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Abstract
The objective in this article is to extend the applicability of Newton’s method for solving
Banach space valued nonlinear equations. In particular, a new semi-local convergence crite-
rion for Newton’s method (NM) based on Kantorovich theorem in Banach space is developed
by application of the Heisenberg Uncertainty Principle (HUP). The convergence region given
by this theorem is small in general limiting the applicability of NM. But, using HUP and the
Fourier transform of the operator involved, we show that it is possible to extend the applica-
bility of NMwithout additional hypotheses. This is done by enlarging the convergence region
of NM and using the concept of epsilon-concentrated operator. Numerical experiments fur-
ther validate our theoretical results by solving equations in case not covered before by the
Newton–Kantorovich theorem.
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Introduction

Newton’s method (NM) considers the following equation

�(x) = 0 (1)

where � is mapping a convex subset S of a Banach space T into a Banach space W . NM,
originally designed for polynomials, is to find a solution of Eq. (1) with initial value x0, by

xn+1 = xn − �
′
(x)−1

�(x), (n ≥ 0)(x0 ∈ S), (2)

where �
′
is the Frêchet-derivate of � (Kantorovich 1982).

During recent years, various strategies have been developed to improve the convegence
of NM by authors such as Traub [24–26] Argyros [1,3–5], Gutiérrez [13–15], Proinov [20]
and others. For instance, Traub and Woźniakowski [26] established an optimal convergence
condition for Newton iteration in a Banach space. Moreover, Turkyilmazoglu [28] expands
the error analysis to obtain an algorithm based on the iterative schemes to improve the
convergence of NM.

Werner Karl Heisenberg published a paper in 1927 and described his famous theory
which is called the Heisenberg Uncertainty Principle(HUP). We describe this theory by the
following formula, �x�p > h

2π , where x is position and p is momentum.
The Heisenberg uncertainty principle as described by [18] is the formula∫

x2|�(x)|2dx
∫

ξ2|�̂(ξ)|2dξ ≥ 1

4
‖�‖2, (3)

where �̂(ξ) = 1√
2π

∫
�(x)e−iξ xdx is the Fourier transform of the function �. HUP states

that a non-zero function and its Fourier transform cannot both be concentrated.
During the past decades, HUP has gained attentions in various fields including signal

processing, neuroscience [19,21]. Historically, it goes back to the 1930s when Stewart [22]
presented the Uncertainty Principle in the form �ν�t , where �ν is the frequency and �t
is the time the signal lasts. In 1946, Gabor [11] introduced his remarkable theorem which is
called the Gabor transform. Donoho and Strak [8] applied this inequality to signal recovery.
Folland and Sitaram [10] surveyed various mathematical aspects of HUP. Yang et al. [29]
described the mathematical aspects of HUP using Fourier analysis.

The main objective of the present article is to develop a semilocal criterion convergence
of NM under the Newton–Kantorovich theorem by HUP. Notice that the convergence region
of NM under the Newton–Kantorovich convergence criteria is small in general, limiting the
applicability of the method.We are motivated by this observation. Related work can be found
in [27].

The novelty of our article lies in the fact that we extend the applicability of NM (i.e we
enlarge the convergence region) using HUP. Our idea can be used to extend the applicability
of other methods along the same lines.

The rest of the article contains the background in “Background” section, the semilocal con-
vergence analysis in “Semilocal Convergence” section followed by the numerical examples
and the conclusion in “Numerical Examples” and “Conclusion” sections, respectively.

Background

In this section we state some definitions and convergence theorems.
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Definition 1 Suppose that 0 < p < ∞ and � is a complex measurable operator on S. Then
the L p-norm of � is defined by

||�||p =
(∫

S
|�|pdμ

) 1
p

.

Definition 2 We define the Lipschitz condition in the domain S with constant K by

‖�(x) − �(y)‖ ≤ K‖x − y‖, x, y ∈ S, (4)

where S = B(x0, r) = x ∈ T ; ‖x − x0‖ < r .

Theorem 1 [16]. We suppose that � is a Frêchet differentiable operator defined on an open
ball then we have

‖�́(x0)
−1

�(x0)‖ ≤ a, (5)

‖�
′
(x0)

−1[�′
(x) − �

′
(y)]‖ ≤ b‖x − y‖, x, y ∈ S, ab <

1

2
. (6)

Definition 3 [9] Suppose that yn is a sequence in Banach space T and κn is a scalar sequence.
We say that κn is a majorizing sequence of yn if ‖yn − yn−1‖ ≤ κn − κn−1, for all n ∈ N .

Theorem 2 ([14]) Suppose� is a twice differentiable operator defined in a ball� = B(x0, r).
Moreover, suppose that the inverse of �

′
(x0) exists and the following conditions hold

‖�
′
(x0)

−1
�(x0)‖ ≤ a, ‖�

′
(x0)

−1
�

′′
(x0)‖ ≤ c

‖�
′
(x0)

−1[�′′
(x) − �

′′
(x0)]‖ ≤ b‖x − x0‖, x ∈ S.

Consider the following polynomial defined by

p(x) = b

6
x3 + c

2
x2 − x + a

We suppose that this polynomial has two positive roots r1, r2(r1 < r2) and r1 ≤ R, then NM
converges to x∗, solving Eq. (1).

Theorem 3 (The classical uncertainty principle inequality) [6] Suppose that � ∈ LP (Rd).
Then, we have

‖�‖P ≤ C

(
‖�‖− 1

2
P ‖�̂‖

1
2
P

)
, (7)

where �̂ is the Fourier transform of � and C is a constant which depends only on P and d.

The value of C for � ∈ LP (Rd) is C ≥ (2
√

π)P

d .

Theorem 4 ([12])We supose that P and Q are Banach spaces. Define r : P → Q, h : Q →
P and g : P → P that are bounded linear operators, where gx = hx for x ∈ P ∩ Q.
Moreover, suppose S ⊂ Q

′
. Then, for constants e1, e2 > 0 the following conditions hold:

‖P∗β‖P ′ ≤ e1, β ∈ S, (8)

‖hy‖P ≤ e2sup|β(y)| : β ∈ S, y ∈ r Q, (9)

If x, y ∈ P, ry ∈ P and ‖x‖P = 1,

‖x − y‖P ≤ σ, ‖x − ry‖P ≤ ε, ‖x − gx‖P ≤ τ, (10)
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then
e1e2(1 + σ) ≥ 1 − τ − ‖g‖ε. (11)

Proof. See [12].

Definition 4 Suppose that � is an operator on a measurable set � and g(t) is a function
which vanishes outside � such that ‖� − g‖ ≤ ε so, � is ε-concentrated. Moreover, �̂ is
ε-concentrated on a measurable set  if there is an operator h(w) vanishing outside  with
‖�̂ − h‖ ≤ ε [8].

Theorem 5 ([8]) Let � and  be measurable sets and suppose there is a Fourier transform
pair (�, �̂), with � and �̂ of unit norm, such that � is ε�-concentrated on � and �̂ is ε-
concentrated on . Then, the following assertion holds

|||�| ≥ (1 − (ε� + ε))2. (12)

Proof See [8]. �
Lemma 1 Suppose that � ∈ L2(Rd) satisfies supp(�̂) ⊂ Br (0), where Br (a) denotes the ball
of radius r about a for all multi-indices α. Then, we have

‖∂α
�‖2 ≤ (2πr)|α|‖�‖2 (13)

Proof See [23]. �

Semilocal Convergence

We explain a method using HUP to weaken the conditions of the NM convergence.
We construct for this purpose a majorizing sequence according to the proposed condition

on [4] which is given by

κ0 = 0, κ1 = η, κn+2 = κn+1 +
∫ t
0 ω(θ(κn+1 − κn))d(κn+1 − κn)

1 − ω0(κn+1)
, n = 0, 1, 2, . . . ,

(14)
where ω is an operator satisfying the Lipschitz-type condition ‖�

′
(x0)−1(�

′
(u) − �

′
(v))‖ ≤

ω(‖u − v‖) which is non-decreasing and continuous.
Generally, two types of ω(x) are defined

• ω(x) = Kx for x ≥ 0, which obtains the Lipschitz case.
• ω(x) = Kxμ for x ≥ 0 and μ ∈ [0, 1), we get the Hölder case.

In this case, we supposed that ω(x) = xec and apply the following majorizing sequence κn

κ0 = 0, κ1 = l, κn+1 = κn + kbeC (κn − κn+1)
1+θ

(1 + θ)(1 − zbtθn )
, (15)

where l = ‖�
′
(x0)−1

�(x0)‖, z = ‖�
′
(x0)−1‖, θ = 1 and C = 2πr .

Theorem 5 describes the common feature of the uncertainty principle and provides the
following condition

|||�| < 1. (16)

We extend this condition to the Newtonmethod onBanach space and applied it on the interval
of S to find an optimal radius of the ball of onvergence.We have the following corollary, as
a consequence of Theorem 5
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Corollary 1 Suppose that� is an operator and� : S = [a, b] ⊂ T → � = [�(a), �(b)] ⊂ W
where T and W are Banach spaces. From the Theorem 5 we deduced that if operator � is ε-
concentrated on the interval S and its Fourier transform is not ε-concentrated so the operator
� has solution for �(x) = 0.

By applying theKantorovich theorem [16] and proposed approacheswe state the following
theorem.

Theorem 6 Let T and W be Banach spaces and � : S = [a, b] ⊂ T → � = [�(a), �(b)] ⊂
W is a non-zero operator and is ε-concentrated also, we define its Fourier transform as
�̂ : Ŝ → �̂. Moreover, there exists a point x0 ∈ S, such that �

′
(x0)−1 exists on S, and the

following conditions hold:

‖�
′
(x0)

−1
�(x0)‖P ≤ γ, (17)

‖�
′
(x0)[�′

(x) − �
′
(y)]‖ ≤ b‖x − y‖ ≤ h, h = bμ, μ = 1 − (τ + ‖g‖ε + ab)

ab
,(18)

Then, sequence yn, (n ≥ 0) developed by Eq. (2) exists, converges to x
′
,which is a solution

of �(x) = 0, and
‖yn+1 − yn‖ ≤ κn+1 − κn . (19)

Proof Suppose B̄r (x0) ⊂ S and� is ε-concentrated on themeasurable set S. Hence, according
to the Theorem 5 and Eq. (16) the Fourier transform of � cannot be ε-concentrated on the
measurable set Ŝ and we have |S||Ŝ| < 1. Next, we suppose that � ∈ LP (Rd), � is Fréchet
differentiable and�

′
(x0)−1 exists. Then, by substituting the Eqs. (7) and (13) inKantorovich’s

condition we have

‖�
′
(x0)

−1
�(x0)‖P ≤ ‖�

′
(x0)

−1‖‖�(x0)‖P

≤ 1

(2πr)
‖�(x)‖P

(
C

(
‖�(x)‖

1
2
P‖�̂(ξ)‖

1
2
P

))

=
(

C

2πr

) (
‖�(x)‖

3
2
P‖�̂(ξ)‖

1
2
P

)
.

So, we get

‖�
′
(x0)

−1
�(x0)‖P ≤ γ, γ =

(
C

2πr

) (
‖�(x)‖

3
2
P‖�̂(ξ)‖

1
2
P

)
. (20)

In Theorem 4 for Eq. (10), we choose g(x) = b
6 x

3 + c
2 x

2 − x + a. Then, by applying the
Eq. (6) we have ‖x − y‖ ≤ σ . So, we obtain

‖�
′
(x0)

−1[�′
(u) − �

′
(v)]‖ ≤ ‖u − v‖ ≤ bσ < 1, x, u, v ∈ S.

We prove Eq. (19) by mathematical induction on n [1,7]. We have for yn defined in Eq. (2),
and κn defined in Eq. (15)

‖yn − yn−1‖ ≤ κn − κn−1,∀n ∈ N , (21)

we observe that ‖y1 − y0‖ = ‖�
′
(x0)−1

�(x0)‖ ≤ γ = κ1 − κ0.
We suppose that y j are well defined that the Eq. (21) holds for all j ≤ n. Next, we prove

‖yn+1 − yn‖ ≤ κn+1 − κn for all j ≥ 0 . We get

‖y j+1 − y j‖ ≤
j+1∑
i=1

‖yi − yi−1‖ ≤
j+1∑
i=1

(κi − κi−1) = κ j+1 − κ0 = κ j+1,
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Hence, we obtain

‖y j + ρ(y j+1 − y j ) − y0‖ ≤ κ j + ρ(κ j+1 − κ j ), ρ ∈ [0, 1].
Using Eq. (2) we have

�(x j+1) = �(x j+1) − �(x j ) − �
′
(x j )(x j+1 − x j )

=
∫ 1

0
[�′

(x j + ρ(x j+1 − x j )) − �
′
(x j )](x j+1 − x j )dρ.

Therefore, from Eq. (18) we obtain

‖�
′
(x0)

−1
�(x j+1)‖ ≤

∫ 1

0
‖�

′
(x0)

−1[�′
(x j + ρ(x j+1 − x j ) − �

′
(x j ))]‖‖dρ‖x j+1 − x j‖

≤ b

2
‖y j+1 − y j‖2 ≤ b

2
(κ j+1 − κ j )

2.

We have from the Banach Lemma [3,17] that f
′
(x) is invertible for all x ∈ B(x0, r) and

‖�
′
(x j+1)

−1
�

′
(x0)‖ ≤ 1

1−b‖y j+1−y0‖ .
This Theorem provides conditions which improve the convergence conditions of the Kan-

torovich theorem. �

Numerical Examples

In this section, we apply the preceding results to solve three equations.

Example 1 Suppose that S = [−1, 1],� = R and x0 = 0. We have the polynomial � : S →
� as the following [13]

�(x) = 1

6
x3 + 1

6
x2 − 5

6
x + 1

3
.

Then, we obtain

r = 1, ‖�(x)‖ = 0.8168, ‖�(0)‖ =
√
2

3
, ‖�

′
(0)‖ = 5

3
.

The Fourier transform of � can be calculated as

�̂(ξ) = 2π
δ(ξ)

3
− πδ(1, ξ)5i

3
− πδ(2, ξ)

3
− πδ(3, ξ)i

3
,

where δ denotes the Dirac’s delta function.

Besides by discretization of the function and calculating the norm of the discrete Fourier
transform, we obtain ‖�̂‖ = 2.7165. We take C = √

π . By substituting these values in
condition (17), we obtain

‖�
′
(x0)

−1
�(x0)‖1 ≤ γ = 0.150484.

Hence, Kantorovich’s condition cannot guarantee that Newton’s method converges [13]. But,

our convergence condition is satisfied. The root on this interval is
∗
x = 0.462598.
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Example 2 Consider T = W = R, S = [√2 − 1,
√
2 + 1], x0 = √

2. Define operator � on
S by [2]

�(x) = 1

6
x3 −

(
2

3
2

6
+ 0.23

)
.

We have C = √
π and ‖�(x)‖ = 0.9470, ‖hbar(x0)‖ = 0.32527, ‖�

′
(x0)−1‖ = 1

2 ,

�̂(ξ) = −1.4028.πδ(ξ) − πδ(3,ξ)i
3 and for the discrete Fourier transform, we obtain ‖�̂‖ =

3.2617. So, we get
‖�

′
(x0)

−1
�(x0)‖ ≤ γ = 0.094511.

So, our condition is satisfied. The root is
∗
x = 1.61450.

Example 3 Consider T = W = R and operator � defined on S = [−1, 1] as [4]
� = e−|x | − 1.

For this case the solution is
∗
x = 0. By following Theorem (6) we have ‖�‖ = (4e−1 − e−2 −

1)1/2 = 0.5798, �̂(ξ) = 2
ξ2+1

− 2πδ(ξ), ‖�̂‖ = 1.9414 and ‖�
′ ‖ = 1 − e−2 = 0.8647 on

the interval S = [−1, 1].
Beside, we take C = √

π and get

‖�
′
(x0)

−1
�(x0)‖ ≤ γ = 0.173528.

Conclusion

We applied HUP to extend the applicability of NM. The obtained results in the numerical
examples section show the effectiveness of our approach. Despite these precise results, the
main issue in applying the suggestedmethod is computing aFourier transform for the operator.
To overcome this problem, we employ mathematical software such as Matlab.

We consider this paper as an early version of our work. Future studies could develop this
method by working on measurable sets S and Ŝ (see Theorem 6) to find an optimal radius of
the convergence ball and estimate an optimal function for the function of g(t) in Definition 4.
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