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1
O V E RV I E W O F T O P I C S

In this thesis we will study multi-layer particle systems, which are interacting
particle systems that live on a geometry consisting of multiple copies of the integers
Z. This choice of geometry provides a way of modeling active particles that use
internal energy to move in a preferred direction.

The goal of this chapter is to provide an introduction to the field of statistical
mechanics and interacting particle systems and to introduce the various topics
discussed in this thesis in a mostly intuitive way without going into too much
mathematical detail. Afterwards, we motivate the topic of this thesis further and
provide a sketch of the content of this thesis. Later, in Chapter 2, we focus on the
mathematical background needed for this thesis.

Readers who are familiar with the field of Interacting Particle Systems are
advised to skip to Sections 1.5 and 1.6 for the motivation of this thesis and an
overview of the following chapters.

1.1 statistical physics

Before introducing the field of interacting particle systems as a branch of mathemat-
ics, it is only appropriate to first take a step back and begin with an introduction
to statistical physics. At its core, statistical physics serves as a bridge between the
microscopic world of individual particles and the macroscopic world of systems
containing an immense number of particles. For instance, the evolution of a gas or
liquid on a macroscopic scale can be described using partial differential equations
(PDEs). However, when we zoom in to the microscopic scale, we encounter a
chaotic system of tiny particles, all colliding and interacting with one another.

The idea of statistical physics is to start at the microscopic scale and use it to infer
properties or behaviors at the macroscopic scale. This goes beyond just finding a
partial differential equation for the typical evolution of the system (usually referred
to as the hydrodynamic limit). One of the central questions is: what does the system
look like when observed over long periods of time? In many cases, the system
evolves toward a stable distribution known as equilibrium.

In equilibrium statistical physics, the goal is to understand the macroscopic
properties of systems that have reached such a steady state. Although the individ-
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4 overview of topics

ual particles continue to move and interact, the system as a whole exhibits no net
change in its macroscopic observables. For instance, a gas in a sealed container
will reach a point where quantities like temperature, pressure, and density become
uniform and constant over time. At this stage, the system is said to be in thermal
equilibrium.

But not all systems behave this way. In fact, many real-world systems operate
far from equilibrium (weather patterns, epidemics, living organisms). These are
referred to as non-equilibrium systems. In such cases, instead of settling into a static
equilibrium, the system might exhibit complex time-dependent behavior on the
macroscopic scale, such as steady fluxes of particles, self-organized patterns, or
oscillations. Understanding the emergence of equilibrium, or the mechanisms
driving systems away from it, is a major theme in statistical physics.

Building on this, it is important to recognize that statistical physics is not limited
to systems of atoms, but also extends to other fields, such as biology. For example,
when considering a flock of birds, on the macroscopic scale, we see various
patterns emerging, while on the microscopic scale, individual birds adjust their
flight patterns in response to those around them. Or in genealogy, the microscopic
scale can be viewed as the individuals in a population, while on the macroscopic
scale, we observe the evolution and survival of certain genetic traits. “particles”
should thus not be considered as necessarily an atom, but rather as an abstract
object that can take many forms, both large and small.

But where does the mathematics come into play? (After all, this is a thesis in
mathematics.) The actual approach in statistical physics is usually probabilistic in
nature. Since we are often considering models with a “large” number of particles
(where large can be anything from 100 birds in a flock to 1023 atoms in a gram)
and every particle can interact with every other particle, it is unfeasible to use
a realistic model to describe every particle on the microscopic level. Instead we
model them to behave randomly, i.e., at each point in time a particle moves with a
certain velocity1 according to a probability distribution, which may depend on its
own position and the positions and velocities of other particles.

But is such a random model still realistic enough to say something about the
real model? And why would the random model be easier to study? For these
questions it is helpful to consider the example of tossing a coin. Although tossing
a coin is a complex physical process, in theory, we could predict the outcome if we
knew all the initial conditions. However, in practice, this is not feasible. It is way
more reasonable to use a random model, where with equal probability the coin
lands on heads or tails. While this random model may not be the best model for
the individual coin-flips (it will only be correct around 50% of time), it still enables
us to draw conclusions on a larger scale.

1 Velocity refers to both the speed and the direction of a particle.
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For instance, we can show that in the random model, if the coin is tossed a
large number of times, the average number of heads (or tails) will converge to 1/2,
as we would expect from the real model as well. This result is called the Law of
Large Numbers (LLN). Another result, the Central Limit Theorem, (CLT) allows us
to quantify the probabilities of deviations of the average from 1/2. In statistical
physics there are similar types of results, which are referred to as scaling limits
(these will be discussed further in Section 1.4). The idea here is the same, that
while the random model is not a good estimator for the path of individual particles,
the average dynamics of a large number of particles still coincide with what we
would expect.

In probability theory, the area of study related to statistical physics is often
referred to as Interacting Particle Systems (IPS). In the next section, we introduce
this area and provide examples of some common IPS that will appear throughout
this thesis.

1.2 interacting particle systems

The field of IPS is a subfield of Markov Process Theory. We will give a detailed
description of Markov processes in Chapter 2. In short, Markov processes are
stochastic2 processes that are memoryless; that is, the future depends only on the
present state and not on the past. While this may seem like a strong assumption, it
is actually well suited for particle systems. For instance, if you were to know the
position and velocity of every particle in your system at a given time, then you
would be able to infer something about its future behavior without looking at the
past. Furthermore, the theory of Markov processes is a rich field with numerous
results that can be directly applied to the field of IPS.

In this thesis we are mostly concerned with particles moving on a lattice, for
example on the integers Z. This may seem strange at first since when we think of
positions of atoms for example, we think of them moving in the continuum and
not on a grid. However, discretizing space has a lot of advantages in defining the
interactions between particles: Rather than having to define interaction up to a
certain distance in the continuum, we can impose nearest-neighbor interactions on
the lattice. Furthermore, we are able to return to the continuum on the macroscopic
scale by rescaling space, which will be explained in Section 1.4.

A configuration of particles on this lattice is usually denoted by η, which is a
function η : Z → N where for every x ∈ Z the value η(x) ∈ N represents the
number of particles at position x. Since a configuration is only concerned with the
number of particles at every site, we automatically make the assumption that the
particles are indistinguishable.

2 stochastic = random
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· · · Z· · ·
x y

Figure 1: An example of a particle configuration on Z. In this example we
have η(x) = 3 and η(y) = 1.

The evolution of the system works as follows: Each particle has a set of inter-
nal clocks, one for each possible site it can jump to (usually we consider only
nearest-neighbor jumps), that ring after a random time. When the first clock
rings, the particle jumps to the corresponding site. These random waiting times
are exponentially distributed3 with a parameter that may depend on the entire
configuration, the site the particle is jumping from, the site it is jumping to, or
other quantities. These parameters are called rates, and the general rule is that the
higher the rate, the faster the event occurs.

1.2.1 Examples of IPS

Below we give a short description of three types of interacting particle systems
that are often considered in this thesis.

INDEPENDENT RANDOM WALKERS (IRW)

The first “interacting” particle system we consider is one in which there is no
interaction between the particles at all. In the IRW model, particles jump with
jump rates that are independent of the rest of the configuration. This model often
serves as a good starting point in the analysis of particle systems, before adding
any interactions.

· · · Z· · ·
x y

3 3

1
1

Figure 2: Rates of particles jumping from x and y in the IRW model. Since
there are three particles at site x, the total rate of any particle
jumping to a neighboring site is 3.

3 The choice of exponential waiting times ensures that the process is Markovian; namely, the exponential
distribution has the memoryless property, meaning that if the clock has not rung after an arbitrary time,
the remaining time until it rings is still exponentially distributed with the same parameter.
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For now, we consider the model in which a particle jumps to a nearest-neighbor
site at rate 1. This choice of rates makes the model both simple4 and symmetric5.

SIMPLE EXCLUSION PROCESS (SEP)

The SEP is a process that follows the exclusion rule of having at most one particle
per site. The particles still perform simple symmetric random walk jumps, but any
attempt to move to an occupied site is rejected.

· · · Z· · ·
x y

1 1 1

Figure 3: Rates of particles jumping from x and y in the SEP model. One
jump from y gets rejected due to the presence of another particle.

The SEP was introduced by Spitzer in [107], whose work actually started the
field of IPS. The exclusion dynamic models repulsion between particles and can
be used, for instance, to simulate a high-temperature gas where particles interact
only through short-range collisions. Another application of the SEP is to simulate
traffic flow. In this context, jumps would be restricted to a single direction, leading
to what is referred to as the Totally Asymmetric Simple Exclusion Process (TASEP).

SIMPLE INCLUSION PROCESS (SIP)

Instead of repulsive dynamics, we could also consider attractive interaction be-
tween particles. The SIP does exactly that, where particles are inclined to jump
towards sites with more particles. In this process, next to simple symmetric ran-
dom walk jumps, every particle invites every other particle at nearest neighbor
sites to jump to their site with rate 1. Therefore, a single particle will jump to a
neighboring site containing n particles with rate 1 + n.

· · · Z· · ·
x y

3(1 + 1) 3(1 + 2)

1

1(1 + 2)

Figure 4: Rates of particles jumping from x and y in the SIP model.

The SIP was introduced in [45] where it arose as a tool to study another process
called the Brownian Energy Process (BEP). Afterwards, it has become an object of
independent study, explored in more detail in works such as [14, 47, 46].

4 Simple refers to the fact that only nearest-neighbor jumps are possible.
5 Symmetric means that the jump rate between two sites is the same in both directions.
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SPIN SYSTEMS

Although not a central topic of this thesis, another well-studied class of IPS are
spin systems. Here, unlike particle systems modelling transport (such as IRW, SEP
and SIP) the particles are at a fixed position and can change their state according
to particles around them. Common examples of the spin systems are the Voter
model (a model to simulate opinion behavior in social networks), the Contact
process (a model to simulate the spread of an epidemic) and the Ising model (a
model to simulate magnetic behavior of a material). Especially for these last two,
considerable efforts have focused on phase transitions, see for example [55, 88].

1.2.2 Relevant literature

The books of Liggett [75, 76] played a key role in developing the mathematical
theory around IPS, where many types of IPS are discussed, including some we
have mentioned above.

1.3 ergodic theory

Ergodic theory originated from Ludwig Boltzmann’s interpretation of probability
(for a detailed record on this, see [122]). Given a process {Xt : t ≥ 0}, Boltzmann’s
idea was to describe the probability of a state as the proportion of time the process
spends in this state, i.e., he defined a probability measure µ as

µ(A) := lim
T→∞

1
T

∫ T

0
1(Xt ∈ A)dt, (1.3.1)

where 1 is the indicator function, equal to one if the event in the brackets is true,
and zero otherwise.

There were two problems Boltzmann encountered with this definition. The first
was existence: does this limit actually produce a probability distribution? In finite
systems this is always the case. However in infinite systems the process may escape
causing the probability mass to disappear.

The second problem was uniqueness: does the limit always converge to the
same value for different initial conditions X0 = x? A simple example illustrating
where this can go wrong occurs when Xt is defined on two disjoint sets with no
path between them (see Figure 5). The average time spent in one of the two sets is
either 1 or 0, depending solely on whether we start in that set or not.

To address this issue, the initial concept of ergodicity emerged, defining a system
as ergodic if it eventually visits all states of the space. Under this notion of
ergodicity, the probability measure defined in (1.3.1) is indeed independent of the
initial condition.
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Figure 5: A process defined on two disjoint sets. Once it starts in any of
the two sets, it remains within that set indefinitely.

Later, Birkhoff [9] and von Neumann [121] provided a more rigorous mathemat-
ical framework for ergodicity, leading to the formal definition of ergodic measures.
These are precisely the measures µ for which the equality (1.3.1) holds for µ-almost
all initial points x. Consequently, any point in the support of an ergodic measure
is accessible from any other point in that support, while points outside the support
cannot be reached from points within it. For instance, in the example shown in
Figure 5 there are two ergodic measures: one with support in the left set and the
other with support in the right set.

These ergodic measures provide insight into the long-term behavior of the
process. In this sense, they are closely related to invariant measures.

1.3.1 Invariant measures

Consider a stochastic process {Xt : t ≥ 0} on the state space Ω. Suppose the initial
position X0 is drawn from some probability distribution µ on Ω, then one may ask
how the distribution of Xt, denoted by µt, evolves over time. For Markov processes
this result is known, and µt solves the Kolmogorov forward equation

∂tµt = µtL. (1.3.2)

Here L is the generator6 of the Markov process, which is a linear operator acting on
functions f on Ω. For jump processes, this generator is given by

L f (x) = ∑
y∈Ω

c(x, y)( f (y)− f (x)) (1.3.3)

6 The precise definition of a generator of a Markov process will be given in Chapter 2. For now, intuitively,
a generator describes how probabilities evolve over an infinitesimally small time step.
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where c(x, y) is the rate of the process jumping from state x to state y. To properly
interpret µtL in (1.3.2), we define it as the measure on Ω such that for all f in the
domain7 of L we have that ∫

f dµtL =
∫

L f dµt. (1.3.4)

An invariant measure, also known as a stationary distribution, of the process is a
measure µ that does not change over time, i.e., if we start the process from µ then
∂tµt = 0 for all t ≥ 0. This means that an invariant measure is a fixed point of the
Kolmogorov forward equation, satisfying µL = 0 (meaning that

∫
L f dµ = 0 for

all f in the domain of L). If the measure µt converges to a probability measure
as time progresses, then it has to converge to such a fixed point, meaning that
knowing the invariant measures gives a certain understanding on the long-term
behavior of a process.

Since the generator L is a linear operator, any convex combination of invariant
measures is again invariant, making the set of all invariant measures convex. The
ergodic measures are the extremal points of this set. Therefore, knowing all the
ergodic measures allows us to reconstruct the set of invariant measures.

Another special class of invariant measures is the class of reversible measures. A
reversible measure µ has to satisfy for all f and g in the domain of L∫

gL f dµ =
∫

f Lg dµ, (1.3.5)

meaning that L is self-dual in the space L2(µ). If we were considering a jump
process, this is satisfied if the following holds:

µ(x)c(x, y) = µ(y)c(y, x) (1.3.6)

This equality is called the detailed balance condition, and it implies that the process
is time-reversible, meaning that any trajectory is equally likely to occur forward or
backward in time. A system exhibiting this property is often described as being in
equilibrium, which is why reversible measures are sometimes also referred to as
equilibrium measures.

1.3.2 Ergodic measures for IPS

When talking about probabilities on the space of configurations on Z, denoted Ω,
the events to consider are so-called cylinder sets C ⊂ Ω of the form

C = {η ∈ Ω : η(x1) ∈ A1, η(x2) ∈ A2, ..., η(xk) ∈ Ak} , (1.3.7)

7 In some cases we can not make sense of L f for all functions f . For instance if L = ∂x and f is not
differentiable then L f does not exist. The domain of L is precisely those functions f for which L f is
well-defined.
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for any x1, ..., xk ∈ Z and A1, ..., Ak ⊂N. A probability measure on Ω is uniquely
defined by their values on these cylinder sets.

An important class of these measures is given by product measures

µ =
⊗
x∈Z

µx, (1.3.8)

where every µx is a measure on N, which we call the marginals. With a product
measure, the value of every η(x) is distributed according to µx, independent of all
the other sites. More precisely, if C is defined as in (1.3.7), we have that

µ(C) =
k

∏
i=1

µxi

(
{η(xi) ∈ Ai}

)
. (1.3.9)

For the IRW, SEP and SIP introduced in Section 1.2.1, we find product measures
that are ergodic and even reversible for these systems (in Chapter 3 we also give
a proof of this). For the IRW the marginals are given by Poisson distributions
with equal parameter, for the SEP by Bernoulli distributions, and for the SIP
by geometric distributions. The natural question then arises: are these the only
ergodic measures?

Two mathematical tools are very useful in the exploration of this question. The
first is duality, a technique in Markov process theory that allows one to analyze
a process through another (often simpler) process. Useful duality relations are
however scarce, but for the IRW, SEP and SIP a duality relation exists between the
process with infinitely many particles and the same process with a finite number
of particles. In particular these processes are dual to the process with one particle,
which in all three cases corresponds to a single symmetric random walker.

The second tool is coupling. Given two stochastic processes, we can define a
coupling, which is a joint process in which each component behaves like the
original processes when viewed individually, but together they may exhibit depen-
dencies. A coupling is considered successful if the two processes eventually meet
and remain together indefinitely. When such a coupling exists, the distributions of
the processes converge to each other over time.

In Chapter 2 we give more details on the definitions of these two tools.

1.3.3 Relevant literature

The book of Liggett [76] gives an introduction to ergodic theory for the SEP. Later
the paper by Kuoch and Redig [66] gives an understanding of the ergodic measures
of SIP. [14] gives an overview of well-known duality relations in stochastic models
of transport. For an introduction into couplings, we refer to the book of Thorisson
[115], the lecture notes of Lindvall [77] and the lecture notes of Den Hollander
[27].
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1.4 scaling limits

As discussed in Section 1.1, one of the main motivations of studying statistical
physics is to derive macroscopic properties from microscopic dynamics. The
process of transitioning from microscopic to macroscopic behavior is referred to
as scaling limits, and is achieved via an appropriate rescaling of space and time.
Intuitively, scaling limits describe how the system behaves when we "zoom out"
from individual particle configurations and observe particle densities instead. But
how can we approach this "zooming out" mathematically? In this section we
start by describing the mathematical idea behind rescaling space. Afterwards, we
will discuss the three types of scaling limits that are present in this thesis: the
hydrodynamic limit, fluctuations and large deviations.

1.4.1 Rescaling space ("From micro to macro")

The rescaling of space is done using a mathematical object called the empirical mea-
sure. For a given N ∈N, the empirical measure corresponding to a configuration
of particles η is then given by

πN(η) =
1
N ∑

x∈Z

η(x) · δ x
N

, (1.4.1)

where δ x
N

is the Dirac measure8.
In words, the empirical measure places for every particle present at the microp-

oint x ∈ Z a point mass at the corresponding macropoint x
N . As a result, we obtain,

from the micro-configuration η, a measure on the rescaled lattice 1
N Z ⊂ R. For

sufficiently large N, this lattice approximates the continuum R. We now associate
each point in the continuum with a point on the lattice Z through the following
relation

macropoint: x ∈ R ←→ micropoint: ⌈Nx⌉ ∈ Z. (1.4.2)

We will refer to x ∈ R as a macroscopic point, and to ⌈Nx⌉ ∈ Z as the correspond-
ing microscopic point.

The prefactor 1
N in the definition of πN assigns to each particle a "weight" of 1

N .
This weight ensures that the contribution of individual particles vanishes in the
limit N → ∞, and only the averages over large blocks surrounding microscopic
points are relevant. In this sense, the empirical density should remind the reader
of the Law of Large Numbers.

8 The Dirac measure δx is a measure with a point mass at x, such that for every function ϕ we have that
⟨δx , ϕ⟩ = ϕ(x).
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For appropriate configurations η, as we let N tend to infinity, the empirical
measure converges weakly to a measure on R that is absolutely continuous (with
respect to the Lebesgue measure), i.e.,

πN(η)→ ϱ(x)dx as N → ∞, (1.4.3)

for some function ϱ : R → R≥0. This ϱ can now be viewed as the density of
particles on the macroscopic scale, corresponding to the configuration η.

Often, instead of the empirical measures of one configuration, we consider a
sequence of random configurations {ηN}N∈N. For any smooth density ϱ, it is
possible to find such a sequence of configurations for which πN converges to
ϱ(x)dx weakly in probability, as will become clear from the following example.

EXAMPLE 1.1. Pick a smooth density ϱ : R → R≥0. For every N ∈ N, we draw
a random configuration ηN from the product measure (see (1.3.8)) where the
marginals are given by Poisson distributions with slowly varying parameter ϱ( x

N ),
i.e., ηN(x) ∼ Pois(ϱ( x

N )). In this way, for every macroscopic point x ∈ R, the
expected number of particles at the corresponding microscopic point E[η(⌈Nx⌉)]
is approximately equal to ϱ(x). It follows that the averages of large blocks around
the microscopic point ⌈Nx⌉ converge to ϱ(x) by the LLN, hence πN → ϱ(x)dx.

In the example above, it is worth noting that any distribution satisfying E[η(x)] =
ϱ( x

N ) could have been chosen instead of the Poisson distribution. However, the
choice of the Poisson distribution is deliberate. As discussed in Section 1.3, the
product Poisson distributions with a constant parameter serve as the equilibrium
measures for the IRW. Thus, we refer to the distribution in the example as a local
equilibrium measure for this process, as it resembles the equilibrium measure locally
(around microscopic points) for large N, but the parameter varies when viewed on
a macroscopic scale.

1.4.2 Hydrodynamic limit

The first scaling limit typically considered in the theory of particle systems of
transport is the hydrodynamic limit. The idea of the hydrodynamic limit is
to provide a description of the average dynamics of the particle density at the
macroscopic level. This description is generally expressed as a partial differential
equation, which depicts the time-evolution of the particle density. We then refer to
this PDE as the hydrodynamic equation of the system.

In order to explain this in more detail, we turn to an example. Consider the
IRW on Z. For every N ∈N, we start our process from a random configuration
ηN and we denote by ηN

t the configuration of particles at time t. We can now
consider the process of empirical measures corresponding to every configuration
ηN

t . However before we do this, we will first need to rescale time. Namely, since
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we are rescaling space by a factor 1
N , the particles need to travel on average a

distance of order O(N) in order to affect the density on the macroscopic scale.
Therefore, the number of jumps needs to increase by a factor depending on N.

Since we are considering symmetric random walkers on Z, by the Central
Limit Theorem, the particles travel a distance of order O(

√
t) in a finite time t.

Consequently, after rescaling space, time must be rescaled by a factor of N2. This
is referred to as the diffusive time-scale (the reason for which will be discussed
later), and the trajectory of a single particle converges in distribution to that of a
Brownian motion as N goes to infinity.

REMARK 1.2. If instead of symmetric random walkers, we were considering particles
with a drift in a certain direction, the jumps generated by this drift produce a travel
distance of order O(t). In this case, time only needs to be rescaled by a factor of
N. If we consider random walkers with both symmetric jumps and jumps with a
drift, we can rescale time for both types of jumps using different factors. These
types of mixed scalings will appear in Chapter 4, where we examine the scaling
limits of run-and-tumble particles (see Section 1.5).

We now consider the empirical measure at (rescaled) time t ≥ 0,

πN
t := πN(ηN

N2t) =
1
N ∑

x∈Z

ηN
N2t(x) · δ x

N
. (1.4.4)

Similarly as in the previous section, for every t ≥ 0 we expect this measure to
converge towards an absolutely continuous measure πN

t → ϱt(x)dx weakly in
probability. The hydrodynamic limit is then the time-evolution of this density ϱt.

In the case of IRW, it turns out that this density satisfies the heat equation

∂tϱt = ∆ϱt. (1.4.5)

The physical intuition behind this equation is the following: when particles (e.g.
molecules) in the air collide against each other they create heat, and so more
particles in a certain area translates to more heat. Due to the many collisions,
the particles keep changing direction, making the trajectory of a single particle
resemble a (rescaled) symmetric random walk. Over time, these particles spread
out and areas with a high density of particles distribute their mass to areas with a
low density of particles, creating what we call a diffusion.

As t becomes larger, the density ϱt approaches a constant density, i.e., the
particles are spread out evenly over R. This limit of the density as t→ ∞ under
the heat equation dynamics is referred to as a steady state of the process, denoted ϱs,
since it is a state for which ∆ϱs = 0. The fact that the steady states of this process
are the constant densities is coherent with the fact that the ergodic measures of
the system also have a constant parameter. In other words, the steady states of the
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hydrodynamic equation are equal to the densities corresponding to the ergodic
measures of the process.

One could think that by adding interactions between the particles the hydro-
dynamic limit would change, however this is not always the case. In fact, the
hydrodynamic equations of both the SEP and SIP are also equal to the heat equa-
tion (see e.g. [61, Chapter 4] for SEP and [89] for SIP). For this reason, one could
argue that the hydrodynamic limit may not provide a sufficiently detailed descrip-
tion of the macroscopic behavior of the process, as different processes can lead to
the same hydrodynamic limit.

SKETCH OF PROOF

In actual statements regarding hydrodynamic limits, we generally prove a stronger
result than the convergence of every πN

t . Specifically, for fixed (but arbitrary)
T > 0, we prove that the entire trajectory πN

[0,T] := {πN
t : t ∈ [0, T]} converges

to the deterministic trajectory of measures α := {ϱt(x)dx : t ∈ [0, T]}, where ϱt
solves (1.4.5). Therefore we first set up the framework for the type of convergence
we are after.

Denoting byM the space of Radon measures9 on R, we introduce the Skorokhod
space, denoted by D([0, T];M), of càdlàg10 trajectories inM. We denote by PN the
probability distribution of πN

[0,T], i.e.,

PN(A) = P(πN
[0,T] ∈ A), A ⊂ D([0, T];M). (1.4.6)

We then want to show that PN → δα weakly as N → ∞. This is done in two steps.

Step 1: Tightness. Tightness of a sequence of probability measures {PN}N∈N is
a necessary condition for convergence. Intuitively it means that the support of
the sequence is mostly contained in a compact set, ensuring that the mass of the
probability distributions does not escape to infinity. If the sequence {PN}N∈N is
tight, then Prokhorov’s Theorem tells us that every subsequence has a convergent
(sub)subsequence. If one can further show that all convergent subsequences have
the same limit, then the entire sequence converges to that limit − this will consti-
tute Step 2.

9 Radon measures on R are elements of the dual space of continuous functions with compact support
(Cc(R))∗. In particular, countable sums of Dirac measures (like πN) and absolutely continuous
measures (like ϱ(x)dx) are Radon measures.

10 continue a droite, limite à gauche (right-continuous, left limits)
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Step 2: Uniqueness of limits. In order to show that all convergent subsequences
{PNk}k∈N converge to δα, it is important to note that α is the unique trajectory of
measures in D([0, T];M) such that for all test functions ϕ ∈ C∞

c (R)

⟨αT , ϕ⟩ − ⟨α0, ϕ⟩ −
∫ T

0
⟨αs, ∆ϕ⟩ds = 0, (1.4.7)

where ⟨αt, ϕ⟩ denotes the integral of ϕ with respect to the measure αt. Therefore,
we want to show that the trajectory πN

[0,T] solves this equation in the limit. For that
we define the Dynkin martingale:

⟨πN
t , ϕ⟩ − ⟨πN

0 , ϕ⟩ −
∫ t

0
LN⟨πN

s , ϕ⟩ds =: MN,ϕ
t (πN

[0,T]), (1.4.8)

where LN is the generator of the IPS. This process is a martingale with respect to
time t ∈ [0, T] (see Section 2.3.1 for an introduction to martingales), and looks
similar to the left hand side of (1.4.7). We then have to show that

LN⟨πN
s , ϕ⟩ = ⟨πN

s , ∆ϕ⟩+ o(1), (1.4.9)

which follows from direct computations, and that the martingale MN,ϕ
T vanishes as

N → ∞. This last step can be done by showing that the predictable quadratic variation
of the process vanishes. For the Dynkin martingale, the predictable quadratic
variation has an explicit form given by

⟨MN,ϕ(πN
[0,T])⟩t =

∫ t

0
ΓN,ϕ(πN

s )ds, (1.4.10)

where ΓN,ϕ(πN
s ) is the so-called Carré du champ operator, defined by

ΓN,ϕ(πN
s ) := LN⟨πN

s , ϕ⟩2 − 2⟨πN
s , ϕ⟩LN⟨πN

s , ϕ⟩. (1.4.11)

Through some more direct computations, we can show that this operator indeed
vanishes as N → ∞, and so the martingale MN,ϕ

T (πN
[0,T]) vanishes. The rest is an

application of the Portmanteau Theorem11.

REMARK 1.3. In Chapter 2 we provide an elegant proof of a weaker hydrodynamic
result for the IRW, SEP, and SIP − namely the convergence of the expectation
E[⟨πN

t , ϕ⟩]. Here we will use duality to prove that the hydrodynamic equation
actually follows from the convergence of the single-particle dynamics, further
clarifying why the hydrodynamic equations for these three models are equal.

11 The Portmanteau Theorem gives equivalent definitions of weak convergence of measures. Since we have
a weakly convergent subsequence {PNk}k∈N, we are able to use this theorem. We state the theorem in
Section 2.1.1.
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Note that the hydrodynamic equation is derived from equation (1.4.9). For
some processes, we do not immediately find a closed equation for πN

t , i.e., after
computations, there are terms remaining that depend on ηN

t . The approach is to
then replace these terms with averages over large blocks, using what is known
as a replacement lemma. The proof of such a replacement lemma usually consists
of so-called one block and two blocks estimates. We will see an example of this in
Chapter 5 when we are dealing with a weakly asymmetric version of a multi-species
exclusion process.

RELEVANT LITERATURE

For an overview on hydrodynamic limits, we refer to the book of De Masi and
Pressuti [21] and the book of Kipnis and Landim [61]. The latter also gives a good
overview of other scaling limits.

One of the first hydrodynamic results was obtained in the following paper by
Morrey [84]. Later, the two most common methods for proving a hydrodynamic
result were given by Guo, Papanicolou and Varadhan (entropy method) in [51]
and by Yau (relative entropy method) in [124]. Furthermore, Seppäläinen gives a
clear proof for the hydrodynamic limit of the SEP in [104].

Additionally, there exist hydrodynamic results for extensions of models we have
already seen, for instance particle systems with boundary conditions [5, 41], on
random environments [39, 85], and on manifolds [116].

1.4.3 Fluctuations

In the previous section we have seen that the hydrodynamic limit can be considered
as an infinite-dimensional extension of the LLN in the framework of interacting
particle systems. The following natural question then arises: can we find a similar
extension for the CLT? It turns out that this extension does exist and is referred to
as the fluctuations of the system.

Recall that in order to go from the LLN to the CLT, we subtract the limit of the
LLN and introduce a scaling of 1√

N
. Therefore, the fluctuations arise from the limit

of the following process

YN
t =

1√
N

∑
x∈Z

(
ηN

N2t(x)− ϱt

)
· δ x

N
, (1.4.12)

where ϱt solves the hydrodynamic equation of the process, with starting value ϱ0
equal to the density corresponding to the sequence of starting configurations ηN .
Often we pick ϱt = ϱs equal to the steady state of the process, i.e., we assume the
starting sequence ηN to be sampled from the ergodic measures of the process. This
is to avoid working with time-dependent Markov processes, which can sometimes



18 overview of topics

complicate the analysis. In this case we refer to the limit of YN
t as the stationary

fluctuations (or equilibrium fluctuations if the ergodic measures are also equilibrium
measures).

Since we expect the limiting process to be very rough, we consider this process
in the space of distributions12. Furthermore, in accordance with the CLT, we expect
the process YN

t to converge to a Gaussian distribution. In the models outlined in
Section 1.2, the equilibrium fluctuations are represented by a distribution-valued
Ornstein-Uhlenbeck process (as we will see in (1.4.14)).

Ornstein-Uhlenbeck process. As a process on R, the Ornstein-Uhlenbeck process
is the solution to the stochastic differential equation (SDE) given by

dxt = −axt dt + σ dBt. (1.4.13)

Here a > 0 and σ > 0 are constants and Bt a standard Brownian motion. The
intuition behind this process is as follows: while Brownian motion generates
noise, the drift term, −axt dt, pushes the process back toward the origin, with
the strength of this drift increasing as the process moves further from the origin.
A physical analogy for the Ornstein-Uhlenbeck process is a child playing with
a spring: as the child repeatedly disturbs the spring, creating noise, the spring
continuously tries to return to its equilibrium position.

Due to its dynamics, one would expect the Ornstein-Uhlenbeck process to re-
main close to the origin. This is confirmed by the fact that it has a unique invariant
probability measure, given by the normal distribution N (0, σ2

2a ), which indicates
that, at any given time, the process is likely to be found within a compact region
around the origin. In this sense it distinguishes itself from a Brownian motion,
which has no invariant probability measure and escapes towards infinity as time
progresses.

For the IRW, SEP, and SIP, the trajectory of the process YN
t in (1.4.12) , with

ϱt = ϱ constant, converges (in distribution) to the solution of a stochastic partial
differential equation (SPDE) of the following form:

dYt = ∆Yt dt +
√

2χ(ϱ)∇dWt, (1.4.14)

where dWt is a so-called space-time white noise (a distribution-valued Gaussian
process), and χ(ϱ) is a constant that is dependent on the model. The “gradient” of
the white noise ∇dWt is the process that satisfies ⟨∇dWt, ϕ⟩ = −⟨dWt,∇ϕ⟩ for all
ϕ ∈ C∞

c (R).

12 distributions, or sometimes called generalized functions, are elements of the dual space of smooth
functions with compact support (C∞

c (R))∗. They are more general than Radon measures and allow for
rougher "densities".
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This form should indeed remind the reader of the SDE of an Ornstein-Uhlenbeck
process as written in (1.4.13). Moreover, despite working with a distribution-valued
Ornstein-Uhlenbeck process instead of an R-valued one, the intuition remains the
same: the noise term drives the process away from the steady state, while the
drift term, corresponding to the hydrodynamic equation, pushes it back towards
equilibrium.

SKETCH OF PROOF

The proof of the equilibrium fluctuations follows the same approach as that of the
hydrodynamic limit: we first establish the tightness of the sequence of probability
distributions QN for YN

[0,T] := {YN
t : t ∈ [0, T]}, and then we prove that any

subsequence of QN has the same limit Q, which corresponds to the solution
Y[0,T] := {Yt : t ∈ [0, T]} of (1.4.14). However, there are two key differences.

The first difference is that the limiting object is not the Dirac measure of a
deterministic trajectory, but instead the probability distribution of a distribution-
valued stochastic process. As a consequence, the martingale MN,ϕ

T (YN
[0,T]), defined

as in (1.4.8), does not vanish as N → ∞, but converges to a new process. This
limiting process appears in the martingale problem corresponding to Q, which states
that Q is the unique probability distribution such that the following two processes
are martingales:

Mϕ
t (Y[0,T]) := ⟨Yt, ϕ⟩ − ⟨Y0, ϕ⟩ −

∫ t

0
⟨Ys, ∆ϕ⟩ds,

Nϕ
t (Y[0,T]) := Mϕ

t (Y[0,T])
2 − 2tχ(ϱ)⟨∇ϕ,∇ϕ⟩L2(dx). (1.4.15)

In the proof we then consider the following two processes, both of which are
known to be martingales:

MN,ϕ
t (YN

[0,T]) := ⟨YN
t , ϕ⟩ − ⟨YN

0 , ϕ⟩ −
∫ t

0
LN⟨YN

s , ϕ⟩ds,

NN,ϕ
t (YN

[0,T]) := MN,ϕ
t (YN

[0,T])
2 − ⟨MN,ϕ(YN

[0,T])⟩t. (1.4.16)

with the predictable quadratic variation ⟨MN,ϕ(YN
[0,T])⟩t defined as in (1.4.10). The

goal is to then prove that these martingales converge to the martingales in (1.4.15).
The second key difference is that instead of working with trajectories inM, we

work with trajectories in the space of distributions (C∞
c (R))∗. The main issue here

is that this space is not metrizable, which is needed in order to use Portmanteau’s
theorem. However, there is a fix around this problem, as introduced in [117], using
the continuity of the process t 7→ Yt.
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RELEVANT LITERATURE

The first results in fluctuation theory were obtained in the papers by Martin-Löf
[81] and Rost [99]. The book by Kipnis and Landim [61, Chapter 11] gives a proof
of the fluctuations of the SEP on the torus. The first non-stationary fluctuations
were obtained in [22], and more recent results of this are given in [40, 60].

1.4.4 Large deviations

Besides the LLN and CLT, one is often interested in the large deviations around the
mean value. This concept can once again be extended to the world of IPS, where
we consider the large deviations around the hydrodynamic limit. For readers
less familiar with large deviation theory, a brief introduction to the topic is first
provided in the framework of random variables.

LARGE DEVIATIONS FOR RANDOM VARIABLES

Consider a sequence of i.i.d. random variables X1, X2, ... with mean µ and variance
σ2, then the LLN tells us that the averages converge to the mean, i.e.,

1
N

N

∑
i=1

Xi → µ. (1.4.17)

The CLT then quantifies the normal deviations (of order 1√
N

) around this mean, and
shows that they converge to a normal distribution, i.e.,

1√
N

N

∑
i=1

(Xi − µ)→ N (0, σ2). (1.4.18)

The theory of large deviations, much like the CLT, also concerns itself with devia-
tions around the mean, however it focuses on deviations of order 1 (hence they
are referred to as "large"). More specifically, it quantifies the rate at which the
probability that the average is close to any value other than µ converges to zero. It
is often the case that this rate is exponential and can be written as

P

[
1
N

N

∑
i=1

Xi ≈ α

]
≈ e−NI(α). (1.4.19)

Here the ≈-notation can be made more rigorous, however for this introduction it is
enough to interpret this as an asymptotic result for the probability that the average
is close to α for large N. If the above holds, the sequence of random variables is
said to satisfy a large deviation principle (LDP) at rate N, with so-called rate function
I .
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EXAMPLE 1.4. As an introductory example, consider independent coin-flips, where
every Xi is 1 if the i’th coin lands on heads and 0 otherwise. The rate function is
then given by I(α) = α log 2α + (1− α) log 2(1− α) (see e.g. Dembo and Zeitouni
[25]). Note here that I(α) = 0 if and only if α = 1

2 , and positive for any other
value α ∈ [0, 1]. This is coherent with the fact that 1

2 is the mean itself, and so the
probability should be approximately 1 when α = 1

2 , and 0 otherwise.

A fundamental theorem in the topic of large deviations for random variables is
Cramér’s Theorem. It tells us that an LDP holds for an i.i.d. sequence of random
variables if the moment-generating function Λ(t) = E

[
etX] is finite in an open

interval around t = 0. The rate function is then given by the so-called Legendre
transform of Λ, i.e.,

I(α) = sup
t∈R

{αt− log Λ(t)} . (1.4.20)

The proof of Cramér’s Theorem relies on tilting the distribution P of X through
the Cramér transform

dP̂

dP
(x) =

1
Λ(t∗)

et∗x, (1.4.21)

where t∗ is the value of t that maximizes the expression αt − log Λ(t) in the
definition of I(α). It can then be shown that this new distribution P̂ has expectation
α, making the large deviation event

{
1
N ∑N

i=1 Xi ≈ α
}

typical under the tilted

measure P̂. The rate function I(α) now represents the cost for tilting the measure.

LARGE DEVIATIONS FOR IPS

As we saw in the previous section, large deviations of random variables focus on
deviations around the LLN of order 1. The analogue in the context of IPS would
then be the deviations of the empirical density around the hydrodynamic limit.
For this we again consider the whole trajectory of empirical measures πN

[0,T]. We
are then interested in the rate function I such that the following holds

P
[
πN
[0,T] ≈ α̂

]
≈ e−NI(α̂), (1.4.22)

where α̂ is now an element of the Skorokhod space D([0, T];M).

REMARK 1.5. Even though we are considering α̂ ∈ D([0, T];M), it is typically the
case that I(α̂) is only finite if α̂ is a trajectory of absolutely continuous measures,
i.e., α̂ := {ϱ̂t(x)dx : t ∈ [0, T]}. Therefore, at least for this introduction, we will
assume α̂ to be of this type.

In general, the rate function I can be split into two parts: the static part and the
dynamic part,

I(α̂) = h(α̂0) + Itr(α̂). (1.4.23)
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The static part h(α̂0) deals with the large deviations of the starting measure. For
example, suppose we start from a product Poisson measure with slowly varying
parameter ϱ( x

N ) (see Example 1.1). While the typical event is that the empirical
measure at time t = 0 converges to the measure ϱ(x)dx, a large deviation event
would be that it converges to some other measure ϱ̂(x)dx. The rate function is
then given by

h(α̂0) =
∫

R
ϱ̂(x) log

ϱ̂(x)
ϱ(x)

dx−
∫

R
(ϱ̂(x)− ϱ(x))dx (1.4.24)

The dynamic part Itr(α̂) in (1.4.23) gives the dynamic cost of the deviating
trajectory. In the case of the IRW, this part of the rate function has the following
variational formula:

Itr(α̂) = sup
G

{
ℓ(α̂, G)− 1

2

∫ T

0
⟨α̂t, (∇G(·, t))2⟩dt

}
. (1.4.25)

Here, the supremum is taken over smooth functions G, and ℓ(α̂, G) is a linear
operator given by

ℓ(α̂, G) = ⟨α̂T , G(·, T)⟩ − ⟨α̂0, G(·, 0)⟩ −
∫ T

0
⟨α̂t, (∂t + ∆)G(·, t)⟩dt. (1.4.26)

The integral in (1.4.25) is non-negative and quadratic, and hence can be viewed as
the square of a norm:

||G||2H(α̂) :=
∫ T

0
⟨α̂t, (∇G(·, t))2⟩dt, (1.4.27)

where H(α̂) is the Hilbert space consisting of L2-functions where this norm is
finite.

REMARK 1.6. Analogous to Example 1.4, we would expect that if α solves the heat
equation (i.e., the hydrodynamic equation of the IRW) then Itr(α) = 0. Indeed,
if α solves the heat equation then ℓ(α, G) = 0 for every G. Consequently, the
supremum in (1.4.25) is achieved for functions G that minimize the norm ||G||H(α).
This is certainly the case for G ≡ 0, and it follows that Itr(α) = 0. Moreover, it
can be shown that this is the only root of Itr, confirming that the heat equation
trajectory is the only zero cost trajectory for the dynamics.

SKETCH OF PROOF

A core idea of the proof is based on Cramer’s theorem, where we introduced
a tilted measure in which the large deviation event becomes typical. A major
difference in this context of IPS, is that we also need to identify the possible
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deviating trajectories. For example, due to conservation of mass, we can not
allow trajectories where the total mass of particles changes over time. For these
trajectories the rate function will be equal to I(α̂) = ∞. Therefore, for trajectories
where I(α̂) < ∞, we need to identify a tilted process with probability distribution
P̂N such that

P̂N({πN
[0,T] ≈ α̂}) ≈ 1. (1.4.28)

Once this is found, the rate function can be determined, at least heuristically, as
follows:

I(α̂) ≈ − lim
N→∞

1
N

log EPN

[
1({πN

[0,T] ≈ α̂})
]

≈ − lim
N→∞

1
N

log EP̂N

[
1({πN

[0,T] ≈ α̂})dPN

dP̂N

]
≈ lim

N→∞

1
N

EP̂N

[
log

dP̂N

dPN

]
, (1.4.29)

where dP̂N

dPN denotes the Radon-Nikodym derivative of the two probability distributions.
Although the final step initially appears to provide only a lower bound, it turns
out that the two expressions do coincide if we chose the correct tilted process.

The last line of (1.4.29) is called the relative entropy13 of P̂N with respect to PN .
The static part of the large deviation rate function, as given in (1.4.24), follows
directly from computing the relative entropy of two product Poisson measures
with respective densities ϱ(x) and ϱ̂(x). For the dynamic part of the rate function,
we must first introduce the weakly asymmetric version of the model.

Weakly asymmetric model. Recall that the IRW consists of particles that jump to the
right or left with an equal rate of 1. In the weakly asymmetric model, we introduce
a time-dependent potential, which is a smooth function H : R× [0, T] → R, and
we perturb the rates at every time t ∈ [0, T] such that the rate to jump from x to a
neighboring site x± 1 is now equal to exp(H( x±1

N , t)− H( x
N , t)).

Note that, since H is continuous, as N → ∞ the rates converge to 1 again (hence
"weakly" asymmetric). Nonetheless, the hydrodynamic limit of this model is no
longer the heat equation, but is instead given by

∂tϱ̂t = ∆ϱ̂t +∇ (ϱ̂t · ∇H(·, t)) . (1.4.30)

It turns out that the weakly asymmetric model provides exactly the right per-
turbations needed for large deviations. Namely, using an argument based on the

13 Relative entropy, or also called the Kullback-Leibler divergence, is a measure for the difference between
two probability distributions. It appears in fields such as information theory, statistics, and also in the
study of large deviations (for example in Sanov’s Theorem [26, Theorem II.2]).
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Riesz Representation Theorem, we can show that for trajectories α̂ where Itr(α̂) < ∞,
there exists a potential H ∈ H(α̂) such that the density of α̂ solves equation (1.4.30).
Additionally, it can be shown that the supremum in (1.4.25) is actually achieved
for this H, leading to the expression:

Itr(α̂) =
1
2 ||H||

2
H(α̂). (1.4.31)

Using the Girsanov formula (or the main result of the following paper [90]), we
are able to derive a formula for the Radon-Nikodym derivative of the probability
distribution of πN

[0,T] under the weakly asymmetric dynamics, denoted P̂N,H , with

respect to that under the normal dynamics PN :

log
dP̂N,H

dPN = N⟨πN
T , H(·, T)⟩ − N⟨πN

0 , H(·, 0)⟩

−
∫ T

0
e−N⟨πN

t ,H(·,t)⟩(LN − ∂t)eN⟨πN
t ,H(·,t)⟩ dt. (1.4.32)

The goal is then to establish that

e−N⟨πN
t ,H(·,t)⟩LNeN⟨πN

t ,H(·,t)⟩ = N⟨πN
t , ∆H(·, t)⟩+ 1

2
N⟨πN

t , (∇H(·, t))2⟩+O(1),
(1.4.33)

so that, by substituting this into (1.4.32), the logarithm of dP̂N

dPN resembles the
variational formula of Itr given in (1.4.25).

RELEVANT LITERATURE

An introduction to the field of large deviations can be found in the book by
Den Hollander [26]. Furthermore, the book by Feng and Kurtz [35] gives more
advanced techniques of proving a large deviation principle.

The first instance of a large deviation principle being proven for an IPS is in
the paper by Kipnis, Olla and Varadhan [62], where they prove a large deviation
principle for the SEP. This result has also been included in the book by Kipnis and
Landim [61, Chapter 10].

More recent results on large deviations are for example given for the SEP with
different boundary conditions [42, 43, 69]

1.5 multi-layer particle systems

The main topic of this thesis is multi-layer particle systems. Instead of looking
at particles on one lattice, in a multi-layer particle process we consider multiple
copies of the same lattice, which can be viewed as the “layers” of the system.
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Particles can exhibit different behavior depending on which layer they occupy,
hence we refer to the layer at which a particle resides as the internal state of the
particle.

For instance, if we consider particles moving on Z, then in a multi-layer setting
the particles live on V := Z× S where S is referred to as the internal state space. A
particle at site (x, σ) ∈ V then has position x ∈ Z and internal state σ ∈ S. Particle
configurations on this space are now given by functions η : V →N.

· · · Z× {1}· · ·

· · · Z× {−1}· · ·

(x, 1)

(y,−1)

Figure 6: An example of a multi-layer particle process on Z× {−1, 1}. Here
η(x, 1) = 3 and η(y,−1) = 2. Note that apart from nearest-neighbor
jumps on Z, jumps to the other layer are possible.

1.5.1 Active particles (equilibrium vs. non-equilibrium)

The primary motivation for studying multi-layer particle systems lies in the in-
vestigation of active particles, which has been a topic of significant interest in both
physics and mathematics (see e.g. [32, 64, 72, 80, 87, 105]). Unlike passive particles,
which move only due to external forces (think of dust in the air or ink in water),
active particles exhibit self-propulsion, i.e., they generate their own motion through
energy consumption (think of birds in a flock or people walking in the streets).
This consumption of energy drives the system out of equilibrium, as a continuous
source of energy is needed in order to maintain the dynamics. Therefore active
particles play a role in the study of non-equilibrium systems.

For a system in equilibrium, there is a well-established understanding of its
behavior, largely due to the existence of the Boltzmann-Gibbs distribution

P(X = x) =
1

Zβ
e−βE(x). (1.5.1)
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Here β is the inverse temperature, E(x) is the energy of a state x and Zβ is the
partition function (which is needed to normalize the distribution). A process
corresponding to this distribution is always drawn to states where the energy is
minimized.

For systems out of equilibrium, no such general theory exists (yet), and models
are analyzed on a case-by-case basis. In addition to introducing activity of particles,
alternative methods to produce non-equilibrium behavior include applying an
external field that drives the particles in a certain direction, and using “reservoirs”
(boundaries that inject and remove particles) with differing densities, thereby
creating a current from high to low density.

The reason why people are interested in non-equilibrium systems is that many
real-world systems (chemical reactions, living cells, crowd dynamics) operate out-
side of equilibrium. Furthermore, certain behaviors can emerge in non-equilibrium
systems that do not occur in equilibrium (uphill diffusion, flocking, persistent cur-
rents). Lately, progress is being made in understanding non-equilibrium systems
(see e.g. [11, 113, 114]).

1.5.2 Run-and-tumble particles

A toy model for active particles is the run-and-tumble particles. These particles
jump in a preferred direction according to exponential clocks, but every particle
also has an additional exponential clock that, when it rings, causes them to change
direction. This results in the motion shown in Figure 7. This type of motion can be
found mostly in biological models (for example in E. coli bacteria [91] or motor
proteins [54]).

· · · Z· · ·

Figure 7: The trajectory of a single run-and-tumble particle on Z. After
making several jumps to the right it switches direction and begins
jumping to the left.

REMARK 1.7. Often simple symmetric random walk jumps are added to the model
to represent particle collisions.

This model is not yet a Markov process: knowing the position of a particle alone
is not enough to determine its jump rate in a given direction. To do so, we must
also account for its current preferred direction. Therefore we model these particles
on a multi-layer setting, where every layer (or internal state) corresponds to a
possible preferred direction.
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· · · Z× {1}· · ·

· · · Z× {−1}· · ·

Figure 8: The trajectory of Figure 7 on the multi-layer space Z× {−1, 1}.

When considering particle configurations of run-and-tumble particles, the em-
pirical measure is given by

πN =
1
N ∑

(x,σ)∈V
η(x, σ) · δ

( x
N , σ)

, (1.5.2)

which is a measure on the space R× S. When letting N → ∞, this may converge
to a measure with a density ϱ(x, σ). The hydrodynamic limit in the multi-layer
setting is then about finding a system of PDE’s (one for every σ ∈ S) that describes
the evolution of this density.

However, the original run-and-tumble particle model of interest did not include
any layers but was instead a model of particles on Z (see Figure 7). In order to
return to this scenario, we sum over the layers

η(x) := ∑
σ∈S

η(x, σ), (1.5.3)

which provides the total number of particles at position x ∈ Z. The real ambition
is to find results for this process, which we hope to extract from the multi-layer
process. For example, in the hydrodynamic limit we can try to find a PDE to
describe the behavior of the total density ϱt(x) := ∑σ∈S ϱt(x, σ). In Chapters 4 and
6, we explore this objective in detail and derive results of this type for the case of
two layers.

1.5.3 Multi-species particle systems

Another type of processes that is closely related to multi-layer systems is multi-
species systems. Up until this point we have viewed particles as indistinguishable,
but in the multi-species case, particles can belong to different species. Every species
can exhibit different behavior and may also interact differently with other species.

One example of such a process is the multi-species stirring process, which is a
multi-species version of the SEP (we will also consider this process in Chapter 5).
In this process there is exactly one particle at every site but the particles can be of
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different species (usually one species, denoted by 0, is seen as the empty sites of
the process). Any two nearest-neighbor particles then exchange place with each
other with equal rate.

· · ·Z· · ·

Figure 9: An example of a configuration in the multi-species stirring process
with 3 species: 0 (circle), 1 (triangle) and 2 (square). Any two
nearest-neighbor particles switch with rate 1.

1.5.4 Relevant literature

For an overview of active processes, we refer to the paper by Demaerel and Maes
[23] and Gommper et al. [48]. In the book by Tailleur et al. [112] an overview of
non-equilibrium statistical physics and active matter is given.

For literature on run-and-tumble particles, there is are numerous physics and
mathematics papers on the behavior of a single run-and-tumble particle (see e.g.
[53, 105, 106, 118]). Results on multi-layer models are rather limited at present, but
some are given in [3, 32, 37, 101].

1.6 outline of this thesis

The rest of this thesis is organized as follows:
In Chapter 2 we introduce the mathematical background required for this thesis

in a rigorous manner. The topics discussed include Markov semigroups and
generators, path-space convergence, ergodic theory, martingales, couplings, and
duality.

In Chapter 3 we introduce three types of multi-layer particle systems; the multi-
layer exclusion process, the multi-layer inclusion process and the run-and-tumble
particle process. We then characterize the ergodic measures with a finite moment
condition for these three processes using duality and successful couplings. This
chapter is based on [97].

In Chapter 4 we study the hydrodynamic limit and the stationary fluctuations
of the multi-layer run-and-tumble particle process, and use them to infer the same
scaling limits for the total density. Furthermore, by an application of Schilder’s
theorem, we find a large deviation result for the fluctuation field of the total density.
This chapter is based on [98].

In Chapter 5 we establish a large deviation principle for the multi-species
stirring process. The method of proof involves studying the hydrodynamic limit
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of a weakly asymmetric process and a superexponential estimate. This chapter is
based on [18].

In Chapter 6 we return to the multi-layer setting and establish a large deviation
principle for the run-and-tumble particle process on two layers with an added
mean-field interaction, meaning that the switching between the layers depends on
the magnetization of the process. We end with a first step towards an explicit large
deviation principle of the total density. This chapter is based on [93].





2
M AT H E M AT I C A L B A C K G R O U N D

In this chapter we introduce the mathematical concepts and tools needed to
understand this thesis. This chapter is based on the book of Liggett [76] and the
lecture notes of Redig [96]. Readers who are familiar with Markov process theory
and ergodic theory can skip to Chapter 3.

2.1 continuous-time markov processes

As was mentioned in Section 1.2, the type of models that we consider are Markov
processes. In this section we give an introduction to the basics of Markov process
theory. Some detailed references on this topic include the book of Blumenthal and
Getoor [10] and the book of Ethier and Kurtz [34].

2.1.1 Markov processes

Let (Ω, F , P) be a probability space and let X = {Xt : t ≥ 0} be a stochastic
process on this space.

DEFINITION 2.1. We call a stochastic process càdlàg (continuité a droite, limité
a gauche) if it is right-continuous and has left-limits. The space of all càdlàg
trajectories on Ω with t ∈ [0, T] is called the Skorokhod space and is denoted by
D([0, T]; Ω).

Throughout this thesis, we assume all our stochastic processes are cádlág. The
space of continuous trajectories is a subspace of the Skorokhod space, and is
often denoted as C([0, T]; Ω). More information on the Skorokhod space and
the Skorokhod metric turning it into a metric space can be found in e.g. [104,
Appendix A.2.2].

DEFINITION 2.2. A filtration on (Ω, F , P) is a family of σ-algebras {Ft : t ≥ 0}
such that for every s < t we have that Fs ⊂ Ft ⊂ F . We call a stochastic process
X adapted with respect to this filtration if Xt is Ft-measurable for every t ≥ 0.

Intuitively, a filtration can be understood as an increasing collection of infor-
mation over time, where Ft represents all the information up to time t. An

31
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adapted process then means that the value of Xt is completely determined by the
information contained in Ft and no further information is needed.

The typical filtration for which the process X is adapted is the so-called natural
filtration Ft = σ(Xs : 0 ≤ s ≤ t), i.e., the σ-algebra generated by the process itself
up to time t. Unless mentioned otherwise, from now on we assume that we are
working with the natural filtration.

DEFINITION 2.3. A Markov process is a stochastic process X satisfying the Markov
property, stating that for every bounded measurable function f : Ω → R and
s < t,

E[ f (Xt)|Fs] = E[ f (Xt)|Xs], P− a.s. (2.1.1)

In intuitive terms, given all the information of the past, a Markov process only
needs to consider the present state in order to determine the behavior of the process
in the future. We therefore also refer to Markov processes as being memoryless.

DEFINITION 2.4. A Markov process X is called time-homogeneous if for every
bounded measurable function f : Ω→ R, x ∈ Ω and s, t ≥ 0,

E[ f (Xt+s)|Xs = x] = E[ f (Xt)|X0 = x]. (2.1.2)

Most Markov processes considered in this thesis are time-homogeneous, however
the weakly asymmetric model introduced in Section 1.4.4 is an example of a process
that is not time-homogeneous due to its dependence on a time-dependent potential.

Below we give two examples of Markov processes.

EXAMPLE 2.1 (Jump processes). A Markov jump process on Ω is a Markov process
that transitions between states through discrete jumps occuring after exponential
waiting times. Given x, y ∈ Ω, the process is defined through the transition
rates denoted by c(x, y). If the process is at state x at a given time, each possible
transition to y ̸= x is governed by an exponential clock with parameter c(x, y).
The first clock to ring determines the next jump, and the process transitions from
x to the corresponding site y. As a result, the total waiting time at x follows an
exponential distribution with parameter c(x) = ∑y c(x, y), and the probability that,

at a jump time, the chain jumps from x to y is given by c(x,y)
c(x) .

A special case of a jump process is the Simple Symmetric Random Walk (SSRW)
on Z. At each site, the random walker can jump one step to the left of the right
with equal rate. Usually the rates are taken c(x, x + 1) = c(x, x− 1) = 1

2 .

EXAMPLE 2.2 (Brownian motion). A Brownian motion B = {Bt : t ≥ 0} is a stochas-
tic process such that B0 = 0, Bt − Bs ∼ N (0, t− s) for t > s, and that increments
of non-overlapping intervals are independent. This last property ensures that a
Brownian motion is Markov. Unlike a jump process, a Brownian motion is almost
surely continuous and has trajectories in the path space C([0, T]; R). However in
Example 2.8 we will show that a Brownian motion can be obtained as a limit of a
SSRW.
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2.1.2 Markov semigroups

DEFINITION 2.5. Let X be a time-homogeneous Markov process, then the corre-
sponding Markov semigroup is a family of bounded linear operators {St : t ≥ 0}
defined by

St f (x) = E[ f (Xt)|X0 = x], (2.1.3)

acting on functions f in some suitable normed function space (C, || · ||).
The function space (C, || · ||) is dependent on the space Ω and is often some

subclass of the continuous functions on Ω (smooth functions, functions with
compact support, functions vanishing at infinity, etc.) together with the supremum
norm || f ||∞ = supx | f (x)|. However, if the process has an invariant measure µ
(see Section 2.2 for the definition of an invariant measure), we can always extend
the semigroup to Lp(µ) for p ≥ 1. As a consequence, we can allow for indicator
functions, 1A for A ∈ F , in which case the semigroup satisfies

St1A(x) = P(Xt ∈ A|X0 = x). (2.1.4)

This relation tells us that the Markov process X uniquely determines the semigroup.
An alternative way of defining a Markov semigroup is as a family of bounded

linear operators satisfying the following properties for all f ∈ C

S1. Identity at 0: S0 f = f ,

S2. Constant preserving: St1 = 1,

S3. Positivity preserving: if f ≥ 0 then St f ≥ 0,

S4. Contractivity: ||St f || ≤ || f ||,

S5. Strong continuity: limt↓0 ||St f − f || = 0

S6. Semigroup property: St+s f = St(Ss f ).

REMARK 2.3. The strong continuity property S5 is usually not included in the
definition, however we will only be working with semigroups satisfying this.

The semigroup defined in (2.1.3) immediately satisfies S1-S5, and S6 follows from
the fact that we have a time-homogeneous Markov process, namely

St+s f (x) = E[ f (Xt+s)|X0 = x]

= E[E[ f (Xt+s)|Xt]|X0 = x]

= E[Ss f (Xt)|X0 = x] = St(Ss f )(x). (2.1.5)

The way to go back from a Markov semigroup satisfying S1-S6 to a Markov process
is through (2.1.4), where we are able to reconstruct X through the behavior of the
semigroup on indicator functions. This means that there is a one-to-one connec-
tion between Markov semigroups defined through S1-S6 and time-homogeneous
Markov processes.
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2.1.3 Markov generators

The semigroup property of the Markov semigroup suggests the existence of a
linear operator L for which the relation St = etL holds formally. This operator
would then be defined as follows,

L f = lim
t↓0

St f − f
t

, (2.1.6)

i.e., you can view L as the ‘derivative’ of St at time 0. This operator is known
as a Markov generator, and it encodes the rate of change of the process in an
infinitesimal time interval.

However, a priori, the limit in (2.1.6) does not necessarily exist. Therefore we
define the domain of this operator as the set of functions f for which this limit
does exists,

D(L) =
{

f ∈ C : lim
t↓0

St f − f
t

exists in || · ||
}

. (2.1.7)

It is also possible to define a Markov generator without first defining the Markov
semigroup. In order for any linear operator L : D(L)→ C, with domain D(L) ⊂ C,
to be a Markov generator, it has to satisfy the following properties.

G1. 1 ∈ D(L) and L1 = 0.

G2. D(L) is dense in C.

G3. L is a closed operator, i.e., {( f , L f ) : f ∈ D(L)} is closed.

G4. For all λ > 0 the range of (I − λL) is equal to C. Furthermore, for all
f ∈ D(L) we have that

||(I − λL) f || ≥ || f ||. (2.1.8)

The formal relation between a Markov generator and a Markov semigroup is
made rigorous in the Hille-Yosida theorem.

THEOREM 2.1 (Hille-Yosida). There is a one-to-one correspondence between Markov
semigroups and Markov generators. The relation between the two is characterized
by the following statements.

1. Given a Markov semigroup {St : t ≥ 0}, the operator L defined in (2.1.6) and
the domain D(L) defined in (2.1.7) satisfy conditions G1-G4.

2. Given a linear generator L satisfying conditions G1-G4, the family of opera-
tors {St : t ≥ 0} defined for f ∈ C by

St f = lim
n→∞

(I − t
n L)−n f , (2.1.9)

is a Markov semigroup.
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3. For f ∈ D(L) we have that St f ∈ D(L) and

∂tSt f = StL f = LSt f . (2.1.10)

Furthermore, St f is the unique solution to the equation ∂t ft = L ft with initial
condition f0 = f .

The equation ∂t ft = L ft is called the Kolmogorov backward equation. Recall
that we already saw the Kolmogorov forward equation in (1.3.2), which encoded
the evolution of the distribution over time. The Kolmogorov backward equation
encodes the forward evolution of expectations.

EXAMPLE 2.4 (SSRW). In (1.3.3) we have already mentioned that the generator of
general jump processes is given by

L f (x) = ∑
y∈Ω

c(x, y)
(

f (y)− f (x)
)
, (2.1.11)

with c(x, y) the rate of jumping from x to y. In the case of the SSRW, where a single
walker jumps one place to the right or left with rate 1

2 , the generator simplifies to

L f (x) = 1
2
(

f (x + 1) + f (x− 1)− 2 f (x)
)
. (2.1.12)

EXAMPLE 2.5 (Brownian motion). The generator of a Brownian motion is given by

L f (x) = 1
2 ∆ f (x). (2.1.13)

From the Hille-Yosida theorem, the relation between a Brownian motion and the
heat equation becomes clear. Specifically, defining

ft(x) := E[ f (x + Bt)], (2.1.14)

then ft solves the equation ∂t ft =
1
2 ∆ ft.

EXAMPLE 2.6 (IRW). Recall the IRW process introduced in Section 1.2. The space
of particle configuration on Z, given by functions η : Z → N, is often denoted
as Ω = NZ. The IRW process is essentially a jump process on this space, where
configurations “jump” to other configurations where one particle has jumped to
either the left or the right. The generator is then given by

L f (η) = ∑
x∈Z

η(x)
(

f (ηx→x+1) + f (ηx→x−1)− 2 f (η)
)
, (2.1.15)

where ηx→x±1 denotes the configuration η where one particle has jumped from x
to x± 1.
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In many cases, such as in the example above, the domain of the generator D(L)
is not easy to characterize. However, for most purposes, it is sufficient to consider
only functions in a certain subspace of the domain.

DEFINITION 2.6. A core is a subset D ⊂ D(L) such that for every f ∈ D(L) there
exists a sequence ( fN)N∈N ⊂ D satisfying fN → f and L fN → L f , both with
respect to the norm || · ||.

EXAMPLE 2.7. When considering Ω = NZ, the space of particle configuration on Z,
the generator of a jump process is given by

L f (η) = ∑
η′∈Ω

c(η, η′)
(

f (η′)− f (η)
)
, (2.1.16)

for f ∈ D(L) ⊂ C(Ω). A common core for such a generator is given by the
bounded local functions, i.e., bounded functions f (η) depending only on a finite
number of coordinates of η. This space is dense in C(Ω) with respect to the
uniform topology, and if we assume that the process generated by L allows only
nearest-neighbor jumps, then we can also find approximating sequences for L f for
every f ∈ D(L).

2.1.4 Path-space convergence and tightness

When considering convergence of stochastic processes, the Trotter-Kurtz theorem
[67] explains how convergence of the generator implies convergence of the process.

THEOREM 2.2 (Trotter-Kurtz). Let (XN)N∈N, X be Markov processes with semi-
groups (SN

t )N∈N, St and generators LN , L respectively. Furthermore, let D be a
core for L, then the following are equivalent:

• For all f ∈ D there exists a sequence of fN ∈ D(LN) such that fN → f and
LN fN → L f , where both convergences are with respect to || · ||.

• For all f ∈ C and T > 0 we have that SN
t f → St f with respect to || · ||,

uniformly in t ∈ [0, T].

• if XN
0

d−→ X0, then XN d−→ X in D([0, T]; Ω) for all T > 0.

EXAMPLE 2.8. In this example we will show that a rescaled SSRW converges to a
Brownian motion in distribution using the Trotter-Kurtz theorem. Recall that the
generator of an SSRW X is given by

L f (x) = 1
2
(

f (x + 1) + f (x− 1)− 2 f (x)
)
. (2.1.17)
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We will perform a diffusive scaling of this process (see Section 1.4.2), where we
rescale space by 1

N and rescale time by N2, resulting in the generator of the process
XN2t

N on 1
N Z ⊂ R,

LN f (x) = N2

2
(

f (x + 1
N ) + f (x− 1

N )− 2 f (x)
)
= 1

2 ∆ f (x) +O( 1
N ). (2.1.18)

Note that we can view every LN as a generator acting on functions in f ∈ C2(R),
and as N → ∞ we see that LN f → 1

2 ∆ f , where the latter is the generator of a

Brownian motion. By the Trotter-Kurtz theorem, it follows that
XN2t

N
d−→ Bt with Bt

a standard Brownian motion.

While the Trotter-Kurtz theorem is a powerful tool, it is not always possible to
establish convergence of the generator of a process for all functions f . In such
cases, in order to still prove a convergence result, the first step is to prove tightness
of the sequence of processes.

DEFINITION 2.7. A sequence of stochastic processes XN is tight if for every ε > 0
there exists a compact set Kε ⊂ D([0, T]; Ω) such that

sup
N

P(XN /∈ Kε) < ε. (2.1.19)

Since in general it is not easy to determine whether a set is compact in the
Skorokhod space, we often use the following theorem to check the tightness of a
sequence (see e.g., [33, Corollary 7.4]).

THEOREM 2.3. The sequence XN is tight in D([0, T]; Ω) if the following two condi-
tions are satisfied:

1. For every ε > 0 and t ∈ [0, T] there exists a compact Kε ⊂ Ω such that

lim inf
N→∞

P(XN /∈ Kε) < ε. (2.1.20)

2. For every ε > 0 there exists a δ > 0 such that

lim
δ→0

lim sup
N→∞

P(ω(XN , δ) ≥ ε) = 0, (2.1.21)

where

ω(XN , δ) = sup{d(XN
t , XN

s )
∣∣ s, t ∈ [0, T], |t− s| < δ}. (2.1.22)

Tightness is a necessary condition for convergence in distribution. Furthermore,
if we have tightness, then by Prokhorov’s theorem [92] every subsequence has a
further subsequence that converges in distribution.
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THEOREM 2.4 (Prokhorov). If the sequence XN is tight, then the set of path space
measures P(XN ∈ ·) is relatively compact.

If we can then prove that every convergent subsequence has the same limit X,

then we have proven convergence of the processes XN d−→ X in D([0, T]; Ω). For
this final step, Portmanteau’s theorem [8, Theorem 2.1] often plays a key role.

THEOREM 2.5 (Portmanteau). The following are equivalent

1. XN
d−→ X in D([0, T]; Ω).

2. E[ f (XN)]→ E[ f (X)] for all bounded, uniformly continuous f .

3. lim supN→∞ P(XN ∈ C) ≤ P(X ∈ C) for all closed sets C ∈ D([0, T]; Ω).

4. lim infN→∞ P(XN ∈ O) ≤ P(X ∈ O) for all open sets O ∈ D([0, T]; Ω).

5. limN→∞ P(XN ∈ A) = P(X ∈ A) for all sets A ∈ D([0, T]; Ω) such that
P(X ∈ ∂A) = 0.

2.2 invariant and ergodic measures

Let X be a Markov process on Ω with initial state drawn from a probability
measure X0 ∼ µ. In this section we will rigorously define the type of initial
probability measures discussed in Section 1.3.

2.2.1 Invariant and reversible measures

In mathematics, invariance refers to the property of remaining unchanged over
time. In Section 1.3 we discussed that the evolution of the initial measure µ,
Xt ∼ µt, was described through the Kolmogorov forward equation

∂tµt = µtL. (2.2.1)

Using Markov semigroups, we are able to express µt = µSt as the unique probabil-
ity measure such that for every f ∈ C we have that∫

f dµSt =
∫

St f dµ. (2.2.2)

DEFINITION 2.8. A probability measure µ is invariant if µSt = µ for all t ≥ 0, i.e., if
and only if for all f ∈ C we have that∫

St f dµ =
∫

f dµ. (2.2.3)



2.2 invariant and ergodic measures 39

However, characterizing that a measure is invariant is usually done via the
Markov generator

PROPOSITION 2.1. Let D be a core for the Markov generator L, then µ is invariant if
for all f ∈ D we have that ∫

L f dµ = 0. (2.2.4)

Indeed, if (2.2.4) holds, then µL = 0, and the Kolmogorov forward equation
(2.2.1) reads ∂tµt = 0, indicating that the measure does not change over time.

A stronger notion than invariance is that of reversibility.

DEFINITION 2.9. A probability measure µ is reversible if for all f , g ∈ C we have
that ∫

(St f )g dµ =
∫

f (Stg)dµ. (2.2.5)

Substituting g ≡ 1 in (2.2.5), it immediately follows that reversible measures are
invariant.

PROPOSITION 2.2. Let D be a core for the Markov generator L, then µ is reversible if
and only if for all f , g ∈ D we have that∫

(L f )g dµ =
∫

f (Lg)dµ. (2.2.6)

2.2.2 Ergodic measures and mixing

In Section 1.3 the ergodic measures were introduced as the measures µ for which

µ(A) = lim
T→∞

1
T

∫ T

0
1(Xt ∈ A)dt (2.2.7)

holds if X0 ∼ µ. We also discussed that the ergodic measures are the extremal
points of the set of invariant measures, allowing us to reconstruct the set of
invariant measures from the ergodic measures. In this section we introduce the
classical definition of ergodic measures.

In order to define ergodicity, we first need to define invariance of sets (note that
this notion is distinct from the invariance of probability measures).

DEFINITION 2.10. A set A ∈ F is invariant if St1A = 1A for all t ≥ 0.

In words, a set A is invariant if the process can never leave A once it enters it,
i.e., if X0 ∈ A then Xt ∈ A for all t ≥ 0 with probability 1. An ergodic measure is
then an invariant measure that has its mass in exactly one of these invariant sets.

DEFINITION 2.11. An invariant probability measure µ is ergodic if for all invariant
sets A ∈ F either µ(A) = 1 or µ(A) = 0.
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EXAMPLE 2.9. We consider the example of a jump process on the space {1,2,3,4}
where the process can jump between 1 and 2 and between 3 and 4 with rate 1 (see
the figure below).

2 4

1 3

1 1 1 1

Figure 10: A jump process on the space {1,2,3,4}. The sets {1,2} and {3,4}
are the invariant sets of this system.

If we consider the uniform measure (µ = (1/4, 1/4, 1/4, 1/4)), then this is invariant
but not ergodic, namely µ({1,2}) = µ({3,4}) = 1

2 . The ergodic measures of this
process are given by the invariant measures with mass solely on the invariant sets,

µ0 = (1/2, 1/2, 0, 0), µ1 = (0, 0, 1/2, 1/2). (2.2.8)

From the ergodic measures we can recover the invariant measures as convex
combinations of the two, i.e.,

µa = (1− a)µ0 + aµ1, (2.2.9)

for a ∈ [0, 1]. Indeed, the uniform measure is now equal to µ = µ 1
2
.

EXAMPLE 2.10. As mentioned in Section 1.3, the product Bernoulli measures

µp =
⊗
x∈Z

Ber(p) (2.2.10)

are ergodic for the SEP on Z for every p ∈ [0, 1]. However, if we were to restrict
ourselves to the SEP on the finite space {0, 1, ..., N} for some N ∈ N, then the
product Bernoulli measures remain invariant but are no longer ergodic. In this
finite setting, the ergodic measures are indexed by the parameter k ∈ {0, 1, ..., N},
and are given by the uniform measures on the subspace of configurations with a
fixed number of particles, i.e.,

µk(η) =

{
(N

k )
−1

if |η| = k
0 else

(2.2.11)
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where |η| = ∑N
x=1 η(x) is the number of particles in configuration η. Note that

we can recover the product Bernoulli measures as a convex combination from the
ergodic measures µk as follows,

µp =
N

∑
k=1

µp({|η| = k}) · µk =
N

∑
k=1

pk(1− p)N−k · µk. (2.2.12)

One of the main results in ergodic theory is the Birkhoff ergodic theorem [9].

THEOREM 2.6 (Birkhoff ergodic theorem). Let µ be ergodic, then for all f ∈ L1(Ω, µ)
and µ-almost all x ∈ Ω we have that

lim
T→∞

1
T

∫ T

0
St f (x)dt =

∫
f dµ. (2.2.13)

It is important to note that the ergodic measures are the only measures that
satisfy this equality. Namely, taking an invariant set A ∈ F and setting f = 1A
we find that

µ(A) =
∫
1A dµ = lim

T→∞

1
T

∫ T

0
St1A(x)dt = 1A(x) (2.2.14)

where the right-hand side is indeed equal to either 0 or 1.
Lastly we define the mixing probability measures.

DEFINITION 2.12. A probability measure µ is mixing if for f , g ∈ L2(Ω, µ) we have
that

lim
t→∞

∫
(St f )g dµ =

∫
f dµ

∫
g dµ (2.2.15)

Intuitively, a mixing measure ensures that the process mixes any set in such a
way that it is spread out evenly over the whole space. This becomes clearer when
we choose f = 1A and g = 1B, and (2.2.15) reads

lim
t→∞

Pµ(Xt ∈ A, X0 ∈ B) = µ(A)µ(B), (2.2.16)

where Pµ denotes the path-space measure of X in D([0, T]; Ω) with initial distribu-
tion µ, i.e., Pµ(X0 ∈ ·) = µ(·). We then see that after a long time, the sets A and B
become independent.

Every probability measure µ that is mixing is also ergodic. To see this, take any
invariant set A ∈ F . Using that 1A = 12

A and St1A = 1A, we find

µ(A) =
∫
12

A dµ =
∫
(St1A)1A dµ, (2.2.17)

for every t ≥ 0. Since the left-hand side does not depend on t, we can take the
limit as t→ ∞. By the mixing property we then obtain

µ(A) =
∫
1A dµ

∫
1A dµ = µ(A)2, (2.2.18)

showing that indeed µ(A) = 1 or µ(A) = 0, hence µ is ergodic.
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2.3 mathematical tools for markov processes

In this section we introduce some useful mathematical tools in the study of Markov
processes.

2.3.1 Dynkin martingales

Martingales are, alongside Markov processes, among the most studied stochastic
processes. The Dynkin martingale is a martingale corresponding to a Markov
process. We have already encountered it in (1.4.8), but now we will first give
a general introduction to martingales. For a more detailed introduction into
martingales, we refer to the book of Gut [52, Chapter 10].

MARTINGALES

DEFINITION 2.13. Let (Ω,F , P) be a probability space and {Ft : t ≥ 0} a filtration.
A martingale is a stochastic process M = {Mt : t ≥ 0} satisfying the following
three properties:

i. Adaptedness: Mt is Ft-measurable for all t ≥ 0.

ii. Integrability: E[|Mt|] < ∞ for all t ≥ 0.

iii. Martingale property: E[Mt|Fs] = Ms for 0 ≤ s ≤ t.

The intuitive idea of a martingale comes from the world of gambling, where it
can be seen as the profit of a fair game. Here, the best estimation of future winnings
is simply the present amount of money held. Furthermore, by the martingale
property, a martingale has a constant expectation, namely

E[Mt] = E[E[Mt|F0]] = E[M0]. (2.3.1)

EXAMPLE 2.11. A good first example of a martingale is a standard Brownian motion
B = {Bt : t ≥ 0} with the natural filtration Ft = σ (Bs : 0 ≤ s ≤ t). The adapted-
ness then follows immediately, and integrability is easily shown. The martingale
property follows from the independence of increments

E[Bt|Fs] = E[Bt − Bs|Fs] + E[Bs|Fs] = E[Bt − Bs] + Bs = Bs. (2.3.2)

QUADRATIC VARIATION

DEFINITION 2.14. For partitions P = {t0, t1, ..., tn} of the interval [0, t] such that
0 = t0 < t1 < ... < tn = t, the mesh size of P is a norm || · ||m given by

||P||m := max
1≤k≤n

|tk − tk−1|. (2.3.3)
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DEFINITION 2.15. Let M be a real-valued martingale, then the quadratic variation
process of M is a stochastic process [M] = {[M]t : t ≥ 0} defined via the following
convergence in probability

[M]t := lim
||P||m→0

n

∑
k=1

(Mtk −Mtk−1)
2. (2.3.4)

The quadratic variation process measures the cumulative variance of the process.
Another notion that is related to the quadratic variation is the predictable quadratic
variation.

DEFINITION 2.16. Let M be a real-valued martingale, then the predictable quadratic
variation process of M is the unique predictable (i.e. Ft− -measurable) increasing
process ⟨M⟩ = {⟨M⟩t : t ≥ 0} such that ⟨M⟩0 = 0 and

Nt := M2
t − ⟨M⟩t (2.3.5)

is a martingale.

In the case where M is a continuous process, the two notions coincide, as can be
found in [111, Proposition 3.8]. However, when M is not continuous, the two may
differ, and the process [M]t − ⟨M⟩t is again a martingale.

EXAMPLE 2.12. For a standard Brownian motion, the (predictable) quadratic variation
is given by [B]t = t. Verifying this directly using the definition in (2.3.4) involves
a rather technical calculation. However, since the standard Brownian motion is
continuous, the two notions of quadratic variation coincide and we only need
to show that {B2

t − t : t ≥ 0} is a martingale. This follows from the following
computation

E[B2
t − t|Fs] = E[(Bt − Bs)

2] + E[2BtBs − B2
s |Fs]− t = B2

s − s. (2.3.6)

EXAMPLE 2.13. For λ > 0, a Poisson process is the Markov process {Nλ
t : t ≥ 0}

satisfying Nλ
0 = 0, and for each n ∈ N the process jumps from state n to n + 1

with rate λ. This results in a process with independent increments and distribution
Nλ

t ∼ Pois(λt) for all t > 0. The compensated process Mt = Nλ
t − λt is a

martingale and its quadratic variation counts the number of jumps that have
occurred in the Poisson process, that is [M]t = Nλ

t . Its predictable quadratic
variation is given by ⟨M⟩t = λt, which can be checked in a similar way as for the
Brownian motion case in (2.3.6). Hence, we indeed find that [M]t − ⟨M⟩t = Mt is
a martingale.

From 2.3.5 we obtain that if M0 = 0, then

E[M2
t ] = E[⟨M⟩t]. (2.3.7)

This relation tells us that if the predictable quadratic variation of a martingale
starting at 0 vanishes, then the martingale itself vanishes. This fact is used in the
sketch of the proof of the hydrodynamic limit (see Section 1.4.2).
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DYNKIN MARTINGALES

The Dynkin martingales are a family of martingales corresponding to a Markov
process.

THEOREM 2.7. Let X = {Xt : t ≥ 0} be an Ft-adapted Markov process on (Ω, F , P),
generated by L. Then for any f ∈ D(L), the process M defined as

M f
t := f (Xt)− f (X0)−

∫ t

0
L f (Xs)ds (2.3.8)

is a real-valued martingale on (Ω, F , P) with respect to the filtration {Ft, t ≥ 0}.

For a Dynkin martingale, we have an explicit formula of the predictable quadratic
variation.

THEOREM 2.8. If f , f 2 ∈ D(L), then the predictable quadratic variation of the Dynkin
martingale is given by

⟨M f ⟩t =
∫ t

0
Γ f (Xs)ds, (2.3.9)

where Γ f is the Carré du champ operator, given by

Γ f (x) := L f 2(x)− 2 f (x)L f (x). (2.3.10)

The proofs of Theorem 2.7 and 2.8 can be found in, e.g., [104, Section 8.1]. In the
following example we see that for jump processes we obtain an elegant form for
the Carré du champ operator, and so correspondingly for the predictable quadratic
variation.

EXAMPLE 2.14. Let X = {Xt : t ≥ 0} be a jump process with generator

L f (x) = ∑
y∈Ω

c(x, y)( f (y)− f (x)). (2.3.11)

Then, the Carré du champ operator corresponding to this generator is given by

Γ f (x) = L f 2(x)− 2 f (x)L f (x)

= ∑
y∈Ω

c(x, y)( f 2(y)− f 2(x))− 2 f (x) ∑
y∈Ω

c(x, y)( f (y)− f (x))

= ∑
y∈Ω

c(x, y)( f (y)− f (x))2. (2.3.12)

2.3.2 Couplings

Coupling is a technique in probability used to compare two stochastic processes
by constructing them on a shared probability space in a way to highlight their
relationship. For more information on couplings, we refer to [26, 77, 115].
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DEFINITION 2.17. Let X and Y be two Markov processes. A coupling is a joint

process (X̌, Y̌) such that X̌ d
= X and Y̌ d

= Y.

The power of a coupling lies in the fact that even when X and Y are independent,
X̌ and Y̌ can be heavily dependent on each other. A standard example where a
coupling is used is when X and Y are independent copies of the same process,
but X0 ∼ µ and Y0 ∼ ν. We are then interested in knowing whether these two
processes have roughly the same distribution for large t. This means that, if
{St : t ≥ 0} is the semigroup of the process, we want that

lim
t→∞
||µSt − νSt||tv = 0. (2.3.13)

Here || · ||tv is the total variation distance of a signed measure, given by

||µ||tv = sup
A
|µ(A)|. (2.3.14)

We show how couplings can help answering this question. We first define the
first meeting time of X̌t and Y̌t,

τ := inf{t ≥ 0 : X̌t = Y̌t}. (2.3.15)

Next we define a coupling X̌ = X and

Y̌t :=

{
Yt if t ≤ τ,
Xt if t > τ,

(2.3.16)

i.e., Y̌t follows the process Yt up until the meeting time, after which it follows Xt.
First note that this indeed produces a coupling of X and Y, namely after the first
meeting time they have the same distribution since they are copies of the same
Markov process. Furthermore, we have that

P(X̌t = Y̌t|t > τ) = 1. (2.3.17)

Looking at the difference in distribution, we now see that

||µSt − νSt||tv = sup
A
|P(Xt ∈ A)−P(Yt ∈ A)|

≤ sup
A
|P(X̌t ∈ A, t > τ)−P(Y̌t ∈ A, t > τ)|

≤ 2P(t > τ). (2.3.18)

In particular, if P(τ < ∞) = 1 we see that (2.3.13) holds.
Note that in the calculation (2.3.18), we could have considered any coupling

(X̌, Y̌) together with the stopping time

τ̌ := inf{t ≥ 0 : X̌t = Y̌t}, (2.3.19)
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after which we set X̌t = Y̌t. We often refer to τ̌ as the coupling time, and we
call such a coupling successful if P(τ̌ < ∞) = 1. If this is the case, then it again
follows that (2.3.13) holds.

In some cases, the stopping time τ in (2.3.15) is not a.s. finite, but we can still
show the existence of a successful coupling. Below we give an example of this.

EXAMPLE 2.15. In this example we illustrate a successful coupling, called the Orn-
stein coupling, of two independent simple symmetric random walkers X and Y
on Zd. First note that X − Y is again a simple symmetric random walker on Zd

and the first meeting time can now be written as

τ = {t ≥ 0 : Xt −Yt = 0}. (2.3.20)

It is a well known result that a simple symmetric random walker on Zd reaches 0
in finite time if d = 1, 2, but might never reach 0 if d ≥ 3 (This is known as Pólya’s
result [94]). However, for d ≥ 3 we can still show the existence of a successful
coupling.

The trick is to do a coordinate-wise coupling. We are able to write

X = (X(1), X(2), ..., X(d)), Y = (Y(1), Y(2), ..., Y(d)), (2.3.21)

where all the individual processes are independent of one another. We then define
the first meeting times of every coordinate

τ(k) = inf{t ≥ 0 : X(k)
t = Y(k)

t }. (2.3.22)

For every 1 ≤ k ≤ d this stopping time is a.s. finite, since it is the first meeting
time of two simple symmetric random walkers in one dimension. We then set up
our coupling as X̌ = X and

Y̌(k)
t =

{
Y(k)

t if t < τ,

X(k)
t if t ≥ τ,

(2.3.23)

i.e., once the two processes meet in a given coordinate, that coordinate remains
the same. The coupling time is then equal to τ̌ = max1≤k≤d τ

(k), which is again a.s.
finite, therefore the coupling is successful.

2.3.3 Duality

DEFINITION 2.18. Let X and Y be two Markov processes on the state spaces Ω1 and
Ω2 respectively. We say that X and Y are dual to one another if there exists a
function D : Ω1 ×Ω2 → R such that

E [D(Xt, y)|X0 = x] = E[D(x, Yt)|Y0 = y] (2.3.24)
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for all x ∈ Ω1 and y ∈ Ω2. We then refer to D as the duality function.
If the two processes X and Y are the same process in distribution, then we say

that X is self-dual.

It is important to note that any two processes X and Y can be considered dual
to one another with constant duality function. However, such a duality relation is
not useful. A useful duality relation enables to reformulate a problem involving
X into a problem involving Y, where Y is typically a process that is easier to
analyze. Finding a useful duality relation is rare, but once one is found it can
enable significant simplifications in deriving properties of X.

In Example 2.17 we will show how duality can help in deriving a weak version
of the hydrodynamic limit for IRW. First we present the following proposition,
which is useful for establishing that a duality relation holds. The proof can be
found in [59, Proposition 1.2].

PROPOSITION 2.3. Let LX and LY be the generators of X and Y respectively. Assume
that D(·, y) ∈ D(LX) for all y ∈ Ω2 and D(x, ·) ∈ D(LY) for all x ∈ Ω1, then X
and Y are dual to one another if

LXD(·, y)(x) = LYD(x, ·)(y) (2.3.25)

for all x ∈ Ω1 and y ∈ Ω2.

REMARK 2.16. In the original statement of the Proposition in [59], it is also assumed
that SX,tD(·, y) ∈ D(LX) and SY,tD(x, ·) ∈ D(LY) for all t ≥ 0, with SX,t, SY,t the
Markov semigroups of X and Y respectively. However, since we are working with
strongly continuous semigroups, by the Hille-Yosida theorem, this already follows
from the conditions D(·, y) ∈ D(LX) and D(x, ·) ∈ D(LY).

EXAMPLE 2.17. In this example we will show that the hydrodynamic limit of the
IRW process is the heat equation (in expectation), using duality. I.e., we will show
that

E[⟨πN
t , ϕ⟩]→

∫
R

ϱt(x)ϕ(x)dx (2.3.26)

for every ϕ ∈ C∞
c (R), where πN

t is the empirical measure defined in (1.4.4) and ϱt
solves the heat equation ∂tϱt = ∆ϱt.

Recall that the generator of the IRW process defined on local functions f : Ω→ R

is given by

LIRW f (η) = ∑
y∈Z

η(y)
(

f (ηy→y+1) + f (ηy→y−1)− 2 f (η)
)
. (2.3.27)

The duality relation that we will use involves a single random walker X with
generator defined on functions g : Z→ R as

L g(x) = g(x + 1) + g(x− 1)− 2g(x), (2.3.28)
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with duality function
D(η, x) = η(x). (2.3.29)

It is a straightforward computation to show that

LIRWD(·, x)(η) = LD(η, ·)(x) = η(x + 1) + η(x− 1)− 2η(x), (2.3.30)

proving that we indeed have duality.
Recall that for the hydrodynamic limit we need to perform a rescaling in time of

N2 (see Section 1.4.2). This gives us a process {ηN
t : t ≥ 0} which corresponds to

the generator N2LIRW. For this process the duality relation still holds with respect
to the process XN corresponding to the generator N2L .

We start the process {ηN
t : t ≥ 0} from the local equilibrium measure given by

the product Poisson measure (See Example 1.1)

µ
ϱ
N =

⊗
x∈Z

Pois(ϱ( x
N )), (2.3.31)

where ϱ : R→ R is a smooth function. We now compute

E[⟨πN
t , ϕ⟩] = 1

N ∑
x∈Z

E[ηN
t (x)]ϕ( x

N ). (2.3.32)

Since ηN
t (x) = D(ηN

t , x), we are able to use duality to compute the expectation

E[ηN
t (x)] = E

[
ηN

0 (XN
t )
∣∣XN

0 = x
]
= E

[
ϱ
(

XN
t

N

) ∣∣XN
0 = x

]
, (2.3.33)

where in the last equality we used that ηN
0 ∼ µ

ϱ
N . The rescaled process XN

N lives
on the space 1

N Z with generator given by

LN g(x) = N2
(

g(x + 1
N ) + g(x− 1

N )− 2g(x)
)
= ∆g(x) +O( 1

N ). (2.3.34)

In particular, by the Trotter-Kurtz Theorem, as N → ∞ the process converges in
distribution to the process with generator L = ∆. Denoting the semigroup of this
process by {St : t ≥ 0}, we find that

E
[
ϱ
(

XN
t

N

) ∣∣XN
0 = x

]
→ Stϱ(

x
N ) = ϱt(

x
N ), (2.3.35)

where by the Hille-Yosida Theorem, ϱt solves the heat equation ∂tϱt = ∆ϱt with
initial condition ϱ0 = ϱ. Combining everything, we indeed find that

lim
N→∞

E[⟨πN
t , ϕ⟩] = lim

N→∞

1
N ∑

x∈Z

ϱt(
x
N )ϕ( x

N ) =
∫

R
ϱt(x)ϕ(x)dx. (2.3.36)
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REMARK 2.18. The same duality result that holds between the IRW and a single
random walker also applies to the SEP and SIP. This further explains why the
hydrodynamic equation is the same for all three processes. Moreover, a more
general duality result exists for these processes. In [45] it is shown that IRW, SEP
and SIP are self-dual, where the dual process only has a finite number of particles.
In Chapter 3 we make use of this duality in order to characterize a class of ergodic
measures for these processes.





3

E R G O D I C T H E O RY O F M U LT I - L AY E R I N T E R A C T I N G
PA RT I C L E S Y S T E M S

In this thesis we aim to study multi-layer interacting particle systems. In this
chapter1 we introduce a class of multi-layer interacting particle systems and char-
acterize the set of ergodic probability measures with finite moments. Furthermore,
we prove a more general statement that such a characterization is possible under
the existence of a polynomial duality relation and a successful coupling.

3.1 introduction

In this chapter we study a system of particles performing multi-layer random walks
which possibly have interaction of inclusion or exclusion type (see Section 3.2.1
below for a precise description of the models). We characterize the set of invariant
probability measures with finite moments. More precisely we prove that under an
appropriate condition of moment growth, the only ergodic invariant probability
measures are homogeneous product probability measures, indexed by the first
moment (particle density). In the case of independent particles, these probability
measures are product Poisson measures, in the case of interacting systems they are
products of binomial (exclusion) resp. negative binomial (inclusion) distributions.

The characterization of the invariant probability measures of multi-layer exclu-
sion processes has been obtained recently in [3]. The study of the hydrodynamic
limit of a system of active particles has been studied in [64], and for a two-layer
system with duality in [37].

The important ingredient in our setting here is duality combined with the
existence of a successful coupling for the dual process. This road is followed for
the symmetric exclusion process in [76, Chapter 8]. Duality allows to characterize
the invariant probability measures via the characterization of bounded harmonic
functions of the dual process, which is a countable state space Markov chain.
If this Markov chain admits a successful coupling, then the bounded harmonic
functions are constants, indexed by the number of dual particles. The proof of

1 This chapter is based on [97].

51
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the existence of a successful coupling is a combination of coupling the finite state
space internal state process and the Ornstein coupling of random walks. These two
ingredients are sufficient in the non-interacting case. In the interacting case, we
use the approach of [66] which consists of “spreading out” the particles combined
with Ornstein coupling of symmetric random walks.

The rest of this chapter is organized as follows. In Section 3.2 we provide the
general setup of multi-layer particle systems, after which we define the three types
of processes (exclusion, inclusion and independent walkers) we will study in this
chapter. Afterwards, we study the duality properties and invariant probability
measures of these processes.

In Section 3.3 we provide a characterization of the ergodic invariant probability
measures in a slightly more general setting, where the only assumptions are duality
with polynomial duality functions and the existence of a successful coupling. This
unifies and generalizes earlier results from chapter 8 of the book of Liggett [76]
and Kuoch [66].

Section 3.4 is devoted to the proof of a successful coupling for the models
under consideration. For independent particles this amounts to generalize the
Ornstein coupling to the multi-layer setting. For interacting particles, it amounts
to generalize the approach of Liggett for the exclusion process [76] and Kuoch for
the inclusion process [66].

3.2 models and their duality properties

3.2.1 Models: definitions

In this chapter we will look at models of configurations where the coordinates of
individual particles are of the form (x, σ), with x ∈ Zd the position of the particle
and σ ∈ S the internal state, where S is some finite set. We will denote the single
particle state space as V := Zd × S, which we will think of as |S| layers of Zd. For
this reason, we will also refer to σ ∈ S as the layer on which a particle at (x, σ)
resides.

We consider a configuration process {ηt : t ≥ 0} on a state space Ωs that will be
defined later. The generator of the process is of the following type,

Ls f (η) = ∑
v,w∈V

p(v, w)η(v)(α + sη(w))∇v,w f (η). (3.2.1)

Here η(v) is equal to the number of particles at site v ∈ V and, if we denote ηv→w

as the configuration η where a single particle has moved from v to w (if possible),
we have

∇v,w f (η) = f (ηv→w)− f (η). (3.2.2)
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The value of s ∈ {−1, 0, 1} in (3.2.1) determines the type of the process we consider
(exclusion, inclusion or independent particles). For this reason, the parameter
s also determines the state space Ωs that we consider and the single particle
transition rates p(v, w) and constants α ∈ R+ that we allow. Below we will define
the process for each possible value of s.

The main characteristic of our multi-layer particle systems is that the transition
rates are determined by the layer on which a particle resides. Therefore, for
every σ ∈ S we consider a nearest neighbor symmetric random walk on Zd with
translation invariant transition rates. We denote by πσ(x) the corresponding rate
to jump from z to z + x. Note that πσ(x) > 0 if and only if |x| = 1 and that
πσ(x) = πσ(−x). Furthermore, we let {c(σ, σ′) : σ, σ′ ∈ S} be transition rates on
the set of layers S which we will assume to be symmetric and irreducible. Then
we define the following processes:

1. Symmetric exclusion process (s = −1). Every site contains at most α ∈ N

particles and jumps to sites where there are already many other particles
are less likely. The state space of the multi-layer SEP is given by Ω−1 =
{0, 1, ..., α}V , and the single particle transition rates we will study for this
model are of the following form,

p
(
(x, σ), (y, σ′)

)
= πσ(y− x)δσ,σ′ + c(σ, σ′)δx,y, (3.2.3)

with δ· the Kronecker delta.

2. Symmetric inclusion process (s = 1). In contrast to the exclusion process,
this process actually encourages jumps to sites where other particles already
reside. The state space of the multi-layer SIP is given by Ω1 = NV , and the
transition rates are again given by (3.2.3). Furthermore, we allow for any
α > 0.

3. Independent particles (s = 0). For this chapter, our model for independent
particles will be the run-and-tumble particle process (RTP). A run-and-
tumble particle is a particle with the following dynamics.

Random walk jumps. With rate κ, a particle at (x, σ) performs a near-
est neighbor symmetric random walk jump on Zd according to the
transition rates πσ(·), i.e., (x, σ)→ (x + y, σ) with rate κπσ(y).

Active jumps. With rate λ, a particle at (x, σ) performs an active jump
in the direction determined by the internal state σ, i.e., there exists a
function v : S→ Zd such that (x, σ)→ (x + v(σ), σ) with rate λ.

Internal state jumps. A particle changes its internal state according to the
transition rates {c(σ, σ′) : σ, σ′ ∈ S}.
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The state space of this process is Ω0 = NV , and from the dynamics we
conclude that the single particle transition rates are of the following form,

p
(
(x, σ), (y, σ′)

)
= κπσ(y− x)δσ,σ′ + λδσ,σ′δy,x+v(σ) + c(σ, σ′)δx,y. (3.2.4)

In this case, any choice of α > 0 is possible. However, without loss of
generality we put α = 1. Furthermore, in the special case where κ = 0 we
will assume that λ > 0 and that the range of v spans the whole of Zd, i.e.,

vct{R(v)} = Zd. (3.2.5)

This condition is crucial in order to construct the successful coupling cf.
(3.4.18) below.

REMARK 3.1. Notice that for the interacting models we only allow for symmetric
transitions on every layer. This is because for asymmetric transition rates we only
have duality when the particles are independent.

3.2.2 Duality

We will state and prove duality results for the processes we just defined. Recall
the following definition of duality of Markov processes.

DEFINITION 3.1. Let {ηt : t ≥ 0} and {ξt : t ≥ 0} be two Markov processes on
the state spaces Ω and Ω′ respectively, and let D : Ω′ ×Ω→ R be a measurable
function. We say that {ηt : t ≥ 0} and {ξt : t ≥ 0} are dual to one another, with
respect to D, if

Eη [D(ξ, ηt)] = Êξ [D(ξt, η)] . (3.2.6)

Here Eη denotes the expectation in {ηt : t ≥ 0} starting from η, Êξ the expectation
in the dual process {ξt : t ≥ 0} starting from ξ, and we assume that both sides are
bounded. We then call D the duality function.

Duality results

Let |ξ| := ∑x ξ(x) denote the number of particles in ξ and let Ωs, f := {ξ ∈ Ω :
|ξ| < ∞} be the subspace of Ωs consisting of only those configurations with a
finite number of particles. In the following theorem we will give duality results of
the processes defined in Section 3.2.1 with duality functions Ds : Ωs, f ×Ωs → R

of the following form:

Ds(ξ, η) = ∏
v∈V

ds(ξ(v), η(v)). (3.2.7)

The proof of the first two statements can be found in for example [14, Theorem
4.1]. For the third statement, we will make use of another duality result, with the
so-called associated deterministic system, that is introduced in [13].
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THEOREM 3.1. 1. If s = −1 then the process generated by L−1 is self-dual with
duality function

D−1(ξ, η) = ∏
v∈V

η(v)!
(η(v)− ξ(v))!

· (α− ξ(v))!
α!

· I(ξ(v) ≤ η(v)), (3.2.8)

where I(·) denotes the characteristic function.

2. If s = 1, then the process generated by L1 is self-dual with duality function

D1(ξ, η) = ∏
v∈V

η(v)!
(η(v)− ξ(v))!

· Γ(α)
Γ(α + ξ(v))

· I(ξ(v) ≤ η(v)). (3.2.9)

3. If s = 0 then the process generated by L0, with transition rates p(v, w) given
by (3.2.4), is dual to its time-reversed process, i.e., the RTP process with
single particle transition rates

p̂
(
(x, σ), (y, σ′)

)
= κπσ(y− x)δσ,σ′ + λδσ,σ′δy,x−v(σ) + c(σ, σ′)δx=y, (3.2.10)

and with the same parameter α > 0. We denote this as the R̂TP process. The
corresponding duality function is given by

D0(ξ, η) = ∏
v∈V

η(v)!
(η(v)− ξ(v))!

· I(ξ(v) ≤ η(v)). (3.2.11)

REMARK 3.2. If ξ = δv is the configuration containing a single particle at v ∈ V
and no particles elsewhere, then D(ξ, η) = cα,sη(v), with cα,s a positive constant
depending on the model (s ∈ {−1, 0, 1}) and the constant α. As a consequence we
have that

Eη [ηt(v)] =
1

cα,s
Eη [D(δv, ηt)] =

1
cα,s

Êv[D(δv(t), η)] = Êv[ηv(t)], (3.2.12)

where Êv denotes the expectation of the dual process starting from δv.

Proof of duality for the RTP process

Let {v(t) : t ≥ 0} be the random path of a single particle in V performing the RTP
dynamics starting from v(0) = v. The deterministic system we will consider is the
following: for a function f : V → R, define

ft(v) := ∑
w∈V

pt(v, w) f (w) = E
[

f
(
v(t)

)]
, (3.2.13)

where pt(v, w) is the transition kernel of a single RTP particle. In other words,
the process { ft : t ≥ 0} follows the Kolmogorov backwards equation of the RTP
process. We now have the following duality result:
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PROPOSITION 3.1. Let f : V → R be such that f (v) ̸= 1 for only a finite number of
v ∈ V. For the deterministic processes { ft : t ≥ 0} and the process {ηt : t ≥ 0}
generated by L0, it holds that

Eη

[
∏
v∈V

f (v)ηt(v)

]
= ∏

v∈V
ft(v)η(v), (3.2.14)

i.e., the two processes are dual to one another with duality function

D( f , η) = ∏
v∈V

f (v)η(v). (3.2.15)

The proof of this result is straightforward and only relies on the fact that the
particles in the RTP process move independently.
Proof. Define {vi(t) : i ∈ I, t ≥ 0} as the paths of the particles in the configuration
ηt with I an arbitrary set of labels, i.e., ηt(v) = ∑i∈I I(vi(t) = v) for all v ∈ V and
t ≥ 0. We then have that

E

[
∏
v∈V

f (v)ηt(v)

]
= E

[
∏

i
f (vi(t))

]
= ∏

i
E [ f (vi(t))] = ∏

i
ft(vi) = ∏

v∈V
ft(v)η(v),

(3.2.16)
where in the second step we used the independence of particles.

We will now prove item 3 of Theorem 3.1 using the duality result in (3.2.14).
Proof. Let {ξt : t ≥ 0} denote an R̂TP process and, for a given η, define the
sequence of finite configurations (ηN)N∈N as

ηN(x, σ) :=

{
η(x, σ) if x ∈ [−N, N],
0 else.

(3.2.17)

We will first prove the result for the dual process starting from n particles at
position vi ∈ V, i.e., ξ = n · δvi , with δvi the configuration with a single particle at
vi, and by replacing the starting configuration η by ηN . By taking the n-th order
derivative with respect to f (vi) on the left-hand side of (3.2.14) and afterwards
setting f ≡ 1, we find that

∂n

∂ f (vi)n EηN

[
∏
v∈V

f (v)ηN
t (v)

]∣∣∣∣∣
f≡1

= EηN

[
∂n

∂ f (vi)n ∏
v∈V

f (v)ηN
t (v)

]∣∣∣∣∣
f≡1

= EηN

[
ηt(vi)!

(ηt(vi)− n)!
· I
(
n ≤ ηt(vi)

)]
. (3.2.18)

Here we were able to interchange the derivatives and the expectation using domi-
nated convergence. Note that the right-hand side is equal to EηN

[
D0(ξ, ηN

t )
]
.
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Applying the same operations as in (3.2.18) to the right hand side of (3.2.14), we
obtain

∂n

∂ f (vi)n ∏
v∈V

(
∑

w∈V
pt(v, w) f (w)

)ηN(v)
∣∣∣∣∣∣

f≡1

=
n

∑
m=1

∑
v(1),...,v(m)∈V

v(i) ̸=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m

∏
j=1

∂kj

∂ f (vi)
kj

(
∑

w∈V
pt(v(j), w) f (w)

)ηN(v(j))

∣∣∣∣∣∣∣∣∣
f≡1

=
n

∑
m=1

∑
v(1),...,v(m)∈V

v(i) ̸=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m

∏
j=1

d0

(
ηN(v(j)), k j

)
pt

(
v(j), vi

)kj

=
n

∑
m=1

∑
v(1),...,v(m)∈V

v(i) ̸=v(j)

∑
k1+...+km=n

(
n

k1, ..., km

) m

∏
j=1

d0

(
ηN(v(j)), k j

)
p̂t

(
vi, v(j)

)kj
.

(3.2.19)

Here p̂t(w, v) is the transition kernel of a single R̂TP particle, and we have used
that pt(v, w) = p̂t(w, v) for all v, w ∈ V. Notice that the last line in the above
formula is the expected value of D0(ξt, ηN), i.e.,

∂n

∂ f (vi)n ∏
v∈V

(
∑

w∈V
pt(v, w) f (w)

)ηN(v)
∣∣∣∣∣∣

f≡1

= Êξ

[
D0(ξt, ηN)

]
. (3.2.20)

Combining (3.2.14), (3.2.18) and (3.2.20), we find that

EηN
[
D0(ξ, ηN

t )
]
= Êξ

[
D0(ξt, ηN)

]
. (3.2.21)

The claim now follows from monotone convergence as N → ∞.
If we consider any finite configuration of particles ξ ∈ Ω0, f , i.e., ξ = ∑n

i=1 δvi

for some n ∈ N and vi ∈ V, then the duality result can be found by taking the
derivative with respect to each f (vi) on both the left-hand side and right-hand
side of the equation (3.2.14).

3.2.3 Invariant probability measures

PROPOSITION 3.2. For the processes defined in Section 3.2.1, the following probability
measures denoted by µ

ϱ
s are invariant.
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1. If s = −1, then µ
ϱ
−1 with ϱ ∈ [0, 1] is distributed according to a product

Binomial distribution, i.e.,

µ
ϱ
−1(η) = ∏

v∈V

(
α

η(v)

)
ϱη(v)(1− ϱ)α−η(v). (3.2.22)

2. If s = 1, then µ
ϱ
1 with ϱ ∈ [0, 1) is distributed according to a product Negative

Binomial distribution, i.e.,

µ
ϱ
1(η) = ∏

v∈V

Γ
(
α + η(v)

)
Γ(α) · η(v)! ϱη(v)(1− ϱ)α. (3.2.23)

3. If s = 0, then µ
ϱ
0 with ϱ ≥ 0 is distributed according to a product Poisson

distribution, i.e.,

µ
ϱ
0(η) = ∏

v∈V

ϱη(v)

η(v)!
e−ϱ. (3.2.24)

Proof. The first two results are well-known and follow from the fact that the
probability measures satisfy the detailed balance condition (see e.g. [14]). For the
third result, a system of independent walkers on V with single particle transition
rates p(v, w), such that for all w ∈ V

∑
v∈V

(ϱ(v)p(v, w)− ϱ(w)p(w, v)) = 0 (3.2.25)

has invariant product Poisson measures
⊗

v∈V Pois(ϱ(v)) (see e.g. [28]). Note that
in our case we have for all (y, σ′) ∈ V,

∑
(x,σ)∈V

p((x, σ), (y, σ′)) = ∑
(x,σ)∈V

p((y, σ′), (x, σ)) = ∑
u∈Zd

πσ′(u) + λ + ∑
σ∈S

c(σ, σ′).

(3.2.26)
Therefore, the product Poisson measures with constant density ϱ > 0 are invariant.

The following proposition provides the relation between the probability mea-
sures of Proposition 3.2 and the duality functions of Theorem 3.1.

PROPOSITION 3.3. Let µ ∈P(Ωs), then µ = µ
ϱ
s if and only if for every ξ ∈ Ωs, f and

every v ∈ V, ∫
Ds(ξ, η)dµ(η) =

(∫
Ds(δv, η)dµ(η)

)|ξ|
. (3.2.27)

Proof. A straightforward calculation shows that (3.2.27) holds for µ
ϱ
s . The unique-

ness property follows from the fact that Ds(ξ, η) is a (multivariate) polynomial of
order at most |ξ|. This implies that (3.2.27) is actually a moment problem, which
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in the case of µ
ϱ
s has a unique solution since the marginals have a finite moment

generating function (see e.g. [63]).
From this relation, the invariance of the probability measures also follows from

the conservation of particles in the dual process. Namely, by duality and Fubini
we have that∫

Eη [Ds(ξ, ηt)] dµ
ϱ
s (η) = Eξ

[∫
Ds(ξt, η)dµ

ϱ
s (η)

]
=

(∫
Ds(δv, η)dµ

ϱ
s (η)

)|ξ|
.

(3.2.28)

3.3 ergodic theory of particle systems with homogeneous factor-
ized duality polynomials

In this section we provide a characterization of the ergodic invariant probability
measures satisfying a certain moment growth condition in a general setting where
we assume the existence of homogenous factorized duality polynomials, and the
existence of successful coupling for the dual process. This generalizes earlier
results from [76, Chapter 8] for the symmetric exclusion process, and [66] for the
inclusion process. The characterization will be applied in Section 3.4 to our models
(see Theorem 3.4 below).

3.3.1 Basic assumptions

Configurations

We consider a configuration process {ηt : t ≥ 0} on (a subset of) the state space
Ω = NG, where G is assumed to be an infinite countable set. We denote by St the
semigroup of this process, i.e., St f (η) = Eη f (ηt). We further denote by Ω f the set
of finite configurations, i.e., elements of ξ ∈ Ω such that |ξ| = ∑x ξ(x) < ∞.

Factorized duality functions

We assume that there exists a duality function

D : Ω f ×Ω→ R+ (3.3.1)

such that we have the duality relation

EηD(ξ, ηt) = ÊξD(ξt, η). (3.3.2)

We assume that D(∅, η) = 1 where ∅ denotes the empty configuration. Moreover
we assume that the duality functions are in homogeneous factorized form, i.e., of
the form

D(ξ, η) = ∏
x∈G

d(ξ(x), η(x)), (3.3.3)
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where d(0, n) = 1, i.e., in the product only a finite number of factors is different
from one, and where d(k, ·) is a non-negative polynomial of degree k. Moreover,
we assume that every polynomial p(n) of degree k can be expressed as a linear
combination of the polynomials d(r, n) with 0 ≤ r ≤ k.

We assume that both in the process {ηt : t ≥ 0} and in the dual process
{ξt : t ≥ 0} the number of particles is conserved.

In the examples of this chapter, the duality functions are multivariate polyno-
mials of degree |ξ|, and the dual process {ξt : t ≥ 0} is either the same process
(for the interacting examples) or the process obtained by reverting the velocities
(the R̂TP process defined in Theorem 3.1). In this section we take an abstract point
of view and prove under general assumptions a structure theorem for the set of
(tempered) invariant probability measures.

Tempered probability measures

Given a duality function, we define the D-transform of a probability measure µ on
the configuration space Ω by

µ̂(ξ) =
∫

D(ξ, η)dµ(η), (3.3.4)

where we implicitly assume that for all ξ ∈ Ω f , D(ξ, ·) is µ-integrable.

DEFINITION 3.2. We then say that a probability measure µ is tempered if

1. µ satisfies a uniform moment condition, i.e., for all n ∈N

cn := sup
|ξ|≤n

∫
D(ξ, η)dµ(η) < ∞. (3.3.5)

2. µ is determined by its D-transform, i.e., µ̂ = ν̂ if and only if µ = ν.

3. The following space
D = vct{D(ξ, ·) : ξ ∈ Ω f }, (3.3.6)

i.e., the vectorspace spanned by the functions D(ξ, ·), is dense in L2(µ).

Notice that by the assumptions on the duality functions, the condition (3.3.5) can
be expressed equivalently by the requirement that all moments of the occupation
variables are finite uniformly in x, i.e., for all n ∈N

sup
x∈G

∫
η(x)ndµ(η) < ∞. (3.3.7)

Using Hölder’s inequality, we then also obtain that under (3.3.5) we have that for
all n ∈N

sup
ξ,ξ ′ :|ξ|≤n,|ξ ′ |≤n

∫
D(ξ, η)D(ξ ′, η)dµ(η) < ∞. (3.3.8)
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The condition that the D-transform determines the probability measure uniquely
is implied by a growth condition on cn which implies that the measure µ is uniquely
determined by its multivariate moments. Examples of sufficient growth conditions
can be found in e.g. [63, Section 3.2]. In these settings, the condition that D is
dense in L2(µ) is also natural. In the setting of processes of exclusion type, i.e.,
when there are at most α particles at each site, the condition of density of D is
natural and follows from the Stone Weierstrass theorem, i.e., D is uniformly dense
in the set of continuous functions C (Ω).

Assumptions on the dual process

For the dual process {ξt : t ≥ 0}, we assume that it is irreducible on the sets
Ωn = {ξ : |ξ| = n}. Moreover we assume that eventually the process {ξt : t ≥ 0}
started at ξ with |ξ| = n, spreads out over the infinite set Ωn. This is expressed via
the condition that for all ξ ′ ∈ Ω f

lim
t→∞

P̂ξ(ξt ⊥ ξ ′) = 1, (3.3.9)

where we denote ξ ⊥ ξ ′ the event that the supports of ξ and ξ ′ are disjoint.
In words, (3.3.9) means that the probability that the configuration at time t has
non-zero occupation at fixed sites tends to zero as t→ ∞.

Ergodic probability measures

We denote by I the set of invariant probability measures of the process {ηt : t ≥ 0}
and by T the set of tempered probability measures on Ω. Both I and T are convex
sets.

We are then interested in characterizing the ergodic probability measures which
belong to T . We recall that a probability measure µ ∈ I is ergodic if, for any
f ∈ L2(µ), St f = f for all t ≥ 0 implies f =

∫
f dµ almost surely. The set of ergodic

probability measures coincides with Ie, the set of extreme points of I . Ergodicity
is implied by mixing (see e.g. [123, Section 6.3]) which is the property that for all
f , g ∈ L2(µ)

lim
t→∞

covµ( f , Stg) = lim
t→∞

∫ (
f −

∫
f dµ

)(
Stg−

∫
g dµ

)
dµ = 0. (3.3.10)

By bilinearity of the covariance and the fact that, for µ ∈ I , St is a contraction in
L2(µ), it suffices to show (3.3.10) for a set of functions f , g ∈W, where W is such
that the vectorspace spanned by W is a dense subspace in L2(µ).
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3.3.2 Successful coupling

We say that the dual process admits a successful coupling if for all n ∈N, ξ, ξ ′ ∈ Ωn

there exists a coupling {(ξ(1)t , ξ
(2)
t ) : t ≥ 0} of the processes {ξt : t ≥ 0} starting

from ξ and ξ ′ such that the following stopping time

τξ,ξ ′ = inf{T > 0 : ξ
(1)
t = ξ

(2)
t for all t ≥ T} (3.3.11)

is a.s. finite. We call this stopping time the coupling time. For this chapter, we will
make use of the following consequence of a successful coupling,

lim
t→∞

P̂ξ,ξ ′(ξ
(1)
t ̸= ξ

(2)
t ) = 0, (3.3.12)

where P̂ξ,ξ ′ is the path space probability measure of {(ξ(1)t , ξ
(2)
t ) : t ≥ 0} starting

from (ξ, ξ ′).

3.3.3 Characterization of tempered invariant probability measures

The following theorem has two parts: the first parts is well-known and appears in
various context, e.g. [76, Chapter 2, Chapter 8]. We give its proof in this general
context mainly for the sake of completeness. The second part is inspired by [66] in
the context of the inclusion process.

THEOREM 3.2. 1. If there exists a succesful coupling for the dual process, then
for every tempered invariant probability measure µ there exists a function
f : N→ [0, ∞) such that for all ξ ∈ Ωn,

µ̂(ξ) = f (n). (3.3.13)

2. If µ is a probability measure on Ω which is tempered, invariant and ergodic
then f (n) = f (1)n. As a consequence, µ is a product measure.

Proof. To prove item 1, by duality and the assumption that µ is tempered, we can
use Fubini’s theorem combined with duality to compute

Êξ µ̂(ξt) =
∫

Êξ(D(ξt, η))dµ(η)

=
∫

EηD(ξ, ηt)dµ(η)

=
∫

D(ξ, η)dµ(η) = µ̂(ξ). (3.3.14)

Here in the last equality we used the invariance of µ. We conclude that µ̂ is a
harmonic function, which is bounded on each Ωn by the assumption that µ is
tempered.
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Therefore, using the assumed existence of a successful coupling, by (3.3.12)
together with dominated convergence, we obtain for ξ, ξ ′ ∈ Ωn the following

µ̂(ξ) = Êξ,ξ ′ µ̂(ξ
(1)
t )

= Êξ,ξ ′ µ̂(ξ
(1)
t )I(ξ(1)t ) = ξ

(2)
t )) + o(1)

= Êξ,ξ ′ µ̂(ξ
(2)
t )I(ξ(1)t ) = ξ

(2)
t )) + o(1)

= Êξ ′(µ̂(ξt)) + o(1) = µ̂(ξ ′) + o(1), (3.3.15)

where o(1) → 0 as t → ∞. This gives that µ̂ is constant on Ωn, i.e., µ̂(ξ) = f (n)
for some f : N→ R.

To prove item 2, we start by using the ergodicity combined with duality to write∫
D(ξ, η)dµ(η)

∫
D(ξ ′, η)dµ(η)

= lim
T→∞

1
T

∫ T

0

∫
D(ξ, η)StD(ξ ′, ·)(η)dµ(η)dt

= lim
T→∞

1
T

∫ T

0

∫
D(ξ, η)Êξ ′D(ξt.·)(η)dµ(η)dt, (3.3.16)

Here in the first step we used that 1
T
∫ T

0 StD(ξ ′, ·)(η)dt→
∫
D(ξ ′, η)dµ(η) holds

almost surely and in L1(µ), and in the second step we used duality. Now let
ξ ∈ Ωn, ξ ′ ∈ Ωm be given. By item 1, we have f (n) = µ̂(ξ), f (m) = µ̂(ξ ′). By the
homogeneous factorization of D, we have for ξ ∈ Ωn, ξ ′ ∈ Ωm, ξ ⊥ ξ ′

D(ξ, η)D(ξ ′, η) = D(ξ + ξ ′, η), (3.3.17)

and therefore, if ξ ⊥ ξ ′, we have that∫
D(ξ, η)D(ξ ′, η)dµ(η) = f (n + m). (3.3.18)

Now combine (3.3.16) and the assumption (3.3.9) with the temperedness of the
probability measure µ to conclude

f (n) f (m) =
∫

D(ξ, η)dµ(η)
∫

D(ξ ′, η)dµ(η)

=
1
T

∫ T

0

∫
D(ξ, η)Êξ ′D(ξt, ·)(η)dµ(η) + o(1)

=
1
T

∫ T

0

∫
D(ξ, η)Êξ ′D(ξt, ·)(η)I(ξt ⊥ ξ)dµ(η) + o(1)

=
1
T

∫ T

0

∫
Êξ ′D(ξ + ξt, ·)(η)I(ξt ⊥ ξ)dµ(η) + o(1)

=
1
T

∫ T

0
Eξ ′ (I(ξt ⊥ ξ) f (n + m)) + o(1)

= f (n + m) + o(1), (3.3.19)
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where o(1)→ 0 as T → ∞ via (3.3.8), (3.3.5). This proves that for all ξ ∈ Ωn, ξ ′ ∈
Ωm we have

µ̂(ξ + ξ ′) = µ̂(ξ)µ̂(ξ ′), (3.3.20)

which gives f (n) = f (1)n. This implies that for all x1, . . . , xn ∈ G, k1, . . . , kn ∈N,

∫ n

∏
i=1

d(ki, ηxi )dµ(η) = f (1)k1+...+kn =
n

∏
i=1

∫
d(ki, η)dµ(η), (3.3.21)

which implies that µ is a product measure.

In the next theorem we prove that invariant tempered product probability mea-
sures are ergodic. This, combined with Theorem 3.2, completes the characterization
of the set of tempered ergodic probability measures.

We introduce

K :=
{∫

D(δx, η)dµ(η) : µ is an invariant tempered product probability measure
}

.

(3.3.22)

THEOREM 3.3. 1. If µ is an invariant tempered product probability measure then
it is ergodic.

2. If there exists a successful coupling for the dual process, then the only
tempered invariant probability measures which are ergodic are the product
probability measures µθ for which µ̂θ(ξ) = θ|ξ| with θ ∈ K.

3. If there exists a successful coupling for the dual process, then

(T ∩ I)e = T ∩ Ie = {µθ : θ ∈ K}, (3.3.23)

where (T ∩ I)e are the extreme points of T ∩ I .

Proof. For item 1, as indicated in the section where we defined mixing, it suffices
to show that

lim
t→∞

∫
D(ξ, η)EηD(ξ ′, ηt)dµ(η) = µ̂(ξ)µ̂(ξ ′) (3.3.24)

because by assumption the vectorspace spanned by the D(ξ, ·) is dense in L2(µ).
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Using duality, the assumption (3.3.9), the product character of the probability
measure µ as well as the assumed temperedness of µ (cf. (3.3.8)), and denoting
o(1) for a term which converges to zero as t→ ∞, we get∫

D(ξ, η)EηD(ξ ′, ηt)dµ(η) =
∫

D(ξ, η)Êξ ′D(ξt, η)dµ(η)

= Êξ ′

∫
D(ξ, η)D(ξt, η)I(ξt ⊥ ξ)dµ(η) + o(1)

=

(∫
D(ξ, η)dµ(η)

∫
Êξ ′D(ξt, η)dµ(η)

)
+ o(1)

=
∫

D(ξ, η)dµ(η)
∫

Eη(D(ξ ′, ηt))dµ(η) + o(1)

=
∫

D(ξ, η)dµ(η)
∫

D(ξ ′, η)dµ(η) + o(1)

= µ̂(ξ)µ̂(ξ ′) + o(1). (3.3.25)

Item 2 follows immediately from item 1 and item 2 of Theorem 3.2. To prove item
3, we only have to prove that

(T ∩ I)e = T ∩ Ie. (3.3.26)

The implication “µ ∈ T ∩ Ie implies µ ∈ (T ∩ I)e” is obvious. To prove the other
implication, start from µ ∈ (T ∩ I)e and assume that we have

µ = λν1 + (1− λ)ν2, (3.3.27)

with ν1, ν2 ∈ I and 0 < λ < 1. Then we have, because µ ∈ T , that ν1, ν2 ∈ T , and
therefore, ν1, ν2 ∈ T ∩ I . But then, using that µ ∈ (T ∩ I)e we have µ = ν1 = ν2,
therefore we conclude that µ ∈ Ie.

3.4 existence of a successful coupling

We can now state the main result of this chapter, i.e., the characterization of the
tempered ergodic probability measures for the three models of Section 3.2.1.

THEOREM 3.4. For all s ∈ {−1, 0, 1}, the probability measures µ
ϱ
s defined in Propo-

sition 3.2 are the only tempered ergodic probability measures of the process
generated by Ls.

By Theorem 3.3 we need to show the the dual processes defined in Section 3.2.2
satisfy the assumptions from Section 3.3.1, along with the existence of a successful
coupling. We will start by proving that the original assumptions hold.

The irreducibility of the processes on the sets Ωs,n = {ξ ∈ Ωs, f : ∑x ξ(x) = n}
is clear from the irreducibility of the single particle random walk. For (3.3.9), let
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ξ ′ ∈ Ωs,n and let (vi)
n
i=1 ⊂ V be the coordinates of the particles in the configuration

ξ ′. Note then that for every ξ ∈ Ωs, f

P̂ξ(ξt ̸⊥ ξ ′) ≤
n

∑
i=1

P̂ξ(ξt(vi) ≥ 1) ≤
n

∑
i=1

Êξ [ξt(vi)]. (3.4.1)

We are able to write ξt(vi) =
1

cα,s
Ds(δvi , ξt) cf. Remark 3.2. Hence, using duality

Êξ [ξt(vi)] = Evi [ξ(v(t))] = ∑
w∈V

pt(vi, w)ξ(w), (3.4.2)

where v(t) is the path of a particle under the dynamics of the original process
starting from vi, and pt(v, w) is the corresponding transition kernel. Here we also
used that the dual of the dual is the original process (cf. Theorem 3.1, item 3).
Because ξ is finite, the sum on the right-hand side is actually a finite sum, and
so (3.3.9) follows if pt(v, w)→ 0 as t→ ∞ for all v, w ∈ V. To see that this holds,
note that for all x, y, z ∈ Zd and σ, σ′ ∈ S we have that

pt((x, σ), (y, σ′)) = pt((x + z, σ), (y + z, σ′)). (3.4.3)

Therefore, there can not exist an invariant probability measure for the single
particle random walk, which means that the random walk is either null-recurrent
or transient. Hence we indeed have that limt→∞ pt(v, w) = 0 for all v, w ∈ V (see
e.g. [68, p. 26]).

In order to prove the existence of a successful coupling for the dual processes
we proceed as follows:

First, we consider multi-layer symmetric independent random walkers (IRW)
on V where the jump rates depend on the layer, i.e., R̂TP with λ = 0 in (3.2.4),
which will be needed for the proof of our models. Second, we deal with interacting
particles, distinguishing the transient and recurrent cases for both models. Finally,
we prove the existence of a successful coupling for a general RTP, distinguishing
the cases where there are random walk jumps and the case where there are only
active jumps.

In order to prove the successful coupling of finite configurations with identical
particle numbers, we pass to a more convenient labeled particle configuration, i.e.,
when ξ ∈ NV with ∑v∈V ξ(v) = n, then ξ = ∑n

i=1 δ(xi ,σi)
and we identify ξ with(

(x1, σ1), ..., (xn, σn)
)
∈ Vn where over the course of time, these initially chosen

labels remain fixed. With this prescription, the configuration process ξt induces a
unique process

(
(X1,t, σ1,t), ..., (Xn,t, σn,t)

)
on Vn.

3.4.1 Successful coupling of multi-layer symmetric IRW

The proof of existence of a successful coupling of multi-layer symmetric IRW makes
use of the Ornstein-coupling which is also used for the existence of a successful
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coupling of simple symmetric IRW on Zd. The argument can be found in e.g. [57],
however for completion we will give a proof here as well.

PROPOSITION 3.4. For all n ∈ N and y(1), y(2) ∈
(

Zd
)n

, there exists a successful

coupling
(
Y(1)

t , Y(2)
t
)

of simple symmetric IRW on Zd with initial conditions Y(1)
0 =

y(1) and Y(2)
0 = y(2).

Proof. Since the particles move independently, we only have to show that there
exists a successful coupling of two simple symmetric random walkers on Zd.
Namely, if we can successfully couple any two particles in the two configurations
Y(1)

t =
(
Y(1)

1,t , ..., Y(1)
n,t
)

and Y(2)
t =

(
Y(2)

1,t , ..., Y(2)
n,t
)
, then every stopping time

τi := inf
{

T > 0 : Y(1)
i,t = Y(2)

i,t for all t ≥ T
}

(3.4.4)

is a.s. finite. Note that the coupling time of Y(1)
t and Y(2)

t is then equal to
τ = max1≤i≤n τi, which is therefore also a.s. finite.

For the successful coupling of the pair Y(1)
i,t and Y(2)

i,t , let {e1, e2, ..., ed} be the
standard basis vectors of Zd. Then we can write

Y(1)
i,t −Y(2)

i,t = a1,te1 + a2,te2 + ... + ad,ted. (3.4.5)

Here every ak,t is a simple symmetric random walk on Z. Now define the stopping
times

τak := inf{t ≥ 0 : ak,t = 0}. (3.4.6)

It is clear that every τak is a.s. finite. After time τak we let the processes Y(1)
i,t and

Y(2)
i,t copy each others jumps in the direction of ek, i.e. ak,t = 0 for all t ≥ τak . The

proof is now finished after the observation that τi = max1≤k≤d τak .

PROPOSITION 3.5. For all n ∈ N and y(1), y(2) ∈ Vn, there exists a successful
coupling

(
Y(1)

t , Y(2)
t
)

of multi-layer symmetric IRW on V, i.e., R̂TP with λ = 0,

with initial conditions Y(1)
0 = y(1) and Y(2)

0 = y(2).

Proof. Similarly as in the proof of Proposition 3.4, we only have to show that there
exists a successful coupling of two random walkers (Y(1)

t , σ
(1)
t ) and (Y(2)

t , σ
(2)
t ) on

V. Initially we let the two random walkers evolve independently, up until the
stopping time ς defined as

ς := inf {t ≥ 0 : σ
(1)
t = σ

(2)
t }. (3.4.7)

Note that this stopping time is a.s. finite since the set S is finite and the transition
rates {c(σ, σ′) : σ, σ′ ∈ S} on S are irreducible. After the stopping time ς, we let
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the two random walkers copy each others internal state jumps, i.e., we define
the processes (Y̌(i)

t , σ̌
(i)
t ) for i = 1, 2 such that (Y̌(i)

t , σ̌
(i)
t ) = (Y(i)

t , σ
(i)
t ) for t ≤ ς

and σ̌
(i)
ς+t = σ̌t for t ≥ 0, where σ̌t is an internal state process starting from

σ̌0 = σ
(1)
ς = σ

(2)
ς .

We can again write

Y̌(1)
ς+t − Y̌(2)

ς+t = a1,te1 + a2,te2 + ... + ad,ted, (3.4.8)

where every ak,t is a continuous-time nearest neighbor symmetric random walk
on Z with (time-dependent) transition rates 2πσ̌t(ek) > 0. We again define the
stopping times

τak := inf{t ≥ 0 : ak,t = 0}, (3.4.9)

and after time τak we let the processes (Y̌(1)
t , σ̌

(1)
t ) and (Y̌(2)

t , σ̌
(2)
t ) copy each others

jumps in the direction of ek. Note that the coupling time τ is now equal to
τ = ς + max1≤k≤d τak , which is a.s. finite.

3.4.2 Successful coupling of multi-layer SEP

Let X(1)
t and X(2)

t be two finite configurations of multi-layer SEP particles with the
same number of particles. We split the proof of the successful coupling up in two
parts, namely the transient case and the recurrent case.

Transient case

Assume d ≥ 3, then the random walk corresponding to the transition rates πσ(·)
is transient on Zd for every σ ∈ S. Let Yt be an IRW process on NV with finitely
many particles. Since the transition rates are transient, for any R > 1 and any
starting position y = (y1, y2, ..., yn) such that ||yi − yj||1 > R for all i ̸= j, with
positive probability p(R) the particles in Yt starting from y will never have collisions.
Here a collision means that there is a t > 0 such that two particles (Y1,t, σ1,t) and
(Y2,t, σ2,t) in the configuration Yt are at neighboring positions of each other, i.e. we
either have

||Y1,t −Y2,t||1 = 1 and σ1,t = σ2,t, (3.4.10)

or

Y1,t = Y2,t and c(σ1,t, σ2,t) > 0. (3.4.11)

It follows that, conditional on the event that there are no collisions, the multi-layer
SEP particles move the same as multi-layer IRW particles.
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We now let the configurations X(1)
t and X(2)

t move for some time T > 0. We de-
note by R(T) the minimal distance between two particles in the same configuration
at time T, i.e.

R(T) := min
i ̸=j
{||X(1)

i,t − X(1)
j,t ||1, ||X(2)

i,t − X(2)
j,t ||1}, (3.4.12)

with X(1)
i,t ∈ Zd the position of particle i in configuration X(1)

t . After time T, we
start the coupling attempt by letting the SEP particles copy the jumps of IRW
particles starting from X(1)

T and X(2)
T . By Proposition 3.5, this attempt is successful

with probability larger than p(R(T)). This proof is now finished by noting that in
the transient case, we have that R(T)→ ∞ as T → ∞ and p(R)→ 1 as R→ ∞.

Recurrent case

For the case of d ≤ 2, where every πσ(·) is recurrent, we will define the multi-
layer SEP process on the ladder graph (see e.g. [3]), i.e., we define the state space
Ω′−1 := {0, 1}V×A with A = {1, 2, ..., α}). This space can be seen as the space
where on every site v ∈ V there is a ladder with α steps, and every particle chooses
a step of this ladder if it moves to a new site. We can easily go back from a
configuration η′ ∈ Ω′−1 to a configuration in η ∈ Ω−1 by setting

η(x, σ) =
α

∑
i=1

η′(x, σ, i), for all (x, σ) ∈ V. (3.4.13)

We now define the process on Ω′−1 through the generator

L ′
−1 f (η′) =

α

∑
j,k=1

∑
v,w∈V

p(v, w)

α
η′(v,j)

(
α− η′(w,k)

)
∇(v,j),(w,k) f (η′), (3.4.14)

i.e., it is the simple symmetric exclusion process on V × A where particles choose
a step on the ladder A uniformly. It is easy to see that L ′

−1 on Ω′−1 corresponds
to the generator L−1 on Ω−1 through (3.4.13). The successful coupling of the
multi-layer SEP now follows from the successful coupling of the simple symmetric
exclusion process on Ω′−1. Since the set V × A is countable, this result is already
known, for example in [76, Chapter VIII].

3.4.3 Successful coupling of multi-layer SIP

The successful coupling of SIP on Zd has already been shown by Kuoch and
Redig in [66] and can be extended to our framework of multi-layer particles. In
the transient case, this proof uses the same principle as the proof of a successful



70 ergodic theory of multi-layer interacting particle systems

coupling for multi-layer SEP above, i.e., we let the particles spread out far enough
such that there are no collisions with positive probability, after which the particles
move like independent random walkers for which there exists a successful coupling
by Proposition 3.5. The proof of the recurrent case actually uses a similar approach
as in the transient case, in which it lets the particles spread out over time and
afterwards makes a coupling attempt. The probability that this coupling attempt
is successful has non-zero probability. If the attempt fails, i.e., there is a collision,
a new coupling attempt is made. Since these coupling attempts have non-zero
probability of success and are independent, there will be a successful coupling
eventually. For more details on both proofs, see [66].

3.4.4 Successful coupling of R̂TP

For the R̂TP process we will also look at two cases, namely the case with random
walk jumps of particles, i.e., κ > 0 in (3.2.4), and without random walk jumps. For
the case of κ > 0, we will see that the successful coupling of R̂TP is a corollary of
Proposition 3.5 by copying the active and internal jumps of the process. If κ = 0,
then we will need the additional assumption given in (3.2.5). With this assumption
we are able to use a similar argument as in the proof of Proposition 3.5 to prove
the existence of a successful coupling.

Successful coupling of R̂TP with κ > 0

For (Xt, σt) a single R̂TP particle, we can decouple the dynamics of Xt through the
following decomposition,

Xt = Yt + Zt, (3.4.15)

where Yt is a symmetric random walk starting from X0 and Zt are the active jumps
starting from 0, both of which are dependent of σ0.

Since we are dealing with configurations of independent random walkers again,
we only have to prove the existence of a successful coupling of two random walkers
(X(1)

t , σ
(1)
t ) and (X(2)

t , σ
(2)
t ). Similarly as in the proof of Proposition 3.5, we let the

two random walkers evolve independently up until the stopping time ς defined
as in (3.4.7). Afterwards, we let the random walkers copy each others internal
state jumps, i.e., we define the processes (X̌(i)

t , σ̌
(i)
t ) for i = 1, 2 as (X̌(i)

t , σ̌
(i)
t ) =

(X(i)
t , σ

(i)
t ) for t ≤ ς, and

(X̌(i)
ς+t, σ̌

(i)
ς+t) = (Y̌(i)

t + Žt, σ̌t) (3.4.16)
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where Y̌(i)
t is again a symmetric random walk starting from X(i)

ς , Žt are again the
active jumps starting from 0, and σ̌t is as defined in the proof of Proposition 3.5.
Note that the difference of the positions of the two processes is now equal to

X̌(1)
ς+t − X̌(2)

ς+t = Y̌(1)
t − Y̌(2)

t , (3.4.17)

i.e., the difference between two symmetric random walkers. The result now follows
from Proposition 3.5.

Successful coupling of R̂TP with κ = 0 and λ > 0

Just as in the previous case, for two R̂TP processes, denoted (X(1)
t , σ

(1)
t ) and

(X(2)
t , σ

(2)
t ), we define the stopping time ς as in (3.4.7), and set up the processes

(X̌(i)
t , σ̌

(i)
t ) for i = 1, 2 such that (X̌(i)

t , σ̌
(i)
t ) = (X(i)

t , σ
(i)
t ) for t ≤ ς and σ

(i)
ς+t = σ̌t for

t ≥ 0.
By (3.2.5) we can now write

X̌(1)
ς+t − X̌(2)

ς+t = b1,tv(σ1) + b2,tv(σ2) + ... + bm,tv(σm) (3.4.18)

for m = |S|, σk ∈ S and bk,t ∈ Z for all k and t ≥ 0. For every k, the couple (bk,t, σ̌t)
is a random walk on Z× S with the following dynamics:

- If σ̌t = σk, bk,t moves as a continuous-time nearest neighbor symmetric
random walker on Z with rate λ.

- If σ̌t ̸= σk, bk,t does not move.

Since S is finite and the transition rates c(σ, σ′) are irreducible, these random walks
are recurrent as their discrete counterparts are recurrent. This implies that the
stopping times

τbk
:= inf{t ≥ 0 : bk,t = 0} (3.4.19)

are almost surely finite. After every time τbk
, we let the process X̌(2)

ς+t copy the

jumps of X̌(1)
ς+t in the direction of v(σk). For the coupling time τ, we then again

have that τ = ς + max1≤k≤m τbk
.

REMARK 3.3. We are able to extend the results of this section to the case where we
take S countable. We would need the additional assumption that the transition
rates c(σ, σ′) are positive recurrent, which ensures that we return to any σ ∈ S in
almost surely finite time. For the interacting particles we would then distinguish
between the cases where the transition rates p(v, w) in (3.2.1) are transient and
recurrent (note that the latter need not be the case where d ≤ 2). For the R̂TP, the
positive recurrence of c(σ, σ′) ensures that every stopping time τbk

in (3.4.19) is
almost surely finite.





4

S TAT I O N A RY F L U C T UAT I O N S O F R U N - A N D - T U M B L E
PA RT I C L E S

In the last chapter we showed that the product Poisson measures with constant
density are ergodic for the run-and-tumble particle system. In this chapter1 we
continue studying run-and-tumble particles and determine the hydrodynamic
limit and the stationary fluctuations. For the latter, we need to start our process
from an ergodic measure, and we then prove that the fluctuations converge to an
infinite dimensional Ornstein Uhlenbeck process. We discuss also an interacting
case, where the particles are subjected to exclusion. We then study the fluctuations
of the total density, which is a non-Markovian Gaussian process. By considering
small noise limits of this process, we obtain in a concrete example a large deviation
rate function containing memory terms.

4.1 introduction

In this chapter we consider a system of independent run-and-tumble particles
on Z and study the stationary fluctuations of its empirical distribution. Because
particles have positions and internal states (which determine the direction in which
they move and/or their rate of hopping over lattice edges), the hydrodynamic
limit is a system of linear reaction-diffusion equations, describing the macroscopic
joint evolution of the densities of particles with a given internal state. In this sense,
this chapter can be viewed as a study of macroscopic properties of the multi-layer
particle systems which we studied in Chapter 3. The study of hydrodynamic
limits and fluctuations around the hydrodynamic limit for particles with internal
states, or alternatively, multi-layer systems is quite recent, and to our knowledge
at present only a limited set of results is known: see [64], [37], [3], [101].

Our interest in multi-layer systems is motivated from the study of active particles
(see e.g. [23]), the study of double diffusivity models (see e.g. [37] and references
therein), and finally the study of particle systems described macrosopically by
equations containing memory terms. In this chapter we consider multi-layer

1 This chapter is based on [98].
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systems in which duality can be applied. Duality is a powerful tool which reduces
the study of the hydrodynamic limit to the scaling limit of a single (dual) particle,
and as we show in this chapter (see Section 4.3.1 below) also determines uniquely
the covariance of the stationary fluctuations of the empirical density of particles.
Provided one can show that the stationary fluctuations converge to a Gaussian
limiting (distribution-valued) process, this limiting covariance uniquely determines
the limiting stationary Gaussian process.

In this chapter we prove that the fluctuation fields of the densities of particles
with given internal state converge to a system of stochastic partial differential
equations. In these limiting equations, the drift is determined by the hydrodynamic
limit, whereas the noise has both a conservative part coming from the transport
of particles with a given internal state as well as a non-conservative part coming
from the flipping of internal states. We first deal with a system of independent
particles, which has a simple dual consisting of independent particles with reversed
velocities. Next we indicate how to deal with interacting particles such as layered
exclusion processes, where still duality can be used.

One of our motivations of studying fluctuation fields of particles with internal
states is to understand fluctuation properties of the total density, i.e., disregarding
the internal states of the particles. The configuration which gives at each site
the total number of particles is one of the simplest examples of a non-Markovian
interacting particle system. The study of the hydrodynamic limit, fluctuations
and large deviations around the hydrodynamic limit for non-Markovian particle
systems is largely terra incognita. Therefore, we believe that simple examples
in which one can have some grip on the explicit form of fluctuations and large
deviations are important to obtain.

In our setting, we prove that the fluctuations of the total density of particles con-
verges to a Gaussian distribution-valued process which satisfies a non-Markovian
SPDE. We provide a concrete example where we can explicitly characterize the
large deviations of the limiting SPDE in the small noise limit. These large devi-
ations give an indication of the large deviations of the total density of particles.
The latter can of course also be obtained via a contraction principle from the large
deviations of the joint densities of particles with a given internal state. However,
the large deviation rate function obtained via this contraction principle is very
implicit, and therefore in this chapter we preferred not to follow this road in order
to obtain an explicit form of the memory terms of the rate function.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the
run-and-tumble particle model and state preliminary results on ergodic measures,
duality and hydrodynamic limit, the latter of which will be proven in Section
4.6. In Section 4.3 we state the main result on stationary fluctuations for inde-
pendent particles, Theorem 4.3, provide a direct proof of the limiting covariance
in Section 4.3.1, and consider an interacting case, namely a multi-layer version
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of the symmetric exclusion process, in Section 4.3.2. In Section 4.4 we study the
hydrodynamic limit and the fluctuations of the total density of particles, and prove
a large deviations result for the limiting fluctuation process in a particular case. In
Section 4.5 we prove the Theorem 4.3.

4.2 basic notations and definitions

Let V := Z× S, with S ⊂ Z a finite set. The set V is the state space of a single
run-and-tumble particle. We see elements v = (x, σ) ∈ V as particles with position
x ∈ Z and internal state σ ∈ S. The dynamics of a single run-and-tumble particle
are now as follows

i. At rate κN2 the particle performs a nearest neighbor jump, i.e., (x, σ) →
(x± 1, σ)

ii. At rate λN the particle performs an active jump in the direction of its internal
state, i.e., (x, σ)→ (x + σ, σ).

iii. At rate c(σ, σ′) the particle changes its internal state from σ to σ′, i.e. (x, σ)→
(x, σ′). Here we assume that the rates {c(σ, σ′) : σ, σ′ ∈ S} are irreducible
and symmetric, i.e., c(σ, σ′) = c(σ′, σ).

The run-and-tumble particle process is the Markov process {ηt : t ≥ 0} on the
state space Ω := NV consisting of independent random walkers on V where every
particle has the dynamics as described above.

From the dynamics we can write down the following generator LN acting on
local functions, i.e., functions f : Ω→ R which only depend on a finite number of
sites in V.

LN f (η) = κN2 ∑
(x,σ)∈V

η(x, σ)
(

f
(
η(x,σ)→(x+1,σ))+ f

(
η(x,σ)→(x−1,σ))− 2 f (η)

)
+ λN ∑

(x,σ)∈V
η(x, σ)

(
f
(
η(x,σ)→(x+σ,σ))− f (η)

)
+ ∑

(x,σ)∈V
∑

σ′∈S
η(x, σ)c(σ, σ′)

(
f
(
η(x,σ)→(x,σ′))− f (η)

)
. (4.2.1)

Here η(x, σ) denotes the number of particles at site (x, σ) ∈ V in the configuration
η, and η(x,σ)→(y,σ′) denotes the configuration η where a single particle has moved
from (x, σ) to (y, σ′).

With this choice of scaling, in the macroscopic limit, the densities of particles
with a given internal state satisfy a system of linear reaction-diffusion equations
(see Section 4.4.1 below for the explicit form). Equivalently, one can view the choice
of scaling as a diffusive time scale (t→ N2t), a weak asymmetry (active jumps in
the direction of the velocity occur at rate N = N−1N2), and a slow reaction term
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(changes of internal state happen at rate 1 = N−2N2. The scaling is also such that
the motion of a single particle converges to a multi-layer Brownian motion with
layer-dependent drift (cf. Section 4.2.1 below).

4.2.1 Scaling limit of the single particle dynamics

We will denote by LN the Markov generator of a single run-and-tumble particle
(rescaled in space), more precisely, the generator of the process (Xt

N , σt) where Xt
denotes the position and σt the internal state of the particle.

This generator acts on a core consisting of test functions on the space R× S,
which we denote by C∞

c,S, and which is defined via

C∞
c,S := {ϕ : R× S→ R : ϕ(·, σ) ∈ C∞

c (R) for all σ ∈ S} . (4.2.2)

The generator LN then reads as follows:

LNϕ(x, σ) = κN2(ϕ(x + 1
N , σ) + ϕ(x− 1

N , σ)− 2ϕ(x, σ))

+ λN(ϕ(x + σ
N , σ)− ϕ(x, σ))

+ ∑
σ′∈S

c(σ, σ′)(ϕ(x, σ′)− ϕ(x, σ)). (4.2.3)

Corresponding to this generator we have the corresponding Markov semigroup
which we denote by SN

t . Via Taylor approximation we obtain that LNϕ → Aϕ
uniformly as N → ∞, where A is the differential operator given by

Aϕ(x, σ) =
(

κ
2 ∂xx + σλ∂x

)
ϕ(x, σ) + ∑

σ′∈S
c(σ, σ′)

(
ϕ(x, σ′)− ϕ(x, σ)

)
. (4.2.4)

Because A generates a Markov semigroup as well, as a consequence of the con-
vergence of the generators we can also obtain SN

t ϕ → etAϕ uniformly for all
ϕ ∈ C0,S, i.e., the functions space consisting of functions ϕ : R× S→ R such that
ϕ(·, σ) ∈ C0(R) for all σ ∈ S.

The operator A above is also an operator on (a subset of) the Hilbert space
L2(dx× | · |S), where | · |S is the counting measure over S. The inner product on
this Hilbert space, denoted by ⟨⟨·, ·⟩⟩, is the following

⟨⟨ϕ, ψ⟩⟩ := ∑
σ∈S

∫
R

ϕ(x, σ)ψ(x, σ)dx. (4.2.5)

Later on we will need the adjoint of the operator A with respect to this inner
product, which acts on ϕ ∈ C∞

c,S as follows:

A∗ϕ(x, σ) =
(

κ
2 ∂xx − σλ∂x

)
ϕ(x, σ) + ∑

σ′∈S
c(σ, σ′)

(
ϕ(x, σ′)− ϕ(x, σ)

)
. (4.2.6)
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4.2.2 Basic properties of independent run-and-tumble particles

Before we state the theorem of the stationary fluctuations, we first review a few
known results on run-and-tumble particles which we need.

Stationary ergodic product measures

We define the measures µϱ, with ϱ ∈ [0, ∞), as the product Poisson measure with
density ϱ, i.e.

µϱ :=
⊗

(x,σ)∈V

Pois(ϱ). (4.2.7)

In Chapter 3 we proved that these measures are stationary and ergodic with respect
for run-and-tumble particle process {ηt : t ≥ 0}. For this reason, when we study
the stationary fluctuations of the densities of particles with given internal state, we
will start the process {ηt : t ≥ 0} from the measure µϱ.

Duality

DEFINITION 4.1. We say that two Markov processes {ηt : t ≥ 0} and {ξt : t ≥ 0}, on
the state spaces Ω and Ω′ respectively, are dual to one another with respect to a
duality function D : Ω×Ω′ → R if

Eη [D(ξ, ηt)] = Êξ [D(ξt, η)] < ∞, (4.2.8)

where Eη denotes the expectation in {ηt : t ≥ 0} starting from η and Êξ the
expectation in the dual process {ξt : t ≥ 0} starting from ξ.

In Chapter 3 we proved that the run-and-tumble particle process is dual to its
time-reversed process where the active jumps are in the reverse direction, i.e., the
process corresponding to the following generator

L̂N f (η) = κN2 ∑
(x,σ)∈V

η(x, σ)
(

f
(
η(x,σ)→(x+1,σ))+ f

(
η(x,σ)→(x−1,σ))− 2 f (η)

)
+ λN ∑

(x,σ)∈V
η(x, σ)

(
f
(
η(x,σ)→(x−σ,σ))− f (η)

)
+ ∑

(x,σ)∈V
∑

σ′∈S
η(x, σ)c(σ, σ′)

(
f
(
η(x,σ)→(x,σ′))− f (η)

)
. (4.2.9)

The duality function is then given by

D(ξ, η) = ∏
(x,σ)∈V

η(x, σ)!
ξ(x, σ)!(η(x, σ)− ξ(x, σ))!

· I
(
ξ(x, σ) ≤ η(x, σ)

)
, (4.2.10)
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where I denotes the indicator function, and where ξ is assumed to be a finite
configuration, i.e.,

∑
(x,σ)

ξ(x, σ) < ∞ (4.2.11)

In this chapter we will mostly need this duality relation in the form of duality
with a single dual particle, i.e.,

Eη [ηt(x, σ)] = Ê(x,σ)[η(X̂t, σ̂t)], (4.2.12)

where ( X̂t
N , σ̂t) is the process corresponding to the (time-reversed) generator L̂N

given by

L̂Nϕ(x, σ) = κN2(ϕ(x + 1
N , σ) + ϕ(x− 1

N , σ)− 2ϕ(x, σ))

+ λN(ϕ(x− σ
N , σ)− ϕ(x, σ))

+ ∑
σ′∈S

c(σ, σ′)(ϕ(x, σ′)− ϕ(x, σ)). (4.2.13)

We denote the corresponding Markov semigroup of this process as ŜN
t . By a Taylor

expansion, we obtain that L̂Nϕ → A∗ϕ, with A∗ defined as in (4.2.6), uniformly
in N for all ϕ ∈ C∞

c,S, and therefore we are able to write for all ϕ ∈ C0,S that
ŜN

t ϕ→ etA∗ϕ uniformly.

4.2.3 Hydrodynamic limit

In this section we will briefly mention the hydrodynamic limit of the run-and-
tumble particle process. For the proof, which follows standard methodology, we
refer to the appendix.

Given a function ϱ : R× S→ R such that ϱ(·, σ) ∈ C2
b(R) for all σ ∈ S, we start

by defining the product Poisson measures µ
ϱ
N for every N ∈N as follows

µ
ϱ
N :=

⊗
(x,σ)∈V

Pois
(
ϱ( x

N , σ)
)
. (4.2.14)

This is the local equilibrium distribution corresponding to the macroscopic profile
ϱ.

Furthermore, for every N ∈N, the process {ηN
t : t ≥ 0} is the run-and-tumble

particle process started from ηN
0 ∼ µ

ϱ
N . We can now define the empirical measures

of the process, denoted by πN
[0,T] =

{
πN

t : t ≥ 0
}

, as follows

πN
t :=

1
N ∑

(x,σ)∈V
ηN

t (x, σ)δ
( x

N ,σ), (4.2.15)
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where δ is the dirac measure. We think of πN
t as the macroscopic profile corre-

sponding to the microscopic configuration ηt. In the rhs of (4.2.15) every particle
of type σ contributes a mass 1/N at the “macro spatial location” x/N.

For every t ≥ 0, πN
t is a positive measure in the space of Radon measures on

R× S, denotedM, such that when paired with a test function ϕ ∈ C∞
c,S we obtain〈

πN
t , ϕ

〉
=

1
N ∑

(x,σ)∈V
ηN

t (x, σ)ϕ( x
N , σ). (4.2.16)

By the choice of the initial distribution, we have at time t = 0 zero that

⟨πN
0 , ϕ⟩ →

∫
ϱ(x, σ)ϕ(x, σ)dx (4.2.17)

We then have the following result for the hydrodynamic limit.

THEOREM 4.1. For every t ≥ 0, ε > 0 and ϕ ∈ C∞
c,S, we have that

lim
N→∞

P

(∣∣∣∣∣πN
t (ϕ)− ∑

σ∈S

∫
ϱt(x, σ)ϕ(x, σ)dx

∣∣∣∣∣ > ε

)
= 0, (4.2.18)

where ϱt(x, σ) solves the PDE ϱ̇t = A∗ϱt with initial condition ϱ0(x, σ) = ϱ(x, σ).

This results is actually a corollary of an stronger theorem which shows con-
vergence of the trajectories πN

[0,T] in the path space D([0, T];M) equipped with
the Skorokhod topology. Let α = {αt : t ≥ 0} denote the trajectory of measures
on R× S such that for all t ≥ 0, ϕ ∈ C∞

c,S we have that ⟨αt, ϕ⟩ = ⟨⟨ϕ, ϱt⟩⟩, where
ϱt solves the PDE in the above theorem. The trajectory α is then the unique
continuous path in D([0, T];M) such that for all ϕ ∈ C∞

c,S

M
ϕ
t (α) = ⟨αt, ϕ⟩ − ⟨α0, ϕ⟩ −

∫ t

0
⟨αs, Aϕ⟩ds = 0. (4.2.19)

THEOREM 4.2. For any N ∈N, let PN be the law of the process πN
[0,T]. Then PN → δα

weakly in D([0, T];M) for any T > 0, with α the unique continuous path solving
(4.2.19).

For the sake of self-containedness, the proof of Theorem 4.2 is provided in the
appendix. The method of proof is standard and it follows Seppäläinen, in [104,
Chapter 8].

4.2.4 Fluctuation fields

For every N ∈ N we start {ηN
t : t ≥ 0} from the ergodic measure µϱ with ϱ > 0

constant. We then define the fluctuation field YN
[0,T] := {YN

t : t ∈ [0, T]} as

YN
t =

1√
N

∑
x∈Z

(
ηN

t (x, σ)− ϱ
)
δ
( x

N ,σ). (4.2.20)
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This process takes values in the space of distributions on R× S, denoted by (C∞
c,S)
∗.

We expect the fluctuation field YN
[0,T] to converge weakly to a generalized stationary

Ornstein-Uhlenbeck process. Before we can state the result we first recall some
basic definitions of space-time white noise (see e.g. [56] for a detailed account).

DEFINITION 4.2. A random distribution W is called a white noise on R× S if {⟨ϕ, W ⟩ :
ϕ ∈ C∞

c,s} is jointly centered Gaussian with covariance

E[⟨W , ϕ⟩ ⟨W , ψ⟩] = ⟨⟨ϕ, ψ⟩⟩ . (4.2.21)

where ⟨⟨, ⟩⟩ denotes the inner product defined in (4.2.5). We denote by dWt the
time-differential of space-time white noise. This object is such that when paired
with a test function ϕ ∈ C∞

c,S and integrated over time gives a Brownian motion,
i.e., ∫ t

0
⟨dWs, ϕ⟩ = B(⟨⟨ϕ, ϕ⟩⟩ t), (4.2.22)

where B(·) is a standard Brownian motion on R. We denote by dWt
dt the corre-

sponding space-time white noise. This random space-time distribution is such
that for all ϕ : [0, T]×R× S → R, with ϕ(t, ·) a test function ⟨dWt

dt , ϕ⟩ is jointly
Gaussian with covariance

E

[〈
dWt

dt
, ϕ

〉〈
dWt

dt
, ψ

〉]
=
∫ T

0
⟨⟨ϕ(t, ·), ψ(t, ·)⟩⟩dt. (4.2.23)

REMARK 4.1. Informally speaking, a white noise on R × S is a Gaussian field
W(x, σ) with covariance δ(x− y)δσ,σ′ , and a space-time white noise on R× S is a
Gaussian field W(t, x, σ) with covariance δ(t′ − t)δ(x− y)δσ,σ′ .

4.3 stationary fluctuations

We are now ready to state our result on stationary fluctuations. We start with the
case of independent particles; in Section 4.3.2 below we will consider an interacting
case.

THEOREM 4.3. Assume that η0 is distributed according to the Poisson product
measure µϱ. For every N ∈N, let QN denote the law of the process YN

[0,T] defined

in (4.2.20). Then QN → Q weakly in D([0, T]; (C∞
c,S)
∗) for any T > 0, where Q is

the law of the stationary Gaussian process Y satisfying the following SPDE

dYt = A∗Yt dt +
√

2κϱ∂x dWt +
√

2ϱΣ dW̃t. (4.3.1)

Here dWt and dW̃t are two independent space-time white noises on the space
R× S, and Σ is the operator working on test functions ϕ ∈ C∞

c,S as

(Σϕ)(x, σ) = − ∑
σ′∈S

c(σ, σ′)
(
ϕ(x, σ′)− ϕ(x, σ)

)
. (4.3.2)
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By the assumed symmetry of the rates c(σ, σ′), for ϕ, ψ ∈ C∞
c,S we have ⟨⟨Σϕ, ψ⟩⟩ =

⟨⟨ϕ, Σψ⟩⟩, and moreover ⟨⟨Σϕ, ψ⟩⟩ ≥ 0. Hence the operator is bounded, self-adjoint
and non-negative and therefore its square root

√
Σ is well-defined. The process

∂x dWt is defined as the process of distributions such that for all ϕ ∈ C∞
c,S

⟨∂x dWt, ϕ⟩ = − ⟨dWt, ∂xϕ⟩ . (4.3.3)

The rigorous meaning of the SPDE in (4.3.1) is defined in terms of a martingale
problem as in [61]. More precisely, the map ϕ 7→ ⟨Yt, ϕ⟩ is the solution of the
following martingale problem: for every ϕ ∈ C∞

c,S, the following two processes

M
ϕ
t (Y[0,T]) = ⟨Yt, ϕ⟩ − ⟨Y0, ϕ⟩ −

∫ t

0
⟨Ys, Aϕ⟩ds,

N
ϕ

t (Y[0,T]) = M
ϕ
t (Y[0,T])

2 − 2tκϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩ − 2tϱ ⟨⟨ϕ, Σϕ⟩⟩ (4.3.4)

are martingales with respect to the natural filtration Ft = σ(Ys : 0 ≤ s ≤ t).

4.3.1 Stationary covariance of the fluctuation fields via duality

We will first compare the covariance structure of the limiting process of YN
[0,T] with

the covariance structure of the process solving the SPDE in (4.3.1). This covariance
uniquely characterizes the process. More precisely, if we can prove that YN

t → Yt
where Yt is a distribution-valued stationary Gaussian process, then the covariance
E(⟨Yt, ϕ⟩⟨Y0, ψ⟩) uniquely determines this process. In that sense, the computation
of the covariance already determines the only possible candidate limit Yt. As
we show below, the covariance is in turn completely determined by the scaling
limit of a single dual particle. This shows that for systems with duality, both the
hydrodynamic limit and the stationary fluctuations are uniquely determined by
the scaling limit of a single dual particle.

PROPOSITION 4.1. For all ϕ, ψ ∈ C∞
c (R× S)

lim
N→∞

E[⟨YN
t , ϕ⟩⟨YN

0 , ψ⟩] = E[⟨Yt, ϕ⟩⟨Y0, ψ⟩] = ϱ
〈〈

etAϕ, ψ
〉〉

. (4.3.5)

Here E denotes the stationary expectation starting from the initial configuration
distributed according to η0 ∼ µϱ.

Proof. If Y is a solution to the SPDE in (4.3.1), then we can write

⟨Yt, ϕ⟩ = M
ϕ
t (Y[0,T]) + ⟨Y0, ϕ⟩+

∫ t

0
⟨Ys, Aϕ⟩ds, (4.3.6)
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where M
ϕ
t (Y[0,T]) is a martingale with respect to the filtration Ft = σ (Ys : 0 ≤ s ≤ t)

such that M
ϕ
0 (Y[0,T]) = 0. By the martingale property we have that

E[M
ϕ
t (Y[0,T])⟨Y0, ψ⟩] = E

[
E[M

ϕ
t (Y[0,T])⟨Y0, ψ⟩|F0]

]
= E

[
⟨Y0, ψ⟩E[M

ϕ
t (Y[0,T])|F0]

]
= 0, (4.3.7)

and so

E[⟨Yt, ϕ⟩⟨Y0, ψ⟩] = E[⟨Y0, ϕ⟩⟨Y0, ψ⟩] +
∫ t

0
E[⟨Ys, Aϕ⟩⟨Y0, ψ⟩]ds. (4.3.8)

Therefore, using that E[⟨Y0, ϕ⟩⟨Y0, ψ⟩] = ϱ ⟨⟨ϕ, ψ⟩⟩ we obtain that if Y is a solution
of (4.3.1), then we have

E[⟨Yt, ϕ⟩⟨Y0, ψ⟩] = E[⟨Y0, etAϕ⟩⟨Y0, ψ⟩] = ϱ
〈〈

etAϕ, ψ
〉〉

. (4.3.9)

On the other hand, for any N ∈N we have that

E
[
⟨YN

t , ϕ⟩⟨YN
0 , ψ⟩

]
=

1
N ∑

(x,σ)∈V
∑

(y,σ′)∈V
ϕ( x

N , σ)ψ( y
N , σ′)

∫
Eη

[
(ηt(x, σ)− ϱ)(η(y, σ′)− ϱ)

]
dµϱ(η)

=
1
N ∑

(x,σ)∈V
∑

(y,σ′)∈V
ϕ( x

N , σ)ψ( y
N , σ′)

∫
Ê(x,σ)

[
(η(X̂t, σ̂t)− ϱ)(η(y, σ′)− ϱ)

]
dµϱ(η)

=
1
N ∑

(x,σ)∈V
∑

(y,σ′)∈V
ϕ( x

N , σ)ψ( y
N , σ′)Ê(x,σ)

[
Covµϱ

(
η(X̂t, σ̂t), η(y, σ′)

)]
,

(4.3.10)

where we used duality for the second equality and Fubini for the last equality.
Now note that, because µϱ is a product of Poisson measures, the covariance term
is equal to ϱ if and only if (X̂t, σ̂t) = (y, σ′) and zero otherwise. Therefore

∑
(y,σ′)∈V

ψ( y
N , σ′)Ê(x,σ)

[
Covµϱ

(
η(X̂t, σ̂t), η(y, σ′)

)]
= ϱ ∑

(y,σ′)∈V
ψ( y

N , σ′)Ê(x,σ)

[
I
(
(X̂t, σ̂t) = (y, σ′)

)]
= ϱ · (ŜN

t ψ)( x
N , σ). (4.3.11)
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Here ŜN
t is the semigroup of the Markov process ( X̂t

N , σ̂t), for which we have
the following uniform convergence ŜN

t ψ → etA∗ψ (see Section 4.2.2) . By now
combining (4.3.10) and (4.3.11), we find that

E
[
⟨YN

t , ϕ⟩⟨YN
0 , ψ⟩

]
= ϱ · 1

N ∑
(x,σ)∈V

∑
(y,σ′)∈V

ϕ( x
N , σ)(ŜN

t ψ)( x
N , σ)

→ ϱ ·
〈〈

ϕ, etA∗ψ
〉〉

= ϱ ·
〈〈

etAϕ, ψ
〉〉

, (4.3.12)

which concludes the proof.

REMARK 4.2. In Proposition 3.2, the only place where the independence of the
particles is manifest is in the pre-factor ϱ which corresponds to the limiting
variance of the fluctuation field at time zero, because η0 is distributed as µϱ. When
considering any other system which satisfies duality, when A is the scaling limit
of the single particle generator, and χ(ϱ) is the limiting variance of the fluctuation
field at time zero, we find that the limiting covariance is given by

E[⟨Yt, ϕ⟩⟨Y0, ψ⟩] = χ(ϱ)
〈〈

etAϕ.ψ
〉〉

. (4.3.13)

E.g. for the exclusion process studied in the section below, χ(ϱ) = ϱ(α− ϱ).

4.3.2 Interacting case: the multi-layer SEP

The multi-layer symmetric exclusion process, or multi-layer SEP, is a generalization
of the symmetric exclusion process on Z to the multi-layered setting on Z× S. For
this process we look at configurations η ∈ {0, 1, ..., α}V with α ∈N, i.e., there are
at most α particles per site v ∈ V. Instead of having an active component on every
layer σ ∈ S like the run-and-tumble particle system, multi-layer SEP switches to a
different diffusion coëfficient, denoted by κσ, between the layers. The generator of
this process is then as follows

LSEP
N f (η) = N2 ∑

(x,σ)∈V
κσ ∑
|x−y|=1

η(x, σ) (α− η(y, σ))
(

f
(
η(x,σ)→(y,σ))− f (η)

)
+ ∑

(x,σ)∈V
∑

σ′∈S
c(σ, σ′)η(x, σ)(α− η(x, σ′))

(
f
(
η(x,σ)→(x,σ′))− f (η)

)
.

(4.3.14)

In Chapter 3 we proved that this process is self-dual and has ergodic measures
given by product Binomial measures νϱ =

⊗
v∈V Bin(α, ϱ) where ϱ ∈ (0, 1) is

constant.
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The corresponding single-particle generator is then given by

L SEP
N ϕ(x, σ) = ακσ

(
(ϕ(x + 1

N , σ) + ϕ(x− 1
N , σ)− 2ϕ(x, σ)

)
+ ∑

σ′∈S
c(σ, σ′)

(
ϕ(x, σ′)− ϕ(x, σ)

)
, (4.3.15)

and L SEP
N ϕ→ Bϕ uniformly, where

(Bϕ)(x, σ) =
ακσ

2
∂xxϕ(x, σ) + ∑

σ′∈S
αc(σ, σ′)

(
ϕ(x, σ′)− ϕ(x, σ)

)
. (4.3.16)

Since we took the rates c(σ, σ′) symmetric, this operator is self-adjoint in the
Hilbert space L2(dx× | · |S).

Using the same line of proof as in Section 4.5 below, we obtain the following
SPDE for the stationary fluctuation field,

dYt = BYt dt +
√

2ϱ(α− ϱ)K∂x dWt +
√

2ϱ(α− ϱ)Σ dW̃t. (4.3.17)

Here K is the operator given by (Kϕ)(x, σ) = κσϕ(x, σ). Note in the noise terms
the appearance of the terms ϱ(α− ϱ) instead of ϱ as in (4.3.1). This comes from
the fact that for (x, σ) ̸= (y, σ′)

Eνϱ [ηs(x, σ)(α− ηs(y, σ′))] = ϱ(α− ϱ), (4.3.18)

which plays a role in the calculation of the expectation of the Carré du champ
operator.

4.4 scaling limits of the total density

If we sum over the layers, i.e., over the σ-variables, then the resulting configuration
which gives the total number of particles at each site is no longer a Markov process.
Therefore, both in the hydrodynamic limit as well as in the fluctuations we expect
memory terms to appear in the form of higher order time derivatives in the limiting
equations. The stationary fluctuations of the empirical distribution of the total
number of particles will then become a non-Markovian Gaussian process which
we can identify explicitly.

Next, we consider the small-noise limit of these fluctuations. We then obtain
a large deviation principle via large deviations of Schilder’s type for Gaussian
processes (i.e., small variance limit of Gaussian processes, see e.g. [30] p. 88, and
also [73]), and we have memory terms in the corresponding large deviation rate
function. We will make these memory effects explicit in the simplest possible
setting where κ = 0 in (4.2.1). To our knowledge, this is the first example of an
explicit expression for a large deviation rate function of the empirical distribution
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of particles in a non-Markovian context. In general such rate functions can be
obtained from the contraction principle of the Markovian multi-layer system, but
this expression in the form of an infimum is implicit, can rarely be made explicit,
and therefore does not make manifest the effect of memory terms.

In the whole of this section, for notational simplicity, we further restrict to
S = {−1, 1} (two layers) and put c(1,−1) = c(−1, 1) =: γ. The aim is then to
study the fluctuations of the total density of particles, where we sum up the
particles in both layers. This produces an empirical measure and fluctuation field
on R given by

ζN
t =

1
N ∑

(x,σ)∈V
ηN

t (x, σ)δ x
N

, ZN
t =

1√
N

∑
(x,σ)∈V

(ηt(x, σ)− ϱ)δ x
N

. (4.4.1)

4.4.1 Hydrodynamic equation for the total density

From Theorem 4.1 we can deduce that ζN
t converges in probability to ϱt(x)dx,

where the density ϱt(x) is the sum of the densities on both layers, i.e., ϱt(x) =
ϱt(x, 1) + ϱt(x,−1) with ϱt(x, σ) the solution to the hydrodynamic equation ϱ̇t =
A∗ϱt. We can rewrite this equation as a coupled system of linear PDE’s given by

ϱ̇t(x, 1) =
(

κ
2 ∂xx − λ∂x

)
ϱt(x, 1) + γ(ϱt(x,−1)− ϱt(x, 1)),

ϱ̇t(x,−1) =
(

κ
2 ∂xx + λ∂x

)
ϱt(x,−1) + γ(ϱt(x, 1)− ϱt(x,−1)).

(4.4.2)

Summing up both equations gives us a PDE for the total density ϱt(x) depending
on the difference of the densities, denoted by ∆t(x) := ϱt(x, 1)− ϱt(x,−1).

ϱ̇t(x) = κ
2 ∂xxϱt(x)− λ∂x∆t(x),

∆̇t(x) = κ
2 ∂xx∆t(x)− λ∂xϱt(x)− 2γ∆t(x).

(4.4.3)

From this system we can actually find a closed equation for ϱ(x). Namely, by first
taking a second derivative in time of the upper equation we find that

ϱ̈t(x) =
κ

2
∂xx ϱ̇t(x)− λ∂x∆̇t(x)

=
κ

2
∂xx ϱ̇t(x)− λ∂x

(κ

2
∂xx∆t(x)− λ∂xϱt(x)− 2γ∆t(x)

)
. (4.4.4)

Now we use that from the first equation in (4.4.3) we have −λ∂x∆t(x) = ϱ̇t(x)−
κ
2 ∂xxϱt(x). Substituting this in (4.4.4), we find the following closed equation for
the total density

ϱ̈t(x)− (κ∂xx + 2γ)ϱ̇t(x) =
(
(λ2 − γκ)∂xx −

κ2

4
(∂x)

4
)

ϱt(x). (4.4.5)
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4.4.2 Fluctuations of the total density

For the analysis of the fluctuation field of the total density we first define the
fluctuation fields of each layer, and then by taking higher order derivatives as in
the previous subsection, we obtain a second order SPDE for the fluctuations of
the total density (cf. (4.4.17) below). We first set up a framework where we can
rigorously deal with the various distributions coming from the SPDE given in
(4.3.1) corresponding to both layers. We start by defining a fluctuation field for
each layer individually.

YN
t,σ =

1√
N

∑
x∈Z

(ηt(x, σ)− ϱ)δ x
N

, σ ∈ {−1, 1} (4.4.6)

The relation between these fluctuation fields and ZN
t is as follows: for every ϕ ∈ C∞

c
we have that 〈

ZN
t , ϕ

〉
=
〈

YN
t,1, ϕ

〉
+
〈

YN
t,−1, ϕ

〉
. (4.4.7)

However, there is also a direct relation between the fluctuation fields on both layers
and the fluctuation field YN

t on R× S defined in (4.2.20): for every ϕ ∈ C∞
c,S the

following holds 〈
YN

t , ϕ
〉
=
〈

YN
t,1, ϕ(·, 1)

〉
+
〈

YN
t,−1, ϕ(·,−1)

〉
. (4.4.8)

In this way YN
t , but more importantly its limiting process Yt, can be interpreted as

a row vector of distributions, Yt =
(
Yt,1 Yt,−1

)
, working on a column vector of

functions, ϕ =
(
ϕ(·, 1) ϕ(·,−1)

)T . With this in mind, we can look at the vector
representation of the measure A∗Yt. We have that

⟨A∗Yt, ϕ⟩ = ⟨Yt, Aϕ⟩
=
〈
Yt,1, ( κ

2 ∂xx + λ∂x)ϕ(·, 1)
〉
+ ⟨γ(Yt,−1 −Yt,1), ϕ(·, 1)⟩

+
〈
Yt,−1, ( κ

2 ∂xx − λ∂x)ϕ(·,−1)
〉
+ ⟨γ(Yt,1 −Yt,−1), ϕ(·,−1)⟩

=
〈
( κ

2 ∂xx − λ∂x)Yt,1 + γ(Yt,−1 −Yt,1), ϕ(·, 1)
〉

+
〈
( κ

2 ∂xx + λ∂x)Yt,−1 + γ(Yt,1 −Yt,−1), ϕ(·,−1)
〉

. (4.4.9)

Therefore A∗Yt corresponds to the following vector of distributions

A∗Yt =

 ( κ
2 ∂xx − λ∂x)Yt,1 + γ(Yt,−1 −Yt,1)

( κ
2 ∂xx + λ∂x)Yt,−1 + γ(Yt,1 −Yt,−1)

T

. (4.4.10)
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In a similar way we can find a vector representation of the noise part in the SPDE
(4.3.1), namely

√
2κϱ∂x dWt +

√
2ϱΣ dW̃t =

√
2κϱ∂x

(
dWt,1

dWt,−1

)T

+
√

2ϱΣ

(
dW̃t,1

dW̃t,−1

)T

=

 √
2κϱ∂x dWt,1 +

√
γϱ
(

dW̃t,−1 − dW̃t,1

)
√

2κϱ∂x dWt,−1 +
√

γϱ
(

dW̃t,1 − dW̃t,−1

)T

,

(4.4.11)

where all the dWt,i, dW̃t,i are independent space-time white noises on R. Denoting
W̃t =

1√
2
(W̃t,−1 − W̃t,1), then W̃t is again a space-time white noise in R. In this

notation, the SPDE in (4.3.1) actually gives us a system of SPDE’s given by
dYt,1 =

[
κ
2 ∂xxYt,1 − λ∂xYt,1 + γ (Yt,−1 −Yt,1)

]
dt +

√
2κϱ∂x dWt,1 +

√
γϱ dW̃t,

dYt,−1=
[

κ
2 ∂xxYt,−1+λ∂xYt,−1 + γ (Yt,1 −Yt,−1)

]
dt +

√
2κϱ∂xdWt,−1 +

√
γϱ dW̃t.

(4.4.12)
Now we are able to sum up these equations to get an SPDE for the fluctuation
process of the total density Zt. Just like in the hydrodynamic limit, this will again
depend on the difference of the two processes above, denoted by Rt := Yt,1 −Yt,−1.
This gives us the following system of coupled SPDE’s

dZt =
[

κ
2 ∂xxZt − λ∂xRt

]
dt + 2

√
κϱ∂x dWt,Z,

dRt =
[

κ
2 ∂xxRt − λ∂xZt − 2γRt

]
dt + 2

√
κϱ∂x dWt,R + 2

√
2γϱ dW̃t,

(4.4.13)

where

Wt,Z =
1√
2
(Wt,1 + Wt,−1) , Wt,R =

1√
2
(Wt,1 −Wt,−1) (4.4.14)

which are independent space-time white noises on R.

4.4.3 Covariance of the total density

The process Zt introduced as in (4.4.13) is a (non-Markovian) stationary Gaussian
processes. Therefore, we can characterize Zt through its covariances. Using (4.4.7)
and (4.4.8), we can actually relate this covariance to the covariance structure of
Yt, which we have already calculated in Proposition 4.1. In order to do so, for
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a given ϕ, ψ ∈ C∞
c we define the functions ϕ̄, ψ̄ ∈ C∞

c,S via ϕ̄(x, σ) = ϕ(x) and
ψ̄(x, σ) = ψ(x). The covariance can then be computed as follows

E[ ⟨Zt, ϕ⟩ ⟨Z0, ψ⟩]
= E[(⟨Yt,1, ϕ⟩+ ⟨Yt,−1, ϕ⟩) (⟨Y0,1, ψ⟩+ ⟨Y0,−1, ψ⟩)]
= E[(⟨Yt,1, ϕ̄(·, 1)⟩+ ⟨Yt,−1, ϕ̄(·,−1)⟩) (⟨Y0,1, ψ̄(·, 1)⟩+ ⟨Y0,−1, ψ̄(·,−1)⟩)]
= E[⟨Yt, ϕ̄⟩ ⟨Y0, ψ̄⟩]

= ϱ ·
〈〈

etAϕ̄, ψ̄
〉〉

. (4.4.15)

This covariance strongly resembles the covariance of a stationary Ornstein-Uhlenbeck
process, but notice that the semigroup etA works on the “extended” functions ϕ̄, ψ̄,
which corresponds to the non-Markovianity of the process {Zt, t ≥ 0}.

Notice that the formula for the covariance obtained in (4.4.15) is solely based
on duality, and is therefore valid as long as we have duality for the multi-layer
system, i.e., beyond the case of two internal states and including also interacting
cases such as the multi-layer SEP.

4.4.4 Closed form equation and large deviations for the case κ = 0

In the case of κ = 0 the noise term vanishes in the upper equation of (4.4.13) and
therefore we we can solve the system explicitly. Namely, we then find that

dZt = −λ∂xRt dt,

dRt = − [λ∂xZt + 2γRt]dt + 2
√

γϱ dW̃t.

(4.4.16)

Just like for the hydrodynamic limit of the total density, by now taking a second
derivative in time in the first equation we find that d2Zt = −λ∂x dRt dt. By now
filling in dRt from the lower equation, we have that

d2Zt

dt2 = λ2∂xxZt − 2γλ∂xRt + 2λ
√

γϱ∂x
dW̃t

dt
(4.4.17)

= λ2∂xxZt + 2γ
dZt

dt
+ 2λ

√
γϱ∂x

dW̃t

dt
.

From the expression above we are also able to obtain the rate function for the
large deviations of Z(ε)

t in the small noise regime, i.e., where we add a factor ε

before the noise W̃t which we will send to zero. I.e., we are interested in the large
deviations of Schilder type (see [30], [73]) for the family of Gaussian process given
by

d2Z(ε)
t

dt2 = λ2∂xxZ(ε)
t + 2γ

dZ(ε)
t

dt
+ ε2λ

√
γϱ∂x

dW̃t

dt
. (4.4.18)
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We use that

P

(
ε∂x

dW̃t

dt
≍ Γ(t, x)

)
≍ exp

(
−ε−2 1

2

∫ T

0
||Γ(t, ·)||2H−1

dt
)

, (4.4.19)

which has to be interpreted in the sense of the large deviation principle in the
space of space-time distributions. The rate function in the above equation can be
derived from the log-moment-generating function of a space-time white noise on
R, which for a test function ϕ ∈ C∞

c ([0, T]×R) is equal to

Λ(ϕ) = lim
ε→0

ε2 log
(

E[eε−1
〈

ϕ,∂x
dWt
dt

〉
]

)
=

1
2
⟨∂xϕ, ∂xϕ⟩L2(R×[0,T]) . (4.4.20)

The Legendre transform of Λ then yields the rate function,

Λ∗(Γ(t, x)) = sup
ϕ∈C∞

c ([0,T]×R)

{
⟨ϕ, Γ⟩L2([0,T]×R) −

1
2
⟨∂xϕ, ∂xϕ⟩L2([0,T]×R)

}
=

1
2

∫ T

0
||Γ(t, ·)||2H−1 dt. (4.4.21)

As a consequence, we obtain the large deviation principle for the random space-
time distribution Z(ε)

t , namely from (4.4.18) it follows that

P
(

Z(ε)
t ≍ Γ(t, x)

)
= P

(
ε∂x

dW̃t

dt
≍ 1

2λ
√

γϱ

(
Γ̈(t, x)− 2γΓ̇(t, x)− λ2∂xxΓ(t, x)

))

≍ exp
(
−ε−2 1

4λ
√

γϱ

∫ T

0

∣∣∣∣∣∣Γ̈(t, ·)− 2γΓ̇(t, ·)− λ2∂xxΓ(t, ·)
∣∣∣∣∣∣2

H−1
dt
)

.

(4.4.22)

4.5 proof of theorem 4 .3

In this section we prove Theorem 4.3, following the line of proof of Van Ginkel
and Redig in [117]. For the readers convenience we sketch the main steps.

We start by introducing the Dynkin martingales of ⟨YN
t , ϕ⟩. For every ϕ ∈ C∞

c,S
and N ∈ N, let {F N

t : t ≥ 0} be the filtration generated by {YN
t : t ≥ 0}.

Because the configuration process {ηt : t ≥ 0} is a Markov processes the following
processes

M
N,ϕ
t (YN

[0,T]) = ⟨Yt, ϕ⟩ − ⟨YN
0 , ϕ⟩ −

∫ t

0
LN⟨YN

s , ϕ⟩ds,

N
N,ϕ

t (YN
[0,T]) = M

N,ϕ
t (YN

[0,T])
2 −

∫ t

0
ΓN,ϕ(YN

s )ds, (4.5.1)



90 stationary fluctuations of run-and-tumble particles

are F N
t -martingales, where ΓN,ϕ

s is the so-called Carré du champ operator given
by

ΓN,ϕ(YN
s ) := LN

(
⟨YN

s , ϕ⟩2
)
− 2⟨YN

s , ϕ⟩LN⟨YN
s , ϕ⟩. (4.5.2)

The aim is then to prove that as N → ∞, the martingales in (4.5.1) converge to the
martingales from (4.3.4). This fact, complemented with a proof of tightness and
the fact that the martingale problem (4.3.4) has a unique solution, then completes
the proof. In Section 4.5.1 we prove the convergence of the martingales, in Section
4.5.2 we prove the tightness, and in Section 4.5.3 we prove the uniqueness of the
solution of the martingale problem (4.3.4).

4.5.1 Substituting the martingales

Our goal for this section is to show that in the limit as N → ∞, we can sub-
stitute M

ϕ
t (Y

N
[0,T]) and N

ϕ
t (YN

[0,T]) (with M
ϕ
t and N

ϕ
t defined as in (4.3.4)) for

M
N,ϕ
t (YN

[0,T]) and N
N,ϕ

t (YN
[0,T]) respectively. We do so in the Propositions 4.2 and

4.3. We recall the reader that the expectation E stands for the stationary expectation
starting from the initial configuration distributed according to η0 ∼ µϱ.

PROPOSITION 4.2. For all ϕ ∈ C∞
c,S we have

lim
N→∞

E

[∣∣∣M N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

∣∣∣2] = 0. (4.5.3)

Proof. First of all, note that by definition

E

[∣∣∣M N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

∣∣∣2] = E

[∣∣∣∣∫ t

0
LN⟨YN

s , ϕ⟩ds−
∫ t

0
⟨YN

s , Aϕ⟩ds
∣∣∣∣2
]

.

(4.5.4)
For a given (x, σ) ∈ V we have that

LNη(x, σ) = κN2[η(x + 1, σ) + η(x− 1, σ)− 2η(x, σ)]

+ λN[η(x− σ, σ)− η(x, σ)]

+ ∑
σ′∈S

c(σ, σ′)[η(x, σ′)− η(x, σ)], (4.5.5)

and so in particular we find that

LN⟨YN
s , ϕ⟩= 1√

N
∑

(x,σ)∈V

(
LNηs(x, σ)

)
ϕ( x

N , σ)=
1√
N

∑
(x,σ)∈V

ηs(x, σ)(LNϕ)( x
N , σ),

(4.5.6)
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where we remind the reader that LN is the generator of a single run-and-tumble
particle on the rescaled space 1

N Z× S. Now, using that for any ϕ ∈ C∞
c,S we have

that
∑

(x,σ)∈V
ϱ · (LNϕ)( x

N , σ) = 0, (4.5.7)

we are able to write

LN⟨YN
s , ϕ⟩ = 1√

N
∑

(x,σ)∈V
(ηs(x, σ)− ϱ) · (LNϕ)( x

N , σ). (4.5.8)

Since LNϕ→ Aϕ uniformly, where A is defined in (4.2.4), we have that

LN⟨YN
s , ϕ⟩ = 1√

N
∑

(x,σ)∈V
(ηs(x, σ)− ϱ) · (Aϕ)( x

N , σ) + R1(ϕ, N, s), (4.5.9)

where R1(ϕ, N, s) is an error term produced by the Taylor approximations. Since
ϕ is compactly supported, if we define VN

ϕ := {(x, σ) ∈ V, ϕ( x
N , σ) ̸= 0} then

|VN
ϕ | = O(N). Furthermore, the error term is bounded in the following way

|R1(ϕ, N, s)| ≤ 1
N3/2 ∑

v∈VN
ϕ

(ηs(v)− ϱ)(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞). (4.5.10)

Therefore we find that for every ϕ ∈ C∞
c,S and t ≥ 0,

E
[

R1(ϕ, N, s)2
]

≤ 1
N3 E

 ∑
v,w∈VN

ϕ

(ηs(v)− ϱ)(ηs(w)− ϱ)(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞)2


=

1
N3 ∑

v,w∈VN
ϕ

Cov
(
ηs(v), ηs(w)

)
(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞)2. (4.5.11)

Since we are starting the process ηt from the invariant product measure µϱ, we
have that

Cov
(
ηs(v), ηs(w)

)
= ϱ · I

(
v = w

)
. (4.5.12)

Therefore,

E
[

R1(ϕ, N, s)2
]
≤ 1

N3 |V
N
ϕ |ϱ(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞)2 → 0, (4.5.13)

where we used the fact that |VN
ϕ | = O(N). Note that the above convergence is

uniform in s, and therefore by dominated convergence we find that

lim
N→∞

E

[∣∣∣M N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

∣∣∣2] = lim
N→∞

∫ t

0
E
[

R1(ϕ, N, s)2
]

ds = 0,

(4.5.14)
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which concludes the proof.
The substitution of N

ϕ
t (YN

[0,T]) is a bit more work and requires a fourth moment
estimate. We start by proving two lemmas. The proof of the substitution result in
Proposition 4.3 immediately follows from these lemmas.

LEMMA 4.1. For all ϕ ∈ C∞
c,S we have the following

lim
k→∞

E

[(
M

N,ϕ
t (YN

[0,T])
2 −M

ϕ
t (Y

N
[0,T])

2
)2
]
= 0. (4.5.15)

Proof. We start with the following application of Hölder’s inequality

E

[(
M

N,ϕ
t (YN

[0,T])
2 −M

ϕ
t (Y

N
[0,T])

2
)2
]

= E

[(
M

N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

)2 (
M

N,ϕ
t (YN

[0,T]) +M
ϕ
t (Y

N
[0,T])

)2
]

≤
(

E

[(
M

N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

)4
]
·E
[(

M
N,ϕ
t (YN

[0,T]) +M
ϕ
t (Y

N
[0,T])

)4
]) 1

2
.

(4.5.16)

We will first show that the first expectation in the last line vanishes as N → ∞, and
afterwards we will show that the second expectation is uniformly bounded in N.
Note that by (4.5.9)

E

[(
M

N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

)4
]
= E

[(∫ t

0
[R1(ϕ, N, s)]ds

)4
]

≤ t3
∫ T

0
E
[

R1(ϕ, N, s)4
]

ds. (4.5.17)

Using the bound in (4.5.10) we find that

E
[

R1(ϕ, N, s)4
]
≤ 1

N6 ∑
vi∈VN

ϕ

1≤i≤4

E

[
4

∏
i=1

(ηs(vi)− ϱ)

]
(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞)4.

(4.5.18)
Since we start from the product Poisson measure µϱ, we only get non-zero contri-
butions in the expectation on the right-hand side when all vi are equal or when
we have two distinct pairs, given by

E
[
(ηs(v)− ϱ)4

]
= 3ϱ2 + ϱ, E

[
(ηs(v)− ϱ)2(ηs(w)− ϱ)2

]
= ϱ2. (4.5.19)

Therefore, it follows that

E
[

R1(ϕ, N, s)4
]
≤ 1

N6

(
|VN

ϕ |(3ϱ2 + ϱ) + |VN
ϕ |2ϱ2

)
(κ||∂xxxϕ||∞ + λσ2||∂xxϕ||∞)4,

(4.5.20)
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and so R1(ϕ, N, s, σ)
L4
−→ 0 uniformly in s. From this we can conclude that

E

[(
M

N,ϕ
t (YN

[0,T])−M
ϕ
t (Y

N
[0,T])

)4
]
≤ t3

∫ t

0
E
[

R1(ϕ, N, s)4
]

ds→ 0. (4.5.21)

To now show that the second expectation in the last line of (4.5.16) is uniformly
bounded in N, note that

E

[(
M

N,ϕ
t (YN

[0,T]) +M
ϕ
t (Y

N
[0,T])

)4
]

≤ 8
(

E

[(
M

N,ϕ
t (YN

[0,T])
)4
]
+ E

[(
M

ϕ
t (Y

N
[0,T])

)4
])

, (4.5.22)

and similarly

E

[(
M

ϕ
t (Y

N
[0,T])

)4
]
≤ 27

(
E
[
⟨YN

t , ϕ⟩4
]
+ E

[
⟨YN

0 , ϕ⟩4
]
+ E

[(∫ t

0
⟨YN

s , Aϕ⟩ds
)4
])

.

(4.5.23)
Now we need to show that three expectations on the right-hand-side are uniformly
bounded. For the first expectation, we find that

E
[
⟨YN

t , ϕ⟩4
]
≤ 1

N2 · ∑
v1∈VN

ϕ

· · · ∑
v4∈VN

ϕ

E

[
4

∏
i=1

(ηt(vi)− ϱ)

]
||ϕ||∞. (4.5.24)

Similarly as in (4.5.20), we find that

E
[
⟨YN

t , ϕ⟩4
]
≤ 1

N2

(
|VN

ϕ |(3ϱ2 + ϱ) + |VN
ϕ |2ϱ2

)
||ϕ||∞ = O(1), (4.5.25)

hence it is uniformly bounded, and similar approaches can be used for E
[
⟨YN

0 , ϕ⟩4
]

and E
[
⟨YN

s , Aϕ⟩4
]
. The fact that the last expectation in (4.5.23) is uniformly

bounded now follows from an application of Hölder’s inequality, namely

E

[(∫ t

0
⟨YN

s , Aϕ⟩ds
)4
]
≤ t3

∫ T

0
E
[
⟨YN

s , Aϕ⟩4
]

ds. (4.5.26)

Therefore we know that E
[(

M
ϕ
t (Y

N
[0,T])

)4
]

is uniformly bounded. The proof for

E
[(

M
N,ϕ
t (YN

[0,T])
)4
]

works the same way if we use that

E

[(
LN⟨YN

s , ϕ⟩
)4
]
= 8

(
E
[
⟨YN

s , Aϕ⟩4
]
+ E

[
R1(ϕ, N, t, σ)4

])
, (4.5.27)

where by (4.5.20) we already know that E
[
R1(ϕ, N, t, σ)4] is uniformly bounded.

Hence we can conclude that (4.5.15) holds.
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LEMMA 4.2. For all ϕ ∈ C∞
c,S we have the following

lim
N→∞

E

[(∫ t

0
ΓN,ϕ(YN

s )ds− 2tκϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩ − 2tϱ ⟨⟨ϕ, Σϕ⟩⟩
)2
]
= 0, (4.5.28)

with Σ defined as in (4.3.2).

Proof. First we recall that for a Markov process with generator L determined by
the transition rates r(η, η′) the carré du champ operator is computed as follows.

L f 2(η)− 2 f (η) · L f (η) = ∑
η′∈Ω

r(η, η′)
((

f 2(η′)− f 2(η)
)
− 2
(

f (η) f (η′)− f 2(η)
))

= ∑
η′∈Ω

r(η, η′)
(

f (η′)− f (η)
)2, (4.5.29)

Translating this to our setting with L = LN and f = YN we obtain

ΓN,ϕ(YN
s ) = κN ∑

(x,σ)∈V
ηs(x, σ)

(
ϕ( x+1

N , σ)− ϕ( x
N , σ))2 + (ϕ( x−1

N , σ)− ϕ( x
N , σ))2

)
+ λ ∑

(x,σ)∈V
ηs(x, σ)

(
ϕ( x+σ

N , σ)− ϕ( x
N , σ)

)2

+
1
N ∑

(x,σ)∈V
∑

σ′∈S
c(σ, σ′)ηs(x, σ)

(
ϕ(x, σ′)− ϕ(x, σ))2. (4.5.30)

Using Taylor expansion with rest term, we can write

ΓN,ϕ(YN
s ) =

2κ

N ∑
(x,σ)∈V

ηs(x, σ)
(
∂xϕ( x

N , σ)
)2

+
1
N ∑

(x,σ)∈V
∑

σ′∈S
c(σ, σ′)ηs(x, σ)(ϕ( x

N , σ′)− ϕ( x
N , σ)2

+ R2(ϕ, s, N), (4.5.31)

with R2(ϕ, s, N) the error term, which is bounded as follows

|R2(ϕ, s, N)| ≤ κ
1

N3 ∑
(x,σ)∈VN

ϕ

ηs(x, σ)κ||∂xxϕ||∞ +
1

N2 ∑
(x,σ)∈VN

ϕ

ηs(x, σ)λσ||ϕ′||∞.

(4.5.32)
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Following the line of thought leading to (4.5.11), we obtain that R2(ϕ, s, N)
L2
−→ 0.

Therefore, for the expectation we find that

E
[
ΓN,ϕ(YN

s )
]
=

2κϱ

N ∑
(x,σ)∈V

(∂xϕ( x
N , σ))2 +

2ϱ

N ∑
σ′∈S

c(σ, σ′)(ϕ( x
N , σ′)− ϕ( x

N , σ))2

+ E [R2(ϕ, s, N)]

→ 2κϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩+ 2ϱ ⟨⟨ϕ, Σϕ⟩⟩ , (4.5.33)

and for the variance

Var
[
ΓN,ϕ(YN

s )
]
≤ C(ϕ, s)

N2 ∑
v,w∈VN

ϕ

Cov
(
ηs(v), ηs(w)

)
=

C(ϕ, s)
N2 |VN

ϕ |ϱ→ 0, (4.5.34)

with C(ϕ, s) some constant and where we have used (4.5.12) for the equality. Since
the variance converges to zero, this means that ΓN,ϕ(YN

s ) converges to its mean in
L2. Therefore

lim
N→∞

E

[(∫ t

0
ΓN,ϕ(YN

s )ds− 2tκϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩ − 2tϱ ⟨⟨ϕ, Σϕ⟩⟩
)2
]

≤ lim
N→∞

∫ t

0
E

[(
ΓN,ϕ(YN

s )− 2κϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩ − 2ϱ ⟨⟨ϕ, Σϕ⟩⟩
)2
]

ds (4.5.35)

= 0,

where we used dominated convergence for the last equality.

PROPOSITION 4.3. For all ϕ ∈ C∞
c,S

lim
N→∞

E

[∣∣∣N N,ϕ
t (YN

[0,T])−N
ϕ

t (YN
[0,T])

∣∣∣2] = 0. (4.5.36)

Proof. We have that

E

[∣∣∣N N,ϕ
t (YN

[0,T])−N
ϕ

t (YN
[0,T])

∣∣∣2]
≤ 2E

[(
M

N,ϕ
t (YN

[0,T])
2 −M

ϕ
t (Y

N
[0,T])

2
)2
]

+ 2E

[(∫ t

0
ΓN,ϕ(YN

s )ds− 2tκϱ ⟨⟨∂xϕ, ∂xϕ⟩⟩ − 2tϱ ⟨⟨ϕ, Σϕ⟩⟩
)]

. (4.5.37)

The proof now follows from Lemma 4.1 and 4.2.
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4.5.2 Tightness

In this section we will show the tightness of the collection {YN
[0,T] : N ∈N}.

PROPOSITION 4.4. {YN
[0,T] : N ∈N} is tight in D([0, T]; (C∞

c,S)
∗).

Proof. Since C∞
c,S is a nuclear space, by Mitoma [83, Theorem 4.1] it suffices to

prove that for a fixed ϕ ∈ C∞
c,S we have that {⟨YN

[0,T], ϕ⟩ : N ∈ N} is tight in the
path space D([0, T]; R). Aldous’ criterion, as stated in [2, Theorem 1], tells us that
it suffices to show the following two things:

A.1 For all t ∈ [0, T] and ε > 0 there exists a compact K(t, ε) ∈ R such that

sup
N∈N

P
(
⟨YN

t , ϕ⟩ /∈ K(t, ε)
)
≤ ε. (4.5.38)

A.2 For all ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

P
(
|⟨YN

τ , ϕ⟩ − ⟨YN
τ+θ , ϕ⟩| > ε

)
= 0, (4.5.39)

with TT the set of all stopping times bounded by T.

Fix t ∈ [0, T] and ϕ ∈ C∞
c,S. Then, for every σ ∈ S we have that

E[⟨YN
t , ϕ⟩] = 1√

N
∑

(x,σ)∈V
E [ηt(x, σ)− ϱ] ϕ( x

N , σ) = 0, (4.5.40)

and

Var[⟨YN
t , ϕ⟩] = 1√

N
∑

(x,σ)∈V
Var [ηt(x, σ)− ϱ] ϕ( x

N , σ) =
1
N

ϱ ∑
(x,σ)∈V

ϕ2( x
N , σ).

(4.5.41)

By the central limit theorem, we therefore see that every ⟨YN
t , ϕ⟩ converges in

distribution to the normal distribution N
(
0, ϱ ⟨⟨ϕ, ϕ⟩⟩

)
. This implies the tightness

of the real-valued random variables {⟨YN
t , ϕ⟩ : N ∈N}, and therefore also A.1.

To prove A.2, we note that for every bounded stopping time τ ∈ TT we have
that

⟨YN
τ , ϕ⟩ = M

N,ϕ
τ (YN

[0,T]) + ⟨Y
N
0 , ϕ⟩+

∫ τ

0
LN⟨YN

s , ϕ⟩ds, (4.5.42)
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with M
N,ϕ
τ (YN

[0,T]) the Dynkin martingale of ⟨YN
τ , ϕ⟩. Using the Markov inequality,

we can then deduce that

P
(
|⟨YN

τ , ϕ⟩ − ⟨YN
τ+θ , ϕ⟩| > ε

)
≤ 1

ε2 E

[(
⟨YN

τ , ϕ⟩ − ⟨YN
τ+θ , ϕ⟩

)2
]

≤ 2
ε2

(
E

[(
M

N,ϕ
τ (YN

[0,T])−M
N,ϕ
τ+θ(Y

N
[0,T])

)2
]

+ E

[(∫ τ+θ

τ
LN⟨YN

s , ϕ⟩ds
)2
])

. (4.5.43)

For the integral term, note that by the Cauchy-Schwarz inequality and Fubini
we have that

E

[(∫ τ+θ

τ
LN⟨YN

s , ϕ⟩dr
)2
]
≤
√

θ ·
(

E

[∫ T+θ

0

(
LN⟨YN

s , ϕ⟩
)2

ds
]) 1

2

=
√

θ ·
(∫ T+θ

0
E

[(
LN⟨YN

s , ϕ⟩
)2
]

ds
) 1

2

. (4.5.44)

In the proof of Lemma 4.1 we have shown that {LN⟨YN
s , ϕ⟩ : N ∈N} is uniformly

bounded in L4, hence it is also uniformly bounded in L2, i.e.

C := sup
N∈N

E

[(
LN⟨YN

s , ϕ⟩
)2
]
< ∞. (4.5.45)

Combining (4.5.44) and (4.5.45), we find that

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

E

[(∫ τ+θ

τ
LN⟨YN

s , ϕ⟩dr
)2
]
≤ lim

δ→0

√
δCT = 0. (4.5.46)

For the martingale, by the martingale property we have that

E
[
M

N,ϕ
τ (YN

[0,T])M
N,ϕ
τ+θ(Y

N
[0,T])

]
= E

[(
M

N,ϕ
τ (YN

[0,T])
)2
]

, (4.5.47)

hence we see that

E

[(
M

N,ϕ
τ (YN

[0,T])−M
N,ϕ
τ+θ(Y

N
[0,T])

)2
]
= E

[(
M

N,ϕ
τ+θ(Y

N
[0,T])

)2
−
(
M

N,ϕ
τ (YN

[0,T])
)2
]

.

(4.5.48)
Since E

[
M

N,ϕ
0 (YN

[0,T])
]
= 0, we can use that

E

[(
M

N,ϕ
t (YN

[0,T])
)2
]
= E

[∫ t

0
ΓN,ϕ(YN

s )

]
ds, (4.5.49)
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because
∫ t

0 ΓN,ϕ(YN
s )ds is the predictable quadratic variation of the process M

N,ϕ
t (YN

[0,T]).

Furthermore, E
[(

ΓN,ϕ(YN
s )
)2
]

is uniformly bounded since ΓN,ϕ(YN
s ) converges in

L2, hence

sup
N∈N

E

[(
M

N,ϕ
τ (YN

[0,T])−M
N,ϕ
τ+θ(Y

N
[0,T])

)2
]

= sup
N∈N

E

[∫ τ+θ

τ
ΓN,ϕ(YN

s )

]
ds,

≤
√

θ ·
(∫ T+θ

0
sup
N∈N

E

[(
ΓN,ϕ(YN

s )
)2
]

ds

) 1
2

< ∞, (4.5.50)

where we used Cauchy Schwarz in the second line. From this we can again
conclude that

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

E

[(
M

N,ϕ
τ (YN

[0,T])−M
N,ϕ
τ+θ(Y

N
[0,T])

)2
]
= 0. (4.5.51)

Combining (4.5.46) and (4.5.51) with (4.5.43), we indeed find that (A.2) holds.

4.5.3 Uniqueness of limits

By the tightness, there exists a subsequence Nk and a process Y ∈ D([0, T]; (C∞
c,S)
∗)

such that YNk → Y in distribution.

LEMMA 4.3. For each ϕ ∈ C∞
c,S we have that t 7→ ⟨Yt, ϕ⟩ is a.s. continuous.

Proof. We define the following functions

wδ(X) = sup
|t−s|<δ

|Xt − Xs|, w′δ(X) = inf
0=t0<t1<...<tr=1

ti−ti−1<δ

max
1≤i≤r

sup
ti−1≤s<t≤ti

|Xt − Xs|,

(4.5.52)
then we have the following inequality

wδ(X) ≤ 2w′δ(X) + sup
t
|Xt − Xt− |. (4.5.53)

From A.2 it follows for all ε > 0 and all σ ∈ S we have that

lim
δ→0

lim sup
N→∞

P(w′δ(⟨YN
[0,T], ϕ⟩) ≥ ε) = 0. (4.5.54)

Now note that

sup
t

∣∣∣⟨YN
t , ϕ⟩ − ⟨YN

t− , ϕ⟩
∣∣∣ ≤ sup

t

1√
N

∑
v∈V
|(ηt(v)− ηt−(v))ϕ(v)| ≤

1√
N
||ϕ||∞ → 0,

(4.5.55)
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where we used that there can be at most one jump between the times t and t− for
the second inequality. Therefore, by combining (4.5.54) and (4.5.55) with (4.5.53)
we can conclude that

lim
δ→0

lim sup
N→∞

P(wδ(⟨YN
[0,T], ϕ⟩) ≥ ε) = 0. (4.5.56)

Therefore we find that t 7→ ⟨Yt, ϕ⟩ is a.s. continuous.
Finally we show that Y solves the martingale problem in (4.3.4).

PROPOSITION 4.5. For every ϕ ∈ C∞
c,S the processes M

ϕ
t (Y[0,T]) and N

ϕ
t (Y[0,T])

defined in (4.3.4) are martingales with respect to the filtration {Ft : t ≥ 0}
generated by Y.

Proof. Fix arbitrary n ∈ N, s ≥ 0, 0 ≤ s1 ≤ ... ≤ sn ≤ s, ψ1, ..., ψn ∈ C∞
c,S and

Ψ ∈ Cb(R
n), and define the function I : D([0, T]; (C∞

c,S)
∗)→ R as

I(X) := Ψ (Xs1(ψ1), ..., Xsn(ψn)) . (4.5.57)

To show that M
ϕ
t (Y[0,T]) and N

ϕ
t (Y[0,T]) are Ft-martingales, it suffices to show

that

lim
k→∞

E
[
M

Nk ,ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
= E

[
M

ϕ
t (Y[0,T])I(Y[0,T])

]
,

lim
k→∞

E
[
N

Nk ,ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
= E

[
N

ϕ
t (Y[0,T])I(Y[0,T])

]
, (4.5.58)

with M
N,ϕ
t and N

N,ϕ
t the Dynkin martingales defined in (4.5.1). Namely, by the

martingale property we then have that

E
[
M

ϕ
t (Y[0,T])I(Y[0,T])

]
= lim

k→∞
E
[
M

Nk ,ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
= lim

k→∞
E
[
M

Nk ,ϕ
s (YNk

[0,T])I(Y
Nk
[0,T])

]
= E

[
M

ϕ
s (Y[0,T])I(Y[0,T])

]
, (4.5.59)

and analogous for N
ϕ

t (Y[0,T]).

We start by proving M
ϕ
t (Y[0,T]) is a martingale. First of all, note that from

Proposition 4.2 we can conclude

lim
k→∞

E
[
M

Nk ,ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
= lim

k→∞
E
[
M

ϕ
t (Y

Nk
[0,T])I(Y

Nk
[0,T])

]
. (4.5.60)

Furthermore, in Lemma 4.1 we have shown that the process M
ϕ
t (Y

N
[0,T]) is uniformly

bounded in L4, hence it is also uniformly bounded in L2, therefore

sup
k∈N

E

[∣∣∣M ϕ
t (Y

Nk
[0,T])I(Y

Nk
[0,T])

∣∣∣2] ≤ ||Ψ||2∞ sup
k∈N

∑
σ∈S

E

[(
M

ϕ
t (Y

Nk
[0,T])

)2
]
< ∞.

(4.5.61)
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This implies that we have uniform integrability of M
ϕ
t (Y

Nk
[0,T])I(Y

Nk
[0,T]). It now

suffices to show that M
ϕ
t (Y

Nk
[0,T])I(Y

Nk
[0,T]) converges to M

ϕ
t (Y[0,T])I(Y[0,T]) in dis-

tribution. One usually concludes this using the Portmanteau theorem, but because
the path space D([0, T]; (C∞

c,S)
∗
S) is not metrizable, we cannot directly use this.

Instead, using the exact same method as introduced in [117, Proposition 5.2], one
can work around the problem of non-metrizability via the continuity of t 7→ ⟨Yt, ϕ⟩.

The proof that N
ϕ

t (Y[0,T]) is a martingale works in the same way. First we note
that by Proposition 4.3 we have that

lim
k→∞

E
[
N

Nk ,ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
= lim

k→∞
E
[
N

ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

]
. (4.5.62)

Therefore we only need to show that

sup
k∈N

E

[∣∣∣N ϕ
t (YNk

[0,T])I(Y
Nk
[0,T])

∣∣∣2] < ∞. (4.5.63)

Afterwards the convergence of N
ϕ

t (YNk
[0,T])I(Y

Nk
[0,T]) to N

ϕ
t (Y[0,T])I(Y[0,T]) in distri-

bution follows from the same arguments as above.
To see that (4.5.63) holds, note that

E

[(
N

ϕ
t (YNk

[0,T])
)2
]
≤ 2E

[(
M

ϕ
t (Y

Nk
[0,T])

)4
]
+ 8t2ϱ2 (κ ⟨⟨∂xϕ, ∂xϕ⟩⟩+ ⟨⟨ϕ, Σϕ⟩⟩)2 .

(4.5.64)

In the proof of Lemma 4.1, we have already shown that E
[(

M
ϕ
t (Y

N
[0,T])

)4
]

is
uniformly bounded in N, hence the result follows.

4.6 hydrodynamic limit

In this section we give the proof of the hydrodynamic limit, i.e., of Theorem 4.2.
We follow the standard methodology of [104].

4.6.1 Preliminary results

Before we start the proof of Theorem 4.2, we first show the following lemma which,
using duality, provides uniform upper bounds for the first and second moment of
the expected particle number when starting from the local equilibrium distribution
(4.2.14).

LEMMA 4.4. For all N ∈N, t ≥ 0 and (x, σ) ∈ V we have that

Eµ
ϱ
N

[
ηN

t (x, σ)
]
≤ ||ϱ||∞, (4.6.1)
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and
Eµ

ϱ
N

[
ηN

t (x, σ)2
]
≤ ||ϱ||2∞ + ||ϱ||∞. (4.6.2)

Proof. For (4.6.1), note that by duality we have that

Eµ
ϱ
N

[
ηN

t (x, σ)
]
=
∫

EηN

[
D(δ(x,σ), ηN

t )
]

dµ
ϱ
N(η

N)

=
∫

Ê(x,σ)

[
D(δ(X̂t ,σ̂t)

, ηN)
]

dµ
ϱ
N(η

N)

= Ê(x,σ)

[
ϱ( X̂t

N , σ̂t)
]
≤ ||ϱ||∞. (4.6.3)

Similarly for (4.6.2), we have that

Eµ
ϱ
N

[
ηN

t (x, σ)2
]

=
∫

EηN

[
D(2δ(x,σ), ηN

t ) +D(δ(x,σ), ηN
t )
]

dµ
ϱ
N(η

N)

=
∫

Ê(x,σ),(x,σ)

[
D(δ

X̂(1)
t ,σ̂(1)

t )
+ δ

(X̂(2)
t ,σ̂(2)

t )
, ηN) +D(δ

(X̂(1)
t ,σ̂(1)

t )
, ηN)

]
dµ

ϱ
N(η

N)

= Ê(x,σ),(x,σ)

[
ϱ(

X̂(1)
t
N , σ̂

(1)
t )ϱ(

X̂(2)
t
N , σ̂

(2)
t ) + ϱ(

X̂(1)
t
N , σ̂

(1)
t )

]
≤ ||ϱ||2∞ + ||ϱ||∞.

(4.6.4)

Now we define the processes M
ϕ
t (π

N
[0,T]) and M

N,ϕ
t (πN

[0,T]) as in (4.3.4) and
(4.5.1) respectively, and show that we can exchange these processes in the limit.

PROPOSITION 4.6. For all t ≥ 0 and ϕ ∈ C∞
c,S, we have that

lim
N→∞

E
[∣∣∣M ϕ

t (π
N
[0,T])−M

N,ϕ
t (πN

[0,T])
∣∣∣] = 0. (4.6.5)

Proof. Through similar calculations as in the proof of Proposition 4.2, we find that

LN⟨πN
s , ϕ⟩ = ⟨πN

s , Aϕ⟩+ R3(ϕ, N, s). (4.6.6)

Here R3(ϕ, N, s) is the error term of the Taylor approximations, which is bounded
as follows

|R3(ϕ, N, s)| ≤ 1
N2 ∑

(x,σ)∈VN

ηN
s (x, σ)

(
κ||ϕxxx||∞ + λσ2||ϕxx||∞

)
, (4.6.7)

and so by (4.6.1)

lim
N→∞

E
[∣∣∣M ϕ

t (π
N
[0,T])−M

N,ϕ
t (πN

[0,T])
∣∣∣]

= lim
N→∞

∫ t

0
E
[
|R3(ϕ, N, s)|

]
ds

≤ lim
N→∞

1
N2 t|VN | · ||ϱ||∞

(
κ||ϕxxx||∞ + λσ2||ϕxx||∞

)
= 0 (4.6.8)
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which concludes the proof.
Lastly we will prove that the martingale M

N,ϕ
t (πN

[0,T]) actually vanishes in the
limit.

LEMMA 4.5. For any ϕ ∈ C∞
c,S we have that

lim
N→∞

E

[
sup

t∈[0,T]

∣∣∣M N,ϕ
t (πN

[0,T])
∣∣∣2] = 0. (4.6.9)

Proof. First of all, by Doob’s maximal inequality, we have that

E

[
sup

t∈[0,T]

∣∣∣M N,ϕ
t (πN

[0,T])
∣∣∣2] ≤ 4E

[(
M

N,ϕ
T (πN

[0,T])
)2
]

. (4.6.10)

Since M
N,ϕ
t (πN

[0,T]) is a mean-zero martingale, this expectation is equal to the

expectation of the predictable quadratic variation of M
N,ϕ
t (πN

[0,T]), i.e.,

E

[(
M

N,ϕ
T (πN

[0,T])
)2
]
= E

[∫ T

0
ΓN,ϕ(πN

s )ds
]
=
∫ T

0
E
[
ΓN,ϕ(πN

s )
]

ds, (4.6.11)

where ΓN,ϕ
s is as defined in (4.5.2). By using the same calculations to get (4.5.31)

we find that

ΓN,ϕ(πN
s ) =

2κ

N2 ∑
(x,σ)∈V

ηN
s (x, σ)(∂xϕ( x

N , σ))2

+
1

N2 ∑
(x,σ)∈V

∑
σ′∈S

c(σ, σ′)ηN
s (x, σ)(ϕ( x

N , σ′)− ϕ( x
N , σ))2

+ R4(ϕ, s, N, σ), (4.6.12)

with R4(ϕ, s, N) bounded as follows

|R4(ϕ, s, N)| ≤ κ
1

N4 ∑
(x,σ)∈VN

ηN
s (x, σ)(κ||ϕxx||∞ + λσ||ϕx||∞). (4.6.13)

By dominated convergence and (4.6.1) we can then conclude that

lim
N→∞

E

[(
M

N,ϕ
T (πN

[0,T])
)2
]
= lim

N→∞

∫ T

0
E
[
ΓN,ϕ(πN

s )
]

ds = 0, (4.6.14)

and the result follows.
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4.6.2 Tightness

We now prove the tightness result for the sequence {πN
[0,T] : N ∈N}.

PROPOSITION 4.7. {πN
[0,T] : N ∈N} is tight in D([0, T]; M).

Proof. In the space D([0, T];M) we can prove tightness by showing that the
following two assertions hold.

B.1 For all t ∈ [0, T] and ε > 0 there exists a compact K(t, ε) ⊂M such that

sup
N∈N

P
(
πN

t /∈ K(t, ε)
)
≤ ε. (4.6.15)

B.2 For all ε > 0
lim
δ→0

lim sup
N→∞

P
(
ω(πN

[0,T], δ) ≥ ε
)
= 0, (4.6.16)

where

ω(α, δ) = sup{d
(
αs, αt

)
: s, t ∈ [0, T], |t− s| < δ}, (4.6.17)

and d is the metric onM given by

d
(
α, β
)
=

∞

∑
j=1

2−j (1∧ ∣∣α(ϕj)− β(ϕj)
∣∣) (4.6.18)

for some specific choice of test functions ϕj ∈ C∞
c,S.

We start by proving B.1. Fix ε > 0 and t ≥ 0, and for some C > 0 let KC be the
following set

KC =
{

µ ∈ M : µ([−k, k]× S) ≤ C(2k + 1)k2 for all k ∈N
}

. (4.6.19)

By [104, Proposition A.25], this is a compact set inM, and by Markov’s inequality
we now have that

P(πN
t ([−k, k]× S) ≥ C(2k + 1)k2)

≤ 1
C(2k + 1)k2 E

[
πN

t ([−k, k]× S)
]

=
1

C(2k + 1)k2N ∑
(x,σ)∈[−kN,kN]×S

E
[
ηN

t (x, σ)
]

≤ 1
Ck2 |S| · ||ϱ||∞. (4.6.20)
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Here we have used the inequality in (4.6.1). Therefore

P(πN
t /∈ KC) ≤

∞

∑
k=1

P(πN
t ([−k, k]) ≥ C(2k + 1)k) ≤ 1

C
|S| · ||ϱ||∞

∞

∑
k=1

1
k2 < ∞.

(4.6.21)

By now taking C big enough, we then have that for all N ∈N that P(πN
t /∈ KC) ≤ ε,

which finishes the proof of B.1.
In order to prove that B.2 holds, note first that

ω(πN
[0,T], δ) = sup

s,t∈[0,T]
|t−s|<δ

∞

∑
j=1

2−j
(

1∧
∣∣∣⟨πN

t , ϕj⟩ − ⟨πN
s , ϕj⟩

∣∣∣)

≤ 2−m +
m

∑
j=1

sup
s,t∈[0,T]
|t−s|<δ

∣∣∣⟨πN
t , ϕj⟩ − ⟨πN

s , ϕj⟩
∣∣∣ . (4.6.22)

Here we have taken m arbitrarily, so the first term can be made as small as we want.
We now want to show that the expecation of the sum vanishes as we let N → ∞
and δ ↓ 0. Afterwards, the claim can be shown by using the Markov inequality.

Note first that we have the following,

E

 sup
s,t∈[0,T]
|t−s|<δ

∣∣∣⟨πN
t , ϕj⟩ − ⟨πN

s , ϕj⟩
∣∣∣2


= E

 sup
s,t∈[0,T]
|t−s|<δ

∣∣∣∣M N,ϕj
t (πN

[0,T])−M
N,ϕj
s (πN

[0,T])−
∫ t

s
LN⟨πN

r , ϕj⟩dr
∣∣∣∣2


≤ 4E

[
sup

t∈[0,T]

(
M

N,ϕj
t (πN

[0,T])
)2
]
+ 2E

 sup
s,t∈[0,T]
|t−s|<δ

∣∣∣∣∫ t

s
LN⟨πN

r , ϕj⟩dr
∣∣∣∣2
 . (4.6.23)

By Lemma 4.5, the first term goes to zero as N → ∞.
For the second term in (4.6.23), by filling in (4.6.6) we find that∣∣∣∣∫ t

s
LN⟨πN

r , ϕj⟩dr
∣∣∣∣2 =

(∫ t

s

(
⟨πN

r , Aϕj⟩+ R3(ϕj, N, r)
)

dr
)2

≤ 2
(∫ t

s
⟨πN

r , Aϕj⟩dr
)2

+ 2
(∫ t

s
R3(ϕj, N, r)dr

)2
. (4.6.24)
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By the upper bound on R3(ϕj, N, r) in (4.6.7) and by (4.6.1), we can see that the
last term vanishes in expectation when N → ∞. For the other term we have that

(∫ t

s
⟨πN

r , Aϕj⟩dr
)2

=
1

N2

∫ t

s
∑

(x,σ)∈V
ηN

r (x, σ) · (Aϕj)(
x
N , σ)dr

2

. (4.6.25)

Using that |t− s| < δ and applying Hölder a number of times, we find that(∫ t

s
⟨πN

r , Aϕj⟩dr
)2
≤ 1

N2 |V
N
ϕj
|δ · ||Aϕ||∞ ∑

(x,σ)∈VN
ϕj

∫ T

0

(
ηN

r (x, σ)
)2

dr. (4.6.26)

Using the inequality in (4.6.2), we find that

E

 sup
s,t∈[0,T]
|t−s|<δ

(∫ t

s
⟨πN

r , Aϕj⟩dr
)2

 ≤ 1
N2 |V

N
ϕj
|2δT · ||Aϕ||∞(||ϱ||2∞ + ||ϱ||∞) = O(δ).

(4.6.27)

Therefore

lim
δ↓0

lim sup
N→∞

E

 sup
s,t∈[0,T]
|t−s|<δ

∣∣∣⟨πN
t , ϕj⟩ − ⟨πN

s , ϕj⟩
∣∣∣2


= lim
δ↓0

lim sup
N→∞

E

 sup
s,t∈[0,T]
|t−s|<δ

(∫ t

s
⟨πN

r , Aϕj⟩dr
)2

 = 0. (4.6.28)

So, by going back to (4.6.22) and using the Markov inequality, we get the following:

P(ω(πN
[0,T], δ) ≥ ε) ≤ 1

ε

2−m +
m

∑
j=1

E

 sup
s,t∈[0,T]
|t−s|<δ

∣∣∣⟨πN
t , ϕj⟩ − ⟨πN

s , ϕj⟩
∣∣∣

 . (4.6.29)

By now taking m such that 2−m < ε2 and using (4.6.28) we see that

lim
δ↓0

lim sup
N→∞

P(ω(πN
[0,T], δ) ≥ ε) < ε, (4.6.30)

which ultimately proves the tightness result.
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4.6.3 Proof of hydrodynamic limit

Now we have everything needed to prove the result.

Proof of Theorem 4.2.
From the tightness of the sequence {PN : N ∈ N} we know that there exists a
subsequence {PNk : k ∈N} that converges weakly in the Skorokhod topology, i.e.,
PNk

w−→ P for some probability measure P on D([0, T];M). If we can show that
every convergent subsequence converges to the dirac measure P = δπ with π the
unique continuous path solving (4.2.19), then the result follows.

First of all, by B.2, we immediately know that P is concentrated on continuous
paths in D([0, T];M). Now define for ϕ ∈ C∞

c,S, ε > 0 and T > 0 the following set

H(ϕ, ε) :=

{
β ∈ D([0, T];M) : sup

t∈[0,T]

∣∣∣∣⟨βt, ϕ⟩ − ⟨β0, ϕ⟩ −
∫ t

0
⟨βs, Aϕ⟩ds

∣∣∣∣ ≤ ε

}
.

(4.6.31)
Analogously as in [104, Lemma 8.7] one can prove that this set is closed in the
Skorokhod topology. Since the set H(ϕ, ε) is closed, we can apply the Portmanteau
Theorem to see that

P
(

H(ϕ, ε)
)
≥ lim sup

k→∞
PNk

(
H(ϕ, ε)

)
= lim sup

k→∞
P

(
sup

t∈[0,T]

∣∣∣∣⟨πNk
t , ϕ⟩ − ⟨πNk

0 , ϕ⟩ −
∫ t

0
⟨πNk

s , Aϕ⟩ds
∣∣∣∣ ≤ ε

)

= lim sup
k→∞

P

(
sup

t∈[0,T]

∣∣∣M ϕ
t (π

Nk
[0,T])

∣∣∣ ≤ ε

)

= lim sup
k→∞

P

(
sup

t∈[0,T]

∣∣∣M Nk ,ϕ
t (π

Nk
[0,T])

∣∣∣ ≤ ε

)
. (4.6.32)

Here we have used Proposition 4.6 for the last equality. By Lemma 4.5 and the
Markov inequality we then have that

P

(
sup

t∈[0,T]

∣∣∣M Nk ,ϕ
t (π

Nk
[0,T])

∣∣∣ > ε

)
≤ 1

ε2 E

[
sup

t∈[0,T]

∣∣∣M Nk ,ϕ
t (π

Nk
[0,T])

∣∣∣2]→ 0, (4.6.33)

so P
(

H(ϕ, ε)
)
= 1. Since we took ε > 0 arbitrarily, we indeed find that P = δπ .
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L A R G E D E V I AT I O N S O F T H E M U LT I - S P E C I E S S T I R R I N G
P R O C E S S

In this chapter1 we deviate from the multi-layer setting and consider a multi-
species particle system, namely the multi-species stirring process. We prove a
large deviation principle for the trajectory of the vector of densities of the different
species. The method involves extending the method of the paper by Kipnis, Olla
and Varadhan [62] based on the superexponential estimate to the multi-species
setting. This requires a careful choice of the corresponding weakly asymmetric
dynamics, which is parametrized by potentials depending on the various species.
We also prove the hydrodynamic limit of this weakly asymmetric dynamics,
which is similar to the ABC model in [49, 12]. Using the appropriate asymmetric
dynamics, we also obtain that the mobility matrix relating the drift currents to
the potentials coincides with the covariance matrix of the reversible multinomial
distribution, which then further leads to the Einstein relation.

5.1 introduction

Interacting particle systems [76, 107] are used to study how macroscopic equations
emerge from microscopic stochastic dynamics, as well as in the study of driven
non-equilibrium systems and their non-equilibrium steady states. Among these, a
well-studied process is the so-called Symmetric Simple Exclusion Process (SSEP),
where particle interactions are governed by an exclusion constraint that permits
at most one particle per site. This model (and various modifications of it) has
been extensively studied in the literature, both in the study of scaling limits
[61, 21, 104, 108] as well as in the understanding of microscopic properties of non-
equilibrium steady states [103, 45]. The study of large deviations of the trajectory
of the empirical density field for the SSEP was initiated in [62] (see also [51] where
the gradient method was introduced in the context of Ginzburg-Landau models).
The method developed there, valid for so-called gradient systems is based on the
superexponential estimate, which allows to replace empirical averages of local

1 This chapter is based on [18].
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functions by functions of the density field. This implies that one can prove with the
same method at the same time the hydrodynamic limit of the weakly asymmetric
exclusion process as well as the large deviations from the hydrodynamic limit for
the SSEP.

The study of systems with multiple conserved quantities and their hydrodynamic
limits has gained substantial interest in recent times see e.g. [12, 16, 49, 98] and
references therein (see also e.g. [95] for an earlier reference). In particular, these
results constitute rigorous versions of fluctuating hydrodynamics or mode coupling
theory, see e.g. [108, 109, 110]. Another motivation for multi-species (and also
connected multi-layer) models and their scaling limits is the phenomenon of uphill
diffusion [17, 37] and systems of active particles.

The process we study in our paper is the multi-species analogue of the SSEP,
known as the multi-species stirring process [15, 119, 125], on the geometry of the
torus. In this process, at every site there is at most one particle, which can be of
type a ∈ {1, . . . , n}. The absence of a particle is called a particle of type zero. To
each nearest neighbor edge is associated a Poisson clock of rate 1, different Poisson
clocks being independent. When the clock of an edge rings, the occupancies of
that edge are exchanged. An exchange between a particle of type a ∈ {1, . . . , n}
at site x and an empty site at site x + 1 is of course the same as a jump of the
particle from x to x + 1. It is well-known that the hydrodynamic limit for the
densities of the n types of particles is a system of uncoupled heat equations, and
in [16] it is also proved that the fluctuations around this hydrodynamic limit is
an infinite dimensional Ornstein-Uhlenbeck process. Other results on the multi-
species stirring process include duality, and exact formulas for the moments in the
non-equilibrium steady state of a boundary driven version using duality combined
with integrability [15].

To our knowledge, no explicit formula exists for the large deviation rate function
for the density profile in the non-equilibrium steady state, as is the case e.g. for
the SSEP, see [29]. In the setting of the macroscopic fluctuation theory, the rate
function in the non-equilibrium steady state is strongly related to the rate function
for the trajectory of the empirical density profile, i.e., the large deviations around
the hydrodynamic limit. Therefore, in order to make progress in the understanding
of non-equilibrium large deviations in multi-species models, it is natural to study
the large deviations around the hydrodynamic limit for the multi-species stirring
process. To the best of our knowledge, no rigorous results have been established
in the context of dynamic large deviations for the multi-species stirring process.

In this paper we implement the method of [62] for gradient systems, based on the
superexponential estimate, (see also [61, Chapter 10]) in our multi-species setting.
The study of the large deviation principle for the multi-species stirring process
relies on the introduction of a well-chosen weakly asymmetric process, where the
rates are deformed by an exponential tilting, i.e., by introducing weak and slowly
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varying (in space) external fields that introduce a drift on the particles of various
types. To understand the probability of deviating trajectories for the densities, one
has to choose these potentials governing the asymmetry in such a way that in the
modified dynamics the deviating trajectory becomes typical. The large deviation
rate function is then roughly the relative entropy of the modified dynamics w.r.t.
original dynamics which can be computed with the Girsanov formula. In particular,
exactly as is done in [62] for the single species case, we also prove as byproduct the
hydrodynamic limit of this weakly asymmetric multi-species process, which is a
system of nonlinear coupled parabolic equations, closely related to the ABC model
[49]. In this limiting partial differential equation (PDE), in addition to diffusion,
a drift term is introduced into the currents, which makes this system appealing
for describing multi-component diffusion processes in applications [100, 19]. The
relation between the drift currents and the fields is via the symmetric Onsager
matrix, which coincides with the covariance matrix of the multinomial reversible
measures.

As a perspective towards further research, this work could serve as a starting
point for various questions. These include exploring the extension of large de-
viation principles and hydrodynamic limits to boundary-driven systems in the
multi-species setup, as previously done for the single species case [43]. Addition-
ally one can investigate the density field fluctuations in the weakly asymmetric
multi-species stirring process, analogous to what has been done for the ABC model
in the context of the Kardar-Parisi-Zhang (KPZ) universality class [12]. Moreover, it
would be of interest to apply these techniques to the multi-layer exclusion process
defined in Chapter 3.

Starting from the literature, in Section 5.2 we first recall the definition of the multi-
species stirring process, on the geometry of a torus, reporting also its reversible
measure. Then, in Section 5.2.2 we define a weakly asymmetric version of the
multi-species stirring process where the transition rates are perturbed by a family
of potentials, indexed by the species involved in the transition and dependent on
space and time.

Finally, in Section 5.2.3 we state the so-called superexponential estimate. This
estimate turns out to be a useful tool in the proof of the hydrodynamic limit of the
weakly asymmetric model and in the proof of the large deviation principle as well.
The proof of this estimate goes beyond the main scope of this paper, therefore we
report it in Appendix 5.6.

In Section 5.3 we state the hydrodynamic limit of the weakly asymmetric model.
We postpone the proof to Appendix 5.5 since it can be shown by standard methods.
Then, in Section 5.3.1, we make a specific choice of potentials needed for the
proof of the large deviation principle. This choice is further motivated by Einstein
relations between diffusion, mobility and compressibility matrices.
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In Section 5.4, we proceed to state and prove the large deviation principle. With
both the original model and the weakly asymmetric model established, we first
obtain the Radon-Nikodym derivative of their respective path-space measures
in Section 5.4.1. This can be computed using the Girsanov formula and will be
equal to exponential martingale associated with the original model. For the upper
bound, we first establish the exponential tightness of the path-space measures in
Section 5.4.2 (which reduces the proof to verifying the upper bound for compact
sets instead of closed sets). The upper bound is then derived in Section 5.4.3 using
the martingale property of the Radon-Nikodym derivative.

For the lower bound, which we prove in Section 5.4.4, we demonstrate the
relationship between the large deviation rate function and the hydrodynamic limit
of the weakly asymmetric model. Specifically, for every deviating path, we show
the existence of a potential such that this path becomes typical under the weakly
asymmetric dynamics. This leads to a new formulation of the large deviation rate
functional, expressed as the norm of this potential in an appropriate Sobolev space.
Finally, using this relationship, we are able to demonstrate the lower bound.

5.2 the multi-species stirring process

In this section, we describe the multi-species stirring process. We first examine
the symmetric case, then we define a weakly asymmetric version in which the
transition rates are "deformed" through a potential.

In both cases, we consider the geometry of a one-dimensional torus with N
sites, denoted by TN = Z/NZ. Additionally, for simplicity, we consider the
scenario with two types of particles, in addition to vacancies, also called holes
(the general case of n types of particles will be considered in Remarks 5.4 and
5.9). The occupation variable is denoted by η(x) = (η0(x), η1(x), η2(x)), where
ηa(x) ∈ {0, 1} represents the presence or absence of a particle of type a at site x.
For any time t ≥ 0, the configuration of the process is denoted by ηt.

As a convention, we use the labels a = 1, 2 to distinguish particles of species
1 and 2, and we use the label a = 0 to denote the holes. The term "holes" is
motivated by the fact that its occupation variable is determined once we know
the occupation variable of the species of particles 1 and 2, due to the so-called
"exclusion constraint"

η0(x) = 1− η1(x)− η2(x) ∀x ∈ TN . (5.2.1)

Therefore, the configuration space reads

ΩN =

{
η = (η0, η1, η2) :

2

∑
a=0

ηa(x) = 1 for all x ∈ TN

}
. (5.2.2)
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In the literature, the multi-species stirring process has also been considered with
maximal occupancy per site higher than 1 (see [125, 15]), and also the boundary
driven case has been considered (see [119, 15]).

In this paper, on the same geometry and configuration space, we introduce
two types of dynamics: the symmetric and the weakly asymmetric ones. In the
symmetric dynamics, each transition occurs at the same rate to both the left and the
right. In contrast, the weakly asymmetric dynamics introduces a weak asymmetry
in the rates, resulting in a "drift" in the particles’ jumps.

5.2.1 The symmetric case

In the symmetric case, the dynamics consists in swapping occupancies of nearest
neighbor sites according to independent rate 1 Poisson processes. More precisely,
considering any bond (x, x + 1), any particle or hole present at site x is exchanged
with any particle or hole present at site x + 1. For any a, b ∈ {0, 1, 2} such that
ηa(x)ηb(x) = 1 we now define the configuration ηx,x+1

a,b obtained by swapping the
occupancies at x and x + 1, i.e.,

ηx,x+1
a,b = η− δx

a + δx
b − δx+1

b + δx+1
a (5.2.3)

where ±δx
a indicates that a particle or vacancy of type a is added or removed at

site x. If ηa(x)ηb(x + 1) ̸= 1 then we make the convention that ηx,x+1
a,b = η. The

infinitesimal generator of this process given by

LN f (η) = N2 ∑
x∈TN

2

∑
a,b=0

ηa(x)ηb(x + 1)
(

f (ηx,x+1
a,b )− f (η)

)
. (5.2.4)

We denote by T = [0, 1] the one-dimensional torus. For ϱ = (ϱ1, ϱ2) where ϱa :
T→ [0, 1] for a ∈ {1, 2} are smooth functions, we introduce the local equilibrium
product measures associated to ϱ:

ν
ϱ
N :=

⊗
x∈TN

Multinomial(1, ϱ1(
x
N ), ϱ2(

x
N )), (5.2.5)

i.e., ϱ1(
x
N ) and ϱ2(

x
N ) are the probabilities of having a particle of type 1 respectively

2 at x. Furthermore, the probability to have no particle at any site x ∈ TN is equal
to ϱ0(

x
N ) := 1− ϱ1(

x
N )− ϱ2(

x
N ). These measures are called the local equilibrium

measures since for constant profiles these measures are reversible, which follows
from the detailed balance condition. In the following, it will be useful to denote by
ν1/3

N the reversible measure with multinomial densities given by ϱ1 = ϱ2 = 1
3 .
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5.2.2 The weakly asymmetric stirring process

We introduce a weakly asymmetric version of the multi-species stirring process,
which will play a crucial role in the study of large deviations. We parametrize the
weak asymmetry by three smooth functions H = (H01, H02, H12). Moreover, we
define for a < b and fixed T > 0

Hba(x, t) := −Hab(x, t) ∀x ∈ T, ∀t ∈ [0, T]. (5.2.6)

The reason for this antisymmetric choice (5.2.6) will be clarified later. The time-
dependent generator of the weakly asymmetric multi-species stirring process
parametrized by H is then given by

LH
N,t f (η) = N2 ∑

x∈TN

2

∑
a,b=0

cH,ab
(x,x+1)(t)

(
f (ηx,x+1

a,b )− f (η)
)

, (5.2.7)

where
cH,ab
(x,x+1)(t) = exp

(
∇N Hab(

x
N , t)

)
ηa(x)ηb(x + 1) (5.2.8)

Here ∇N denotes the discrete gradient, i.e.,

∇N Hab(
x
N , t) = Hab(

x+1
N , t)− Hab(

x
N , t). (5.2.9)

Later on we will omit the explicit dependence on t in (5.2.7) for notational simplic-
ity.

REMARK 5.1. In this remark we explain the choice imposed by (5.2.6). In general,
the weakly asymmetric rate of exchanging a particle of type α at x and a particle
of type β at y with x ∼ y nearest neighbors, determined by the potential Hαβ, is
given by

exp
(

Hαβ(
y
N , t)− Hαβ(

x
N , t)

)
ηx

α η
y
β (5.2.10)

However, exchanging occupancy of type α at site x with type β at site y via the
potential Hαβ has to be identical with exchanging occupancy of type β at site y
with type α at site x via the potential Hβα. Therefore, the following has to hold

exp
(

Hαβ(
y
N , t)− Hαβ(

x
N , t)

)
ηx

α η
y
β = exp

(
Hβα(

x
N , t)− Hβα(

y
N , t)

)
η

y
βηx

α . (5.2.11)

This is satisfied if and only if Hαβ = −Hβα.

We introduce some further notation. For all T > 0, we consider the Skorokhod
space D ([0, T], Ω), which consists of the càdlàg trajectories taking values in Ω. On
this space, we define the following path space measures:

• P1/3
N : path space measure of the symmetric process with generator (5.2.4),

initialized with the distribution ν1/3
N .
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• P
ϱ
N : path space measure of the symmetric process with generator (5.2.4),

initialized with the distribution ν
ϱ
N .

• P
ϱ,H
N : path space measure of the weakly asymmetric process with generator

(5.2.7), initialized with the distribution ν
ϱ
N .

For each species a ∈ {1, 2} we introduce the corresponding empirical density field

πN
a (η) :=

1
N ∑

x∈TN

ηa(x)δ x
N

, (5.2.12)

When considering the process {ηt : t ≥ 0}, we denote the empirical measure by
πN

a,t := πN
a (ηt). This process {πN

a,t : t ≥ 0} takes values in D ([0, T],M1), where
M1 denotes the space of measures over Ω with total mass bounded by 1, i.e.,
sup|| f ||≤1⟨πN

a,t, f ⟩ ≤ 1. Additionally, we define the row vector of density fields

πN
t =

(
πN

1,t πN
2,t

)
(5.2.13)

taking values in the space D ([0, T],M1 ×M1). We consider two functions
G1, G2 ∈ C2,1(T× [0, T]) and we list them in a vector denoted by

G(x, t) :=
(

G1(x, t)
G2(x, t)

)
. (5.2.14)

Then, we denote the pairing

⟨πN
t , G(·, t)⟩ =

∫
T

G1(x, t)πN
1,t(dx) +

∫
T

G2(x, t)πN
2,t(dx). (5.2.15)

5.2.3 Superexponential estimate

In this section we state the so-called superexponential estimate. This is a crucial tool
initially introduced in [51], [62], which allows to replace macroscopic averages
of local observables by an appropriate function of the local density. This is
crucial both in the derivation of the hydrodynamic limit of the weakly asymmetric
model as well as in the large deviations of the symmetric model. In the latter
it becomes important that the replacement is superexponentially good, i.e., can
still be performed e.g. in exponential martingales containing local averages. This
replacement is carried out within a space interval constructed around a microscopic
point. Eventually, the size of this interval shrinks as the system size increases.

We consider a local function ϕ defined on ΩN for every large enough N, meaning
that ϕ only depends on a fixed number of sites. For example, in the main part
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of this paper we only consider functions of the type ϕ(η) = ηa(x)ηb(x + 1) for
a, b ∈ {0, 1, 2} and x ∈ TN . Furthermore, we define

ϕ̃(p) := Eν
p
N
[ϕ]. (5.2.16)

namely the expectation with respect to the product over sites of multinomial
distribution ν

p
N with constant parameters p = (p1, p2).

Next, we introduce a function that will play a key role in the superexponential
estimate. This function relates to the behavior of occupation variables in a small
neighborhood around a microscopic point and it reads

VN,ε(η) = ∑
x∈TN

∣∣∣∣∣∣ ∑
|x−y|≤εN

τyϕ(η)− ϕ̃

 ∑
|x−y|≤εN

η1(y), ∑
|x−y|≤εN

η2(y)

∣∣∣∣∣∣ , (5.2.17)

where τy is the shift operator, and we used the averaged sum notation

∑
i∈I

ai :=
1
|I|∑i∈I

ai. (5.2.18)

The superexponential estimate is then the following result.

THEOREM 5.1. For any δ > 0, for all T > 0 and ϕ : ΩN → R

lim
ε→0

lim
N→∞

1
N

log P1/3
N

(
1
N

∫ T

0
VN,ε(ηt)dt ≥ δ

)
= −∞. (5.2.19)

Since the proof of this Theorem is rather long and involved, and it is not the main
result of this paper, we postpone it to appendix 5.6.

In the following corollary we show that the superexponential estimate also holds
when we start from a local equilibrium distribution.

COROLLARY 5.1. Given a profile ϱ = (ϱ1, ϱ2), (5.2.19) holds also for the path space
measure P

ϱ
N .

Proof. the proof follows from Theorem 5.1 and from the following upper bound
for all sets A ⊂ ΩN

P
ϱ
N(A) = ∑

η∈ΩN

dν
ϱ
N

dν1/3
N

(η)P
η
N(A)ν1/3

N (η) ≤ 3NP1/3
N (A). (5.2.20)
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5.3 hydrodynamic limit of the weakly asymmetric model

In this section we state the hydrodynamic limit of the weakly asymmetric version
of the multi-species stirring model with generator (5.2.7).

REMARK 5.2. Sometimes, in this section and in the following one, in order to
alleviate the notation, we do not explicitly write the space and time dependence of
the densities. Namely, when this dependence is understood we only write ϱ, ϱ1, ϱ2
in place of ϱt(x), ϱ1,t(x), ϱ2,t(x). The same convention is used for the potentials
Hab(x, t).

THEOREM 5.2. As N tends to infinity, the density fields for the species a = 1, 2
converge in probability P

ϱ,H
N to the unique weak solution (ϱ1,t(x), ϱ2,t(x)) of the

following system of hydrodynamic equations
∂tϱ1 = ∆ϱ1 − 2∇ (ϱ1(1− ϱ1 − ϱ2)∇H10)− 2∇ (ϱ1ϱ2∇H12) ,

∂tϱ2 = ∆ϱ2 − 2∇ (ϱ2(1− ϱ1 − ϱ2)∇H20) + 2∇ (ϱ1ϱ2∇H12) ,

(5.3.1)

with initial conditions ϱa,0(x) = ϱa(x).

For the proof we refer to Section 5.5. In particular in the case where every
Hab = 0, we recover the uncoupled heat equations

∂tϱ1 = ∆ϱ1,

∂tϱ2 = ∆ϱ2. (5.3.2)

which in matrix form reads

∂t

(
ϱ1
ϱ2

)
= D(ϱ1, ϱ2)

(
∆ϱ1
∆ϱ2

)
, (5.3.3)

where

D(ϱ1, ϱ2) =

(
1 0
0 1

)
(5.3.4)

is the diffusion matrix.

5.3.1 Potentials for large deviations

In order to prove the large deviations for the trajectory of the empirical densities,
we need appropriate perturbations of the dynamics which make these deviating
trajectories typical. As will become clear in Section 5.4, these perturbations
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correspond to the weakly asymmetric stirring process, with potentials which
we denote by

H1(x, t) := H10(x, t), H2(x, t) := H20(x, t) ∀x ∈ T and t ∈ [0, T],
(5.3.5)

and where moreover, the potential H12 satisfies

H12(x, t) = H1(x, t)− H2(x, t) ∀x ∈ T and t ∈ [0, T]. (5.3.6)

Therefore, the resulting hydrodynamic equations read
∂tϱ1 = ∆ϱ1 − 2∇ (ϱ1(1− ϱ1)∇H1) + 2∇ (ϱ1ϱ2∇H2) ,

∂tϱ2 = ∆ϱ2 − 2∇ (ϱ2(1− ϱ2)∇H2) + 2∇ (ϱ1ϱ2∇H1) .

(5.3.7)

The intuitive interpretation of this choice of potentials is the following. Particles of
type 1 and 2 are driven across the holes (particles of type 0) by the force depending
on the potentials H1 and H2 (namely the external fields are given by the gradient
of the potentials) respectively. When two particles of type 1 and 2 are adjacent, a
competition between the fields generated by the potentials H1 and H2 sets in. As a
result, the net field acting on each species is given by ±∇(H1 − H2) respectively.
Moreover, as we will point out later, this choice of the fields allows the system
to satisfy the Einstein relation connecting diffusion, mobility and compressibility
matrices.

5.3.2 Currents and the Einstein relation

macroscopic currents . The hydrodynamic equations (5.3.7) can be inter-
preted as conservation laws. To illustrate this, we compute the macroscopic
currents for each species. These currents represent the net flux crossing an in-
finitesimal volume surrounding a point u ∈ T at any time t ∈ [0, T]. We identify
two types of currents:

1. Fick’s currents: These currents are proportional to minus the density gradients
via the diffusion matrix as given in (5.3.4). The currents are expressed as(

JF
1

JF
2

)
= −D(ϱ1, ϱ2)

(
∇ϱ1
∇ϱ2

)
. (5.3.8)

Generally, the diffusivity matrix (5.3.4) may depend on the densities, but in
this case, it simplifies to the identity matrix.
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2. Drift currents: these currents are defined as the product of (twice)2 the
mobility matrix

χ(ϱ1, ϱ2) =

(
ϱ1(1− ϱ1) −ϱ1ϱ2
−ϱ1ϱ2 ϱ2(1− ϱ2)

)
(5.3.9)

and the external field, which is the gradient of the potential (H1, H2). Specif-
ically, these currents are given by(

JD
1

JD
2

)
= 2χ(ϱ1, ϱ2)

(
∇H1
∇H2

)
. (5.3.10)

It is important to note that the mobility matrix (5.3.9) is symmetric and
corresponds to the covariance matrix of the multinomial distribution with
parameters ϱ1, ϱ2. This matrix also appears in the study of fluctuations as
proved in [16].

We now compute the total currents, which are given by the sum of Fick’s and of
the drift currents for each species. Namely they read(

J1
J2

)
=

(
JF
1

JF
2

)
+

(
JD
1

JD
2

)
. (5.3.11)

Therefore, equation (5.3.7) can be obtained by substituting the total currents (5.3.11)
in the continuity equations of the densities, i.e.

∂tϱ1 = −∇J1,

∂tϱ2 = −∇J2. (5.3.12)

einstein’s relation. We introduce the free energy functional F, that is
defined as the large deviation functional of a multinomial random variable with
number of trials equal to 1 and probabilities all equal to 1/3. Namely, we have that

F(ϱ1, ϱ2) = ϱ1 log(ϱ1) + ϱ2 log(ϱ2) + (1− ϱ1 − ϱ2) log(1− ϱ1 − ϱ2) + log(3).
(5.3.13)

We compute the Hessian matrix of F(ϱ1, ϱ2), sometimes called the inverse of the
compressibility matrix, obtaining

F
′′
(ϱ1, ϱ2) =

(
1
ϱ1

+ 1
1−ϱ1−ϱ2

1
1−ϱ1−ϱ2

1
1−ϱ1−ϱ2

1
ϱ2

+ 1
1−ϱ1−ϱ2

)
. (5.3.14)

2 The factor 2 in front is due to the fact that in the generator (5.2.4) both jumps, to the left and to the
right, have rate 1, instead of 1/2.
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Then we see that by combining (5.3.4), (5.3.9) and (5.3.14), the following relation
holds.

D(ϱ1, ϱ2) = F
′′
(ϱ1, ϱ2)χ(ϱ1, ϱ2). (5.3.15)

This equality is called the Einstein relation (see [6, 108] for details). Notice that we
used the specific form of the potentials described in (5.3.5) and (5.3.6) to obtain
the Einstein relation (5.3.15), which provides another physical motivation for these
conditions.

REMARK 5.3. We can recover the hydrodynamic limit of the single species weakly
asymmetric exclusion process from equation (5.3.7) as given in [62, Theorem 3.1].
Namely, if we choose the same potential H1 = H2 = H, then we obtain the
following. 

∂tϱ1 = ∆ϱ1 − 2∇ (ϱ1(1− ϱ1 − ϱ2)∇H) ,

∂tϱ2 = ∆ϱ2 − 2∇ (ϱ2(1− ϱ1 − ϱ2)∇H) .

(5.3.16)

By now defining ϱ := ϱ1 + ϱ2, i.e., ϱ does not distinguish between particles of type
1 and type 2, then ϱ satisfies

∂tϱ = ∆ϱ− 2∇(ϱ(1− ϱ)∇H). (5.3.17)

This result is to be expected, since the process defined as η := η1 + η2 is a standard
(weakly asymmetric) exclusion process.

REMARK 5.4. At the cost of more notational complexity, but no additional mathe-
matical difficulties, one can generalize the hydrodynamic limit of Theorem 5.2 to
any number of species, i.e., a ∈ {0, 1, ..., n} for any n ∈N.

The hydrodynamic limit of the weakly asymmetric model with the general
potentials Hab = −Hba is now given by a system of n dependent partial differential
equations

∂tϱa = ∆ϱa − 2 ∑
b ̸=a
∇ (ϱaϱb∇Hab) , (5.3.18)

with the convention that ϱ0 = 1−∑n
a=1 ϱa. For the large deviations of the trajecto-

ries of the densities we only need n potentials. The choice of potentials, which is
the analogue of the conditions (5.3.5) and (5.3.6), then reads

Ha := Ha0, Hab := Ha − Hb. (5.3.19)

This choice of potentials then results in the following hydrodynamic limit

∂tϱa = ∆ϱa − 2∇ (ϱa(1− ϱa)∇Ha)− 2 ∑
b ̸=a
∇ (ϱaϱb∇Hb) . (5.3.20)
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5.4 large deviations

In this section we aim to prove the large deviation principle of the multi-species
stirring process. We start by defining the rate function Iϱ : D([0, T],M1 ×M1)→
[0, ∞] which consists of two parts

Iϱ(α̂) = hϱ(α̂0) + Itr(α̂), (5.4.1)

where α̂0 denotes the trajectory α̂ evaluated at the initial time t = 0. Here hϱ(α̂0)
is the static part of the large deviation functional, i.e. the one due to the initial
product measure νNϱ as defined in (5.2.5). It is given by the formula

hϱ(α̂0) := sup
ϕ

hϱ(α̂0; ϕ), hϱ(α̂0; ϕ) :=
2

∑
a=0
⟨αa,0, ϕa⟩−

∫
T

log

(
2

∑
a=0

ϱa(x)eϕa(x)

)
dx,

(5.4.2)

where the supremum is taken over all continuous ϕ = (ϕ0, ϕ1, ϕ2) and we use that
ϱ0 := 1− ϱ1 − ϱ2.
Itr(α̂) is the dynamic part of the large deviation functional, i.e., the one due to

the dynamics of the trajectory ϱ over time. It has the following form,

Itr(α̂) := sup
G
Itr(α̂; G), Itr(α̂; G) := ℓ(α̂; G)− 1

2 ||G||
2
H(α̂). (5.4.3)

Here the supremum is taken over vectors of functions G = (G1
G2
) where both

G1, G2 ∈ C2,1(T× [0, T]). The operator ℓ is the linear operator corresponding to
the hydrodynamic limit of the multi-species SEP, i.e., it is given by

ℓ(α̂; G) = ⟨α̂T , G(·, T)⟩ − ⟨α̂0, G(·, 0)⟩ −
∫ T

0
⟨α̂t, (∂t + ∆)G(·, t)⟩dt, (5.4.4)

which is equal to zero for all G iff α̂ solves the PDE ∂tϱt = ∆ϱt in the sense of
distributions. Lastly, the norm in the definition of the rate function (5.4.3) is the
norm corresponding to the following inner product

⟨G, H⟩H(α̂) = 2
∫ T

0
⟨α̂1,t(1− α̂1,t),∇G1(·, t)∇H1(·, t)⟩dt

+ 2
∫ T

0
⟨α̂2,t(1− α̂2,t),∇G2(·, t)∇H2(·, t)⟩dt

− 2
∫ T

0
⟨α̂1,tα̂2,t,∇G1(·, t)∇H2(·, t) +∇G2(·, t)∇H1(·, t)⟩dt. (5.4.5)

Through this norm, and its action on smooth functions, we can then define a
Hilbert space H(α̂) as the completion of the set of smooth functions.



120 large deviations of the multi-species stirring process

REMARK 5.5. In Lemmas 5.3 and 5.4 we give more explicit forms of the functionals
hϱ and Itr respectively. Namely, we find functions ϕ and G such that hϱ(α̂0) =
hϱ(α̂; ϕ) and Itr(α̂) = Itr(α̂; G). Furthermore, we will see that hϱ(α̂0) can be
written as the limit of relative entropies of multinomials with respective densities
ϱ̂0 and ϱ, with ϱ̂0 the density of α̂0, and Itr(α̂) =

1
2 ||H||2H(α̂) where H ∈ H(α̂) is

the unique function such that α̂ satisfies (5.3.7) in the weak sense.

In order for a large deviation principle to hold, we need to show that we have
the following two inequalities:

• Upper bound: For every closed C ⊂ D([0, T];M1 ×M1) we have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ C

)
≤ − inf

α̂∈C
Iϱ(α̂) (5.4.6)

• Lower bound: For every open O ⊂ D([0, T];M1 ×M1) we have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ O

)
≥ − inf

α̂∈O
Iϱ(α̂) (5.4.7)

We give a proof for the upper and lower bound in Sections 5.4.3 and 5.4.4 re-

spectively. First we calculate the Radon-Nikodym derivative dP
ϱ,H
N

dP
ϱ
N

of the path

space measures of the weakly asymmetric process relative to the original process
in Section 5.4.1. Additionally, we establish exponential tightness in Section 5.4.2
which allows for the substitution of closed sets with compact sets in the derivation
of the upper bound.

5.4.1 Radon-Nikodym derivative and the exponential martingale

The goal of this section is to obtain an explicit expression of the Radon-Nikodym
derivative of the path space measure P

ϱ,H
N with respect to the path space measure

P
ϱ
N . From the literature (see [61, Proposition 2.6] and [78, Chapter 19]) the Girsanov

formula states that

log

(
dPϱH

N

dP
ϱ
N

)
= ∑

x∈TN

2

∑
a,b=0

∫ T

0
log

 cH,ab
(x,x+1)(t)

ηa,t(x)ηb,t(x + 1)

dJx,x+1
ab (t)

− N2 ∑
x∈TN

2

∑
a,b=0

∫ T

0
ηa,t(x)ηb,t(x + 1)

(
exp

{
∇N Hab

( x
N , t
)}
− 1
)
dt.

(5.4.8)

Here, we represent by Jx,x+1
ab (t) the number of transitions occurred up to time

t ∈ [0, T] that swap the occupancies of species a, b between sites x and x + 1.
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Under the path space measure P
ϱ,H
N the random process {Jx,x+1

a,b (t) : t ≥ 0} is a

Poisson process with time-dependent intensity cH,ab
(x,x+1)(t). In the following result

we provide an alternative formula for the Radon-Nikodym derivative defined in
(5.4.8).

LEMMA 5.1. For all T ≥ 0, for all N ∈N and for all H1, H2 ∈ C2,1(T× [0, T]) under
conditions (5.2.6), (5.3.5) and (5.3.6) we have that

ZH
N,T(π

N
[0,T]) :=

dP
ϱ,H
N

dP
ϱ
N

= exp
(

N⟨πN
T , H(·, T)⟩ − N⟨πN

0 , H(·, 0)⟩
)

· exp
(
−
∫ T

0
e−N⟨πN

t ,H(·,t)⟩ (∂t + LN) eN⟨πN
t ,H(·,t)⟩ dt

)
.

(5.4.9)

Proof. We consider the first term in the right hand side of equation (5.4.8) and we
write

∑
x∈TN

2

∑
a,b=0

∫ T

0
log

 cH,ab
(x,x+1)(t)

ηa,t(x)ηb,t(x + 1)

dJx,x+1
ab (t)

= ∑
x∈TN

∫ T

0
∇N H10

( x
N , t
) [

dJx,x+1
10 (t)− dJx,x+1

01 (t)
]

+ ∑
x∈TN

∫ T

0
∇N H20

( x
N , t
) [

dJx,x+1
20 (t)− dJx,x+1

02 (t)
]

+ ∑
x∈TN

∫ T

0
∇N H12

( x
N , t
) [

dJx,x+1
12 (t)− dJx,x+1

21 (t)
]

. (5.4.10)

We use conditions (5.2.6), (5.3.5) and (5.3.6). Moreover, we denote by dηa,t(x) the
infinitesimal net current of particles of type a crossing the site x at time t ∈ [0, T]
i.e., it is defined through

∫ t
0 dηα,s(x) = ηα,t(x)− ηα,0(x) for any t > 0.

dη1,t(x) = dJx,x+1
01 (t)− dJx,x+1

10 (t)− dJx,x+1
12 (t) + dJx,x+1

21

− dJx−1,x
01 (t) + dJx−1,x

10 (t) + dJx−1,x
12 (t)− dJx−1,x

21 (t),

dη2,t(x) = dJx,x+1
02 (t)− dJx,x+1

20 (t)− dJx,x+1
21 (t) + dJx,x+1

12 (t)

− dJx−1,x
02 (t) + dJx−1,x

20 (t) + dJx−1,x
21 (t)− dJx−1,x

12 (t), (5.4.11)

and so
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∑
x∈TN

{∫ T

0
H1

( x
N

, t
) [

dJx,x+1
01 (t)− dJx,x+1

10 (t)− dJx,x+1
12 (t) + dJx,x+1

21

−dJx−1,x
01 (t) + dJx−1,x

10 (t) + dJx−1,x
12 (t)− dJx−1,x

21 (t)
]

+
∫ T

0
H2

( x
N

, t
) [

dJx,x+1
02 (t)− dJx,x+1

20 (t)− dJx,x+1
21 (t) + dJx,x+1

12 (t)

−dJx−1,x
02 (t) + dJx−1,x

20 (t) + dJx−1,x
21 (t)− dJx−1,x

12 (t)
]}

= ∑
x∈TN

{∫ T

0
H1

( x
N

, t
)

dη1,t(x) +
∫ T

0
H2

( x
N

, t
)

dη2,t(x)
}

= N⟨πN
1,T , H1 (·, T)⟩+ N⟨πN

2,T , H2 (·, T)⟩ − N⟨πN
1,0, H1 (·, 0)⟩ − N⟨πN

2,0, H2 (·, 0)⟩

− N
∫ T

0
⟨πN

1,t, ∂tH1(·, t)⟩dt− N
∫ T

0
⟨πN

1,t, ∂sH2(·, t)⟩dt, (5.4.12)

where in the last equality of (5.4.12) we have integrated by parts. On the other
hand, by applying the generator (5.2.4) we have that

e−N⟨πN(η),H(·,t)⟩LNeN⟨πN(η),H(·,t)⟩

= N2 ∑
x∈TN

2

∑
a,b=0

ηa(x)ηb(x + 1)
(

exp
{

N⟨πN
1 (ηx,x+1

a,b ), H1(·, t)⟩−N⟨πN
1 (η), H1(·, t)⟩

}
· exp

{
N⟨πN

2 ((ηx,x+1
a,b )s), H2(·, t)⟩ − N⟨πN

2 (η), H2(·, t)⟩
}
− 1
)

= ∑
x∈TN

2

∑
a,b=0

ηa(x)ηb(x + 1)
[
exp

{
∇N Hab

( x
N , t
)}
− 1
]

, (5.4.13)

where we have used the conditions on the potentials expressed in equations (5.2.6),
(5.3.5) and (5.3.6). Combining (5.4.12) and (5.4.13), we indeed get (5.4.9).

We can further expand the exponential function on the right hand side of (5.4.13)
by using the Taylor series and the constraint that η0(x) = 1 − η1(x) − η2(x).
Namely, for the functions H1, H2 satisfying (5.2.6), (5.3.5) and (5.3.6), we obtain

e−N⟨πN(η),H(·,t)⟩LNeN⟨πN(η),H(·,t)⟩

= N2 ∑
x∈TN

2

∑
a,b=0

ηa(x)ηb(x + 1)
{
∇N Hab

( x
N , t
)
+

1
2
(
∇N Hab

( x
N , t
))2
}
+O(1)

= ∑
x∈TN

{
η1(x)∆H1

( x
N , t
)
+ η2(x)∆H2

( x
N , t
)

+ η1(x) (1− η1(x + 1))
(
∇H1

( x
N , t
))2

+ η2(x) (1− η2(x + 1))
(
∇H2

( x
N , t
))2

− (η1(x)η2(x + 1) + η2(x)η1(x + 1))
(
∇H1

( x
N , t
)
∇H2

( x
N , t
)) }

+O(1).
(5.4.14)
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COROLLARY 5.2. The super exponential estimate (5.2.19) holds also for the path
space measure P

ϱ,H
N .

Proof. Note that from (5.4.14) we have that

dP
ϱ,H
N

dP
ϱ
N
≤ exp {cN}, (5.4.15)

since ηa(x) ≤ 1 for all a ∈ {1, 2} and x ∈ TN and because the functions
H1(·, ·), H2(·, ·) ∈ C2,1(T× [0, T]).

For any measurable set A ⊂ D ([0, T],M1 ×M1) we have the following chain
of inequalities

1
N

log P
ϱ,H
N (A) =

1
N

log E
ϱ
N

[
1A

dP
ϱ,H
N

dP
ϱ
N

]

≤ 1
N

log E
ϱ
N [1A] + c. (5.4.16)

Here we have changed the path space measure from P
ϱ,H
N to P

ϱ
N and we have used

the estimate (5.4.15). Therefore, by taking the limit N → ∞ and by using Corollary
5.1 we have the result.

5.4.2 Exponential tightness

THEOREM 5.3 (Exponential Tightness). For any n ∈ N there exists a compact set
Kn ⊂ D([0, T],M1 ×M1) such that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] /∈ Kn) = −n. (5.4.17)

With exponential tightness, the large deviation upper bound for closed sets
C ∈ D([0, T],M1 ×M1) follows from the upper bound for compact sets. Namely,
for every n ∈N we have that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ C)≤ lim

N→∞

1
N

log
[
P

ϱ
N(π

N
[0,T] ∈ C ∩ Kn)∨P

ϱ
N(π

N
[0,T] /∈ Kn)

]
,

(5.4.18)
where C ∩ Kn is a compact set.

We will prove Theorem 5.3 following the same approach as in [61, Section 10.4].
We start with the following Lemma.

LEMMA 5.2. For every ε > 0 and G ∈ C2(T)× C2(T)

lim
δ→0

lim
N→∞

1
N

log P
ϱ
N

(
sup
|s−t|<δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

s , G⟩
∣∣∣ ≥ ε

)
= −∞. (5.4.19)
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Proof. First note that by (5.2.20), it is enough to show that (5.4.19) holds for the
equilibrium measure P1/3

N . We then use the following inclusion{
sup
|s−t|<δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

s , G⟩
∣∣∣ ≥ ε

}
⊂

[Tδ−1]⋃
k=0

{
sup

kδ≤t<(k+1)δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

kδ, G⟩
∣∣∣ > 1

4 ε

}
,

(5.4.20)
in order to find that

lim
N→∞

1
N

log P1/3
N

(
sup
|s−t|<δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

s , G⟩
∣∣∣ ≥ ε

)

≤ lim
N→∞

1
N

log
[Tδ−1]
sup
k=0

P1/3
N

(
sup

kδ≤t<(k+1)δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

kδ, G⟩
∣∣∣ ≥ 1

4 ε

)

= lim
N→∞

1
N

log P1/3
N

(
sup

0≤t<δ

∣∣∣⟨πN
t , G⟩ − ⟨πN

0 , G⟩
∣∣∣ ≥ 1

4 ε

)
, (5.4.21)

where we used that P1/3
N is an invariant measure for the last equality.

Since we are considering every G, we can neglect the absolute value. Fur-
thermore, recalling the definition of ZG

t,N(π
N
[0,T]) in (5.4.9), we have that for any

λ > 0

P1/3
N

(
sup

0≤t<δ

⟨πN
t , G⟩ − ⟨πN

0 , G⟩ ≥ 1
4 ε

)

= P1/3
N

(
sup

0≤t<δ

1
N

log ZλG
t,N(πN

[0,T])+
1
N

∫ t

0
e−λN⟨πN

s ,G⟩ (∂s + LN) eλN⟨πN
s ,G⟩ ds ≥ 1

4 λε

)

≤ P1/3
N

(
sup

0≤t<δ

1
N

log ZλG
t,N(πN

[0,T]) ≥
1
8 λε

)

+ P1/3
N

(
sup

0≤t<δ

1
N

∫ t

0
e−λN⟨πN

s ,G⟩ (∂s + LN) eλN⟨πN
s ,G⟩ ds ≥ 1

8 λε

)
. (5.4.22)

Note that by (5.4.14) and the fact that there is at most one particle per site,

sup
0≤t<δ

1
N

∫ t

0
e−λN⟨πN

s ,G⟩ (∂s + LN) eλN⟨πN
s ,G⟩ ds = O(δ). (5.4.23)

Furthermore, by Doob’s martingale inequality

P1/3
N

(
sup

0≤t<δ

1
N

log ZλG
t,N(πN

[0,T]) ≥
1
8 λε

)
= P1/3

N

(
sup

0≤t<δ

ZλG
t,N(πN

[0,T]) ≥ e
1
8 Nλε

)

≤ e−
1
8 Nλε, (5.4.24)
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where we used that ZλG
t,N(πN

[0,T]) is a mean 1 martingale. Therefore we find that

lim
δ→0

lim
N→∞

1
N

log P1/3
N

(
sup

0≤t<δ

⟨πN
t , G⟩ − ⟨πN

0 , G⟩ ≥ ε

)
≤ − 1

8 λε, (5.4.25)

and since we took λ > 0 arbitrary this concludes the proof.
With this Lemma we are able to prove the exponential tightness of the empirical

distributions.
Proof of Theorem 5.3. Consider a countable uniformly dense family {Hk}k∈N ⊂
C2(T)× C2(T). Then, for each δ > 0, ε > 0 we define the following set

Ck,δ,ε =

{
α ∈ D([0, T],M1 ×M1); sup

|t−s|≤δ

|⟨αt, Hk⟩ − ⟨αs, Hk⟩| ≤ ε

}
. (5.4.26)

First of all, note that Ck,δ,ε is closed. Furthermore, by Lemma 5.2 we know that we
can find a δ = δ(k, m, n) such that

P
ϱ
N(π

N
[0,T] ̸∈ Ck,δ,1/m) ≤ exp(−Nnmk) (5.4.27)

for N large enough. We then define

Kn =
⋂

k≥1,m≥1

Ck,δ(k,m,n),1/m. (5.4.28)

Then we find that

P
ϱ
N(π

N
[0,T] ̸∈ Kn) ≤ ∑

k≥1,m≥1
exp(−Nnmk) ≤ C exp(−Nn) (5.4.29)

where C > 0 is some constant, and so

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ̸∈ Kn) ≤ −n. (5.4.30)

Since Kn is closed, we now only have to show that Kn is relatively compact
for every n ∈ N, i.e., we need to show that the following two things holds [61,
Proposition 4.1.2]

1. {αt : α ∈ Kn, t ∈ [0, T]} is relatively compact inM1 ×M1.

2. lim
δ→0

sup
α∈Kn

wδ(α) = 0 where

wδ(α) := sup
|t−s|≤δ

∞

∑
k=1

1
2k

|⟨αt, Hk⟩ − ⟨αs, Hk⟩|
1 + |⟨αt, Hk⟩ − ⟨αs, Hk⟩|

= 0. (5.4.31)

Note here that (1) is satisfied sinceM1 ×M1 itself is compact, and (2) is satisfied
by the definition of Kn, hence Kn is compact.
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5.4.3 Proof of the upper bound

THEOREM 5.4 (Upper bound for compact sets).
For any compact set K ⊂ D ([0, T];M1 ×M1) we have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ K

)
≤ − inf

α̂∈K
Iϱ(α̂). (5.4.32)

Proof. For any given G1, G2 ∈ C2,1(T× [0, T]), and ε > 0, δ > 0, we introduce the
following

Bδ,a,b
ε,N,Ga ,Gb

:=

{
{ηt : 0 ≤ t ≤ T} :

∣∣∣∣∣ 1
N ∑

x∈TN

∫ T

0
∇Ga

( x
N , t
)
∇Gb

( x
N , t
)

·

ηa,t(x)ηb,t(x + 1)−

 ∑
|x−y|≤εN

ηa,t(y)

 ∑
|x−y|≤εN

ηb,t(y)

dt

∣∣∣∣∣∣ ≤ δ

.

(5.4.33)

Moreover, we denote by

Bδ
ε,N,G = ∩2

a,b=1Bδ,a,b
ε,N,Ga ,Gb

. (5.4.34)

By the superexponential estimate with ϕ(η) = ηa,t(x)ηb,t(x + 1), we then have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ K

)
≤ lim

δ→0
lim

N→∞

1
N

log P
ϱ
N

({
πN
[0,T] ∈ K

}
∩ Bδ

ε,N,G

)
.

(5.4.35)

We now define the measures qε := 1
2ε1{[−ε,+ε]} and qε = (qε qε), and we

introduce the following

Z̃G
T,N(π

N
[0,T] ∗ qε) := exp

(
ℓ(πN

[0,T] ∗ qε; G)− 1
2 ||G||

2
H(πN

[0,T]∗qε)

)
= exp

{
N⟨(πN

T ∗ qε), G(·, T)⟩ − N⟨(πN
0 ∗ qε), G(·, 0)⟩

}
· exp

{
−N

∫ T

0
⟨(πN

t ∗ qε), (∂s + ∆)G(·, t)⟩dt
}

· exp
{
−N

∫ T

0
⟨(πN

1,t ∗ qε)(1− (πN
1,t ∗ qε)), (∇G1(·, t))2⟩dt

}
· exp

{
−N

∫ T

0
⟨(πN

2,t ∗ qε)(1− (πN
2,t ∗ qε)), (∇G2(·, t))2⟩dt

}
· exp

{
−2N

∫ t

0
⟨(πN

1,t ∗ qε)(π
N
2,t ∗ qε),∇G1(·, t)∇G2(·, t)⟩dt

}
.

(5.4.36)
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Recalling the definition of the exponential martingale ZG
T,N(µN) defined in (5.4.9),

by (5.4.13) we have that for all N and all {ηt : 0 ≤ t ≤ T} ∈ Bδ
ε,N,G,

Z̃G
T,N(π

N
[0,T] ∗ qε) ≤ ZG

N,T(π
N
[0,T]) exp {N(c(ε) + δ)}. (5.4.37)

with c(ε) a constant that vanishes as ε → 0. Using (5.4.35) and recalling the
definition of hϱ(·; ϕ) in (5.4.2) we then find that

lim
N→∞

log P
ϱ
N

({
πN ∈ K

}
∩ Bδ

ε,N,G

)
= lim

N→∞

1
N

log E
ϱ
N

1{
πN
[0,T]∈K

}
∩Bδ

ε,N,G

Z̃G
T,N(π

N
[0,T] ∗ qε)

Z̃G
T,N(π

N
[0,T] ∗ qε)

· eNhϱ(πN
0 ; ϕ)

eNhϱ(πN
0 ; ϕ)


≤ lim

N→∞

1
N

log E
ϱ
N

[
ZG

N,T(π
N
[0,T]) · e

Nhϱ(πN
0 ; ϕ)

]
+ c(ε) + δ

− inf
α̂∈K

{
hϱ(α̂0; ϕ) + ℓ(α̂ ∗ qε; G)− ||G||H(α̂∗qε)

}
. (5.4.38)

Since ZG
N,T(π

N) is a martingale with ZG
0,N(π

N) = 1

E
ϱ
N

[
ZG

N,T(π
N
[0,T])e

Nhϱ(πN
0 ; ϕ)

]
= Eν

ϱ
N

[
eNhϱ(πN

0 ; ϕ)
]
= 1. (5.4.39)

By taking the limsup for ε→ 0 and δ→ 0, by optimizing over G and over ϕ and
by exchanging the supremum and the infimum (by using the argument of Lemma
11.3 of [120]) we obtain that

lim
ε→0

lim
δ→0

lim
N→∞

1
N

log P
ϱ
N

({
πN
[0,T] ∈ K

}
∩ Bδ

ε,N,G

)
≤ − inf

α̂∈K
Iϱ(α̂), (5.4.40)

and the Theorem follows.

5.4.4 Proof of the lower bound

LEMMA 5.3. Assume that hϱ(α̂0) < ∞, then there exists a density ϱ̂0 := dα̂0
dλ , with λ

the Lebesgue measure, and

hϱ(α̂0) = lim
N→∞

1
N

E
ν

ϱ̂0
N

[
log

(
dν

ϱ̂0
N

dν
ϱ
N

)]
. (5.4.41)

Proof. If α̂0 is not absolutely continuous with respect to the Lebesgue measure,
then there exists a A ⊂ T and a ∈ {1, 2} such that λ(A) = 0 and ϱa,0(A) > 0.
Then, for every n ∈N we choose a sequence (ϕ

(n)
a,k )k∈N such that ϕ

(n)
a,k → n1A, one
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can show that hϱ(α̂0) = ∞ by letting n→ ∞. Hence if hϱ(α̂0) < ∞ we have that ϱ̂0
exists. The rest of a proof is just a calculation.

hϱ(α̂0) = sup
ϕ

{
2

∑
a=0
⟨ϱ̂a,0, ϕa⟩L2(T) −

∫
T

log

(
2

∑
a=0

ϱa(x)eϕa(x)

)
dx

}

=
2

∑
a=0
⟨ϱ̂a,0, log

(
ϱ̂a,0
ϱa

)
⟩L2(T)

= lim
N→∞

1
N

E
ν

ϱ̂0
N

[
log

(
dν

ϱ̂0
N

dν
ϱ
N

)]
, (5.4.42)

where the supremum was attained for the function ϕ = (ϕa)a=0,1,2 such that
ϕa = log( ϱ̂a,0

ϱa
) and we used that ∑2

a=0 ϱ̂a,0 = 1.

LEMMA 5.4. Assume that Itr(α̂) < ∞, then there exists an H ∈ H(α̂) such that for
all smooth G we have that

ℓ(α̂; G) = ⟨G, H⟩H(α̂). (5.4.43)

Moreover, the following holds

Itr(α̂) = Itr(α̂; H) = 1
2 ||H||

2
H(α̂). (5.4.44)

REMARK 5.6. Observe that if (5.4.43) holds for all G, then α̂ has a density ϱ̂ that
satisfies the equations (5.3.7). This will be used in the proof of the large deviation
lower bound. Indeed, by choosing a non-typical trajectory, we can find an H that
makes it typical, i.e. that makes it solve the weakly asymmetric hydrodynamic
equations.

Proof. By definition, we have that

Itr(α̂) ≥ λℓ(α̂; G)− 1
2

λ2||G||2H(α̂) (5.4.45)

for any λ > 0. Optimizing over λ we have that

λ∗ =
ℓ(α̂; G)

||G||2H(α̂)

, (5.4.46)

and so

ℓ(α̂; G)2 ≤ 2Itr(α̂)||G||2H(α̂). (5.4.47)
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This means that the linear functional ℓ(ϱ; ·) is bounded in the Hilbert space H(α̂)
and so, by the Riesz representation Theorem, there exists an H ∈ H(α̂) such that
(5.4.43) holds for all G. Using this, we find that

Itr(α̂) = sup
G

{
⟨G, H⟩H(α̂) − 1

2 ||G||
2
H(α̂)

}
= sup

G

{
1
2 ||H||

2
H(α̂) −

1
2 ||H −G||2H(α̂)

}
= 1

2 ||H||
2
H(α̂). (5.4.48)

Note that the supremum is uniquely attained for G = H, hence we indeed have
that Itr(α̂) = Itr(α̂; H).

REMARK 5.7. We have shown that if Itr(α̂) < ∞, then there exists an H ∈ H(ϱ)
such that the density of α̂, denoted ϱ̂, satisfies the equations (5.3.7). However, for
the proof of the hydrodynamic limit of the weakly asymmetric model we need
a stronger regularity condition on H, namely Hab ∈ C2,1([0, T]×T) for each a, b.
We denote the subset of all trajectories that satisfy this extra regularity condition
by Do ([0, T],M1 ×M1). By the convexity and lower semi-continuity of I0, it
can then be shown that every α̂ ∈ Do ([0, T],M1 ×M1) can be approximated by
trajectories α̂n ∈ D ([0, T],M1 ×M1), such that

lim
n→∞

Itr(α̂n) = Itr(α̂). (5.4.49)

A detailed proof of such a result can be found e.g. in [61, Lemma 10.5.5].

LEMMA 5.5. Let α̂ ∈ Do ([0, T],M1 ×M1) have density ϱ̂ that satisfies (5.3.7) for
some H ∈ C2,1(T× [0, T]), then

lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ
N

dP
ϱ̂0,H
N

)]
= −Iϱ(α̂). (5.4.50)

Proof. First note that
dP

ϱ̂0,H
N

dP
ϱ
N

=
dν

ϱ̂0
N

dν
ϱ
N

dP
ϱ,H
N

dP
ϱ
N

. (5.4.51)

Therefore, by Lemma 5.3 we only have to show that

lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ̂0
N

dP
ϱ̂0,H
N

)]
= −Itr(α̂). (5.4.52)

Recall the definition of the set Bδ
ε,N,H in (5.4.34). By Corollary 5.2 and the upper

bound on the Radon-Nikodym derivative (5.4.15), we find that

lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ̂0
N

dP
ϱ̂0,H
N

)]
= lim

N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ̂0
N

dP
ϱ̂0,H
N

)
1Bδ

ε,N,H

]
(5.4.53)
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for all δ > 0 and ε small enough. On this set Bδ
ε,N,H , using the explicit form of the

Radon-Nikodym derivative in (5.4.9) and (5.4.14), we can write that

1
N

log

(
dP

ϱ̂0
N

dP
ϱ̂0,H
N

)
= −ℓ(πN

[0,T]; H)− ||H||H(πN
[0,T]∗qε)

+O(δ) +O( 1
N ). (5.4.54)

Since πN
[0,T] → α̂ in distribution, we find that

lim
δ→0

lim
ε→0

lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ̂0
N

dP
ϱ̂0,H
N

)
1Bδ

ε,N,H

]
= −Itr(α̂; H). (5.4.55)

By Lemma 5.4 we have that Itr(α̂; H) = Itr(α̂), concluding the proof.

THEOREM 5.5. Fix α̂ ∈ Do ([0, T],M1 ×M1), then for any open neighborhood O
around α̂ we have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ O

)
≥ −Iϱ(α̂). (5.4.56)

Proof. If Iϱ(α̂) = ∞ then the result is immediate, hence we can assume that
Iϱ(ϱ) < ∞. Therefore, by Lemma 5.4, there exists a smooth H such that 5.3.7
holds weakly. Fix this H and recall that ϱ̂t denotes the density of α̂t for every t ≥ 0.
We then have that

P
ϱ
N

(
πN
[0,T] ∈ O

)
= E

ϱ̂0,H
N

[
1{πN

[0,T]∈O}
dP

ϱ
N

dP
ϱ̂0,H
N

]
. (5.4.57)

From Theorem 5.2 it follows that α̂ is the typical trajectory of the new dynamics,
and so

lim
N→∞

P
ϱ̂0,H
N

(
πN
[0,T] ∈ O

)
= 1. (5.4.58)

It then follows that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ O) = lim

N→∞

1
N

log E
ϱ̂0,H
N

[
dP

ϱ
N

dP
ϱ̂0,H
N

]

≥ lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

(
dP

ϱ
N

dP
ϱ̂0,H
N

)]
= −Iϱ(α̂). (5.4.59)

where we used Lemma 5.5 in the last step.
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THEOREM 5.6. For any open set O ⊂ D ([0, T],M1 ×M1) we have that

lim
N→∞

1
N

log P
ϱ
N

(
πN
[0,T] ∈ O

)
≥ − inf

α̂∈O
Iϱ(α̂). (5.4.60)

Proof. The proof is a straightforward consequence of Theorem 5.5 and Remark
5.7.

REMARK 5.8. In parallel with Remark 5.3, by choosing the same potential H1 =
H2 = H we can recover the large deviation rate function of the dynamics of the
single species SEP as given in [62]. Namely, by putting ϱ̂ = ϱ̂1 + ϱ̂2 the rate
function Itr(α̂) from (5.4.48) becomes a function of ϱ̂ only, i.e.,

Itr(α̂) =
1
2
||H||2H(α̂) =

∫ T

0
⟨(ϱ̂t(1− ϱ̂t),

(
∇H(·, t)

)2⟩L2(T) dt. (5.4.61)

REMARK 5.9. In parallel with Remark 5.4, the large deviation result reported
in this section can be generalized to an arbitrary number of species, namely
a ∈ {0, 1, . . . , n}. In this case, we consider a n-dimensional vector of densities
denoted by ϱ = (ϱ1, . . . , ϱn). Moreover, we consider n-potentials denoted by
Ha, that we list in the vector H = (H1, . . . , Hn). Therefore, the large deviation
functional reads

Iϱ,(n)(α̂) = I (n)tr (α̂) + hϱ,(n)(α̂0). (5.4.62)

Here hϱ,(n)(α̂0) is the relative entropy between the multinomial distributions with
densities corresponding to the density of α̂, denoted ϱ̂, evaluated at time t = 0 and
the original starting density given by ϱ = (ϱ1, . . . , ϱn). Moreover, we have that

I (n)tr (α̂) =
1
2
∥H∥2

H(α̂), (5.4.63)

where the norm is given by

∥H∥2
H(α̂) = 2

n

∑
a=1

∫ T

0
⟨ϱ̂a,t(1− ϱ̂a,t), (∇Ha(·, t))2⟩L2(T) dt

− 2
n

∑
a=1

∑
b ̸=a

∫ T

0
⟨ϱ̂a,tϱ̂b,t,∇Ha(·, t)∇Hb(·, t)⟩L2(T) dt. (5.4.64)

For any k ≤ n there exists a relation between the dynamic part of the large
deviation rate function of the n-species model I (n)tr and of the k-species model I (k)tr .
Namely, for any partition {A1, ..., Ak} of the set {1, ..., n}, by choosing the same
potentials within each partition, i.e., Hj = Hℓ for every j ∈ Aℓ, we find that

I (n)tr (α1, ..., αn) = I (k)tr (α̃1, ..., α̃k) (5.4.65)

where α̃ℓ = ∑j∈Aℓ
αj. This generalizes the result in Remark 5.8.
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5.5 proof of the hydrodynamic limit of the weakly-asymmetric

process

We consider the Dynkin martingale

MG
N,t(π

N
[0,T]) = ⟨π

N
t , G(·, t)⟩ − ⟨πN

0 , G(·, 0)⟩ −
∫ t

0
(∂t + LH

N,s)⟨πN
s , G(·, s)⟩ds

= MG1
1,N,t(π

N
[0,T]) + MG2

2,N,t(π
N
[0,T]), (5.5.1)

where

MG
a,N,t(π

N
[0,T]) = ⟨π

N
a,t, G(·, t)⟩ − ⟨πN

a,0, G(·, 0)⟩ −
∫ t

0
(∂t + LH

N,s)⟨πN
a,s, G(·, s)⟩ds.

(5.5.2)

We see that we need to apply the generator LH
N,t to the density field ⟨πN

a,t, G(·, t)⟩.
This can be derived from the effect of the generator applied to the function
f (η) = ηa(x). We start in the case of a = 1. If we look at LH

N,tη1(x) we get a
positive (resp. negative) contribution of the rates where a particle of type 1 is
added (resp. subtracted) at position x, i.e.,

LH
N,sη1(x) = cH,01

(x,x+1)(s) + cH,21
(x,x+1)(s) + cH,10

(x−1,x)(s) + cH,12
(x−1,x)(s)

− cH,10
(x,x+1)(s)− cH,12

(x,x+1)(s)− cH,01
(x−1,x)(s)− cH,21

(x−1,x)(s). (5.5.3)

Using that

cH,ab
(x,x+1)(s) = exp

(
∇N Hab(

x
N , s)

)
ηa(x)ηb(x + 1)

=
(

1 +∇N Hab(
x
N , s) +

(
∇N Hab(

x
N , s)

)2
)

ηa(x)ηb(x + 1) +O( 1
N3 ),

(5.5.4)
we find that

LH
N,sη1(x)

=
(
1 +∇N H01(

x
N , s)

)
η0(x)η1(x + 1) +

(
1 +∇N H21(

x
N , s)

)
η2(x)η1(x + 1)

+
(

1 +∇N H10(
x−1

N , s)
)

η1(x− 1)η0(x) +
(

1 +∇N H12(
x−1

N , s)
)

η1(x− 1)η2(x)

−
(
1 +∇N H10(

x
N , s)

)
η1(x)η0(x + 1)−

(
1 +∇N H12(

x
N , s)

)
η1(x)η2(x + 1)

−
(

1 +∇N H01(
x−1

N , s)
)

η0(x− 1)η1(x)−
(

1 +∇N H21(
x−1

N , s)
)

η2(x + 1)η1(x)

+ R(N, x, s), (5.5.5)

with R(N, x, s) a remainder term which we will show vanishes once combined
with the test function G as we send N → ∞.
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First we will focus on the terms that do not depend on H in the above equation.
Using the fact that η0 = 1− η1 − η2, after some calculation we find that

η0(x)η1(x + 1) + η2(x)η1(x + 1) + η1(x− 1)η0(x) + η1(x− 1)η2(x)

− η1(x)η0(x + 1)− η1(x)η2(x + 1)− η0(x− 1)η1(x)− η2(x + 1)η1(x)

= η1(x + 1) + η1(x− 1)− 2η1(x),
(5.5.6)

i.e., we recover the discrete Laplacian of η1(x).
For the terms depending on the potential H10 = −H01 we then have that

(η1(x− 1)η0(x) + η0(x− 1)η1(x))∇N H10(
x−1

N , s)

− (η0(x)η1(x + 1) + η1(x)η0(x + 1))∇N H10(
x
N , s). (5.5.7)

and the terms depending on the potential H12 = −H21

(η1(x− 1)η2(x) + η2(x + 1)η1(x))∇N H12(
x−1

N , s)

− (η2(x)η1(x + 1) + η1(x)η2(x + 1))∇N H12(
x
N , s). (5.5.8)

With these calculations, we then find that

LH
N,s⟨πN

1,s, G(·, s)⟩
= N ∑

x∈TN

(η1(x + 1) + η1(x− 1)− 2η1(x))G( x
N , s)

+ N ∑
x∈TN

((
η1(x− 1)η0(x) + η0(x− 1)η1(x)

)
∇N H10(

x−1
N , s)

−
(
η0(x)η1(x + 1) + η1(x)η0(x + 1)

)
∇N H10(

x
N , s)

)
G( x

N , s)

+ N ∑
x∈TN

((
η1(x− 1)η2(x) + η2(x + 1)η1(x)

)
∇N H12(

x−1
N , s)

−
(
η2(x)η1(x + 1) + η1(x)η2(x + 1)

)
∇N H12(

x
N , s)

)
G( x

N , s)

+ N ∑
x∈TN

R(N, x, s)G( x
N , s), (5.5.9)

where by reordering the terms, we have

LH
N⟨πN

1,s, G(·, s)⟩
= N ∑

x∈TN

η1(x)∆NG( x
N , s)

+ N ∑
x∈TN

(η0(x)η1(x + 1) + η1(x)η0(x + 1))∇N H10(
x
N , s)∇NG( x

N , s)

+ N ∑
x∈TN

(η2(x)η1(x + 1) + η1(x)η2(x + 1))∇N H12(
x
N , s)∇NG( x

N , s)

+ N ∑
x∈TN

R(N, x, s)G( x
N , s). (5.5.10)
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The remainder term R(N, x, s) is given by

R(N, x, s) = (η0(x)η1(x + 1)− η1(x)η0(x + 1))
(
∇N H10(

x
N , s)

)2

− (η0(x− 1)η1(x)− η1(x− 1)η0(x))
(
∇N H10(

x−1
N , s)

)2

+ (η2(x)η1(x + 1)− η1(x)η2(x + 1))
(
∇N H12(

x
N , s)

)2

− (η2(x + 1)η1(x)− η1(x− 1)η2(x))
(
∇N H12(

x−1
N , s)

)2

+O( 1
N3 ), (5.5.11)

and when combined with a test function, we see that

N ∑
x∈TN

R(N, x, s)G( x
N , s)

= −N ∑
x∈TN

(η0(x)η1(x + 1)− η1(x)η0(x + 1))
(
∇N H10(

x
N , s)

)2
∇NG( x

N , s)

− N ∑
x∈TN

(η2(x)η1(x + 1)− η1(x)η2(x + 1))
(
∇N H12(

x
N , s)

)2
∇NG( x

N , s)

+O( 1
N ). (5.5.12)

Note that this vanishes as N → ∞ since the discrete derivative ∇N is an operator
of order 1

N .
Thus, all in all:

LH
N⟨πN

1,s, G(·, s)⟩

=
1
N ∑

x∈Z

η1(x)∆G
( x

N
)

+
1
N ∑

x∈TN

(η0(x)η1(x + 1) + η1(x)η0(x + 1))∇H10(
x
N , s)∇G( x

N , s)

+
1
N ∑

x∈TN

(η2(x)η1(x + 1) + η1(x)η2(x + 1))∇H12(
x
N , s)∇G( x

N , s) +O( 1
N ).

(5.5.13)

By choosing: ϕ(η) = η1(x)η1(x + 1) and ϕ(η) = η1(x)η2(x + 1) we now use the
superexponential estimate in Theorem 5.1 twice and we replace

2
N ∑

x∈Z

η1(x)η1(x + 1) −→ 2
N ∑

x∈Z

 ∑
|x−y|≤εN

η1(y)

 ∑
|x−y|≤εN

η1(y)

 , (5.5.14)
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and

2
N ∑

x∈Z

η1(x)η2(x + 1) −→ 2
N ∑

x∈Z

 ∑
|x−y|≤εN

η1(y)

 ∑
|x−y|≤εN

η2(y)

 . (5.5.15)

Indeed, to prove equation (5.5.14) one writes that, for all G, H10 ∈ C2,1(T× [0, T])
and for all a > 0, there exists ε0 > 0 such that for all η ∈ Ω and for all ε < ε0 we
have that∣∣∣∣∣ 1

N

∫ T

0

N

∑
x=0
∇G

( x
N

, t
)
∇H10

( x
N

, t
)

η1(x)η1(x + 1)dt

− 1
N

∫ T

0
∇G

( x
N

, t
)
∇H10

( x
N

, t
) ∑

|x−y|≤εN

η1(y)η1(y + 1)

dt

∣∣∣∣∣∣ ≤ a. (5.5.16)

Therefore, using the superexponential estimate of Theorem 5.1 we have that

lim
ε→0

lim
N→∞

1
N

log P
ϱ,H
N

(∣∣∣∣∣ 1
N

∫ T

0

N

∑
x=0
∇G

( x
N

, t
)
∇H10

( x
N

, t
)

η1(x)η1(x + 1)dt

− 1
N

∫ T

0
∇G

( x
N

, t
)
∇H10

( x
N

, t
)

× 2
N ∑

x∈Z

 ∑
|x−y|≤εN

η1(y)

 ∑
|x−y|≤εN

η1(y)

dt

∣∣∣∣∣∣ ≥ a


= −∞. (5.5.17)

With the same argument one can prove (5.5.15) as well. Moreover, using qε =
1
2ε1{[−ε,+ε]}, then we can write

1
N ∑

x∈Z

 ∑
|x−y|≤εN

η1,s(y)

 ∑
|x−y|≤εN

η1,s(y)

 =
(

πN
1,s ∗ qε

) (
πN

1,s ∗ qε

)
, (5.5.18)

and

1
N ∑

x∈Z

 ∑
|x−y|≤εN

η1,s(y)

 ∑
|x−y|≤εN

η2,s(y)

 =
(

πN
1,t ∗ qε

) (
πN

2,s ∗ qε

)
. (5.5.19)

Combining (5.5.13) with equations (5.5.18) and (5.5.19), we have that the Dynkin
martingale MG

1,N,t(π
N
[0,T]) is written as a function of the empirical density, namely
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MG
1,N,t(π

N
[0,T])

= ⟨πN
1,t, G(·, t)⟩ − ⟨πN

1,0, G(·, 0)⟩ −
∫ t

0
⟨πN

1,s, (∂t + ∆)G(·, s)⟩ds

− 2
∫ t

0

〈(
πN

1,s ∗ qε

) (
1−

(
πN

1,s ∗ qε

)
−
(

πN
2,s ∗ qε

) )
,∇H10(·, s)∇G(·, s)

〉
ds

− 2
∫ t

0

〈(
πN

1,s ∗ qε

) (
πN

2,s ∗ qε

)
,∇H12(·, s)∇G(·, s)

〉
ds + R(ε, N), (5.5.20)

where the remainder term R(ε, N) goes to zero in probability as N → ∞ and ε→ 0.
A similar result can be found for MG

2,N,t(π
N
[0,T]).

Now we show that the martingale MG
N,t(π

N
[0,T]) vanishes as N → ∞. The

predictable quadratic variation is computed by the Carré-du-Champ formula as

ΓG
N,t(π

N(η))

= LH
N,t⟨πN(η), G(·, t)⟩2 − 2⟨πN(η), G(·, t)⟩LH

N⟨πN(η), G(·, t)⟩

= ∑
x∈TN

2

∑
a,b=0

cH,ab
(x,x+1)(t)

[
⟨πN(ηx,x+1

a,b ), G(·, t)⟩ − ⟨πN(η), G(·, t)⟩
]2

= ∑
x∈TN

(
cH,01
(x,x+1)(t) + cH,10

(x,x+1)(t)
)(
∇NG1

( x
N , t
))2

+ ∑
x∈TN

(
cH,02
(x,x+1)(t) + cH,20

(x,x+1)(t)
)(
∇NG2

( x
N , t
))2

+ ∑
x∈TN

(
cH,12
(x,x+1)(t) + cH,21

(x,x+1)(t)
)(
∇NG1

( x
N , t
)
−∇NG2

( x
N , t
))2,

(5.5.21)

which is of order 1/N and goes to 0 as N → ∞. This implies that for all δ > 0

lim
N→∞

P
ϱ,H
N

(
sup

t∈[0,T]
|MG

N,t(π
N
[0,T])| ≥ δ

)

≤ lim
N→∞

1
δ2 E

ϱ,H
N

[
sup

t∈[0,T]
|MG

N,t(π
N
[0,T])|

2

]

≤ lim
N→∞

4
δ2 E

ϱ,H
N

[
|MG

N,t(π
N
[0,T])|

2
]

= lim
N→∞

4
δ2 E

ϱ,H
N

[∫ T

0
ΓG

N,t(π
N
t )dt

]
= 0. (5.5.22)

Next, one can show tightness of the sequence of random processes πN
[0,T] is tight by

using (5.5.22). The argument is standard and we refer to [61, 104]. By tightness we
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have the existence of convergent subsequences, and by combining this with (5.5.20)
and (5.5.22) we observe that these convergent subsequences are concentrated on
the set of trajectories α ∈ D([0, T];M1 ×M1) such that for all δ > 0 there exists
an ε̂ such that for all ε ≤ ε̂ and for all t ∈ [0, T] we have that∣∣∣∣⟨αt, G(·, t)⟩ − ⟨α0, G(·, 0)⟩ −

∫ t

0
⟨αs, (∂t + ∆) , G(·, s)⟩ds

+
∫ t

0
⟨(α1,s ∗ qε) (1− (α1,s ∗ qε)− (α2,s ∗ qε)),∇G1(·, s)H10(·, s)⟩ds

+
∫ t

0
⟨(α2,s ∗ qε) (1− (α1,s ∗ qε)− (α2,s ∗ qε)),∇G2(·, s)∇H20(·, s)⟩ds

−
∫ t

0
⟨(α1,s ∗ qε) (α2,s ∗ qε) , (∇G1(·, s)−∇G2(·, s))∇H12(·, s)⟩ds

∣∣∣∣ ≤ δ.

(5.5.23)

Finally, letting ε̂ tend to 0, we observe that α has density ϱ which solves equation
(5.3.1).

5.6 proof of the superexponential estimate

The objective of this appendix is to prove the superexponential estimate presented
in Theorem 5.1. We follow here the road of the original paper [62], i.e., reducing
the problem to one and two blocks estimates which then boil down to a uniform
equivalence of ensembles. For the convenience of the reader and self-consistency
of the paper, we nevertheless prefer to provide full details.

5.6.1 Equivalence of ensembles

In the following, for γ1, γ2 > 0 two constants, we denote by ν
γ1,γ2
N the measure

ν
γ1,γ2
N =

⊗
x∈TN

Multinomial(1, γ1, γ2). (5.6.1)

Furthermore, given k1, k2 ∈N0 such that k1 + k2 ≤ N, we define the event

Ωk1,k2
N :=

{
η ∈ ΩN

∣∣∣ |η1| = k1, |η2| = k2

}
(5.6.2)

where |ηa| = ∑x∈TN
ηa(x) is the total number of particles of type a. Since the

marginals are independent, the measure ν
γ1,γ2
N conditioned on this event Ωk1,k2

N is
given by the uniform measure on Ωk1,k2

N , i.e.,

ν
γ1,γ2
N

(
η
∣∣Ωk1,k2

N

)
=

{
( N

k1,k2
)
−1

if η ∈ Ωk1,k2
N

0 else
(5.6.3)
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Note that this is independent of the choice of γ1, γ2, and so we set

νN(· |Ωk1,k2
N ) := ν

γ1,γ2
N (· |Ωk1,k2

N ) (5.6.4)

LEMMA 5.6. For any ℓ ≤ N let {i1, ..., iℓ} ⊂ TN , and take m1, m2 ∈ N such that
m1 + m2 ≤ N. Define ζ(ik) = (ζ0(ik), ζ1(ik), ζ2(ik)) with ζa(ik) ∈ {0, 1} such that
ζ0(ik) + ζ1(ik) + ζ2(ik) = 1 for all 1 ≤ k ≤ ℓ and ∑ℓ

k=1 ζa(ik) = ma for a = 1, 2.
Furthermore, let k1,N , k2,N be such that k1,N

N → γ1 and k2,N
N → γ2 as N → ∞. Then

lim
N→∞

νN

(
η(ik) = ζ(ik) for k = 1, ..., ℓ |Ωk1,N ,k2,N

N

)
= γm1

1 γm2
2 (1− γ1 − γ2)

ℓ−m1−m2 . (5.6.5)

Proof. By (5.6.3), the statement follows from a direct computation,

lim
N→∞

νN

(
η(ik) = ζ(ik) for k = 1, ..., ℓ |Ωk1,N ,k2,N

N

)
= lim

N→∞

( N−ℓ
k1−m1,k2−m2

)

( N
k1,k2

)

= γm1
1 γm2

2 (1− γ1 − γ2)
ℓ−m1−m2 . (5.6.6)

We call a function ϕ : Ω→ R, with Ω defined as in (5.2.2), local if ϕ(η) depends
only on η1, ..., ηℓ for some fixed ℓ not dependent on N

THEOREM 5.7 (Equivalence of ensembles). For every local function ϕ, we have that

lim
N→∞

sup
0≤k1,k2≤N : k1+k2≤N

∣∣∣∣EνN(·|Ωk1,k2
N )

[ϕ]−E
ν

k1/N,k2/N
N

[ϕ]

∣∣∣∣ = 0 (5.6.7)

Proof. For every finite N, the supremum over k1 and k2 is reached. Denote by k∗1,N
and k∗2,N a value of k’s where the supremum is attained. Since

0 ≤
k∗1,N

N
≤ 1, (5.6.8)

there exists a convergent subsequence of k∗1(N)/N. By consequence, as ϕ is local
and by Lemma 5.6, we have

lim
i→∞

∣∣∣∣∣∣∣EνN

(
·
∣∣∣Ω

k∗1,Ni
,k∗2,Ni

Ni

)[ϕ]−E
ν

k∗1,Ni
/Ni , k∗2,Ni

/Ni
N

[ϕ]

∣∣∣∣∣∣∣ = 0. (5.6.9)

This holds for every possible converging subsequence of
k∗1,N

N and hence the state-
ment follows.
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5.6.2 One and two blocks estimates

In this section, our goal is to show that proving Theorem 5.1 can be reduced to
establishing two key lemmas, referred to as the one block and two blocks estimates,
respectively. We hereby follow verbatim the steps of the proof of Theorem 2.1
of [62], with necessary adaptations to cover the multi-species case. The crucial
aspect of this approach lies in the application of the Feynman-Kac formula (c.f.
[61, Proposition A.7.1]).

We focus on the quantity P1/3
N

(
1
N
∫ t

0 VN,ε(η(s))ds ≥ δ
)

and we apply the expo-
nential Chebyshev inequality, obtaining

P1/3
N

(
1
N

∫ t

0
VN,ε(η(s))ds ≥ δ

)
≤ e−δNaE1/3

N

[
exp

(
a
∫ t

0
VN,ε(η(s))ds

)]
,

(5.6.10)

where we have denoted by E1/3
N the expectation with respect to P1/3

N . To estimate
the right hand side of (5.6.10) we define the operator

K = L+ aV, (5.6.11)

i.e.,

K f (η) = L f (η) + aV(η) f (η). (5.6.12)

Using Feynman-Kac formula (see [61, Proposition A.7.1, Lemma A.7.2])

E1/3
N

[
exp

(
a
∫ t

0
VN,ε(ηs)ds

)]
=
〈

1, etK1
〉

L2(νN
1/3,1/3)

≤ exp (tλmax(K)), (5.6.13)

where λmax(K) is the largest eigenvalue of the operator K. It follows that

e−δNaE1/3
N

[
exp

(
a
∫ t

0
VN,ε(η(s))ds

)]
≤ exp

(
N
(

t
N

λmax(K)
)
− δa

)
. (5.6.14)

Therefore, to prove the superexponential estimate, it is enough to show that

lim
ε→0

lim
N→∞

1
N

λmax(K) = 0. (5.6.15)

For the largest eigenvalue we have the variational representation

λmax(K) = sup
fN

{
a⟨VN,ε(η), fN⟩νN

1/3,1/3
− N2DN( fN)

}
, (5.6.16)
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where the supremum is taken over probability densities fN , i.e., fN ≥ 0 and
∑η∈Ω fN(η)3−N = 1. Furthermore, DN is the so-called Dirichlet form associated
with the generator L, and is given by

DN( fN) =
1
2 ∑

η,ξ∈Ω
νN

1/3,1/3(η)L(η, ξ)

(√
fN(ξ)−

√
fN(η)

)2

=
3−N

2 ∑
η∈Ω

∑
x∈TN

2

∑
a,b=0

ηa(x)ηb(x + 1)
(√

fN(η
x,x+1
a,b )−

√
fN(η)

)2
,

(5.6.17)

and where

⟨VN,ε(η), fN⟩νN
1/3,1/3

= ∑
η∈Ω

VN,ε(η) fN(η)3−N . (5.6.18)

Since ϕ(η) is bounded, there exists a positive constant C such that

⟨VN,ε(η), fN⟩νN
1/3,1/3

≤ CN. (5.6.19)

As a result, we restrict the supremum to the set of densities fN that satisfy
DN( fN) ≤ C/N. Furthermore, we consider only the densities fN that are transla-
tion invariant (since DN(·) is convex, for details see Appendix 10 of [61]). Conse-
quently, we obtain the estimate

sup
fN : DN( fN)≤C/N

{
a ∑

η∈Ω
VN,ε(η) fN(η)3−N − N2DN( fN)

}

≤ sup
fN : DN( fN)≤C/N

{
a ∑

η∈Ω
VN,ε(η) fN(η)3−N

}
. (5.6.20)

This implies that is enough to show that

lim
ε→0

lim
N→∞

sup
fN : DN( fN)≤C/N

1
N

{
∑

η∈Ω
VN,ε(η) fN(η)3−N

}
= 0. (5.6.21)

Writing out the definition of VN,ε(η) given in definition (5.2.17), we obtain, using
translation invariance of f and recalling the notation of the averaged sum in
(5.2.18),

lim
ε→0

lim
N→∞

sup
fN : DN( fN)≤C/N∑

η∈Ω

∣∣∣∣∣∣ ∑
|x|≤εN

τxϕ(η)− ϕ̃

 ∑
|x|≤εN

η1(x), ∑
|x|≤εN

η2(x)

∣∣∣∣∣∣ fN(η)3−N

 = 0. (5.6.22)
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For any fixed y ∈ TN , we consider a neighborhood of discrete points {y− k, y−
k + 1, . . . , y + k − 1, y + k}. Within this neighborhood, we have the following
approximation

1
N ∑

y
τyϕ(η) =

1
N ∑

y
∑

|z−y|≤k

τzϕ(η) +O
(

k
N

)
. (5.6.23)

Next we add and subtract the quantity ϕ̃
(

∑|z−x|≤k η1(z), ∑|z−x|≤k η2(z)
)

inside
the absolute value of equation (5.6.22), obtaining

∣∣∣∣∣∣ ∑
|x|≤εN

τxϕ(η)− ϕ̃

 ∑
|y|≤εN

η1(y), ∑
|y|≤εN

η2(y)

∣∣∣∣∣∣
≤ ∑
|x|≤εN

∣∣∣∣∣∣ ∑
|z−x|≤k

τzϕ(η)− ϕ̃

 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

∣∣∣∣∣∣
+ ∑
|x|≤εN

∣∣∣∣∣∣ϕ̃
 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

− ϕ̃

 ∑
|y|≤εN

η1(y), ∑
|y|≤εN

η2(y)

∣∣∣∣∣∣
+O

(
k
N

)
. (5.6.24)

We consider the second addend in the right-hand-side of (5.6.24). By exploiting
the multi-variable mean-value theorem and (5.6.23) we have that

∑
|x|≤εN

∣∣∣∣∣∣ϕ̃
 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

− ϕ̃

 ∑
|y|≤εN

η1(y), ∑
|y|≤εN

η2(y)

∣∣∣∣∣∣
≤ ∥∇ϕ̃∥∞ ∑

|x|≤εN

∥∥∥∥∥∥
 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

−
 ∑
|y|≤εN

η1(y), ∑
|y|≤εN

η2(y)

∥∥∥∥∥∥
2

≤ ∥∇ϕ̃∥∞ ∑
|x|≤εN

∑
|y|≤εN

∥∥∥∥∥∥
 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

−
 ∑
|y−z|≤k

η1(z), ∑
|y−z|≤k

η2(z)

∥∥∥∥∥∥
2

+O
(

k
N

)
. (5.6.25)
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Using furthermore that ||x||2 ≤ ||x||1, it follows that∣∣∣∣∣∣ ∑
|x|≤εN

τxϕ(η)− ϕ̃

 ∑
|y|≤εN

η1(y), ∑
|y|≤εN

η2(y)

∣∣∣∣∣∣
≤ ∑
|x|≤εN

∣∣∣∣∣∣ ∑
|z−x|≤k

τzϕ(η)− ϕ̃

 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

∣∣∣∣∣∣
+ ∥∇ϕ̃∥∞ ∑

|x|≤εN
∑
|y|≤εN

∥∥∥∥∥∥
 ∑
|x−z|≤k

η1(z), ∑
|x−z|≤k

η2(z)

−
 ∑
|y−z|≤k

η1(z), ∑
|y−z|≤k

η2(z)

∥∥∥∥∥∥
1

+O
(

k
N

)
. (5.6.26)

Arrived at this point, in order to obtain (5.6.21) it is sufficient to prove the following
two lemmas:

LEMMA 5.7 (One block estimate). For all c > 0

lim
k→∞

lim
N→∞

sup
fN : D( fN)≤c/N

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η)− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ fN(η)3−N = 0. (5.6.27)

LEMMA 5.8 (Two blocks estimate). For all c > 0

lim
k→∞

lim
ε→0

lim
N→∞

sup
|r|≤2εN+1

sup
fN : D( fN)≤c/N

∑
η∈Ω

∥∥∥∥∥∥
 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

−
 ∑
|z+r|≤k

η1(z), ∑
|z+r|≤k

η2(z)

∥∥∥∥∥∥
1

fN(η)3−N = 0.

(5.6.28)

5.6.3 Proof of the one block estimate

Fix k ∈N such that k ≤ N, and consider the set {x ∈ TN : |x| ≤ k}. We introduce
the subspace Ω2k+1 ⊂ Ω, which represents the state space restricted to these 2k + 1
sites. Then, for any function g : Ω2k+1 → R, we define the "restricted" Dirichlet
form as follows:

D∗2k+1(g) =
1
2 ∑

η∈Ω2k+1

3−(2k+1)
k−1

∑
x=−k

2

∑
a,b=0

ηa(x)ηb(x + 1)
(√

g(ηx,x+1
a,b )−

√
g(η)

)2
.

(5.6.29)
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Next, we define the marginal of the density fN over Ω2k+1 as

f k
N(η) = 3−N+2k+1 ∑

η(x) : |x|>k
fN(η). (5.6.30)

Using the following inequality(√
∑

j
aj −

√
∑

j
bj

)2
≤∑

j

(√
aj −

√
bj

)2
, (5.6.31)

we have that

D∗2k+1( f k
N)

=
1
2 ∑

η∈Ω2k+1

3−N
k−1

∑
x=−k

2

∑
a,b=0

ηa(x)ηb(x + 1)

√ ∑
(ηx)|x|>k

fN(η
x,x+1
a,b )−

√
∑

(ηx)|x|>k

fN(η)


2

≤ 1
2 ∑

η∈Ω
3−N

k−1

∑
x=−k

2

∑
a,b=0

ηa(x)ηb(x + 1)
(√

fN(η
x,x+1
a,b )−

√
fN(η)

)2

=
1
2

k−1

∑
x=−k

∑
η∈Ω

3−N
2

∑
a,b=0

η0
a η1

b

(√
fN(η

0,1
a,b)−

√
fN(η)

)2

=
2k
N

D( fN). (5.6.32)

Here, in the up to last equality we have used the translation invariance. All in all,
we obtain the upper bound

D∗2k+1( f k
N) ≤

2k
N

D( fN). (5.6.33)

As a consequence

sup
fN : D( fN)≤c/N

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η)− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ fN(η)3−N

≤ sup
gk : D∗2k+1(gk)≤(2ck)/N2

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η).− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ gk(η)3
−2k−1

+O
(

k
N

)
. (5.6.34)
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Taking the limsup as N → ∞ and using the compactness of the level sets of the
Dirichlet form (for details see Appendix 10 of [61]), we have

lim
N→∞

sup
gk : D∗2k+1(gk)≤(2ck)/N2

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η)− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ gk(η)3
−2k−1

≤ sup
gk : D∗2k+1(gk)=0

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η)− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ gk(η)3
−2k−1.

(5.6.35)

The set of probability distribution with density gk such that D∗2k+1(gk) = 0 is the
set of uniform distributions over Ω2k+1 with fixed number of particles k1, k2 of
species 1 and 2 respectively. Therefore, taking the supremum in equation (5.6.35)
is equivalent to taking the supremum over all configurations η in the space Ω2k+1
with fixed number of particles k1 and k2 of the two species. As a consequence, by
taking the limsup for k→ ∞, we have that

lim
k→∞

sup
gk : D∗2k+1(gk)=0

∑
η∈Ω

∣∣∣∣∣∣ ∑
|z|≤k

τzϕ(η)− ϕ̃

 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

∣∣∣∣∣∣ gk(η)3
−2k−1

= lim
k→∞

sup
k1,k2=0,...,2k+1

k1+k2≤2k+1

∑
η∈Ω

k1,k2
2k+1

∣∣∣∑|z|≤k τzϕ(η)− ϕ̃
(

∑|z|≤k η1(z), ∑|z|≤k η2(z)
)∣∣∣

(2k+1
k1,k2

)

= lim
k→∞

sup
k1,k2=0,...,2k+1

k1+k2≤2k+1

∣∣∣∣∣∣Eν(·|Ωk1,k2
2k+1 )

[ϕ]−E

ν

k1
2k+1 ,

k2
2k+1

2k+1

[ϕ]

∣∣∣∣∣∣
= 0. (5.6.36)

Here, in the last step, we used Theorem 5.7.

5.6.4 Proof of the two blocks estimate

In analogy to the approach used in the proof of Lemma 5.7, we now consider two
blocks of size 2k + 1: the first centered around the microscopic point 0 ∈ TN and
the second centered around the microscopic point r ∈ TN . The centers of these
two blocks are separated by a distance of at most 2εN + 1. We denote by ζ, ξ the
configurations in the first and second block respectively, both belonging to the
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sub-space Ω2k+1. We consider an arbitrary function g : Ω2k+1 ×Ω2k+1 → R and
we define the following "restricted" Dirichlet-forms:

D1
k(g) =

1
2 ∑

ζ,ξ∈Ω2k+1

3−4k−2
k−1

∑
x=−k

2

∑
a,b=0

ζx
a ζx+1

b

(√
g(ζx,x+1

a,b , ξ)−
√

g(ζ, ξ)

)2

D2
k(g) =

1
2 ∑

ζ,ξ∈Ω2k+1

3−4k−2
k−1

∑
x=−k

2

∑
a,b=0

ξx
a ξx+1

b

(√
g(ζ, ξx,x+1

a,b )−
√

g(ζ, ξ)

)2

∆k(g) =
1
2 ∑

ζ,ξ∈Ω2k+1

3−4k−2
(√

g(ζ, ξ)0 −
√

g(ζ, ξ)

)2
(5.6.37)

where (ζ, ξ)0 indicates the configurations where the occupation variables at the
center points of the two blocks have been exchanged. Intuitively, the first Dirichlet-
form concerns the first block; the second Dirichlet-form the second block; the third
Dirichlet-form takes into account the transfer of particles from one block to the
other. We now introduce the marginal over the two blocks

f r,k
N (η) = 3−N+4k+2 ∑

η(x) : |x|>k, |x−r|>k
fN(η). (5.6.38)

Arguing as in the proof of Lemma 5.7, one can show the follwing estimates:

D1
k( f r,k

N ) ≤ 2k
N

D( fN)

D2
k( f r,k

N ) ≤ 2k
N

D( fN). (5.6.39)

We now aim to find an upper bound for the Dirichlet-form ∆k(·) in terms of ε.
Obtaining the configuration (ζ, ξ)0 from the configuration (ζ, ξ) is equivalent to
permuting the occupation variables η0 and ηr. We introduce the permutation
operator Px,y between sites x and y, defined as follows:

Px,yη = (η(0), . . . , η(x− 1), η(y), η(x + 1), . . . , η(y− 1), η(x), η(y + 1), . . . , η(N)) .
(5.6.40)

By applying (5.6.31) and by the definition of the marginal over the two blocks
written in (5.6.38) we obtain

∆k( f r,k
N ) =

1
2 ∑

ζ,ξ∈Ω2k+1

3−4k−2
(√

f r,k
N (ζ, ξ)0 −

√
f r,k
N (ζ, ξ)

)2

≤ 1
2 ∑

η∈Ω
3−N

(√
fN(P0,rη)−

√
fN(η)

)2
. (5.6.41)
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This permutation operator satisfies the property3

P1,2P3,2P2,1 = P1,2P2,1P1,3 = P1,3. (5.6.42)

Therefore, we have that(√
fN(P0,rη)−

√
fN(η)

)2

=

(√
fN(P0,1η)−

√
fN(η) +

√
fN(P0,1P1,2η)−

√
fN(P0,1η)

+
√

fN(P2,3P1,2P0,1η)−
√

fN(P1,2P0,1η) + . . .

+
√

fN(P1,0 ···Pr−1,r−2Pr−1,r ···P0,1η)−
√

fN(P2,1 ···Pr−1,r−2Pr−1,r ···P0,1η)

)2

≤ (2r− 1)

{(√
fN(P0,1η)−

√
fN(η)

)2
+

(√
fN(P0,1P1,2η)−

√
fN(P0,1η)

)2

+

(√
fN(P2,3P1,2P0,1η)−

√
fN(P1,2P0,1η)

)2
+ . . .

+

(√
fN(P1,0 ···Pr−1,r−2Pr−1,r ···P0,1η)−

√
fN(P2,1 ···Pr−1,r−2Pr−1,r ···P0,1η)

)2
}

.

(5.6.43)
Consequently, we find that

1
2 ∑

η∈Ω
3−N

(√
fN(P0,rη)−

√
fN(η)

)2

≤ (2r− 1)2 1
2 ∑

η∈Ω
3−N

2

∑
a,b=0

η0
a η1

b

(√
fN(η

0,1
a,b)−

√
fN(η)

)2
, (5.6.44)

where we used the translation invariance of fN . Therefore, using (5.6.41), it follows
that

∆k( f r,k
N ) ≤ (2r− 1)2

N
D( fN). (5.6.45)

Finally, for fixed c > 0, ε > 0 and N ∈N, we define the set

AN,ε :=
{

g : D1
k(g) ≤ 2ck

N2 , D2
k(g) ≤ 2ck

N2 , ∆k(g) ≤ ε2c
}

. (5.6.46)

Arguing as in the proof of Lemma 5.7 it follows that

{ fN : D( fN) ≤ c/N, } ∩ {r : |r| ≤ εN} ⊂ {g : g ∈ AN,ε} . (5.6.47)

3 that can be proved by using the fact that Pi,j = Pj,i and Pi,jPj,k = Pj,kPi,k .
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The above inclusion relation implies that

sup
|r|≤εN

sup
fN : D( fN)≤c/N

∑
η∈Ω

∥∥∥∥∥∥
 ∑
|z|≤k

η1(z), ∑
|z|≤k

η2(z)

−
 ∑
|z+r|≤k

η1(z), ∑
|z+r|≤k

η2(z)

∥∥∥∥∥∥
1

fN(η)3−N

≤ sup
g∈AN,ε

∑
ζ,ξ∈Ω2k+1

∥∥∥∥∥∥
 ∑
|x|≤k

ζx
1 , ∑
|x|≤k

ζx
2

−
 ∑
|x|≤k

ξx
1 , ∑
|x|≤k

ξx
2

∥∥∥∥∥∥
1

g(ζ, ξ)3−4k−2.

(5.6.48)

By taking the limsup for N → ∞ and ε→ 0, and by exploiting the compactness of
the level sets of the Dirichlet-forms we eventually take the supremum over all g in
the following set

A := {g : D1
k(g) = D2

k(g) = ∆k(g) = 0}. (5.6.49)

The set of distributions that satisfy this is the set of uniform distributions over
Ω2k+1 × Ω2k+1, with fixed numbers k1 and k2 of particles of species 1 and 2
respectively. Choosing ϕ1, ϕ2 : Ω2k+1 → R as ϕ1(ζ) = ζ1(0), ϕ2(ζ) = ζ2(0), we
find ϕ̃1(γ1, γ2) = γ1, ϕ̃2(γ1, γ2) = γ2. As a consequence, we obtain

lim
k→∞

sup
g∈A

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣∣
 ∑
|x|≤k

ζ1(x)

−
 ∑
|x|≤k

ξ1(x)

∣∣∣∣∣∣ g(ζ, ξ)3−4k−2

+ lim
k→∞

sup
g∈A

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣∣
 ∑
|x|≤k

ζ2(x)

−
 ∑
|x|≤k

ξ2(x)

∣∣∣∣∣∣ g(ζ, ξ)3−4k−2

≤ lim
k→∞

sup
0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ∈Ω

k1,k2
2k+1

∣∣∣(∑|x|≤k ζ1(x)
)
− ϕ̃1

(
k1

4k+2 , k2
4k+2

)∣∣∣
(4k+2

k1,k2
)

+ lim
k→∞

sup
0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ξ∈Ω

k1,k2
2k+1

∣∣∣(∑|x|≤k ξ1(x)
)
− ϕ̃1

(
k1

4k+2 , k2
4k+2

)∣∣∣
(4k+2

k1,k2
)

+ lim
k→∞

sup
0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ∈Ω

k1,k2
2k+1

∣∣∣(∑|x|≤k ζ2(x)
)
− ϕ̃2

(
k2

4k+2 , k2
4k+2

)∣∣∣
(4k+2

k1,k2
)

+ lim
k→∞

sup
0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ξ∈Ω

k1,k2
2k+1

∣∣∣(∑|x|≤k ξ2(x)
)
− ϕ̃2

(
k2

4k+2 , k2
4k+2

)∣∣∣
(4k+2

k1,k2
)

= 0. (5.6.50)

The last equality follows from Theorem 5.7.





6
L A R G E D E V I AT I O N S O F M E A N - F I E L D R U N - A N D - T U M B L E
PA RT I C L E S

In this chapter1 we return to run-and-tumble particles, considering particles on
two layers that only perform active jumps. We furthermore introduce a mean-field
interacting to the process, where the rate to jump to the other layer depends on the
magnetization of the process. We then study the large deviations of this process,
for which we again need to introduce a weakly perturbed process. As a first step
towards establishing a large deviation principle for the total density, we apply the
contraction principle and characterize the multi-layer trajectories with finite rate
function that are compatible with the given trajectory of the total density.

6.1 introduction

Run-and-tumble particles serve as simple models of active matter [105]. Systems
of active particles constitute an important class of non-equilibrium systems where
at the microscopic scale energy is dissipated in order to produce directed motion.
They show a rich phenomenology such as clustering and long-range order [20, 102,
105].

In the mathematics literature on interacting particle systems, results on active
particles are not very abundant (in contrast with the physics literature). To our
knowledge, the first rigorous result on hydrodynamic limits for active particles
is [64], where a system of locally interacting active particles was studied. In [65],
[64], the authors prove the hydrodynamic limit (using the non-gradient method)
and identify a motility-induced phase separation and a transition to collective
motion from the equations obtained in the hydrodynamic limit. See also e.g. [86]
for recent results in the physics literature on locally interacting active particles and
collective effects therein.

In this paper we consider a simpler model where the interaction between the
run-and-tumble particles is of mean-field type, i.e., via their empirical distribution.
For this model we can then both prove the hydrodynamic limit and the large

1 this chapter is based on [CITE].
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deviations from the hydrodynamic limit. In our model, the particles move on
the one-dimensional torus, and have an internal state which takes values ±1 and
determines the direction of motion. The interaction between the particles arises
implicitly via the flip rate at which particles flip their internal state which depends
on the magnetization.

First, we start by deriving the hydrodynamic limit, which is a coupled system of
partial differential equations for the densities of particles with internal state ±1,
and an ordinary differential equation for the “magnetization”. Second, we consider
a weakly perturbed model where the influence of an external field which weakly
depends on time and (microscopic) space and is added. This field influences the
rate at which particles flip their internal state and the rate at which they jump in
the direction of their internal state. This is reminiscent of the weakly asymmetric
exclusion process [62] which is an essential tool to study the large deviations for
the trajectory of the density in the symmetric exclusion process (SEP). Contrary
to the situation of the SEP, in our model, the perturbation does not act on the
direction of the motion, which is always in the direction of the internal state.

We prove the hydrodynamic limit of this weakly perturbed model and use it to
prove a large deviation principle for the trajectory of the densities in the original
model. The technique of proof is based on a change of measure between the original
and the weakly perturbed model and the associated exponential martingale (the
Radon-Nikodym derivative of the perturbed model w.r.t. the original model). Due
to the mean-field character of the interaction, no super-exponential replacement
lemmas are needed, i.e., the quantities appearing in the Radon-Nikodym derivative
between the perturbed and unperturbed model are a function of the empirical
densities and the magnetization.

The rest of our paper is organized as follows. In Section 6.2 we introduce the
model, the weakly perturbed model and state the hydrodynamic limit of both. In
Section 6.3 we prove large deviations for the trajectory of the densities. In Section
6.4 we provide the proof of the hydrodynamic limits stated in Section 6.2.

6.2 run-and-tumble particles with mean-field switching rates

In this section we describe the run-and-tumble particle model with mean-field
switching rates. Later on we will also define a weakly perturbed version of this
model which we will need for the large deviations. For both models, we will
consider particles on the two-layered torus VN := TN × S, where TN = Z/NZ is
the discrete torus, and S = {−1, 1} which we will call the internal state space. We
then say that a particle (x, σ) ∈ VN has position x ∈ TN and internal state σ ∈ S.
The parameter N is a scaling parameter, and we will be interested in the limiting
dynamics when N → ∞.
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We will consider processes of particle configurations {ηN
t : t ≥ 0} on the

state space ΩN = NVN . We denote by ηN
t (x, σ) the number of particles at site

(x, σ) ∈ VN at time t ≥ 0. The Markovian dynamics is then described as follows:

i) Active jump: with rate N a particle jumps from (x, σ) to (x + σ, σ).

ii) Internal state flip: a particle jumps from (x, σ) to (x,−σ), with a mean-field
rate denoted by c(σ, mN(η

N
t ))

We assume c(σ, ·) to be continuous in the second variable and bounded from above
and below (away from zero). Here by “mean-field” we mean that the flip rate
c(σ, mN(η

N
t )) depends on the whole configuration η only via its magnetization

mN(η
N
t ). For η ∈ ΩN , this magnetization is defined via

mN(η) :=
1
|η| ∑

x∈TN

(
η(x, 1)− η(x,−1)

)
, (6.2.1)

where |η| := ∑(x,σ)∈VN
η(x, σ) denotes the total number of particles in the configu-

ration η. Here we also use the convention that if |η| = 0 then mN(η) = 0.
More precisely, the process is defined by its generator working on functions

f : ΩN → R as follows.

LN f (η) = N ∑
(x,σ)∈VN

η(x, σ)
[

f (η(x,σ)→(x+σ,σ))− f (η)
]

+ ∑
(x,σ)∈VN

c(σ, mN(η))η(x, σ)
[

f (η(x,σ)→(x,−σ))− f (η)
]
, (6.2.2)

where η(x,σ)→(y,σ′) denotes the configuration η where a single particle has jumped
from (x, σ) to (y, σ′), if possible.

REMARK 6.1. If we choose the rates c(σ, m) ≡ 1, then the particles do not interact
with each other, and we recover the run-and-tumble particle process, studied, for
instance, in [105, 97, 98, 118, 23]. An actual example of mean-field rates where
particles do interact with one another is, for instance, given by the Curie-Weiss
Glauber rates c(σ, m) = e−σβm with β > 0.

6.2.1 Hydrodynamic limit

For N ∈N, we define the empirical measure of a configuration η ∈ ΩN by

πN(η) :=
1
N ∑

(x,σ)∈VN

η(x, σ)δ( x
N ,σ), (6.2.3)

where δ denotes the Dirac measure. For a given η, πN(η) is a positive Radon
measure on the macroscopic space V := T× S, where T = [0, 1] is the torus. We
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denote the space of positive Radon measures on V byMV . Given t ≥ 0, we further
denote the empirical measure of the configuration ηN

t as

πN
t := πN(ηN

t ) =
1
N ∑

(x,σ)∈VN

ηN
t (x, σ)δ

( x
N ,σ), (6.2.4)

For every N ∈ N, this produces a process {πN
t : t ∈ [0, T]} with trajectories in

the Skorokhod space D([0, T];MV). The corresponding space of test functions is
given by,

C∞(V) := {ϕ : V → R
∣∣ ϕ(·, σ) ∈ C∞(T) for all σ ∈ S}. (6.2.5)

For ϕ ∈ C∞(V) we now denote the pairing〈
πN

t , ϕ
〉
=

1
N ∑

(x,σ)∈VN

ηN
t (x, σ)ϕ( x

N , σ). (6.2.6)

For N ∈ N and smooth ϱ(x, σ) : V → R≥0 we define the product Poisson
measures

µ
ϱ
N =

⊗
(x,σ)∈VN

Pois(ϱ
( x

N , σ
)
), (6.2.7)

which is the local equilibrium measure for the non-interacting (c(σ, m) ≡ 1) case
(see [97]). We assume that the process {ηN

t : t ≥ 0} starts at t = 0 from the
configuration ηN = ηN

0 distributed according to µ
ϱ
N , which fixes the initial density

profile. More precisely, πN
0 converges as N → ∞ to the positive measure with

density ϱ(x, σ) : V → R≥0, i.e., we have that for every ϕ ∈ C∞(V) and ε > 0

lim
N→∞

P
ϱ
N

(∣∣∣∣∣⟨πN
0 , ϕ⟩ − ∑

σ∈S

∫
ϕ(x, σ)ϱ(x, σ)dx

∣∣∣∣∣ > ε

)
= 0. (6.2.8)

Here P
ϱ
N denotes the path-space measure of the process with initial distribution

µ
ϱ
N , where we omit the dependence on the terminal time T since we assume that

this is fixed.
The question of the hydrodynamic limit is to find the limiting PDE for πN

t as
N → ∞. We start with the following preliminary computation

LN⟨πN(η), ϕ⟩

= N ∑
(x,σ)∈VN

η(x, σ)
(〈

πN(η(x,σ)→(x+σ,σ)), ϕ
〉
− ⟨πN(η), ϕ⟩

)
+ ∑
(x,σ)∈VN

η(x, σ)c(σ, mN(η))
(〈

πN(η(x,σ)→(x,−σ)
)
, ϕ
〉
− ⟨πN(η), ϕ⟩

)
=

1
N ∑

(x,σ)∈VN

η(x, σ)
[
N
(
ϕ( x+σ

N , σ)− ϕ( x
N , σ)

)
+ c(σ, mN(η))

(
ϕ(x,−σ)− ϕ(x, σ)

)]
.

(6.2.9)
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From this computation, we observe that the evolution of the empirical measure
depends on the evolution of the magnetization mN(η

N
t ). Note however that the

magnetization, defined in (6.2.1), can be expressed in terms of the empirical
measure as follows,

mN(η) = m(πN(η)) :=
⟨πN(η),1σ=1 − 1σ=−1⟩

⟨πN(η), 1⟩ . (6.2.10)

This representation of the magnetization motivates the following definition of the
magnetization corresponding to a density ϱ(x, σ) : V → R≥0 as

m(ϱ) :=
⟨ϱ,1σ=1 − 1σ=−1⟩L2(V)

⟨ϱ, 1⟩L2(V)
, (6.2.11)

where ⟨·, ·⟩L2(V) denotes the inner product of L2-functions on the space V, given
by

⟨ψ, ϕ⟩L2(V) = ∑
σ∈S

∫
T

ψ(x, σ)ϕ(x, σ)dx, (6.2.12)

for any ψ, ϕ ∈ L2(V).

THEOREM 6.1. P
ϱ
N(π

N
[0,T] ∈ ·) → δα, where α ∈ D([0, T];MV) is the trajectory of

measures with density ϱt(x, σ) which solves the following equation,

ϱ̇t(x, σ) = −σ∂xϱt(x, σ) + c(−σ, m(ϱt))ϱt(x,−σ)− c(σ, m(ϱt))ϱt(x, σ), (6.2.13)

with initial condition ϱ0(x, σ) = ϱ(x, σ).

This theorem will be a consequence of a more general hydrodynamic limit of a
weakly perturbed modification of the model, which we will introduce in Section
6.2.2. Apart from the hydrodynamic limit of the empirical measure, we can also
find a limiting equation of the magnetization.

COROLLARY 6.1. P
ϱ
N(m(πN

[0,T]) ∈ ·)→ δm(ϱ·), where ϱt solves (6.2.13). Furthermore,
mt := m(ϱt) solves the following equation,

ṁt = c(−1, mt) · (1−mt)− c(1, mt) · (1 + mt), (6.2.14)

with initial condition m0 = m(ϱ).

REMARK 6.2. When considering the Curie-Weiss Glauber rates c(σ, m) = e−σβm

with inverse temperature β > 0, the evolution of the magnetization is given by

ṁt = 2 sinh(βmt)− 2mt cosh(βmt). (6.2.15)
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As t→ ∞ the process mt converges to a solution of the mean-field equation

m∗ = tanh(βm∗). (6.2.16)

For β ≤ 1 the only solution is m∗ = 0. However, for β > 1, there exist two nonzero
solutions, and if m0 ̸= 0, the process mt converges to either the positive or negative
solution, depending on the initial value m0. This simulates a type of flocking
behavior of the particles, where particles tend to move in the same direction.

6.2.2 Weakly perturbed model

We furthermore introduce a weakly perturbed version of our model, which will
be a key tool for the study of large deviations. The weak perturbation will be
parametrized by a time-dependent potential H : [0, T]× V → R, which we will
assume to be differentiable in time and continuous in space, and which we will
denote by H ∈ C1,0([0, T] × V). The time-dependent generator of this model,
acting on functions f : ΩN → R, is given as follows:

L H
N,t f (η) = N ∑

(x,σ)∈VN

η(x, σ)eHt(
x+σ

N ,σ)−Ht(
x
N ,σ)[ f (η(x,σ)→(x+σ,σ))− f (η)

]
+ ∑
(x,σ)∈VN

η(x, σ)c(σ, mN(η))eHt(
x
N ,−σ)−Ht(

x
N ,σ)[ f (η(x,σ)→(x,−σ))− f (η)

]
.

(6.2.17)

Note that for H = 0 we recover the original model. We will denote by P
ϱ,H
N the

path-space measure of this process, where ηN
0 is distributed as µ

ϱ
N (cf. (6.2.7)). We

further abbreviate H̃t(x) := Ht(x, 1)− Ht(x,−1). The hydrodynamic limit of this
process is then given in the following theorem.

THEOREM 6.2. P
ϱ,H
N (πN

[0,T] ∈ ·) → δαH , where αH ∈ D([0, T];MV) is the trajectory

of measures with density ϱH
t (x, σ) which solves the following equation,

ϱ̇H
t (x, σ) = −σ∂xϱH

t (x, σ) + c(−σ, m(ϱH
t ))eσH̃t(x)ϱH

t (x,−σ)

− c(σ, m(ϱH
t ))e−σH̃t(x)ϱH

t (x, σ), (6.2.18)
with initial condition ϱH

0 (x, σ) = ϱ(x, σ).

Note that Theorem 6.1 follows from this Theorem 6.2 by choosing H ≡ 0. The
proof of Theorem 6.2 will be postponed to Section 6.4. Below we give the evolution
of the magnetization under the perturbed dynamics.

COROLLARY 6.2. P
ϱ,H
N (m(πN

[0,T]) ∈ ·) → δm(ϱH· )
, where ϱH

t solves (6.2.18). Further-

more, mH
t := m(ϱH

t ) solves the following equation,

ṁH
t =

1
⟨ϱ, 1⟩L2(V)

〈
ϱH

t ,−2σe−σH̃t(x)c(σ, mH
t )
〉

L2(V)
. (6.2.19)
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with initial condition m0 = m(ϱ).

Proof. Note that if αN → α in D([0, T] : MV) then m(αN) → m(α) in D([0, T] :

[−1, 1]), hence m(πN
[0,T])

d−→ m· under P
ϱ,H
N . Therefore, we can find an equation

for the evolution of the magnetization from the evolution of ϱH
t . First note that

⟨ϱH
t , 1⟩L2(V) = ⟨ϱ, 1⟩L2(V) for all t ≥ 0, which is due to the conservation of particles.

Therefore, using the definition (6.2.11), we find

ṁt =
⟨ϱ̇H

t ,1σ=1 − 1σ=−1⟩L2(V)

⟨ϱ, 1⟩L2(V)
(6.2.20)

By the periodic boundary conditions, we have that

⟨−σ∂xϱH
t ,1σ=1 − 1σ=−1⟩L2(V) = 0, (6.2.21)

hence (6.2.19) follows by filling in (6.2.18) into (6.2.20).
Corollary 6.1 follows from Corollary 6.2 by choosing H ≡ 0 and using that for

any density ϱ we have that∫
T

ϱ(x, σ)dx
⟨ϱ, 1⟩L2(V)

= 1
2 (1 + σm(ϱ)). (6.2.22)

Note that, unlike in the unperturbed model, under the perturbed dynamics the
evolution of the magnetization is not a closed equation, but depends on the density
ϱH

t . This is because under the these dynamics the magnetization process is no
longer a Markov process on its own, and additional information on the positions
of the particles is required.

6.3 large deviations

In this section we will prove a large deviation principle for the run-and-tumble
particle process with mean-field switching rates. We start by defining the rate
function Iϱ : D([0, T];MV)→ [0, ∞], which is given in two parts

Iϱ(α̂) = hϱ
0(α̂0) + Itr(α̂) (6.3.1)

Here hϱ
0(α̂0) is the static part of the large deviation rate function, only depending

on the measure at time t = 0. It can be informally written as

hϱ
0(α̂0) = µ

ϱ
N(π

N
0 ≈ α̂0), (6.3.2)

i.e, it corresponds to the large deviation principle of the initial density profile
πN

0 under the starting distribution µ
ϱ
N . Since µ

ϱ
N is given by a product Poisson

measure, the corresponding rate function is known, and given by

hϱ
0(α̂0) = sup

ϕ
hϱ

0(α̂0; ϕ), hϱ
0(α̂0; ϕ) = ⟨α̂0, ϕ⟩ − ⟨ϱ, eϕ − 1⟩L2(V). (6.3.3)
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Here the supremum is taken over all ϕ ∈ C∞(V).
The term Itr(α̂) in (6.3.1) is the dynamic part of the rate function, and depends

on the whole trajectory α̂. It is given by the following:

Itr(α̂) = sup
G
Itr(α̂; G), (6.3.4)

where

Itr(α̂; G) = ℓ(α̂; G)−
∫ T

0

〈
α̂t, c(σ, m(α̂t))

(
e−σG̃t(x) − 1

)〉
dt. (6.3.5)

Here the supremum in (6.3.4) is taken over all G ∈ C∞([0, T]×V), and we recall the
notation G̃t(x) = Gt(x, 1)− Gt(x,−1). Furthermore, ℓ(α̂; G) is a linear functional,
defined as follows

ℓ(α̂; G) := ⟨α̂T , GT⟩ − ⟨α̂0, G0⟩ −
∫ T

0
⟨α̂t, (∂t + σ∂x)Gt⟩dt, (6.3.6)

and m(α̂t) is the magnetization of the measure, defined as

m(α̂t) =
⟨α̂t,1σ=1 − 1σ=−1⟩

⟨α̂t, 1⟩ . (6.3.7)

REMARK 6.3. In Lemmas 6.4 and 6.5 we derive more explicit expressions of the static
part hϱ

0(α̂0) and the dynamic part Itr(α̂). Specifically, we identify the functions ϕ

and H for which hϱ
0(α̂0) = hϱ

0(α̂0; ϕ) and Itr(α̂) = Itr(α̂; H).

In order to prove the large deviation principle with rate function I , we need to
establish the upper and lower bound.

i. Upper bound: For every closed set C ⊂ D([0, T];MV) we have

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ C) ≤ − inf

α̂∈C
Iϱ(α̂) (6.3.8)

ii. Lower bound: For every open set O ⊂ D([0, T];MV) we have

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ O) ≥ − inf

α̂∈O
Iϱ(α̂) (6.3.9)

6.3.1 Radon-Nikodym derivatives

The goal of this section is to obtain an explicit form for the Radon-Nikodym
derivative of the path-space measure of the weakly perturbed process dP

ϱ,H
N with

respect to the path-space measure of the original process dP
ϱ
N . This Radon-

Nikodym derivative is given by the so-called exponential martingale of the process,
and is given in the following lemma.
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LEMMA 6.1. For all T > 0, N ∈N and H ∈ C∞(V), we have that

dP
ϱ,H
N

dP
ϱ
N

= ZH
N,T(π

N
[0,T])

:= exp
(

N⟨πN
T , HT⟩ − N⟨πN

0 , H0⟩ −
∫ T

0
e−N⟨πN

t ,Ht⟩(∂t +LN)eN⟨πN
t ,Ht⟩ dt

)
.

(6.3.10)

Proof. By Palmowski and Rolski [90], the exponential martingale ZH
N,T(π

N
[0,T])

is equal to the Radon-Nikodym derivative dP̃N
dP

ϱ
N

, where P̃N is the path-space

measure (up to time T) of the process corresponding to the time-dependent
Markov generator on ϱ̂N given by

L̃N,t f (η) = e−N⟨πN(η),Ht⟩
[
LN

(
f (η) · eN⟨πN(η),Ht⟩)− f (η) ·LNeN⟨πN(η),Ht⟩

]
.

(6.3.11)

where πN now denotes the empirical measure as a function of η ∈ ϱ̂N , as defined
in (6.2.3). We will prove that P̃N = P

ϱ,H
N by showing that L̃N,t is equal to the

generator of the weakly perturbed process L H
N,t as defined in (6.2.17). We compute,

using (6.2.2)

e−N⟨πN(η),Ht⟩LN
(

f (η) · eN⟨πN(η),Ht⟩)
= N ∑

(x,σ)∈VN

η(x, σ)
[

f (η(x,σ)→(x+σ,σ))eHt(
x+σ

N ,σ)−Ht(
x
N ,σ) − f (η)

]
+ ∑
(x,σ)∈VN

η(x, σ)c(σ, m(η))
[

f (η(x,σ)→(x,−σ))eHt(
x
N ,−σ)−Ht(

x
N ,σ) − f (η)

]
,

(6.3.12)

where we used that

⟨XN(η
(x,σ)→(y,σ′)), Ht⟩ − ⟨XN(η), Ht⟩ = Ht(

y
N , σ′)− Ht(

x
N , σ). (6.3.13)

Similarly we compute

e−N⟨πN(η),Ht⟩LNeN⟨πN(η),Ht⟩

= N ∑
(x,σ)∈VN

η(x, σ)
[
eHt(

x+σ
N ,σ)−Ht(

x
N ,σ) − 1

]
+ ∑
(x,σ)∈VN

η(x, σ)c(σ, m(η))
[
eHt(

x
N ,−σ)−Ht(

x
N ,σ) − 1

]
. (6.3.14)

Substituting (6.3.12) and (6.3.14) into (6.3.11), we indeed find that L̃N,t = L H
N,t,

completing the proof.
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COROLLARY 6.3.

1
N

log
(
ZH

N,T(π
N
[0,T])

)
= Itr(π

N
[0,T]; H) +O( 1

N ). (6.3.15)

Proof. Making use of the following approximation

eHt(
x+σ

N ,σ)−Ht(
x
N ,σ) − 1 = σ∂x Ht(

x
N , σ) +O( 1

N ), (6.3.16)

we are able to write (6.3.14) as

e−N⟨πN
t ,Ht⟩LNeN⟨πN

t ,Ht⟩ = N⟨πN
t , σ∂x Ht⟩+ N

〈
πN

t , c(σ, m(πN
t ))

(
e−σH̃t(x) − 1

)〉
+O(1). (6.3.17)

By now plugging this into (6.3.10), we find that

ZH
N,T(π

N
[0,T])

= exp
(

N⟨πN
T , HT⟩ − N⟨πN

0 , H0⟩ − N
∫ T

0
⟨πN

t , (∂t + σ∂x)Ht⟩dt +O(1)
)

× exp
(
−N

∫ T

0

〈
πN

t , c(σ, m(πN
t ))

(
e−σH̃t(x) − 1

)〉
dt
)

= exp
(

Nℓ(πN
[0,T]; H)− N

∫ T

0

〈
πN

t , c(σ, m(πN
t ))

(
e−σH̃t(x) − 1

)〉
dt +O(1)

)
,

(6.3.18)

finishing the proof.

6.3.2 Upper bound

In this section we will prove the large deviation upper bound (6.3.8). A crucial
ingredient is to prove that the path-space measures of πN

[0,T] are exponentially tight,
which then reduces the proof of (6.3.8) to compact sets.

THEOREM 6.3 (Exponential Tightness). For any n ∈ N there exists a compact set
Kn ⊂ D([0, T],MV) such that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] /∈ Kn) = −n. (6.3.19)

Before proving exponential tightness, we first give the proof of the upper bound
for compact sets.

THEOREM 6.4 (Upper bound for compact sets). For every compact setK ⊂ D([0, T];MV)
we have that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ K) ≤ − inf

α̂∈K
Iϱ(α̂). (6.3.20)
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Proof. We start with the following computation

1
N

log P
ϱ
N(π

N
[0,T] ∈ K)

=
1
N

log E
ϱ
N

[
1πN

[0,T]∈K
· eNhϱ

0(π
N
0 ;ϕ)

eNhϱ
0(π

N
0 ;ϕ)
·
ZG

N,T(π
N
[0,T])

ZG
N,T(π

N
[0,T])

]

≤ − inf
α̂∈K

1
N

log
[
eNhϱ

0(α̂0;ϕ) · ZG
N,T(α̂)

]
+

1
N

log E
ϱ
N

[
eNhϱ

0(π
N
0 ;ϕ) · ZG

N,T(π
N
[0,T])

]
,

(6.3.21)

where we recall the definition of hϱ
0 in (6.3.3) and of ZG

N,T in (6.3.10). Since
ZG

N,T(π
N
[0,T]) is a martingale with ZG

N,0(π
N
[0,T]) = 1, we actually find that

E
ϱ
N

[
eNhϱ

0(π
N
0 ;ϕ) · ZG

N,T(π
N
[0,T])

]
= Eµ

ϱ
N

[
eNhϱ

0(π
N
0 ;ϕ)

]
= Eµ

ϱ
N

[
eN
(
⟨πN

0 ,ϕ⟩−⟨ϱ,eϕ−1⟩L2(V)

)]
= 1, (6.3.22)

where we used that µ
ϱ
N is a product Poisson distribution. Therefore the second

term in (6.3.21) vanishes. For the first term, note that we took ϕ and G arbitrarily,
so we have

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ K) ≤ − sup

ϕ,G
lim

N→∞
inf
α̂∈K

1
N

log
[
eNhϱ

0(α̂0;ϕ) · ZG
N,T(α̂)

]
(6.3.23)

using Corollary 6.3, we find that

− sup
ϕ,G

lim
N→∞

inf
α̂∈K

1
N

log
[
eNhϱ

0(α̂0;ϕ) · ZG
N,T(α̂)

]
= − sup

ϕ,G
inf
α̂∈K

hϱ
0(α̂0; ϕ) + Itr(α̂; G)

= − inf
α̂∈K
Iϱ(α̂), (6.3.24)

where we were able to interchange the supremum over ϕ and G with the infimum
over α̂ using the argument of Lemma 11.3 in [120], using that K is compact.

In order to prove the exponential tightness, we want to use the method used in
[61, pages 271-273]. However, since we do not know the invariant measure of this
system, we first turn to a perturbed model of which we do know the invariant
measures, namely the independent run-and-tumble particle system, as defined
in [98] (without diffusive jumps). The generator of this process corresponds to
setting c(σ, m) ≡ 1 in the generator LN defined in (6.2.2), and we will denote it by
L RTP

N . For this process, we know that the Product Poisson measures with constant
density ϱc are invariant. We denote the path-space measure of this process, started
from µ

ϱ
N , by P

RTP,ϱ
N .
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LEMMA 6.2. There exists a constant C > 0 such that

E
P

RTP,ϱ
N

( dP
ϱ
N

dP
RTP,ϱc
N

)2
 ≤ eCN . (6.3.25)

Proof. Note that we can split the Radon-Nikodym derivative in the following way

dP
ϱ
N

dP
RTP,ϱc
N

=
dµ

ϱ
N

dµ
ϱc
N
·

dP
ϱ
N

dP
RTP,ϱ
N

. (6.3.26)

The Radon-Nikodym derivative of the Poisson distributions can be bounded in the
following way

dµ
ϱ
N

dµ
ϱc
N
(η) = exp

 ∑
(x,σ)∈VN

η(x, σ) log
(

ϱ( x
N , σ)

ϱc

)
− ∑

(x,σ)∈VN

(ϱ( x
N , σ)− ϱc)


≤ exp

(
log
(
||ϱ||∞

ϱc

)
|ηN |+ 2ϱcN

)
. (6.3.27)

Since the jump rates of the processes corresponding to P
RTP,ϱ
N and P

ϱ
N only differ at

the internal state jumps, by the Girsanov formula, we find that the Radon-Nikodym
derivative is given by

dP
ϱ
N

dP
RTP,ϱ
N

= exp

(
∑

(x,σ)∈VN

∫ T

0
log
(
c(σ, mN(t))

)
dJ(x,σ)→(x,−σ)

t

− ∑
(x,σ)∈VN

∫ T

0
ηN

t (x, σ)
(
c(σ, mN(t))− 1

)
dt

)
,

(6.3.28)

where J(x,σ)→(x,−σ)
t is the number of jumps made from (x, σ) to (x,−σ) up to time

t. Since c(σ, mN(t)) is bounded from above and below, we can find constants
c1, c2 > 0 such that(

dP
ϱ
N

dP
RTP,ϱ
N

)2

≤ exp

c1 ∑
(x,σ)∈VN

J(x,σ)→(x,−σ)
T + c2T|ηN |

 , (6.3.29)

where we recall that |ηN | is the total number of particles in the configuration ηN .
Note that ∑(x,σ)∈VN

J(x,σ)→(x,−σ)
T is the total number of internal state jumps up to
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time T, which under P
RTP,ϱ
N is a Poisson process with intensity |ηN |. Combining

(6.3.27) and (6.3.29), we can find a constant c3 > 0 such that

E
P

RTP,ϱ
N

( dP
ϱ
N

dP
RTP,ϱc
N

)2
 ≤ e4ϱc NE

P
RTP,ϱ
N

[
exp

(
c3T|ηN |

)]
≤ exp

(
4ϱcN + 2||ϱ||∞

(
ec3T − 1

)
N
)

, (6.3.30)

hence (6.3.25) holds.
Now we can proceed with the proof of exponential tightness, using the approach

from [61]. We will need the following result.

LEMMA 6.3. For every ε > 0 and G ∈ C∞(V)

lim
δ→0

lim
N→∞

1
N

log P
ϱ
N

(
sup
|s−t|<δ

∣∣∣〈πN
t , G

〉
−
〈

πN
s , G

〉∣∣∣ ≥ ε

)
= −∞. (6.3.31)

Proof. Let ε > 0 be given. First note that we have the following

P
ϱ
N

(
sup
|s−t|<δ

∣∣∣〈πN
t , G

〉
−
〈

πN
s , G

〉∣∣∣ ≥ ε

)

≤ P
ϱ
N

(
sup
|s−t|<δ

〈
πN

t , G
〉
−
〈

πN
s , G

〉
≥ ε

)

+ P
ϱ
N

(
sup
|s−t|<δ

〈
πN

t ,−G
〉
−
〈

πN
s ,−G

〉
≥ ε

)
. (6.3.32)

Since we are considering every G ∈ C∞(V), we can neglect the absolute value in
(6.3.31). Furthermore, by Hölder’s inequality we have that for a general event A

P
ϱ
N(A) = E

P
RTP,ϱc
N

[
1A

dP
ϱ
N

dP
RTP,ϱc
N

]
≤
(

P
RTP,ϱc
N (A)

) 1
2

E
P

RTP,ϱ
N

( dP
ϱ
N

dP
RTP,ϱc
N

)2
 1

2

.

(6.3.33)

Therefore, by Lemma 6.2, it is enough to prove the result for P
RTP,ϱc
N .

Using the following inclusion.{
sup
|s−t|<δ

⟨πN
t , G⟩ − ⟨πN

s , G⟩ ≥ ε

}
⊂

[Tδ−1]⋃
k=0

{
sup

0≤t<δ

⟨πN
kδ+t, G⟩ − ⟨πN

kδ, G⟩ > ε

4

}
,

(6.3.34)
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we are able to find that

lim
N→∞

1
N

log P
RTP,ϱc
N

(
sup
|s−t|<δ

⟨πN
t , G⟩ − ⟨πN

s , G⟩ ≥ ε

)

≤ lim
N→∞

1
N

log
[Tδ−1]
max
k=0

P
RTP,ϱc
N

(
sup

0≤t<δ

⟨πN
kδ+t, G⟩ − ⟨πN

kδ, G⟩ ≥ 1
4 ε

)

= lim
N→∞

1
N

log P
RTP,ϱc
N

(
sup

0≤t<δ

⟨πN
t , G⟩ − ⟨πN

0 , G⟩ ≥ 1
4 ε

)
, (6.3.35)

where in the last step we used that µ
ϱc
N is invariant for the RTP system. By denoting

the exponential martingale corresponding to L RTP
N as ZRTP,G

N,t (πN
[0,T]) (recall the

definition of the exponential martingale in (6.3.10)), and multiplying both sides by
a constant λ > 0, we find that

P
RTP,ϱc
N

(
sup

0≤t<δ

⟨πN
t , λG⟩ − ⟨πN

0 , λG⟩ ≥ 1
4 λε

)

≤ P
RTP,ϱc
N

(
sup

0≤t<δ

1
N

logZRTP,λG
N,t (πN

[0,T])

+
1
N

∫ t

0
e−N⟨πN

s ,λGs⟩(∂s +L RTP
N )eN⟨πN

s ,λGs⟩ ds ≥ 1
4 λε

)

≤ P
RTP,ϱc
N

(
sup

0≤t<δ

ZRTP,λG
N,t (πN

[0,T]) ≥ e
1
8 Nλε

)

+ P
RTP,ϱc
N

(
sup

0≤t<δ

1
N

∫ t

0
e−N⟨πN

s ,λGs⟩(∂s +L RTP
N )eN⟨πN

s ,λGs⟩ ds ≥ 1
8 λε

)
.

(6.3.36)

Recalling that ZRTP,λG
N,t (πN

[0,T]) is a non-negative martingale, by Doob’s martingale
inequality we can upper bound the first part by

P
RTP,ϱc
N

(
sup

0≤t<δ

ZRTP,λG
N,t (πN

[0,T]) ≥ e
1
8 Nλε

)
≤ E

RTP,ϱc
N

[
ZRTP,λG

N,δ

]
· e−

1
8 Nλε = e−

1
8 Nλε.

(6.3.37)

For the second part, using (6.3.17), we are able to find the following upper bound
for the integrand

1
N

e−N⟨πN
s ,λGs⟩(∂s +L RTP

N )eN⟨πN
s ,λGs⟩ ≤ 1

N
|ηN |

(
λ||∂xG||∞ + M

(
eλ||G̃||∞ − 1

))
.

(6.3.38)
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Therefore, using that |ηN | is Poisson distributed with parameter Nϱc under P
RTP,ϱc
N ,

we find that by the Markov inequality,

P
RTP,ϱc
N

(
sup

0≤t<δ

1
N

∫ t

0
e−N⟨πN

s ,λGs⟩(∂s +L RTP
N )eN⟨πN

s ,λGs⟩ ds ≥ 1
8 λε

)
= O(δ).

(6.3.39)

Combining (6.3.37) and (6.3.39), we find that

lim
δ→0

lim
N→∞

1
N

log P
RTP,ϱc
N

(
sup
|s−t|<δ

∣∣∣〈πN
t , G

〉
−
〈

πN
s , G

〉∣∣∣ ≥ ε

)
= −1

8
λε, (6.3.40)

and since we can take λ arbitrarily large, this concludes the proof.
We are now ready to give a proof of the exponential tightness.

Proof of Theorem 6.3. We start by defining the following set

EK =

{
α̂ ∈ D([0, T];MV) : sup

t∈[0,T]
α̂t(V) ≤ K

}
. (6.3.41)

For this set, by the Chernoff inequality, we find that

P
ϱ
N(π

N
[0,T] /∈ EK) = P

ϱ
N

(
sup

t∈[0,T]
πN

t (V) > K

)
≤ e−NKE

ϱ
N

[
exp

(
sup

t∈[0,T]
NπN

t (V)

)]
,

(6.3.42)

where the expectation can be upper bounded in the following way

E
ϱ
N

[
exp

(
sup

t∈[0,T]
NπN

t (V)

)]
= E

ϱ
N

[
exp

(
|ηN |

)]
≤ eN||ϱ||∞(e−1). (6.3.43)

Combining (6.3.42) and (6.3.43), we can find a sequence of numbers (Kn)n∈N such
that for every n ∈N

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] /∈ EKn) ≤ −n (6.3.44)

Next we consider a countable uniformly dense family {ϕj}j∈N ⊂ C∞(V) and
define for each δ > 0 and ε > 0 the following set

Cj,δ,ε =

{
α̂ ∈ D([0, T];MV) : sup

|t−s|<δ

∣∣⟨α̂t, ϕj⟩ − ⟨α̂s, ϕj⟩
∣∣ ≤ ε

}
. (6.3.45)
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Note that for any choice of the parameters the set Cj,δ,ε is closed, and by Lemma
6.3 there exists a δ = δ(j, m, n) such that

P
ϱ
N(π

N
[0,T] /∈ Cj,δ,1/m) ≤ exp(−Nnmj) (6.3.46)

for large enough N, and so

P
ϱ
N

πN
[0,T] /∈

⋂
j≥1,m≥1

Cj,δ(j,m,n),1/m

 ≤ ∑
j≥1,m≥1

exp(−Nnmk) ≤ C exp(−Nn),

(6.3.47)

for some constant C > 0. By now considering the set

Kn = EK ∩
⋂

j≥1,m≥1

Cj,δ(j,m,n),1/m, (6.3.48)

it follows that (6.3.19) holds for this choice of Kn. Since we furthermore know that
it is closed we only need to show that it is relatively compact, which can be done
by proving the following two things [61, Proposition 4.1.2]:

1. {α̂t : α̂ ∈ Kn, t ∈ [0, T]} is relatively compact inMV .

2. limδ→0 supα̂∈Kn
wδ(α̂) = 0, where

wδ(α̂) := sup
|t−s|≤δ

∞

∑
k=1

1
2k

(
1∧ |⟨α̂t, ϕj⟩ − ⟨α̂s, ϕj⟩|

)
= 0. (6.3.49)

Here item 1. is satisfied since Kn ⊂ EKn and closed balls are compact inMV , and
2. follows from the definition of the sets Cj,δ,ε.

6.3.3 Lower bound

In this section we will prove the large deviation lower bound, as given in (6.3.9).
The main idea is to show that if Iϱ(α̂) < ∞, then there exists a function H such
that

Iϱ(α̂) = lim
N→∞

1
N

E
α̂0
N

[
dP

α̂0,H
N

dP
ϱ
N

]
. (6.3.50)

To achieve this, we have to show two things. First we have to show that if
hϱ

0(α̂0) < ∞, then α̂0 has a density ϱ̂0, and hϱ
0 can be written as the relative

entropy of product Poisson distributions with the respective densities ϱ and ϱ̂0.
After that, we have to show that if Itr(α̂) < ∞, then there exists a measurable
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H : [0, T]×V → R such that α̂ satisfies the hydrodynamic equation of the weakly
perturbed model, given in (6.2.18), and that H is then a function for which the
supremum in the definition of Itr in (6.3.4) is attained.

The first step follows from the following Lemma

LEMMA 6.4. If hϱ
0(α̂0) < ∞, then α̂0 has a density ϱ̂0 : V → R, and

hϱ
0(α̂0) = lim

N→∞

1
N

E
µ

ϱ̂0
N

[
log

dµ
ϱ̂0
N

dµ
ϱ
N

]
. (6.3.51)

Proof. Assume hϱ
0(α̂0) < ∞ If α̂0 is not absolutely continuous, then there exists

a Borel set A ⊂ V such that α̂0(A) > 0 and λV(A) = 0, with λV the Lebesgue
measure on V. By the definition of hϱ

0(α̂0) in (6.3.3), we have that for ϕ ∈ C∞(V)

⟨α̂0, ϕ⟩ ≤ hϱ
0(α̂0) + ⟨ϱ, eϕ − 1⟩L2(V). (6.3.52)

For n ∈ N now take a sequence (ϕ
(n)
k )k∈N ⊂ C∞(V) such that ϕ

(n)
k → n1A

pointwise as k→ ∞. It then follows that

⟨α̂0, ϕ
(n)
k ⟩ → nα̂0(A), ⟨ϱ, eϕ

(n)
k − 1⟩L2(V) → 0, (6.3.53)

as k → ∞. By taking n large enough this contradicts (6.3.52), hence we can
conclude that α̂0 has a density ϱ̂0.

The rest of the proof of (6.3.51) follows then from calculating the supremum.

hϱ
0(α̂0) = sup

ϕ

{
⟨ϱ̂0, ϕ⟩L2(V) − ⟨ϱ, eϕ − 1⟩L2(V)

}
= ⟨ϱ̂0, log( ϱ̂0

ϱ )⟩L2(V) − ⟨ϱ̂0 − ϱ, 1⟩L2(V)

= lim
N→∞

1
N

E
µ

ϱ̂0
N

[
log

dµ
ϱ̂0
N

dµ
ϱ
N

]
. (6.3.54)

where the supremum is attained for ϕ = log( ϱ̂0
ϱ ).

By a similar argument as in the previous lemma, we can show that if Itr(α̂) < ∞
then there exists a density ϱ̂ : [0, T]× V → R for the whole trajectory α̂. In the
following Lemma we prove an alternative formula for the dynamic part of the rate
function in the case that ϱ̂t(v) > 0 for all t ∈ [0, T], v ∈ V.

LEMMA 6.5. If Itr(α̂) < ∞ and ϱ̂ > 0 then there exists a bounded measurable func-
tion H such that α̂ satisfies the equation (6.2.18) in the weak sense. Furthermore,
Itr(α̂) = Itr(α̂; H) and

Itr(α̂) =
∫ T

0

〈
α̂t,
(

e−σH̃t(x)(−σH̃t(x)− 1) + 1
)

c(σ, m(α̂t))
〉

dt. (6.3.55)
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Proof. By the definition of Itr in (6.3.4), we have the following

sup
G∈C∞([0,T]×V)
||G||∞≤1

{
ℓ(α̂; G)−

∫ T

0

〈
α̂t, c(σ, m(α̂t))

(
e−σG̃t(x) − 1

)〉
dt
}
≤ Itr(α̂)

(6.3.56)

and so

sup
G∈C∞([0,T]×V)
||G||∞≤1

ℓ(α̂; G) ≤ Itr(α̂) +
∫ T

0
⟨α̂t, c(σ, m(α̂t)) (e− 1)⟩dt < ∞. (6.3.57)

Consequently, by the Hahn-Banach theorem, we can extend the linear functional
ℓ(α̂; ·) to a bounded linear functional in C([0, T] × V). Therefore, by the Riesz
representation theorem, there exists a signed measure ν ∈ M[0,T]×V such that

ℓ(α̂; G) = ⟨ν, G⟩ :=
∫
[0,T]×V

Gdν. (6.3.58)

Again, since we assume that Itr(α̂) < ∞, this measure ν has a density g : [0, T]×
V → R. By then plugging in the definition of ℓ(α̂; G) in (6.3.6), we find that α̂
satisfies

⟨α̂T , GT⟩ − ⟨α̂0, G0⟩ −
∫ T

0
⟨α̂t, (∂t + σ∂x)Gt⟩dt =

∫ T

0
⟨gt, Gt⟩L2(V) dt, (6.3.59)

i.e., it satisfies the following PDE in the weak sense

˙̂αt(x, σ) = −σ∂x α̂t(x, σ) + gt(x, σ). (6.3.60)

We can now split up gt(x, σ) = σ ft(x) + ht(x), and we will show that h ≡ 0 almost
everywhere. To see this, note that

Itr(α̂) = sup
G

{ ∫ T

0
⟨σ ft, Gt⟩L2(V) dt +

∫ T

0
⟨ht, Gt⟩L2(V) dt

−
∫ T

0

〈
α̂t, c(σ, m(α̂t))

(
e−σG̃t(x) − 1

)〉
dt
}

= sup
G̃,G

{ ∫ T

0
⟨ ft, G̃t⟩L2(T) dt +

∫ T

0
⟨ht, Gt⟩L2(T) dt

−
∫ T

0

〈
α̂t, c(σ, m(α̂t))

(
e−σG̃t(x) − 1

)〉
dt
}

(6.3.61)

where Gt(x) = Gt(x, 1) + Gt(x,−1). By considering functions where Gt(x, 1) =
Gt(x,−1), it follows that if h ̸≡ 0 almost everywhere then the last supremum is
infinite, which contradicts Iϱ(α̂) < ∞. Therefore,

˙̂αt(x, σ) = −σ∂x α̂t(x, σ) + σ ft(x) (6.3.62)
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holds weakly, with f : [0, T]×T→ R some bounded measurable function.
Setting Ψt(x, σ) = e−σH̃t(x) in (6.2.18), we solve the following equation for Ψt,

σ ft(x) =
1

Ψt(x, σ)
c(−σ, m(α̂t))ϱ̂t(x,−σ)−Ψt(x, σ)c(σ, m(α̂t))ϱ̂t(x, σ) (6.3.63)

This is a quadratic equation in Ψt, with the following positive and bounded
solution

Ψt(x, σ) =
−σ ft(x) +

√
ft(x)2 + 4ϱ̂t(x, σ)c(σ, m(α̂t))ϱ̂t(x,−σ)c(−σ, m(α̂t))

2ϱ̂t(x, σ)c(σ, m(α̂t))
.

(6.3.64)

It is a straightforward calculation to show that Ψ(x, σ) · Ψ(x,−σ) = 1, and so
(6.2.18) holds for H̃t(x) = − log(Ψ(x, 1)).

Now, assuming that α̂ satisfies (6.2.18) we find that

Itr(α̂) = sup
G

{
ℓ(α̂; G)−

∫ T

0
⟨α̂t,

(
e−σG̃t(x) − 1

)
c(σ, m(α̂t))⟩dt

}
= sup

G

{∫ T

0

〈
α̂t,
(
−e−σH̃t(x)σG̃t(x)− e−σG̃t(x) + 1

)
c(σ, m(α̂t))

〉
dt
}

=
∫ T

0

〈
α̂t, sup

p∈R

(
−e−σH̃t(x)σp− e−σp + 1

)
c(σ, m(α̂t))

〉
dt, (6.3.65)

where we can interchange the supremum in the last integral by dominated
convergence. This supremum is attained for p = H̃t(x), indeed showing that
Itr(α̂) = Itr(α̂; H). After filling this in, it follows that (6.3.55) holds.

We now have a clear formulation of the rate function when α̂ has positive density,
however if the density can be zero then the formulation in (6.3.64) is not well-
defined. Furthermore, in order for the hydrodynamic limit of the weakly perturbed
model to hold in Theorem 6.1, we need to assume that H ∈ C1,0([0, T]×V). We
therefore define the following space

D :=
{

α̂ ∈ D([0, T];MV) : ϱ̂ > 0, α̂ satisfies (6.2.18) with H ∈ C1,0([0, T]×V)
}

.

(6.3.66)

We will now show that the rate function of trajectories outside this set can be
approximated by the rate function of trajectories within this set.

LEMMA 6.6. Let α̂ ∈ D([0, T];MV) such Itr(α̂) < ∞, then there exists a sequence
(α̂k)k∈N ⊂ D such that α̂k → α̂ weakly and

Itr(α̂) = lim
k→∞
Itr(α̂k). (6.3.67)
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Proof. We first show that α̂ ∈ D([0, T];MV) can be approximated by trajectories
with positive density. We define the following measure for any ε > 0

α̂ε = (1− ε)α̂ + ε1 (6.3.68)

where 1 on the right-hand side denotes the measure with constant density equal
to 1. It follows that α̂ε has positive density and that α̂ε → α̂ weakly as ε → 0.
Therefore, by convexity and lower semicontinuity of the rate function Iϱ, we then
find that

lim
ε→0
Itr(α̂ε) ≤ Itr(α̂) ≤ lim

ε→0
Itr(α̂ε). (6.3.69)

Hence we have indeed found a good approximation.
Now assume that α̂ ∈ D([0, T];MV) has density ϱ̂ > 0 and that Itr(α̂) < ∞. By

Lemma 6.5, there exists a bounded measurable H : [0, T]×V → R such that (6.2.18)
holds weakly. Now find a sequence α̂k with densities ϱ̂k ∈ C2,1([0, T]× V) such
that ϱ̂k → ϱ̂ pointwise as k→ ∞. It then follows that α̂k → α̂ weakly and, by (6.3.62)
and (6.3.64), each α̂k satisfies (6.2.18) for some function Hk ∈ C1,0([0, T]×V) where
Hk → H pointwise. By the formulation of Itr(α̂) in (6.3.55), we can then indeed
conclude that (6.3.67) holds.

THEOREM 6.5. Given a α̂ ∈ D([0, T];MV), for every neighborhoodO ⊂ D([0, T];MV)
of α̂ we have that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ O) ≥ −I

ϱ(α̂). (6.3.70)

As a consequence, for every open set O ⊂ D([0, T];MV) we have that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ O) ≥ − inf

α̂∈O
Iϱ(α̂). (6.3.71)

Proof. If Iϱ(α̂) = ∞, the result is immediate, therefore we can assume that
Iϱ(α̂) < ∞. By Lemma 6.6 it is then enough to prove it for α̂ ∈ D, and so by
Theorem 6.2 there exists an H ∈ C1,0([0, T]×V) such that

P
ϱ̂0,H
N (πN

[0,T] ∈ ·)→ δα̂. (6.3.72)

where ϱ̂0 is the density of α̂0. Therefore, we have that

lim
N→∞

1
N

log P
ϱ
N(π

N
[0,T] ∈ O) = − lim

N→∞

1
N

log E
ϱ̂0,H
N

[
1πN

[0,T]∈O
dµ

ϱ̂0
N

dµ
ϱ
N
·

dP
ϱ̂0,H
N

dP
ϱ̂0
N

]

≥ − lim
N→∞

1
N

E
ϱ̂0,H
N

[
log

dµ
ϱ̂0
N

dµ
ϱ
N
·

dP
ϱ̂0,H
N

dP
ϱ̂0
N

]
= −Iϱ(α̂), (6.3.73)

where we used Lemma 6.4, Corollary 6.3 and that Itr(α̂) = Itr(α̂; H).
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6.4 proof of the hydrodynamic limit

In this section we prove the hydrodynamic limit of the weakly perturbed process
defined in Section 6.2.2. We first prove that the PDE given in (6.2.18) is well-posed,
and afterwards we prove Theorem (6.2).

6.4.1 Well-posedness of the PDE

The approach is to define a sequence of densities ϱ(n) through the following
incursive relation

∂tϱ
(n+1)
t (x, σ) = −σ∂xϱ

(n+1)
t (x, σ) + c(−σ, m(ϱ

(n)
t ))eσHt(x)ϱ

(n+1)
t (x,−σ)

− c(σ, m(ϱ
(n)
t ))e−σHt(x)ϱ

(n+1)
t (x, σ), (6.4.1)

where every ϱ(n) starts from ϱ
(n)
0 = ϱ. Setting T (ϱ(n)) = ϱ(n+1), it is enough

to show that T is a contraction (up to some finite time T > 0) in the space
L∞([0, T]; L1(V)). First note that for every trajectory ϱ(n), the trajectory ϱ(n+1)

solving 6.4.1 satisfies the conservation of particles, hence for any t ≥ 0 we have
that ||ϱ(n+1)

t ||L1(V) = ||ϱ||L1(V) with ϱ the initial profile. Therefore, we indeed
have that T : L∞([0, T]; L1(V)) → L∞([0, T]; L1(V)). Now let ϱ1, ϱ2 be any two
trajectories of densities, and denote the following

ψ1 = T (ϱ1), ψ2 = T (ϱ2),

m1,t = m(ϱ1,t), m2,t = m(ϱ2,t). (6.4.2)

Furthermore, denote δ = ψ1 − ψ2 and ε = m1 −m2. For [m] = {mt : t ∈ [0, T]} a
deterministic trajectory of magnetizations, we define the mapping

Q[m][ψ](x, σ, t) = c(−σ, mt)eσHt(x)ψt(x,−σ)− c(σ, mt)e−σHt(x)ψt(x, σ). (6.4.3)

Note that this mapping is linear in ψ. We then have that

∂tδt(x, σ) = −σ∂xδt(x, σ) + Q[m1]
[ψ1](x, σ, t)−Q[m2]

[ψ2](x, σ, t). (6.4.4)

We can rewrite the difference of the last two terms in a linear and non-linear part
as follow

Q[m1]
[ψ1]−Q[m2]

[ψ2] = Q[m1]
[ψ1 − ψ2] +

(
Q[m1]

[ψ2]−Q[m2]
[ψ2]

)
. (6.4.5)

For the linear part, we have that

||Q[m1]
[δ](·, ·, t)||L1(V) =

∣∣∣∣∣∣c(−σ, m1,t)eσHt(x)δt(x,−σ)− c(σ, m1,t)e−σHt(x)δt(x, σ)
∣∣∣∣∣∣

L1(V)

≤ C1||δt||L1(V), (6.4.6)
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with C1 some constant depending on the bounded functions c and H. For the
non-linear part, we have that

Q[m1]
[ψ2](x, σ, t)−Q[m2]

[ψ2](x, σ, t)

= [c(−σ, m1,t)− c(−σ, m2,t)]eσHt(x)ψ2,t(x,−σ)

− [c(σ, m1,t)− c(σ, m2,t)]e−σHt(x)ψ2,t(x, σ). (6.4.7)

By the Lipschitz-continuity of c(σ, m) we now have that

||Q[m1]
[ψ2](·, ·, t)−Q[m2]

[ψ2](·, ·, t)||L1(V) ≤ L|εt| · C2||ψ2,t||L1(V), (6.4.8)

with L the Lipschitz-constant and C2 some constant depending on H. Here
||ψ2,t||L1(V) = ||ϱ||L1(V) by conservation of particles. Furthermore, we have that

|εt| = |m1,t −m2,t| =
1

||ϱ||L1(V)
· ||ϱ1,t − ϱ2,t||L1(V). (6.4.9)

From (6.4.6) and (6.4.8), we find that

∂t||δt||L1(V) ≤ ||Q[m1]
[δ](·, ·, t)||L1(V) + ||Q[m1]

[ψ2](·, ·, t)−Q[m2]
[ψ2](·, ·, t)||L1(V)

≤ C1||δt||L1(V) + LC2||ϱ1,t − ϱ2,t||L1(V)

≤ C1||δt||L1(V) + LC2||ϱ1 − ϱ2||L∞([0,T];L1(V)). (6.4.10)

Note that the transport term vanishes since
∫

T
∂x|δt(x, σ)|dx = 0 by periodic

boundary conditions. We can rewrite this in integral form as

||δt||L1(V) ≤
∫ t

0
C1||δs||L1(V) ds + LC2t||ϱ1 − ϱ2||L∞([0,T];L1(V)). (6.4.11)

By Gronwall’s inequality, we find that

||δt||L1(V) ≤ LC2teC1t||ϱ1 − ϱ2||L∞([0,T];L1(V)), (6.4.12)

and so we can conclude that

||T (ϱ1)− T (ϱ2)||L∞([0,T];L1(V)) ≤ LC2TeC1T ||ϱ1 − ϱ2||L∞([0,T];L1(V)). (6.4.13)

Taking T > 0 small enough, this is a contraction on L∞([0, T]; L1(V)), hence the
sequence ϱ(n) converges locally to a unique solution of the PDE (??).

6.4.2 Proof of Theorem (6.2)

Recall that αH ∈ D([0, T];MV) denotes the process such that for every t ∈ [0, T]
the measure αH

t has density ϱH
t (x, σ), which is the solution the the PDE given by
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(6.2.18). In this way, αH is the unique trajectory of measures measure such that for
every G ∈ C∞([0, T]×V) and t ∈ [0, T] we have that

M H,G
t (αH) :=

〈
αH

t , Gt

〉
−
〈

αH
0 , G0

〉
−
∫ t

0

〈
αH

s ,
(

∂s +
(

AH
s,αH

)∗)
Gs

〉
ds = 0,

(6.4.14)

where
(

AH
s,αH

)∗
is the differential operator given by(

AH
s,αH

)∗
Gs(x, σ) = σ∂xGs(x, σ) + c(σ, m(αH

s ))e−σH̃s(x)(Gs(x,−σ)− Gs(x, σ)
)
,

(6.4.15)

which is the action of the adjoint of AH
s,αH on smooth functions, with AH

s,αH given
by

AH
s,αH G(x, σ) = −σ∂xG(x, σ) + c(−σ, m(αH

s ))eσH̃s(x)G(x,−σ)

− c(σ, m(αH
s ))e−σH̃s(x)G(x, σ). (6.4.16)

For a given G ∈ C∞([0, T]×V) we define the Dynkin Martingale

M H,G
N,t (πN

[0,T]) := ⟨πN
t , Gt⟩ − ⟨πN

0 , G0⟩ −
∫ t

0
(∂s +L H

N,s)⟨πN
s , Gs⟩ds. (6.4.17)

LEMMA 6.7. For every G ∈ C∞(V) we have

lim
N→∞

E
ϱ,H
N

[
sup

t∈[0,T]

∣∣∣M H,G
N,t (πN

[0,T])−M H,G
t (πN

[0,T])
∣∣∣] = 0. (6.4.18)

Proof. Note that

M H,G
N,t (πN

[0,T])−M H,G
t (πN

[0,T]) =
∫ t

0

(
L H

N,s⟨πN
s , Gs⟩ −

〈
πN

s ,
(

AH
s,πN

[0,T]

)∗
Gs

〉)
ds.

(6.4.19)

So we need to calculate L H
N,s⟨πN

s , Gs⟩. In order to do that, we start with the
preliminary calculation

L H
N,s⟨πN

s , Gs⟩

= N ∑
(x,σ)∈VN

ηN
s (x, σ)eHs(

x+σ
N ,σ)−Hs(

x
N ,σ)

[〈
πN((ηN

s )(x,σ)→(x+σ,σ)), Gs
〉
− ⟨πN

s , Gs⟩
]

+ ∑
(x,σ)∈VN

ηN
s (x, σ)c(σ, m(πN

s ))e−σH̃s(x)
[〈

πN((ηN
t )(x,σ)→(x,−σ)

)
, Gs
〉
− ⟨πN

s , Gs⟩
]

= ∑
(x,σ)∈VN

ηN
s (x, σ)eHs(

x+σ
N ,σ)−Hs(

x
N ,σ)(Gs(

x+σ
N , σ)− Gs(

x
N , σ)

)
+

1
N ∑

(x,σ)∈VN

ηN
s (x, σ)c(σ, m(πN

s ))e−σH̃s(x)(Gs(x,−σ)− Gs(x, σ)
)
, (6.4.20)
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Using Taylor approximation, we can now write

L H
N,s⟨πN

s , Gs⟩

=
1
N ∑

(x,σ)∈VN

ηN
s (x, σ)

[
σ∂xGs(

x
N , σ) + c(σ, m(πN

s ))e−σH̃s(x)(Gs(x,−σ)− Gs(x, σ)
)]

+ R(N, H, G, s)

=

〈
πN

s ,
(

AH
s,πN

[0,T]

)∗
Gs

〉
+ R(N, H, G, s), (6.4.21)

where

R(N, H, G, s)

≤ 1
N ∑

(x,σ)∈VN

η(x, σ)||∂xG||∞ sup
(y,σ′)∈VN

∣∣Hs(
y+σ′

N , σ′)− Hs(
y
N , σ′)

∣∣
+

1
N2 ∑

(x,σ)∈VN

η(x, σ)||∂xxG||∞e2||H||∞

=
1
N
|ηN |

(
||∂xG||∞ sup

(y,σ′)∈VN

∣∣Hs(
y+σ′

N , σ′)− Hs(
y
N , σ′)

∣∣+ 1
N
||∂xxG||∞e2||H||∞

)
.

(6.4.22)

We then conclude that

E
ϱ,H
N

[
sup

t∈[0,T]

∣∣∣M H,G
N,t (πN

[0,T])−M H,G
t (πN

[0,T])
∣∣∣]

= E
ϱ,H
N

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
R(N, H, G, s)ds

∣∣∣∣
]

≤ T
N

(
||∂xG||∞ sup

(y,σ′)∈VN

∣∣Hs(
y+σ′

N , σ′)−Hs(
y
N , σ′)

∣∣+ 1
N
||∂xxG||∞e2||H||∞

)
E

ϱ,H
N

[
|ηN |

]
→ 0, (6.4.23)

where we used that E
ϱ,H
N
[
|ηN |

]
≤ ||ϱ||∞N and that Hs is continuous on T.

LEMMA 6.8. For every G ∈ C∞([0, T]×V) we have that

lim
N→∞

E
ϱ,H
N

[
sup

t∈[0,T]

(
M H,G

N,t (πN
[0,T])

)2
]
= 0. (6.4.24)
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Proof. By Doob’s maximal inequality we find that

E
ϱ,H
N

[
sup

t∈[0,T]

(
M H,G

N,t (πN
[0,T])

)2
]
≤ 4E

ϱ,H
N

[(
M H,G

N,T (πN
[0,T])

)2
]

= 4E
ϱ,H
N

[∫ T

0
ΓH,G

N,t (π
N
t )dt

]
, (6.4.25)

where in the last equality we use that the predictable quadratic variation of the
martingale M H,G

N,t is given by the integral of the carré du champ operator ΓN,G
H,t

defined by

ΓH,G
N,t (π

N
t ) = L H

N,t(⟨πN
t , Gt⟩)2 − 2⟨πN

t , Gt⟩ ·L H
N,t⟨πN

t , Gt⟩. (6.4.26)

For a general jump process generator L f (η) = ∑η′ r(η, η′)( f (η′)− f (η)) we have
that

L f 2(η)− 2 f (η) · L f (η) = ∑
η′

r(η, η′)
(

f (η′)− f (η)
)2, (6.4.27)

and so we find that

ΓH,G
N,t (π

N
t ) =

1
N ∑

(x,σ)∈VN

ηN
t (x, σ)eHt(

x+σ
N ,σ)−Ht(

x
N ,σ)(Gt(

x+σ
N , σ)− Gt(

x
N , σ)

)2

+
1

N2 ∑
(x,σ)∈VN

ηN
t (x, σ)c(σ, m(πN

t ))e−σH̃t(x)(Gt(x,−σ)− Gt(x, σ)
)2.

(6.4.28)

By the mean value theorem and since c(σ, m) is bounded, we can find an upper
bound given by

ΓH,G
N,t (π

N
[0,T]) ≤ O(

1
N2 ) · |ηN |. (6.4.29)

Using again that E
ϱ,H
N
[
|ηN |

]
≤ ||ϱ||∞N, we then find that

E
ϱ,H
N

[
sup

t∈[0,T]

(
M H,G

N,t (πN
[0,T])

)2
]
≤ 4TO( 1

N2 ) ·E
ϱ,H
N

[
|ηN |

]
→ 0. (6.4.30)

PROPOSITION 6.1. {πN
[0,T] : N ∈N} is tight in D([0, T];MV).

Proof. By Aldous’ criteria, we have to show the following:
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B.1 For all t ∈ [0, T] and ε > 0 there exists a compact K(t, ε) ⊂MV such that

sup
N∈N

P
ϱ,H
N
(
πN

t /∈ K(t, ε)
)
≤ ε. (6.4.31)

B.2 For all ε > 0

lim
δ→0

lim sup
N→∞

P
ϱ,H
N
(
ω(πN

[0,T], δ) ≥ ε
)
= 0, (6.4.32)

where

ω(πN
[0,T], δ) = sup{d(πN

t , πN
s )| : s, t ∈ [0, T], |t− s| < δ}, (6.4.33)

with d the metric onMV defined for α, β ∈ MV as

d(α, β) =
∞

∑
j=1

2−j
(

1∧
∣∣ 〈α, ϕj

〉
−
〈

β, ϕj
〉 ∣∣). (6.4.34)

We start with proving B.1. For every C > 0, we have that the set

KC := {µ ∈ MV : µ(V) ≤ C} (6.4.35)

is compact inMV . Furthermore,

P
ϱ,H
N (πN

t /∈ KC) = P
ϱ,H
N (πN

t (V) > C) ≤ 1
C

E
ϱ,H
N [πN

t (V)], (6.4.36)

where we used the Markov inequality in the last step. Here

E
ϱ,H
N [πN

t (V)] = E
ϱ,H
N

 1
N ∑

(x,σ)∈VN

ηN
t (x, σ)δ

( x
N ,σ)(V)

 =
1
N

E
ϱ,H
N
[
|ηN |

]
≤ ||ϱ||∞.

(6.4.37)

Therefore

P
ϱ,H
N (πN

t /∈ KC) ≤
1
C
||ϱ||∞. (6.4.38)

Since we took C arbitrarily, we can take C > ||ϱ||∞ε−1, and B.1 follows.
To prove B.2, take ε′ < ε and note that by the Markov inequality we have that

lim
δ→0

lim sup
N→∞

P
ϱ,H
N (ω(πN

[0,T], δ) > ε) ≤ lim
δ→0

lim sup
N→∞

1
ε

E
ϱ,H
N

[
ω(πN

[0,T], δ)
]

≤ lim
δ→0

lim sup
N→∞

1
ε′

E
ϱ,H
N

[
ω(πN

[0,T], δ)
]

. (6.4.39)
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Now for ω(πN
[0,T], δ) we have that

ω(πN
[0,T], δ) = sup

s,t∈[0,T]
|t−s|<δ

∞

∑
j=1

2−j
(

1∧
∣∣⟨πN

t , ϕj⟩ − πN
s (ϕj)

∣∣)

≤ 2−m + sup
s,t∈[0,T]
|t−s|<δ

m

∑
j=1

∣∣⟨πN
t , ϕj⟩ − πN

s (ϕj)
∣∣, (6.4.40)

where we took m ∈N arbitrarily. Using the martingale M
H,ϕj
N,t (πN

[0,T]), we find that

E
ϱ,H
N

[∣∣⟨πN
t , ϕj⟩ − πN

s (ϕj)
∣∣]

= E
ϱ,H
N

[∣∣∣∣M H,ϕj
N,t (πN

[0,T])−M
H,ϕj
N,s (πN

[0,T])−
∫ t

s
L H

N,s⟨πN
r , ϕj⟩dr

∣∣∣∣]
≤ 2E

ϱ,H
N

[
sup

t∈[0,T]

∣∣∣M H,ϕj
N,t (πN

[0,T])
∣∣∣]+ E

ϱ,H
N

[∣∣∣∣∫ t

s
L H

N,s⟨πN
r , ϕj⟩dr

∣∣∣∣] . (6.4.41)

By Lemma 6.8 the first expectation vanishes as N → ∞. By (6.4.21) we can upper
bound the second expectation by

E
ϱ,H
N

[∣∣∣∣∫ t

s
L H

N,s⟨πN
r , ϕj⟩dr

∣∣∣∣] ≤ E
ϱ,H
N

[∣∣∣∣∫ t

s

〈
πN

r ,
(

AH
s,πN

[0,T]

)∗
ϕj

〉
dr
∣∣∣∣]

+ E
ϱ,H
N

[∣∣∣∣∫ t

s
R(N, ϕj, r)dr

∣∣∣∣] . (6.4.42)

From (6.4.23) we see that the second expectation also vanishes as N → ∞ (uni-
formly in s and t). For the first expectation note that

E
ϱ,H
N

[∣∣∣∣∫ t

s

〈
πN

r ,
(

AH
s,πN

[0,T]

)∗
ϕj

〉
dr
∣∣∣∣]

≤ E
ϱ,H
N

∣∣∣∣∣∣
∫ t

s

1
N ∑

(x,σ)∈VN

ηN
r (x, σ)

∣∣∣∣∣∣∣∣(AH
s,πN

[0,T]

)∗
ϕj

∣∣∣∣∣∣∣∣
∞

dr

∣∣∣∣∣∣


≤ 1
N

∣∣∣∣∣∣∣∣(AH
s,πN

[0,T]

)∗
ϕj

∣∣∣∣∣∣∣∣
∞
|t− s| ·Eϱ,H

N
[
|ηN |

]
≤
∣∣∣∣∣∣∣∣(AH

s,πN
[0,T]

)∗
ϕj

∣∣∣∣∣∣∣∣
∞
||ϱ||∞δ. (6.4.43)
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Combining all of the above, we find that

lim
δ→0

lim sup
N→∞

P
ϱ,H
N (ω(πN

[0,T], δ) > ε)

≤ 1
ε′

2−m + lim
δ→0

lim sup
N→∞

1
ε′

E
ϱ,H
N

 sup
s,t∈[0,T]
|t−s|<δ

m

∑
j=1

∣∣⟨πN
t , ϕj⟩ − πN

s (ϕj)
∣∣


≤ 1
ε′

2−m + lim
δ→0

1
ε′

∣∣∣∣∣∣∣∣(AH
s,πN

[0,T]

)∗
ϕj

∣∣∣∣∣∣∣∣
∞
||ϱ||∞δ

=
1
ε′

2−m. (6.4.44)

Since we took m arbitrarily, we can choose it such that 2−m ≤ (ε′)2, i.e.,

lim
δ→0

lim sup
N→∞

P
ϱ,H
N (ω(πN

[0,T], δ) > ε) < ε′, (6.4.45)

and since we took ε′ arbitrarily small, we indeed find that B.2 holds.
We are now ready to give the proof of the hydrodynamic limit of the weakly

perturbed model.
Proof of Theorem 6.2. By Prokhorov’s theorem, the tightness of the sequence
{πN

[0,T] : N ∈ N} implies that the sequence is sequentially compact. If we then
prove that every convergent subsequence converges to δα, then the theorem holds.

Take such a convergent subsequence P
ϱ,H
Nk

(πN
[0,T] ∈ ·)→ P∗, with P∗ a probability

measure on D([0, T];MV). For a given ε > 0 and G ∈ C∞(V), define the set

ΞH,G
ε =

{
β ∈ D([0, T];MV) : sup

t∈[0,T]

∣∣∣M H,G
t (β)

∣∣∣ ≤ ϵ

}
, (6.4.46)

which is closed in the Skorokhod topology. By Portmanteau’s theorem, we now
have that

P∗(ΞH,G
ε ) ≥ lim

k→∞
P

ϱ,H
Nk

(π
Nk· ∈ ΞH,G

ε )

= lim
k→∞

P
ϱ,H
Nk

(
sup

t∈[0,T]

∣∣∣M H,G
t (π

Nk· )
∣∣∣ ≤ ε

)

= lim
k→∞

P
ϱ,H
Nk

(
sup

t∈[0,T]

∣∣∣M H,G
Nk ,t (π

Nk· )
∣∣∣ ≤ ε

)
, (6.4.47)
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where we used Lemma 6.7 for the last step. Now by using Chebyshev’s inequality
together with Lemma 6.8, we find that

P
ϱ,H
Nk

(
sup

t∈[0,T]

∣∣∣M H,G
Nk ,t (π

Nk· )
∣∣∣ > ε

)
≤ 1

ε2 E
ϱ,H
Nk

[
sup

t∈[0,T]

∣∣∣M H,G
Nk ,t (π

Nk· )
∣∣∣2]→ 0, (6.4.48)

and so indeed

P∗(ΞH,G
ε ) ≥ lim

k→∞
P

ϱ,H
Nk

(
sup

t∈[0,T]

∣∣∣M H,G
Nk ,t (π

Nk· )
∣∣∣ ≤ ε

)
= 1. (6.4.49)

Since this is true for all ε > 0 and G ∈ C∞(V), it follows that P∗ = δαH .

6.5 a note on the total density of the rtp process

For this section we focus on the case where c(σ, m) ≡ 1, where particles evolve
independently. We are interested in the evolution of the total density of particles,
i.e., we consider the process ηN

t (x) := ηN
t (x, 1)+ ηN

t (x,−1). The empirical measure
of this process is given by

ζN,t =
1
N ∑

x∈TN

ηN
t (x)δ x

N
, (6.5.1)

which has trajectories in D([0, T];M), withM the space of Radon measures on
the torus T. We will give a result on the hydrodynamic limit of the total density of
the weakly perturbed model and find a large deviation rate function through the
contraction principle.

6.5.1 Hydrodynamic limit of the weakly perturbed total density

We can deduce that the empirical measure ζN,t converges in probability to the
measure ϱH

t (x)dx, with ϱH
t (x) = ϱH

t (x, 1) + ϱH
t (x,−1) where ϱH

t (x, σ) solves the
hydrodynamic limit of the weakly perturbed multi-layer model in Theorem 6.2
with c(σ, m) ≡ 1. We can rewrite this as a coupled system of linear PDE’s given by


ϱ̇H

t (x, 1) = −∂xϱH
t (x, 1) + eH̃t(x)ϱH

t (x,−1)− e−H̃t(x)ϱH
t (x, 1),

ϱ̇H
t (x,−1) = ∂xϱH

t (x,−1) + e−H̃t(x)ϱH
t (x, 1)− eH̃t(x)ϱH

t (x,−1).

(6.5.2)
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From this, we obtain a PDE for the total density ϱH
t (x) = ϱH

t (x, 1) + ϱH
t (x,−1),

depending on the difference of the two densities ∆H
t (x) = ϱH

t (x, 1)− ϱH
t (x,−1),

given by
˙̂ϱt(x) = −∂x∆H

t (x),

∆̇H
t (x) = −∂xϱH

t (x) + 2 sinh(H̃t(x))ϱH
t (x)− 2 cosh(H̃t(x))∆t(x).

(6.5.3)

The goal is to obtain a closed equation for ϱH
t (x). Taking a second derivative in

time in the first equation and substituting the second equation gives us

ϱ̈H
t (x) = ∂xxϱH

t (x)− 2∂x

(
sinh(H̃t(x))ϱH

t (x)
)

+ 2
(

∂x cosh(H̃t(x))
)

∆t(x) + 2 cosh(H̃t(x))∂x∆t(x) (6.5.4)

Here ∂x∆H
t (x) = −ϱ̇H

t (x) and so if ∂x cosh(H̃t(x)) = 0 then we have a closed
equation for ϱH

t (x) given by

ϱ̈H
t (x) = ∂xxϱH

t (x)− 2∂x

(
sinh(H̃t(x))ϱH

t (x)
)
− 2 cosh(H̃t(x))ϱ̇H

t (x). (6.5.5)

On the other hand, if ∂x cosh(H̃t(x)) ̸= 0, then we can find from (6.5.4) an equation
of ∆H

t (x) written in terms of ϱH
t (x), given by

∆H
t (x) =

1
2∂x cosh(H̃t(x))

(
ϱ̈H

t (x)− ∂xxϱH
t (x) + 2∂x

(
sinh(H̃t(x))ϱH

t (x)
)

− 2 cosh(H̃t(x))ϱ̇H
t (x)

)
.

(6.5.6)

Substituting this back into the equation ˙̂ϱt(x)− ∂x∆t(x), we find that

ϱ̇H
t (x) = −∂x

(
1

2∂x cosh(H̃t(x))

(
ϱ̈H

t (x)− ∂xxϱH
t (x) + 2∂x

(
sinh(H̃t(x))ϱH

t (x)
)

− 2 cosh(H̃t(x))ϱ̇H
t (x)

))
.

(6.5.7)

6.5.2 A large deviation principle for the total density

For this section we assume that we start from a deterministic sequence of config-
urations ηN such that ζN,0 converges to ϱ̂(x)dx for some density ϱ̂(x). We are
then interested in the dynamical large deviations of the trajectory ζN,t, with rate
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function Jtr : D([0, T];M) → [0, ∞]. Given that in the multi-layer case the rate
function is only finite for trajectories of measures with density, the same must also
hold for the total density.

Let β̂ ∈ D([0, T];M) have density ϱ̂t(x). For α̂ ∈ D([0, T];MV), we denote
α̂ ∼ β̂ if α̂ has a density ϱ̂t(x, σ) such that ϱ̂t(x) = ϱ̂t(x, 1) + ϱ̂t(x,−1). The
contraction principle then tells us that

Jtr(β̂) = inf
α̂∼β̂
Itr(α̂). (6.5.8)

However, for most α̂ this rate function will be infinite. Therefore we would like to
restrict this infimum to only those trajectories for which the rate function is finite.

By Lemma 6.5, we know that if Jtr(β̂) < ∞, then the density ϱ̂t(x) must satisfy
the hydrodynamic limit from Section 6.5.1 for some H̃(1)

t (x). However, a priori,

this function H̃(1)
t (x) is not unique. Therefore we need to establish a relation

between the different possible solutions.
Given a trajectory ϱ̂t(x), then by (6.5.3) a corresponding multi-layer trajectory

ϱ̂t(x, σ) has to satisfy
ϱ̂t(x) = ϱ̂t(x, 1) + ϱ̂t(x,−1),

˙̂ϱt(x) = −∂x(ϱ̂t(x, 1)− ϱ̂t(x,−1)).

(6.5.9)

Let ϱ̂
(1)
t (x, σ) and ϱ̂

(2)
t (x, σ) be two such trajectories that satisfy this. We then find

that 
ϱ̂
(1)
t (x, 1)− ϱ̂

(2)
t (x, 1) = ϱ̂

(2)
t (x,−1)− ϱ̂

(1)
t (x,−1),

∂x

(
ϱ̂
(1)
t (x, 1)− ϱ̂

(2)
t (x, 1)

)
= ∂x

(
ϱ̂
(1)
t (x,−1)− ϱ̂

(2)
t (x,−1)

)
.

(6.5.10)

Combining both, we find that

∂x

(
ϱ̂
(1)
t (x, σ)− ϱ̂

(2)
t (x, σ)

)
= 0, (6.5.11)

meaning that the difference between two solutions can differ at most by a time-
dependent constant, i.e.,

ϱ̂
(2)
t (x, σ) = ϱ̂

(1)
t (x, σ) + σct (6.5.12)

for some function ct : [0, T]→ R such that ϱ̂
(1)
t (x, σ) + σct ≥ 0 (the last part since

we can not allow for negative densities). Furthermore, for the rate functions to
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be finite, both trajectories have to satisfy the weakly perturbed hydrodynamic
equation, i.e.,

˙̂ϱ(1)t (x, σ) = −σ∂x ϱ̂
(1)
t (x, σ) + eσH̃(1)

t (x)ϱ̂
(1)
t (x,−σ)− e−σH̃(1)

t (x)ϱ̂
(1)
t (x, σ),

˙̂ϱ(2)t (x, σ) = −σ∂x ϱ̂
(2)
t (x, σ) + eσH̃(2)

t (x)ϱ̂
(2)
t (x,−σ)− e−σH̃(2)

t (x)ϱ̂
(2)
t (x, σ).

(6.5.13)

for some H̃(1) and H̃(2). Plugging in (6.5.12), we find that

σċt + 2σ cosh(H̃(2)
t (x))ct

=

(
eσH̃(2)

t (x) − eσH̃(1)
t (x)

)
ϱ̂
(1)
t (x,−σ)−

(
e−σH̃(2)

t (x) − e−σH̃(1)
t (x)

)
ϱ̂
(1)
t (x, σ).

(6.5.14)

This has the following solution for H̃(2)
t (x)

H̃(2)
t (x) = − log

−bt(x) +
√

bt(x)2 + 4(ϱ̂(1)t (x, 1) + ct)(ϱ̂
(1)
t (x,−1)− ct)

2(ϱ̂(1)t (x, 1) + ct)

 ,

(6.5.15)

where

bt(x) = ċt + eH̃(1)
t (x)ϱ̂

(1)
t (x,−1)− e−H̃(1)

t (x)ϱ̂
(1)
t (x, 1). (6.5.16)

The large deviation rate function of the sum ϱ̂t(x) is then given by

Jtr(β̂) = inf
ct

ϱ̂
(1)
t (x,σ)+σct≥0

∫ T

0

〈
ϱ̂
(1)
t (x, σ) + σct, e−σH̃(2)

t (x)(−σH̃(2)
t (x)− 1) + 1

〉
L2(V)

dt

(6.5.17)

where ϱ̂
(1)
t (x, σ) is any trajectory satisfying the weakly perturbed hydrodynamic

equation and such that ϱ̂t(x) = ϱ̂
(1)
t (x, 1) + ϱ̂

(1)
t (x,−1).
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S U M M A RY

In this thesis we study scaling limits and other properties of multi-layer particle
systems. The idea of a multi-layer particle system is to consider particles on
multiple copies of a spatial domain, where particles can exhibit different behavior
on each layer. In this way, the layers represent internal states that a particle can
have and transition into or out of.

The multi-layer particle systems we consider are a multi-layer version of the
Simple Exclusion Process (SEP), a multi-layer version of the Simple Inclusion
Process (SIP) and run-and-tumble particles. The latter serves as a toy model
for active particles, i.e., particles that generate their own motion through energy
consumption.

In the run-and-tumble particle model, particles tend to move in a certain direc-
tion on each layer. This active component of the dynamics drives the system out
of equilibrium, which motivates the study of such systems. Moreover, when we
sum over the layers to obtain the total number of particles at a given location, we
obtain a new process which is no longer Markovian. However, after having derived
scaling limits for the multi-layer model, we can extract results on the total density
of particles by summing the equations over the layers and deriving a closed-form
equation.

In Chapter 3 we aim to characterize the ergodic measures of multi-layer particle
systems on multiple copies of the lattice Zd. The particle systems we consider are
the multi-layer versions of the SEP and SIP and of the run-and-tumble particle
process. We prove a general result stating that, under the existence of a successful
coupling and a polynomial duality result, one can characterize the tempered (i.e.,
having finite duality moments) ergodic measures of the system. We apply this
result on the aforementioned systems and find that the ergodic measures are given
by product measures with marginals of constant density: binomial measures for
the multi-layer SEP, negative binomial measures for the multi-layer SIP and Poisson
measures for run-and-tumble particles.

In Chapter 4 we further investigate the run-and-tumble particle process, this
time on the multi-layered version of the one-dimensional lattice Z. We derive the
hydrodynamic limit and the stationary fluctuations. For the latter, we consider
the process started from the ergodic product Poisson measures. The results are
coupled systems of (S)PDE’s, one for each layer. We then turn to the case of two
layers and sum up the equation in order to find a hydrodynamic and fluctuation
result for the total density. Finally, by applying Schilder’s theorem, we derive a
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large deviation rate function for the SPDE describing these fluctuations, which
includes memory terms.

In Chapter 5 we consider a multi-species (a concept closely related to multi-layer)
version of the SEP and prove a large deviation principle, generalizing the result
of Kipnis, Olla and Varadhan in [62]. The proof relies on the introduction of a
weakly asymmetric version of the process and a replacement lemma, which is
needed to close the evolution equation for the empirical density under the weakly
asymmetric dynamics.

In Chapter 6 we return to run-and-tumble particles with an added mean-field
interaction. In this model we look at two layers of the discrete torus where the
rate for a particle to jump to the other layer depends on the magnetization of the
system, i.e., the relative difference in the number of particles on each layer. In
this way, we can model particles that tend to cluster. We derive a hydrodynamic
equation dependent on the evolution of the magnetization and afterwards we
prove a large deviation principle. Lastly, as a first step toward establishing a
large deviation principle for the total density, we apply the contraction principle
and restrict the set of admissible multi-layer trajectories corresponding to a given
deviation in the total density.



S A M E N VAT T I N G

In deze scriptie bestuderen we schalingslimieten en andere eigenschappen van
meerlaagse deeltjesystemen. Het idee van een meerlaags deeltjesysteem is om
deeltjes te beschouwen op meerdere kopieën van een ruimtelijk domein, waarbij de
deeltjes op elke laag verschillend gedrag kunnen vertonen. Op deze manier verte-
genwoordigen de lagen interne toestanden waarin een deeltje zich kan bevinden
en waar het naar kan overgaan of uit kan terugkeren.

De meerlaagse deeltjesystemen die we beschouwen zijn een meerlaagse versie
van het Simpele Exclusieprocess (SEP), een meerlaagse versie van het Simpele
Inclusieprocess (SIP), en run-and-tumble-deeltjes. Het laatstgenoemde model dient
als een voorbeeldmodel voor actieve deeltjes, dat wil zeggen deeltjes die hun eigen
beweging genereren door energieverbruik.

In het run-and-tumble-deeltjesmodel hebben deeltjes de neiging zich in een
bepaalde richting te bewegen op elke laag. Deze actieve component van de
dynamica drijft het systeem uit evenwicht, wat de motivatie vormt om dit soort
systemen te bestuderen. Bovendien, wanneer we over de lagen sommeren om
het totale aantal deeltjes op een gegeven locatie te verkrijgen, resulteert dit in een
nieuw proces dat niet langer Markoviaans is. Nadat we echter schalingslimieten
voor het meerlaagse model hebben afgeleid, kunnen we resultaten verkrijgen over
de totale dichtheid van deeltjes door de vergelijkingen over de lagen te sommeren
en een gesloten vergelijking af te leiden.

In Hoofdstuk 3 richten we ons op het karakteriseren van de ergodische maten van
meerlaagse deeltjesystemen op meerdere kopieën van het rooster Zd. De systemen
die we beschouwen zijn de meerlaagse versies van het SEP, het SIP en het run-and-
tumble-deeltjesproces. We bewijzen een algemeen resultaat dat stelt dat, onder
het bestaan van een geslaagde koppeling en een polynoom-dualiteitsresultaat,
men de getemperde (dat wil zeggen met eindige dualiteitsmomenten) ergodische
maten van het systeem kan karakteriseren. We passen dit resultaat toe op de
bovengenoemde systemen en vinden dat de ergodische maten worden gegeven
door productmaten met marginalen van constante dichtheid; binomiale maten
voor het meerlaagse SEP, negatieve binomiale maten voor het meerlaagse SIP, en
Poisson-maten voor run-and-tumble-deeltjes.

In Hoofdstuk 4 onderzoeken we het run-and-tumble-deeltjesproces verder, dit-
maal op de meerlaagse versie van het eendimensionale rooster Z. We leiden de hy-
drodynamische limiet en de stationaire fluctuaties af. Voor het laatste beschouwen
we het proces gestart vanuit de ergodische product-Poisson-maten. De resultaten
zijn gekoppelde systemen van (S)PDE’s, één voor elke laag. Vervolgens bekijken
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we het geval van twee lagen en sommeren we de vergelijkingen om een hydrody-
namisch resultaat en een fluctuatie-resultaat voor de totale dichtheid te verkrijgen.
Ten slotte, door gebruik te maken van de stelling van Schilder, leiden we een grote
afwijkingen ‘rate‘ functie af voor de SPDE die deze fluctuaties beschrijft, en die
geheugentermen bevat.

In Hoofdstuk 5 beschouwen we een ‘multi-species’ versie (een concept nauw
verwant aan meerlagen) van het SEP en bewijzen we een grote afwijkingen principe,
waarmee we het resultaat van Kipnis, Olla en Varadhan in [62] generaliseren. Het
bewijs is gebaseerd op de introductie van een zwak asymmetrische versie van het
proces en een vervangingslemma, dat nodig is om de evolutievergelijking voor de
empirische dichtheid onder de zwak asymmetrische dynamica te sluiten.

In Hoofdstuk 6 keren we terug naar run-and-tumble-deeltjes, nu met een
toegevoegde ‘mean field’ interactie. In dit model bekijken we twee lagen van
de discrete torus waarbij de sprongkans van een deeltje naar de andere laag
afhangt van de magnetisatie van het systeem, dat wil zeggen het relatieve verschil
in het aantal deeltjes op elke laag. Op deze manier kunnen we deeltjes modelleren
die de neiging hebben te clusteren. We leiden een hydrodynamische vergelijking
af die afhangt van de evolutie van de magnetisatie en bewijzen vervolgens een
grote afwijkingen principe. Tot slot, als eerste stap in het opstellen van een grote
afwijkingen principe voor de totale dichtheid, passen we het contractieprincipe toe
en beperken we de verzameling toegestane meerlaagse trajecten die overeenkomen
met een gegeven afwijking in de totale dichtheid.



A C K N O W L E D G E M E N T S

Writing the acknowledgements of this thesis is both easy and difficult, since there
are just so many people to thank.

First of all, I want to express my gratitude to my promotor and supervisor.
Frank, thank you for piquing my interest in interacting particle systems many
years ago, for supervising my Master’s thesis, and for giving me the opportunity
to continue this research in a PhD. I have learned a lot over these past years and a
lot of that is due to your knowledge and your ability to make me feel motivated
and refocused after our meetings, especially whenever I felt lost.

I would also like to thank my copromotors, Richard and Elena.
Richard, I really enjoyed our mathematical conversations where we started

with nothing and just let ideas run. It did not always lead to anything concrete,
but it was always interesting to hear your intuition behind a difficult problem.
Furthermore, I will never forget the day you took some PhDs water-skiing.

Elena, although neither of us knew you were involved in my PhD until after half
a year, I am very happy that you were. I always enjoyed that, for every meeting, we
first spent half an hour talking about anything but mathematics but just allowed
ourselves to vent over the silliest things.

Furthermore I would like to thank the rest of my committee — Jan van Neerven,
Christian Maes, Stefan Grosskinsky, Mark Peletier and Aad van der Vaart — for
taking the time to read my thesis. Christian, thank you for allowing me to work in
Leuven for a month and for your wonderful sense of humor.

Then I want to thank all the people in the probability department which made
the office the friendly and welcoming place that it is. Starting with the staff
— Dorota, Cor, Rik, Julia, Tina, Antonis, Özge, Robert, Fenghui, Ludolf, André
and Erdal — and the PhDs and postdocs I’ve had the pleasure of working with
throughout the years — Serena, Vicente, Simone, Bart, Jan-Tino, Anne, Yanyan,
Chenguang, Jonathan, Jasper, Berend, Stefan, Yago, Victor. Thank you for all the
lunches shared and for all the interesting conversations that came with them. I
want to give some special thanks to Serena and Vicente for being there with me
from the beginning until the end, and to Jan-Tino for the same enthusiasm for
board games. Lastly, I want to thank Francesco Casini for visiting Delft multiple
times and for a great collaboration.

Also the PhDs in the Statistics department always brought the necessary fun
(and the necessary drama). Thank you Ardjen, Marc, Andrea, Sebastiano, Lasse,
Thorben, Francesco, Chris, Wieger, Dominique and Koen. Especially Marc for the
fun and Ardjen for the drama.

195



196 bibliography

Furthermore, I want to give a special thanks to Andreas and Jeroen. If it weren’t
for all those long days we spent together at Pulse, I’m not sure this thesis would
ever have been completed.

Outside of my PhD life, there were a lot of people who made sure I was able to
enjoy my life beyond my research.

Thank you Bouke, Casper, Rob and Stefan for the much-needed vacations and
for describing, mimicking and humming words out of a pan.

Thank you Nick, Victor and Joël for letting me escape reality from time to time
through D&D.

Thank you to DWH/Outsite for providing me with a group of friends larger
than I ever dared to dream of — Niv, Jelle, Dante, Govert, Quinten, Rory, Wouter,
Leon, Wessel, Ward, Cas, Sharwin, Ingmar, Max, Sander, Thomas, Alexandru, Didi,
Wieke and many others.

Thank you Andries, Ronald, Reinier, Carlos, René, Sander, Friso, Bart, Chris and
Roger for being willing to spend 7 hours with me in a single evening to play just
one boardgame.

Thank you Isabelle, Bente, Casper, Sjoerd, Joris, Stijn and Thijs-Jan for keeping
the tradition alive and still meeting once a year for an amazing Christmas dinner.

Thank you Femke, Michael and Merel (the Smatjes) for being the most fun
housemates ever.

Thank you to my colleagues from Stanislascollege Westplantsoen for warmly
welcoming me back and making me feel at home again after leaving to start this
PhD.

Thank you Dennis & Colin for letting me take care of your cats while you are
away.

Thank you Scott for all the nerdy times we spent together.
And finally thank you to my family — pap, mam, Wietske, Jelle, Miguel, Bente

and Humpie. Thank you for always being there for me when I needed you. And
thank you Daan, for sharing your life with me these past years.



C U R R I C U L U M V I TA E

Hidde van Wiechen was born in Gouda on the 4th of September 1996 and lived
all of his youth in Boskoop, a village nearby. After completing high school in
2014 at the Coornhert Gymnasium in Gouda, he moved to Delft to study Applied
Mathematics at the TU Delft.

During his Bachelor, he acquired a 2
nd-degree teaching qualification as part of

his minor after succeeding his internship at the Stanislascollege Westplantsoen in
Delft. The next year he became a substitute teacher at this school. He then obtained
his Bachelor’s degree in 2018 with his thesis “On different characterizations of a
normal distribution” under supervision of Prof.dr. Mark Veraar.

His studies continued with the master in Applied Mathematics, during which he
was a part-time teacher at the Stanislascollege Westplantsoen, and he also acquired
his 1

st-degree teaching qualification through another internship at this school.
In 2021 he graduated under supervision of Prof.dr. Frank Redig with his thesis
“Ergodic theory and hydrodynamic limit for run-and-tumble particle processes”.

In September 2021 he started his PhD in the Applied Probability group of TU
Delft under the joint supervision of Prof.dr. Frank Redig, Dr. Richard Kraaij and Dr.
Elena Pulvirenti. In August 2025 he returned to the Stanislascollege Westplantsoen
as a full-time mathematics teacher.

197





P U B L I C AT I O N S

Published

1. “Ergodic theory for multi-layer particle systems”
with F. Redig (TU Delft)
Published in: Journal of Statistical Physics, 190(4) (2023), article 88

2. “Stationary fluctuation for run-and-tumble particles”
with F. Redig (TU Delft)
Published in: Markov Processes and Related Fields, 30(2) (2024), 297-331

3. “Large deviations of the multi-species stirring process”
with F. Casini (KU Leuven) and F. Redig (TU Delft)
Published in: Electronic Journal of Probability, 30 (2025), 1-36

Submitted

1. “Large deviations of mean-field run-and-tumble particles”
with E. Pulvirenti (TU Delft) and F. Redig (TU Delft)

199


	Overview of topics
	 Statistical physics
	Interacting particle systems
	Ergodic theory
	Scaling limits
	Multi-layer particle systems
	Outline of this Thesis

	Mathematical Background
	Continuous-time Markov processes
	Invariant and ergodic measures
	Mathematical Tools for Markov processes

	Ergodic theory of multi-layer interacting particle systems
	Introduction
	Models and their duality properties
	Homogeneous factorized duality polynomials
	Existence of a Successful Coupling

	Stationary fluctuations of run-and-tumble particles
	Introduction
	Basic notations and definitions
	Stationary fluctuations
	Scaling limits of the total density
	Proof of Theorem 4.3
	Hydrodynamic limit

	Large deviations of the Multi-species Stirring process
	Introduction
	The multi-species stirring process
	Hydrodynamic limit of the weakly asymmetric model
	Large deviations
	Proof of the Hydrodynamic limit of the weakly-asymmetric process
	Proof of the superexponential estimate

	Large deviations of mean-field run-and-tumble particles
	Introduction
	Run-and-tumble particles with mean-field switching rates
	Large deviations
	Proof of the hydrodynamic limit
	A note on the total density of the RTP process

	Bibliography
	Summary
	Samenvatting (Dutch summary)
	Acknowledgements
	Curriculum Vitae
	Publications



