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Abstract

Industrial refrigeration systems are known to consume approximately 17% of electrical energy, a
figure that is projected to rise in the future. This high energy consumption contributes to global
warming and environmental degradation since conventional sources of energy are typically utilized
for electricity generation. Moreover, the energy-intensive nature of industrial refrigeration systems
leads to increased costs for major food and beverage industries. Consequently, optimizing the en-
ergy efficiency of these systems becomes crucial.
In this research, the application of Digital Twin (DT) technologies was explored, which have demon-
strated effectiveness in various areas such as supply chain streamlining and system optimization.
By combining physical and virtual spaces, DT and big data analytics can facilitate energy perfor-
mance evaluation and optimization. The literature review identified three categories of DT models:
physics-based, empirical, and data-driven. Considering their accuracy and efficiency, empirical
models were recommended for developing DT models, while data-driven models proved useful for
performance prediction applications. It was recommended to establish empirical equations based
on correlation analysis by adjusting higher degree terms for accuracy. Additionally, input-output
parameters for the DT should be tailored to the specific application and equipment. The literature
study showed the possible identification of energy performance deviations, their root causes, and
potential optimizations, including equipment optimization, load sharing among parallel equip-
ment, and optimization of condenser set points and defrosting time.
This thesis research focuses on three industrial refrigeration plants: the Verkade Plant, the LST Plant,
and the GIST Plant. For the Verkade Plant, empirical models were developed and validated for the
screw compressor, evaporator, and evaporative condenser. An algorithm for condenser optimiza-
tion was proposed and tested, while deviations in evaporator performance were analyzed. Simi-
lar models were developed and validated for the LST and GIST Plants, enabling the prediction of
equipment performance. The predicted results were compared to actual plant performance, and
deviations were carefully examined. Furthermore, optimization techniques were applied to im-
prove equipment efficiency.
The thesis research findings indicate that the empirical models for each equipment piece at the
Verkade Plant achieved an accuracy within a 5% error range, suggesting their suitability for ana-
lyzing the other two plants. The proposed condenser optimization algorithm has the potential to
annually save 7% of energy, resulting in savings of 32 MWh of electrical energy and 11 tonnes of
CO2 emissions. The application of the proposed optimization techniques to the LST and GIST Plant
resulted in a significant reduction in energy consumption. It was determined that these techniques
can achieve savings of approximately 13% and 14% in total energy consumption, corresponding to
200 MWh and 170 MWh of electrical energy, as well as 70 tonnes and 60 tonnes of CO2 emissions,
respectively. These energy savings contribute to the reduction of CO2 released into the atmosphere,
aligning with the goals of the Paris Agreement. Consequently, this research offers valuable insights
into mitigating global warming through the optimization of industrial refrigeration systems using
DT technology.

Animesh Sahoo
Delft, June 2023
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ṁ Mass flow rate kg/s

N Rotational speed RPM

P Power kW

1
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1
Introduction

1.1. Research background
As per Outlook (2019), by 2040 global energy consumption is expected to increase by 50%. Glob-
ally 40% of total energy consumption and CO2 emissions are attributed to buildings (Moran et al.
(2017)). Industrial refrigeration systems currently account for 17% of total electric energy consump-
tion, with projections indicating a 30% increase by 2050 (Ahmed et al. (2021)). In urban cities, re-
frigeration and air conditioning contribute to 50-60% of the total electrical energy consumption,
and 80% of this electrical energy is associated with conventional energy sources (Solomon et al.
(2007)). This reliance on conventional energy sources leads to greenhouse gas emissions and global
warming, particularly due to refrigerant leakage and gas emissions associated with these systems
(McMullan (2002)). The leakage of high-ODP and high-GWP refrigerants have detrimental effects
on the environment. Even with the use of low-ODP and low-GWP refrigerants, sub-optimal opera-
tion and inadequate performance result in higher energy consumption (Ahmed et al. (2021)).
The industrial refrigeration system has a significant societal impact as it is extensively used in the
food and beverage industries for various applications. Optimizing the energy performance of these
systems can reduce the cost of consumables and redirect the saved energy for domestic purposes,
contributing to a more sustainable future. In the context of climate change, it is imperative for
energy-consuming industries to improve their energy performance to mitigate the adverse effects
of global warming.
Refrigeration is a highly energy-intensive process, particularly in sectors such as chemical, petro-
chemical, food, and pharmaceuticals. In some cold storage facilities, these systems can account for
up to 90% of the total energy consumption (Dincer et al. (2017)). Therefore, optimizing these sys-
tems becomes crucial to reduce operational costs. Additionally, governments are striving to meet
the goals of the Paris Agreement by reducing CO2 emissions by 45% (Gurubalan et al. (2019)). Con-
sequently, minimizing the energy consumption of refrigeration systems is critical to mitigate global
warming and comply with international climate commitments.
Various strategies are employed to reduce the emissions, like increasing the efficiency of the en-
ergy technology, utilizing alternative energy sources, and capturing CO2 emissions. Efficiency can
be increased in various ways/stages like design, operation, and equipment selection. In this thesis,
emphasis is given to increasing the energy efficiency of industrial refrigeration systems during the
operation stage.
Smart manufacturing has gained prominence in modern manufacturing industries, leveraging ad-
vanced sensors, data transmission, and collection to gather data. Big data analytics are then used
for failure analysis, streamlining the supply chain, optimizing production, and reducing energy con-
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4 1. Introduction

sumption. But the major challenge in smart manufacturing is the integration of physical and vir-
tual spaces, which is where digital twins (DTs) play a crucial role. DTs merge physical and virtual
environments, facilitating the analysis of physical technologies in a virtual space. DTs have been
successfully implemented across a wide range of industries and are also applied in refrigeration
systems for the optimization of system components, failure detection, fault diagnosis, and defrost-
ing optimization. Hence, DT and industrial data should be used for energy performance evaluation
and optimization (Tao et al. (2018)).
As identified in the literature review, there could be possible discrepancies between the actual and
predicted performance of equipment. Therefore, it is crucial to thoroughly assess the underlying
factors contributing to these deviations and address them prior to optimizing the system. Further-
more, it is imperative to compare the energy savings achieved before and after the optimization
process to ascertain the economic viability of implementing the proposed optimization strategies
in refrigeration systems. Quantifying the energy savings will also facilitate the assessment of the
corresponding reduction in atmospheric CO2 levels.

1.2. Definition & terminologies
1.2.1. Digital twin (DT)
A DT is a virtual representation of a physical entity or process. DTs are usually related to the physical
twin through some unique characteristics that identify the physical twin (Rios et al. (2015), Kiritsis
(2011)). Hence, a bijective relation exists between the twins. The DT follows the lifecycle of its phys-
ical twin, hence it can be used for monitoring, controlling, and optimizing processes and functions.
Moreover, it can predict future statuses, which in turn can be used for predictive maintenance. Due
to the advancement in big data storage capabilities, real-time data from the physical twin can be
collected and used immediately. This helps the DT to be synchronized with the physical world at all
times. With the help of empirical or data-based algorithms, it is used for continuous optimization
of the process (Barricelli et al. (2019)).
The modeling of DT consists of three stages. First is the design stage, where out of numerous mod-
eling techniques available, a suitable technique is decided based on the application. After a suitable
technique is decided, in the second stage coding is done using to develop a virtual twin of the phys-
ical entity or process. The last stage is validation and operation, where the model is validated using
test data to check if it is within the defined error tolerance. Finally, it is used for the desired applica-
tion.
In the literature research (Sahoo (2023)), the available modeling techniques were reviewed based on
various parameters and a suitable technique was selected for energy performance evaluation. The
equations and input-output parameters used for modeling were also reviewed and listed. The same
was used for this thesis research.

1.2.2. Machine learning (ML)
Artificial intelligence (AI) is human intelligence being exhibited by machines. With the advance-
ment of technology, there has been increase in large data sets ("big data"). AI is used for evaluating
big data to extract information from it, which is used for numerous applications.
ML is a subset of AI that is capable of experiential learning like human beings. Computational algo-
rithms are used for ML to learn and improve its analyses. The algorithms use a large set of data to
learn the input-output pattern to make autonomous decisions. With sufficient data, the machine
can predict an output from the given input. In order to improve the model, outputs are usually com-
pared with the actual data and then suitable corrections are made (Helm et al. (2020)).
Various ML techniques are available based on the application. ML techniques are subdivided into
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two categories classification and regression models. For this thesis, four regression models were
used for energy performance evaluation. Mostly for energy performance calculation regression
models and Artificial Neural Networks (ANN) are used.

Polynomial regression
Polynomial regression is a popular regression technique that models the relationship between the
independent variable and the dependent variable as an nth-degree polynomial. It extends the lin-
ear regression model by introducing higher-order terms, allowing for nonlinear relationships to be
captured. The model fits a curve that best represents the data points, providing a flexible approach
to handle complex data patterns. Polynomial regression has been successfully applied in various
fields such as economics, physics, and social sciences (Draper (1966)).

Support vector regression (SVR)
Support vector regression is a powerful regression technique that uses support vector machines
(SVMs) to model the relationship between variables. SVR aims to find a hyperplane in a high-
dimensional feature space that best fits the data points while maintaining a minimum margin of
error. By mapping the data into a higher-dimensional space, SVR can handle nonlinear relation-
ships and outliers effectively. It has been successfully applied in various domains, including finance,
engineering, and bioinformatics (Smola and Schölkopf (2004)).

Gradient boosting regression (GBR)
Gradient boosting regression is an ensemble method that combines multiple weak predictive mod-
els, typically decision trees, to create a strong predictive model. It builds the model iteratively by
adding new trees that focus on the residuals of the previous models, gradually reducing the pre-
diction error. Gradient boosting regression excels at handling complex data patterns and capturing
nonlinear relationships. It has achieved remarkable success in various applications, such as pre-
dicting housing prices, customer churn, and stock market trends (Friedman (2001)).

Random forest regression
Random forest regression is another ensemble technique that utilizes multiple decision trees to
make predictions. It constructs a collection of decision trees using bootstrapped samples of the
data and randomly selecting subsets of features at each split. The final prediction is obtained by av-
eraging the predictions of individual trees. Random forest regression can handle high-dimensional
data, capture complex interactions, and handle missing values effectively. It has found applications
in various domains, including healthcare, finance, and ecology (Breiman (2001)).

Artificial neural network (ANN)
ANN is a computational method to solve complex problems. It behaves like a black box that has
outputs for a set of inputs. It is mostly used for data-driven models. It consists of three layers input,
output, and hidden layers, where the number of hidden layers depends on the application. Neurons
are the basic components of ANN. They are present in each layer and they receive signals from other
neurons to produce a single output. The output of neurons is based on sigmoid functions. Based
on the weightage of neurons, final outputs are obtained. The data used for ANN is divided into two
sets, training, and test data. The training data is used to train the model and the test data is used to
validate the model (Belman-Flores et al. (2017)).

1.3. Research objectives
The goals for the thesis research are:



6 1. Introduction

• to develop DTs for each type of equipment using the modeling technique, equations, input,
and output parameters defined in the literature

• to evaluate the energy performance of each piece of equipment using the parameters defined
in the literature

• to compare the energy performance of the DT with actual site data and to check for deviation
in performance

• to identify the root cause of the deviation (if any) and to correct the digital twin accordingly

• to optimize the refrigeration system set points and to minimize energy consumption during
operation

• to optimize the defrosting and load sharing

• to calculate the energy savings

1.4. Methodology
Figure 1.1 refers to the methodology to be used for this thesis research. The research background
was presented, highlighting the significance of the study from various perspectives. That led to the
formulation of research questions, which subsequently defined the objectives of the thesis research.
Three industrial plants, namely the Verkade plant, the LST plant, and the GIST plant, were selected
for analysis. Prior to analysis, actual plant data were collected for each plant and carefully exam-
ined for errors. Any identified errors were subsequently eliminated. Experimental data relevant to
the equipment being analyzed was also collected. Digital twin (DT) models were developed and val-
idated for each piece of equipment using the equipment data sheet and the collected experimental
data. Validation ensured the accuracy and reliability of the DT models. The validated DT mod-
els were employed to predict the performance of the equipment based on the actual plant data.
These predicted performance values were then compared against the actual performance of the
equipment. Deviations between predicted and actual performance were thoroughly evaluated to
identify the root causes. In cases where deviations between predicted and actual performance were
observed, a detailed analysis was conducted to identify the factors contributing to these discrep-
ancies. Conversely, if no deviations were found, the equipment was assessed for potential energy
performance improvements. When opportunities for energy performance improvement were iden-
tified, an appropriate optimization algorithm was developed to exploit these opportunities. The
algorithm was designed to optimize energy consumption and enhance overall performance. The
proposed optimization algorithm was applied to estimate the energy savings achievable through
its implementation. Quantitative analysis was performed to assess the impact of the algorithm on
energy efficiency. Conclusions and discussions were presented, summarizing the findings of the
thesis research in relation to the defined research objectives. The implications of the results were
discussed, along with any limitations or constraints encountered during the study. Recommenda-
tions were provided for future research endeavors, highlighting potential areas of investigation and
suggesting avenues for expanding upon the current study.

1.5. Report Structure
Chapter 1 consists of the research background which explains why this particular thesis research is
being performed. It is followed by an explanation of the concepts of digital twins, machine learning,
and some of the machine learning techniques used in the thesis. The thesis research objectives are
enlisted that will be answered through this thesis. Subsequently, a step-by-step method that will be
followed throughout the thesis research is explained. Lastly, the report structure is explained.
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Figure 1.1: Methodology for thesis research

Chapter 2 consists of literature findings. It summarizes the main findings and conclusions of the
literature review that are relevant to this thesis research.
Chapter 3 consists of the Verkade plant analysis. First, the system details of the plant are described.
Followed by the description of the digital twin models of the compressor, evaporative condenser,
and evaporator along with their validation. The comparison of predicted and actual performance
is reported. The optimization of the condenser set point is explained. Finally, conclusions from the
plant analysis are summarized.
Chapter 4 consists of the LST plant analysis. Similar to the Verkade plant analysis, first the system
details are explained. That is followed by the screw compressor analysis. Detailed analysis results
are reported which include model validation, parallel operation optimization, energy savings, and
behavior of the model at startup. Subsequently, the evaporative condenser model analysis is de-
scribed. The deviation in behavior, root cause analysis, set point optimization, and energy savings
are reported. Further, expansion valve and evaporator models are described along with their analy-
sis. Finally, the conclusions from the LST plant are discussed.
Chapter 5 consists of the GIST plant analysis. First, the system details are described. It is followed by
the screw compressor (within the chiller) analysis. The analysis includes modeling, validation, opti-
mization, and energy savings calculation. Subsequently, the evaporator and condenser (within the
chiller) are analyzed. The root cause analysis of deviation in condenser performance is reported.
Then the hybrid cooler is analyzed. The limitations in the availability of experimental data lead-
ing to the development of an unreliable model are explained. Following that air-cooler model and
defrosting operations are analyzed and reported. Finally, the conclusions from the GIST plant are
discussed.
Chapter 6 presents the overall conclusion from the thesis along with the research answers and their
discussion. The limitations and recommendations for further study are provided.





2
Literature Findings & Conclusions

The following was concluded from the literature study:

• Three types of DT models were identified during the literature review (Sahoo (2023)), they
are physics-based, empirical, and data-driven models. Physics-based models have twice the
computation time as compared to data-driven models. Hence, physics-based models should
be eliminated as higher computation time leads to higher costs of computation. Industrial
refrigeration plants usually generate billions of data in a year, hence, computation time is a
significant factor.

• Based on the accuracy of the model, empirical models were found to be more accurate than
the data-driven models as they have a lower error percentage for performance evaluation.
Accurate models help in recognizing the deviation in performance with ease. Hence, empiri-
cal models should be used for energy performance evaluation. However, reliable equipment
performance data sets are required to develop the empirical models. These data sets can be
provided by the manufacturers and GEA.

• The time spent to develop the models and reusability of a single model for different scaling
is important for the model selection because higher model development time leads to higher
cost and reusability of the model can save time.

• Based on the applications, it was observed that data-driven models have been widely used for
performance prediction applications. Artificial Neural Network (ANN) was found to be the
most accurate data-driven model. Hence, for optimization, both data-driven and empirical
models should be used to check which one gives the better result.

• For developing the empirical DT models various equations were used by different researchers.
It was observed that the equations were similar with a variation in higher degree terms and co-
efficients. The similarity in equations was due to the correlation analysis which gives a similar
correlation for similar equipment. However, the variation in higher degree terms and coeffi-
cients were due to the accuracy and data used for the development of DT models. Hence,
similar equations should be used for the empirical DT models with different higher-degree
terms and coefficients based on the defined accuracy of the model and data used for its de-
velopment (refer to equations 2.1 to 2.7).

• It was observed that various input-output parameters were used in the DT models based on
the application and equipment type. Hence, the input-output parameters that should be used
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10 2. Literature Findings & Conclusions

to model the DTs are listed in table 2.1. These parameters are based on the equipment to be
evaluated, availability of data, and energy performance evaluation application.

• Some deviations in energy performance were listed along with their root cause (refer to table
2.2). These deviations were found by the authors during the energy performance evaluation
for different equipment using DT models. If the same deviation is found in the energy perfor-
mance evaluation during this thesis, the probable causes should be taken into consideration.

• For optimization, first the part load behaviors of the equipment were studied. It was observed
that at part load the reciprocating compressors had better performance in comparison to
screw compressors. Hence, when the reciprocating compressors are running in parallel, the
load should be split equally. For screw compressors running in parallel, the load should be
split equally when the loads are above 100% and below that one of the compressors should be
fully loaded.

• It was observed that the optimizations were divided into high and low-pressure side opti-
mization. For the high-pressure side, condenser fan speed optimization was performed using
various algorithms to find the minimum power consumption for the compressor and the con-
denser fan combined. Hence, the condenser set point should be optimized by minimizing the
power consumption for the condenser fan and the compressor.

• For the low-pressure side, the defrosting optimization was performed by different techniques.
Refrigerant inlet temperature, the interval for defrosting, and the mass flow rate of refrigerant
were some of the parameters optimized. However, the mass flow rate does not change much
during defrosting, so, the focus should be on defrosting time and inlet pressure. The defrost-
ing optimization should be performed using the energy trade-off between the energy penalty
due to frosting and energy consumption due to defrosting.

• For the low-pressure side, the cooling load was managed to optimize the energy consump-
tion. The load modulation should be done by switching off the evaporators in the different
refrigerated spaces without compromising the product stored.

The following are the equations reported in the literature review that are used to develop the equip-
ment DT models. Equations 2.1 and 2.2 are used to calculate the compressor cooling capacity and
power consumption respectively. While equations 2.3 to 2.7 are used to calculate condensing ca-
pacity of the condenser.

Ccool ,comp =C1 +C2 ×Tevap +C3 ×Tcond +C4 ×T 2
cond +C5 ×Tevap ×Tcond +C6 ×T 2

cond

+C7 ×Tcond ×T 2
evap +C8 ×T 2

cond ×Tevap +C9 ×T 2
cond ×T 2

evap

(2.1)

where,
Cn = coe f f i ci ent s calcul ated usi ng exper i ment al d at a

Pcomp =P1 +P2 ×Tevap +P3 ×Tcond +P4 ×T 2
cond +P5 ×Tevap ×Tcond +P6 ×T 2

cond

+P7 ×Tcond ×T 2
evap +P8 ×T 2

cond ×Tevap +P9 ×T 2
cond ×T 2

evap

(2.2)

where,
Pn = coe f f i ci ent s calcul ated usi ng exper i ment al d at a

Ccond ,nom =Cr at · c f (2.3)

F2 = (F S%)3 (2.4)

F1 = (F2)0.17 (2.5)
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Ccond ,nom,cur r = F1 ·Ccond ,nom (2.6)

c fcur r =
Ccond ,nom,cur r

Ccond ,cur r
(2.7)

Table 2.1: Summary of input & output parameters to be used in this thesis

Equipment Input/measured values Fixed/known values Output

Reciprocating compressor
Tevap ,Tcond , N , number of cylinders
activated

Polynomial coefficients Pcomp ,Ccomp

Screw compressor Tevap ,Tcond , N , slide valve position Polynomial coefficients Pcomp ,Ccomp

Air-cooled condenser* DBT,Tcond ,F S% Ccond ,r at Ccond

Evaporative condenser* Tcond ,F S%,W BT Ccond ,r at ,c f table Ccond

Air cooler Ccomp #,Tai r,i n , pr e f ,out ∆Tout

Liquid cooler Ccomp #,Tw at ,out , pr e f ,out ∆Tout

Valve
pi n , pout ,D,ρ, Z ,
non-dimensional coefficients

ṁ

* Each of F S%, Ccond , Tcond can be calculated when other two parameters are known.
# Calculated value
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Table 2.2: Summary of deviations and their possible causes

Possible effects/measured deviations Possible causes References

Failure to minimise the heat load*

poor control of doors on the system* Pearson (2019)
poor maintenance of the building fabric* Pearson (2019)

poor control of incoming product temperature*
Pearson (2019),
Cobo and Renilla (2015)

insufficient charge

Goswami et al. (1997),
Choi and Kim (2002),
Cho et al. (2005),
Farzad (1990)

Poor compressor control
several fixed speed compressors running at part
load condition

Pearson (2019)

Too low suction pressure/ low
evaporation temperature

incorrect control setting / designed for lower evaporation
temperature than required

Pearson (2019),
Cobo and Renilla (2015),
Berglöf (2013)

poor evaporator performance Pearson (2019)
blockage in compressor suction Pearson (2019)
insufficient charge Berglöf (2013)

Too high discharge pressure

build-up of non-condensables Pearson (2019)
scale build-up on condenser tubes Pearson (2019)

higher condensing temperature due to ineffective control
Pearson (2019),
Cobo and Renilla (2015)

poor system design which requires a high head pressure
to be maintained at all times

Pearson (2019)

poor insulation of suction line Prakash (2006)

Internal heat/gas leakage

direct leakage of high-pressure gas to the low-pressure side
of the system due to faulty defrost or hot-gas bypass

Pearson (2019)

direct internal leakage due to loss of liquid seal of expansion
device

Pearson (2019)

excessive wear and tear on compressors causing an increase
of leakage from the discharge side back to suction

Pearson (2019),
Cobo and Renilla (2015)

non-optimal defrost timing Pearson (2019)
Excessive auxiliary power
consumption

over-sizing water drain line heaters Pearson (2019)
inefficient condenser fan control Pearson (2019)

Negative superheat
liquid carry over to the compressor Berglöf (2013)

insufficient charge
Berglöf (2013),
Prakash (2006)

High-temperature difference between
secondary fluid and evaporation

insufficient charge Berglöf (2013)
inefficient evaporator control Berglöf (2013)

Low discharge temperature liquid carry over to the compressor Berglöf (2013)

High chilled water pressure drop, reduced
flow rate, low outlet temperature

severe fouling
Grimmelius et al. (1995),
Cobo and Renilla (2015)

mechanical damage Grimmelius et al. (1995)
clogging in chilled water circuit Grimmelius et al. (1995)

High super heat improper insulation
Cobo and Renilla (2015),
Prakash (2006)

Heat loss and pressure drop
improper insulation Cobo and Renilla (2015)
malfuctioning of valves Cobo and Renilla (2015)

High energy consumption

poor quality secondary fluid Cobo and Renilla (2015)
fixed speed rotating machines Cobo and Renilla (2015)
improper control logic for refrigeration system Cobo and Renilla (2015)
loss in frequency controller Prakash (2006)
insufficient charge Grace et al. (2005)

Fluctuation in superheat and sub-cooling hunting in expansion valve Prakash (2006)
Almost zero sub-cooling insufficient charge Prakash (2006)

Low COP insufficient charge

Goswami et al. (1997),
Choi and Kim (2002),
Cho et al. (2005),
Tassou and Grace (2005)

* Outside the research scope



3
Verkade Plant Analysis

Recently Ntagkras (2022) has developed a digital twin (DT) of a chiller plant at the Verkade factory
in the Netherlands. The DTs of the screw compressor, evaporative condenser, and evaporator were
developed by Ntagkras (2022). In this chapter, the same DTs are reproduced and verified before
developing the DTs for other installations described in the following chapters.

3.1. System details
The Verkade plant in Zaandam, the Netherlands uses BlueAstrum NH3 Chiller 1000. The chiller is
designed to supply chilled water with a temperature range of 6 to 12◦C. Figure 3.1 refers to the piping
& instrumentation diagram (PID) for the chiller used in the Verkade plant. The main components of
the chiller are a screw compressor, an evaporator (plate heat exchanger), an evaporative condenser,
and an expansion valve. The screw compressor compresses gaseous NH3 to a higher pressure where
it is in a superheated state. It goes via the evaporative condenser for heat rejection. After heat
rejection, NH3 is in a liquid state when it goes to the liquid receiver. From the liquid receiver, it goes
through the expansion valve where the pressure is reduced. Then it enters the evaporator where the
heat addition takes place as the water is cooled. At the outlet of the evaporator, NH3 is again in the
low-pressure superheated state which goes to the suction of the compressor. The water which is
cooled by the evaporator is supplied to the plant for various applications. For the Verkade plant, the
outlet water temperature of the chiller is the controlled variable.

3.2. Digital twin models
In order to analyze the Verkade plant, DT models of the major components of the chiller were de-
veloped. This section describes the equations used for developing the DTs, validation of DTs, and
the results when applied to the actual plant data.

3.2.1. Screw compressor model
The DT models (for compressor power and capacity prediction) of the screw compressor are based
on experimental data (saturated suction, discharge temperature, compressor power, and capacity)
provided by GEA and an empirical equation similar to the equations (2.1 & 2.2) reported in the liter-
ature (Sahoo (2023)).
A similar equation1 is used for the calculation of power consumed by the compressor with different

1Note - The temperatures for equations 2.1 and 2.2 are in ◦C.
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Figure 3.1: PID for BlueAstrum NH3 Chiller 1000 (provided by GEA)

coefficients.
The coefficients of the equations were calculated using experimental data. The non-linear Gener-
alized Reduced Gradient algorithm was used to calculate the coefficients. This algorithm calculates
the coefficients in such a way that the compressor capacity and power predicted by the equations
result in a minimum error with respect to the actual experimental value. The equations also con-
sider the whole range of operating conditions they are, -5◦C to 10◦C for evaporating temperature
and 15◦C to 35◦C for condensing temperature.
These equations were used to predict the cooling capacity and power consumption of the compres-
sor. The validation was performed with experimental data. The root mean square (RMS) error for
the equations were 2.32 kW and 0.1 kW respectively for capacity and power calculation.
Since the error percentages (0.3% and 0.1% respectively) for the compressor DTs were low enough,
they were used to compare the actual cooling capacity and power consumed by the compressor
running at the site. However, these models only predict the power and capacity of the compressor
in full-speed conditions. So to calculate the power and capacity in the part load conditions speed,
capacity, and power ratios of the compressor were used as inputs. Figure 3.3 shows the variation of
cooling capacity and compressor power with the speed of the compressor. Ratios of power, capacity,
and speed were calculated by dividing the individual values by the maximum values. These ratios
were used to create two polynomial curves which give power ratio and capacity ratio as output when
speed ratio is given as input. When these ratios for different compressor speeds are multiplied by
the capacity and power output by equations 2.1 and 2.2, then the outputs are the capacities and
power at the part load conditions.
The model with the correction for the part load conditions was used to predict the power consump-
tion of the compressor. Figure 3.2 represents the comparison of power consumed by the compressor
DT and the actual experimental values. It was observed that there was not much deviation in the
actual and DT power consumption. Hence, it was concluded that the compressor was working as
per the design and the compressor DT also worked fine.
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Figure 3.2: Comparison between actual and predicted compressor power consumption

Figure 3.3: Cooling capacity and power at part load conditions

3.2.2. Evaporative condenser model
The evaporative condenser model is based on the experimental data (saturated suction, saturated
discharge temperature, compressor power, and capacity (% of full load)) provided by GEA, equa-
tions, and capacity factor (cf) table provided by the condenser manufacturer, and the outputs of
compressor DT. The capacity factor table consists of capacity factors for each corresponding WBT
and condensing temperature. So, if any of the two data are known then the third can be calculated.
To predict the condensing temperature using the DT model, the condensing capacity was calculated
using the compressor DT. Validation was done using the experimental data. The RMS error was 2.42
kW and the error percentage was 0.4%.
To calculate the condensing temperature first the nominal capacity was calculated using equation
2.3. The value for rated capacity was taken from table 3.1 while the value for capacity factor was
taken from the table provided by the manufacturer, which is a function of WBT and condensing
temperature at rated operating conditions. After the calculation of nominal capacity, the fan speed
percentage was used as the input to equation 2.4 to calculate the capacity factor for all the data
points of the plant using equations 2.4 to 2.7. The capacity factor and WBT were used to calculate
the condensing temperature using the capacity factor table provided by the manufacturer.

Figure 3.4 represents the variation of condensing temperature with time. The first figure refers to
the actual and predicted condensing temperature over the entire time period, while the second
figure refers to the values over a particular time period. It was clear from the figure that most of the
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Table 3.1: Rated condenser specifications

Model CXVE 313-1012-15W
Type Evaporative condenser
Condensation Temperature (◦C) 36.69
WBT (◦C) 27
Capacity (Cr at (kW)) 1315
Fan power (kW) 2 * 5.26

predicted and actual values had on average 2◦C temperature difference, but even 2◦C deviation can
lead to energy loss. Hence, it was concluded that the condenser was not working as per the design.
The condenser DT was further investigated. The DT was used to calculate the condenser fan speed
using the same set of equations used to calculate the condensing temperature with condensing
temperature and WBT as inputs. Deviations were observed in the predicted and actual fan speeds,
which confirmed that the condenser is underperforming and the DT model worked fine. Hence, the
DT can be used for the other plants.

Figure 3.4: Comparison between actual and predicted condenser performance

3.2.3. Evaporator model
The evaporator model is based on the experimental data (cooling capacities and difference in outlet
water temperature and saturated suction temperature) provided by GEA. These data were used to
develop a 3r d degree polynomial (refer to equation 3.1) which gives the difference in temperature
as output when cooling capacity was given as input.

Tw at ,out −Tcomp,suc =−8.787 ·C 3
evap +1.66 ·C 2

evap −6.13 ·Cevap +1.5676 (3.1)

Figure 3.5 shows the evaporator model validation curve. The curve was plotted to check the ac-
curacy of values predicted by the polynomial curve. The RMS error for the evaporator model was
0.05◦C. Figure 3.6 represents the variation of temperature difference of the water outlet and the sat-
urated suction temperature of the refrigerant. The first figure represents the actual and predicted
temperature difference over the whole data set, while the second figure refers to the same temper-
ature difference over a smaller time period. As the difference in predicted and the actual difference
in temperature was more than the RMS error, that implies the evaporator was not working as per
the design. In the second figure, it was observed that the control of the evaporator was not stable
as the temperature was fluctuating too rapidly. The unstable behavior of the evaporator could be
due to the control valve just before the evaporator. Hence, the liquid feed valve data was verified, as
evident from the figure 3.7 the valve opening percentage of the liquid feed valve is unstable. So, it
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Figure 3.5: Evaporator model validation curve

Figure 3.6: Comparison between actual and predicted evaporator performance

was concluded that the control of the evaporator in the plant needs modification.
However, the prediction by the evaporator DT was stable. Hence, a similar DT can be used for evap-
orator models.

Figure 3.7: Instability in valve opening control

3.3. Optimal condensing temperature
From the literature research Sahoo (2023), figure 3.8 shows the variation of compressor power and
condenser fan power with condensing temperature. From the figure, it is evident that as the con-
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densing temperature is varied, the total power consumption changes and there exists one condens-
ing temperature where the total power consumption is minimum. Hence, the optimum condensing
temperature and the new power consumption were calculated for each data point.
The optimum condensing temperature set point was determined through an algorithm described

Figure 3.8: Variation of compressor power and condenser fan power with condensing temperature (Manske et al. (2001))

below to optimize the sum of the power consumption by the compressor and condenser fan.

1. Using the polynomial functions (equations 2.1 & 2.2), saturated discharge temperature, satu-
rated suction temperature, and cooling capacity percentage (percentage of maximum cooling
capacity at given operating conditions) calculate the total cooling capacity and total power
consumption for the compressors.

2. Using the condenser equations (equations 2.4 to 2.7), dry bulb temperature, relative humidity,
and condensing capacity (compressor power + cooling capacity) calculate the fan power and
total power (fan power + compressor power consumption).

3. Assume the optimal condensing temperature to be 15◦C. The suction temperature and the
required cooling capacity still remain the same. Check if the capacity factor of the condenser
(from the table provided by the condenser manufacturer) exists for the current operating con-
ditions. If yes proceed with the following steps else check for higher condensing temperature
till the capacity factor exists.

4. Calculate the new cooling capacity and new compressor power using the new condensing
temperature.

5. Calculate the new EER (Energy efficiency ratio, new cooling capacity/new compressor power)
in the new operating condition.

6. Calculate the required compressor power (required cooling capacity/new EER).

7. Calculate the condensing capacity (required cooling capacity + required compressor power).

8. Calculate the total power consumption as in step 2.

Figure 3.9 shows the condensing temperature before and after the optimization. Using this opti-
mization technique a total of 7% energy can be saved annually.
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Figure 3.9: Condensing temperature before and after optimization

3.4. Conclusion
After verifying all the DT models it was concluded that the DT models are accurate within a 5% error
margin and produce adequate results to analyze the equipment. Hence, the same model should be
used for the analysis of further plants. The optimization of the plant produces energy savings of 7%
annually. Around 32 MWh of electrical energy can be saved for the Verkade plant annually. This can
save $ 13,000 and 11 tonnes of CO2 per year. Reduction of CO2 will mitigate the effects of global
warming and help the governments meet the goals of the Paris Agreement.
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LST Plant Analysis

The LST plant is located in Belzyce, Poland. The refrigeration system consists of mainly 2 screw
compressors, 1 evaporative condenser, 3 freeze dryers and 2 air coolers (evaporators), and an econ-
omizer. The plant is designed to operate at -40◦C throughout the year. Figure 4.1 represents the
schematic of the LST plant. The operation of the LST plant is as follows. The screw compressors
operate in parallel to compress NH3, which then goes to an oil separator. The oil is removed from
the refrigerant in the oil separator, then the refrigerant (with low oil content) goes to the evapora-
tive condenser via the heat recovery unit. The heat from the system is released in the condenser
and then the refrigerant goes to the liquid receiver. From the liquid receiver, there are two streams
of refrigerant, the main flow is sub-cooled in the economizer and the other goes through the in-
termediate expansion valve before going through the other side of the economizer. The stream of
refrigerant which passed through the intermediate expansion valve enters the compressor as a side
stream. While the other stream of refrigerant which passed directly through the economizer passes
through an expansion valve before entering the low-pressure liquid separator. The liquid refriger-
ant from the low-pressure separator is pumped into the evaporators (3 freeze dryer coolers and 2
air coolers). The refrigerant (two phases) from the outlets of the evaporator is received in the low-
pressure separator. The vapor refrigerant from the low-pressure separator goes to the suction of the
compressors.

Before analyzing the individual components, the behavior/validity of each type of data was an-
alyzed to clean the data. It was observed that for some of the data points the compressor speeds
were zero. That was due to shutdown or maintenance, the compressors were not running. Hence,
those periods were removed from the analysis. Moreover, there were some data points for which the
compressor speeds were below the minimum speed allowed for the compressor as per the design
specification. That was due to the startup or shutdown of compressors. These points were not re-
moved for two reasons, first to calculate the power consumption during the startup and second to
understand the dynamic behavior of the compressors during startup.
From figures 4.2, it was observed that there was a large variation of suction and discharge tempera-
ture over an hour. The variation in temperature in the evaporator was due to the startup condition
or multiple air coolers and freeze dryers were started simultaneously which led to a rapid increase
in the cooling load. This increase in cooling load led to an increase in compressor speed which in
turn created a spike in condensing temperature.

21
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Figure 4.1: LST Plant schematic

Figure 4.2: Suction and discharge temperature variation over time

4.1. Screw compressor model
The modeling of the screw compressor is similar to the compressor modeling of Verkade Plant as
explained in section 3.2.1. The model was validated with the experimental data and the RMS error
for the compressor power and cooling capacity was 11 kW and 13 kW respectively. The error per-
centages were 6.6% and 2.2% respectively.
From the actual plant data of the compressors, two inefficiencies were observed in the parallel op-
eration, they were:

• both compressors were running in parallel even though the sum of their capacities was less
than 100%.

• the compressors were running at different speeds.

The above-mentioned observations lead to a decrease in energy efficiency and hence, an increase
in power consumption because the screw compressor’s efficiency reduces drastically as its speed
decreases (refer to figure 4.3). Hence, the following changes were required (based on literature find-
ings) to optimize the parallel operation of the plant:

• when both the compressors were running at less than 100% of their capacities and the sum of
their capacities was also less than 100%, only one compressor should be in operation.
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• when the sum of their capacities was more than 100%, both compressors should be running
at equal speeds.

Figure 4.3: Energy efficiency ratio vs speed

4.1.1. Compressor optimization using the compressor speed as input
The above changes were used to optimize the parallel operation of the compressors. Before op-
timization, the compressors were running at different speeds and in some cases they were both
running at less than 100% capacity. These operating conditions were leading to higher energy con-
sumption. After optimization, when a single compressor could handle the load, only one compres-
sor was in operation. In the other case when a single compressor could not handle the load, both
compressors were operated at equal speeds.
The power consumption before and after the optimization for the same time period was analyzed.
The power consumption was the same or the power consumption before the optimization was
higher. The power consumption was the same implying that the compressors were already oper-
ating at optimized conditions or only one of the compressors was operating. While in other cases
the optimized power is lower.
After the optimization, the total energy saved was 20,000 kWh for a year. This was 1.28% of the en-
ergy consumed by the operating compressors of the plant per annum.

4.1.2. Compressor optimization using the capacity percentage as input
The screw compressors used in the plant are of the variable volume type. That means the capacity of
the compressor can be controlled by both sliding valve control and motor frequency/speed control.
The effect of sliding valve control on the power consumption of the compressor was checked. Figure
4.4 shows that the slide valve position is 100% (maximum position) when the cooling load require-
ment is high. That means the compressor capacity at higher load requirements is controlled by the
motor frequency/speed control. But when the compressor is starting or the cooling load require-
ments are low then the capacity of the compressor is controlled by the slide valve control and the
speed is constant. This is because the compressor has a certain minimum design speed (1000 RPM)
below which its efficiency drops drastically. As described in section 3.2.1, the compressor DT had
the speed ratio as one of the inputs. But from the above explanation of compressor capacity control,
it is clear that taking the speed ratio as an input will exclude the data points where the speed is con-
stant and the control is done by the slide valve. Hence, it was decided to re-develop the DT model
based on the capacity ratio instead of the speed ratio as an input. So to calculate the power and ca-
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pacity in the part load conditions capacity percentage, capacity, and power ratios of the compressor
were used as inputs. Ratios of power and cooling capacity were calculated by dividing the individual
values by the maximum values. These ratios were used to create two polynomial curves which give
the power ratio and capacity ratio as output when the capacity percentage is given as input. When
these ratios for different compressor capacities are multiplied by the capacity and power output by
equations 2.1 and 2.2, then the outputs are the capacities and power at the part load conditions.

All the analysis done previously with speed ratio as input was performed again with the capacity

Figure 4.4: Slide position vs capacity percentage vs speed of the screw compressor

ratio as an input. Figure 4.5 shows the capacity percentages of the compressors before and after the
optimization. While figure 4.6 refers to the power consumption before and after the optimization.
Lastly, figure 4.7 refers to the power saved due to optimization. From the figures, it is evident that
the observations are similar to the case when the speed ratio was used as an input. However, the
total energy savings are increased.

After the optimization, the total energy saved was 25,000 kWh for a year. This was 1.55% of the

Figure 4.5: Capacity percentage for both compressors after capacity percentage was used as input

energy consumed by the operating compressors of the plant per annum.

4.1.3. Compressor power at startup
Further, it was observed (from figure 4.8) during the startup the power consumption by the com-
pressor was higher than the power consumption predicted by the model. The reason is when the
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Figure 4.6: Comparison of power consumption for optimized and non-optimized compressors

Figure 4.7: Power saved due to optimization

compressor starts the slide valve is in the most open position i.e. most of the discharge gas moves
back to the suction, hence the power consumption is higher. So, to take this effect into account it
was crucial to calculate the time required for the compressor to reach a steady state or lowest design
speed. By using that time the model can be modified so that it predicts only the power consumption
and capacity of the compressor in the steady state. However, it should be noted that the figure 4.8
x-axis doesn’t represent the time required by a compressor to start, rather it is a cumulative time pe-
riod of various compressor startups, which shows the power consumption is around 30 kW during
all the compressor startups.
In comparison to the amount of energy consumed by the plant, the savings on energy consumption

were quite low. Hence, a further investigation was done to understand the low power savings. The
pie chart in figure 4.9 shows that 49% of the time only one of the compressors was running which
does not lead to any energy savings. 50% of the time both the compressors were running and the
sum of their capacities was above 100%, these cases lead to savings but very low. From these cases,
the average saved energy was only 4.66 kWh. So, even if the number of cases was high, the savings
were low. On the contrary, the average energy savings when both the compressors were running and
the sum of their capacities were below 100% was 16.35 kWh. But this was only for 1% of the cases.
Hence, the savings were again low.
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Figure 4.8: Comparison of predicted and actual power consumption during startup of the compressor (for 628 starts)

Figure 4.9: Pie chart representing the number of compressors running for 4 cases and bar chart representing the energy
saved by 2 of those cases

4.1.4. Optimization of the number of compressors starts
Figure 4.9 shows that out of 49% of the cases when only one of the compressors is operating, only
9% of the time the first compressor is operating while 40% of the time the second compressor is
operating. Further analysis showed that compressors were starting 16171 times in a year. This could
result in severe mechanical wear in the second compressor. Hence, the total number of starts for
both compressors was optimized. While the parallel operation optimization (optimization of load
balancing) was done, the total number of starts was already down to 14418 from 16171 (refer to
figure 4.10). This was the case when the second compressor was starting below 100% capacity. But
to reduce the number of starts even further the second compressor was started below 100% and the
increase in power consumption by the compressors was checked. Figure 4.10 shows that the power
consumption was reduced initially due to the parallel operation optimization and so is the number
of starts. With the decrease in the percentage below which the second compressor was starting,
the number of starts decrease while the power consumption increases. Hence, there should be a
balance between the number of starts and power consumption.

4.2. Evaporative condenser model
The model of the evaporative condenser was developed as described in section 3.2.2. But for the
current plant, the fan speed of the condenser was not recorded. Since the condenser model uses
fan speed as the input to predict the condensing temperature, it was decided to assume fan speed
for certain temperature conditions. From figure 4.11 it was observed that there exists a dead zone
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Figure 4.10: Variation of power consumption and the total number of compressor starts with the capacity below which
the second compressor starts

for the condenser which was approximately 19-25◦C. So, it was assumed that when the condensing
temperature is fairly above this dead zone (around 28-30◦C) and the WBT is high enough (above
10◦C), the condenser fan is at full speed. Further analysis showed that these conditions were most
prevalent in summer (months of July and August) and especially in the daytime. Hence, the con-
densing temperature was predicted based on these conditions.
The actual condensing temperature did not match the predicted condensing temperature, and the

Figure 4.11: Temperature dead zone for condenser

deviation was almost 5◦C for each data point. Since the model was already validated (at the Verkade
installation) which uses the same evaporative condenser, the only possible error could be due to
the sensor measuring the ambient temperature and humidity. These data could be verified from
the nearby weather stations. Hence, the ambient temperature and humidity data for the plant loca-
tion were collected. But the data from the nearby weather station was hourly and the data from the
plant was per minute. Hence, first, the data from the plant was converted per hour and then it was
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compared with the data from the nearby weather station. Figures 4.12 and 4.13 show the deviation
of ambient temperature and WBT for the data set. From this, it was concluded that the data col-
lected from the plant sensors were incorrect and the data from the weather station should be used
for condensing temperature calculation.
Using the DBT and humidity data from the nearby weather station, the prediction for the condens-

Figure 4.12: Deviation in DBT of plant data from the weather station

Figure 4.13: Deviation in WBT of plant data from the weather station

ing temperature was performed again. Figure 4.14 shows that the predicted condensing tempera-
ture is matching the actual condensing temperature within 1◦C for most data points. Hence, this
model can be used for the optimal condensing temperature calculation.
Calculating the optimal condensing temperature for a relatively huge data set takes a lot of com-

putation time. So, the optimal condensing temperature was assumed to be 15◦C for each data point
and then the power consumption was calculated for each data point. For this calculation, the ambi-
ent temperature and humidity were used from the weather station data. Since, the data were hourly,
to convert them to per-minute data it was assumed that the temperature and humidity remained
constant over the hour.

4.2.1. Root cause analysis for condenser fan speed deviation
To calculate optimal condensing temperature, intermediate steps involved the calculation of fan
power. To calculate fan power, the fan speed was calculated based on the condensing capacity pre-
dicted by the model. It was observed that the fan speed was above 100% for around 38% of the data
points. Further investigation showed that the fan speed was going above 100% when the WBT was
higher or in summer conditions. The fan speed was higher due to the high condensing capacity
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Figure 4.14: Condensing temperature actual vs predicted for the complete time period and a specific time period

predicted by the model. The reason for the high condensing capacity was investigated. Hence, as
per the literature research and experts from GEA one of the possible reasons could be:

• oil cooling load not considered - the oil cooler used for the compressor was liquid cooled.
Hence, the oil cooler cooling load should be subtracted from the condensing capacity.

• heat recovery not considered - there is a heat recovery system just before the condenser. In
the data points where the heat recovery system was ON, the cooling load of the heat recovery
system should be subtracted from the condensing capacity.

• defrosting not considered - the air coolers use hot gas defrosting and the freeze dryers use hot
water defrosting. Hence, the data points where hot gas defrosting was used need to be taken
into account.

• leakage in the condenser - there could be leakage of refrigerant from the discharge side to the
suction side of the compressor.

All these possibilities were checked one by one and eliminated. First, the data points where defrost-
ing was ON were checked and it was found that the defrosting didn’t have any effect on the higher
condensing capacity as there were many data points where there was no defrosting and still the fan
speed was above 100%.
Second, to check the leakage of refrigerant from the discharge to the suction side, the expansion
valve digital twin model was developed to check the cooling capacity. By comparing the cooling
capacity calculated by the compressor and the expansion valve leakage could be detected. If the
cooling capacity of the expansion valve DT is lower than the compressor DT then there should be a
refrigerant leakage from the condenser. The expansion valve DT model is described in section 4.3.
It was concluded that there was no leakage from the discharge to the suction side (refer to section
4.3).
Third, the cooling load of heat recovery was checked, and it was found that the cooling loads were
insignificant to have such a large impact.
Finally, the oil cooling load was subtracted from the condensing capacity of the condenser and the
fan speed was calculated again. To calculate the oil cooling load a DT model was developed for the
oil cooler using the experimental values of cooling capacities of the oil cooler at various operating
conditions. The experimental values include the cooling capacities at various saturated suction and
discharge temperatures. Hence, equation 2.1 was used to calculate the oil cooler cooling capaci-
ties. However, the coefficients of the equation were different from the compressor cooling capacity
equation. Equation 2.1 calculates the cooling capacity of the oil cooler at full load. So, to calcu-
late the cooling capacities at part loads, the cooling capacities at various speeds of the compressors



30 4. LST Plant Analysis

were used to create a polynomial function. This function was used to calculate the oil cooling ca-
pacity when the speed of the compressor was given as an input. The RMS error of the DT model
was 4.07 kW and this corresponds to an error percentage of 3.9%. Figure 4.15 shows that the fan
speed percentage is still above 100% but the fan speed has been reduced in comparison to the fan
speed when the oil cooling load was not subtracted. 29% of the data points were still above the
100% speed. Hence, it was concluded that the oil cooling load was not the only reason for the high
condensing capacity.
As the four suspected possibilities of high condensing capacities were inconclusive, further inves-

Figure 4.15: Fan speed for two different time periods after subtracting oil cooling load from the condensing capacity

tigation was done to understand the reason. From figure 4.16 it was observed that the temperature
transmitters were in the individual compressor discharge lines and the pressure transmitter was
placed in the combined line. To check the validity of data from the temperature transmitters, data
from the pressure transmitter was used to calculate the cooling capacities and power consumption.
However, it was observed that there was no major deviation in the results.

From further investigation, it was found that there were some time periods when all the coolers

Figure 4.16: Part of piping & instrumentation diagram showing the transmitter locations

were stopped but the compressors and evaporator expansion valve were still operating. Figure 4.17
refers to those cumulative time periods for which the coolers were stopped but the compressors
were operating. This is an indication that there could be a refrigerant thermal leakage from the
condenser.
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Figure 4.17: Figures representing the time period when compressors and expansion valves are operating while the evap-
orators are not operating

4.2.2. Optimal condensing temperature
As described in section 3.3, an optimal condensing temperature exists for each operating condition
where the total power of the compressor and condenser fan is minimum. A different algorithm (than
the one used for the Verkade plant) was used to calculate the optimal condensing temperature. The
following algorithm describes the calculation procedure for optimal condensing temperature.

1. Using the polynomial functions (equations 2.1 & 2.2), saturated discharge temperature, satu-
rated suction temperature, and cooling capacity percentage (percentage of maximum cooling
capacity at given operating conditions) calculate the total cooling capacity and total power
consumption for the compressors.

2. Using the condenser equations (equations 2.4 to 2.7), dry bulb temperature, relative humidity,
and condensing capacity (compressor power + cooling capacity) calculate the fan power and
total power (fan power + compressor power consumption).

3. Assume the optimal condensing temperature to be 15◦C. The suction temperature and the
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cooling capacity still remain the same. Check if the capacity factor of the condenser (from the
table provided by the condenser manufacturer) exists for the current operating conditions. If
yes proceed with the next steps else check for higher condensing temperature till the capacity
factor exists.

4. Assume the cooling capacity percentage to be 30%. Calculate the total cooling capacity as per
step 1.

5. Check if this cooling capacity is the same as the total cooling capacity calculated before opti-
mization.

6. If yes then this is the cooling capacity percentage for both the compressors else increase the
capacity percentage by 5% of the previous step.

7. Repeat the same steps till the cooling capacities match.

8. If the cooling capacities don’t match at the highest capacity percentage, then increase the
condensing temperature and repeat steps 4, 5, and 6.

9. Once the cooling capacities match for a particular capacity percentage, use that capacity per-
centage to calculate total power consumption as in step 2.

Figure 4.18 (left figure) shows the power consumption of the compressor and condenser fan using
the optimal condensing temperature, while figure 4.18 (right figure) shows the difference in power
consumption by using the optimal condensing temperature. It should however, be noted that it was
assumed that the power consumption during the startup of the compressors was the same as before
and the lowest condensing temperature of the condenser could be 15◦C.
Total energy savings of 170,000 kWh was obtained which is 10.96% of the total energy consumption
of the plant per annum.
Further studies were conducted to understand the complication of using a lower condensing tem-
perature. It was found that by using a lower condensing temperature there could be oil carryover
in the compressor. This is because the properties of the oil and refrigerant mixture change with
temperature. There could be a possibility of the economizer not functioning due to the lowering of
condensing temperature. Since the oil separator and expansion valve were suitable for 15◦C, it was
chosen to be the lowest possible condensing temperature.
The optimization was also performed using the algorithm described in section 3.3. Similar results

Figure 4.18: Total power (compressor + condenser fan) and difference in total power before and after optimization

were obtained, and total energy savings of 172,000 kWh was obtained which is 11.06% of the total
energy consumption of the plant per annum.
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4.3. Expansion valve model
For the expansion valve digital twin, experimental data (cooling capacities, saturated suction, and
discharge temperature) were used to develop an empirical equation. Equation 2.1 was used to
calculate the cooling capacity. However, the coefficients of the equation were different than the
ones used for the compressor. The empirical equation used calculates the cooling capacities at 60%
opening of the valve for different operating conditions as the experimental data used had cooling
capacities at 60% valve opening percentage. So, to predict the cooling capacity at the actual open-
ing percentage of the expansion valve, experimental data was used to develop a correlation curve
between valve opening percentage and corresponding cooling capacities. This correlation was used
to predict the cooling capacities at actual opening percentages. The RMS error of the DT model was
6.79 kW and this corresponds to an error percentage of 0.39%. Figure 4.19 shows that the predicted
cooling capacity was unstable. So, the opening percentage of the expansion valve was verified and it
was found that the valve opening percentage was unstable (refer figure 4.20) too. Hence, an average
of cooling capacities were taken over 5 minutes to average out the variation. Figure 4.21 shows the
cooling capacities predicted from the compressor model and expansion valve model. In general,
the cooling capacities predicted from the expansion valve model were higher than the compressor
model. If there was a leakage in the condenser then the cooling capacities predicted by the expan-
sion valve model would be lower than the cooling capacities predicted by the compressor model.
But that was not the case, hence it was inconclusive if there was refrigerant leakage from this partic-
ular study.

Figure 4.19: Instability in cooling capacity calculated using the expansion valve model

Figure 4.20: Instability in control of the expansion valve
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Figure 4.21: Cooling capacities for expansion valve and compressor model for two time periods

4.4. Evaporator model
To check the performance of the evaporators an evaporator model was developed. Since the evap-
orator start and stop times were the only data available, the cooling capacity calculated from the
compressor model was used. To predict the cooling capacity first the individual evaporator cooling
capacities were extracted by looking at the time periods when only one of the evaporators was run-
ning and all others were at a stop. Then the behavior of the individual evaporators was averaged out
over the whole time period. Figure 4.22 shows the cooling capacities of freeze dryers and air coolers
over a certain time period. The behavior of some freeze dryers (freeze dryers 1, 3 & 5) and air coolers
was as expected. First, when the freeze dryers were started the cooling capacities were high due to
dynamic effects and then the capacity comes down to a steady value over time. However, the other
freeze dryers’ (freeze dryers 2, 4 & 6) cooling capacities were increasing for a certain time period be-
fore going down. To identify the root cause, the cooling capacity of a single freeze dryer was checked
(refer to figure 4.23). It was observed that, for the control of the LST plant two separate control sys-
tems are used one for the freezing process and the other for the steam defrosting process and there
is no link between these control systems. Hence, the opening and closing of the valve timing may
not be synchronized correctly, which could lead to the observed behavior. The second reason could
be the type of food frozen in the freeze dryer. Different types of cooling capacity behaviors were
observed in the freeze dryers which could be due to the type of food frozen.
A lot of energy is wasted because of the increase in cooling capacity at the start of the freezers. This
can lead to some energy savings if corrected. However, it is difficult to quantify how much energy
can be saved from this.
Figure 4.22 shows that the air coolers are continuously operating at 100 kW capacity but they are
designed for a much lower capacity. That implies the control of the room temperature is not as per
the design (refer to figure 4.24) leading to higher capacities. Further investigation implied that the
cold store associated with cooler 7 is switched off when it is not required, while cooler 8 is always
in operation, hence, the difference in temperature. The starting and stopping of coolers are energy-
intensive processes because the room temperature goes up when coolers are not working, hence
leading to higher energy consumption during startup. In conclusion, the temperature of the room
can be maintained in an efficient manner to lower the cooling capacities and save energy.

4.5. Conclusion
After the analysis of the LST plant, the following is the conclusion:

• Screw compressors operating in the LST plant are not optimized for load sharing, hence, con-
suming higher energy. The compressors have unequal operating hours which leads to more
mechanical wear in one of the compressors. This also leads to a higher maintenance fre-
quency of one of the compressors. Due to inefficient control of screw compressors the num-
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Figure 4.22: Cooling capacities for freezers and coolers

Figure 4.23: Cooling capacity for a freezer over a certain time period

ber of starts and stops is significantly high. Hence, the load sharing should be optimized in
such a way that there should be a balance between the power consumption by the compres-
sors and the total number of starts and stops.

• The evaporative condenser most probably has a refrigerant leakage or thermal leakage as the
compressors and expansion valve are operating when all the freezer dryers and air coolers are
not operating. Hence, the predicted fan speed is beyond 100% for many cases. The possibility
of refrigerant leakage from the condenser should be checked.
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Figure 4.24: Variation of room temperature over time

• The expansion valve opening control is highly unstable. So, the control of the expansion valve
opening should be rectified to make it more stable.

• The start-up phase of the freeze dryer results in significant energy loss due to increased cool-
ing capacity. Design changes can lead to substantial energy savings in the freeze dryer. Addi-
tionally, the cooling capacities and energy consumption of the rooms cooled by the air coolers
are higher due to inadequate room temperature maintenance. Proper room temperature con-
trol is necessary to address this issue.

• After all the faults are corrected the energy savings strategies should be applied. An energy
savings of 1.55% can be obtained with the optimization of the parallel operation of screw
compressors. While an energy savings of 11.06% can be obtained with the optimization of
condensing temperature set point. With the correction of the evaporator design more energy
can be saved but it is difficult to quantify. A total of approximately 200 MWh of energy can be
saved per annum with these optimizations. This can save LST plant $ 81,000 per year on elec-
tricity costs, which in turn can save 70 tonnes of CO2 from being released into the atmosphere.
A decrease of CO2 level in the atmosphere will help mitigate global warming and aligns with
the goals of the Paris Agreement.
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The GIST plant is located in Crewe, UK. The refrigeration system consists of mainly 2 Ammonia
chillers, 2 hybrid fluid coolers, and 11 air coolers (refer to figure 5.1). A hybrid fluid cooler is an adi-
abatic cooler that has both dry and wet modes of operation. At lower load requirements dry mode is
used while at higher load requirements wet mode is used. In the dry mode, the cooling is achieved
only through the cooler fan while in wet mode the cooling is achieved via both the cooler fan and
water being sprinkled.
Two identical chillers are operated in parallel. The chiller outlet has two circuits, cold and hot glycol
circuits. The cold glycol outlet temperatures from these chillers are controlled and kept constant.
The cold glycol from the chillers is pumped through the air coolers. The glycol from the air cool-
ers then returns to the cold glycol inlet of the chillers. The hot glycol outlet temperatures from the
chillers are also kept constant. The hot glycol from the chillers is pumped through the hybrid fluid
coolers. The glycol from the coolers then returns to the hot glycol inlet of the chillers.
The chiller has a screw compressor, an evaporator (plate-type heat exchanger), and a condenser
(plate-type heat exchanger). The ammonia refrigerant (vapor) is compressed by the compressor to
a higher pressure which then goes through the condenser. In the condenser, the refrigerant (two-
phase) exchanges heat with the hot glycol circuit. The refrigerant (liquid) then goes through the
expansion valve where the pressure is reduced. The low-pressure refrigerant (two-phase) passes
through the evaporator where it exchanges heat with the cold glycol circuit. Again the vapor refrig-
erant passes through the compressor.
Before analyzing the plant, first, the data was cleaned. There were many data points for which the
speed of both compressors was zero which implies that there was a shutdown or maintenance.
These data points were removed. There were three data sets too for three different sets of time
periods. So, the data was synchronized for a common time period.

5.1. Screw compressor model
The modeling of the screw compressor is similar to the compressor modeling of Verkade Plant as
explained in section 3.2.1. The model was validated with the experimental data and the RMS error
for the compressor power and capacity was 3.3 kW and 66.4 kW respectively. The error percentages
were 1.85% and 3.43% respectively.
Since the error for the capacity model was high, two separate models were developed, one for con-
densing temperature higher than or equal to 30◦C and the other one for condensing temperature
lower than 30◦C. The model was validated again and the RMS error for these models was 20.98 kW
and 15.15 kW. The error percentages were 4.9% and 0.85% respectively.

37
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Figure 5.1: GIST Plant schematic

Figure 5.2 compares the predicted and actual compressor power consumption. The actual and pre-
dicted power consumption was quite similar. The average deviation and percentage deviation in
performance were 9.22 kW and 9.17%. One of the reasons for the deviation was that the power con-
sumption recorded at the plant did not consider the efficiency of the electric motor. Hence, the
actual power consumption should be lower than the recorded values. The same figure also shows
that there are some data points for which the power consumption is close to zero. From further
analysis, it was concluded that those were the cases where the compressors were starting.
As described in section 4.1, the parallel optimization of screw compressors is possible to balance

Figure 5.2: comparison of actual and predicted compressor power over a time period
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the loads in such a way that the compressors run at a higher energy efficiency ratio (refer to figure
4.3). The same is possible for the chillers as well. However, it should be noted that in the LST plant,
the compressors are operating in parallel, but in the GIST plant, the chillers are operating in parallel.
Hence, the chiller parallel operation was optimized as a whole instead of compressors. The chillers
were optimized using the same algorithm as used for the LST plant. After optimization, energy sav-
ings of 2.42% was achieved. This can save 22,000 kWh of energy for the plant annually.
The plant records the number of hours each chiller has run. This data was used to create an al-
gorithm such that the chillers run an equal amount of time. As per the algorithm, when both the
chillers are running and one chiller has to be stopped because of lower load requirements, the chiller
with higher operating hours is stopped.

5.2. Evaporator model
The evaporator (plate heat exchanger) model of the chiller was developed using a similar model as
described in section 3.2.3. A similar 3r d degree polynomial equation was used as in equation 3.1.
However, the coefficients of the equation were calculated based on the experimental data for the
evaporator model used in the GIST plant. The RMS error for the model was 0.01◦C. It should be
noted here that all the calculations were performed assuming a constant glycol mass flow rate.
Figure 5.3 compares the actual and predicted difference in temperature between the glycol outlet
temperature and compressor suction temperature. The average difference in the actual and pre-
dicted values was 0.47◦C for the chiller 1 evaporator, while it was 0.82◦C for the chiller 2 evaporator.
However, the deviation in temperature could be due to the variation in glycol mass flow rate in the
actual plant because a constant glycol mass flow rate was assumed for the calculation of the dif-
ference in temperature. Hence, a mass correction was introduced to correct the cooling capacities
calculated using the compressor model in accordance with the actual mass flow rate. For mass cor-
rection, the plate heat exchanger model was studied to find out the relation between the cooling
capacity and glycol mass flow rate. It was observed that the cooling capacity of the evaporator var-
ied in proportion to the glycol mass flow rate. The design (constant) glycol mass flow rate is known.
Hence, first, the cooling capacity was calculated with the constant mass flow rate using equation
3.1. Then the cooling capacity was corrected in proportion to the actual glycol mass flow rate. After
the correction was applied, the deviation in temperature difference still remained. This concludes
that the evaporators for both chillers were not performing as per the design, especially the chiller 2
evaporator has a significant deviation. Hence, further investigation was performed to understand
the root cause of the deviation.

As there was a deviation in performance in the evaporator model, further investigation was per-
formed by calculating the cooling capacity from other available parameters of the GIST plant. For
each chiller, the cold glycol flow rate, cold glycol inlet, and outlet temperature were available. The
properties of the glycol (30% Glycol) used were also available. So, the specific heat capacity at the
average of the inlet and outlet temperature of the cold glycol was calculated. Using the equation 5.1,
the cooling capacity of the evaporator was calculated. The total cooling capacity was obtained by
adding the cooling capacity of each evaporator.
The measured cooling capacity was compared with the cooling capacity calculated from the com-
pressor model in section 5.1. Figure 5.4 refers to the comparison of the cooling capacities between
the measured cooling capacity and the cooling capacity predicted by the compressor model over a
certain time period. From the top figure 5.4 it was concluded that the evaporator was not perform-
ing as per the design as the predicted cooling capacity of the compressor model was higher than
the energy model most of the time. From close observation (refer to bottom figure 5.4) over a short
period of time it was concluded that the measured cooling capacity remained low at the start of the
cooling process, then it gradually increased and finally, the cooling capacity was equal when the
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Figure 5.3: comparison of the actual and predicted temperature difference between the glycol outlet temperature and
compressor suction temperature over a time period

defrosting was started. This pattern continues throughout the process.

Cevap = ṁ · cp · (Tg l y,i n −Tg l y,out ) (5.1)

As per the Food & Drink Federation, UK (Food & Drink Federation et al. (2007)) and United Nations
Environment Programme, US (United Nations (2018)), 1◦C difference in temperature can lead to a 2-
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Figure 5.4: comparison of the cooling capacity of evaporator for compressor model and the measured cooling capacity
over a time period

5% difference in energy consumption. From the evaporator analysis, an average difference of 1.29◦C
was calculated. Hence, with necessary design changes, 3-5% energy savings can be achieved.
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5.3. Condenser model
The condenser used in the chiller is a plate heat exchanger type. Hence, the model of the condenser
was developed using a similar model as described in section 3.2.3. A similar 3r d degree polynomial
equation was used as in equation 3.1. However, the coefficients of the equation were calculated
based on the experimental data for the condenser model used in the GIST plant. The RMS error
for the model was 0.1◦C. Similar to the evaporator, the condenser calculations were also performed
assuming a constant glycol mass flow rate.
Figure 5.5 compares the actual and predicted difference in temperature between the glycol inlet
temperature and compressor discharge temperature. The average difference in the actual and pre-
dicted values was 0.74◦C for the chiller 1 condenser, while it was 0.41◦C for the chiller 2 condenser.
For the chiller 2 condenser, the temperature difference was negative for many data points. Further
analysis showed that there were numerous data points where the second chiller was started only for
a few seconds and then stopped. Hence, for these points even though the speed of the compressor
was high enough, the compressor did not run for enough time for the temperature difference to
become positive. It was concluded that the control of the chiller could be improved to avoid these
short startups of compressors.
Moreover, the deviation in performance could be due to the assumption of constant glycol mass
flow rate, when calculating the condensing capacity. A similar correction factor could be applied to
the condensing capacity based on the glycol mass flow rate. But for the condenser side, there was
no flow measurement in the GIST plant. Hence, a comparison with the measured data could not be
performed.

Figure 5.6 shows the comparison of actual and predicted temperature differences between gly-
col inlet temperature and compressor discharge temperature after filtering out the negative values.
Negative values were filtered out to get a more accurate deviation in performance when the chiller
was not in startup condition.
After condenser performance analysis, it was concluded that there was an average temperature dif-
ference of 1.15◦C. Hence, energy savings of 3-5% can be achieved with necessary design changes
(considering the guidelines Food & Drink Federation et al. (2007) and United Nations (2018)).

5.4. Hybrid cooler model
The hybrid cooler has two modes of operation dry and wet, hence, the model was divided into two
models based on the modes of operation. First, the model was developed using empirical equa-
tions but the deviation in cooling capacity prediction was large. So, machine learning techniques
were also used to develop the model. The following subsections describe the cooler models using
empirical equations and machine learning techniques.

5.4.1. Cooler model using empirical equations
Dry-mode model
First, the model for the cooler in dry mode was developed using an empirical equation. Cooling ca-
pacity, ambient temperature, glycol inlet temperature, glycol outlet temperature, glycol mass flow
rate (constant), cooler fan speed, and cooler fan energy consumption were the supplier’s data, that
was used to develop the empirical equation. Correlation analysis of these data shows that the cool-
ing capacity depends linearly on the difference in temperature between glycol inlet temperature
and ambient temperature, while it depends non-linearly on the cooler fan speed. Hence, the em-
pirical equation developed based on the correlation analysis is as shown in the equation 5.2.

Ccond = k1 · (Tg l y,i n −DBT ) · (F S%)n1 +k2 (5.2)
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Figure 5.5: comparison of the actual and predicted temperature difference between the glycol inlet temperature and
compressor discharge temperature over a time period

Supplier data were used to calculate the coefficients k1, k2, and n1. The coefficients were calculated
as 105.68, -103.49, and 0.84. Validation was performed for the equation to check the accuracy of
predicting the cooling capacity. The average percentage deviation was 5.17% while the maximum
percentage deviation was more than 50%. Hence, the equation was not suitable for the given Sup-
plier data. To increase the accuracy of the model the data was divided into high-speed (greater than
20% of the maximum speed) and low-speed data (lower than 20% of the maximum speed) and then
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Figure 5.6: comparison of the actual and predicted temperature difference between the glycol inlet temperature and
compressor discharge temperature over a time period after filtering out the negative values

the data were used to develop two equations. For low-speed, the equation had a maximum percent-
age error of 6.3%, while it was around 50% for the high-speed equation. Further analysis concluded
that the equation was suitable for air-cooler cooling capacity prediction, while it was not suitable
for dry coolers. Hence, various equations were used to check the accuracy of predicting the cooling
capacity. Equation 5.3 resulted in more accurate results than equation 5.2. The average percentage
deviation was 2.39% while the maximum percentage deviation was more than 11.63%. Figure 5.7
shows the validation curve, that is the difference between predicted and supplier-provided values.
The validation curve proves that the equation fits closely with the supplier-provided data for cooling
capacities.

Ccond = k1 · (Tg l y,i n −DBT ) · (F S%)n1 +k2 · (Tg l y,out −DBT ) · (F S%)n1 +k3 (5.3)

To improve the accuracy of the equation 5.3, the equation was further divided based on high-speed
(greater than 20% of the maximum speed) and low-speed data (lower than 20% of the maximum
speed). The coefficients (k1, k2, k3, and n1) of the equation at high speed are 8.37, 140.2, 74.84, and
1.09 respectively. While the coefficients at low speeds are 86.3, 50.96, -5.14, and 1.04 respectively.
The average error percentage for the equations were 2.2% and 0.45% respectively.

Wet-mode model
The model for the cooler in wet mode was developed in a similar way as described in section 3.2.2
and the glycol mass flow rate was assumed to be constant. But the deviation in predicted and actual
cooling capacity during validation was quite high when equations 2.3 to 2.7 were used. So, the ex-
ponent of equations 2.3 and 2.4 were recalculated using the supplier data. Using the new exponents
the predicted and actual cooling capacity was compared again. But still, the error in validation was
quite large. So, the equation was further modified to fit the supplier data. Equations 2.3 to 2.6 were
modified into a single equation 5.4.
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Figure 5.7: comparison of the predicted and supplier-provided cooling capacity of the hybrid cooler over a time period

Ccond ,nom,cur r =
(

k1 · (F S%)n1 ·Ccond ,nom

c f

)
+k2 (5.4)

The coefficients k1, k2, and n1 were calculated using the supplier data such that the validation error
was minimum. The coefficients were calculated as 1.8, -679.32, and 0.358 respectively. The average
and maximum error percentage for the equation was 0.33% and 13.09% respectively.

Combined model
A combination of both models was used to predict the cooling capacity of the cooler. For the GIST
plant, the cooler fan speed is not measured. So, an operating condition was assumed for which
the cooler fan could run at full speed. The cooler fan was assumed to run at full speed when the
temperature difference between the cooler glycol outlet temperature set point and actual glycol
outlet temperature is greater than 2◦C. Using this assumption cooling capacities were predicted for
the actual data. However, the deviation in actual and predicted cooling capacity was large. Fur-
ther investigation showed that the equations used for the models do not cover the entire range of
operating conditions due to a lack of supplier data. Moreover, the calculations were performed as-
suming a constant glycol mass flow rate but in the actual plant, the glycol mass flow rate is varying.
But there is no glycol mass flow rate measurement for these coolers, so a correction for variation in
glycol mass flow rate was not possible. Hence, machine learning techniques were used to check the
possibility of modeling.

5.4.2. Cooler model using machine learning techniques
Since the empirical models could not predict cooling capacity for many operating conditions, espe-
cially for the wet condition of the cooler, machine-learning models were developed to predict the
cooling capacity. As per the literature study (Sahoo (2023)), ANN (Artificial Neural Network) is the
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most widely used model for performance prediction of the equipment. However, due to the un-
availability of an extensive data set of the cooler, other machine-learning models were developed.
The machine learning model was developed using four different methods: random forest, polyno-
mial regression, SVR (Support Vector Regression), and GBR (Gradient Boosting Regression). These
methods were chosen because these regression machine-learning models have been shown to be
effective in predicting complex systems. The model was trained using data (cooler fan speed, cooler
fan power consumption, cooling capacity, and the temperature difference between ambient tem-
perature and outlet glycol temperature) from the cooler and validated using a separate test dataset.
These data were provided by the cooler supplier and the supplier has performed calculations as-
suming a constant glycol mass flow rate. The validation process of the model involved comparing
the predicted values of the model with the actual values from the test dataset.
For machine-learning model validation, MSE (Mean Square Error) and R2 values are compared to
check which model is the best for the given data set. Table 5.1 compares the MSE and R2 values for
all four models. It was observed from figure 5.8 that GBR technique had the lowest error as the pre-
dicted and actual cooling capacity matched well, hence, it was used to predict the cooler capacity
and cooler fan power from the actual plant data.
However, as explained earlier for the GIST plant, the cooler fan speed was not measured. Hence,

Table 5.1: Summary of input & output parameters to be used for thesis

Model MSE (kW2) R2

Random forest 1349.93 0.9863
Polynomial regression 3072.86 0.9856
SVR 55052.82 0.1929
GBR 110.08 0.9984

Figure 5.8: comparison of the predicted and supplier-provided cooling capacity of the hybrid cooler using GBR over a
time period
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using the same assumption and the actual plant data, the cooling capacity and cooler fan power
were predicted. However, there was a huge deviation between the predicted and the actual data.
Further investigation showed that the data used for training the model was not enough to cover the
entire range of operations. Especially, there was no data where the fan speed was 100%. Moreover,
the glycol mass flow rate correction could not be applied for the same reason which could be the
reason for the deviation. Hence, it was concluded that both the empirical model and the machine
learning model cannot be used for this plant as the supplier data does not cover the entire range of
operations.

5.5. Air-cooler model
Air-cooler models were developed first using the supplier’s data. But there was a deviation in the
cooling capacity of the evaporators with respect to the cooling capacity predicted by the compressor
model. Hence, the cooling capacities were calculated using the measured data from the plant and
compared with the previously predicted cooling capacities (from the compressor model). Following
subsections discuss the models and results in detail.

5.5.1. Air-cooler model using supplier’s data
Supplier data (cooling capacity, glycol mass flow rate (constant), inlet air temperature, and inlet
glycol temperature) was used to develop an air-cooler model. The variation in temperature differ-
ence between inlet air and inlet glycol temperature with the cooling capacity was used to develop a
linear regression model. When the model is input with temperature difference, it gives the cooling
capacity of the air-cooler as output. Equation 5.5 refers to the air-cooler model to predict the cool-
ing capacity of the evaporator. Two separate models were developed, one for the 100 kW type air
coolers and the other for the 150 kW type air coolers. Validation of the model was performed and
the RMS error was 1.9 kW and 2.74 kW respectively for the 100 kW and 150 kW models.

Cevap = k1 · (Tai r,i n −Tg l y,i n)+k2 (5.5)

After the model validation, the model was used to predict the cooling capacity of the air coolers
based on the actual plant data. Figure 5.9 refers to the cooling capacities of the air coolers predicted
by the air-cooler DT. There were a lot of data points for which the cooling capacities were unusually
high. Hence, further investigation was performed to understand the root cause and deviation was
observed in the air temperature sensor reading. Figures 5.10 and 5.11 refer to the air temperature
measured by the temperature sensors in the cold stores 4 and 7 respectively. Due to incorrect tem-
perature measurement by the sensor, the prediction of cooling capacity by the air cooler model was
inaccurate. So, the part of the data which had accurate measurements were used for further analy-
sis.

Figure 5.12 shows the comparison of cooling capacities predicted by the compressor model and
the air-cooler model. The reason for this could be the assumption of a constant glycol mass flow
rate. Hence, the cooling capacity was corrected for the actual glycol mass flow rate. As described
in section 5.2, the cooling capacity varies proportionally to the glycol mass flow rate, so the cooling
capacities predicted by the model were corrected in proportion to the actual glycol mass flow rate.
However, the capacity predicted by the corrected air-cooler model was still higher than the com-
pressor model, which implies the air-cooler is underperforming (not performing as per the manu-
facturer’s design). This was concluded because the air-cooler model was based on the design data
provided by the air-cooler manufacturer.
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Figure 5.9: Predicted cooling capacity by the air-cooler model

Figure 5.10: Air temperature measured by the sensor inside cold store 4

5.5.2. Air-cooler model using measured plant data
Further investigation was performed to verify the deviation in the performance of the air-coolers. In
the GIST plant, inlet glycol temperature, outlet glycol temperature, and glycol volume flow rate are
measured across the air coolers. The fluid used is 30% glycol, from which the specific heat capacity
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Figure 5.11: Air temperature measured by the sensor inside cold store 7

Figure 5.12: Comparison of cooling capacities between air cooler model and compressor model

was calculated. Based on these data, the cooling capacity of the air coolers was calculated. Equation
5.6 was used to calculate the cooling capacity of air coolers.

Cai r cooler = ṁ · cp · (Tg l y,out −Tg l y,i n) (5.6)

Figure 5.13 refers to the comparison of the cooling capacities of air coolers predicted by the com-
pressor model and the cooling capacity calculated from the measured plant data. The cooling ca-
pacity predicted by the compressor model and the one calculated from plant data were matching
within an error margin of 8.9%, which was significantly lower than the mismatch in the air-cooler
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model. Hence, the cooling capacities from the compressor model and the one calculated from the
plant data correspond. This concludes that the design of the air coolers was not as per the specifi-
cation provided by the manufacturer.
The deviation in the measured values and the compressor model could be due to the thermal en-

Figure 5.13: Comparison of measured cooling capacity and the cooling capacity predicted by the compressor model

ergy loss during the flow of the cold glycol from the chiller to the air cooler and due to the heat
added by the pumps. However, it is difficult to quantify these energy losses, hence it is difficult to
say if these losses alone account for the deviation in the air cooler performance.

5.6. Air-coolers optimization
Each air cooler is associated with a cold store. To optimize the air coolers there are various tech-
niques. However, not all the techniques can be utilized in the GIST plant because of the limitation
of the systems installed. One strategy that can be implemented is:
Optimal Defrosting: Developing an optimal scheduling strategy for defrost cycles across multiple
cold stores is essential. This can improve the energy performance of the air coolers. Moreover, co-
ordinating defrost cycles and maintenance tasks efficiently can reduce downtime, improve system
performance, and minimize energy consumption.

5.6.1. Optimal defrosting
Hot glycol defrosting is used in the GIST plant to defrost the air coolers. Hot glycol defrosting is
a common method used in refrigeration systems to remove ice or frost buildup from the evapora-
tor coil. During normal operation, the evaporator coil of a refrigeration system gets cold, causing
moisture in the air to condense and freeze on its surface. Over time, this ice buildup can reduce the
efficiency of the system and hinder its ability to cool properly. Hot glycol defrosting is an efficient
and effective technique to melt the ice and restore the optimal performance of the system.
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The hot glycol defrosting process involves the use of high-temperature glycol from the system’s
chiller to heat up the evaporator coil. Here is a step-by-step explanation of the hot glycol defrosting
cycle:

1. Initiation: The hot glycol defrosting cycle begins when the refrigeration system detects a pre-
determined amount of ice or frost buildup on the evaporator coil. This triggers a defrost cycle,
temporarily interrupting the cooling process.

2. Hot glycol flow: The system’s hot glycol is directed to the evaporator coil. This is achieved by
closing the cooling valve which stops the flow of cold glycol into the evaporator and simulta-
neously opening the defrost valve which allows the flow of hot glycol into the evaporator.

3. Chiller operation: The chiller continues to operate during the defrost cycle, but its hot glycol
goes to both the hybrid cooler and evaporator.

4. Heat transfer: The high-temperature glycol from the chiller enter the evaporator coil, which is
cold due to the ice buildup. As the hot glycol flows through the coil, it transfers its heat energy
to the coil’s surface. This heat causes the ice to melt, converting it back into water.

5. Drainage: The melted ice or frost collects in a drain pan or a series of drains within the evap-
orator, where it is then directed out of the system through a drain line.

6. Termination: Once the ice has melted and the evaporator coil is clear, the hot glycol defrost
cycle is terminated. The defrost valve is closed and the cooling valve is opened.

7. Resuming cooling operation: After the defrost cycle, the refrigeration system resumes its nor-
mal cooling operation. The evaporator coil is now free from ice or frost, allowing for efficient
heat transfer and improved cooling performance.

Currently, the defrosting is controlled by a fixed time interval, that is after a fixed time period de-
frosting is switched ON and it remains ON for a fixed period of time and then it is switched OFF.
This leads to excess energy consumption because the frost thickness may not be enough to start
defrosting or the defrosting may be continued even after the defrosting is complete. Moreover, too
many defrost cycles can have a negative effect on the food being preserved. Hence, to optimize the
defrosting process it is important to calculate when the defrosting has to be started and the exact
defrosting time.
Most of the defrosting techniques reported in the literature have used experimental (lab experi-
ment) techniques to calculate the defrosting time. But in the running plant, it is not a viable option
as it is difficult to set up the experimental setup. Hence, the analytical method should be used. The
analytical method includes an energy balance model, where an energy balance between the air and
glycol side is used to check the amount of frost accumulated. An adaptive defrosting technique has
been developed by Danfoss (manufacturer) using the same technique. The energy balance model
used for this technique is shown in figure 5.14. At the start of the process, that is when the evapo-
rator is ice-free, an energy balance between the glycol side and air side is expected. But when the
ice starts accumulating part of the energy goes to the formation of frost, hence, cooling capacity is
reduced due to frost formation and obstruction of airflow. Once the cooling capacity reduces to a
particular value, the defrosting is started. This technique should be used for the GIST plant. How-
ever, the energy model for the glycol side cannot be developed for the GIST plant as there is no
temperature sensor at the outlet of the glycol flow.

5.7. Conclusion
In conclusion, the analysis of the GIST plant reveals several key findings:
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Figure 5.14: Energy model used for the defrosting model for air-coolers (Manufacturer - Danfoss)

• The two chillers operating in parallel are suboptimal, leading to approximately 2.5% excess
energy consumption. The frequent starting and stopping of the second chiller may result in
mechanical wear and tear.

• The evaporators of both chillers deviate from the design specifications, resulting in a total
temperature difference of 1.29◦C in the evaporating temperature. This discrepancy leads to
3-5% higher energy consumption compared to the intended design.

• Similarly, the condenser performance of both chillers deviates from the specified design, with
a total temperature difference of 1.15◦C in the condensing temperature. This variation causes
an excess energy consumption of 3-5%. Additionally, multiple data points indicate a negative
temperature difference between the glycol inlet temperature and saturated discharge temper-
ature, confirming the frequent starts and stops of the chiller.

• Despite the development of a hybrid cooler model using empirical and data-driven approaches,
neither model accurately predicts the condensing capacity due to incomplete data coverage
across all operational ranges.

• The air cooler model predicts significantly higher cooling capacities than the compressor
model, which is theoretically impossible. Further investigation reveals that temperature sen-
sors for cold stores 4 and 7 are not functioning correctly, leading to inaccuracies in predicted
capacities. The air cooler underperforms according to the supplier’s specifications. Conse-
quently, cooling capacities were calculated using measured plant data, reinforcing the con-
clusion of underperformance. Furthermore, a cooling capacity deviation is observed between
the cooling capacity from the measured plant data and the compressor model, likely due to
heat added during the flow of cold glycol from the chiller to the air coolers and the heat added
by the pumps.

• The evaluation of the GIST plant identifies two faults: the control algorithm of the chillers and
the temperature sensors of cold stores 4 and 7. Additionally, certain equipment, such as the
chiller evaporators, condensers, and air coolers, does not meet design or supplier specifica-
tions. Rectifying these faults and implementing design modifications can lead to improve-
ments in energy performance and maintenance savings.

• The optimization of parallel chiller operation can achieve energy savings of 2.42%. Design
modifications targeting air coolers, evaporators, and condensers can potentially yield esti-
mated energy savings of 8-10%. Although the energy savings from adaptive defrosting opti-
mization are difficult to quantify due to limited data availability, it can contribute to energy
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conservation. The hybrid cooler also has the potential for energy savings, but reliable data is
currently unavailable for accurate calculations.

• By implementing these optimizations and design modifications, the GIST plant can achieve
a total energy savings of approximately 170 MWh, resulting in annual electricity cost savings
of $ 70,000. Furthermore, these measures can help mitigate the release of approximately 60
tonnes of CO2 into the atmosphere, contributing to a reduction in carbon footprint and the
alleviation of global warming.





6
Conclusion

This research aimed to optimize the energy performance of refrigeration systems in order to reduce
energy consumption, minimize greenhouse gas emissions, and contribute to a more sustainable fu-
ture. The research objectives were successfully achieved through the development of digital twins
(DTs) for equipment modeling, evaluation of energy performance, identification of deviations, and
implementation of optimization strategies.
The research highlighted the significance of refrigeration systems in global energy consumption,
particularly in the food & beverage industry, and their contribution to CO2 emissions. The need to
address sub-optimal operation and inadequate performance of refrigeration systems was empha-
sized, considering the adverse effects of greenhouse gas emissions and global warming.
The research objectives of developing and evaluating digital twins (DTs) for each type of equipment,
analyzing their energy performance, comparing them with actual site data, identifying and correct-
ing deviations, optimizing system set points and defrosting, and calculating energy savings have
been successfully addressed through the study of three plants: Verkade Plant, LST Plant, and GIST
Plant.
For the Verkade Plant, it was concluded that the DT models developed were accurate within a 5%
error margin, providing reliable results for equipment analysis. The optimization of the plant led to
significant energy savings of 7% annually, amounting to approximately 32 MWh of electrical energy,
$ 13,000 in cost savings, and 11 tonnes of CO2 reduction per year. These energy savings contribute
to mitigating the effects of global warming and align with the goals of the Paris Agreement.
In the case of the LST Plant, various equipment inefficiencies were identified. The screw compres-
sors were found to be operating suboptimally, leading to imbalanced load sharing, increased energy
consumption, mechanical wear, and higher maintenance frequency. The evaporative condenser
exhibited signs of refrigerant leakage, and the control of the expansion valve opening and the feed
control valve for freeze dryers were unstable. The energy savings strategies proposed for the LST
Plant included optimizing the parallel operation of screw compressors (1.55% energy savings), ad-
justing the condensing temperature set point (11.06% energy savings), and rectifying the evaporator
feed valve control. These optimizations could save approximately 200 MWh of energy annually, re-
sulting in $ 81,000 in electricity cost savings and preventing the release of 70 tonnes of CO2 into
the atmosphere. Such reductions in CO2 emissions align with the goals of the Paris Agreement and
contribute to mitigating global warming.
The analysis of the GIST plant revealed equipment inefficiencies, including suboptimal parallel
chiller operation, deviations in evaporators and condensers from design specifications, and inaccu-
rate temperature sensors. Faults were identified in the control algorithm and temperature sensors.
Proposed optimizations included parallel chiller operation (2.42% energy savings), design modifi-
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cations (estimated 8-10% energy savings), and adaptive defrosting. Implementing these measures
could save 170 MWh of energy annually, reducing electricity costs by $70,000 and preventing the
release of 60 tonnes of CO2, aligning with the Paris Agreement and mitigating global warming.
In conclusion, the research objectives were successfully achieved by developing accurate DT mod-
els, evaluating energy performance, identifying deviations, and implementing energy-saving mea-
sures in all three plants: the Verkade, LST, and GIST plants. The findings highlight the potential for
significant energy and cost savings, as well as substantial CO2 emission reductions.
However, there are some limitations in the research which can be overcome by further research.
Some equipment models could not be developed and some models could not be validated due to
the lack of experimental data and actual plant data respectively. More sensors could be installed in
the plant to get relevant information to try new energy savings strategies. There were few perfor-
mances of equipment that could not be explained in the current study. Those can be analyzed in
further studies.
Further studies are warranted to explore additional optimization opportunities, such as the cor-
rection of the evaporator feed valve control and defrosting, which was challenging to quantify in
terms of energy savings. Additionally, the research can be extended to analyze more plants and val-
idate the applicability of the DT models and energy-saving strategies in different settings. Contin-
uous monitoring and analysis of energy performance in various industrial plants can contribute to
achieving sustainability goals and further refining the optimization techniques for improved energy
efficiency.
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