flow (i.e. that
the wind blows at a constant rate through time), the local variations of
the wind velocity (i.e. the convective acceleration) will depend only on
the topography. In that case the sediment-transport capacity could
directly be written as a function of the topography (i.e. g(x,t) would be
a unique function of A(x,¢) ). In that case Eq. (4.1.2) can be substituted
in (4.1.1) giving one partial differential equation (PDE) for A(x,z). In
physics, this type of PDE describes vibrating systems and wave motions
(hyperbolic PDEs). A PDE contains partial derivatives of a function
depending on more than one variable, such as the topographic height
h(x,t), which depends on time ¢ and space x. Many laws of physics are
expressed in PDEs, and mostly these laws describe physical phenomena
by relating time-and-space derivatives. The objective of this chapter is
to show that by making simple assumptions for the shear stress and for
the sediment-transport capacity, simple models can be obtained that
explain a number of characteristics of migrating bedforms. This also
helps to distinguish between the effects of the non-linear sediment-
transport formula and the effects of the flow model. Furthermore, these
simple models are useful to test the numerical programme for dune
simulations (used later in chapters 5 and 6).
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4.2 Simple wave approximation

The simplest mathematical assumption that can be made for Eq. (4.1.2)
is that the sediment transport varies linearly with the shear stress:

gl =qo+ A Tl 4.2.1)
where g is a constant basic sediment-transport and A, the linearity
constant. If topographic variations are relatively small, we can generally
state that the shear stress is formed of a constant basic term (7p), and a
correction term {(77) that varies with space and time:

et = 1o+ 7 [x,1) (4.2.2)

If, in a first approximation, this correction is assumed to be linear with
the topographic height:

Tl = A, hlx) (4.2.3)
the sediment-transport equation becomes:
gbei)=qo+ATot+ Ashic (4.2.4)

where:
A3 =AA>

Taking the derivative of Eq. (4.2.4) we obtain:

oq bx.1) _ oh [x,1)
o AT, (4.2.5)

which, substituted in the continuity equation becomes:

o le) , As oh e _ 0
3 o orx (4.2.6)

This is called the simple wave equation, and it describes the propagation
of a wave at constant velocity. The ratio

et

o (4.2.6a)
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Fig. 4.2.1 Migration of a simple wave. The simple-wave equation, in this case, results

specific values used in this example are given in Table 4.4.1.

from combining a linear shear stress and a linear sedimeni-transport formula. The

is generally called the wave velocity or celerity. In this case, which
concerns the morphodynamics of dunes, this is equal to the migration
rate (a term that will be used from here on). The wave will advance at a
constant rate ¢ without changing its shape. Formally the solution of Eq.
(4.2.6) is given by:

hilx,t) =f(x -ct)

(4.2.7)

Equation (4.2.7) expresses that at a certain point x at a certain time ¢
the topography will have the same height as it had at the start (at 1=0) at
a point (x-ct). The topography can be any function of (x-cz). An
example is shown in Fig. 4.2.1. It is important to note that this is a
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simplified two-dimensional model, which is acceptable when the reality
can be schematized to two dimensions. This is essentially the case in
transverse dunes. Other type of dunes (barchans, longitudinal dunes)
result from a three-dimensional interaction beteen wind and
topography, and cannot be schematized in a two-dimensional model.

4.3 Kinematic wave approximation
A second approximation can be made by using a sediment-transport

formula instead of a linear relationship with the shear stress. Bagnold's
formula can be taken:

3/2
q et = Cp tlx,1) (4.3.1)

The constant Cp [s2-m!/2-kg-1/2] groups Bagnold's constants and grain
parameters.

If the linear shear stress Eqs. (4.2.2) and (4.2.3) are still assumed, we
obtain:

312
qlet) = Clro+ Ay hlr) (4.3.2)
and
a ,[’ 3 1/2 ah ,1‘
qa&r ZECB(TO +A2h(xyt)) A2 ag: ) (433)
so that:
ohlx,t) 3 Cp 12 9 (x,1)
Y ——5?142(?0 +Azh‘x,”) T ox (4.3.4)

If this expression is compared with the simple wave equation Eq. (4.2.6)
it can be seen that the migration rate is not a constant but a more
complicated expression that varies with the topographic height:

1/2
iﬁAz(To +A2h(x,t))
20 (4.3.5)

This means that the dune advances while changing shape. From the form
of Eq. (4.3.5) we see that the migration rate increases with height,
which means that the top of the dune will advance more rapidly than the
base. The lee side of the dune will tend to become steeper and the peak
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Fig. 4.3.1 Migration and deformation of a kinematic wave. The kinematic-wave
equation, in this case, results from combining a linear shear-stress model and
Bagnold's sediment-transport formula. The specific values used in this example are
given in Table 4.4.1.

will eventually overtake the slipface (Fig. 4.3.1). According to this
mathematical solution, after a certain time, the peak will completely
hang over the base. In reality, however, the maximum angle of repose
for sediment will be surpassed and avalanching will occur at the
slipface, limiting this asymmetrical shape. This is a well known type of
equation called a breaking-wave equation (because of this behaviour of
the solution). The behaviour of the solution will be similar for any non-
linear sediment-transport equation (as given in section 3.3), as long as
dc(h)/oh > 0 (or as long as the peak has a higher velocity than the
base). This example illustrates that the deformation of a bedform in a
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"dune-like shape" is partly due to the non-linear relationship between
sediment transport and shear stress.

4.4 On the linearizations

The two models presented in the previous sections have been made
under the assumption that the sediment transport and/or the shear stress
only varies slightly. Such cases can be simplified to a linear expression
by linearizing them. Any function f{y) can be linearized by using a
Taylor expansion according to:

£,y =f[a)+(%}b))) (y-al + E (4.4.1)

a

where fi(y) is the linearization of the function f{y) in point a . The
error E is of the order:

dr ) 2
= bl
dy Je

E=1

5 E=a+yl-ad O<y<l (442

4.4.1 The linear sediment-transport model

Sediment-transport equations are generally nonlinear in velocity or
shear stress, as has been presented in section 3.4. Bagnold's formula
contains the shear stress to the power 3/2 or the shear velocity to the
third power. The linearization can be applied to Bagnold's sediment-
transport formula to express it as a linear function of the shear stress.
The formula expressed in terms of the shear stress is:

372
q=Cptli (4.4.3)

where Cp [s?-m!/2-kg-V2] groups the constants and grain parameters

according to:
_ 1 d
=S VD (4.4.3a)

With 7(x,t) = Ty + T;(x,t) this can be linearized to:

31 12
gld=Cpry + 3 Cp Ty Tix.1]

2 (4.4.4)
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This equation is similar to Eq. (4.2.1) in that it is linear. The error
would be of the order

P - %(%CB g-1/2) Tﬁx,t) E=to+y(tied) O<y <l (445

Table 4.4.1 Numerical example of Bagnold's linearized transport formula

physical assumed values equation calculated value
constants number
g =9.81ms2 /D=1 443a Cp=0.167 kg-mY/2-5-172
p =12kgm3 | ux=0.686 ms]! 333 Ty = 0.565 Pa
Cr=18 T1= 0.1 h(xt) 4.4.3 g = 0.09056 kg-ml-s°!
o (D= calculate sediment 444 q; =0.0709+0.0188 h(x;1;)
1675 kg:m™3 transport at x;,; =0.0897 kg-m~!-s”!
where h(x;t;) = 1m | Error:q-q; 0.000808 kg-m-1-s7!
so that T (x;1;) = 445 E =0.0015 kgm!-s-!
0.565+0.1-1.0 = (max. error) =1.7%
0.665 Pa

The approximation by the linearization can be illustrated with the
numerical example given in Table 4.4.1. In this case the linearized
formula gives an error of 0.0015 kg-m-!-s'! which is approximately
1.7% of the non-linearized formula. This example shows that only a
very small error is made by using a linearized formula. The advantage
of using a linearized formula as (4.4.4) is that there are only linear
variable terms (in this caseT;(x,t)), which simplifies computations and
permits an analytical solution to be found more easily (as will be
developed in chapter 5).

4.4.2 The linear shear-stress model

It has been assumed that if the variations of the topography are
very gradual the effect on the shear stress would be small, and the shear
stress could be considered a linear function of the topographic height.
However, in reality, shear stress does not vary linearly with
topography. This has been illustrated in Fig. 4.4.1, where the variation
of shear stress with the topographic height has been calculated with a
more accurate model (developed by Jackson and Hunt, 1975, Appendix
1I) for two example topographies. Besides the fact that the shear stress is
not a linear function, it can also be seen that it has a hysteresis effect.
This is caused by the loss of momentum because of the additional
surface shear stress that accompanies the increase of wind velocity over

1) including porosity



Bedform migration

the surface of the hill. This momentum loss is accounted for in the
Navier-Stokes equations from which the model that calculates the shear
stress in Fig. 4.4.1 is derived. Therefore the shear stress (and the wind
velocity) at a particular topographic height at the lee side of the
bedform will be smaller than the shear stress at the same height at the
stoss side.
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Fig. 4.4.1 Two examples of different topographies with their corresponding
relationship between topographic height and shear stress. Shear stresses have been
calculated using Jackson and Hunt's model (1975).

The topographies in Fig. 4.4.1 have the same height, but different
shapes: half a sine and a Gaussian profile. In both cases it can be seen
that the influence of the topography on the shear stress is relatively
small (e.g. at most 0.05 Pa in the case of the half-sine, which is
approximately 10% of the lowest shear stress), though it is not linear. It
should be noted that the error introduced by a linear shear stress is
much larger than the error made by linearizing the sediment-transport
formula.

Because of the small variations in shear stress it seems acceptable,
as a first approach, to model the shear stress as a linear function of the
topographic height. This in combination with a linear transport equation
leads to the simple wave model for a wave migrating at a constant
velocity. Though this model parts from simplifying assumptions, it
describes the behaviour of fully developed dunes migrating while
maintaining their shape. Therefore, also from a practical point of view,
it is of interest to take this model into consideration.
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4.5 Numerical implementation

The solution developed in the previous section is very suitable for
checking and evaluating the numerical implementation of the system
formed by Egs. (4.1.1) and (4.1.2). By assuming linear relationships for
the transport and for the shear stress we obtain Eq. (4.2.6) which is one
of the most simple mathematical equations, of which the behaviour of its
solution (Eq. (4.2.7)) is known. For the numerical implementation of
the system several things need to be considered. A differential equation
such as (4.2.6) is expressed in finite differences by discretizing in time
and space (the x-coordinate). This means that functions (in this case
topographic height and sediment transport) are calculated over a
number N of equidistant intervals Ax on each time step Az until the
total time of simulation 7 is reached. For this, an initial condition
describing the physical phenomenon at the start (r=0) of the experiment
and at least one boundary condition describing the physical nature of the
problem at the boundary (x=0) are also needed.

4.5.1 Choice of numerical method

The easiest way to solve Eq. (4.1.1) is to calculate the solution at
each time step from the solution at the previous time step by:

qx,t " x-Axt At

howwar=hyi—
© - o Ax

(4.5.1)

This is called the Euler scheme. As the initial condition for the original
topography any function can be chosen; for instance a sine, a cosine or a
starting dune. However, Eq.(4.5.1) is not an accurate solution, and other
choices have to be made for the time-advancing scheme and the
boundary conditions.

There is a great number of other numerical methods that can be
considered for solving systems of equations. They can be divided in
explicit, implicit and predictor-corrector methods.

Explicit methods calculate the function at each point x, at a given time
step ¢, based on the solution of previous time steps. Thesc methods are
usually straightforward to apply, but it can be troublesome to obtain
stable solutions and therefore sometimes very small time steps have to
be taken.

Implicit _methods calculate the solution at a certain point x at time ¢
based also on the solution for other points at that same time step ¢. This
cannot be done straightforwardly, and a matrix equation needs to be
solved. Implicit methods have the advantage that they are always stable.
They can best be used, however, for linear equations with one
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dependant variable (i.e. the topographic height # in Eq. (4.2.6)), which
means that they are not easily applicable if we introduce nonlinear
transport equations. Implicit methods are not very flexible because the
system of equations determines the matrix to be solved, and changing
the transport equation changes the whole matrix.

Predictor-corrector methods are those where the solution at each point
and time is calculated explicitly in several steps, each step being a
corrected estimate of the solution. They have the simplicity of explicit
methods, but are more accurate for a given time step, and also more
flexible than implicit methods, because the equations of the system are
not necessarily coupled in the programme. In the present study, one of
the most popular predictor-corrector methods has been used, which is
Runge-Kutta 4th order. It is given by:

1
Bagrar= hagte (k1 +2ky +2ks +k 4 (4.5.22)
where:
kl - Aff '(tvhx,t) (452]3)
, At k
\ At k
ky=Atf' (t+Ar, by, + ks ) (4.5.2¢)

In these expressions f' represents the derivative of a function to x. The
error of this Runge Kutta scheme is of the order (Ax)5.The Runge-
Kutta scheme requires four evaluations (k;, k2, k3 and k4) of the right
side of Eq. (4.1.1), per time step. The first evaluation (k;) is the
prediction of the topography from the sediment transport g;(x):

1 Aﬂh)
ki=-—{—/]At
O'(Ax (4.5.3a)

With this prediction a new topography ( h..+ 0.5k;) is calculated,
which in turn results in a new sediment transport ga(x) . This gives the
first correction:
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D3 (4.5.3b)

The next corrections are determined in a similar way, according to:

k =-L(% A

=5l a2 (4.5.3¢)
_ 1 {4q4

ky=- S (T\x )At (4.5.3d)

Where g3(x) and g4(x) are determined for the topographies (h,;+ 0.5k;)
and (hy,+k3). A combination of the prediction and the three corrections
according to (Eq. (4.5.2a)), gives the topography for the next time step.
For the spatial derivative of the sediment transport a central difference
scheme has been used:

Aq) _4is1- 901
Ax i 2Ar (4.5.4)

The error is of the order (Ax 2)

4.5.2 Choice of boundary conditions

It has been mentioned that conditions must be defined at, at least,
one boundary. In this case, since a central difference scheme is being
used for the spatial derivative (Eq. (4.5.4)) conditions need to be
defined at both boundaries. To solve the system of Eqs. (4.1.1) and
(4.1.2). the boundary conditions should be given for g(x,2) (i.e. g(0,t)
and g(N+1,t) ). If a PDE as Eq. (4.2.6) were to be solved, the boundary
conditions should be given for A(xt) (i.e. h(0,t) and h(N+1,t) ).
Several types of boundary conditions can be considered:

Dirichlet conditions: or boundary conditions of the first kind; when the
function is given at the boundary.

Neumann conditions: or boundary conditions of the second kind; when
the derivative of the function is given at a boundary.

Cauchy conditions: or boundary conditions of the third kind, sometimes
also called mixed boundary conditions; when a relationship between the
variable and its derivative is given at a boundary.

These three types of boundary conditions are adequate if we have a
problem in a bounded domain, or if special conditions occur at either
extreme (an example for a Dirichlet condition is a specified influx of
sediment, e.g. ¢(0,¢) = 0 ; an example of a Neumann condition is that the
slope at the extreme remains constant, e.g. dh(0,t)/dx = ().
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For infinite domains the following boundary conditions can be
defined:
Non-reflective conditions: when no value of any kind is specified at the
boundary. Physically, it is required that the outgoing wave is not
reflected back into the domain again. It is implemented with numerical
schemes that use only internal points. This condition is often used for
wave phenomena.
Periodic conditions: the domain is assumed to repeat itself periodically,
and the waves going out of the domain at the right side enter it again at
the left side. The solution applied in chapter 5 requires periodic
boundary conditions. These have been implemented in the computer
programme.

4.5.3 Testing the numerical method

The simple wave model (Eq. (4.2.6)) is very appropriate for
testing and evaluating the computer programme. Numerical errors are
introduced by the numerical method Eq. (4.5.2) and by the space
difference scheme Eq. (4.5.4). A good way of evaluating a time-
advancing scheme of a numerical method is by calculating the amplitude
and phase errors of a periodic function (e.g. a sine) after a number of
time steps (e.g. 1000).

The amplitude of a sine is the wave height. As the wave height in
the simple-wave equation does not change through time, any change in
amplitude is caused by the numerical scheme. The phase indicates the
position of the wave at a given time. It is best evaluated by comparing
the theoretical wave velocity@ to the numerical wave velocity. The
difference indicates that there is a shift in phase due to the numerical
method. Both phase and amplitude errors should be evaluated for
different grid spacing, time steps, and for waves of different wave
number. The amplitude error is particularly affected by the number of
discretization intervals, while the phase error is largely affected by the
wave number.

A sine-shaped wave has been taken as an example to evaluate the
numerical scheme. Amplitude and phase errors have been evaluated for
two different grids (64 and 128 intervals) and two different wave
numbers. An amplitude of 1 m has been chosen.

(2) It has atready been indicated that in a morphodynamical context the wave velocity is equal to
the migration rate. However in this section, which treats generally applicable numerical aspects,
the term wave velocity will be maintained.
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The data of Table 4.4.1 together with Eq. (4.4.4), would give the
following linear equation for the sediment transport:

qi(x,t) = 0.0709 + 0.0188A(x,t) (4.5.5)
so that according to Eq. (4.2.6a) the theoretical wave velocity (c;) , for
any type of wave form, is equal to:

¢, = 9'—0—(153 mes” = 112310 m-s " =0.0404mh~ (4.5.6)

For periodic functions, the difference between the theoretical and the
numerical wave velocity (c,) can be expressed as a shift of the phase per
unit of time:

phase-shift _ (c

) 2r
time "

A 4.5.7)

t

The results for a simulation of 1000 hours (equal to 1000 iterations),
for two different grid intervals and two different wave numbers 3 are
shown in Table 4.5.1. These results show that the numerical errors in
all cases are very small, so that it can be concluded that the numerical
time-advancing scheme is adequate.

Table 4.5.1 Wave velocity, phase shift, amplitude and amplitude error for numerical
simulations with varying wave number (ky) and number of intervals (N) after 1000
hours of simulation.

N=64 N=128
theoretical wave velocity [m-h!] 0.0404 0.0404
value amplitude [m] 1.0 1.0
wave velocity [m-h-1] 0.041 0.0405
kp=1 phase shift [°-h1] 3.375.10-3 0.5625-10-3
wave length = amplitude [m] 0.99905 0.99995
N-Ax amplitude error [%] 0.095 0.005
wave velocity [m-h-!] 0.040 0.0405
knp=2 Jhase shift [o-h'l] 4.50-10°3 1.125.10°3
wave length = amplitude [m] 0.99750 0.99954
N-Ax/2 amplitude error {%] 0.25 0.046

(3) The mathematical definition of the wave number is given in Appendix I and an explanation of
the term can also be found in the glossary.
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Bedform migration and growth

5.1 Introduction

In the previous chapter it was shown that dune migration is a result
of the increase and decrease of wind velocity caused by the topography.
The non-linear relationship between wind velocity and sediment
transport causes deformation of the topography into shapes resembling a
dune. The growth of a bedform, however, can be explained only with a
more accurate calculation of the flow than in the previous models. In
this chapter a more detailed flow model will be combined with
Bagnold's linearized sediment-transport equation. An analytical solution
is developed for a sine-shaped topography of a particular wave number,
and expressions are obtained for the shear stress, the sediment transport,
the erosion and deposition, the topography and the growth and
migration of the bedform. This is essentially relevant for the two-
dimensional schematization of a transverse dune; and gives a better
understanding of the behaviour of the dune. The flow model that will be
used is an analytical model developed by Jackson and Hunt (1975). A
derivation of the equations is given in Appendix II, but the underlying
ideas will be summarized briefly here.

5.2. Background of the flow model

Jackson and Hunt (1975) developed a two-dimensional analytical
model for a turbulent wind-flow over a low hill. They divided the
profile into an inner region close to the surface and an outer region
further away from the surface (Fig. 5.2.1). Outside the outer region the
flow is undisturbed by the topography. They assumed that in a first
approximation the velocity in the inner region has the logarithmic
profile of the turbulent boundary layer over a flat surface of constant
roughness (see section 3.3). However, the topography causes a vertical
displacement of air with a certain vertical velocity. Sufficiently far
above the topography, the horizontal velocity should be equal to the
undisturbed velocity, and the vertical velocity should be zero. This
implies that in the outer region (i.e. between the inner region and the
undisturbed region) there is a perturbation of the horizontal velocity,
which also leads to a perturbation of the pressure in the outer region.
This pressure perturbation affects the pressure of the inner region,
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which in turn affects the local horizontal and vertical velocities in the
inner region. Jackson and Hunt deduced corrections for the pressure,
and for the vertical and horizontal velocities in the inner and outer
regions. The corrections were based on a perturbation approximation,
so that the solutions have the form of an infinite summation of linear
terms of the topography. For the theory developed in this chapter, only
the first of these correction terms was used, higher order terms being
considered small and negligible. Henceforth, the logarithmic profile will
be called the zero-order approximation, and the correction term will be
called the first-order approximation.

undisturbed velocity
Uy {x,Z)=uyx and uz(x,z)=0

outer region

X

Fig. 5.2.1 Schematic representation of Jackson and Hunt's flow model (1975), with the
logarithmic velocity profile that corresponds to the zero order solution (after Jackson
and Hunt, 1975).

Jackson and Hunt's model is an analytical model that is easily
implemented and involves little computational effort when compared to
numerical flow models. To apply it for the simulation of sedimentation
processes, some observations need to be made.

The most important assumption in the theory is that the
relationship between shear stress and the turbulent profile remains
unchanged over the whole topography. This means that the same zero-
order velocity profile (i.e. the logarithmic velocity profile) applies over
the whole topography. This can be justified considering that it takes
some time for the flow profile to adapt to a change. It is thus assumed
that changes in the velocity profile occur on a larger horizontal scale
(which remains outside the considerations of this work) than the changes
in the flow due to the topography perturbation.

A further consideration concerns the effect of saltation on the
velocity profile (which was indicated in chapter 3). Bagnold modelled
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this as an "extra" roughness (Eq. (3.4.1)) and included the effect of the
threshold velocity. The effects of saltation should also be accounted for
in Jackson and Hunt's model by assuming, like Bagnold, an appropriate
surface roughness. Bagnold's formula, as used in this study, is a
function of the shear velocity so it is not affected by the threshold
velocity. An implicit condition is that saltation should occur constantly,
as a change from saltation to non-saltation would also lead to a change
in velocity profile. This is a reasonable assumption if considered that,
once saltation has started, it quickly reaches a steady-state situation
(Anderson and Haff, 1991). If the wind velocity were below threshold
velocity, no sediment transport would occur and this again would affect
the velocity profile.

The perturbation caused by the change in topography must be
small, so that the dune height (H) should be much smaller than its length
(L). Jackson and Hunt give a limit of H/L < 0.05. This means that the
theory is only valid for very gentle topographies, as is the case of
incipient dunes, long before separation of the boundary layer occurs and
proper slipfaces with avalanching develop.

Comparisons of Jackson and Hunt's (1975) theory to actual
measurements (Bradley, 1980 and Gong and Ibbetsen, 1989) generally
agree that it gives satisfactory predictions of the mean flow on the
upwind side of hills. The theory was extended to three dimensions
(Mason and Sykes, 1979 and Walmsley et al., 1982). Further refinement
of the model concerns a generalization for a wider range of conditions,
such as changes in thermal stratification of the air (which affect the
velocity profile) and in surface roughness (Hunt et al., 1988).

The solution of the flow, according to Jackson and Hunt's (1975)
model, is expressed in Fourier Transforms. The theory of Fourier
transformation is based on the fact that any function (e.g. a topography)
can be written as a sum of sines and cosines. For the convenience of the
reader the theory of Fourier Transforms necessary for this chapter, has
been included in Appendix I. A more extensive explanation of the
principles is given in Rikitake et al. (1987) and of its practical
applications in Ferziger (1981).

5.3 Development of an analytical solution

The expression of the shear stress of the velocity in terms of
Fourier Transforms of the topography, makes it adequate for the
development of an analytical solution. The analytical solution becomes
simpler if only one wave number is considered, so that the summations
in the Fourier series are reduced to only one term. The general line is
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analoguous to the development of the simple and kinematic wave
equations in sections 4.2 and 4.3. The continuity equation is:

dh*¥(x*) _ 1 dg(x*.p)
#—-g% (5.3.12)

Dimensionless coordinates have been used (indicated by an asterisk *),
so that:

=2 [
L (5.3.1b)
*
n*(x*,1) =£(%’t) [-] (5.3.1¢)
-1
o* = oHL [kg-m ] (5.3.1d)
where:
H = maximum topographic height [m]

An expression for the spatial derivative of the sediment transport
has to be substituted in the continuity equation. A linearization of
Bagnold's sediment-transport formula will be used (this was referred to
in section 4.2). This can be justified by considering that Jackson and
Hunt's (1975) solution results from a linear approximation of the
equations of motion of a fluid, and that non-linear terms have been
neglected (Appendix II). A linearized transport equation would be
consistent with this approximation. It is difficult to give an estimate of
the error involved with Jackson and Hunt's model. The approximation
can be estimated by comparison to full numerical simulations, as has
been done by Hunt et al. (1988). They indicated that the key features of
their model were comparable with the numerical results. The error
involved with the linearization of Bagnold's formula is minor in
comparison with the simplifications of the flow model. An estimate of
this error has been given in section 4.4.

For the linearization it has to be considered that the shear stress
(T(x*1)) results from Prandtl's logarithmic profile (7} with Jackson
and Hunt's (1975) dimensionless first-order correction (T;(x*1))
according to:

the b 7o (1 +& Tt 1 ) (5.3.2)

Bagnold's linearized sediment-transport formula (according to Eq.
(4.4.4)) then becomes:
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32 3
ql(x*,t): CB o 1+ EE (3 ‘X*,[’) (533)
where:
Ty =  shear stress from logarithmic profile [Pa]
71 =  first order correction to the shear stress from the
logarithmic profile [dimensionless]
€ = perturbation factor. This is a dimensionless number

smaller than 1. The exact expression is given in
Appendix II.

Differentiation of the linearized transport equation to the dimensionless
coordinate x* gives:

dg,lx*t) 3 32 9ty e+,
———= = Cpety ———
dx* g BETO dx*

(5.3.4)
To develop this equation, Jackson and Hunt's (1975) expression for the
correction of the shear stress (see Appendix II) can be used. Expressed
as a Fourier Transform 7j(k*t) the shear stress correction is:

e e i9 Kl(zkem)
Tlk ,t]=K‘|k Rk zp e T (5.3.5a)
Ko(zke )
with:
=2 4] LK (5.3.5b)
l
and:
_ . * -
¢o=n4 if k*>0 (positive wave numbers) (5.3.5¢)

¢ =-m4 if k*<0 (negative wave numbers)

In these formulae:

l =  thickness of the inner region [m]

Ko = Modified Bessel function of the zero-order

K ; = Modified Bessel function of the first-order

k* = dimensionless wave number. It should be noted that by

introducing the dimensionless coordinate x*=x/L, the
maximum wave length (4) has become equal to one and
therefore the wave number (k=27/A) has become
dimensionless also.
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For small arguments, the Modified Bessel functions can be
approximated with the following functions (Abramowitz and Stegun,
1972, p. 375):
i0 i9 .
KO(Zk e )='ln (Zke )='ln(2k)‘lq> (5‘3.63)

1

Kilzee)= — (5.3.6b)
i€

With this approximation, Eq.(5.3.5a) can be written as:

1

Tl A = — klk*| B M) ———
1 k| A (5.3.7)
Which can be developed further to:
~ o nzy-id
Tl(k*,t) = - K'lk*ih *(k*,t’ ’—-—2 (538)
(ll’l Zk) + ¢

Equation (5.3.8) can be substituted in the spatial derivative of the
sediment-transport equation (5.3.4) (using Eq. A-1.8 in Appendix I)
giving:

—T—
E3 3 o~ -7
) -3 cpeq ke e I
* (Inz)+ ¢ o

Substituting Eq. (5.3.9) in the continuity equation (5.3.1a), results in:

orHk*s) 3 Cp 30 ~ o +ilnz,
O = 2 2B g gy i k¥ kx| b Hlket ) Lk 5310
ot 2 o* (ln Zk)2+ ¢2 (5.3.10)

The above equation is a first order differential equation of the form:

M (k¥ ) T s
o Co I k1 (5.3.11)

of which the solution is of the form:

R (ks = h* (k*,0) exp (C, 1) (5.3.12)
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The factor C; [s-!] is a complex number, determined by both Bagnold's
(1941) sediment-transport formula and by Jackson and Hunt's (1975)
flow model:

C, =C. (¢ +ilnz,)

(5.3.13a)
where C; has the dimension [s-!] and is:
3/2
——g Cs Ty K k|
c,= =& (5.3.13b)

(in Zk)z + ¢2

Equation (5.3.12) represents a moving wave. This can be more easily
seen if written as:

e (ke,d) = 7 (% ,0) exp (Crot) exp (i Cpt ) (5.3.14a)

with:
Cre =C. ¢ (5.3.14b)
Chw = C; In(zy) (5.3.14c)

The imaginary exponential represents a wave migrating in time. The
phase (Cyy) of the exponential gives the shift of the wave in time. By
dividing this phase shift for the wave number (27), the wave velocity is
obtained:

———3CB€T(3)/2K ||
*_C[m_zo* [ /
cr= = ( )2 - n iz (5.3.15)
Inzy) +¢

The wave velocity of Eq. (5.3.15) is the normalized migration rate of
the bedform, defined for one wave number (k*), as a function of time.
It can be seen that this migration rate is constant through time, so the
bedform will migrate at a constant velocity. This is a consequence of the
linearized sediment transport (Eq. (5.3.3)). Equation (5.3.15) shows
that bedform migration is determined by C./k* , which is a factor
dependent on the magnitude of the wave number |k*| . This means that
the migration rate will be larger for higher wave numbers. Smaller
bedforms will therefore have higher migration rates.
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Table 5.3.1 Summary of analytical formulae for bedform morphodynamics, using an
approximation of Jackson and Hunt's (1975) flow model for small bedforms.

Eq. no. Equation
sediment 5.3.1a oh*(x*,1) _ 1 dq(x*r)
continuity ot - g.; ox*
shear stress [Pa] | 5.3.2 Tlhe* t = 10(1 +E Tﬂx*,t ))
sediment transport 312
[kg:m-l-s-1] 5.3.3 qi |X*’t] =Cp1y [1+ %g 71 (X*’t) )
perturbation 2
~ factor A-IL.3 _ Hin(L/z)
[dimensionless] L xln (1 /Zr)
thickness inner 09
region [ A-IL.4 l_ = 1), (A)
[(m] Z, \Z,
factor zk 7, ]k*]
(dimensionless) | §5.3.5b =2 e
factor ¢ 5.3.5¢ ¢ =n/4 if k*>0
(dimensionless) ¢ =-m 4 if k*<0
shear stress first ~ ~ Inz,-1i
order correction | 538 Tlk*,g = — K!k*l h Hk* 1) 4—*[(2—(1)—2
{dimensionless]) (ln Zk) +¢
spatial derivative a/’(;;\) 0 +il
of sediment 539 qx*H 3 312 ~ +iln z;,
transport w2 Cpe Ty KK*k*|h *k* 1 S
[kgm2s71] inzy)+ ¢
sedimentationper | §.3.11 7 —~
unit of time with @ﬂ(ki‘l) =C, h *k* ) (([) +iln zk)
(ms |53.13a o
3/
3Cs, Ty K |k*|k*
factor €7 153,13 c, = 2%
-1 2 2
e~ (nzy) +¢
top(ﬁrﬁphy 5314al  pxlkr g = h* (k*.0) exp (Crot) exp (i Cpnt )
growth factor  15.3.14b Cr,. =C,0
[s-
normalized 5.3.15 C.ln (Zk)
migration rate with c* = T
[s"1) 5.3.14¢
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The dimensionless amplitude A *(z) of the wave is given by:
Ax(t) = h* (k*,0) exp (CRJ) (5.3.16)

Equation (5.3.16) gives the height of the bedform through time, the
coefficient of the real exponent (Cg,) being the growth factor. It can be
seen from the exponent (Eqgs. (5.3.13b) and (5.3.5¢)) that this factor is
always positive for all wave numbers k* (both positive and negative).
For positive wave numbers, k* will be positive, so will ¢, and
consequently Cg.. For negative wave numbers, k* will be negative as
will ¢, which again gives a positive Cg,. The positive coefficient Cg,
indicates that there will always be growth, not decay. According to Eq.
(5.3.14a), the growth of a bedform will be exponential. It has to be
noted here that this is only acceptable with regard to the limitations of
Jackson and Hunt's flow model, where low topographies are assumed. It
is probably also a consequence of the linear treatment of the model.
When a bedform grows further, other processes not included in this
model (increased vorticity, avalanching) will counter this effect. The
bedform growth is also determined by C;, so that bedform growth will
also increase with the wave number.

The main analytical formulae are summarized in Table 5.3.1. It
must be noted that where applicable, they are given in complex Fourier
notation as in Eq. (A-I.4a). A Fourier series as in Eq. (A-I.1) can be
obtained by means of Eq. (A-1.5ab).

5.4 Interpretation of the analytical model: an example

The analytical equations developed in the previous section serve
two main purposes: firstly for a qualitative understanding of the
behaviour of the system and, secondly, to check the computer
programme used in Chapter 6. A numerical example of a sine
topography will be developed here.

The example that will be developed is for a single sine. This
dimensionless topography is described by:

h#lx,0) = sin (ZLﬂ (5.4.1)
which in complex Fourier notation (Eq. (A-1.3ab)) is written as:
w0l iep MR Lien (22 540
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Table 5.4.1 Assumed values for the development of an analytical example of a sine-
shaped topography, rounded off to two significant decimals

description assumed values eq. no. calculated value
num. of intervals N=128
interval length Ax=1m 5.3:.5b 7, =0.063
L=NAx=128m
7r/1=0.001m
max. top. height H=1m
roughness length [ from z,//=0.00lm A-11.4 zr =0.0059 m
thickness inner from z, /[ = 0.001m [=59m
© region and z, = 0.0059m
shear velocity M 4% = 0.686 m-s-!1 333 Tp = 0.565 Pa
air density p=12 kg-m-3
magnitude velocity A-I11.3 £=0572
perturbation

(D This corresponds to a wind velocity of 10 m-s'! measured at 2 m height

Table 5.4.2 Resulting expressions for a sine-shaped topography. The number of the
corresponding equation is also indicated. In the cases where this referred to a
dimensionless Fourier equation, the final expressions are given as a function of the x-
coordinate and have been written in dimensional form. Values have been rounded off
to two significant decimals.

description €q. no. calculated function
initial topography [m] 5.3.1 h(x,0) = 1-5in(0.049x)
shear stress correction [-] | from 5.3.8 Ti(x,t) = 0.134 cos(0.049x) -
0.038 5in(0.049x)
linearized sediment from 5.3.3 qi(x,t) = 0.0509 + 0.0017 cos(0.049x) -
transport [kgm-1-s!] 0.0058 5in(0.049x)
increase in topographic from Oh(x,1)/ ot = -1.712-10-7 cos(0.049x) +
height [m-s1] 5.3.10 4.85-10-8 5in(0.049x)
topography 5.3.14a h(xt) = 5in(0.049x) exp(6.8:10-8 1)
[m] exp(i 2.4-10°7 2)
growth factor [s°!] 5.3.14b Cr-0=68108
migration rate [mh1] (1 5.3.15 ¢=0.0176

(1) 4 dimension of [m-h"1] has been used instead of the S.I unit [m-s-1], as this gives a
more reasonable quantity.

The example will be developed with the numerical values from
Table 5.4.1. The resulting expressions for the shear stress, the
linearized sediment transport, the increase of topographic height in time
and of the topography as a function of time are given in Table 5.4.2.
The values of the migration rate and growth factor have also been
given. These equations and values have been expressed in x-coordinates
instead of Fourier coordinates, so that they can be easily compared to
their graphical representation. The Fourier equations referred to in the
table can easily be expressed into x-coordinates by using Eq. (A-L2).
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The equations in Table 5.4.2 have also been expressed in dimensional
coordinates (x instead of x*), which can be obtained with Egs. (5.3.1b,c
and d).
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Fig. 5.4.1 Results of the analytical solution for a sine-shaped topography at 1=0;

(a) topographic height h(x) = I-sin(2r x/L) [m]; (b) first-order correction for the
shear-stressti(x) [-]; (c) linearized sediment-transport capacity q(x) [kg-m!-s'1]; (d)
spatial derivative of the sediment-transport capacity dg/ox [kg-m2-s1]; (e) rate of
increase in topographic height oh/ot [m-s1].

5.4.1 Analysis of the results

The expressions given in Table 5.3.2 have been shown graphically
in Fig. 5.4.1 for t=0. These functions clearly show the general
characteristics of the solutions. The topography (A(x,z) ) starts as a sine
(Fig. 5.4.1a). The correction of the shear stress 7,(x,7) is a sinusoidal
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function slightly out of phase with regard to the topography. This can
be seen because its maximum and its minimum are slightly shifted to the
left (Fig. 5.4.1b) with regard to the maximum and minimum heights.
The sediment transport is also a sinusoidal function, in phase with the
shear stress (Fig. 5.4.1c). Therefore the maximum and minimum
sediment transport will occur at the same point as the maximum and
minimum shear stress.

It is the fact that topography and shear stress are out of phase (the
maximum and minimum shear stress occurring before the maximum
and minimum topographic heights) that causes growth of the bedform.
Erosion occurs up to the point of maximum shear stress and deposition
occurs from the point of maximum shear stress onward. Therefore
deposition also occurs at the point of maximum topographic height, so
that the bedform grows. If the maximum would occur exactly at the
peak (as in the models of chapter 4), the bedform would simply migrate
without growing. This phase difference has al :0 been oberved in field
measurements of velocity profiles over dunes (Arens, 1994).

The derivative of the transport capacity (dg(x) /dx) is shown in
Fig. 5.4.1d. It changes its phase by 90 degrees with respect to the
sediment transport (as the sine and cosine functions are each other's
derivatives). This means that at the points of maximum and minimum
sediment transport, dq,(x) /dx = 0 . The derivative of the transport
capacity is the opposite function of the erosion or deposition
(Fh(x,t)/dt). We see in Fig. 5.4.1e that dh(x,t)/dt is negative where
dqi(x) /dx is positive and vice versa. Erosion occurs until slightly
before the point of maximum height, and deposition after this point,
until slightly before the point of minimum height. At the point of
maximum shear stress, the sedimentation is zero.

Finally, a diagram of the sine topography through time, migrating
at a constant rate and growing exponentially through time, is shown in
Fig. 5.4.2.

1.5
1.0
0.5

1000 hours

-0.5
-1.0
-1.5

x-distance [m]

topographic height h [m]

Fig. 5.4.2 Growth and migration of a sine-shaped topography. The topography is
shown in time-steps of 200 hours, for 1000 hours of simulation.
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5.5 Effects of wind velocity, roughness length and wave
number

The advantage of analytical expressions as have been developed in
this section, is that they allow a clear understanding of the influence of
different terms (i.e. wind velocity, the surface roughness and the wave
number) on the topography. The behaviour of the topography is best
analysed by the change in the growth factor and the normalized
migration rate (Egs. (5.3.14b) and (5.3.15) respectively). Both of these
are determined mainly by the factor C; given by Eq. (5.3.13b). This
section will treat the effect of wind velocity, surface roughness and
wave number on the growth fator and the migration rate, and on the
factor C;.
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Fig. 5.5.1 Influence of wind velocity and surface roughness on the bedform
behaviour; (a) the coefficient Cy; (b) the growth factor; (c) the migration rate. For
convenience the migration rate has been given in [m-h-! ] instead of [m-s-'].
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5.5.1 Effect of the wind velocity on growth factor and
migration rate

The magnitude of the wind velocity is given by the uncorrected
shear stress (7p). Equation (5.3.14b) shows that the growth factor is
determined by C; (Eq. (5.3.13b)) and therefore directly dependent on
the shear stress to the power 3/2. This means that a higher shear stress
(i.e. wind velocity) will directly increase the growth factor. The
migration rate is determined by the same factor, C;, and is therefore
affected in the same way by the shear stress. A higher shear stress
results in a higher migration rate, which can intuitively be accepted.
Figure 5.5.1a shows how the factor C;increases with increasing shear
stress. Figures 5.5.1b and 5.5.1c show the growth factor and migration
rate for increasing shear stress, confirming that a higher wind velocity
increases both.

5.5.2 Effect of the roughness length on growth factor and
migration rate

The roughness length z, is contained in the term z; , which is
directly proportional to its square root. The logarithm of this term is
included in the denominator of the factor C; (Eq. (5.3.13b)). As zi is
usually a number smaller than 1, its logarithm will be a negative
number, of which the absolute value decreases with increasing surface
roughness. Therefore C. will increase with increasing surface
roughness, as is shown in Fig. 5.5.1a. This means that the growth factor
will be higher when the surface roughness is higher, as is shown in Fig.
5.5.1b. Finally, regarding the migration rate, the logarithm of z; also
appears in the numerator. However, the influence of the denominator is
more important, so that it may be concluded that the migration rate will
also increase with increasing surface roughness, as is illustrated in Fig.
5.5.1c. A cautioning comment should be added when applying this
conclusion directly to actual measurements. The increase of the growth
factor and of the migration rate with the surface roughness is obtained
directly from Egs. (5.3.13b), (5.3.14b) and (5.3.15), where the zero-
order shear velocity (7p) has been maintained constant. Figures 5.5.1a,b
and c¢ result from the fact that an increased surface roughness would
increase the first-order correction of the shear stress. In practice the
corresponding wind velocities that would be measured (with constant
zero-order shear stress) would increase with the increasing surface
roughness. The reason for this is that according to Eq. (3.4.1) an
increase in surface roughness reduces the wind velocity measured at a
certain height (see Fig. 3.4.2). Therefore if a constant shear stress is
maintained, the wind velocity measured at a datum height must
necessarily increase with the surface roughness.
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Fig. 5.5.2 Influence of the wave number on the bedform behaviour. In these graphs
79 = 0.565 Pa and 7, /1 = 0.001; (a) the coefficient C; ; (b) the growth factor; (c) the
migration rate. For convenience the migration rate has been given in [m-h!] instead

of [ms].

5.5.3 Influence of the wave number on growth factor and
migration rate

Equations (5.3.14b) and (5.3.15) permit us to work out the growth
and migration rates for different wave numbers k*. The influence of the
wave number on the factor C; is shown in Fig. 5.5.2a. There it can be
seen that C; increases for increasing wave number. This same behaviour
is shown for the growth factor and migration rate (Fig. 5.5.2b,c). It can
be clearly seen that the migration rate increases for larger wave
numbers (i.e. for smaller wave lengths). It supports mathematically the
observation that small dunes migrate faster than large dunes and ripples
faster than dunes and draas. The growth factor is also higher for higher
wave numbers. It must be noted that this model for growth and
migration is valid only in the first stages of bedform formation, where
Jackson and Hunt's model still applies. As bedforms grow it will no



80 Chapter 5

longer be possible to neglect the non-linear terms in the flow equations.
In a much later stage flow separation occurs and a wake zone with
eddies will form, where avalanching will occur.

5.5.4 An example of migration rates of dumes from Salton
Sea (California)

There are few published studies that monitor dune dynamics over a
longer time period which can be used to analyse the type of
relationships that have been developed in the preceding sections. One
study that could be used in this sense, was published by Long and Sharp
(1964). It analysed the movement of 47 barchan dunes in Salton Sea
(California), by comparing their change in position from maps dating
from different periods. They published the crest height, length with and
without horns, width, and the movement in two different time periods:
from 1941 to 1956 (15 years) and from 1956 to 1963 (7 years). These
two time periods were considered separately as the authors observed a
difference in the average movement of the dunes, which they attributed
to an increase in sediment supply. The data (all the dimensions indicated
in Fig. 5.5.5) and the migration rates for the seven year period, which
was the most recent period are complete for 27 of the dunes, and are
given in Table 5.5.1. The dunes are all barchans, formed in a mainly
uni-directional wind regime. Their heights range from 2.74 to 12.2 m.
As all the dunes have been subjected to the same wind regime, this is an
interesting data set for a quick test of some of the ideas forwarded in the
preceding section.

A graph of the wave numbers of the dunes against their migration
rates can be compared with the theoretical relationship found in the
previous section (Fig. 5.5.2¢). The longest wave was considered to have
the smallest wave number (k*=1), and the rest of the wave lengths were
expressed as a ratio of this one. Figure 5.5.3 shows this relationship for
the 27 dunes. Dunes of smaller wave length have higher migration rates,
and the relationship is somewhat similar to the theoretical one shown in
Fig. 5.5.2c. Cautioning comments need to be added to this example.
Data of three-dimensional reality are being compared with two-
dimensional simulations. In Fig. 5.5.3 some points have been marked
that do not fit very well within the general trend. These points
correspond to dunes of high length relative to their width, in other
words dunes that can less easily be considered as two-dimensional (they
have also been marked in Table 5.5.2). The real migration rates are
approximately ten times lower than the theoretical ones. However no
importance should be given to this, considering that the theoretical
migration rates are instantaneous values, while the real migration rates
are resultant values over a period of 7 years. The wind did not blow
constantly during 7 years and no calibration of average wind regime,
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surface roughness and grain size has been done. Also the real dunes
have avalanching slip-faces, while in the theoretical relationship no
avalanching occurs. This should not be considered as a simulation of the
Salton Sea dunes, even though the trend does fit reasonably well with
the theory and this can be considered a promising result.
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Fig. 5.5.3 Relationship berween the wave number of the dunes and their migration
rate, shown for 27 dunes from Salton Sea (California). The data for this graph was
taken from Long and Sharp (1964). Three dunes have been marked differently. The
ratio between length and width is the highest for these dunes, therefore they have the
strongest three-dimensional character (see Table 5.5.2). For convenience the
migration rate has been given in [m-h'! | instead of [m-s-'].

Long and Sharp (1964) assumed an inverse relationship between
dune height and migration rate (Fig. 5.5.4). It has always been reasoned
that the bigger the bedform, the more sediment is involved when it
advances, so that its migration is slower. This need not contradict the
conclusion on the relationship between migration rate and wave number
as it seems reasonable to assume that longer waves (i.e. smaller wave
numbers) will also be higher. Table 5.5.2 gives the ratio of the height
and length of the 27 dunes. The ratio has been calculated both with the
length including horns (abbreviated as Le in Fig. 5.5.5) and without
horns (abbreviated as le in Fig. 5.5.5). The averages and standard
deviations support this hypothesis. It can be considered that the
relationship expressed in Fig. 5.5.3 gives a slightly better fit than the
relationship of Fig. 5.5.4, given by Long and Sharp (1964).
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Fig. 5.5.4 Long and Sharp's (1964) relationship between the inverse of the dune
height (1/sh) and the migration rate, shown for 27 dunes from Salton Sea (California).
For convenience the migration rate has been given in [m-h'!] instead of [m-s-1].
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Table 5.5.1 Dimensions of 27 barchan dunes, measured in Salton Sea (California) by

Long and Sharp (1964)
length length including width slipface height distance
[m)] horns [m] [m] [m)] migrated in 7
(le) * (Le) * (w) * (sh) * years [m]
79.04 121.6 197.6 7.904 152
76 144.4 152 6.992 182.4
68.4 136.8 152 6.08 144.4
97.28 186.96 129.2 6.688 159.6
33.44 88.16 456 2.736 266
103.36 168.72 106.4 4.256 136.8
48.64 82.08 212.8 7.904 167.2
48.64 156.56 115.52 7.6 144.4
33.44 65.36 50.16 3.344 281.2
72.96 212.8 197.6 12.16 106.4
53.2 109.44 85.12 6.384 1824
60.8 103.36 56.24 6.08 1824
69.92 91.2 45.6 3.952 235.6
110.96 193.04 121.6 3.648 159.6
85.12 136.8 114 6.384 167.2
66.88 176.32 167.2 7.296 159.6
36.48 66.88 51.68 3.344 228
100.32 164.16 152 8.208 152
33.44 71.44 60.8 4.56 243.2
95.76 179.36 109.44 8.208 136.8
51.68 91.2 42.56 4.256 273.6
107.92 185.44 250.8 7.6 159.6
36.48 65.36 41.04 3.04 273.6
76 144.4 83.6 6.08 144.4
82.08 112.48 68.4 6.08 114
57.76 80.56 53.2 3.648 1824
34.96 62.32 54.72 4.256 243.2
* abbreviations correspond to Fig. 5.5.5
Abbreviations:

Le : dune length including horns

le : dune length without horns

w: dune width
sh : slipface height

Fig. 5.5.5 Sketch showing plan and side view of a dune with the dimensions measured
in Tables 5.4.1 and 5.4.2, as given by Long and Sharp (1964).
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Table 5.5.2 Relations berween dune height, length, width and the migration rate

averaged over the seven year period, for the dunes from Long and Sharp (1964)

height/length height /length length/width average
sh/le sh/Le le/w migration rate
[-] [-] [-] [m-h-1]
0.1 0.065 0.400 0.0025
0.092 0.048 0.500 0.0030
0.089 0.044 0.450 0.0024
0.069 0.036 0.753 0.0026
0.082 0.031 0.733 0.0044
0.041 0.025 0.971 0.0023
0.163 0.096 0.229 0.0028
0.156 0.049 0.421 0.0024
0.100 0.052 0.667 0.0046
0.167 0.057 0.369 0.0018
0.120 0.058 0.625 0.0030
0.100 0.059 1.081 0.0030
0.057 0.043 1.533 0.0039
0.033 0.019 0.913 0.0026
0.075 0.047 0.747 0.0028
0.109 0.041 0.400 0.0026
0.092 0.050 0.706 0.0038
0.082 0.050 0.660 0.0025
0.136 0.064 0.550 0.0040
0.086 0.046 0.875 0.0023
0.082 0.047 1.214 0.0045
0.070 0.041 0.430 0.0026
0.083 0.047 0.889 0.0045
0.080 0.042 0.909 0.0024
0.074 0.054 1.200 0.0019
0.063 0.045 1.086 0.0030
0.122 0.068 0.639 0.0040
0.093 0.049 mean
0.033 = 35% 0.014 = 28% standard deviation

* these dunes have been marked in Fig. 5.5.4. Their length/width relationship is the
largest of all (>1.2), therefore they have the most notable three-dimensional character.
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Applying the theory to a computer
model of non-sinusoidal bedforms

6.1 Introduction

In the previous chapter a series of analytical expressions was
developed to calculate the behaviour (migration and growth) of a
sinusoidal bedform. The underlying theory combined a wind flow
model (Jackson and Hunt, 1975) with a linearized sediment transport
formula (Bagnold, 1941). By means of a Fourier Transform (Appendix
I) any function can be decomposed in a sum of sines and cosines, so that
the theory can be generalized to calculate the evolution through time of
a bedform of any shape. To simplify the calculations a computer
programme called EOLSIM has been developed (for more details see
Appendix [III). This chapter will treat the computational problems that
appear with the generalization of the analytical theory.

According to the theory of the preceding chapter, the growth of a
sine-shaped bedform is exponential, and faster for higher wave
numbers. This means that in a topography composed of several wave
numbers, the highest wave numbers will grow the fastest, and will
dominate over the smaller wave numbers. In reality, dunes reach an
equilibrium state in which they migrate without changing shape. In this
chapter the reasons for this equilibrium are considered and avalanching
has been taken as the most important mechanism in this equilibrium.

6.2 Problems with application to non-sinusoidal bedforms

To generalize the theory, a computer algorithm has been
developed. However, in this respect there are several sources of
numerical errors that need to be considered, because they can lead to
instability of the programme. These numerical errors can be caused by:
i) the appearance of artificial wave numbers; ii) the numerical
interaction of different wave numbers in a linear model; iii) the
problems of including the non-linear sediment-transport formula.
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Fig. 6.2.1 Effect of the artificial wave numbers on the evolution of a sine topography through
time. The corresponding spectrum of the topography, showing the amplitudes of the principal
and the artificial wave numbers, is given on the right. The spectrum is given by the quadratic
mean of the amplitudes of the real and imaginary components of the wave number k,, (see Eq.(
A-1.10)).

6.2.1 Growth of artificial wave numbers

The FFT (Fast Fourier Transform) decomposition used in
EOLSIM, will give small, non-zero values for the amplitude of all the
wave numbers of the spectrum. These wave numbers (the so-called
artificial wave numbers) are a result of rounding errors and machine
accuracy and do not belong to the spectrum at all. These artificial waves
will be amplified, resulting in a disproportionate growth, which is more
pronounced for higher wave numbers. The effect of this problem has
been illustrated in Fig. 6.2.1 which shows a sine bedform through time.
The spectrum shows the growth of the artificial wave numbers that
cause the solution to become unstable after only a few iterations (18
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hours). The large impact of high wave numbers of the spectrum of the
topography on the air flow of Jackson and Hunt's (1975) model has
already been observed by other authors, such as Walmsey et al. (1982),
but it is more pronounced in combination with the sediment-transport
model, because of the high amplitude-growth of the higher wave
numbers.

The problem can be solved by filtering out the wave numbers that
do not belong to the actual spectrum. This is easy in the case of a single
sine or cosine function which only has one wave number, because all
other wave numbers can be filtered out by equaling them to zero.
However, any other mathematical function, and also a natural dune, will
have a spectrum with an infinite realm of wave numbers and it becomes
impossible to distinguish between the real Fourier coefficients with very
small amplitudes and the numerically introduced Fourier coefficients. In
the programme all wave numbers with small amplitudes, both real and
artificial, have been filtered out. This means that if the amplitude with a
certain wave number is smaller than a certain minimum (an arbitrary
value of 0.0015 has been chosen), the influence of that wave number on
the topography has been disregarded. For non-sinusoidal bedforms this
will generally (though not necessarily) imply that the high wave
numbers will be filtered out, because in that case their initial
contribution to the spectrum is usually small. If the high wave number
contributes significantly to the spectrum (which means its amplitude is
higher than the chosen minimum) this filtering will not happen.

6.2.2 Numerical interaction of different wave numbers

The model that has been treated up to this point is a linear model
because all the equations are linear or have been linearized. A linear
problem can be solved by subdividing it into independent subproblems,
and adding the solutions of the subproblems. The topography is a
superposition of different wave numbers. At each time step, the
topography can be obtained by considering the waves of the spectrum
independently and each wave should migrate and grow without affecting
the other waves.

It appears, however, that in a FFT decomposition, the amplitudes
of the different waves influence each other. The spectrum that results
from calculating each wave separately and summing the results, is
different from the one that results from calculating the different waves
together (see Fig. 6.2.2). This is caused by the growth of the waves at
each time step, which changes the topography. At each time step the
FFT routine decomposes the new topography in the different wave
numbers, so that they interact slightly with each other. The amount of
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Fig.6.2.2 Scheme of two different simulation approaches: (a) simulation of the whole
spectrum of the function; (b) simulation of each wave number k, independently.

interaction between the different wave numbers has been evaluated by a
simulation of 100 time steps of a Gaussian topography (each time step
was of one hour). The six lowest wave numbers (k,=0,1..5) have been
considered, as they gave the most important contribution to the total
spectrum. The difference between a simulation of the six lowest wave
numbers separately and together, has been expressed as a percentage of
the squared mean of all six amplitudes at each time step, according to:
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The error is shown in Fig. 6.2.3. It can be seen that after 100 time steps
the maximum error is approximately 1.8%. This difference is hardly
noticeable in the wind velocity calculations or in the topography itself.
A correct algorithm would calculate the migration and growth of each
component of the spectrum separately and sum the results, as this would
avoid the numerical interaction. However, the error when the whole
spectrum is calculated together is very small. As this results in a more
efficient algorithm, it has been implemented in this way in EOLSIM.

error Ep [%]

time [hours]

Fig. 6.2.3 Error of the interaction of different wave numbers in a linear model.
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6.2.3 Non-linearity

If the full nonlinear sediment-transport equation is used (e.g.
Bagnold's Eq. (3.4.4)) the different waves will cause higher wave
numbers to appear. This is illustrated in Fig. 6.2.4, which compares the
spectrum of a single sine for the linearized transport formula and for
the non-linearized model. Though these wave numbers appear as a
result of the physical process they cannot be distinguished from the
artificial wave numbers, so that it is generally not possible to avoid
them being filtered out together with the artificial waves. As has already
been noted in section 4.2. the linearization of the sediment-transport
formula is a very good approximation, so that the difference with a
non-linear calculation is barely noticed. From a computational point of
view, it is clearer to use a linearized model and filter out all small and
artificial wave numbers, than to use a non-linear model without control
on the growth of the artificial wave numbers. Therefore, EOLSIM uses
the linearized model.
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Fig. 6.2.4 Comparison of the spectra of the amplitudes of a sine-shaped topography
after 10 iterations with: (a) the non-linear non-filtered model; (b) the linear non-
filtered model. Note the extra wave numbers that appear in (a) as a consequence of the
non-linearity. These are difficult 1o distinguish from the artificial wave numbers that
appear in (b), and which in turn also give extra wave numbers in the non-linear
simulations.
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Fig. 6.3.1 Evolution of a dune through time. The simulation shows how the high wave
numbers that are not filtered out start dominating the topography. At the last time step
the topography is unstable because the amplitude of the highest wave number grows
disproportionately (note the different vertical scale of the last time step). This means
that other processes should be considered to model the dynamic equilibrium of a

bedform.

6.3 Application to non-sinusoidal bedforms; bedfom stability

The application of the theory to a dune topography is shown in Fig.
6.3.1. The somewhat schematized topography of a dune, published by
Howard et al. (1978), has been taken as an example. The artificial wave
numbers and the wave numbers of small amplitude, referred to in the
previous section, have been filtered out. However, it can be seen that
after several time steps the topography deforms completely and the
original dune ceases to be recognizable. This is caused by the growth of
the higher wave numbers that belong to the spectrum of the toporaphy,
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which, after several time steps, dominate the topography. Figure 6.3.1
shows clearly that the exponential growth leads to unstable bedforms,
while it is known that bedforms reach a stable equilibrium where they
migrate without changing shape. It is therefore necessary to analyse the
physical reasons for this instability more closely.

The exponential form of the growth is a consequence of the
linearity of the model. A similar linearised model was developed for
subaqueous bedforms by Kennedy (1969), who used a flow model based
on potential flow and included a lag effect. This lag was an uncertainty
factor, which accounted for both the phase-difference between the
topography and the flow, and between the flow and the sediment
transport. The model resulted in an expression where the bedform
amplitude grows or decays exponentially. Jackson and Hunt's (1975)
boundary-layer model gives a more accurate flow description than the
potential-flow model, as it includes friction effects. This is the fluid-
dynamic reason for the maximum shear stress to occur upstream of the
maximum height.

As a bedform grows, the boundary layer separates (see Chapter 3)
and a wake forms. This process is not correctly described by Jackson
and Hunt's (1975) first-order correction. A first approach that could be
considered is to add higher-order terms to the first-order solution. The
second-order term of the shear stress is, however, much smaller than
the first-order correction (Jackson and Hunt, 1975) and it is
questionable if it would be significant enough to result in bedform
stability (a proper analysis of the higher-order terms in Jackson and
Hunt's solution would be necessary to confirm this). A second approach
that could be taken is to develop another flow model to determine the
turbulent flow in a fully developed wake. McLean (1990) indicates some
of the effects of the flow separation in subaqueous dunes, considering
them important in adjusting the phase of the shear stress relative to the
topography. The separation zone creates a high shear zone which
extracts momentum from the flow. Moreover, the wake structure
imposes a different flow behaviour than the boundary-layer model,
where the flow is more topographically controlled. The calculation of
turbulent flow in wakes, however, is one of the most complicated
subjects in fluid mechanics and goes beyond the scope of this study.
Moreover, it can generally be considered that the boundary-layer model
(such as that of Jackson and Hunt, 1975) is still a good approximation of
the flow up to the point of separation.

Summarizing, it is clear that the fluid-dynamic processes after flow
separation affect bedform stability. Furthermore, mechanisms such as a
lag between surface shear stress and sediment transport have also been
considered to affect bedform stability. A mechanism that has not been
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considered in the above discussion, which is not affected by the flow
conditions and which plays an important role in aeolian dunes, is
avalanching. Avalanching has been discussed in literature as a process in
itself, but publications on bedform stability (Kennedy, 1969, McLean,
1990) have not considered its role in bedform stability. This possibility
will be worked out further in this study.

6.4 Avalanching

Avalanching occurs when the slope at some point becomes too
steep, and the force of the gravity component along the topography
becomes higher than the shear stress of the sand grains maintaining
them in position. Part of the dune slides down the slipface, depositing a
long narrow tongue of sand that lies conformably over the deposits
underneath (as can be seen in Fig. 2.4.5 on page 34). The angle at which
avalanching begins is called the angle of initial yield (approximately
34°). A grain avalanche will descend the slope from the place where this
angle is first exceeded, leaving all or part of the surface inclined at a
lower angle called the angle of repose (approximately 30° to 32°).
Avalanches generally start close to the crest of the dune. As the
avalanche moves down the slipface, it destabilizes the slope further
down, so that the avalanching progresses downwards.

Jackson and Hunt's (1975) flow model has been maintained in this
study, and a simple avalanching routine was added. Beside the
justification of the physical aspects that has been given in the previous
section, it has the advantage of an analytical flow-model versus a
numerical model. This advantage leads to clearer relationships between
different physical variables, and to calculations that are generally less
cumbersome and require less computer time. Flow has been calculated
over the whole bedform using Jackson and Hunt's model (1975), while,
wherever the slope became too steep, the deposited sediment was
redistributed by the avalanching process. It was considered that in this
way the flow behaviour is still reasonably correctly calculated, while
avalanching as the main process occurring in the wake zone, is also
included. The objective is to see whether avalanching could indeed be an
important mechanism limiting dune growth.

6.4.1 Avalanching routine

An avalanching routine has been developed for EOLSIM. The
amount of sediment that avalanches and the topography after
avalanching is modelled geometrically. It should be noted that the
routine necessarily simplifies the process described in the previous
section. The routine is based on the following points (see rig. 6.4.1):
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Fig. 6.4.1 Schematization of the avalanching routine (a) Determination of the
amount of sediment that will avalanche; (b) Determination of the angle at which the
sediment will deposit. Different angles of deposition are calculated iteratively until the
avalanching volume equals the deposited volume (c) The final topography after
avalanching is determined by interpolation with a cubic spline between points (1), (2)
and (3).

i) The migration and growth of the dune through time is simulated
according to the model that results from combining Bagnold's
linearized sediment-transport formula with Jackson and Hunt's
flow model.

ii) At each time step, the slope over the whole topography is checked
on both the stoss and lee sides. Wherever the angle of initial yield
is exceeded the avalanching routine will be called. It is convenient
to use a small time step of simulation. This does not affect the flow
simulations directly, but causes the avalanching to be a more
continuous process, which is more in agreement with reality.
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The procedure of checking the slope is done from the apex
onward, first down the stoss side and then down the lee side. In this
way avalanching will first be initiated at points close to the crest of
the dune (Allen, 1984, p.150B). A complete check of the slopes at
a given time steps will therefore lead to several single avalanches;
in between each of them the topography is readjusted. The final
topography after this slope-check results from all the individual
avalanches.

The volume that will slide down in an individual avalanche is the
volume contained between the lines at the angle of initial yield and
the angle of repose (Fig. 6.4.1a). In EOLSIM both the angle of
initial yield and of repose are maintained constant. The angle of
initial yield has been taken at 30° and the angle of repose at 25°
(Fig. 6.4.1a).

Deposition of an individual avalanche will occur downslope from
the point where avalanching started, which is the point where the
angle of initial yield was surpassed. The angle at which the
sediment deposits is determined iteratively until the deposited
volume equals the avalanched volume (Fig. 6.4.1b). The angle at
which the avalanched sediment will rest at the foot of the bedform
is defined by EOLSIM as the angle of deposition. It i1s determined
by the volume of the sediment that slides down the slope, and
varies every time the avalanching routine is called.

The topography after an individual avalanche is therefore
characterized by three points, (see Fig. 6.4.1c). These points are:
the point where avalanching started (1), the point on the slope
where the angle of repose intersects the original topography (2)
and the point at which the angle of deposition intersects the
original topography (3).

The final topography after an individual avalanche resuits from an
interpolation between these three points. In a first approach, this
interpolation has been done with a cubic spline. Other interpolation
functions that could be considered are: (a) a linear interpolation;
(b) a Langrange interpolation with the polynomial of lowest
possible degree, in this case a quadratic polynomial. The linear
interpolation would be quite realistic. The quadratic interpolation
could tend to oscillate unrealistically between the given points.
Both these interpolation procedures result in discontinuities in
either the topography or in the slope of topography, which will
cause difficulties in the Fourier Transform (see Appendix I).
Interpolation with a spline function garantees smoothness up to
some order of the derivative of the function, and therefore avoids
these discontinuities. The cubic-spline function has been chosen as
it is the one most frequently used. The resulting topography is
continuous through the second derivative. A standard routine was
used (Press et al. 1988). The cubic spline is calculated from the
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three points in Fig. 6.4.1. and the derivatives of the topography at
the first and last points of the interpolation interval (points 2 and 3
in Fig. 6.4.1c).

viii) It is also important to note that the topography after avalanching
should observe the periodic boundary conditions necessary for
applying the FFT.

6.4.2 Application to a sine bedform

Figures 6.4.2a and 6.4.2b compare the simulation of a sine
topography with and without the avalanching routine. The initial sine
topography has an amplitude of 5 m. The same simulation conditions as
in section 5.3 were maintained: #*=0.686 m-s-! (or u=10 m-s-! measured
at 2 m height) and z,//=0.001 which gives a surface roughness of
7,=0.0059 m. The topography was given at 64 points (numbered from 0
to 63) resulting in 63 intervals of 1m. A total of 1000 hours was
simulated. The simulation without avalanching (Fig. 6.4.2a) shows the
bedform migrating and growing through time. As has already been
noted in the analytical developments in Chapter 5, the growth of the
amplitude is exponential. The simulation that includes avalanching
shows the sine bedform migrating much more slowly, while
approximately keeping its shape.

The effect of the avalanching routine can be seen by comparing the
the spectrum of the topography from both simulations (Fig. 6.4.3). The
spectrum of the topography without avalanching shows the wave
number of the sine growing. We know from Eq. (5.2.14a) that this
growth is exponential. The spectrum of the simulation with avalanching
shows that the wave number of the original sine reaches a certain value,
and that additional wave numbers appear.

Figures 6.4.4 and 6.4.5 show the effect that avalanching has on
respectively the migration and the growth of the bedform. Avalanching
occurs for the first time after 159 hours, so that the effects of
avalanching start to become visible after this time step. Figure 6.4.4
shows the location of the apex of the sine-shaped bedform during a 1000
hour simulation, both with and without avalanching. It can be seen that
initially the bedform with avalanching advances faster than the bedform
without avalanching. The initial increase of the migration rate should
probably be attributed to numerical reasons rather than to a physical
cause. It has already been mentioned that the avalanching routine is only
a first simple approximation and indicative of a general trend. After the
initial increase, the advance of the dune with avalanching is clearly
much lower, indicating a decrease of the migration rate caused by the
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avalanching. Figure 6.4.5 shows the height of the apex during a 1000
hour simulation with and without avalanching. It can be seen that, once
avalanching starts, the increase in height is much smaller, until finally
the height tends to remain constant. This indicates that avalanching is an
important process in limiting bedform growth.
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Fig. 6.4.4 Effect of the avalanching routine on the migration of a sine-shaped bedform.
The graph shows the location of the apex of the bedform throughout the simulation.
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Fig. 6.4.5 Effect of the avalanching routine on the growth of a sine-shaped bedform.
The graph shows the height of the apex of the bedform throughout the simulation.

6.4.3 Application to a dune

The effect of applying EOLSIM with an avalanching routine on a
dune topography is shown in Figs. 6.4.6a and b. The simulation was
done with the same conditions of wind velocity and surface roughness as
in the previous example of a sine-shaped dune. Though there is still
deformation of the dune, this is considerably less than in the simulation
without avalanching. Moreover, after 1000 hours, the simulation
without avalanching gives an unstable topography, dominated by a sine
of unrealistically high amplitude, which corresponds to the highest wave
number that is allowed to pass the filter. The simulation that includes
the avalanching routine limits this growth and leads to more stable
solutions (even though at first sight the topography seems more
irregular).
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Figure 6.4.7 shows the effect of avalanching on the spectrum of the
topography. Only the first five wave numbers are shown, as higher
wave numbers have very small coefficients. It can be seen that in the
simulation without avalanching, the higher wave numbers grow
excessively. In the simulation with avalanching this growth is limited. It
could even be observed that some components of the spectrum decrease
in amplitude, though simulations with a refined avalanching routine
would be necessary to judge whether this has a physical cause.

6.4.4 Evaluation

The previous simulations have shown the effect of including an
avalanching routine in EOLSIM. The avalanching routine is a first
simple approach, so that only general behaviour should be analysed and
no physical reasons should be given to local trends in growth and
migration. From analyses of the spectrum of the bedforms, it can
clearly be seen that avalanching limits the growth of the wave numbers.
In the case of a sine-shaped bedform it can be seen that the growth of
the principal wave number stops and that other wave numbers appear in
the spectrum. In the case of a dune-shaped topography, with an infinite
spectrum, it can be seen that avalanching effectively limits the growth of
all the wave numbers.

The effect of avalanching on the topography is that the sine-shaped
bedform advances at a much lower rate while maintaining
approximately its initial shape. The simulation of a dune-shaped
topography still shows some deformation of the original shape, but this
is significantly less than shown by a simulation without avalanching. In
the latter simulation, the highest wave number allowed to pass by the
filter, will grow to disproportionate amplitudes, dominating completely
the whole topography. This is a strong indication that avalanching is an
important mechanism in bedform stability and the first simulations with
an avalanching routine show promising results.
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Chapter 7

Conclusions, discussion and
recommendations

7.1 Conclusions and discussion

The study has presented the results of modelling the dynamics of
aeolian bedforms. A fluid-flow model has been combined with a
sediment-transport formula in a mathematical computer model. Flow of
a certain velocity has a certain sediment transport capacity for a
particular grainsize. The bedform affects the flow velocity (and related
parameters like the shear stress), which differs notably from the
logarithmic velocity profile. The variation of the flow velocity over the
bedform causes changes in sediment transport capacity. Erosion or
deposition occurs, as the flow seeks to re-establish its transport capacity.
The following conclusions summarize the results of this work:

7.1.1 On the modelling of bedform dynamics

i) The most important factor that determines the dynamics of
bedforms is the flow behaviour of the fluid. This is the main
control of bedform dynamics. Although aeolian sedimentation is
affected by many complicating factors (e.g. humidity of the air and
of the sand, grain size, vegetation, groundwater level) that make
interpretations difficult, the basic physical process can be modelled
by combining an adequate flow model with a sediment-transport
equation.

7.1.2 On the sediment-transport equation

ii) Regarding the sediment transport, many equations have been
published, the best-known is Bagnold's (1941). All of them develop
roughly similar relations between the sediment transport capacity
and the wind velocity. However, there is a large variation between
the sediment transport calculated by the different equations, and
there are no clear arguments or experiments favouring any specific
equation.

iii) From a fluid dynamic point of view it is preferable to use a
transport equation expressed as a function of shear velocity instead
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of the wind velocity. The main reason for this is that the shear
velocity is a characteristic parameter of the flow, independent of
the height of measurement. The shear velocity is defined as a
function of the shear stress, which is the main force maintaining
sediment transport (by the process known as saltation).

7.1.3 On the flow model

iv)

v)

Vi)

The boundary-layer model for turbulent flow, developed by
Jackson and Hunt (1975), is a good approximation of the flow
variation over a low hill. It reproduces the main characteristics that
can be expected: flow acceleration at the stoss side and deceleration
at the lee side. The flow pattern over the hill is asymmetric, due to
the effect of the shear stress. A further characteristic feature is that
the maximum velocity occurs slightly upstream from the
topographic maximum. Being a boundary-layer model, it calculates
flow where the boundary layer remains attached to the surface.
The flow in the wake of a fully developed dune, where the
boundary layer has separated from the surface, is much more
difficult to determine.

Simulation of flow where the boundary layer remains attached to
the surface, is relevant for sedimentological studies. Wilson (1972)
and Kocurek et al. (1992) describe how dunes originate from
protodunes that migrate and grow. Flow behaviour in this stage is
accurately described by Jackson and Hunt's (1975) model.

Jackson and Hunt's (1975) model can also serve to simulate
approximately the further stages of dune evolution, when a wake
zone forms and a proper slipface with avalanching develops. In this
case it should be considered that boundary-layer models give a
good description of the flow characteristics upstream of the point
of flow separation. Downstream from the point of flow separation,
in the wake, the main sedimentary process is avalanching, which is
determined by slope instability and not by the flow itself.

7.1.4 On the modelling results for bedform dynamics

vii) By combining Jackson and Hunt's (1975) flow model and a

linearization of Bagnold's sediment-transport equation, an
analytical solution for dune dynamics was developed. Analytical
expressions for the shear stress, the sedimentation rate, the
topography through time, the migration rate and the growth were
developed for a sine-shaped dune.
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viii) These expressions show that there is a phase difference between the

iX)

X)

X1)

xil)

shear stress and the topography, so that the maximum shear stress
(therefore also the maximum shear velocity) occurs before the
maximum height and the minimum shear stress occurs before the
trough. This is the reason for bedform growth (as has been pointed
out by Kennedy, 1969 and McLean, 1990). Because of this phase
difference, deposition will occur downstream of the maximum
shear velocity, therefore also at the location of the maximum
height.

"~ The model appears to indicate that, under constant wind velocity,

bedforms migrate at a constant rate through time. This is due to a
simplification of the flow model, where only first-order terms
have been taken into account and higher-order terms have been
neglected.

Migration and growth rates are higher for higher wind velocities.
This is a calculated result that intuitively can be expected.

Under constant shear stress, migration rate and growth factor are
higher for higher surface roughness. It should be noted, however,
that a constant shear stress with an increasing surface roughness
will result in higher wind velocities being measured. There are no
published observations on the relationship between migration rates
and surface roughness, so this conclusion has not yet been
supported by observations.

The migration rate is higher for higher wave numbers (i.e. smaller
wave lengths). Comparison with migration rates published by Long
and Sharp (1964) seems to support this conclusion. This trend
suggests that smaller dunes will migrate over large ones, and
therefore the large bedforms (draas and large dunes) will be
preserved under the smaller dunes. This has been observed in
modern desert deposits (Pugh et al., 1993) as well as inferred from
ancient aeolian formations (Weber, 1987). There are many other
factors affecting the preservation of aeolian sediments (the main
one being basin subsidence), and it is too premature to relate the
theoretical results to these observations because there are many
aspects that require further research (see section 7.3). However, it
can be stated at this point that the theory does not conflict with the
observations.

xiii) The growth rate is also higher for higher wave numbers. There are

no published observations to confirm this, although MclLean (1990)
reached the same conclusion from theoretical fluid-dynamic
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considerations. It seems plausible that ripples grow faster than
dunes, and dunes faster than draas.

xiv) The expressions show that the growth of a bedform is exponential
through time. This may be so in an initial stage of a protodune, but
does not hold as a dune evolves. It is likely however, that the
exponential growth is due to the linearity of the model. In a later
stage of dune evolution, an equilibrium is reached, where a dune
migrates without changing its shape.

7.1.5 On the equilibrium of bedforms

xv) From the previous conclusion we can infer that after the initial
period of growth, either the growth rate decreases, or other
processes occur that counteract the growth. This would imply that:
- Asadune evolves, the flow pattern and the topography change

progressively until they are in phase. This possibility could be
studied by carrying out simulations with a more detailed flow
model or by detailed experimental measurements (e.g. in wind
tunnels).

- There is a process that counteracts the phase difference
between shear stress and topography. The process that has
been considered in this study is avalanching. Another
possibility is that the transport rate and the shear stress are
also out of phase, as suggested by McLean (1990). In this way
the transport rate does not respond immediately to the changes
in shear stress. However in that case one has to explain why
this lag appears in the equilibrium phase and not during the
evolution of the protodune.

xvi) Avalanching has been considered as a process that balances
bedform growth. Including a simple avalanching routine shows that
bedforms grow until a certain stage, after which the growth rate
slowly decreases and the bedform continues to migrate. This first
experiment indicates that avalanching plays a key role in dune
equilibrium.

xvii) Avalanching affects the migration rate, which becomes smaller.
Again there is no published data on migration rates of protodunes
versus fully developed dunes, so this conclusion has still to be
supported by actual observations.

7.2 Applications and recommendations for further research

This research is a step towards understanding the physics of
bedforms. It opens many subjects, of both a theoretical and an
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experimental nature that would be interesting to consider for further
study. It also gives a good basis for concrete studies directed towards
simulating subsurface structures for reservoir engineering applications,
which was the general purpose for which this research was formulated.

i) Jackson and Hunt's model, being an analytical model, is more
practical to use for simulations because it requires less computer
time and, because of the analytical expressions developed in this
study, the relationships between different parameters are clearer to
understand. Conclusions (iv), (v) and (vi) indicate that it is
important to determine the accuracy of Jackson and Hunt's flow
model. This can be done by doing simulations with a more detailed
numerical calculation and comparing with characteristic trends
(e.g. location and magnitude of maximum and minimum velocities
etc.).

ii) Conclusion (xvi) indicates that it wotld be recommendable to
improve the avalanching routine. This would permit a more
trustworthy comparison of migration rates, with and without
avalanching, for different wave lengths, as is noted in conclusion
(xvii). This also makes it possible to determine the proportions of
grain-flow strata (resulting from the avalanching process) and
grain-fall strata (resulting from the saltation process) depending on
wave length, wind velocity etc. Such simulations would be more
comparable with actual reservoir samples (i.e. cores). This is of
particular interest for the prediction of good hydrocarbon
reservoirs in aeolian deposits, where the grain-flow strata form the
better reservoirs.

iii) It would be of interest to consider the effect of the variation of
wind velocity through time. Daily variations of wind regime could
be considered but also seasonal effects (e.g. the shamal in Arabia)
and effects on a longer time scale (e.g. the strong winds in the
Pleistocene forming single dunes of 100 m height, whereas today's
winds form much smaller dunes, see Glennie, 1984).

iv) Further extensions that can be considered include the effects of
different grain sizes, of a variable sand supply, of the influence of
the ground-water table and of the possibility of immobilization of
the surface (caused by e.g. the growth of vegetation). Simulation of
different grain sizes would constitute a feature that is easier to
compare with reservoir data such as core samples.

v) It is always important to develop and understand the implications
and effects of a two-dimensional model before developing a three-
dimensional model. Once the two-dimensional model is fully
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understood, the logical extension to a three-dimensional model can
be considered. The extension of Jackson and Hunt's model to three
dimensions has already been done (Mason and Sykes, 1979). A
three-dimensional aeolian model based on the extended Jackson and
Hunt theory (1975) and including a three-dimensional avalanching
routine would permit modelling variable wind direction, and assess
the effect on the dune morphology. This can reinforce the
empirical observations of Fryberger (1979) and the experimental
results of Rubin and Tkeda (1990).

vi) It would be of interest to compare the theory with field
measurements. In order to make relevant morphological field
studies, dune geometries (height, width and length), migration
rates, and detailed annotation of the wind regime (i.e. velocity and
height of measurements for the whole observation time), should be
registered. There are many aeolian studies of deserts and beaches,
however there is little complete and consistent data published with
which to test the theory. Many studies only publish sand roses,
which only serve as a global indication of the wind direction but
cannot be used for quantitative conclusions.
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List of symbols

symbol concept

ap.m=  amplitude of the cosine
components of the Fourier
series of a function

A = amplitude

A* = dimensionless amplitude

A, = constant for threshold
shear velocity

A, = general constants used in
linearizations

bo.m = amplitude of the sine
components of the Fourier
series of a function

¢ = migration rate, sometimes also
called wave velocity or celerity

c¢* = normalized migration rate

co.m= coefficient of the complex
form of the Fourier series
of a function

¢, = numerical wave velocity

¢, = theoretical wave velocity

C =  general constant in sediment
transport formulae

Cy = empirical constant in Bagnold's

sediment-transport formula as a
function of the shear velocity
C, = empirical constant in Bagnold's
sediment-transport formula as a
function of the velocity

Cp = constant derived from Bagnold's
sediment-transport formula
Cm = coeficient of the imaginary

exponential of the topography
equation, related to the dune
migrating rate

unit dimension

same as the function

same as the function

m-s-! L T
s T-1

same as the function

m-s-1 L -T-!
m-s-! LT
depending on the formula

s2ml/2.kg-12  T2LU2.M-112

s! T-1



Symbols

CRe

Ci

Ce

[\

En

12!

o

q0

qx

Il

It

coeficient of the real exponential
of the topography equation,
related to the dune growth
complex factor related to the
migration rate and growth factor
of a sine-shaped bedform

factor containing the physical
parameters related to migration
rate and growth factor of a sine-
shaped bedform

grain diameter

grain diameter of a standard
0.25 mm sand

error for wave number k, in
the case of a simulation of all the
wave numbers together

general function

Froude number

gravitational acceleration
topographic height
dimensionless topographic height
maximum topographic height
wave number

dimensionless wave number
wave number for the discreet
Fourier Transform
characteristic length

thickness of the inner region
subindex indicating the wave
number coorresponding to a
discreet Fourier transform
number of intervals in the
x-direction

fluid pressure

first order correction for the
pressure

sediment-transport capacity
sediment-transport capacity

per surface unit

constant basic sediment-
transport capacity
sediment-transport capacity in
the x-direction per unit

length in the y-direction

8 B

[-]
Pa
kg.m—l.s-l
kg-m'2~S'1
kg-m-ls1

kg-m-l.s-l

M-L-1.T-1
M-L-2.T-!

M-L-1-T-1

M-L-1.T-1
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q =

Re

u; =

us =

u's =

Uthr

Ukppr=

lar}
Il

Py

It

A9 QD DT >XR
|

ﬁ
Il

sediment-transport capacity in
the y-direction per unit length
in the x-direction

Bagnold's linearized sediment-
transport capacity

Reynolds number

time

flow velocity, sometimes wind
velocity is specified

first order correction for the
flow velocity

shear velocity, friction velocity
or drag velocity

saltation shear velocity
threshold velocity

of a given grain size

threshold shear velocity

of a given grain size

flow velocity at the upper edge
of the boundary layer
Cartesian coordinate
dimensionless

Cartesian coordinate

Cartesian coordinate

Cartesian coordinate

factor dependent on the wave
number

roughness length

roughness length during saltation

general argument of the Modified

Bessel functions

perturbation factor according to
Jackson and Hunt (1975)

Von Karmdn constant

wave length

kinematic viscosity

fluid density, generally air
density is specified

grain density

sediment density

normalized sediment density
shear stress

shear stress due to the saltation
shear stress from logarithmic
profile

kg-m-l-s-1

kg-m-l-s1

m-s-!

m-s-!
m-s-}

m-s!
m-sl

g8 B

2

m

Symbols

M.L-1-T-1

M-L-1-T-1

L-T-!

L-T-!
L-T-1

L-T-1

L-T-!
LTI

L2T-!
M-L-3

M-L-3
M:L-3
M-L-!
M:L-IT-2
M-L-IT-2
M-L-1T-2
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7, = first order correction to the shear - -
stress from the logarithmic profile

v = order of the Modified Bessel - -
function

¢ = m/4 for positive wave numbers - -

-n/4 for negative wave numbers - -

operators

d differential

0 = partial differential
A = Increment

=  Fourier Transform

functions

kei, kerg = Kelvin functions of the zero order

keiy, ker = Kelvin functions of the first order

Ky = Modified Bessel function of the zero-order

K, = Modified Bessel function of the first order
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Glossary of geological terms

In this study, terminology from different disciplines has been used.
This glossary has been included for the convenience of the reader who
might not be acquainted with some of these specific terms. Most of the
geological definitions have been taken from Visser (1980). Some
specific aeolian terms have been taken from Glenn (1979). Cross-
references to other terms in this glossary are indicated in italics.

allocyclical processes. Processes resulting from changes external to
the sedimentary unit, such as uplift, subsidence, climatic variation
or eustatic change.

alluvial fan. River deposit in the form of a fan or cone, usually
flanking a mountain or a mountain range.

amplitude. Half the distance between the maximum and the minimum
of the cycle of a periodic phenomenon in space or time (Fig. 1).

angle of deposition. Term used in this study to indicate the
inclination angle at which avalanched sediment will deposit at the
toe of the dune.

angle of initial yield. Inclination angle at which the slope is unstable
in the gravity field and sediment starts to avalanche (Allen, 1984,
vol B, p.149).

angle of repose, angle of rest. The residual angle, lower than the
angle of initial vield, at which a slope is left after avalanching has
occurred (Allen, 1984, vol B, p.149).

anisotropic. A mass or body is anisotropic when its properties differ
in different directions.

apex. See crest .

arroyo. Channel of an ephemeral or intermittent stream (spanish
term).

autocyclical processes. Processes that are generated within the
sedimentary unit, such as channel migration (Selley, 1978, p.19).

avalanche slope. See slipface.

barchan. Crescent shaped sand dune, which migrates downwind in the
direction of its horns.

bedform. Surface shape of the structure formed at the interface of
water (or air) currents and sediment bed.

brink. The top of the slipface of a dune. It may coincide with the crest
or apex (Fig. 2).

crest. Dune summit, the highest natural point of a dune (Fig. 2).
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cross-bedding. The arrangement of beds (thicker than 1 cm) at one or
more angles to the general dip of the formation.

cross-stratification. The arrangement of beds (thicker than 1 cm) or
laminae (thinner than 1 c¢m) at one or more angles to the general
dip of the formation .

diagenesis. All mechanical, chemical, mineralogical and biological
processes and changes in a sediment and its interstitial water after
its deposition; e.g. compaction, cementation, pressure solution etc.

dip. The angle which a planar feature makes with the horizontal plane,
as measured in a plane normal to the strike .

draa. Very large sand dune, with a height in excess of 60m and a width
of 500m or more. It may carry dunes of normal size on its gently
sloping side and form part of a regular series.

dune. Accumulation of wind-blown sand possessing one or more
slipfaces.

erg. An extensive region of sand dunes and interdune areas. Sometimes
the dunes are so close together that the ‘nrerdunes can be absent
(North African term).

eustatic. Pertaining to a simultaneous, world-wide change in sea-level

festoon cross-bedding. Cross-stratification pattern that results from
successive erosion and filling of plunging troughs. The filling of
the troughs occurs by thin concave upward layers. The festoon
pattern is most conspicuous on vertical faces cut at right angles to
the longitudinal axes in a series of superimposed troughs plunging
in the same direction.

fluid threshold velocity. The velocity at which sand movement
starts by the action of the fluid (Bagnold, 1941, p.89).

foreset laminae/bed. Series of parallel, inclined laminae or beds of a
cross-bedded unit, deposited by water or wind, the layers or
laminae dipping in the direction of the flow.

grading. The gradual reduction of grain sizes in a given direction
within a layer of granular material.

homogeneous. A mass or body is homogeneous when samples from
different locations but of the same size and orientation have the
same properties.

horns. The pointed ends of a dune, especially the forward extensions
of a barchan dune .

impact threshold velocity. The lowest velocity at which sand
movement by saltation is maintained by the action of the fluid. This
is lower than the fluid threshold velocity (Bagnold, 1941, p.104).

inhomogeneous. A mass or body is inhomogeneous when samples
from different locations but of the same size and orientation have
different properties.

interdune Relatively flat areas between dunes .

inverse grading. The decrease in grain size of the grading goes from
fine at the base to coarse at the top.



114 Glossary

isotropic. A mass or body is isotropic when its properties are the same
in all directions.

lee side. Downstream side of a dune (Fig. 2).

linear dune, longitudinal dune or seif. Parallel straight dune with
slipfaces on both sides of its crestline. Its long axis is parallel to the
dune-forming wind.

model. Simplification of the actual conditions and concentration on the
essential aspects of a phenomenum.

normal grading. The decrease in grain size of the grading goes from
coarse at the base to fine at the top.

playa, playa lake. Dried-up desert lake; generally non-saline.

protodune. Bedform that will develop into a dune. A protodune has
migrated away from its initial deposition site, but has not yet
developed a slipface with avalanching.

reservoir. Porous body of rock containing an accumulation of
hydrocarbons or water.

ripple. A small scale, rythmic relief pattern, formed on the surface of
an unconsolidated sediment under the influence of flow of water or
air.

sabkha, sebkha. A flat area of clay, silt or sand, with saline
incrustations that forms, for instance, at the borders of desert
lakes. They may also obtain their moisture from proximity to the
water table.

salina. Semi-permanent salt lake that may form in a desert.

saltation. Jumping transport of bottom particles, whereby they are
intermittently thrown upward into flowing air or water and moved
downcurrent a short distance until they land again on the bottom.

sand sea. See erg.

sand sheet. Accumulation of sand in essentially flat laminae forming a
sheetlike or blanketlike deposit. It has no slipfaces, but has distinct
geographic boundaries.

sandstone. A consolidated arenaceous rock, having a dominantly
siliceous composition.

slipface. Steep face on the lee side of a dune usually at the angle of
repose of dry sand.

star dune. A piramidal dune, roughly star shaped with three or more
arms with slipfaces, extending in various directions. It is thought to
form where seasonal winds are strongly oblique to each other. May
also result by modification of parts of older transverse or linear
dunes.

strike. The line formed by the intersection of an inclined planar
feature with a horizontal plane.

stoss side. The upstream side of a dune or ripple, facing the dominant
wind direction from which the dune has migrated and opposite to
the lee side (Fig. 2).




Glossary 115

stratum. Unit layer in a stratified rock sequence that is lithologically
distinguishable from other layers above and below.

transverse dune. Asymmetric sand ridge, with a gentle stoss slope
and a steep lee slope, in which the length dimension is
perpendicular to the dominant wind direction. It has one slipface .

wadi. See arroyo (arabic term).

wave length. The length of a complete cycle of a periodic
phenomenon in space or time (Fig. 1).

wave number. The number of complete cycles of a periodic
phenomenon in a unit of space. When the phenomenon is periodic
in time this is called the frequency.

__________ wave
/\ : ampitude
h I
l
|

wave length

Fig. 1 Scheme of a wave and its parts

stoss side lee side
- -

apex, crest  brink

slipface

Fig. 2 Scheme of a transverse dune and its parts.
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Fourier series, Transforms and
discrete Fourier Transforms

The Fourier series

Any function f{x) on 0 <x <L can be written as a sum of sine
and cosine functions by a Fourier series:

fx) =929+ D (amcos (2”2” x]+bm sin(zerm x)) (A-L.1a)

m=1

where the coefficients ag , a,, and by, are given by:

L
aﬂz%fo £l dx (A-I.1b)

ZLL”E) dx (A-L1c)

L
am=%[ f(x)cos
0

2 "L’" x) dx (A-1.1d)

L
bm=%f f(x] sin
0

In these expressions:
the horizontal coordinate [m}

X =
L = the total length of the domain [m]
m = a natural number (1,2,3...00)

The idea has been illustrated in Fig. A-I.1 where a dune-shaped
topography can be seen decomposed in its Fourier series.
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topographic
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amplitude A [m

0 4 8 12 16 20 24 28 32
wave number m [m 1!

Fig A-1.1 Fourier decomposition of a dune shaped topography according to:

a < mx . [2mmx
h(x]=70+2 2L )+bmstn( 7 ))
m=1
(a) topography, (b) contribution of the zero-wave number; (c) contribution of the first
wave number; (d) contribution of the second wave number; (e) contribution of the third
wave number; (f) spectrum showing the relative contribution of each wave-number.

(a m COS
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The following concepts can then be defined:

The wave length !: A=L/m [m]
The wave number: 27/A = 2am/L [m-!]

It should be noted that the maximum wave length is L, which
corresponds to the minimum wave number (m=1)

Making use of the following relationships:

iy

e =cosy +isiny (A-1.2)
and:

cos y = % (ely + e_ly) (A-1.3a)

siny = 2% {ely - e_ly) (A-1.3b)

Eq. (A-1.1a) can be expressed as:

+00 .
fld= 3 cperp| 202 (ALda)
M = -oo
where
L
en= 1 f Fldl exp ( ‘2’L”"x)dx (A-1.4b)
0

This is the complex form of the Fourier series. Note that due to the
positive and negative sign of the exponentials in Eqgs. (A-1.3a,b), the
summation goes from -co to +oo instead of from 0 to +eo as in Eq. (A-
1.1a). Equaling (A-1.1a) and (A-1.4a) it can easily be seen that the
following relationship holds between c,, and a and b, :

= % (@-iby) ifm>0 (A-1.52)
¢, = %{ Ay +iby,)  if m <0 (A-L5b)
co= % if m =0 (A-L5¢)

I In practice the half-wave length is also used because it resembles more real-life situations.
Often the term "half" is then dropped and the term "wave-length" is used. This can cause
confusion, and therefore this has been avoided here.
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The Fourier transformation

A Fourier series defines a function on an interval 0 < x <L and
is assumed to repeat itself periodically for x > L and x < 0, that is on
(-o0, =0). Most functions however, that describe real situations are not
periodic. An analogous representation of Egs. (A-1.4ab) can then be
given by:

)= j Pl exp i & x) di (A-L6a)

- oo

with:

7K = f Flx)exp (i k x) dx (A-L6b)

f(k) is called the Fourier Transform of f{x). Applying Eq. (A-1.6b) to
a function is called the Fourier transformation, and applying Eq. (A-
1.6a) the inverse Fourier transformation. Slightly different conventions
are sometimes used regarding the sign of the exponent or in the factor
27. The Fourier Transform represents a function in a continuous
resolution of wave numbers k, defined from -co < k < +oo.

The discrete Fourier transformation

For practical application of Eqgs. (A-I.6ab) a discrete version of the
Fourier transformation, on a finite length, is needed. The x-coordinate
is discretized into N intervals of Ax length, denoted as x; (j=0....N).
Discreet values for the wave number &, (n=0....N) also have to be taken.
Since the function is defined on N mesh points, only N Fourier
coefficients are needed. This means that there are as many Fourier
coefficients as discretization intervals (N), but different indices are used
for each (subindex ; for the x-coordinate and subindex , for the wave
number). In this way Eqgs. (A-1.6a and b) become:

Z (Frexp (i k,x;)) (A-1.7a)

and

)

[F ) Jexp (-iku;)) (A-17b)

s
1l
=z~
I
OMz

J
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which are the discrete Fourier transformation (Eq. A-1.7b) and the
inverse discrete Fourier transformation (Eq. A-1.7a). Note that the term
27 becomes N in the discrete Fourier Transform. A practical set of
values for the discreet wave number &, is given by:

kn = 2an/NAx with n=0, 1, 2..N

It is important to note that in this convention the x-axis starts at j=0 and
that for even N:

n =0,1,2...1/2N-1 corresponds to positive wave numbers

n =12N+1, Y2aN+2...N corresponds to negative wave numbers

n ='/2N corresponds to the zero wave number.

A convention with a centred x-axis (from j= -1/2N to +N) can also be
used. In that case:

n=12...12N corresponds to positive wave numbers

n = -1,-2....-1/2N corresponds to negative wave numbers

n = 0 corresponds to the zero wave number.

Again periodic extension of that function is assumed. In this case
again, care must be taken that f(0) = f{NAx) so that periodicity of a
smooth function is ensured (discontinuities cannot be represented by a
finite sum).

If we differentiate Eq. (A-1.7a) (with a continuous variable x
instead of the discrete variable x; ), we would obtain

N
dz; ix) z,zo(i knfrexp (i ko) ) (A-1.8)

which implies that obtaining the derivative of a function is the same as
multiplying the Fourier Transform by ik,; which is a convenient way of
calculating the derivative of a function f{x).

Both the function f{(xj) and the Fourier Transforms [, (kr) can be
complex. However, if the function expressed in Eq. (A-I.7a) is real, all
the imaginary terms should eliminate each other. This can happen only
if the N Fourier Transforms are symmetric and conjugate around N/2,
so that in the summation (Eq. A-1.7a) the imaginary terms will add up
to zero.

It is practical to note that, considering Eq. (A-1.2.2), the Fourier
Transform can be expressed in its modulus and phase:
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Fu=F exp (i m) (A-L.9)

where the modulus is calculated from

7 =V (ke (7)

2 2

+(rm (7)) (A-1.10)

and the phase from:

(A-IL11)

arctan Im (’;”)
Ref,)

The modulus defines the frequency spectrum of that component. It
represents the contribution of a wave, with wave number k to the whole
function. The behaviour of a phenomenon can be understood by the
behaviour of its frequency spectrum, and it is very useful to help
identify the problems that arise when using Fourier methods. The phase
of a wave number indicates the shifting of that wave along the x-
coordinate.
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Calculation of the flow field
according to Jackson and Hunt

Underlying ideas

Jackson and Hunt (1975) developed a two-dimensional analytical
model for a turbulent wind flow over a low hill. They divided the
profile in an inner region close to the surface and an outer region
further away from the surface (Fig. 5.2.1). Outside the outer region the
flow is undisturbed by the topography. They assumed that in a first
approximation the velocity has the logarithmic profile of the turbulent
boundary layer over a flat surface of constant roughness However, the
topography causes a vertical displacement of air with a certain vertical
velocity. Sufficiently far above the topography, above the outer region,
the horizontal velocity should be equal to the undisturbed velocity and
the vertical velocity should be zero. This implies that in the outer
reglon (i.e. between the inner region and the undisturbed region) there
is a perturbation of the horizontal velocity, which also leads to a
perturbation of the pressure in the outer reglon This pressure
perturbation affects the pressure of the inner reglon which in turn
affects the local horizontal and vertical velocities in the inner region.
For the purpose of this study we are mainly interested in the flow close
to the surface, where the sediment transport occurs through saltation,
therefore this appendix will concern the inner region.

Assamptions

It is assumed that the flow occurs over a hill of length L and
maximum topographic height H, where the height is much smaller than
the length and the slope is small everywhere. In a first approximation
the velocity has the logarithmic profile. If the slopes of the hill are
small enough, the topography causes a perturbation of the logarithmic
profile. The horizontal velocity can then be written as:

s (A7 X Az
ulx Az} = - In (Z—) + € Uit (Z’T) (A-IL1)
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with:
w=qf 2 (A-I12)
* = — -1l.
p
where:
u; = dimensionless perturbation velocity [-]
€ =  perturbation factor [-]
equal to:
2
n|(L
_Hin(Lz) (A-IL3)
L xin(liz,)
l = thickness of the inner region, which, for
10° <L <10’
z,
can be approximated to within 4 percent with:
09
L1 ("L—) A-11.4
sl (A-1L4)

Jackson and Hunt developed their equations for velocity and
pressure over a topography with dimensionless length and height (x/L
and h(x)/H respectively). The effect of the actual slope is then accounted
for by the magnitude of the perturbation factor £. Fig. (A-II.1) shows
€ according to Eq. (A-I1.3) as a function of the slope (h/L) for
different roughness lengths (z, ) given by Eq. (A-I1.4). Three roughness
lengths have been taken: 0.001m, which would correspond to the
roughness caused by surface grains, 0.01m which would correspond to
the roughness caused by ripples, and 0.1m, which would correspond to
the roughness caused by shrubbery. Fig. (A-II.1) shows that Jackson and
Hunt's corrections have a greater weight for steeper slopes and for an
increased roughness length.

The shear stress at the surface, which is the parameter necessary
for calculating sediment transport, is given by Jackson and Hunt as:

thl= 19+ € 157, ) (A-1L.5)

The shear-stress correction is finally calculated from the correction of
the horizontal component of the velocity according to:

du,y

Tl = 2 K AZ
dz (A-11.6)



124 Appendix Il

3.0

= o5 I 2r=0.001 m
5 - 1L _—zr=001m
8 207 T o-cz=01m
s 15 :1— —~
S 40 L - limit of valid flow theory
3 -,
g os T 777
a YT ="

0.0 +——t : —+ t t —t—rt ;

-000 00t 002 003 004 005 006 007 008 0.08 1.00
topographic steepness

L[]

Fig A-11.1 Variation of perturbation factor € with topographic steepness (H/L),
for different roughness lengths z,. The perturbation factcr € should be smaller than 1.
It determines the weight of the correction of Jackson ind Hunt's theory (1975) in
relation with Prandtl’s logarithmic profile. This graph has been calculated by taking a
fixed H=1m and varying L.

Equations for the inner region

For the inner region Jackson and Hunt start from the equations of
motion of a boundary layer, in which they substitute the expressions for
the perturbed horizontal and vertical velocities and for the pressure. By
ignoring the non-linear terms in £ they develop a system of equations
for the velocities and pressure. The solutions for the first order
correction for the velocity and the pressure in the inner region, are
finally given as:

e 0 [Az a'le
kx = - k* + =
i U 1 P1 a(ﬂ) l a(é_z_ (A-H7)
W/ {
pi= - |[k*| h* (A-IL8)
l;\l = the Fourier Transform of the first-order correction for
the pressure [-]
;1 = the Fourier Transform of the first-order correction for

the velocity [-]
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~

h* = the Fourier Transform of the topography [-]. The
topography has been normalized according to:
h*(x)=h(x)/H

k* = wave number of the Fourier Transform. It should be
noted that, contrary to the notation used in Appendix I, as
Jackson and Hunt use dimensionless x coordinates (x/L)
the wave number k* becomes dimensionless.

Solutions for the horizontal velocity and shear stress

The combination of Egs. (A-11.7) and (A-IL.8), and rewriting the
resulting expression, gives a non-homogeneous Modified Bessel function
(Abramovitz and Stegun, 1972, p.374, formula 9.6.1). The solutions, in
Fourier Transforms, that Jackson and Hunt give for the first order
corrections of the velocity and the pressure are:

K, (2 ~ —AZ_Z k*i)
(A-IL.9)
K, (2 Al %k*i)

ufk A= [k B Hiee ) |1 -

—— (A-IL.10)
Ky is the modified Bessel function of zero-order.

For our purpose, which will become evident further on, it is practical to

write this as:
K, (2 WEEAY )

wlk, )= x| hosles, )| 1 - !

Kol (A-IL11a)

=2 ZT Ik*| (A-IL.11b)

Where

and

A ifk* >0

ﬁ z -4 ifk* <0 (A-I1.11¢)
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For this it should be noted that the sign of the wave number k* has been
included in the imaginary root so that :

ifk* >0 take +i= exp (E)
4 (A-II.11d)

ifk* <0 take +-i=exp (‘%r)

For the purpose of using Jackson and Hunt's model for simulating
sediment transport, we need the shear stress at the surface. This is
obtained applying Eq. (A-II.6) at Az = 7, :

KI(ZA/%k*i)

KO(Zk em)

BuAl(k*,t)_ ol T ufin FETEN Y,
8|Az) - |k ’ h (k ,t' T ‘AZ)

(A-I1.12)

K is the modified Bessel function of first order (and equal to minus the
derivative of the modified Bessel function of zero-order; Abramovitz
and Stegun, 1972, p. 376, formula 9.6.27). Equation (A-II-12) at Az =
z,, multiplied with 2xAz and with the adequate substitutions using Eq.
(A-II-11b) gives the following expression for the shear stress at the
surface:

~ ~ io K (z ew)
ot ) = i k] Bk 2 e —’—1‘7} (A-IL13)

Ko(zke

Applying an inverse Fourier Transform (Eq. A-1.6a) the expression for
the shear stress in cartesian coordinates is obtained:

i9 K ( i¢) ik
i e
1 Zk : el X

Tl = |k Rk zee r
KO(Zke )

dk*  (A-11.14)

Calculation of the solution in the computer programme

In the computer programme developed in chapter 6, equation
(A-11.14) has been solved using the Fast Fourier Transform (FFT)
algorithm from Press et al. (1988). The Modified Bessel functions have
been calculated with formulae from Abramovitz and Stegun (1972). As
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the arguments of the Modified Bessel functions in Eq. (A-11.14) are
complex numbers, their values are not directly tabulated but have to be
determined in an indirect way. Two approaches have been used, one for
small arguments (y<0.1) using an asymptotic approximation and one for
large arguments (y20.1) with the help of tabulated Kelvin functions.

For small arguments (y) the modified Bessel functions can be
solved with (Abramovitz and Stegun, 1972, p. 375, formulae 9.6.8 and
9.6.9):

Ko(y)=-In(y) (A-I1.15a)
1 2_1
Ki(y)=5I'(1)>=— -
1 3 vy (A-I1.15b)
Applying this to Eq. (A-II.14) we obtain:
i@ ig) i
Kolew )= -nece) = n (2 - e = (A-IL16a)
- In(z4)-i¢ '
-1
i0 it
Kl(zk e )= (Zk e ) (A-I1.16b)
In equations (A-I1.14):
7, k*
iy = 2
l (A-11.17a)
and
¢ =+ /4 for k* >0
¢ = — 14 for k* <0 (A-11.17b)

When the argument (y) is large, the Bessel functions can be
approximated with tabular values for Kelvin functions (Abramowitz and
Stegun, 1972, p.379, formula 9.9.2) according to:

in /4
=€

Kv(ye ivn/4(

keryly) + i keiyly)) (A-IL18a)

where v is the order of the function. Considering also that according to
Abramowitz and Stegun (p.376, formula 9.6.32) (O :

K,(Cly)=c(K,ly) (A-11.18b)

I The symbol £ denotes a complex conjugate
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The Modified Bessel functions in Egs. (A-11.13) and (A-II.14) can be
solved by:

( i7z/4) o
KO Zr € :ker(zk)+lkel (Zk) (A-H.19a)
KO(Zk e-m /4) Kl (Zk em/4)] _r (K; (Zk em /4))
C (ker (Z]() +1i kei (Zk)) =ker (Zk) -1 kei (Zk) (A-Hl9b)
K, (zke”m) = eiﬂu{kerl(zk) +i keil(zk)> = -kei{(z,) +i ker{z;,) (A-IL19c)
K (z e-m/4) = B{emz (kery(zd) + i kei (z ))}
e 1k ik (A-I1.19d)
-img/4 -iml2 o ) .
K](zke ) =¢ {kerl(zk) -i kezl(zk)} = -kei l{zk) -1 kerl(zk)

Equations (A-II.16a,b) and (A-II.19a,b,c,d) have been used to calculate
the Bessel functions for the solution of the shear stress (Eq. A-I1.14) in
the computer programme of chapter 6.
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Appendix III

EOLSIM, a two-dimensional
programme for simulating the
dynamics of aeolian dunes

General approach

For the purpose of simplifying calculations in chapter 6, a
computer programme called EOLSIM was developed. EOLSIM is a
two-dimensional computer programme that models the deposition of
aeolian dunes. It simulates the interaction between wind and topography,
calculating where erosion, transport and deposition of sediment occur.
Redistribution of sediment through avalanching is also accounted for.

Simulations concern a two-dimensional section, where the length
forms the x-axis and where deposition occurs in the z-axis. A simulation
is carried out in a number of successive time steps. At each time interval
the shear stress at the surface is calculated for the whole section using
Jackson and Hunt's (1975) analytical boundary-layer flow model. The
sediment-transport capacity is then calculated with a linearization of
Bagnold's (1941) sediment-transport formula. The sediment-transport
capacity is considered as an equilibrium value, so that the wind either
erodes or deposits sand to reach its sediment-transport capacity. The
excess or deficiency of sediment-transport capacity is determined for
every x-interval, and the amount of erosion or deposition is determined
with the continuity equation. This results in a new topography, which is
checked for slope instability. If at any point the slope is steeper than a
given value (equal to the angle of initial yield) the sediment is
redistributed by avalanching. The resulting topography determines a
new velocity field, after which the cycle is repeated until the total
simulation time has been reached.

Model input
Information required as input is itemized below. EOLSIM reads

the input data from a standard file called input.d. An example of such a
file is given in Table A-IIL.1.
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Table A-H1.1 Example of an input file for EOLSIM. Lines starting with an asterisk
are comments. They explain the meaning of the input data on the following line and
are skipped by the programme.

* title line
Example input file for aeolian simulations
* name for output files for this experiment
sine
* orid size [m] and number of rows
1.0 64
* grain diameter [m]
0.00025
* filename containing topographic elevations (extension *.top)
sin.top
* datum wind velocity [m/s] and height of measurement [m]
10.0 2.0
* height [m] at which shear stresses are calculated
* and roughness length [m] (this allows for calculations at another
* height than the surface)
0.00589 0.00589
* start of simulation [h], end of simulation [h], time per iteration [h]
* display time for dimensional parameters (short files) [h],
* display time for topographic results (long files) [h]
0.0 1000.0 0.25 1000 25
* symbol indicating end of input file
#

i) Number of intervals and interval length: the number of grid points
should be a power of 2 (to allow for the Fast Fourier Transform
routine). In the simulations in this study, generally 64 grid points
(equal to 63 intervals) have been taken, numbered from O to 63.
This is a good compromise between the precision and the time
required for computations.

ii) Average grain size: Aeolian deposits are characterized by clean,
well-sorted and rounded grains with diameters between 0.1 and 1
mm. Deposition of the suspended load, which consists of the
fraction smaller than 0.1 mm, is considered negligible (Bagnold,
1941; Nlenberger and Rust, 1988) and not taken into account by the
model.

iii) Topography at the outset: the topography should be a continuous
and periodic function, to allow its Fourier Transform. This implies
that there should be no discontinuities in the topography (i.e. no
sudden changes in slope) and that the topographic height at the left
boundary (x=0) should equal the topographic height at the right
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iv)

V)

boundary (x=L). The topography is given in a separate file, of
which the filename is read from the input file. This allows the
input file to be more compact while changes to the topography are
less cumbersome.

Datum wind velocity and height of measurement: wind is assumed
to be constant and unidirectional during a simulation experiment.
To allow for an eventual easier link with field measurements,
EOLSIM calculates the shear stress from a datum wind velocity
and height of measurement. These are read from the input file.
Wind velocities in field measurements are generally taken at
standard heights of 1, 1.5 or 2 m above the ground. Wind velocity
and direction data are also recorded for meteorological purposes,
in which case they are measured at a height of 10 m as specified by
the World Meteorological Organization. Table A-II.2 gives an
indication of different wind regimes. From observations in present
deserts and arid environments (Kahlaf, 1989; Fryberger et al.,
1984) it seems realistic to use wind velocities from 7 to 20 m-s-!
for simulating aeolian sedimentation. Normally very high wind
velocities are accompanied by rain and aeolian transport ceases.
However in arid environments, rain may not occur and very high
winds, although sporadic, could produce high rates of aeolian
transport.

Table A-111.2  Wind regimes
Beaufort scale km-h-! m-s™! description
3-4 12.2-25.2 34-74 weak
S-6 25.2-44.6 7.5-12.4 strong
7-8 44.6 - 65.5 12.5-18.2 Very strong
9-10 65.5-904 18.3-25.1 storm
> 11 >90.4 >25.1 hurricane

Time parameters: start and end of simulation, time step of
calculation and time intervals at which output files are to be
printed. The implementation of an avalanching routine requires a
small time step to be used (e.g. 0.25 hours). Two different time
intervals are required for two different types of simulation results:
- A time interval for large files containing results at every x-
interval (e.g. topography, sediment transport and shear velocity).
As these files are generally large, it is convenient to take large
intervals for storing this type of results (e.g. every 100 hours for a
simulation of 1000 hours).

- A time interval for small files containing results that give
general characteristics of the simulation (e.g. wave length, location
of the apex, apex height). These results are more important for

131
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monitoring and understanding a simulation and it is generally
desirable to write these at a more frequent time interval (e.g. every
25 hours for a simulation of 1000 hours). As these files are
smaller, this does not form a storage problem.

Programme functioning

After the initialization of the programme, a simulation is carried
out in a successive number of time steps. At each time interval EOLSIM
performs the following actions:

1)  The shear stress over the topography is calculated using Jackson
and Hunt's (1975) analytical model (see Appendix II) according to
Eq. (A-I.14). For this, a Fast Fourier Transform routine from
Press et al. (1988) is used. The Modified Bessel functions in Eq.
(A-I1.14) are calculated by a separate routine. For small values an
asymptotic approach is used according to Eqs. (A-11.16 a and b).
For larger values, tabulated Kelvin functions are used according to
Egs. (A-I1.19a,b,c and d).

i) The sediment transport is calculated over the topography using a
linearization of Bagnold's formula (1941) according to Eq. (4.4.4).

iti) The sediment continuity equation (Eq. (4.1.1)) is solved using
Runge Kutta's fourth-order numerical method, according to Egs.
(4.5.3a,b,c,d) and (4.5.4).

iv) The slope of the topography is checked. If at any point the slope
exceeds the angle of initial yield the avalanching routine is called.
Redistribution of the sediment through avalanching is modelled in a
geometric way. The theoretical approach of the avalanching
routine is given in section 6.4 and illustrated in Fig 6.4.1.

v) A mass balance of the sediment is computed as a check of the
simulation. Also the general topographic parameters like wave
length, height and location of the apex are calculated.

After a chosen time interval EOLSIM records the simulation results on
separate files.

Programme output

At specified time intervals EOLSIM's results are written in files.
The following output files record the results of simulations. By
convention, output files have an extension of capital letters.
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repeat for each time step

calculate shear stress at the surface
calculate transport capacity g,
determine Aq /Ax

;

calculate new topography by solving
continuity equation with Runge Kutta
4th order numerical scheme

( determine slope)

'

does the slope exceed the angle of
initial yield?

’——no —

yes

( call avalanching routine)
does the time equal the desired
display time?
[—no >

yes

'
C print results )
|

Fig A-II1.1 Structure diagram of EOLSIM, a programme for the two-dimensional
simulation of dune migration and growth.
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Large output files recording results at each x-interval are:

* SED: for the sediment deposited or eroded in a time interval.

* SST: for the shear stress

* STR: for the sediment transport and the spatial derivative of the
sediment transport

* TOP: for the topographic height

Small output files recording general characteristics to monitor the

simulation behaviour are:

* DIM: for the height and location of the apex and the half-wave length
- of the bedform

* SMB: for the sediment mass balance

* FFT: for the amplitude of the Fourier spectrum of the topography

kerQ.dat ker1.dat * 33T
kei0.dat( keil.da
+ *STR
* top y Y ]
EOLSIM *TOP
* SMB

*F
“DIM

i o
[¢2]
> 5

Fig A-IIL.2 Diagram of input and output files related to EOLSIM.
Programme structure

EOLSIM is written in ANSI standard C, compiled on a UNIX
workstation. There is a Makefile for the compilation. The programme is
written in a modular way, with different functions separated as much as
possible in different subroutines. Comment lines are included in the
code. A structure diagram of EOLSIM is given in Fig. A-IIL.1. A
convention has been used where input and data files have an extension in
small letters and output files have an extension in capital letters. A
scheme of the input and output files is given in Fig. A-IIL.2. The
programme itself is divided in the following main routines:

i) eolsim.c: the main driver of the programme, which controls the
programme execution and calls the main subroutines.

ii) avalanche.c: calculates the avalanching.

iii) bessel.c: calculates the Modified Bessel functions.

an asterisk denotes the characteristic name for the output files of a specific simulation. This
name is chosen in the input file.
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1v) fourl.c: the subroutine from Press et al. (1988) that calculates the
Fast Fourier Transform

v) init.c: an initialization subroutine that opens all output files and
reads the four tabulated Kelvin functions (Abramowitz and Stegun,
1972, p.431) from the files called kerO.dat, kerl.dat, kei0.dat and
keil.dat .

vi) mathfuncts.c: contains small functions for performing specific
mathematical operations such as calculating a derivative using a
central difference scheme, determining the maximum and
minimum of a function (e.g. the topography), calculating
operations with complex numbers and the routine to calculate a
cubic spline from Press et al. (1988)

vii) readin.c: reads the input from the data files input.d and *.top

viii) shear.c: calculates the shear stress over the topography.

ix) writeout.c: writes the large output files (i.e. shear stress, sediment
transport and topography at every x-interval).
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Modelling permeability in
imperfectly layered porous media
II: A two-dimensional application
of block-scale permeability

J.M.T. Stam and W. Zijl (D

Abstract

In a previous paper (Zijl and Stam, 1992) a theory has been
developed to calculate the nine components of the three-dimensional
intrinsic permeability tensor on the scale of a grid-block from a local-
scale, predominantly layered subsurface. The resulting block-scale
expressions can be written as a perturbation series of which the first
term, or zeroth-order solution, coincides with the conventionally
applied arithmetic and harmonic averages over the layers of the
subsurface. The derived expressions permit the calculation of the
diagonal and off-diagonal terms of the permeability tensor. In the
present paper these expressions will be applied in some numerical
examples. Two basic two-dimensional hypothetical permeability
distributions are adopted, and the various terms of the theoretical
expressions are calculated. The results will be used to derive guidelines
to discern the situations where higher order solutions can be neglected,
and where conventional harmonic and arithmetic averages give a good
estimate of the permeability on grid-block scale.

Introduction

Fluid flow simulation for oil and gas production or groundwater
flow assessment requires an integration of the modelling of the geology
of the subsurface on one hand, and of the techniques for the application
of flow simulators for the calculation of fluid pressures, flow velocities

(1) The contents of this appendix have been published as an article in Mathematical Geology,
1992, v. 24, n. 8. It has been included in this thesis with its own list of symbols. The reason for this
is that in some cases the same symbol has been used with a different meaning than in the rest of
the thesis. As in both cases they were conventionally used symbols, and the meaning is always
clear from the context, all the original symbols have been maintained. The references of this
article have been included in the general references of the thesis.
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and flow paths on the other. The difficulties of combining the
qualitative geological models with the quantitative information required
for the application of numerical flow models are countered by the
development of tools for the computer simulation of facies distribution.
These tools include stochastic techniques (Haldorsen and Lake, 1984) or
process-based simulators (Bridge and Leeder, 1979 and Tetzlaff and
Harbaugh, 1989).

One of the steps in this whole process is the quantification of the
geological properties on the scale of grid-blocks that are currently used
in fluid flow simulators. At some stage this requires the averaging of
different parameter values to obtain one value attributable to the finite
difference grid-block or the finite element. The parameter which is both
most important and difficult to quantify is the intrinsic permeability.
Permeability at each scale is a result of the distribution of
heterogeneities at a smaller scale, so that the problem of understanding
and upscaling permeabilities to obtain average values would have to be
studied at each scale of the hierarchy of heterogeneities that occur in the
subsurface (Weber, 1986). The problem of obtaining average
permeability values is too complicated to warrant the use of a single
straightforward method because it depends on the stratigraphical
characteristics of the porous medium itself. However, in practice,
straightforward methods are often used to obtain effective values for
modelling problems: reservoir simulations and ground water flow
calculations. Understanding when this is justifiable and what margin of
error is being introduced can be very important.

The problem of correctly estimating average permeabilities has
been treated, both from a theoretical and practical point of view, in
geohydrology and in petroleum reservoir engineering. A distinction can
be made between analytical and numerical approaches. The numerical
approaches have been treated by White and Horne (1987). Analytical
approaches can broadly be classified in three groups: algebraic,
stochastic and the continuum mechanical approaches.

The first approaches evaluate simple algebraic averaging
techniques of the different permeability values. Cardwell and Parsons
(1945) concluded that average permeability would lie somewhere
between the arithmetic and the harmonic averages, and closer to the
arithmetic average. Warren and Price (1961) indicated that the
geometrical average (which lies between a harmonic and an arithmetic
average) was the most indicated method to use. These algebraic methods
are hardly based on physical considerations of fluid flow, but their use
can be justified in a statistical sense; as permeabilities in a facies are log-
normally distributed (Freeze, 1975), they form a stochastic function, of
which the expectation is a geometric average. More sophisticated
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methods have also been developed, based on renormalization, for
instance (King, 1989). Algebraic expressions based on the calculation of
streamline lengths have been developed (Haldorsen and Lake, 1984;
Begg and King, 1985) for specific deposits, e.g. sandy reservoirs with
shaly permeability barriers. These are practical approaches that take
into account the stratigraphic characteristics of the porous medium.
However, they can be applied only when permeability contrast is
sufficiently large to associate flow paths with sedimentary geometries.
In sedimentology, this leads to the consideration and definition of flow
units (Mijnssen et al.,1990). Finally, Kasap and Lake (1990) have
developed algebraic expressions to calculate an average block-scale
permeability, where the off-diagonal terms in the permeability matrix
are caused by crossbedding angle. The physical origins of heterogeneity
and the geological structure of the subsurface are not fully taken into
account in these algebraic averaging techniques; however, they are
easily applicable and widely used, and give a good estimate on the order
of magnitude of the effective permeability.

Much work has been done on characterizing heterogeneity
distributions with stochastic methods. These include geostatistical
methods (Journel and Huijbregts, 1989) and fractal techniques (Jacquin
and Adler, 1987). They have been termed as "sequence based methods”
(Dubrule, 1989) because they incorporate information on the spatial
distribution of properties at neighbouring locations. For averaging (i.e.
upscaling) permeabilities to a block-scale (in statistics for obtaining a
"best estimator" of a dataset), kriging is used (Journel and Huijbregts,
1989, p.304-443). A different statistical approach treats fluid flow itself
from probability theory (Gelhar, 1986 and Dagan, 1989), and statistical
properties (for instance stationarity) are then assumed for the porous
medium.

Finally, continuum mechanical approaches are based on the
equations governing fluid flow in porous media (Navier Stokes at pore
scale, and Darcy at local scale) without assuming statistical properties of
the porous medium. Whitaker (1986) develops expressions for a very
general case, parting from the pore scale, to arrive at a homogenized
local scale where Darcy's law can be applied. The macroscopization
method is then applied (Quintard and Whitaker, 1987) to flow through
larger areas, characterized by different grain sorting and packing.
However, the resulting expressions for the block-scale Darcy's law tend
to be of a very theoretical nature since the block-scale permeability is
given in partial differential equations rather than in algebraic
expressions. Therefore it is more difficult to gain insight in the effects
in practical applications.
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From the literature presented in this overview it can be seen that
the most straightforward algebraic expressions for calculating an
averaged block-scale permeability (the arithmetic average for horizontal
permeability and the harmonic average for vertical permeability) apply
to perfectly layered subsurfaces, and can be justified both from
statistical considerations and from analytical reasoning. In practical
studies, arithmetic averages are used for horizontal permeabilities of
laterally continuous strata, while geometric means are used for less
continuous strata. (Fogg, 1986).

In this paper, the continuum mechanical approach is applied by
considering an analytical expression for the permeability tensor, as
developed by Zijl and Stam (1992). The theory has been developed
from the basic equations governing flow in porous media applied at
local scale (i.e. the scale of several centimetres, which is the scale of the
representative elementary volume and also the scale at which
permeability measurements from e.g. core plugs would be obtained):
the continuity equation, and Darcy's law with a local-scale,
symmetrical, permeability tensor. From this, expressions are developed
to calculate the permeability tensor at block-scale. To obtain expressions
that are applicable in a relatively simple and straightforward way, thin
blocks are considered in which the porous medium is simplified to a
predominantly, but not perfectly, layered subsurface. In this way,
permeability heterogeneities will be formed by an essentially stratified
subsurface in which permeability can vary in the lateral direction along
the layer ("imperfectly-layered porous media"). This represents the
heterogeneities produced by a lateral succession of facies passing
gradually into each other, in intra-facies sequences. Though the
expressions have been developed in three dimensions, for purposes of
insight they will be applied to two-dimensional hypothetical sections.

Theoretical basis

In single-phase fluid flow through a porous medium, the depth-
averaged Darcy's law for flow in two dimensions can be written as:

(ay=- 2 %)L 20

, L o (A-IV.1a)
{a9=- <Z> a§f> <]L> %) (A-IV.1b)

where <ky,>,<k.;>, <k,> and <k,.> are the four components of the
depth-averaged two-dimensional permeability tensor. For imperfectly-
layered subsurfaces, and assuming a coordinate system with the x-axis



140 Appendix IV

parallel and the z-axis perpendicular to the layering, these components
can be given by the following expressionsn (Zijl and Stam, 1992):

", 0
(ko) = % (A-IV.2)
.
Ckap W= 211,00 (A-IV.3)
where:
N (e , aplx,z)\ ..
t (x,z)—fZ kh'va){l +—%Z*} dz (A-1V 4a)
o aka),
B(x,zi—f k2] —gx—dz (A-1V.4b)
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t(x,z)zf kybx,z) dz’ (A-1V 4c)
and: &
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Gk el = dl (A-1V.5)
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where:
ey T [, 0alz])\ .
c 'X’Z)_j kle,z']\H——*ax /dz (A-IV.72)
0
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N
ClX,Z)—f kV‘X,Z') dz (A-1V.7¢c)
0

The above expressions for the components of the permeability
tensor are depth-averaged over the grid-block depth d. They have been
derived from asymmetrical boundary conditions (potential on top, flux
at the bottom), and should be recalculated for reversed boundary
conditions (flux on top, potential at the bottom) (Zijl and Stam, 1992).
Resulting depth-averaged values are obtained as a combination of both.
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Finally, a block-scale value for the permeability tensor is obtained
by integrating over the horizontal dimension 2a according to:

-1

W) =2a { j e W dx} (AIV.5)

-a

The expressions (A-IV.2) and (A-IV.5) for the diagonal terms
<ky> and <k,,> are based on the calculation of t"(x,0) and c¢"(x,d),
which are obtained from (A-IV.4a) and (A-IV.7a), respectively. We can
see that both t"(x,0) and ¢"(x,d) are formed by two terms, which are the
first two terms of a perturbation series that gives the correct solution
for a porous medium with a predominantly, but not perfectly, layered
structure (Zijl and Stam, 1992).

The first terms of expressions (A-IV.4a) and (A-IV.7a), at z =0
and z = d respectively, are basic terms (the zeroth-order solutions). For
Eq.(A-1V.4a) this coincides with the well known arithmetic average of
the permeabilities of a perfectly-layered subsurface (from which in
geohydrology the transmissivity pg#(x,0)/i is calculated). In the case of
Eq.(A-IV.7a) the basic term is the well known harmonic average of the
permeabilities of a perfectly-layered subsurface (from which in
geohydrology the hydraulic resistance tic(x,d)/(pg) is calculated).

The second terms of both the expressions (A-1V.4a) and (A-1V.7a)
account for the lateral variations in permeability within each layer. An
implicit condition is that lateral permeability heterogeneities occur
gradually, so that the permeability can be considered as a sufficiently
differentiable function. It has already been indicated that, in normal
practice, the lateral heterogeneity occurring within layers is neglected,
and the subsurface is frequently modelled as perfectly layered. In this
case, dc(x,z)/0x and di(x,z)/dx = 0 so that o(x,z) and B(x,z) are both
zero, and the second terms of expressions (A-1V.4a) and (A-IV.7a) are
also zero. In reality, a layer will not be perfectly homogeneous,
therefore there will always be a correction on the basic harmonic and
arithmetic mean value, and this can be considered as a measure of the
lateral heterogeneity occurring in a layer. If variations are very slight,
these terms will be so small as to be negligible. In that case, the
conventional harmonic and arithmetic averages will be sufficiently good
approximations of the block-scale permeability in the x- and z-direction
of the domain.

It can easily be seen that, in a perfectly-layered structure where
dt"(x,z) / ox = 0 and dc”(x,z) / dx = 0, the off-diagonal terms of the
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permeability tensor <k,;> and <k,,> disappear. Lateral permeability
variation is immediately expressed in the second terms of <k,,> and
<k,> which contain the second derivative of #(x,z) and c(x,z). As <k,;>
and <k,,> contain third derivatives of #(x,z) and c(x,z), the influence of
lateral heterogeneities may become significant in the first-order
corrections of the diagonal terms before it becomes substantial in the
off-diagonal terms of the tensor. It can also be observed that expression
(A-IV.6) for the determination of <k,;> is very similar to expression
(A-IV.7b) for the determination of «(x,z) while <k,,> is directly
determined by differentiating t"’(x,z). The off-diagonal terms are
clearly not equal to each other (the tensor is non-symmetric).

Examining expressions (A-IV.4a) and (A-IV.7a) it can further be
concluded that the distance over the x-direction in which permeability
variation occurs is of great influence. With the same variations over a
larger x-distance, the terms ot(x,z)/ox, IP(x,2)/dx, dc(x,z)/x and
do(x,z)/dx will decrease (this is in accordance with the implicit
condition of gradual variation of the permeability).

It can be noted from expression (A-IV.4b) that the depth-averaged
<ky> is inversely proportional to the local k,. Expression (A-IV.7b)
shows that the depth-averaged <k,,> is directly proportional to the local
kp.

Finally, some observations should be made to help understand
expression (A-IV.8) to integrate the depth-averaged permeabilities in
the lateral direction. It can be seen that the expression implies
calculating a harmonic mean of the depth-averaged permeability matrix.
This means that both <<k,,>> and <<k,,>>, the diagonal terms of the
block-scale permeability tensor, are obtained from a harmonic average
of <k.> and <k,;>, which for the former seems more understandable
than for the latter. This "paradox” can be understood because it is an
average value for one grid-block in a whole domain. The flow through
the block is determined by the flax surrounding it, and the resistance to
flow is determined by the value of the permeability of all the grid-
blocks in the domain, almost independently of the single grid-block
under consideration.

Summarizing, it can be concluded from the above expressions that,
if lateral heterogeneity within a layer is only very slight, the
conventional arithmetic and harmonic average permeabilities give an
accurate value for <k,,> and <k, > (the diagonal terms of the
permeability tensor), and that the influence of the lateral heterogeneity
is larger for the diagonal terms of the permeability tensor than for the
off-diagonal terms. These conclusions confirm knowledge from general
practice; however, Eq.s (A-IV.2) to (A-IV.7a,b,c) enable us to quantify
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the factors commonly known to affect permeability when it is calculated
as a block-scale value from a local-scale permeability distribution. The
expressions are restricted to the type of subsurface to which they can be
applied; thin blocks with predominantly layered structure and with
gradual permeability variations within each layer. This type of
subsurface is frequently encountered in engineering practice. In oil and
gas reservolr engineering these subsurfaces are typed as "layer-cake
reservoirs" (Weber and Van Geuns, 1990). In geohydrology the
underground can often be schematized as a layered succession of
aquifers and aquitards.

Numerical examples

subsurface

grid-block-scale
d grid-blocks

local-scale
Az
EA1

facies-unit

Ax
Fig A-IV.1 Notation used for hierarchy of scales.

From a geological point of view it is desirable that each facies unit
is represented by a grid-block, in which case we would have to work
with grid-blocks of 1 to 2 m in height, and of less than 100 m in width.
However, conventional simulators work with grid-blocks of 5 m in
height and 300 m in width (Weber and Van Geuns, 1990), so that block-
scale permeability values have to be calculated from smaller scale units.
These small-scale units can then be considered as the homogeneous
facies with a local-scale, symmetrical permeability tensor, referred to in
the introduction. A computer programme has been written that
calculates each term of expressions (A-IV.2) to (A-IV.8) for any
distribution of small-scale permeability units (Fig. A-IV.1). It is a
Fortran computer code for two-dimensional computations, with a
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finite-difference, block-centred approach. To understand the theory,
expressions (A-IV.2) to (A-IV.8) are worked out in a series of
numerical examples, with the idea of obtaining a block-averaged
permeability as would be used in a conventional fluid-flow simulator.
Two different local-scale permeability distributions of two different
facies materials were adopted (designated by k; and k;) as shown in Fig.
(A-IV.2). The first local-scale permeability distribution (henceforth
described as configuration A) shows a porous medium, with alternating
units of relatively high and low permeability, representing a vertical
succession with a preferential stacking. For this permeability
distribution an analytical solution can be obtained as described in
Appendix A. The second local-scale permeability distribution
(configuration B) shows a block-scale isotropic "checkerboard"
configuration. Although both distributions stretch the "stratified-
medium-concept”, for which the theory was originally developed, they
represent extreme situations which will enable us to gain insight in the
influence of the different terms of the theoretical expressions.

configuration A. configuration B.

Fig A-IV.2 Scheme of permeability distributions in grid-bocks as applied in numerical
examples.

The permeability distributions are repetitive in the z-direction,
which implies that the two solutions for reversed boundary conditions
(the top and bottom flux problems) are equal, so that the off-diagonal
terms of the resulting depth-averaged tensor <k> are zero. In the
formulae, three essential parameters influence the results:

i) The contrast of the lateral permeability distribution, i.e. the factor
ki/k>, where k; is the local-scale permeability of the well
conducting facies unit, and k; the local-scale permeability of the
poorly conducting facies unit.

ii) The facies geometry; i.e. the geometry of the small-scale units.

iii) The depth of the domain over which permeability will be averaged.

The first two factors are intrinsic to the characteristics of the
porous medium itself, while the third factor is dependent on the
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dimensions chosen for the grid-blocks, i.e. on the modelling approach.
The influence of these three factors will be analyzed by considering the
term dafx,0)/dx and the block-scale value given by Eq. (A-IV.8). The
terms 1doyx,0) / dxl and 1dfB(x,d) / dx| are a measure for the correction
to the basic zeroth-order solution for the average permeability. For k, =
k,, 130¢x,0) / dx| and |0P(x,d) / dx| give equal values in the case of the
anisotropic configuration, and similar values in the case of the isotropic
configuration, therefore only do(x,0)/dx has been calculated. The
results will serve to give insight in the influence of different modelling
parameters on the resulting block-averaged permeability, and thus help
to develop practical rules for the limitations in which traditional
permeability averaging can still be used as a sufficiently accurate
estimate of the block-scale permeability. The following assumptions
have been made:

(i) In reality, the permeability variation from one facies into the other
occurs gradually. However, for computational reasons, each layer
is divided into blocks with homogeneous permeability, and the
variation from one into another occurs with a step. For the
mathematical justification and consequences of this, the reader is
referred to Appendix B.

(ii) For reasons of insight it is assumed that the local-scale
permeabilities k, and k; are equal to each other, though from a
sedimentological point of view this is not realistic. This means that
the local-scale anisotropy factor ky/k; = 1.

(iii) In the first numerical experiments the thickness of the block is
chosen as five times the thickness of the facies unit, i.e. d =5 Az.
(In the experiments concerning the modelling parameters, the
block depth was varied).

Table A-1V.1 Orders of magnitude of intrinsic permeabilities for different types of
Jacies (values taken from Dagan, 1989)

material Permeability Permeability
[m?2] [milli-Darcy (mD)]
Clay 1017 to 10-15 102101
Sandstone 10-15 to 10-12 1 to 103
sands 10-12 1o 10-9 103 to 100
Gravel 109 to 1077 106 to 108

Characteristics of the porous medium: facies geometry and
permeability contrast

Lateral heterogeneities encountered in an essentially layered
domain can be considered as permeability contrasts between facies
within a layer. The effect of this on block-scale permeability was
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assessed by increasing the ratios between the permeabilities of adjacent
facies (i.e. adjacent small-scale units). Permeability ratios from 10 to
106 were considered. Permeability ratios of 10 occur between very
similar facies; ratios of 106 can occur between materials like sand and
clay. Orders of magnitude of the permeabilities of different materials
are shown in Table (A-IV.1).

configuration A

4.0 1 Ax/Az =10

‘ *—— AX/AZ =50 /
30 T — — = 0.1 error margin -

0 1 2 3 4 5 6

K4
log ?2-

4.0 _
configuration B
35 4
—n Ax/Az =10
30 | —D— AXAZz =25
I — s AX/Az =50
T 25 1 — — — 0.1 error margin
> 20 4
15 +
validity limit
1.0 + - - _ - _ _
|
05 4 ./'/
/l/
I ..——:—:—"_'_ — e —— —_ — — -
0 " T = 2 3 A
0 1 2 3 4 5 6

Fig A-IV.3 Values of the correction factor y=\0a (x,0)/dx| for different aspect ratios
and permeability values.
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The geometry of the facies units was varied by increasing the
small-scale unit width from 10 m to 100 m while keeping a constant
thickness of 1 m, so that the aspect ratio Ax/Az varied from 10 to 100.
The influence of these factors for the two configurations A and B,
expressed in the variation of ¥ = |da(x,0)/Jx|, are shown in Figure A-
IV.3. In Fig. A-IV.3 it has been indicated for what geometries and
permeability ratios the theory gives correct solutions. In relation to this,
it should be noted that w = 1da(x,0)/dx| is the first correction term of
an infinite series (Zijl and Stam, 1992). If y>1.0, this is an indication
that more terms of the series should be included in the solution.
Therefore the conclusions are valid only if y<<1.0, i.e. for lines lying
well under y=1.

From Fig. A-IV.3 it can be seen that the term y = |da(x,0)/0x| is
directly proportional to the square of the aspect ratio Ax/Az. This can
be related back to the theory by observing that the term do(x,0) /9x
results from two derivatives in the x-direction, (and is therefore
numerically divided twice by the x-dimension). A wide, thin facies
geometry implies small 1d¢(x,0) /dx! and, therefore, a small correction
to the basic term in expression (A-IV.7a) (a correction of the order of
0.1 in terms of y, has been considered as small). Facies geometry
consequently has a large effect on the second term in expressions
(A-IV.4a) and (A-IV.7a).

The second observation that can be made from Fig. (A-1V.3) is that
da(x,0) /ox is directly proportional to the decimal logarithm of k;/k».
For instance, increasing the permeability ratio by a factor 1000 means
increasing dogx,0)/dx by a factor 3.

Both these conclusions mean that the effect of facies geometry on
dou(x,0)/0x is notably larger than the effect of the permeability ratio. If
we consider a correction term of 0.1=10% as small, we could state that,
in the case of a permeability distribution similar to configuration A, for
an aspect ratio of minimally Ax/Az=25 and a permeability ratio of
maximally 10, a correction to the zeroth-order solution may be
neglected. If the aspect ratio of the unit increases to Ax/Az=50 (facies
become thinner and longer), the permeability ratio may increase up to
103 to reach a correction term of 10%. Finally, if facies are thinner and
longer so that Ax/Az=100, permeability ratios may range up to 100
before reaching a correction term of 10%. This may seem very high,
but not when we consider that this permeability varies gradually over a
length scale of 100 times the facies thickness.
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configuration A

—0— Ezz: AX/Az=10
—a— Exx; AXAz=10
—O0— Ezz; AX/Az=25
- —¢— Exx; AX/Az=25
—4&— Ezz: AX/Az=50
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configuration B
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=

Fig A-1V.4 Relative corrections to zero-order solutions as a function of log(ki/ka) for
different aspect ratios and permeability ratios.

o= &k - (kg
“ G (A-IV.9b)
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For configuration B it can be seen that corrections are generally
smaller. For Ax/Az>25, accurate solutions are obtained for all
permeability ratios. Aspect ratios of Ax/Az=10 give accurate solutions

for small permeability ratios (k;/ky=10)-

These conclusions should also be evident in the block-scale
permeabilities in x- and z-directions calculated over the total width 2a =
4Ax, with expression (A-I1V.8). This is shown for both configurations in
Figure A-IV.4, where the relative corrections to the zeroth-order
solutions <<k,>o> and <<k,>o> are plotted against aspect ratio and
permeability contrasts. The relative corrections for <<k,,>> and
<<k.>> are calculated according to:

ey ey

" (k) (A-IV.92)

In the anisotropic configuration (Fig. A-IV.4, configuration A),
both <<k,,>> and <<k, >> are under-estimated by the zeroth-order
permeability average (E,, and E,, are always positive). This under-
estimation becomes more severe for increasing permeability contrasts
or for smaller aspect ratios. The value of the relative correction for
<<k, ;>> 1s higher than for <<k.>> (E,; < E_;). It can also be seen that
slightly smaller aspect ratios and larger permeability ratios than in Fig.
A-1V .3, still give a relative error margin of 10%.

If we repeat these calculations for the isotropic configuration,
it can be seen that the corrections for all permeability ratios are very
small, even for the lowest aspect ratio (Ax/Az = 10) wich is shown in
Fig. A-IV.4. In Fig. A-IV.3, this still gave a correction larger than
10%. This can be ascribed to the isotropic character of the small-scale
permeability distribution which becomes manifest in Eq. (A-IV.8).

Modelling parameters; block-scale depth

The theory has essentially been developed under the assumption
that the modelling concerns thin grid-blocks. This limits the depth of the
grid-block over which the average can be calculated (there is no limit to
its width). This was examined by calculating the block-scaled average
over a constant width of 2a = 4Ax, and increasing the number of layers
over which the average was calculated. The relative correction for both
distributions is shown in Fig. (A-IV.5).
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Fig A-IV.5 Relative corrections to zero-order solutions as a function of log(ki/ky) for
varying grid-block depth.

Figure (A-IV.5) shows the relative correction of block-scale
permeability in the anisotropic configuration A for an increasing grid-
block depth (d/Az) and for an aspect ratio of Ax/Az=50. It can be seen
that, for an anisotropic distribution, the corrections to the zeroth-order
term permeabilities increase very rapidly with increasing depth, so that
they can be neglected only for small permeability ratios (k/k2 < 10). As
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can be expected, further calculations show that a smaller Ax/Az will
give an even more rapid increase of the correction term.

The corrections for the isotropic distribution for the smallest
aspect ratios (Ax/Az=25 and Axv/Az=10) shown in Fig. (A-IV.5), do not
increase so dramatically with depth. This again can be ascribed to the
isotropic character of this particular configuration. It can be observed
that, for the isotropic configuration, for a small aspect ratio (Ax/Az=10)
the corrections become negative with increasing grid-block depth. In
other words, block-scale permeability tends to be overestimated by the
zero-order term.

From this section, some guide-lines can be derived for what the
dimensions of the simulator grid-blocks should be to correctly
characterize stratified subsurfaces. There is no limit to the horizontal
dimension over which is averaged. If heterogeneities within each layer
do not have a preferential stacking, but are distributed more evenly
throughout the subsurface, a block-average can be taken over a depth of
10 layers for Ax/Az=10 and k;/k,<1000, and of 15 layers for Ax/Az=25
and k;/k,<106. If, however, a clear preferential stacking can be
identified, the depth average should not be taken over more than
approximately 5 layers, unless lateral permeability contrasts are small
(inferior to 10) in which case it can be taken over 15 layers. Therefore
it can generally be concluded that it is more desirable to design a
simulator grid with a higher resolution in the z-direction than to take
more blocks in the x-direction.

Conclusions

From the foregoing, some general conclusions can be made about
the limits in which the conventional averaging procedure of intrinsic
permeabilities can still be applied to obtain an "equivalent
homogeneous” permeability value from a small-scale distribution. This
means that it is likely that a maximal error of 10% will be made if we
take the following considerations in choosing block dimensions for flow
simulators (they are also illustrated in Table A-IV.2):

(i) When averaging different facies permeabilities, it is of greater
importance to consider the geometry of the facies (their width
versus their thickness) and their distribution (whether they are
spread out over the domain giving it a block-scale isotropic
character) than the ratio between adjacent permeabilities.

(ii) If the facies have a thin geometry, i.e. their width Ax is many times
greater than their thickness Az (at least 50 times), a zeroth-order
averaging can always be applied, even with anisotropic
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permeability distributions and high permeability ratios like those
that occur between clay and sand (k/k, = 106).
(iii) If the facies do not have a thin geometry, a zeroth-order
permeability averaging can be used only if permeability ratios are
of the order 10, which occurs between very similar materials, e.g.,
different types of sands. In that case; the horizontal dimension of
the facies still needs to be 10 times its thickness in isotropic
permeability distributions, and approximately 25 times the facies
thickness in anisotropic distributions.
(iv) The depth of the block over which correction terms can be
- neglected is also limited, and related to the number of layers over
which it is taken. In the case of anisotropic distributions, the
correction terms may be neglected when permeability is averaged
over depths of approximately 5 layers when Ax/Az > 50 for all
permeability contrasts, and for depths of up to 15 layers for
k1/k><10. For isotropic distributions a much larger number of
layers can be taken: up to 10 layers for Ax/Az > 10 and
k1/k2<1000; and up to 15 layers for Ax/Az > 25 for all
permeability contrasts.

Table A-IV.2 Guidelines for choosing grid-block dimensions for flow simulations in
relation to the aspect ratio and permeability contrast of the smaller-scale
heterogeneities. This table is applicable to imperfectly-layered stratigraphies. An
isotropic configuration indicates that heterogeneities are distributed more evenly
through the successive layers. An anisotropic configuration represents one where
heterogeneities have a preferential stacking in the sequence of layers. These limits
indicate when the arithmetic mean can be used for the horizontal average permeability,
and when harmonic means can be used for the vertical permeability. The maximum
error by neglecting the lateral heterogeneities will be approximately 10%.

facies Ax/Az = 10 Ax/Az = 25 Ax/Az = 50 Ax/Az = 100
anisotropic - dfAz <5 d/Az < 15 d/Az < 15
configuration - k/k2 < 10 ki/kr < 10 ki/ky < 103

isotropic d/Az< 10 d/Az < 15 d/Az < 40 d/Az < 50
configuration ko< 103 k kg < 106 ki/ky < 108 ki/ky < 100

Appendix A: Analytical solution for special case

The analytical solution was calculated for the anisotropic
configuration in the case where kx = k(x), k; = k(x)/A, A is constant,
and k(x) is independent of z. This was used to obtain insight in the
character of the expressions for the depth-averaged permeability
components, and to check the numerical procedure. The analytical
solutions for the combined "top flux" and "bottom flux" problems result
in the following expressions:
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Appendix B: Smoothing

The theory has been developed under the assumption that lateral
permeability variations occur gradually. For computational reasons, as
the program is a finite difference approach, each layer is discretized
into blocks with homogeneous permeability so that permeability
functions become a "step function”. These steps are located at the inter-
unit interfaces X;;1,2. However, the lateral variation of the local-scale
permeability should be sufficiently smooth to allow for the
differentiations required by the theory presented in this paper. By
differentiating these "step functions”, a smoothing of the step is
implicitly realized; this will be illustrated for the function Y(x) (see
Figure A-IV.B1).

The smoothing of a function Y(x) is given by:

x+ b
W= [y ) axe
T Ax fx-b (A-IV.b1)

where b = Ax/2 and Ax is the width of the facies unit. In this way,
<Y>4(x) is a continuous "roof" function with <¥Y>(x;) = ¥Y(x;), where

xj 1s the centre of the facies unit.

The derivative d<Y>(x)/dx, a discontinuous "step" function with
its discontinuities at the unit centres x;, is smoothed in the same way:

o 1 [,
ox A Ax ox'

b (A-1V.b2)

In this way, <d<Y>4(x)/dx>4 is a continuous "roof" function with:

153
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<ﬁ;}@>A (¥ = [%I%@} (i1 (A-IV.b3)

where x;,1,2 is the location of the inter-unit interface. Differentiation of
the first term of Eq. (A-IV.b3) leads to a discontinuous function:

ox A
— (A-1V.b4)

with the discontinuities at the inter-unit boundaries x;4 ;..

This would mean that, numerically, a step function is first
averaged, then the "smoothed" function is differentiated and finally
integrated. In the theory, a smooth function is differentiated then
integrated. Strictly speaking, this is not completely correct. However, if
we consider that the step-function permeabilities result from
discretizing lateral heterogeneities, thereby neglecting any intra-facies
heterogeneity which is always present, it may be considered that a
practical application of this procedure leads to correct resuits.

function: smooth variation between facies
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Fig A-IV.B1 Diagram of differentiation and "smoothing" of a step function.
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Symbols
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superscripts

‘
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I

i

half grid-block width [m]

local-scale anisotropy factor [-]

hydraulic resistance function [m-!]

grid-block depth [m]

relative correction to the zeroth order approximation of
component k;; of the permeability tensor [-]

gravitational acceleration [m-s2]

intrinsic permeability tensor [m2]

local-scale permeability component in x-direction [m?]
local-scale permeability component in z-direction [m?2]
local-scale permeability of well-conducting facies unit [m2]
local-scale permeability of poorly-conducting facies unit
[m?]

depth-averaged component of intrinsic permeability tensor
in x-direction due to potential zradient in x-direction [m?2]
depth-averaged component of intrinsic permeability tensor
in x-direction due to potential gradient in z-direction [m?2]
depth-averaged component of intrinsic permeability tensor
in z-direction due to potential gradient in x-direction [m?2]}
depth-averaged component of intrinsic permeability tensor
in z-direction due to potential gradient in z-direction [m?2]
flux component in x-direction [m.s-!]

flux component in z-direction [m.s-!]

transmissivity function [m3]

horizontal component of position vector [m]

vertical component of position vector [m]

function [m]

function [m]

width of facies unit [m]

depth of facies unit [m]

dynamic viscosity of the fluid [Pa-s)

fluid density [kg.m3]

potential [Pa]

first-order correction term [-]

first-order perturbation terms
first-order correct solution for ¢ and t

operators
depth-averaging [-]
<< >> block-averaging [-]

<>
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Summary

The general framework of this thesis is to develop simulation models
of the physics of sedimentation processes, and to use them to reconstruct
subsurface heterogeneities for fluid-flow simulations. The final goal is to
apply these models in the exploitation and management of oil and gas
reservoirs and groundwater aquifers. As a step towards this goal, this
research focuses on the aeolian environment and treats the dynamics of
dunes as a result of the interaction of wind and topography.

A literature review has been given of the most important studies on
the aeolian environment and of the mathematical models published up to
date (Chapter 2). An overview has also been given of the basic equations
and of the flnid-dynamic aspects that play a role in the problem (Chapter
3). The basic equation that governs dune dynamics is the sediment-
continuity equation. To solve the sediment-continuity equation, expressions
need to be found for the variation of the wind velocity over a dune and for
the sediment transport. By making some simplifying assumptions, solutions
are obtained that show the migration and deformation of bedforms
(chapter 4). These solutions help to assess the relative importance of the
fluid-dynamic model and of the sediment-transport equation.

A two-dimensional model that simulates dune dynamics has been
developed by combining an analytical boundary-layer model by Jackson
and Hunt (1975),with Bagnold's (1941) sediment-transport formula
(chapter 5). By linearizing the sediment-transport formula, analytical
expressions have been developed for: the shear stress, the sediment
transport, the sediment deposition, the topography and for the growth and
migration of a sine-shaped dune through time. These expressions show that
migration and growth are higher for higher wind velocities, higher surface
roughness (with a constant shear stress), and higher wave numbers (i.e.
shorter wave lengths).

A computer programme (EOLSIM) has been developed to apply this
model to non-sinusoidal dunes (by means of a Fast Fourier Transform of
the topography). The major problem herein is the exponential growth of
the high wave numbers of the Fourier Transform of the topography. This
causes the higher wave numbers to dominate the topography so that it
becomes unstable. This implies that more aspects play a role in bedform
stability. One of these aspects is avalanching, which occurs when the slope
becomes too steep. This has been examined by developing an avalanching
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routine for EOLSIM. The routine is based on geometric assumptions. The
results indicate that avalanching limits bedform growth so that dunes
migrate in equilibrium (i.e. maintaining their shape). Therefore it can be
concluded that avalanching has a key role in bedform stability.

Chapter 7 contains the conclusions of this study and also gives some
recommendations for further consideration. The conclusions are related to
the model and the parameters used and also the actual results of the work.
They can be summarized as follows: a) bedform growth is caused by a
phase shift between the shear stress of the wind and the topography; b)
migration and growth are higher for higher wind velocities, higher surface
roughness, and higher wave numbers; ¢) smaller wave lengths have higher
migration and growth rates; d) avalanching is an important process that
limits bedform growth so that it migrates in equilibrium. The
recommendations for further research are related to: a) improvements of
the model; b) studies to determine the accuracy of the flow model; c)
recommendations for experimental measureraents in the field; d) model
extensions to simulate the structure of aeolian deposits.
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Samenvatting

Het algemene kader waar dit onderzoek in past is het ontwikkelen
van simulatie modellen voor de fysica van sedimentaire processen, met
als uiteindelijk doel de reconstructie van de ruimtelijke variabiliteit van
de ondergrond. Dergelijke modellen kunnen hun toepassing vinden by
de simulatie van vloeistofstroming van olie, gas en grondwater. Als een
stap naar dit uiteindelijk doel richt dit onderzoek zich op het aeolisch
milieu, en in het bijzonder op de dynamiek van duinen als gevolg van de
interactie tussen wind en topografie.

Hoofdstuk 2 omvat een literatuur overzicht van studies en
mathematische modellen over het aeolisch milieu. In hoofdstuk 3 wordt
een overzicht gegeven van de fundamentele vergelijkingen en van de
stromingsaspecten die hierbij een rol spelen. De belangrijkste
vergelijking die het systeem beschrijft is de sediment-continuiteits
vergelijking. Om deze op te lossen zijn uitdrukkingen nodig voor de
variatie van de windsnelheid over de topografie, en voor het sediment
transport. Door hiervoor eenvoudige veronderstellingen te maken,
worden oplossingen verkregen die de migratie en asymmetrie van
duinen verklaren (hoofdstuk 4). Deze oplossingen dienen onder meer,
om het belang van het stromingsmodel ten opzichte van de sediment
transport formule te bepalen.

Een twee-dimensionaal model is ontwikkeld door een analytisch
grenslaag stromingsmodel van Jackson en Hunt (1975) met de sediment
transport formule van Bagnold (1941) te combineren (hoofdstuk 5).
Door linearisatie van de transport formule zijn analytische
vergelijkingen verkregen voor: de schuifspanning van de wind, het
sediment transport, de erosie en depositie, de topografie en voor de
groei en migratie van een sinus-vormig duin. Deze uitdrukkingen tonen
aan dat de migratie snelheid en de groei groter zijn voor hogere
windsnelheden, grotere oppervlakte ruwheid (onder een constante
schuifspanning) en grotere golfgetallen (kleinere golflengten).

Om dit model te kunnen toepassen op duinen van willekeurige
vorm (door middel van een Fourier transformatie van de topografie), is
in hoofdstuk 6 een computer programma ontwikkeld (EOLSIM). Het
grootste probleem hierbij is de exponentiéle groei van hogere
golfgetallen van de Fourier getransformeerde van de topografie.
Hierdoor overheersen de hoogste golfgetallen de topographie en wordt




deze instabiel. Dit duidt er op dat er ook andere aspecten zijn die een rol
spelen in de stabiliteit en het evenwicht van duinen. Behalve de aspecten
die betrekking hebben op de vloeistofmechanica en het sediment
transport is een van de belangrijkste processen de afschuiving.
Afschuiving van het sediment gebeurt als het talud van een duin te steil
wordt. Dit is verder uitgewerkt door een afschuivingsroutine in het
model op te nemen. Deze routine is gebaseerd op geometrische
aannamen. De resultaten laten zien dat afschuiving de groei van duinen
beperkt en het is dus duidelijk dat dit proces een belangrijke rol speelt
bij het evenwicht en de stabiliteit van duinen.

Hoofstuk 7 bevat de conclusies van dit onderzoek alsmede
aanbevelingen voor voortzetting van deze studie. Deze conclusies
hebben betrekking op de geschiktheid van het model en van de
parameters die hierin worden gebruikt, alsmede op de resultaten ervan.
De voornaamste conclusies zijn: a) de groei van duinen wordt
veroorzaakt door het faseverschil tussen de schuifspanning van de wind
en de topografie; b) de migratie snelheid en de groei zijn groter voor
hogere windsnelheden, oppervlakte ruwheid, en golfgetallen; ¢) kleinere
golflengten hebben een hogere migratiesnelheid en groei; d) het
afglijdingsproces beperkt de groei van een duin zodat dit zich in
evenwicht verplaatst (dat wil zeggen met behoud van zijn vorm). De
aanbevelingen voor de voortzetting van deze studie hebben betrekking
op: a) de verbetering van het model; b) het bepalen van de
nauwkeurigheid van het stromingsmodel; c¢) het uitvoeren van
veldmetingen d) uitbreiding van het model om ook de structuur van
eolische afzettingen te kunnen simuleren.
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Resumen

El objetivo general de esta tesis es desarrollar modelos que
reproduzcan la fisica de los procesos de sedimentacién, con el fin de
simular la heterogeneidad del subsuelo. Dichos modelos tienen
aplicacion directa en el célculo de flujo subterrdneo. Esta tesis se centra
en el ambiente de depositacién eblico, y mas concretamente en el estudio
de la dindmica de dunas como consecuencia de la interaccién entre el
viento y la topografia.

En el capitulo 2, se ha hecho un resumen de los estudios
descriptivos y de los modelos matematicos publicados hasta la fecha.
Sigue un resumen de las ecuaciones bdsicas que definen el problema y de
los principios de la dindmica de fluidos relativos al tema (capitulo 3). La
ecuacion bdsica que describe el sistema es la ecuacién de la conservacion
de masa. Para resolverlo hacen falta modelos para la variacion de la
velocidad del viento con la topografia y para el transporte del
sedimento. Haciendo simplificaciones en estas expresiones, se obtienen
soluciones que describen la velocidad de migracion y la asimetria de una
duna. Dichas soluciones sirven para comprender la importancia del
modelo de flujo con respecto a la ecuacién del transporte del sedimento.

Se ha desarollado un modelo bidimensional combinando un modelo
analitico de flujo en la capa limite (de Jackson y Hunt, 1975), con la
férmula de Bagnold (1941) para el tranporte del sedimento (capitulo 5).
Linearizando la férmula del trasporte, se consiguen expresiones para el
esfuerzo de cizalla, el transporte de sedimentos, la depositacién, la
erosién, la topografia y para el crecimiento y la velocidad de migraci6n
de una duna sinusoidal. Estas expresiones sefialan que el crecimiento y la
migracion aumentan con la velocidad del viento, la rugosidad de la
superficie (con un esfuerzo de cizalla constante) o el nimero de onda (es
decir, disminuye con la longitud de la onda).

Un programa de ordenador (EOLSIM) ha sido desarrollado para
applicar estas expresiones a dunas no sinusoidales (mediante una
transformacién de Fourier). El mayor problema es el crecimiento
exponencial de los componentes de alto nimero de onda de la
transformada Fourier de la topografia. Esto hace que los nimeros de
onda mas altos dominen la topografia, provocando la inestabilidad del
sistema. Esto indica que hay mas procesos que juegan un papel en el




equilibrio de dunas. Uno de estos procesos es el deslizamiento de la
arena cuando la pendiente de la duna sobrepase un cierto limite. Para
modelar este proceso se ha desarrollado una rutina para calcular el
deslizamiento, basado en suposiciones geométricas. Los resultados
sefialan que el deslizamiento limita el crecimiento de las dunas de forma
que éstas se desplazan en equilibrio (es decir, manteniendo su forma).

En el capitulo 7 vienen las conclusiones y recomendaciones de esta
investigacion, referentes tanto al modelo y sus pardmetros, como a los
resultados. Como conclusiones principales podemos sefialar que: a) el
crecimiento de las dunas se debe a un desfase entre el esfuerzo de cizalla
del viento y la topografia; b) la velocidad de migracién y de crecimiento
aumentan con la velocidad del viento, con la rugosidad de la superficie o
con el ndmero de onda; c) cuanto mas pequefio el nimero de onda
mayor el crecimiento d) el deslizamiento limita el crecimiento de las
dunas con lo cual surge un equilibrio y éstas migran sin cambiar de
forma. Las recomendaciones se relacionan con: a) mejorias del modelo;
b) comprobacidén de la exactitud del modelo de flujo; c) realizacién de
medidas en el campo y d) ampliaciones del modelo para simular las
estructuras de depositaciones edlicas.
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