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preface
foreword

In one and a half year - starting from August 2005 - the idea of creating a
structural design optimisation fool grew to the realisation of a scripf, written in
VBA and using AutoCAD 2007 as a visualisation tool, which has the ability to
opfimise the allocation of a variable number of columns in a structural ftransfer
zone. An extended preliminary study is executed in (computational) structural
opfimisation - book two -, and aspects and characteristics of transfer zones,
modular dimensions, and structural grid layouts are discussed - book one. Based on
the knowledge of optimisation methods gained from the preliminary study phase and
the research stage, a design tool, infended fto be used in the conceptual and
preliminary design stage, is written, resulting in a VBA-script of over 4000 lines. A
test structure is presented in the addendum, including the determination of the
opfimal GA operafor paramefers.

This book is part of an infegral report containing all findings of the Master’s
thesis on structural optimisation for the Delft University of Technology, Faculty of
Civil Engineering and Geosciences, department of Building Engineering, and the
Structural Design Lab (SDL). Two books including an addendum form the complete
and final report of this Master's thesis.

book one: transfer zones in multi-use buildings and the development
and analysis of the optimisation tool

book two: Dbackground studies on structural optimisation

addendum: determination of the optimal GA operator parameters and the
presentation of test results based on example structures

The reader of the complete report will find that the emphasis is mainly on the
study info genetic algorithms and the onset of the design optimisation tool.

[It needs fo be mentioned that in this Master's thesis the adjective 'structural’ will
be used to name aspects considering building engineering and structural engineering
matters, rather than structural aspects in general]

Delft, January 2007

R.J. (Roel) van de Straat
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summary
general introduction

As more functional requiremenfs are implemented in one building, more pressure on
the structural designers, both archifects and building engineers, will be
transferred. Especially in dense urban areas, mulfi-use buildings usually have
several different layouts, for instance for an underground parking, a ground floor,
office floors, and mechanical floors. One of the main problems here is the transfer
of loads befween the differenft structural grid systems of the different functions,
and as a result, numerous structures are built and will be built with inefficient
transfer zones considering the volume of material needed for a floor or fthe
amount of reinforcement or prestressing needed. In lieu of making compromises in
the design of sfructural grid systems per function in order fo verfically align the
grid lines or grid bands, a structural fransfer zone in an intervening floor can be
designed. By designing an opfimal allocation of vertical orienfed structural
elements, loads can be transferred between the different structural grid systems,
without adversely affecting the functionality and usability of the intervening floor.

structural optimisation design tool

The Master's thesis ‘Optimisation of structural ftransfer zones in multi-use
buildings’ deals with the development of a computational structural design tool
based on an artificial intelligence method, that can determine the optimal solution
for the allocation of columns between fwo structural grid systems. Based on
genetic algorithms as an optimisation technique and by using basic and simple rules,
the design fool can be used for the defermination of size, angle, and placement of
load bearing columns of the inftervening floor. This tool, implemented in VBA and
using AutoCAD as a visualisation tool, allows the user to generate and optimise the
configuration of the load bearing elements for an arbitrary design, with the rules
following from the demands of several aspects of a structural and functional
design. With the addition of non-structural criteria (such as costs, aesthetics and
construction) the engineer can complete the design, and create an optimised design
that is based on the integration of the load bearing elements into a functionally
efficient building floor, rather than being only based on the stress-weight
opfimisation of the individual components.

summary



final report - book two

features of the tool

In the AutoCAD environment, the user needs to give the starting and end point of
the structural grid line graphically in both fthe bottom and top layer of the
infervening floor to determine the possible locafion of the columns. Subsequenftly,
the vertical poinft load, the horizontal point loads, and the moments in the cenfre
of gravity acting on fthe load transferring structure need fo be given numerically.
Based on the user input, the tool then randomly generafes several solufions in
what is called the first generation. By defermining the fitness, or in other words
the overall compliance with the prescribed desired conditions, the genetic algorithm
will use the best solutions to create a new population. This process, including
several other genetic algorithm operators, will be repeated until the fittest or
best solution per population remains unaltered during a number of generations.

concluding remarks

This Master’s thesis shows the capability of an artificial intelligence based design
opfimisation tool in a predefined setting of the allocation problem of columns in a
structural transfer zone. At the same moment, it is made clear that progress can
be made for the presenfed design tool and in scripting design tools for the building
practise in general. This also means that it can be expected that tools similar to
the tool presented in the Master's thesis will be used more often in the near
future. This, however, does not mean that the structural engineer will lose his or
her position, as hand calculations and logical interpretations of the result of the
design tools will always have to be made.

Roel van de Straat 0, 7
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Cubic Space Division, M.C. Escher, litho, 1925, 27 x 26,5 cm'
One another intersecting rectangular beams divide each other in pieces of
equal length, which each are the edge of a cube. So, the space is filled
to infinity with cubes of the same volume

' Escher [13]
0, 10 table of contents
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1 introduction

general introduction to the Master’s thesis project

The manual optimisation and iteration fo minimise weight, cost or for ease of
construction issues of structures are instances of non-computfational optimisation
that are widely used by structural engineers. This includes physical modelling, with
the hanging models of Antonio Gaudi as a striking example [Figure 1.1]. By making a
physical (scale) model and subjecting it to external loads, a designer can learn
about fhe internal forces in the structural elements and remodel the design
accordingly and thus working towards an optimum design. Therefore, when using an
opfimisation technique like physical modelling, an engineer is able to adapt the
initial design in such a way fthat it will meet the non-sfructural boundary
conditions, while corresponding to e.g. compression lines or minimal energy surfaces.

Fig. 1.1. Hanging model by Gaudi [www.gaudiclub.com,
August 2005] and a drawing of Hotel New
York, design by Gaudi [www.vitruvius.com.br,
August 2005] (Model and drawing are not of
the same project)

One of the advantages of physical modelling is the insight in the behaviour of the
modelled structure?. The same can hold ftrue for analysing a virtual model affer
subjecting it to a computational analysis, but often the output will give the user a

? Coenders [7]

Roel van de Straat 0, 11
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list confaining data without revealing how this data was obfained. But with two
disadvantages of physical modelling being two advantages of computational methods
(viz. the amount of time to make a model and the simplicity of adjusting the model),
together with the accuracy of the latter mentioned, engineers need to comprehend
the modelling of a structure based on computational optimisation technigues.

Many computational optimisation techniques, based on both ‘classical’ and ‘artificial
infelligence’ methods can be used by structural engineers in all kinds of fields as
well. Nevertheless, for building design only very basic design tools exist based on
opfimisation. Usually fthese fools only include a stress versus weight trade-off. One
field where an implementation of opfimisation-based design tools can give good and
maybe surprising results is in the allocation of structural elemenfts in fthe
structural fransfer zones of buildings befween different layers of functional
program and roufing. One example of this class of optimisation problems is shown in
the Groningen Twister project® [see also Section 5.1]. A similar technique that was
used for this project, or a fechnique based on other methods of optimisation can be
used for the defermination of size, angle, and placement of load bearing columns of
an infervening floor, such as a ground floor or a fechnical floor in a high-rise
building. The main reason for using computational methods in dealing with fhis
structural problem is the difficulty that comes with the different structural grids
of the different building floors, and that a logical allocation of the load bearing
elements might not be evident.

formulation of the general objectives

The goal of the final report is to demonstrate the use of optimisation algorithms
in building design for combinations of structural and non-structural criteria as well
as the usability of optimisation technigues for combined architectural and structural
engineering purposes. This, in particular for the allocation problem of load bearing
structural elements of intervening floors as an inifiation of the structural design
phase, with the use of genetic algorithms as an opfimisation fechnigue.

The demonstration will result in the evaluation of a structural design tool that
allows the user fo generate and opfimise the configuration of the load bearing
elements, with fthe rules following from the demands of several aspects of a
structural and functional design. With the addition of non-structural criteria (such
as costs, aesthetics and construction) the engineer can complete the design, and
create an optimised design that is based on the inftegration of the load bearing
elements info a functionally efficient building floor, rather than being only based on
the stress-weight optimisation of the individual components.

3 Scheurer [31]
0, 12 Chapter 1 - introduction
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composition of the report

book one - fransfer zones in mulfi-use buildings and the development and analysis
of the optimisation tool

Book one of the Master's fhesis deals with the recognition of the problem and a
possible solution in the form of a design opfimisation fool. As in multi-use
buildings, different functions and therefore different structural grid systems are
present difficulties can occur when these systems need fo be connected. The
necessity of fransfer zones will be discussed in Chapter 2, along with summaries of
two Master's theses of Building Engineering graduates. Chapter 3 deals with the
dimensions and different considerations concerning structural grid layout in multi-
use buildings. Main chapter of book one is Chapter 4. Here the different
characteristics and design aspects of the opfimisation fool will be illuminated. In
Chapter 5 the validation of the tool will be given on fthe basis of test runs.

book two - background studies on structural optimisation

The second book of the Master's thesis discusses the concepts of structural
opfimisation in building engineering, including an enumeration of optimisation methods
and an in-depth research on genetic algorithms. In Chapter 2, an infroduction into
structural optimisation is given and the philosophy behind it is discussed. Chapter 3
and & form the main chapters of book two. Here, the optimisation methods and in
particular the new artificial infelligence> method genetic algorithms are dealt with.
This book concludes with building projects where optimisation played a key role.

To conclude the introduction Q.Q. Liang [23] can be quoted by stating that the
“challenge in structural optimisation is to fransform it from an exotfic and fruitless
academic exercise info a rational and efficient design fool for practicing building
engineers”. The work presented in this Master's thesis is to answer this challenge.

=y

|

Fig. 1.2.  ‘'Columns’ on a predefined grid [www.uni-kl.de,
September 2005]

> Traditional artificial intelligence has been centered around the idea of representation of the world.
Toward the end of the 1980s, an exciting new field appeared in computational intelligence; ‘embodied
cognitive science’, also known as ‘new artificial intelligence’. It was suggested that the discussion about
thinking, logic, and problem solving was based on assumptions that come from our own introspection,
from how we ftend to see ourselves. Next, it was suggested that these assumptions need to be dropped,
that we so away with thinking and with what people call high-level cognition and focus on the
interaction with the real world. Intelligence must have body, hence ‘embodied intelligence’.

From ‘Understanding Intelligence’ by R. Pfeifer [29]

Roel van de Straat 0, 13



Master’s thesis

0 ’ 14 introduction



21

211

final report - book two

concepts of structural optimisation in building engineering

A general introduction into structural optimisation is given in Section 2.1 and deals
with the definitions of some basic tferms and some general concepts of structural
opfimisation in building engineering. In Section 2.2 three examples of optimal
structures and structural elements are given. Section 2.3 deals with the philosophy
behind structural optfimisation.

general introduction into structural optimisation

This section deals with the basic concepts and ideas concerning structural
optimisation. Main part of this section is subsection 2.1.2, where an introduction
info optfimisation is given. In the first subsection, some definifions are written down
in order to clarify the term ‘structural optimisation’.

definitions of basic terms in structural optimisation* ¢
First of all, the first term of structural optimisation is defined

struc-tur-al adj relating to or having or characterized by structure;
affecting or involved in sfructure or construction

As stated in the introduction of this Master's thesis the adjective ‘structural’ will
be used fo name aspects considering building engineering and structural engineering
matters, rather than structural aspects in general.

Secondly, the term optimisation is given a closer look. On the page affer the ftitle
page, it is written ‘Nil Satis Nisi Optimum’ Which in English means; 'Nothing
Satisfies But The Optfimum’, where that optimum is the best next thing affer
perfection and in some cases can be perfection.

“ Koenen [22]
> Longman Dictionaries [24]
¢ Lexico Publishing Group [38]

Roel van de Straat 0, 15
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The terms optimisation and perfection are often mixed up in spoken and wriften
language, which is actually not that sfrange as both ferms stand for the best or
most suitable condition.

op-timal ag/ the best or most suitable; extreme; highest; most
favourable or most desirable possible under a resfriction expressed or
implied

op-ti-mise v the way that something is performed, executed, carried out
or used as effective as possible; frying to make optimal; trying fo
reach the exftreme; make optimal; get the most out of; use best

op-ti-mum n the best or most suitable for a particular purpose; the best
possible siftuation; condifions; amount of time etfc. for something fo
happen under certain restrictions; the highest achievable; the poinf af
which the condifion, degree, or amount of somefhing is the most
favourable

per-fec-tion n the quality or condition of being perfect; the highest
degree of proficiency, skill, or excellence, as in some art;
faultlessness; in a way that nothing is wrong

As one looks closer fo these definitions the difference between optimum and
perfection reveals itself in the condition that optimal solutions/situations/conditions
are at their best under certain restrictions. These boundary conditions make that
one or more parameters of the function to be optimised possibly (or probably)
cannot reach fheir best value. But all together the non-optimal individual
parameters form the opfimised solution. To clarify this, consider a function that
confains bofth the summed area of fthe cross section of structural elements and the
summed load bearing capacity of the structural elements. It needs no explanation
that the optimised values for both parameters cannot occur as the minimum amount
of material and the maximum bearing capacity are contfradictory. This was also
stated by Harald Kloft of the Technische Universitat Kaiserslautern during the Free
Form Design Colloguium in Delft in September 2006. He explained optimisation as
‘bringing different parameters in balance, which is not always the perfect solution’.

Or in other words, the optimal solution might be the perfect solution, but when
parameters are contradictory, the optimal solution can be far from it. And so, as
throughout the ftext the words ‘opfimisation’ and ‘optimum structure’ have been
used extensively fthe opfimal shape in fhe confext of a sfructure subjected to
multiple loads and support condifions is fthe shape which best satisfied the
constraints, with the degree of satisfaction not necessarily the same for all the
constraints.

Chapter 2 - concepts of structural optmisation
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2.1.2 infroduction info sftructural opfimisation
general concepts of optimisation problems

According fo R.T. Haftka and M.P. Kamat’ the definition of an opfimal design is 'the
best feasible design according fo a pre-selected quantifative measure of
effectiveness’. The effectiveness is dependant, of course, of the boundary
conditions that have to be mef. The boundary condifions, in their furn, depend on
the design that a designer has in mind, with e.g. minimum cost, maximum stiffness
or minimum structural depth.

Structural optimisaftion is a fusion in the areas of engineering, mathematics,
(computational) science and technology based on a thick layer of structural design
capacities of the designer that has the goal of achieving the best performance for
a sfructure, be it a single beam, a space frame of a complete building. Because of
the mathematical complexities the topic of structural optimisation remained fto be of
more academic interest until last thirty years® Since then there has been a re-
focusing on the topic. The two push factors for this change are the availability of
high-performance computing power at low cost, and the rapid improvement in
algorithms used for design optimisation where thousands of design variables and
constraints may need fto be handled.

One of the simplest illustrations in studying optimality is the deftermination of the
opfimal cross section of a simply supported beam®. The ability of a given volume to
carry a load in the situation of a beam resting on simple supports with a point
load at the mid-span, as shown in the Figure 2.1, is used as a medium to present
part of the message as fo why structural optimisation is worthy of studying.

P

| L/2 L/2 |

Fig. 2.1. A simply supported beam with a point load P
at the mid-span

In order to maximise the bearing capacity of the beam the engineer can select from
a wide range of beam cross sections. This example is fo demonstrate how
significant the choice of cross section is.

" Haftka [14] [15]
® Burns [6]
° Kirsch [20]

Roel van de Straat 1, 1
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The design criterion in this case is that the maximum stress in the beam shall not
exceed some material limiting value, o . The relationship between the stress o
inside the beam and the bending moment M is given by

g=— 2.1

where y is the distance from the neutral plane at which the sfress is calculated.
For the simply supported beam the maximum momenf is at the mid-span of the
beam and is given by

M =— 2.2

where P is the load at the mid-span and L is the length of the beam.

The maximum load capacity can thus be obtained as

WM, o, (1
leax = max = max — 2.3
L L ()’ J

The maximum load is obtained by maximising the value of (//y), which is determined
once the shape of the cross section is given. There is an infinite range of ways
the material could be arranged and for simplicity reasons four are presented in
Figure 2.2.

’
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Fig. 22.  Four possible cross sections for a simply
supported beam with equal cross sectional
area (A = 10.000)

Chapter 2 - concepts of structural optmisation
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Using the equation for the maximum bearing capacity, it is not too difficult to
evaluate P for each section and fthese are presented in Table 2.1.

cross section P P /P (a
(a) 06%c H/L 1
(b) 159 o K/L 2,38
(c) 1860 H/L 2,80
(d) 23ko h/L 3,53
Table 2.1. Maximum load capacities of the

beam for various cross sections

This should be convincing as to why sufficient analysis in the sfructural design
practise should be undertaken to ensure that material usage is at a minimum. So if
could be concluded that the keywords in structural optfimisaftion are 'the efficient
use of materials’. However, manufacfuring costs have nof been included and it could
be that to make section (d) the sum of manufacturing costs plus material costs is
greater than for section (a).

Besides, it has to be stated that whilst the stress in the outer fibre of the
chosen cross section at the load application point must be equal fto or less fthan
the limiting value, and for design purposes we sef if equal, the rest of the
material is at a much lower sfress value. This can be stated because the stress is
linear about the middle neutral plane and the bending moment varies linearly from
the mid-span value of PL/4 to zero at the ends. As a result of this, only
approximately 3% of the material of the beam has a greater stress than 75% of
the maximum stress® In other words, the bulk of the material, 97%, is at a stress
lower than 75% of the maximum. It is this type of problem that provides the real
challenge for structural optimisation. The question of how to generate a shape of
a structure that makes the best use of fthe material introduces the concept of
fully stressed design where, ideally, all the material is at the same absolute
stress [Michell structures, see also Section 2.2.3].

© Burns [6]

Roel van de Straat
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It could be stated that one of the most important fields of structural optfimisation
is the minimum weight design of structures [Figure 2.3]. This was first recognized
by the aerospace industry, where fthe minimum weight of a sfructure is of a
greater importance fhan the inifial cost considerations, although this ultimately
results in lower costs for this industry, and it should be noticed that the weight
of structural elements of the complefe structure offen contributes fo the costs of
a design. As a result of fhis, many books are wriften on sfructural optimisation
regarding minimum weight. In ofher industries dealing with mechanical, automotive
and building engineering systems the cost considerations are of primary inferest.

Fig. 23.  The weight of the Nuna 3 Solar Vehicle was
less than that of its predecessors (< 200 kg)
[www.kennislink.nl, November 2005]

Before the development of high-speed computation, most of fthe solufions of
structural analysis problems were based on formulations employing differential
equations, which were solved analytically. The notion of opfimality requires that an
objective function [see also Section 2.2.1] is given that needs fo be minimised of
maximised. For example, the objective function for a simply supported beam could be
the total mass of that beam [as seen in the first part of this section]. An
opfimisation problem also requires a number of constrainfs. For the design of the
simply supported beam, a typical constraint could be the maximum displacement of
the beam. The class of sfructural optimisation problems which seeks an optimal
structural function is called distributed parameter structural optimisation”. These
problems are solved by analytical methods and are often formulated by functions
describing continuous distribution of material over the structure, also called
continuous problems. Another class of structural optimisation problems is called
discretised structural opfimisation where models of structures are involved in a
number of variables that vary continuously. The finite element method (FEM) is a
method that discretises the structure so that the unknowns of the analysis are
discrete values of guantities, such as displacements and stresses at the nodes of
the finite element model, rather than functions [for background information on the
Finite Element Method, see Appendix Al. However, the greatest drawback of a finite
element model and applying the optimisation procedure to the model is that it may

" Liang [23]

Chapter 2 - concepts of structural optmisation
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be distorted to produce elements of unacceptable shapes. In distributed parameter
structural opfimisation, the opfimum solution can be realised by changing
parameters which are usually called design variables and may be continuous or
discrete®™ For example, the optimisation procedure considering the minimum weight of
an |-shaped beam is a continuous problem. But fo minimise the manufacturing costs
the choice of standard elements is infroduced. So, affer fthe opfimum design is
obfained, the values of the optimum design variables are adjusted fo the nearest
available discrete value.

Dealing with multiple objective functions is complicated and is usually avoided.
There are two standard devices for reducing the number of objectives fo one® The
first is the generation of a composite objective function. For example, if the mass
of the fthree bar fruss of Figure 2.4 is denofed as m and the sfresses in the
three bars as o, then a composite objective function f could be

f=om+ a0 + a0, + a0, 2.4

where the « are appreciation factors selected to reflect the relative importance of
the four objective functions.

The second device used fo reduce the number of objective functions to one is to
select the most important one as the only objective function, and to impose limits
on the other objective functions. Thus the three bar truss design problem in Figure
2.4 can be formulated as the minimisation of the mass subject to upper limits on
the value of the fhree stresses. The constraints that determine the optimum
solufion are called active constraints. All ofher constraints are inactive
constraints.

Fig. 2.4.  Three bar truss example

" Universitat Stuttgart [40]
" Kirsch [20]
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Dealing with optimisation, of course the problem can be stated as a maximisation
problem instead of a minimisation problem. Especially when it is considered that
minimisation is the negafive of a maximisation, also known as duality. This is
illustrated in Figure 2.5, where the function

y=-x+ 4 2.5

can be used as a function that needs to be maximised, whereas the negafive
function of this function

y=x -4 26

is a function that needs to be minimised.

y y
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Fig. 25.  The functions y = -x* + & and y = x* - & are
each other negatives.

As stated earlier, many applications in sfructural optimisation involve design
variables fthat are not continuous in nafure and are meaningful only at discrete
values, such as commercially available hot-rolled steel sections. Many ftimes
selection of solution method depends on the type of discrete design variables, and
objective functions for the problem. It is important to nofte that fthe discrete
variable optimisaftion problems usually require considerable more computational
effort compared to the confinuous variable problems. This is true even though the
number of feasible points with discrete variables is finife and they are infinite with
confinuous variables™.

“ Kirsch [20]
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In the design process, a conceptual design is created by the designer based on his
infuition, creafivity and past experience. Structural analysis is then undertaken to
evaluate the performance of the design. If the design does not satisfy the
performance objecfives, a new design is then developed. This process is repeated
until the design satisfies the multiple performance objectives [Figure 2.6]. In this
process structural optimisation mefhods can be used fo decrease the number of

loops.

I_s.h"ucfurai
I optimisation
|

L_-_-__

Fig. 2.6.

problem invesftigation

v

conceptual design <

preliminary design

satify
performance
objectives?

final design

satify

performance
objectives?

documentation

¢

tendering

v

inspection and certification

The standard building process and the place
where general structural optimisation can be
implemented
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It is difficult to consfruct an objective function for a realistic engineering project
since it depends on many factors. The constraints can be geomefrical resfrictions
such as the weight and width of the structure or behavioural restrictions such as
stresses, displacements, mean compliance, frequency and buckling loads. In order to
obfain an opfimal sfructure, a number of alternafive structural systems must be
invented and evaluafted. The invention of structural systems is the most challenging
task in sfructural design since it involves a large number of possibilities for the
structural layout. The traditional design process is highly time-consuming and
expensive. In the fully optimal design procedure, the designer does not produce the
structural system on past experience, but still needs fo analyse it of course
[Figure 2.7]5. The real optimisation process will have characteristics of both
processes.

identify:
o design variables
o objective function
o constraints

v

collect data system describtion

g

collect data system describtion

analyse the system

g

v

analyse the system

check performance constraints

v

is design
satisfactory?

check performance constraints

does the design
satisfy convergence
criteria?

‘{ change design based on experience ‘

change design using optimisation methods }7

conventional design process optimum design process

Fig. 27.  The conventional design process versus the
optimum design process for the relevant part
of the total building process

 Kirsch [20]
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The fully optfimal design process differs from the conventional design process in
the following ways
- there is an additional inifial step 0 where the design problem is
formulated as an opfimisation problem
- in step 5, the design is improved using an opfimisation method, rather
than based on experience as in the conventional approach
- the stopping criterion is step 4 is based on whether the current
design is the best. The conventional approach accepts any feasible
design

This makes the opfimum design process a more formal process fthan fthe
conventional design process. The optimum design process ftakes info account all the
constraints simultaneously, and iteratively improves the design, while minimising of
maximising the objective function. Besides if problem parameters are changed the
convenfional process must start over again, demanding repetition of all the
calculations, which can be quite fedious.

Once the opfimum design problem has been formulated, it is relaftively easy to
obfain solutions for different conditions and requiremenfs. Formulation of an
optimum design problem uses the following steps® [see the first box of the
optimum design process in Figure 2.7]

1. identification and definition of independent design variables

as a first step in the problem formulation phase, the variables
that describe the design of the system must be identified and
defined explicitly. These variables are such that once their values
are specified, a design of the system is known. Usually, the
design variables are independent of each other. If some of the
dependent variables are designated as design variables, then
there must be equality constraints between the variables fo have
a meaningful design of the system. At this stage of the problem
formulation phase, it is also necessary to collect all the design
parameters and data related to the problem and define them
precisely. These include material properties, loading conditions,
and the like. Any additional problem variables that depend
explicitly or implicitly on the design variables are called
dependent variables (such as the cross-sectional properties of
members, the bending sfress, the shear stress, the deflection,
etc.).

** Kirsch [20]
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2. identification and definition of an objective function

as a second step in the problem formulation phase, an objective
function fthat measures the relative merit of alternate designs
needs fo be identified and defined. This is a scalar function fthat
depends on fhe design variables. Once a design is specified, it
should be possible fo evaluate fthis function. Various objective
functions are the cost of fthe system, mass of the system,
maximum deflection, moment capacity, and so on.

3. identification and definition of constraints

each design problem has constraints that must be mef, such as
service, strength, and available resources constraints. Therefore,
as the final step in the problem formulation phase, all the
constraints on fthe system need fo be identified and defined.
Usually constraint expressions involve both the dependent and
independent design variables as well as explicit bounds on the
variables. Examples of the quanfities to be constrained are
stress, buckling load, natural frequency, and deflection. An
evaluation of the constraint functions requires response analysis
of the system for all applied loading cases.

structural optimisation methods

The available methods of structural optimisation may conveniently be subdivided
info two distinctly different categories called analytical methods and numerical
methods. While analytical methods emphasise the conceptual aspect, numerical
methods are concerned mainly with the algorithmical aspect.

Analytical methods are usually employing the mathematical theory of calculus,
variational methods, etc., in studies of opfimal layout or geometrical forms of
simple structural elements, such as beams, columns, and plates. These methods are
most suitable for fundamental studies of single structural components, the material
layouts of structural components and simple skeleftal structures under simple
loading conditions, but are usually not infended to handle larger structural
systems. Analytfical methods cannot be used to deal with the fopology optimisation
of complex practical problems (problems solved by analytical methods are denoted
as distributed parameter structural optimisation). The structural design is
represenfed by a number of unknown functions and the goal is to find the form of
these functions. The optimal design is fheorefically found exactly through the
solution of a system of equafions expressing the condifions for opfimality. An
example for this approach is the theory of layouf, which seeks the arrangement of
structural members that produces a minimum volume structure for specified loads
and materials [e.g. Michell structures, see also Section 2.2.3]. Since they are applied
without meaningful constraints on fthe geomefric form of the sfructure, such
theorems often yield impractical solufions.

1, 10 Chapter 2 - concepts of structural optmisation
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Work on analyfical methods, although somefimes lacking the practicality of being
applied to realistic structures, is nonetheless of fundamental importance. Analytical
solutions, when they can be found, provide valuable insight and fhe theoretical
lower bound opfimum against which more practical designs may be judged.

Numerical methods usually employ a branch in the field of numerical mathematics
called mathematical programming. Since the early ninefies developments in fhis
branch are closely related fo fthe rapid growth in computing capacities. In the
numerical methods, a near optimal design is automafically generated in an iterafive
manner. An initial guess is used as a starting point for a systemafic search for
befter designs. The search is terminated when certain criteria are satfisfied
indicating that fhe current design is sufficiently close to fthe optimum. Rapid
developments in the programming mefhods as well as in the application of such
methods in design facilitate fthe solution of realistically large practical design
problems. Problems solved by numerical methods are called finite optimisation
problems or discrete parameter optimisation problems. This is due to the fact
that they can be formulated by a finite number of variables. Assignment of
numerical values fo these variables specifies a unique structure. Design optimisation
of practical structures is accomplished mainly by the use of finite formulations. An
example of a numerical method is the topology optimisation method [Section 2.2.2.].

Some of the mathematical programming methods, such as linear, quadratic, dynamic,
and geometric programming algorithms, have been developed to deal with specific
classes of opfimisation problems™ Though the history of mathematical programming
is relatively short, there has been a large number of algorithms developed for the
solution of numerical optfimisation problems. However, there is no single best
method for all optimisation problems. There is an obvious need, therefore, for
familiarity with the basic concepts of numerical optfimisation.

Of the engineering disciplines, structural design has probably seen fthe most
widespread development and application of numerical opfimisation techniques. Using
numerical optimisation as a design fool has several advantages™
- reduction in design ftime and improving the quality of fthe design.
Optimisation is an effective tool to reach a high quality design much
faster. Even in cases where optimisation by ifself does not save design
time or cost, the final result is a product that is superior;
- the ability of dealing with large numbers and a wide variety of design
variables and constraints relative to ftraditional methods:
- applying systematised logical design procedures may lead to improved, non-
traditional and unexpected results, partficularly in a new design
environment.

" Xie [34]
*® Liang [23]
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One of the most effective uses of numerical opfimisation is fo make early design
trade-offs using simplified models. The advantage is fthat optimal designs can be
compared instead of just comparing non-optimal solutions. On the other hand,
numerical optimisation has some limitations to be aware of™:

- fthe quality of the resulf is only as good as the assumed analysis model.
That is, opfimisation techniques are limited fo the range of applicability of
the analysis method;

- incomplete problem formulation, such as ignoring an imporfant constraint,
may lead fo meaningless if not dangerous designs. Furthermore, improper
formulation might reduce the real factors of safety that now exists;

- the number of design variables is restricted due fto fthe computational
effort involved in solving large problems by many optimisation methods;

- most opfimisation algorithms can solve problems with continuous functions.
In addition, highly nonlinear problems may converge slowly or not af all;

- in many problems it cannof be guaranteed fthat fthe global optimum design
will be obtained. Therefore, it may be necessary to restart the
opfimisation process from several different designs and compare the
results.

In summary, optimisation ftechniques can greatly reduce the design time and yield
improved, efficient and economical designs. However, it is important to understand
the limitations of these fechnigues. In addition, it should be recognised that the
absolute best design will seldom be achieved. Thus, optimisation methods can be
viewed as a valuable and convenient tool to achieve improved designs although
some if its theoretical optima are of little value in the design process.

optimisation of structures and elements in building engineering

In this section, three examples are given of optimisation methods for structural
elements [simply supported beams, Section 2.2.1] and structures [trusses and Michell
structures, respectively Section 2.2.2 and 2.2.3]

optimisation of simply supported beams?®

The problem formulation procedure, as presented in Section 2.1.2 is illustrated for a
simply supported rectangular and I-shaped beam design problem [Figure 2.8]. The
objective is fo minimise the total mass or, equivalently, the cross-sectional area A
of the beam. Therefore, a feasible design with smaller cross-sectional area is
called a ‘befter design’ compared fo the one with a larger area. It should be
noficed that the given examples are very basic, especially considering the
constraints.

" Liang [23]
» Arora [1]
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A spreadsheet program like MS Excel has the capability of solving constrained non-
linear optimisation problems, such as the beam problem. The solver of MS Excel is
an 'Add- in’, which is an optional module for adding optimisation capabilities to fthe
spreadsheet program. Main requiremenfs are that one cell contains the objective
function formula, and the independent variables appear somewhere else. In ‘what if’
scenarios, the design paramefers can be altered fo check different solufions.

T O OO0 O o

Fig. 2.8.  The simply supported beam with live load g
with a rectangular or I-shaped cross section

simply supported rectangular beam

Mathematically, the beam design optimisation problem is stafted as
- compute the design variables h and b to minimise the cross sectional area A
- subject the problem to the constraint on bending stress

independent variables

h = beam height, mm (with a lower and an upper bound)

b = beam thickness, mm (with a lower and an upper bound)
design parameters

L = span, m

g, [sigma_yl = yield stress, N/mm?

q = live load, kN/m

dependent variables
A = cross sectional area, mm?
| = moment of inertia, mm*
W = section modulus, mm?
M = bending momenf, kNm
o [sigmal = bending stress, N/mm?

constraints

bending stress: ¢ =0,

Roel van de Straat 1, 13
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In Figure 2.9 the layout of the MS Excel spreadsheet is given in which the minimum
volume of steel is determined dependant of the variables. (b and ub stand
respectively for ‘lower bound’ and ‘upper bound'.

Optimisation of a simply supported rectangular beam

independent variables name Ib symbol value ub units
height 100 h 300 300 mm
thickness 50 b 78,61635228 150 mm
parameters name symbol value units

span length L 10 m

yield stress sigma_y 265 N/mm*2

live load q 25 kN/m

dependent variables name symbol formulas result units

cross sectional area A =h"b 23584,90568 mm”2

moment of inertia | =(1/12)*b*h"3 176886792,6 mm”4

section modulus w =(b*h"2)/6 1179245,284 mm”"3

bending moment M =(q*L"2)/8 312,5 kNm

bending stress sigma =(M*10"6)/W 264,9999997 N/mm”2

objective function name

volume of steel =(A/(1*1076))"L 0,235849057 m”3
constraints name value/eqn </>/= value/eqn name
bending stress 265 < 265 allowable bending stress

Fig. 29.  Layout of the spreadsheet for the
determination of the minimum volume of steel
for a simply supported rectangular beam

The result for this calculation is a rectangular beam with a height of 300 mm and a
width of almost 79 mm and the volume of steel is 0,236 m® [Figure 2.10]. It isn't
surprising that the height of the beam yields fo the upper bound, because this
results in the maximum moment of inertia.

h = 300 mm

b =79 mm

— —

Fig. 210. Cross section of the calculated rectangular
beam with minimum volume of steel

1, 14 Chapter 2 - concepts of structural optmisation
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When dealing with a two-variable design problem fthe graphical approach can be
used. In this approach, each constraint function is plotted on a graph sheet [Figure
2.11]. This results in curves of each constraint that divides the design space into
two parfs. One side of the curve represenfs all the design poinfs that satisfy the
constraint (feasible design) and the other side represents the designs that violate
the constraint (infeasible designs). Next, it is needed to locate the best possible
design in the feasible region, also called the constfraint set. In order to do that, a
few iso-cost curves are drawn through the feasible region and a point that gives
the least value fo the objective function is identified as the optimum solufion. The
coordinates for the optimum point are read directly from the graph. It can be seen
that the results of the graphical approach maftch the results of the spreadsheef.

y

200 —
150 o

100 S

\ | \ \ \
0 50 100 150 200 250 300 350

Fig. 211.  The graphical approach based on the
rectangular beam problem. Point P denotes the
optimum cross section of the beam

simply supported |-shaped beam

The same procedure can be followed when dealing with an I-shaped beam. In the
next example, additional variables, parameters and constraints are given in order to
present a more difficult optimisation problem. With the four independent variables
(instead of two in the previous example) the graphical approach cannot be used to
check the results. This example still is not completely satisfactory for practical
use (e.g. the web crippling and flange buckling aren’t taken into account), but as
stated before, this is merely an example to demonsfrate an optimisation problem.

Roel van de Straat 1, 15
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Mathematically, the beam design optimisation problem is stafed as
- compute the design variables h, b, tf, fw to minimise the cross sectional
area A
- subject the problem to fthe constraint on bending stress, shear stress and
deflection

independent variables
h = beam height, mm (with a lower and an upper bound)
b = flange width, mm (with a lower and an upper bound related to h)
tf = flange thickness, mm (with a lower and an upper bound related to b)
tw = web thickness, mm (with a lower and an upper bound related to h)

design parameters
L = span, m
E = modulus of elasticity, N/mm?
g, [sigma_yl = yield stress, N/mm?
= live load, kN/m

dependent variables
A = cross sectional area, mm?
| = moment of inertia, mm*
W = section modulus, mm?
p = uniform load - own weight, kN/m
M = bending moment, kNm
o [sigmal = bending stress, N/mm?
V = shear force, kN
T [tau] = average shear stress, N/mm?
u = deflection, mm

constraints
bending sfress: o = g,
shear stress: T = 0,580y
deflection: u = 0,004-L

2, 0 Chapter 2 - concepts of structural optmisation
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In Figure 2.11 the layout of the MS Excel spreadsheef is given in which the minimum
volume of steel of the |-shaped beam is determined dependant of the variables.

Optimisation of a simply supported I-beam

independent variables name formulas Ib symbol value ub formulas units
web height 0,18 h 0,556426138 06 m
flange width =1/2,5*h  0,2225705 b 0,222570455 03091256 =1/1,8"h m
flange thickness =1/15"b 0,014838 tf 0,01483803 0,0278213 =1/8'b m
web thickness =1/60"h 0,0092738 tw 0,009273769 0,0139107 =1/40"h m
parameters name symbol value units

span length L 12 m

modulus of elasticity E 210000 N/mm*2

yield stress sigma_y 235 N/mm*2

live load q 25 kN/m

dependent variables name symbol formulas result units

cross sectional area A =h*tw+2"b™tf 0,011765182 m"2

moment of inertia | =(1/12)*((tw*h"3)+(2*b*tA3))+(2*b*tf*((1/2)* (h+tf))"2) 0,000672132 mh4

section modulus w 0,002415891 0,002415891 m”"3

uniform load - own weight [ =A*7,9 0,092944936 kN/m

bending moment M =((q+p)*L"2)/8 451,6730088 kNm

bending stress sigma =(M/W)/1000 186,9591806 N/mm"2

shear force \ =((q+p)*L)/2 150,5576696 kN

average shear stress tau =V/(h*tw)/1000 29,17689612 N/mm*2

deflection u =(5/384)*(q+p)*(L*1000)A4/(E*(1*10112)) 47,99999956 mm

objective function name

volume of steel =A"L 0,141182181 m"3

constraints name value/egn <sl= value/eqn name

bending stress 186,95918 < 235 allowable bending stress
shear stress 29,176896 < 136,3 allowable shear stress
deflection 4 4

Fig. 212.  Layout of the spreadsheet for the
determination of the minimum volume of steel
for a simply supported I-shaped beam

The result for this calculation is a |-shaped beam with a height of 556 mm, a
flange width of 223 mm, a flange thickness of 15 mm, and a web thickness of 9 mm
and the volume of steel is 0,141 m® [Figure 2.13]. In this example, not the bending
stress but the deflection is the active constraint.

EFFF - FF 77 |
i
(=]
g
tw=9 mm 2
H
=
!
| it i s o
b =223 mm

H = 15 mm

Fig. 213.  Cross section of the calculated |-shaped beam
with minimum volume of steel
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For the live load on a roof, normally p, = 10 kN/m? is assumed. So the live load g
= 25 kN/m? is rather high. The height of the I|-shaped beam is larger than fthe

common — ratio of — * [ for steel profiles, but it is smaller than the — ratio
of — * [ for plate girders.

It is important fo nofe here fthat the constraints can be written explicitly in ferms
of the design variables A, b, ff, and fw by substituting expressions for the
dependent variables. However, there are many applications where it is not possible
to eliminate the dependent variables, such as stresses and deflecfions, fo obtain
explicit expressions for all the functions of the opfimisation problem in terms of
the design variables. In such cases, the dependent variables must be kept in the
problem formulation and freated in the solution process. Such methods have been
developed for various applications and are available for wuse in practical
applications.

In order to convert the I|-beam problem fo a fwo-variable problem, it can be
assumed that the flange width is a fraction of the web height and the flange
thickness is proportional to the web thickness, so the problem can be expressed in
two variables, the web height and web thickness.

size, shape, and ftopology optimisation
general introduction into shape, size, and topology optimisation

Applications of numerical methods fo truss problems and other discrete models
were first described in the early sixties, but only recently have these challenging
large-scale problems atfracted renewed inferest, especially for producing
specialised algorithms?.

In the design of the size, shape, and topology of a structure the infterest is in the
determination of the optfimal placement of a given isofropic material in space, which
means, it should be defermined which points of space should be material poinfs and
which points should remain void (no material). The geometric representation of a
structure is fthought of as similar fo a black-white rendering of an image. In
discrete form this then corresponds to a black-white raster representafion of the
geometry, with pixels given by fhe finite element discrefisation. So, in ifs most
general setfting shape, size and fopology opfimisation of confinuum structures
should consist of a defterminafion for every poinft in space if fthere is material in
that point or nof. Alfternatively, for a FEM discretisation every element is a
pofential void or structural member. In ofther words, the ground approach is that

? Bendsge [2]
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for an initially chosen layout of nodal poinfs in the truss structure or in the finite
element mesh, the optimum structure connecting the imposed boundary conditions
and external loads is found as a subset of all the elements of the initially chosen
sef of connections befween the truss nodal poinfs or the initially chosen sef of
finite elements. The posifions of nodal points are not used as design variables,
meaning that these points are fixed.

terminology and representation

The three principles size, shape, and fopology optimisation can be mentioned as one
under the common denominator of (layout optimisation” [Figure 2.14, on the next

page]

Size optimisation

The main feafture of the size problem is that the domain of the design model and
variables is known a priori and is fixed throughout the optimisation process. Only
the size of certain element is optimised without changing the shape or fopology
of the structure. Size optimisation is fo find fthe optimal cross-sectional
properties of members in a fruss or frame structure or the optimal thickness
distribution of a plate structure. It has the goal of maximising the performance
of a stfructure in terms of the weight and overall stiffness or strength while
the equilibrium condition and the design constraints are satisfied. The design
variable is fthe cross-sectional area of fruss members or the thickness of a
plate.

Shape opfimisation

The goal in shape optimisation, or geometry optimisation, is to find the optimum
geometry of the domain, that is, the shape problem is defined on a domain which
is now the design variable. In shape optimisation, the objective is fto find the
opftimal shape of fthe design domain, which maximises its performance. The shape
of the design domain is not fixed but rather is a design variable. In shape
optimisation, only the boundaries of the design domain are changed but not the
topology of the domain.

Topology opfimisation
The purpose of layout opfimisation is fo find the opfimal layout of a structure
within a specified region. The only known quantities in the problem are the
applied loads, the possible support conditions, the volume of the structure to be
consfructed and possibly some additional design restrictions such as the location
and size of prescribed holes. In this problem the physical size and the shape and
connectivity of the structure are unknown.

2 Bendsge [3]
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initial problem optimal solution

Fig. 214. A representation of the size, shape, and
topology optimisation method

The topology, shape and size of the structure are not represenfted by standard
parametric functions but by a set of distributed functions defined on a fixed design
domain. These functions in furn represent a parameterisation of the rigidity tensor
of the continuum and it is the suitable choice of this parameterisation, which leads
to the proper design formulations for layout optimisation.

The practical use of topology design to date often has been on the level of a
creative sparring partner in fthe initial phase of a design process. Thus the output
of the homogenisation method?”, as how use of topology optimisation is also called,
has been used to identify potential good designs, the completion of the design
being based entirely on traditional skills of the design office. One effect of the
topology method that cannot be underestimated is the efficient ftesting of the
appropriateness of the model of loads and supports. As fthe topology is very
sensitive to a proper modelling of the load environment, one can immediately
discover discrepancies or inaccuracies in this modelling. The results of using the
homogenisation method for optimal topology design tend to favour the use of the
sub-optimal microstructures, as these, from a practical point of view, results in
more classically useful structures. In the future it will probably implement, for
example, production requirements as constraints that will limit the final design. It is
naftural to integrate the material distribution method and the boundary variations
approach info one design tool, employing the topology opfimisation fechnigues as a
pre-processor for boundary shape opfimisation.

The fopology is of great imporftance for the performance of the structure®, and it
has turned ouft that fthe compliance opfimised topologies generated using the
homogenisation method are very good starting points for opfimisation concerning
several other criteria such as maximum stress, maximum deflection, etc.

% Bendsge [3]
% Universitat Stuttgart [40]
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In Figure 215 a flow of an inftegrated design system with topology design and
boundary shape design modules is given.

analysis of the problem

- FEM geometry, consfraints

b

design

- design areas, holes and solid areas

g

topology optimisation

- optimal topology

g

shape design

- initial reference shape, moving boundary

b

analysis of the problem

- FEM geometry, constraints

5

shape optimisation

- optimal shape

b

production

Fig. 215. A flowchart of an infegrated design system
with topology design and boundary shape
design modules®

A topology optimisation code of Bendsge [39] can be implemented in Matlab to give
an example of fthe pofential of fhe homogenisation method. The Maflab
implementation is given in at http://www.topopt.dtu.dk/ [39].

= Bendsge [2]

Roel van de Straat 2 ’ 5



Master’s thesis

2,6

evolutionary structural optimisation

A relative new method is the evolutionary structural optimisation (ESO) method®. It
is a simple concept of slowly removing (or shifting) inefficient material from a
structure so fhat the resulting shape of fthe structure evolves towards an
opfimum. The ESO method is based on a simple concept that the step-by-step
removal of the inefficient parts from the initial structure leads the structure
toward an optimised configuration. There is, however, no consistent rule for
deftermination of the confrol parameters needed in the evolutionary process of ESO
such as, what is called, rejection rafios, evolufion ratios and tolerance parameters
for convergence. Additionally it has fo be pointed out that the operations in the
process of the original ESO are only fthose for removing inefficient parts. It has
been found that the evolufionary optimisation method can be effectively used for
examination of fthe structural form, especially in the beginning stage of the design
process. The organic form of fthe structure generated through fthe usage of the
computational morphogenesis scheme has not only a structural rationality but also
a fresh appearance not easily acquired only through the usual designing process
[see also Section 5.3].

Structural optimisation mefthods can be enabled to obfain the structural form of
which characteristic values are set to be exftreme values while the subsidiary
conditions imposed on the stress or displacement at specified portions of the
structure are satisfied. The building engineering industry has to satisfy all
conditions required from the aspects of planning, architectural design, life facilities
and other mathematically factors that are hard to prescribe, such as social impact
on the human environment. It can be said that all these factors unsuitable for
mathematical description have been keeping the building and architectural
engineering away from effective applications of optimising methods. However,
regarding the conditions required from the planning or the life facility as the
constraint conditions, there can be useful tools for building and architectural
engineering in the structural optimisation field.

extended evolutionary structural optimisation

Living things (flora and fauna) have been evolving their shapes to survive under
various environmenfs they have encountered. They are thought fo evolve
themselves foward better shapes by removing unnecessary parts, and, on the other
hand, by extending necessary parfs as well.

® Xie [34]
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Standing at this point of view, the extended evolufionary structural optimisation?
(extended ESO) method has been proposed, where two ideas are newly introduced

1. shape confrol scheme by the confour lines for two dimensional problem
and the confour surfaces for three dimensional problem of sensitivity
number;

2. bi-directional evolution.

An idea of confour line or contour surface is infroduced for fthe defermination of
criteria of the boundary regions. Additionally, the bi-directional evolution which is
the evolution scheme with not only deleting fthe concerned regions but also
increasing them has been also newly introduced. Consequenfly, the proposed scheme
makes the ordinary ESO mefhod much more powerful.

In the ordinary ESO method, rejection of fthe inefficient part of the strucfure is
carried out referring to the value of rejection rafio, which is given as a definite
value in advance for computation. Consequenfly, the rejection procedure is
performed throughout the whole evolutionary process of computation based upon
that definite initial value and no aftention is paid on the situation of the sfructure
on evolution.

In the extended ESO method, utilisation of the contour line is introduced as a new
idea for evolutionary process to actively control the rejection ratio as well as the
portion of evolution. This idea makes it possible fo remove the inefficient parts of
the structure largely at the early stage of the evolution and to gradually change
the speed of the rejection process according fo the actual situation of the
evolufion.

As had been mentioned above, deleftions of the portions of the structure as well
as addition are realised through usage of the confour lines for the 2-dimensional
structures. In a similar manner, we can extend the way of thought fto the
evolutions of 3-dimensional structures, where the conftour of the stress or the
other prescribed characteristics values such as deflections, natural frequencies,
linear buckling loads and so on should be replaced with the contour surface.

7 Ohmori [27]
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Figure 2.16 shows the evolutional process of the bridge fype structures having the
road on ifs upper parf, for the case in which fthe relative sfress of Von Mises is
adopted for prescription of the confour surface, which can be written in the
following form

Von Mises

1
o = E\/(U’X —o)V+lo,—c )V +(o, -0V +6c, +7, +7.,) 27

where o, g, 0, T, 7,7, represenft the components of the normal stresses and
the shear stresses in x-, y-, and z-direction. By using this characteristic value, we
can get the mechanical information of fthe porfion of the structure, by which fthe
necessity of deletion or addition can be judged. It can be observed that in the
evolutional process of fthe bridge the form changes not only in the elevaftion but

also in its thickness distribution.

As it can be seen from the figure, the structure continuously changes its form in
every point of ifself and it is clear that only 3D approach can realise such
characteristics.

Fig. 216.  The elevation and the plan of a bridge
structure obtained with the ESO process [27]
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performance-based optimisation

The principles described above are also dealt with in the performance-based
optimisation (PBO) method®. Similarly, this method generates an optimal design by
gradually removing inefficient material from a structure or adding efficient material
to the structure unfil the performance of the sfructure is maximised. In PBO
design, the weight of a sfructure is usually selected as the performance objective
and sfructural response paramefers such as stresses, displacements, overall
stiffness and frequency are freated as performance-based constraints.

It is realistic fo minimise the weight or cost of a structure subject to geomefrical
constraints and performance-based constraints, which include sfress, displacemenft,
mean compliance, frequency and buckling load constraints. This is because
performance-based consfraints are usually prescribed in the design codes of
practice.

descripfion of Michell structures
theory of Michell structures® 3

The ftheory of structures has two aspects: one is the analysis of stress
distribution in a completely specified structure and the other is the design of a
structure for a specific purpose. Before any attempt may be made to design a
structure on strictly logical grounds some general objective must be set. Usually
the designer’s aim is value - that is, cheapness combined with serviceability. Clearly
the achievement of this aim, the design of a structure which shall be both cheap to
build and cheap to maintain, must depend principally on economic factors, and these
factors themselves must be subjected to geographical and other influences.

As was already mentioned, the costs of any structure of a given type is often
more or less proportional to its weight, so that it may at least be claimed that of
two structures, both adequate to the same purpose and materially different
neither in general design nor in performance, the lighter is to be preferred.

In general, statically deftermined structures will be lighter than the redundant
structures from which they are derived by the omission of certain members; buf it
is also shown that certain redundant sfructures can be as light as fthe lightest
non-redundant structure of their kind. In 1904 A.G.M. Michell [1870-1959] studied the
problem of the form structures should have if they are to be as light as possible.
He found that structures, which are funicular polygons (a polygonal figure assumed
by a cord fastened at its extremities, and sustaining weights at different points),
are pofenfially of minimum weight and maximum stiffness. Michell structures of

® Liang [23]
® Cox [9]

* Hemp [18]
* Owen [28]
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orthogonal tension and compression members in directions which can be those of
equal principal sfrains are the next lightest. Figure 2.17 gives the most efficient
Michell structure for carrying a cenfral load w.

217 The most efficient Michell structure for
carrying a cenfral load w. All members are in
tension or compression

The discussion of the possible lightest forms of structure has been based on the
assumption that the structure has to carry one unigue set of loads and that
these loads were specified in magnitude and their points of application given. As a
result, any sfructure will be composed essentially of systems of struts and ties,
or sheefs which behave as struts or ties. The simplest Michell strain field which
can be imagined is that in which all the strains are equal in all directions. A
member in any direction in this field will be strained the same amount as any other
member. The structure will then be all in compression or all in fension.

In The analysis of light structures, Owen [28] studies structures of minimum
volume of material similar to Michell.

Owen writes; suppose a fypical compression member is designed fo work fo a mean
compressive stress f and a typical tension member to a mean tensile stress 7. If
P_is the compressive force in a typical struf, the area A of the member will be
given by

Af =P 28

cc c
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Similarly if P, is the tensile force in a fypical tie, the cross-sectional area A, of
the fie is given by

Af =P 29

tot t

However, Owen prefers to represent the force in a fypical member /jf of a
structure by P, and to take this force as positive when it is tensile. £ will then
be replaced when appropriate by either P, or -P, and both P, and P, will be
positive values. The x component of the force in jf exerted on the joint ;j will be

Plx, = x)/, 210
and the x component that it exerfs on the joint £
“Px, = x)/L, 2.1

By denoting the external loadings acting on fhe joints j and f in the direction of
the axes for equilibrium, Owen finally comes to a consftanft which can be writfen as

= IxX +yY + 2Z) 212

so k_is the sum of the products of coordinates and corresponding force
components.

When £, for all ties and f for all struts are constant and when V, and V_are
respectively the volume of the ftension and compression members, then

VF - VF =k 213

Or in words, the volumes of the fension and compression members (V, and V[)
multiplied with respectively the tension and compression stresses should be in
equilibrium with the external loads acting on the structure. The total volume of the
whole structure can be written as

V=V +V 214
V= VIl+ £/F) - Kk /F 215
V= VI1+f/f)+ k/F, 216

The volume of fhe joints is ignored.

Roel van de Straat 2, 11
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Owen fthen states fhat since the volume of a sfructure cannof be negative, these
results indicate that when k_is positive the structure of least volume, if this
exists, will be one which has no compression members, ie. V = 0, and the least
volume will then be k /f. On the other hand, if k is negative, then a structure
which has fhe least volume will be one which has no ftension members and fthat this
least volume will then be -k /f. When k_ vanishes a dilemma arises because the
theoretical least weight may now be zero, corresponding to V, or V. zero. This
indicates fthat structures composed enfirely of compression or tension members are
no longer possible means of connecting the specified loads. Such structures must
then confain a combination of fension and compression members. Owen fthen uses
the concepts of virfual work to give a formula from which it can be observed that
a Michell structure will have the least volume.

The simplest Michell strain field which can be imagined is that in which all the
strains are equal in all directions. A member in any direction in this field will be
strained the same amount as any other member. The sfructure will then be all in
compression or all in tension. There is offen an infinity of possible 'minimum’
structures which will each have the volume mm/(f[ or f,), and this is the minimum
possible volume of structural material to carry the given loads. Any geometry of
such bars which maintains a specified set of loads in equilibrium is then as light as
any other set of bars or any combination of such bars provided always equilibrium
is maintained. Such arrangements of bars can range from mechanisms to highly
redundant structures. So, structures as in Figure 2.18, where all the members work
to a tensile stress £, are now recognisable as 'minimum’ structures.

W

2.18. A minimum weight structure for concentric
loads

2, 12 Chapter 2 - concepts of structural optmisation
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a Michell structure of a cenfrally loaded simply supported beam

In a plane, if one principal strain at a point is extensional and the otfher
compressive, it is known fthat fthese strains must be at right angles. A simple sef
of plane ‘curves’ which can depict a strain field is that of lines radiating from a
point and concentric sectors of circles cenfred on this point. In this field, if the
radial displacement v at a radial distance ris er and if the tangential displacement
v here is -2¢erf, where 8 is the angle between the radius and some given direction,

av

u u
then the radial sfrain is — = &, the tangenfial strain — +—— = —€, and

or r rod
the shear sfrains on radial and fangenfial planes vanish. These radial and
tangential exfensional strains are then principal sfrains and this field is of the
kind that Michell posfulafes. Half a 'spoked wheel’ with the ‘spoke sheef’ in a
state of fension and the rim in compression will now be shown to require only
forces at the cenfral point and at the ends of the rim fo maintain equilibrium. This
system is illustrated in Figure 2.19.

2.19. A Michell structure for carrying a central load
w on two supports

Roel van de Straat 2, 13
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Equilibrium of the forces acfing on a length Rd8 of the rim, requires that along the

tangent
ag
P,cos— = F,, , C0S— 217
2 2
or
Fo = Povas 2.18

i.e. the compressive force in the rim must be constanft. Vertical equilibrium of a
small piece of the rim requires

P, =W/2 219

Radial equilibrium of a portion of the rim requires
. ag
2-@-5|n7=ﬁ-R-d9-fR 2.20

t,-R=P/f =W/, 2.1

where f_ is the 'thickness’ of the spoke sheet at radius R. Equilibrium of a small
sector of the spoke field which is only in radial tension, requires that

f-rd8-t=fF-(r+dr)dé-(t+ dt 2.22

From this, Owen states that for a particular value of & that
For="F R 223
=W/2f 2.24

Analogy with pneumatic structures

At some points it is difficult to determine how Owen came to the results in the
different steps. To give betfer insight, an analogy with pneumatic structures can
be made.

The same results can be derived from the analogy with pneumatic stfructures. The
rim under compression is replaced by a pneumatic structure (a membrane, which can
only take tensile stresses) and the tensile stress in the spoke field can be
replaced with the universal pressure of a gas. The spoked wheel can thus be
inverfed fo a pneumafic sfructure as in Figure 2.20, where the radius of fthe half-

2, 14 Chapter 2 - concepts of structural optmisation
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circle shaped pneumatic sftructure is R and the overpressure is p over a length &
The opening angle « is 90°, therefore, fhe tensile forces per length at fthe
supports (A and B) have only a vertical component, n, = n = pR (nis the support
reaction per length) or N = N = pbR This formula (also known as the kettle
formula® is analogous with formula 2.23.

For =W/, 2 N = pbR 225
with

t 2 b

r S R

W/2 2 N

f, z p

Fig. 2.20. A pneumatic structure analogous to a Michell
structure

Returning to the Michell structure, the thickness of fhe spoke sheef is fhus
inversely proportional to the radius r and independent of the angular posifion 8 At
the cenfral point B in Figure 2.19, where r = 0, the thickness becomes infinite. From
the practical viewpoint the load W can never be absolufely concentrated at B so
that this infinity is nof really disturbing. It requires more imagination to accept the
idealisation to two dimensions of a spoke sheet of variable fthickness which is
really a three dimensional structure. Accepting this, a beam structure for carrying
a central load has been derived. It consists of (i) a spoke field subjected to
constant radial tensile stress, and (i) a semi-circumferential rim orthogonal fto the
spoke field and in constant compression.

? Hartsuijker [17]
Roel van de Straat 2, 15
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The members of fhe structures all lie in the directions of fhe maximum sfrains
envisaged. This is therefore a Michell sfructure for carrying a cenfral load. The
volume of fthe spoke field is

j:off./'d&dr =.§j!{2—h;-d9-dr=2£f-n-/? 2.26

and the volume of the rim is

w
—- R 2.27

2f,

philosophy behind structural optimisation

After all this information on sfructural optimisafion in general, can it be stafed
that the frequent use of it would give an enormous boost fo the building
engineering industry? Or is it just a ‘hoax’-mefthod? This section deals with the
philosophy behind structural optimisafion

First, it is known that sfructural optimisation techniques are effective fools that
can be used to improve fthe performance of structures in ferms of the material
efficiency in fransferring the applied loads. However, the performance of optimised
designs is offen limifed fo the optimisation methods used. If is of importance to
realise that fthe formulation of a design problem in structural optimisation
significantly affects the results. Incomplete and improper problem formulation may
lead to poor or meaningless designs. Some structural optimisation mefthods use the
behavioural quanfity such as fthe compliance for the objective function and a
somewhat arbitrarily chosen maferial volume for fhe constraint to search for
opfimal configurafions. Opfimisation methods based on such a problem formulation
may not yield minimum weight designs®.

Second, some of the optimisation techniques are used fo create an optimum
structure under a certain load. This means that the size and shape of the
elements or the complete structure can only be qualified as ‘optimal’ for that
specific load. For example, consider a Michell structure in Section 2.2.3. When
subjected to multiple load cases the geometry of the structure has to be altered
severely.

Next to this, many of the publications on the theoretical development and practice
of structural optfimisation are concerned with mathematical aspects of structural

* Hemp [18]
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opfimisation rather than practical applications. There is a clear gap befween fthe
development of structural optimisation theory and ifs practical applications in the
building engineering industry. The main reason for the gap befween the theory and
pracfice of structural optimisation is the priority of mathematical over engineering
aspects. Because of the mathematical complexity of structural opfimisation mefhods,
they remain fo be an academic interest. Structural opfimisation techniques could
become more affractive to practicing building engineers if they are developed not
only for saving maferials but also for automafing the engineering design process. It
appears fhat fthe gap befween structural opfimisation fheory and ifs practical
applications fto building engineering has not been reduced in fthe last fwo decades.
However, in the beginning of structural optimisaftion analysis, the computational
analysis ran up against two difficulties®: The first arises because of the enormous
size of realistic design calculations, which in some cases sfill require more capacity
than is available in the computers. The second is more fundamenfal and arises
because non-linear problems can have many local minima or maxima and so there is
always some doubt as fo whefher any solution that is obfained represenfs an
absolute minimum or maximum or nof. Nowadays, those two difficulties do not form
an obsfacle in the usage of sfructural opfimisation analysis anymore.

Considering the pitfalls of structural optimisation analysis as ascribe above, what
is the point of using it in the design process?

As an answer to this, it should be stated that structural optimisation methods
should be used as design tools, not as an objective in the design process. This way
structural optimisation enforces rather than removes fthe creaftive aspect of
designing, and the final design can be a product of creativity rather than
availability or lack of analysis facilities. Structures designed with the concept of
opfimality need to be subjected to an extra analysis, so that they can be utilised
in practise. Optimal structures subjected to given conditions of loading can provide
ideal norms against which ‘standard’ structures or other forms of optimum
structures can be measured.

In other words, structural optimisation analysis can help in improving a design when
it is used in the preliminary stage of the design process, but when it is used to
present structural elemenfts or complete structures based on merely theoretical
opfima, it could result in a misleading representation of the reality.

Considering all of this, is should be stated that at all times one needs fto be aware
of the fact fhat an opfimal design is not a perfect design, but fthe besf, most
suitable or most desirable possible under a resfriction expressed or implied.

* Liang [23]
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concluding remarks

The field of structural opfimisation is of such size, a complefe overview of
techniques and methods can never be given in one Master's thesis. Therefore, in
this infroduction info concepts of structural opfimisation in building engineering,
some striking examples are presented.

It is shown that opfimisation is largely dependant on fthe boundary condifions set
for a given problem, including the contradictorily aspects of the optimal values of
each boundary condition. As fixed numerical values for different conditions are hard
to predict, sfructural designers should be aware fthat, although stfructural
opfimisation is best ufilised in the concepfual and preliminary design stage,
opfimisation does nof presenf a finalised and optimal sfructural design yet. Affer
an optimisation routine, other (maybe unforeseen) structural, functional or
economical objectives need to be implemented in the design as well, possibly (or
better probably) altering the ‘optimised’ design.

Chapter 2 - concepts of structural optmisation
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optimisation methods in the field of engineering

non-computational methods in structural optimisation

As was stated in the introduction, an example of a non-computational optimisation
technique that is widely used is physical modelling, or in other words, the modelling
of a (structural) design in real life. Examples of this type of modelling are soap
film [Figure 3.1 and hanging chains modelling or funiculars [Figure 1.1]. And as was
stated in the Infroduction, by making a physical (scale) model and subjecting it to
external loads, a designer can learn about the internal forces in the structural
elemenfts and remodel the design accordingly and thus working fowards an optimum
design.

Fig. 3.1. Soap bubble structure [www.msm.cam.ac.uk,
November 2006] and a soap film cube
[www.yossimilo.com, November 2006]

So, when using an optimisation ftechnigue like physical modelling, an engineer is able
to adapt the initial design in such a way that it will meet the non-structural
boundary conditions, while corresponding to, e.g. compression lines or minimal energy
surfaces. One of fthe main advantages of physical modelling is the insight in the
behaviour of the modelled structure without the requirement that the designer has
to have special skills in mathematics or computer science®. Besides, using a physical
model can easily improve the effectiveness of any explanaftion of the sfructure
resulting from it to someone, layman or not. But fwo big disadvanftages of physical
modelling are fthe amount of fime fo make a model and fhe difficulty of adjusting
the model. Besides this, a physical model cannot be used to calculate the expected
forces on a structure, whereas a computer model is capable of doing so.

s Coenders [7]
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computational methods in structural optimisation
classical methods for structural optimisation

Any problem, in which paramefer values must be defermined, given cerfain
constraints, can be freated as an opfimisation problem®* The first sfep in
opfimisation is fo idenfify a set of parameters, also called decision parameters, an
objective funcftion to be minimised and the problem constraints. The objective
function gives a lower ‘cost’ for paramefer values fthat represent a bettfer
solution. Resfrictions on a solution are called consfraints. The constraints of a
solution show the values parameters cannot take. Constraints must be expressed in
terms of the decision parameters. Some constraints are represenfed as inequalities
and some as equalities. An interesting computational problem, often used to make
novices become acquainted with computing is the Travelling Salesman Problem
[Appendix BI.

nonlinear programming problem
A nonlinear programming problem can be represenfed in the following manner?.

Let 'x" represent an n-dimensional design variable vector. Then any design
opfimisation problem can be stated as follows: find x to

minimise an objective function f(x)

subject to

equality constraints: g(x) =0, h=1t%top

inequality constraints: g(x) =0, h=1(p +1)tog
xt = x = xFf i=1tok

where p is the number of equality constraints and (g-p) is the number of inequality
constraints. x' and x* are the lower and upper bounds on the design variable x,
and k is the total number of design variables. This optfimisation problem is called a
general mixed discrefe-confinuous variable nonlinear opfimisation problem. In some
sifuations, there may be fwo or more objective functions. This is called a multi-
objective optimisation problem.

* Arora [1]
7 Burns [6]
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global and local maxima and minima®*

The feasible region is the set of all solutions to the problem satisfying all the
constraints. The optimal solution for a minimisation problem is the solution with the
smallest ‘cost value' in the feasible region. Similarly, for maximisation problems, it
is the solution with the largest objective function value. The objective function f(x)
has a local minimum (also called a relative minimum) at a point x* in the feasible set
S if the function value is the smallest at the point x* compared to all ofher poinfs
x in a feasible neighbourhood N of x*, that is

fix*) = f(x) 3.1
¥ x (= for all x) in the feasible region.
If the inequality holds, then x* is called the strict or unigue global minimum.
Function f(x) has a local minimum at x* if this equation holds for all x in a small

neighbourhood of N of x* in the feasible region. Neighbourhood N of the poinf x* is
mathematically defined as

N={xxe S with || x=x"|< &) 3.2

for some small 8. Geometrically, it is a small feasible region containing the point x*

The global and local minima and maxima are shown in Figure 3.2.

f(x)
A: local minimum
B: local maximum
C: global minimum
D: global maximum

C

Fig. 3.2.  Global and local maximum and minimum points
of a multimodal function

® Burns [6]
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(lassification of problems®

If an optimisation problem has linear objecfive and constraint functions, it is called
a linear programming problem. An integer programming problem is a linear
programming problem in which some or all variables must be non-negafive infegers.
Otherwise, it is called a non-integer programming problem. The search for an
opfimal arrangement, grouping, ordering or selection of discrete objects is called
combinatorial optfimisation. A problem having a quadratic objective function and
linear constraints is called a quadratic programming problem.

It is important to nofe fthe following pointfs for the foregoing nonlinear problem
model relative to structural and mechanical system design problems.

1. the model is applicable fo all problems with confinuous design variables.
Multi-objective and discrete variable problems can also be freated affer
certain extensions of the model;

2. the functions of fthe problem are assumed to be fwice differentiable.
Problems having non-differentiable functions can be treated with additional
computational effort. Also, gradienfs of active consfraints are assumed to
be linearly independent at the optimum;

3. the objective and/or constraint functions may be implicit as well as
explicit functions of the design variables. That is, their final form in
terms of only the design variables may not be known. The functions,
however, can be evaluated using analysis computer programs once a design
is specified;

L. derivatives of the functions are needed in numerical methods of
optimisation. Efficient methods to calculate them taking advantage of the
structure of engineering design problems have been developed.

attributes of a good algorithm

In computing, and thus in computational optfimisation, used is being made of
algorithms. An algorithm is a procedure (a finite set of well-defined instructions)
for accomplishing some task which, given an initial state, will terminate in a defined
end-state. Algorithms often have steps that repeat (iterate) or require decisions
and are offen graphically represented with flowcharts.

* Burns [6]

Chapter 3 - optimisation methods



final report - book two

The atfribufes of a good algorithm are the following

1. robusfness: the algorithm must be reliable for general design applications
and thus must be fheorefically guaranteed to converge fo a solutfion point
starting from any initial design esfimate;

2. generality: the algorithm must be general, implying that is should be able o
treat equality as well as inequality constfraints and should not impose any
restrictions on the form of the cost and constraint functions, such as
linear or quadratic functions;

3. accuracy: the ability of an algorithm fo converge fo fhe precise
mathematical opfimum point is important even though a precise optimum
may not be needed in practical applications. An accurate optimisation
algorithm is likely to have a sound mathematical basis and thus a higher
reliability;

L. ease of use: the algorithm must be easy to use by experienced as well as
inexperienced designers. An algorithm fhat requires selection of tuning
parameters that are problem dependent is difficult to use in practice;

5. efficiency: the algorithm must be efficient for general engineering design
applications. To be efficient, the number of repeated analyses of the
system (such as finite element analyses) must be kept to a minimum. Thus
an efficient algorithm has (i) a faster rate of convergence, requiring fewer
numbers of iterations and consequently, fewer system analyses, and (ii)
the least number of calculations within one design iteration.

Optimum design of large scale systems presents special challenges for any
numerical algorithm in terms of its efficiency. For such systems, the algorithm
should be selected cleverly. For example, if an algorithm does not use the potential
constraint strategy in defining the search direction determination sub problem, then
it is not suitable for large scale problems. Also an algorithm that requires tuning
of certain parameters for its proper performance will not be suitable because it
may require several trials before proper values for the parameters are found. This
is not only inconvenient but also inefficient. Such algorithms should be avoided for
opfimisation of large scale systems. The algorithm may be slightly less efficient for
small scale problems (small problems require very little CPU time any way), but it
must be more efficient for large scale problems.

Roel van de Straat 3, 7
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Various methods based on arfificial infelligence for fthe solution of sfructural
opfimisation problems are af the hand of fthe structural designer. This section will
deal with six of these methods.

e genetic algorithms (GAs) locate optima using processes similar to those in
natural selection and genetics;

®  fabu search is a heuristic procedure that employs dynamically generated
constraints or tabus fo guide the search for optimum solutions;

® simulated annealing finds opfima in a way analogous to fthe reaching of
minimum energy configurations in metal annealing;

®  peural networks are computational models of the brain. Certain types of
neural nefworks can be used for optimisation by exploiting their inherent
ability to evolve in the direction of the negative gradient of an energy
function and to reach a stable minimum of that function;

® swarm intelligence and ant colony optimisation deal with the modelling of
social insects by means of theories of self-organisation that can help
design artificial distributed problem-solving devices that self-organise to
solve problems;

®  fuzzy sef theory provides a mean for representing uncertainties. If is a
tool for modelling the kind of uncerfainty associated with vagueness, with
imprecision, and/or lack of information regarding a particular element of
the problem af hand.

genetic algorithms

The basic idea of fthe mefhod is fo start with a randomly generated set of design
alternafives using the allowable values of each variable. Each design alternative is
represenfed by a unique finite length binary string of 0's and 1's for binary coding
or with real values for real number encoding. This set of designs is called the
population in a given generation. Each design is also assigned a fitness value based
on the objective function (or in case of genetic algorithms, a fitness function).
From the current population, a set of designs is selected randomly with a bias
allocated to more fit members of the population. Random processes are used to
generate a new sef of designs for the next generation, until a satisfactory fitness
value is reached (in other words, if the termination test is successful) [Figure 3.3,
on the next page]l. The size of the population of each generation is kept fixed.
Since more fit members of the population are used fo create new designs, the
successive generations have a higher probability of having designs with better
fitness values. An advantage of fthis approach is fthat continuity and
differentiability of functions are not required, as for fthe simulated annealing
method*.

“ Burns [6]
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Fig. 3.3.  Simple flow chart of genetic algorithm

The most common operators that are needed fo implement a genetic algorithm are
selection, crossover and mutation. Some of these operators were inspired by nature
and, in the liferature, many versions of these operafors can be found. The choice
or design of operafors depends on the problem and represenfation scheme
employed. For a detailed introduction info genetic algorithms, see Chapter 4.

The fitness evaluation unif acts as an interface between the GA and the
opfimisation problem. The GA assesses solutions for fheir quality according fo the
information produced by fthis unif and not by using direct informafion abouf their
structure. In engineering design problems, functional requiremenfs are specified to
the designer who has fo produce a structure which performs fthe desired functions
within predetermined constraints. The quality of a proposed solufion is usually
calculated depending on how well the solufion performs the desired functions and
safisfies the given consfrainfs. In fhe case of a GA, this calculation must be
aufomatic and the problem is how fo devise a procedure which compufes the quality
of solufions.

Roel van de Straat
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Fitness evaluation functions might be complex or simple depending on the
opfimisaftion problem at hand. Where a mathematical equation cannot be formulated
for this ftask, a rule-based procedure can be consfructed for use as a fitness
function or in some cases both can be combined. Where some consfraints are very
important and cannot be violated, the sfructures or soluftions which do so can be
eliminated in advance by appropriately designing the represenfation scheme.
Alternatively, the can be given low probabilities by using special penalty functions.

Convenfional search techniques, such as hill-climbing, are offen incapable of
opfimising non-linear mulfimodal functions. In such cases, a random search method
might be required. However, undirected search techniques are extremely inefficient
for large domains. A genetic algorithm (GA) is a directed random search technique,
which can find the global opfimal solufion in complex multi-dimensional search
spaces.

GAs do nof use much knowledge abouf the problem fo be opfimised and do not deal
directly with the parameters of the problem. Similar with the ant analogy (see
below) the elements are very trivial, but the system is to be non-trivial and
robust. They work with codes which represent the parameters*. Thus, fthe firsf
issue in GA application is how to encode the problem under study, i.e. how to
represent the problem parameters. GAs operate with a population of possible
solutions, not only one possible solution, and the second issue is therefore how to
create the initial population of possible solutions. The third issue in a GA
application is how to select or devise a suitable set of genetic operators. Finally,
as with other search algorithms, GAs have to know the quality of already found
solutions to improve them further. Therefore, there is a need for an interface
between the problem environment and the GA itself for the GA to have this
knowledge. The design of this interface can be regarded as the fourth issue.

At the start of opfimisation, a GA requires a group of initial solutions. There are
two ways of forming this initial population. The first consists of using randomly
produces solutions created by a random number generator. This method is
preferred for problems about which no a priori knowledge exists or for assessing
the performance of an algorithm. The second method employs a priori knowledge
about the given optimisation problem. Using this knowledge, a set of requirements
is obtained and solutions which satisfy those requirements are collected to form an
initial population. In this case, the GA starts the optimisation with a set of
approximately known solutions and therefore converges to an optimal solution in
less time than with the previous method.

Important control parameters of a simple GA include the population size (number of
individuals in the population), crossover rate and mutation rate. A large population
size means the simultaneous handling of many solutions and increases the

“ Burns [6]
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computafion time per iteration. However, since many samples from the search space
are used, the probability of convergence to a global optfimal solufion is higher than
when using a small population size.

tabu search*

The fabu search is a kind of iterafive search and is characterised by the use of a
flexible memory. It is able fo eliminate local minima or maxima and fo search areas
beyond a local minimum or maximum. Therefore, it has the ability fo find the global
minimum/maximum of a multimodal search space. The process with which fabu search
overcomes the local optimality problem is based on an evaluation function that
chooses the highest evaluatfion solution at each iteration. This means moving to the
best admissible solution in the neighbourhood of the current solufion in terms of
the objective value and fabu restrictions. The evaluation function selects the move
that produces the most improvement or the least deferioration in the objective
function. A tabu list is employed to store the characteristics of accepted moves so
that these characteristics can be used to classify certain moves as taboo (ie. to
be avoided) in later iterations. In other words, the tabu list determines which
solutions may be reached by a move from the current solution. Since moves not
leading to improvements are accepted in tabu search, it is possible to refurn to
already visited solutions. This might cause a cycling problem to arise. The fabu list
is used to overcome this problem. A strategy called the forbidding strategy is
employed to control and update the tabu list. By using the forbidding strategy, a
path previously visited is avoided and new regions of the search space are
explored.

A simple tabu search algorithm consists of three main strategies: forbidding
strategy, freeing strategy and short-term strategy. The forbidding strategy
controls what enters the tabu list. The freeing strategy controls what exits the
list and when. The short-term strategy manages the interplay between the
forbidding and freeing strategies to select trial solutions. Apart from these
strategies, there can be also a learning strategy which consists in the use of
infermediate and long-term memory functions. This strategy collects information
during a tabu search run and this information is used to direct the search in
subsequent runs.

Tabu search relies on the systematic use of memory to guide the search process.
It is common fto distinguish between short-term memory, which restricts the
neighbourhood of fthe current solution fo a subsef, and long-term memory, which
may extend the sef through the inclusion of additional solufions. Tabu search uses
a local search that, at every step, makes the best possible move from a solufion
to a neighbour solution, even if the new solution is worse than the current one. In
this latter case, the move that least worsens the objective function is chosen.

2 Burns [6]
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simulated annealing®

Simulated annealing is inspired by an analogy between the physical annealing of
solids (crystals) and combinatorial optimisation problems. In the physical annealing
process a solid is first melted and then cooled very slowly, spending a long fime at
low temperafures, to obtain a perfect laftice structure corresponding fo a minimum
energy stafe. Simulated annealing transfers fhis process fo local search algorithms
for combinatorial optimisation problems. It does so by associating the sef of
solutions of fhe problem attached with the states of the physical system, the
objective function with the physical energy of fhe solid, and the optimal solutions
with the minimum energy stafes.

It is a local search sfrategy which tries fo avoid local minima by accepting worse
solutions with some probability [Figure 3.4].

| initizl selution |

| evaluate the solufion |

yes

update the current solution

change
temperature?

no

generate a new solution |~'

| decrease temperature |

terminate
search?

yes

no

| Final solution |

Fig. 3.4.  Simple flow chart of simulated annealing

3 Burns [6]
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The algorithm consists of a sequence of iferations. Each iterafion consists of
randomly changing the current solution fo create a new solufion in the
neighbourhood of the current solution. The neighbourhood is defined by the choice
of the generafion mechanism. Once a new conclusion is created the corresponding
change in fthe objective function is computed to decide whether the newly produced
solution can be accepted as fhe current solution. If the change in the objective
function is negative the newly produced solution is directly taken as fthe currenft
solution. Otherwise, the current solufion is unchanged.

In order fo implement the algorithm for a problem, there are four principal choices
that must be made.

e representatfion of solutions

e definition of the objective function

e definition of the generation mechanism for the neighbours
e designing a cooling schedule

Solution representation and objective function definitions are as for GAs. Various
generation mechanisms could be developed that again could be borrowed from GAs,
for example, mutation and inversion.

In designing fhe cooling schedule for a simulated annealing algorithm, four
parameters must be specified. These are an initial temperafture, a femperature
update rule, the number of iterations fo be performed at each femperature step
and a stopping criterion for fthe search. One example of a cooling schedule is the
geomefric cooling rule. This rule updates the femperature by the following formula

T, =cl, i=012.

i1

where ¢ is a temperature factor which is a constant smaller than, but close fo 1.
neural networks*

Neural networks are modelled on the mechanism of the brain. Theoretically, fthey
have a parallel disfributed informafion processing structure. Two of the major
features of neural nefworks are ftheir ability to learn from examples, and their
tolerance to noise and damage to fheir componenfs.

A neural nefwork consists of a number of simple processing elemenfs, also called
nodes, units, shorf-term memory elements and neurons. The elemenfs are modelled
on the biological neuron and perform local information processing operations.

A processing element has one oufput and several inputs which could be ifs own
ouftput, the output of other processing elements or input signals from external
devices. Processing elements are connected to one another via links with weights,

“ Burns [6]
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which represent the strengths of the connections. The weight of a link defermines
the effect of the oufput of a neuron on anofher neuron. It can be considered as
part of the long-tferm memory in a neural nefwork.

After the inputs are received by a neuron, a pre-processing operation is applied.
There are several alternaftive pre-processing procedures including taking the
summation, cumulative summation, maximum or product of fthe weighted inpufs. The
oufput of the pre-processing operation is passed through a function called the
activation function to produce the final oufput of fhe processing element.
Depending on fthe problem, various types of activation functions are employed.

Rather fthan being seen as an opfimisation fool, neural nefworks are more
frequently the object of optimisation exercises. This is because the fraining of a
neural nefwork can be regarded as an optimisation problem. Such a problem could
be solved by applying opfimisation techniques such as GAs and tabu search.

swarm intelligence and ant colony opfimisation® “

The swarm infelligent - fthe emergent collective infelligence of groups of simple
agenfs - approach emphasises distributedness, direct or indirect interactions among
relatively simple agents, flexibility, and robustness. Flexibility allows adaptation to
changing environments, while robustness endows the colony with the ability to
function even though some individuals may fail to perform their tasks. The number
of its successful applications is exponentially growing in combinatorial optimisation,
communication networks and robotics. However, it is fair fo say that very few
applications of swarm infelligence have been developed. One of the main reasons
for this relative lack of success resides in the fact that swarm-intelligent systems
are hard to program, because the paths to problem solving are not predefined but
emergent in fthese systems and result from interactions among individuals and
between individuals and their environment as much as from the behaviours of the
individuals themselves. Therefore, using a swarm-intelligent system fo solve a
problem requires a thorough knowledge not only of what individual behaviours must
be implemented, but also of what interactions are needed to produce such or such
global behaviour.

The daily problems solved by a colony include finding food, building or extending a
nest, efficiently dividing labour among individuals, efficiently feeding the brood,
responding to external challenges, spreading alarm, etc. Many of these problems
have counterparts in engineering and computer science. One of the most surprising
behavioural pafterns exhibited by anfs is the ability of certain ant species fo find
what computer scientists call shortest paths and it is this behavioural pafttern that
inspired computer scientists to develop algorithms for fthe solution of opfimisation
problems.

‘> Bonabeau [4]
“ Dorigo [10]
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Ants coordinate their activities via stigmergy, a form of indirect communication
mediated by modifications of the environment, [Grassé, 1959]. Indirect interactions
are very subfle: two individuals inferact indirectly when one of them modifies the
environment and the ofher responds fo the new environment at a later fime. For
example, a foraging ant deposits a chemical on the ground which increases fthe
probability fthat other anfs will follow fthe same path. The idea behind ant
algorithms is then fo use a form of arfificial stigmergy to coordinate sociefies of
artificial agents. An important insight of early research on anfs' behaviour was
that most of the communication among individuals, or befween individuals and the
environment, is based on fthe use of chemicals produced by the anfs. These
chemicals are called pheromones. By sensing pheromone trails foragers can follow
the path to food discovered by other anfs.

To fest the autocatalytic or positive feedback process of fhe self-organising
behaviour of the anfs three double bridge experimental cases by Deneubourg are
execufed in 1990. In fthe first experiment fthe bridge befween the anft nest and a
food source consists of two branches of equal length [Figure 3.5]. At the start,
anfs were free to move between the nest and fthe food source and the percenfage
of ants fthat chose one or the other of the two branches were observed over fime.
The outcome was fhat, although in the initial phase random choices occurred,
eventually all the ants used the same branch. This result can be explained as
follows. When a trial starts there is no pheromone on the two branches. Hence, the
ants do not have a preference and they select with the same probability any of
the branches. Yet, because of random fluctuations, a few more ants will select one
branch over the other. Because ant deposit pheromone while walking, a larger
number of ants on a branch results in a larger amount of pheromone on that
branch; this larger amount of pheromone in turn stimulates more anfs to choose
that branch again, and so on until finally the ants converge to one single path.

nest © - < .- food

===

Fig. 3.5.  First experiment: two branches of equal length
between the nest and the food source
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In the second experiment the bridge has fwo branches, with one branch twice as
long as the other branch [Figure 3.6]. In this case, in most of the trials, after some
time all the anfs chose to use only the short branch. As in the first experimenf,
anfs leave the nest fo explore fthe environment and arrive at a decision point
where they have fo choose one of fthe fwo branches. Because the fwo branches
initially appear identical to the ants, they choose randomly. Therefore, it can be
expected that, on average, half of the anfs choose the short branch and the other
half the long branch, although stochastic oscillations may occasionally favour one
branch over fthe other. However, this experimental setup presents a remarkable
difference with respect fo the previous one: because one branch is shorter fhan
the other, the anfts choosing the short branch are the first fo reach the food and
to start ftheir refurn fo fhe nest. But fhen, when they must make a decision
befween the short and the long branch, the higher level of pheromone on the short
branch will bias their decision in its favour. Therefore, pheromone starts to
accumulate faster on fthe short branch, which will evenfually be used by all the
anfs because of the autocafalyfic process. Interestingly, it can be observed fhaft,
even when the long branch is twice as long as fthe short one, nof all the anfs use
the short branch, but a small percentage may fake the longer one. This may be
inferpreted as a type of ‘path exploration.

Fig. 3.6.  Second experiment: two branches of different
length between the nest and the food source

In the third experiment, after convergence over the long branch, the ant colony is
offered a new and shorter connection between the nest and fthe food source
[Figure 3.7, on the next pagel. This did not affect the number of anfs that was
using the long branch; the short branch was only selected sporadically. This can be
explained by fthe high pheromone concentration on the long branch and by the slow
evaporation of it.
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Fig. 3.7.  Third experiment: with the removal of the
obstacles, the model again consists of two
branches with different length between the
nest and the food

The double bridge experiments show that ant colonies have a built-in optimisation
capability. By the use of probabilistic rules based on local information they can find
the shortest path between two points in their environment.

The goal is to define algorithms that can be used fto solve opfimum problems on
complicated graphs, where the optimal path (or the shortest path) between source
and destination nodes needs to be defermined. Unfortunately, the solving of a
complicated graph can result in the following problem: the ants, while building a
solution, may generate loops. As a consequence of the forward pheromone trail
updating mechanism, loops tend to become more and more attractive and anfs can
get ftrapped in them. But even if an ant can escape such loops, the overall
pheromone trail distribution becomes such that short paths are no longer favoured
and the mechanism that in the simpler double bridge situation made the ant choose
the shortest path with higher probability does not work anymore. Because this
problem is due to forward pheromone trail updating, it might seem that the
simplest solufion to this problem would be the removal of the forward updating
mechanism. In this way ants would rely only on backward updating.

Still, this is not a solution. If the forward updafe is removed, the system does not
work anymore, not even in fhe simple case of fthe double bridge experiment.
Therefore, it is needed to extend the capabilities of the arfificial ants in a way
that, while retaining the most important characteristics of real anfs, allows them
to solve opfimum path problems on generic graphs. In particular, arfificial ants are
given a limited form of memory in which they can store the partial paths they have
followed so far, as well as fhe ‘cost’ of fthe links they have ftraversed. In
experiments with foraging anfs, it was shown fhat the pheromone evaporation rate
is so slow compared to the fime necessary for the anf colony to converge fo the
short path that, for modelling purposes, it can be neglected. When considering
artificial ants things are differenf. Experimental results show fthat on very simple
graphs, like the ones modelling the double bridge or the exftended double bridge
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sefups, pheromone evaporation is also nof necessary. On the contrary, it improves
the algorithm's performance in finding good solufions fo the optimal path problem
on more complex graphs.

The experiments with the anf algorithm method results in four conclusions

1. the differential path length effect, although imporfant, is not enough to
allow the effective solution of large optimisation problems;

2. pheromone updates based on solution quality are important for fast
convergence;

3. the larger the number of ants, the befter the convergence behaviour of
the algorithm, although this comes af the cost of longer simulation times;

4. pheromone evaporafion is important when frying fo solve more complex
problems

In the model of Deneubourg, the probability of choosing a branch at a cerfain time
depends on the tofal number of anfs that used fthe branch unfil that fime. It is
assumed fhat the amount of pheromone on a branch is proportional to the number
of ants fthat used the branch to cross the bridge. With this assumption, pheromone
evaporation is not faken into account: this is a plausible assumption, because the
experiments typically last of the order of an hour, a time scale that may not be
sufficient for the amount of pheromone to be reduced significantly.

So, in conclusion, the ant colony optimisation approach fturns out to be more than
just a fun metaphor. Recent developments, which combine the ant colony approach
with local searches and/or other optimisation methods, are promising. What is the
basic idea underlying all anft-based optimisation? It is to use a positive feedback
mechanism, based on an analogy with the trail-laying, frail-following behaviour of
some species of ants and some other social insects, fo reinforce those portions of
good solutions that confribute fto the quality of these solutions, or to directly
reinforce good solutions. A virtual pheromone, used as reinforcement, allows good
solutions to be kept in memory, from where they can be used to make up better
solutions. Of course, one needs to avoid some good, but not very good, solutions
becoming reinforced to the point where they constrain the search too much, leasing
to a premature convergence (stagnation) of the algorithm. To avoid that, a form of
negative feedback is implemented through pheromone evaporation, which includes a
time scale info the algorithm. This time scale must not be too large, otherwise
suboptimal premature convergence behaviour can occur. But it must not be too
short either, or otherwise no cooperative behaviour can emerge. Cooperafive
behaviour is the ofher importanft concept here: ant colony algorithms make use of
the simultaneous exploration of different solutions by a collection of identical anfs.
Ants that perform well at a given iferation influence the exploration of anfs in
future iterafions. Because anfs explore different solufions, the resulting pheromone
trail is the consequence of different perspectives on the space of solufions. Even
when only the best performing ant is allowed fo reinforce its solution, there is a
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cooperative effect across fime because anfs in the next iferation use the
pheromone frail fo guide ftheir exploration.

fuzzy set theory*

From an early age people are educated to think in a classical logic way, that is, to
think in ferms of true or false proportions. But fuzzy logic requires thinking in
other terms than the (quasi-) classical logical, which is usually employed with the
aid of various linguistic devices when the issues are nof clear-cut. To clarify the
meaning, it is emphasised fhat if is nof the logic itself that is fuzzy, buf rather it
is fthe information to which it is applied, the logic is actually multi-valued and
therefore more flexible than classical logic, hence providing a language environment
which is not anfagonistic to fundamentally vague or imprecise information.

A useful way of illustrating fuzzy logic sefs is shown in Figure 3.8, in which the
membership (u), 0 = p = 1, is shown on the vertical axis for a continuous
distribution of x. Let the elemenfs of the set be defined on the variable x and let
p represent the membership degree of the set. In case A4 of fthe classical logic sef,
for 0 < x < x, membership of the set is zero. For x > x, the membership value is
one until x = x. In contrast fto this for the fuzzy logic set, for 0 < x < x,
membership is again zero, but for x, < x < x, the membership value gradually
changes from zero to one at x = x,. It remains at that value until x = x, when it
commences to fall again (not necessarily at the same rate). Thus there is a gradual
transition in this case from zero fto full membership of the set and then back to
zero again.

05 05r

Fig. 3.8.  Classical logic way of thinking (left) versus
fuzzy logic thinking (right)

“ Harris [16]
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Example

Suppose that x represents temperature. Let x, = 35°C and x, = 55°C. Let the
fuzzy set represent HOT.

Then 0 <x <x, represents NOT HOT
X, < X <X, represents HOT to grade u
X, < X <X represents HOT

A temperature of 50°C represents HOT to grade 0,75 and a temperature of 40°C
represents HOT to grade 0,25.

In this example there is clearly a need fo explain the treatmenf of a temperature
below x, and above x,. This by increasing the number of linguistic terms to include,
say WARM and VERY HOT. A corresponding fuzzy set diagram is illustrated in
Figure 3.9 on fthe next page. It may be nofed that there are now overlapping sets
and fthat temperature x has a membership grade of u WARM and p, HOT, that is, it
is predominantly HOT, but also WARM. It is not VERY HOT. Thus the need fo make
a categorical stafement whether temperature x is HOT or WARM is avoided. This is
achieved by partitioning the universe of discourse into several overlapping sets.
The universe of discourse is the range of all the operating sets. Thus in fuzzy
logic there is accommodation for uncertainty and it will be clearly seen that in this
example it is not of a statistical nature.

05

X, X X X X

X
Fig. 3.9. A fuzzy set diagram for three sefs

In many real cases, uncertainty is present in observations, which is of a non-
random nature. This is where, for example, in engineering a factor of safety would
be introduced. The uncertainty may be due to the complex nature of the problem,
such as the stress distribution in a component of complex geometry. These are not
uncertainties of a statistical nature and corresponding concept is of possibility
rather than probability.
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It is fhis category of problems where treatmenf on a basis of fuzzy logic is
fruitful. As more knowledge about a system is accumulated and fthe uncertainty
diminishes the need for a fuzzy logic freatment also diminishes and it can revert to
a deterministic or statistical one.

Logical operators
Useful classical logic operatfions are: ‘and’ and ‘or’. ‘And’ is called fhe inftersection
M. '0Or' is called the union U.

Venn diagrams are very useful as an aid fto an infuifive approach fo logic problems.
The convenfion is fthat the surrounding rectangle of a diagram represents the
universe of all the sefs of the genre. Figures inscribed within the rectangle define

arbitrary sefs. A Venn diagram with fwo overlapping sefs would appear as
illustrated in Figure 3.10.
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Fig. 3.10.  Venn diagrams in classical logic

‘

The boundaries of the sets are not sharp as in the classical logic case. There is a
degree of vagueness. A Venn diagram with two overlapping fuzzy logic sets would
appear as illustrated in Figure 3.11.

S

N —
Fig. 3.11. A fuzzy Venn diagram

The infegration of fuzzy logic with neural networks and genefic algorithms is now
making automated cognitive systems a reality in many disciplines. In fact, the
reasoning power of fuzzy systems, when infegrated with the learning capabilities of
artificial neural nefworks and genefic algorithms, is responsible for new commercial
products and processes that are reasonably effective cognitive systems lie,,
systems that can learn and reason).
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So, in conclusion, in classical or crisp sets the transition for an element in the
universe befween membership and non-membership in a give sef is abrupt and well-
defined (or crisp). For an element in a universe that contains fuzzy sets, this
transition can be gradual. This transition among various degrees of membership can
be thought of as conforming fo the fact that the boundaries of the fuzzy sets are
vague and ambiguous. Hence, membership of an element from the universe in this
sef is measured by a function that attempts to describe vagueness and ambiguity.
A fuzzy sef, then, is a sef containing elements fthat have varying degrees of
membership in the sef. This idea is in confrast with classical, or crisp, sefs because
members of a crisp sef would nof be members unless their membership was full, or
complete, in that set (ie. there membership is assigned a value of 1). Elements in a
fuzzy sef, because their membership need not be complete, can also be members of
other fuzzy sefs on the same universe.

concluding remarks

Besides widely accepted and used non-computational methods, the building practise
experienced more familiarity with computational methods over the last two decades.
Two important aspects of these methods are the run time ‘costs’ and the ability of
locating global optima, something especially new artificial intelligence methods, such
as genetic algorithms, simulated annealing, and swarm intfelligence perform well on.
These three methods including another set of three Al methods are presenfed in
this chapter. From these six methods, genetic algorithms are chosen as the method
to be utilised for the VBA script for this Master's thesis.
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characteristics of genetic algorithms

The genetic algorithm (GA) mechanism possesses the unique ability to search and
opfimise a solution for a complex system, where other mathematical oriented
techniques may have failed to compile the necessary design specifications*s. But it
has its disadvantages as well. Due fo its evolutionary characteristics, a standard
GA may not be flexible enough, and an engineering insight is always required
whenever a GA is applied. This becomes more apparent where the problem fo be
tackled is complicated, multi-objective and conflicting. But for the problem to be
dealt with in this Master’s thesis, GA is expected to be able to stand up to it.

In Section 4.1 an introduction into genetic algorithms (GAs) is given, followed by the
explanation of some relating terms in Section 4.2. Section 4.3 deals with the main
operators of genetic algorithms and the operation possibilities of them. This
chapter is concluded by some background information on counting.

introduction of genetic algorithms
history and background of evolutionary optimisation

Evolution is, in effect, a method of searching among an enormous number of
possibilities for ‘solutions’ - fthe enormous set of possibilities is fthe sef of
possible genetic sequences, and the desired 'solutions’ are highly fit organisms - ,
that are well able to survive and reproduce in their environment. Many
computational problems require searching through a huge number of possibilities for
solutions.

Since the 50s and 60s of fthe previous cenfury, compufer scientists have studied
evolutionary systems with fthe idea fthat evolution could be used as an optimisation
tool for engineering problems. The idea in all these systems was to evolve a
population of candidate solutions (i.e. the search space) to a given problem, using
operators inspired by natural genetic variation and natural selection®.

‘s Man [25]
“ Mitchell [26]
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Genefic algorithms were ‘invented’ by John Holland in the 1960s and further
developed in the following decade, although today, researchers offen use fthe ferm
‘genetic algorithm’ fo describe something very far from Holland's original conception.
The original motfivaftion for John Holland for developing GAs was fo construct a
theoretical framework for adaptaftion as seen in nature, and to apply it fo the
design of arfificial adapfive systems. According tfo Holland, "“an adaptive system
must persistenfly identify, test, and incorporate structural properties hypothesised
to give befter performance in some environment".

Evolution is an optimisafion process, where the aim is fo improve the ability of
individuals to survive, or in ofther words the main concept is survival of the
fittest.

The evolutionary search process is influenced by the following main components of
evolufionary algorithms®:

® an encoding of solutions to the problem as a chromosome;

e 3 function to evaluate the fitness, or survival strength of individuals, the
object function;

®  nitialisation of the initial populafion;

®  selection and reproduction operators.

Evolutionary computing has as its objective tfo model the natural evolution. In
nafural evolution, survival is achieved through reproduction. Offspring, reproduced
from fwo parenfs, confain genetic maferial of both parents. Those individuals that
inherit bad characteristics are weak and lose the baftle to survive. In evolutfionary
computing a population of individuals is modelled, where an individual is referred to
as a chromosome. A chromosome defines the characteristics of individuals in the
population. Each characteristic is referred to as a gene (so a gene could be the
angle, fhickness or locaftion of a column, together forming a sef of gene values, or
one chromosome). The value of a gene is referred to as an allele. For each
generafion, individuals compefe fo reproduce offspring. Those individuals with the
best survival capabilities have the best chance fo reproduce. Offspring is generated
by combining parts of the parents, a process referred to as crossover [Section
4.3]. Each individual in the population can also undergo mutation [Section 4.3] which
alters some of the allele of the chromosome. The survival strength of an individual
is measured using a fifness function which reflects the objectives and constraints
of the problem fo be solved. After each generation, individuals may undergo culling
(destroying of an individual), or individuals may survive to the next generation,
referred to as elitism. In other words, with elitism the GA is forced to retain some
number of the best individuals at each generation. Additionally, behavioural
characteristics, as encapsulated in phenotypes can be use to influence the
evolutionary process in two ways: phenotypes may influence genetfic changes,

% Engelbrecht [12]
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and/or behavioural characferistics evolve separately®. Definitions of differenf
terms mentioned in the text above are given in Section 4.2

Different classes of evolutionary computing algorithms have been developed™

genetic algorithms
genetic programming
evolutionary programming
evolution strategies
differential evolution
culfural evolution

co-evolution

For the aspects of the different classes, other than genetic algorithms, reference
is made to Engelbrecht [12].

translation from evolutionary to computational problems®

Large search problems can often benefit from an effective use of parallelism, in
which many different possibilities are explored simultaneously in an efficient way.
For a simultaneous evaluation, both computational parallelism (i.e., many processors
evaluating sequences at the same time) and an intelligent strategy for choosing the
next set of sequences fo evaluate are needed. As the fitness criteria continually
change as the organisms evolve, evolution is searching a constantly changing set of
possibilities, and adaptivity - i.e. the ability fo confinue to perform well in a
changing environment - can thus be seen as an important requirement for computer
programs. Other problems require compufer programs fo be /nnovative - ie. to
construct somefhing fruly new and original.

Viewed from a high level the 'rules’ of evolution are remarkably simple: species
evolve by means of random, followed by natural selecfion in which the fittest fend
to survive and reproduce, thus propagafting fheir genetic maferial to future
generafions.

As a numerical opfimiser, the solutions obfained by the GA are not mathematically
orienfed. Instead, the GA possesses flexibility and the freedom to choose desirable
optima according to design specifications. In general, the bit string encoding (0s and
1s forming a sfring that confains fthe information about fthe chromosome it
represents) is the most classic method used by GA researchers because of its

s Sarker [30], Xie [34]
 Engelbrecht [12]
> Mitchell [26]
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simplicity and traceability. The conventional GA operations and theory (scheme
theory) are also developed on the basis of this fundamental structure. Hence, this
represenfation is adopted in many applications, even though the real number coding
and the Gray code representation [Section 4.4] work (slightly) better than the
‘normal’ binary represenfation®.

4.1.3 biological inspiration of evolutionary algorithms
similarities with DNA

Because of the uniqueness of fhe evolufionary process and the gene sfructure of
a chromosome, the GA processing mechanism can ftake the form of parallelism and
multiobjective. The fundamental unit of information in living systems is the gene. In
general, a gene is defined as a porfion of a chromosome that determines or affects
a single character or phenotype: ie. the visible property (for example, eye colour,
hair colour - or the thickness of a column). It comprises a segment of
deoxyribonucleic acid (ONA), commonly packaged into structures called chromosomes.
This genefic information is capable of producing a functional biological product which
is most often a protein [Figure &.1].

DNA ce T e GATCA AT T T TG O G G T T T0 T
CEr e e e rerrer e DNA
GCA T ATGE T GAAAACGEECAAAGA
RNA cey-aGA U CAACY YUY oG U YU ey mRNA
protein Arg Gty Tyr Thr Phe Ala Val Ser protfein
Fig. #1. A flowchart from DNA to protein
* Man [25]
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conventional genetic algorithm®”

Throughout a genetic evolution, the fitter chromosome has a tendency to yield good
quality offspring, which means a betfter solufion fo the given problem. In a practical
GA application, a population pool of chromosomes has fo be installed and fthese can
be randomly sef inifially. The size of this population varies from one problem to
another. In each cycle of genefic operafion, fermed as an evolving process, a
subsequent generation is created from fthe chromosomes in fthe current population.
This can only succeed if a group of these chromosomes, generally called 'parents’
or a collection term ‘mafing pool' is selected via a specific selection routine. The
genes of the parenfs are mixed and recombined for the production of offspring in
the next generation. It is expected that from this process of evolutfion
(manipulation of genes), the fitter chromosome will create a larger number of
offspring, and thus has a higher chance of surviving in the subsequent generation,
emulating the survival-of-the-fittest mechanism in nature. Figure 4.2 shows the GA
cycle.

population

(chromosomes)
phenotype

selection

mating pool

object
function

L t
RERAC=TEn (parents)

genetic
operation
phenotype
sub-population

(offspring)

Fig. 4£.2.  The cycle of genetic algorithms

The cycle of evolution is repeated until a desired termination criterion is reached.
This criterion can also be set by the number of evolution cycles (computational
runs), or the amount of variation of individuals between different generations, or a
pre-defined value of fitness.

* Man [25]
Roel van de Straat 4, 11
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terminology of genetic algorithms
Some ferms concerning genefic algorithms are already mentioned in the fext above
and some will be added in the following fexts. Below fthese terms® will be provided

with a simple definition.

chromosomes the strings of DNA that serve as a ‘blueprint’ for
the organism or individual

genes the functional blocks of DNA each of which encodes
a particular profein

alleles the different possible ‘settings’ for a trait (e.g,
blue, brown or green eyes)

locus the position of a gene on the chromosome

genome the complete collection of genefic material (all
chromosomes taken together)

genotype the particular set of genes conftained in a
chromosome

phenotype the physical and menfal characteristics of an
organism

fitness the probability that an organism will live fo
reproduce

An objective function or fitness function is a measuring mechanism that is used to
evaluate the status of a chromosome. This is a very important link to relate the
GA and the system concerned.

operation and operators of genetic algorithms
operafion of genefic algorithms

The conventional theory of GAs assumes that, at a very general level of
description, GAs work by discovering, emphasizing, and recombining good ‘building
blocks' of solutions in a highly parallel fashion. A simply GA has difficulty in
tackling complicated, multi-tasking and conflicting problems, and the speed of

% Mitchell [26]
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computation is generally regarded as slow. On the ofher hand, fthere are several
reasons that make GA powerful opfimisers. GAs are*;

very easy-to-understand for reaching a solution;
general applicable;

relatively good in finding global optima;

not dependent of hard mathematical formulations;
addressable to mulfi-objective problems;

capable of handling problem with constraints.

representation®

The characteristics represented by a chromosome can be divided into classes of
evolutionary information: genofypes and phenofypes. A genoftype describes fthe
genefic composition of an individual as inherited from its parenfs. Genotypes
provide a mechanism fo sftore experienfial evidence as gathered by parenfs. A
phenotype is the expressed behavioural traits of an individual in a specific
environment. A complex relafionship can exist befween the genotype and fthe
phenotype. Two such relafionships are:

e pleiotropy, where random modification of genes cause unexpected
variations in the phenotypic traits;

® polygeny, where several genes inferact fo produce a specific phenotype
traif. To change this behavioural characteristic, all the associated genes
need fo change.

As was stated before, each chromosome represents a point in search space. A
chromosome consists of a number of genes, where the gene is the functional unit
of inheritance. Each gene represents one characteristic of the individual, with the
value of each gene referred to as an allele. In terms of optimisation, a gene
represenfts one parameter of the optimisation problem.

A very important step in the design of an evolutionary algorithm is to find an
appropriate chromosome representation. The efficiency and complexity of a search
algorithm greatly depend on the representation scheme, where classical optimisation
techniques usually use vectors of real numbers, different EAs use different
represenfation schemes. For example, GAs mostly use a binary string
represenfation, whereas the binary values may represent Boolean values, integers
or even (discretised) real numbers.

57 Mitchell [26]
* Engelbrecht [12]
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The original GAs developed by Holland had distinctive features®:

1. a bit sfring representation
2. proportional selection
3. crossover as the primary method to produce new individuals

The classical represenfafion scheme for GAs is binary vectors of fixed lengths
(e.g., 10001101111). In the case of an /dimensional search space, each individual
consists of / variables with each variable encoded as a bif string. If variables have
binary values, the length of each chromosome is / bits.

While binary coding is frequenfly used, it has the disadvantage of infroducing
Hamming cliffs [Fig. 4.3 on the next pagel. A Hamming cliff is formed when two
numerically adjacent values have bit representaftions that are far aparf. The
Hamming distance is the number of corresponding bits that differ. For example,
consider the decimal numbers 7 and 8. The corresponding binary representations
have a Hamming distance of 4 [Table 4.1].

Binary coding Gray coding
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
A 0100 0110
5 0101 0111
6 0110 0101
1 011 0100
8 1000 1100
9 1001 1101
10 1010 m

Table &.1. Binary and (reflected)
Gray coding using a
L-bit representation

This presenfs a problem when a small change in variables should result in a small
change if fitness.

* Engelbrecht [12
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If, for example, 7 represenfts fthe optimal solufion, and the current best solufion
has a fitness of 8, many bits (four to be precise) need to be changed to cause a
small change in fitness value. An alfternative bif representation is to use Gray
coding, where the Hamming distance befween the representation of successive
numerical values is one [Figure &4.3].

Hamming distance

— e —— binary coding
> — o — Gray coding
b R

// \\
3
A /oA
/ N\ / \
2 A \ A / \ »
//’\\\ / X /// \\ / \ //
1 .Lfofg\./fﬁf;éf%f — o — ¥ —»
0
0 1 2 3 A 5 6 1 8 9 10

numerical value

Fig. #.3. A graph of the Hamming distance for binary
coding and Gray coding

fitness function

The fitness function is possibly the most important component of a GA. The
purpose of fhe fitness function is fo map a chromosome represenfation info a
scalar value®.

Since each chromosome represents a potential solution, the evaluation of the
fitness function quantifies fthe quality of fhat chromosome, ie. how close fhe
solution is fo the optfimal solution. Selection, crossover, and mutation operators
make use of fthe fitness evaluation of chromosomes. For example, selection
operafors use the fitness evaluation to decide which the best parents fo reproduce
are. Also, the probability of an individual to be mutated can be a function of its
fitness: highly fit individuals should preferably not be mutated.

It is therefore extremely important that the fitness function accurately models the
opfimisation problem. The fitness function should include all criteria to be optimised.
In addition to optimisation criteria, the fitness function can also reflect the
constraints of the problem through penalisation of those individuals that violate
constraints. It is not required that the constraints are encapsulated within the
fitness function; constraints can also be incorporated in the initialisation,
reproduction and mutation operators.

® Engelbrecht [12]
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initial population

Before the evolutionary process can starf, an initial population has fo be
generafted. The standard way of generating the initial population is to choose gene
values randomly from the allowed set of values. The goal of random selection is to
ensure that the initial population is a uniform representation of the entire search
space. If prior knowledge abouf the search space and the problem is available,
heuristics can be used fo bias fhe initial population toward potentially good
solutions.

The size of the inifial population has consequences for performance in ferms of
accuracy and fime fto converge. A small population represents a small part of the
search space. While the time complexity per generation is low, the GA may need
more generafions fo converge fhan is needed for a large population. On the other
hand, a large populafion covers a larger area of the search space, and may require
fewer generations fto converge. However, the fime complexity per generation is
increased. In case of a small population, the GA can be forced to explore a larger
search space by increasing the rate of mutafion.

fundamental procedures of genetic algorithms

As said before, genefic algorithms start with an initial population of individuals
generated at random, and each individual in the population represents a potential
solution to the problem under consideration. The individual evolve through
successive iterations, called generations. During each generation, each individual in
the population is evaluated using some measure of fitness. Then the population of
the next generation is created through genetic operators. The procedure continues
until the termination condition is satisfied [Figure 4.4, , see also Figure 3.3].

The general framework of genetic algorithms is described as follows®"

begin
t:=0;
initialise P(#);
evaluate P(H);
while (not termination condition) do
begin
ti=t+1;
select P(#) from P(t-1);
alter P(#);
evaluate P(#);
end
end
 Sarker [30]
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( start )
| initial population |
4[>| evaluation |

| selection |

v

| crossover |

¢

| mutation |

termination test

GRS

Fig. 4.4.  The flowchart of genetic algorithms

Each iteration of this process is called a generation. A GA is typically iterated for
anywhere from 50 fo 500 or more generations. The enfire set of generafions is
called a run. At the end of the run, fthere is offen one of more highly fif
chromosomes in the population. Since randomness plays a large role in each run,
two runs with differentf random-number seeds will generally produce different
defailed behaviours. That is why GA researchers offen report stafistics averaged
over many differenf runs of the GA on the same problem.

operafors in the genetic algorithm process
One common application of GAs is function optimisation, where the goal is fo find a

set of parameter values that maximise (or minimise) a complex multi-parameter
function.

Roel van de Straat
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As menfioned before, fthree basic operators are needed to implement a simple
genetic algorithm®

1. selection: this operator selects chromosomes in fthe population for
reproduction. The fitter the chromosome, the more fimes it is likely to be
selected to reproduce;

2. crossover: corresponds fo allowing selected members of fthe population to
exchange characteristics of fhe design among fhemselves. Crossover
enfails selection of starfing and ending positions on a pair of mafing
strings at random, and simply exchanging the sfring befween fhese
positions. The crossover operator roughly mimics biological recombinafion
befween two single-chromosome organisms;

3. mufation: is the third step that safeguards the process from a complete
premature loss of valuable genefic material during reproduction and
crossover. In terms of a binary string, this step corresponds to selection
of a few members of the population, defermining a location on the strings
at random, and switching the 0 fo 1 or vice versa. Mufafion can occur at
each gene position in a string with some probability, usually very small.

In this section, these three basic operators, including some others are explained.
selection operators

Each generation of an evolutionary algorithm produces a new generation of
individuals, representing a set of new potential solutions to the optimisation
problem. The aim of the selection operator is to emphasise befter solutions in a
population.

In the case of crossover, 'superior’ individuals should have more opportunities to
reproduce. In doing so, the offspring confains combinations of the genetic material
of the best individuals. The next generation is therefore strongly influenced by the
genes of the fitter individuals. In case of mutation, fitness values can be used to
select only those individuals with the lowest fitness values to be mutated. The
idea is that the fittest individuals should not be distorted through application of
mutation - thereby ensuring that the good characteristics of the fit individuals
persevere. Elitism is an operator that copies a set of the best individuals fo the
next generation, hence ensuring that the maximum fitness value does not decrease
from one generation to the next. Selection operaftors are used fo select these
elitist individuals. By limiting the number of offspring that a single individual may
produce, limitation of the diversity in the new population can be prevenfed®.

% Burns [6]
® Engelbrecht [12]
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There are fwo classes of selecting techniques, of which no method is superior to
the other®:

e explicit fitness remapping, where the fitness values of each individual is
mapped into a new range, e.g. normalisation to the range [0,1]. The mapped
value is then used for selection;

® implicit fitness remapping, where the acfual fitness values of individuals
are used for selection.

The most frequenfly used selection operaftors are given below®:

® random selection
individuals are selected randomly (all individuals have an equal
chance of being selected), with no reference to fitness at all;

e proportional selection
the chance of individuals being selected is proportional fo the
fitness values. It is possible that the population can be dominated
by a few individuals with high fitness, having a narrow range of
fitness values. Similar fitness values are then assigned fo a
large set of individuals in the population, leading fo a loss in the
emphasis toward befter individuals, e.g. Roulette Wheel Selection;

e  tournament selection
a group of k individuals is randomly selected. These k individuals
then take part in a tournament, i.e. the individual with the best
fitness is selected. So for crossover, two individuals with the
best fitness are selected from a random group k and /;

® rank-based selection
rank-based selection uses the rank ordering of the fitness
values (so, independent of the actual fitness value) to determine
the probability of selection;

e  elitism
elifism involves the selection of a set of fif individuals from the
current generation fo survive fo the next generafion.

Elitism is an addition to many selection operators. It can be compared with cloning
and although in real life, there is a lof of (social) resistance against cloning, for
genefic algorithms elitism is a strong and imporftant selection operator.

In elitism, if the fitness of an individual in the previous population is larger fthan
that of every individual in the current population, this individual is preserved into
the current generation. Else such individuals can be lost if fhey are nof selected
to reproduce or if they are destroyed by crossover or mutation. Introducing elifism,

s Burns [6]
% Burns [6]
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the best individual generafed up to generafion f can be included in the population
at generafion f + 1. Many researchers have found that elitism significantly improves
the GAs performance®.

A scheme called Roulette Wheel Selection is one of the most common techniques
being used for a proporfionate selection mechanism® as described above. The
mechanism works as follows.

The /ith member in the original population has a probability of selection

F
P = : 41

)
F/'
1
with j = 1...N,, where F is the fitness of the /th design. The circumference of the
roulette wheel in Figure 4.5, on the next page is F,_ for N chromosomes.

N
Chromosome 2 is fitter than chromosome &4, and occupies the largest inferval. To

select a chromosome, a random number is generated in the interval [0, FND] and the
individual whose segment spans the random number is selected.

The algorithm of the roulefte selection is summarised as follows®.

step 1.
calculate the fitness F, 7 = 1.,N, of N, individuals and their
whole sum £, in a population at generation f
step 2.
generate a real random number rand () in [0,1] and set s =
rand () x F,
step 3.
Np
obtain the minimal k& such that ZE 2 S, and select the kth
i=1
individual at generation # + 1
step &.
repeat steps 2 and 3 untfil the number of selected individuals
becomes N,
s Mitchell [26]
 Man [25]
 Man [25]
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the second member is selecfed

- spun by a random number

Fig. £5. The roulette wheel scheme for genetic
algorithms

reproduction operators

The purpose of reproduction operators is to produce new offspring from selected
individuals, either through crossover of mutation. Crossover is the process of
creating a new individual through the combination of the genetic material of two
parents. Mutation is the process of randomly changing the values of genes in a
chromosome. The aim of mutation is fto introduce new genetic material into an
existing individual, thereby enlarging the search space.

crossover

As mentioned before, the aim of crossover is to produce offspring from two
parents, selected using a selection operator. However, it is not necessary that
each group of parents produces offspring. In fact, crossover takes place at a
certain probability, referred to as the crossover rate p_e [0,1]%.

® Engelbrecht [12]
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A mask specifies which bits of fhe parents should be swapped fo generate
offspring. Several crossover operators have been developed to compute the mask
[Figure 4.6]. Some of these crossover operators are;

® uniform crossover
for uniform crossover the mask of length /is created at random
for each pair of individuals selected for reproduction. A bit with
value of 1 indicates that the corresponding allele have to be
swapped befween the two parents;

®  one-point crossover
a single bit position is randomly selected and the bit substrings
after that point are swapped between the two chromosomes;

® two-point crossover
two bit positions are randomly selected and the bit substrings
befween these points are swapped.

parent 1 parent 1 parent 1

parent 2 parent 2 parent 2

mask mask mask
[Tol ool 1Jooo] 1] [oJoJoJoloJo i T1]1] oJol T TrT1Tofoo]o]

| | |

offspring 1 offspring 1 offspring 1

offspring 2 offspring 2 offspring 2

uniform crossover one-point crossover two-point crossover

Fig. 4.6.  Three crossover operator types

Although fthe one-point crossover method was inspired by biological processes, if
has one major drawback in that certain combinations of schema cannot be combined
in some situations. Multi-point crossover can be infroduced to overcome fthis
problem. As a resulf, the performance of generating offspring is greafly improved.
Another approach is fthe uniform crossover. This generates offspring from fthe
parenfs, based on a randomly generafed crossover mask. The resultant offspring
confain a mixfure of genes from each parenf. The number of effective crossing
points is not fixed, buf will be averaged at [/Z, where [ is fthe length of fthe
chromosome™. The preference for using which crossover fechnigue is sfill arguable.
A general comment is that each of fhese crossover techniques is particularly
useful for some classes of problems and quite poor for others.

* Man [25]
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mutation

Also menfioned before, the aim of mutation is to infroduce new genefic material
info an existing individual; that is, to add diversity to the genefic characteristics of
the population. Mutation is used in support of crossover to make sure that fthe full
range of allele values us accessible in the search. Mutation also occurs af a
certain probability p, referred to as the mutation rate. Usually, a small value for
p, € [01] is used (so close to 0) to ensure that good solutions are not distorted
too much. However, research has shown that an initial large mutation rate that
decreases exponenfially as a function of the number of generafions improves
convergence speed and accuracy. The initial large p_ ensures that a large search
space is covered, while the p becomes rapidly smaller when individuals start to
converge to the optimum. The following mutation schemes have been developed [Fig.
4.3

e random mutate
where bit positions are chosen randomly and the corresponding bif
values negated;

® inorder mutate
where two bit positions are randomly selected and only bits on
and between these positions are mutated

before mutation before mutation
- ] - ] 4 9 mutation points - ] - ]

| l

after mutation after mutation

random mutate inorder mutate

Fig. 4.7.  Two mutation operator types

Mutation is what prevents the loss of diversity at a given bit position. For
example, without mutation, every string in the population with a bit string encoding
might come to have a one at the first bit position, and there would then be no way
to obtain a string beginning with a zero. Mutation provides an ‘insurance policy’
against such fixation™.

" Man [25]
” Mitchell [26]

Roel van de Straat

5,7



Master’s thesis

5,8

crossover and mutation algorithm

Holland's analysis suggests that selection increasingly focuses the search on
subsets of the search space with esfimated above-average fifness, whereas
crossover puts high-fitness ‘building blocks' together on the same sfring in order
to create strings of increasingly higher fitness. The crossover and mutation could
be performed as follows™:

for i=1 N,
Generate a random number z uniformly distributed in [0,1]
If z> 0,1, perform crossover as follows:
Randomly select two mafing parents from the mating
pool, and randomly choose two sites on fthe genetic
strings and swap strings
If z < 0,1, skip crossover
for j= 1, N,
Generate a random number z uniformly distributed in [0,1]
If z> 0,99, perform mufation as follows:
Randomly choose a member from the mating pool
and switch a value fo another possible value
If z<0,99, skip to next j
end
end

The choice of the crossover and mutation rate as the confrol parameters can be a
complex nonlinear optimisation problem to solve itself. The increase of crossover
probability would cause the recombination of building blocks fo rise, and at the
same time, it also increases the disruption of good chromosomes. On the other
hand, should the mutation probability increase, this would transform the genetic
search into a random search, but would help to reintroduce the lost genetic
material. As each operator probability may vary through the generations, linear
variations in crossover and mutation probability are suggested. Furthermore, their
seftings are critically dependent upon the nature of the objective function. This
selection issue still remains open to suggestion although some guidelines have been
infroduced. For large populations (Np = 60), the crossover rate can be set at 0,6
and the mutfation rate can be set at 0,001 For small populations (Np < 60) the
crossover and mutation rate can be set at respectively 0,9 and 0,01

™ Burns [6]
* Man [25]
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reordering

The order of genes on a chromosome is crifical. The purpose of reordering is to
attempt to find the gene order which has the befter evolutionary potential. The
order of genes between fwo randomly chosen positions is inverted within the
chromosome, a technigue which is known as /nversion [Figure 4.8]".

before inversion

[8[9]n]

l

after inversion

[8[ 9] n]
random inversion

Fig. 4.8.  The inversion operator
For the problem described in book one, the reordering operator is not adopted.
other aspects of genetic algorithms
island genetic algorithms™

In genefic algorithms, islands can be used for the represenfation of more
populations. Selecfion, crossover and mufation occur in each subpopulation
independenfly from the other subpopulation. In addition, individuals are allowed to
migrate to another island, or subpopulation. In this way genefic material is shared
among fthe subpopulations. Subpopulations can be initialised fo cover different parts
of the search space, thereby covering a larger search space and facilitafing a kind
of niching by individual islands. Also, in multi-criteria optimisation, each
subpopulation can be allocated the ftask to opfimise one criterion. A metfa-level
step is then required fo combine the solution from each island.

Another aspect is, when can individuals migrate, from where, and to where? The
simplest approach is to let migraftion occur aft random. Individuals are selected
randomly, as is the destination subpopulation. Alternatively, tournament selection
can be used to select migrated individuals, as well as the destination. Infuitively,
the best individuals of a poor island may want to migrate to a befter island.
However, individuals from a poor island may infroduce bad genetic material onto a
good island. Acceptance of an immigrant can then be based on a probability as a
function of the immigrant's fitness value compared to that of the intended
destination island, or acceptance if the immigrant has the ability fo increase the

* Man [25]
 Engelbrecht [12]
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diversity in genetic material, that is, if fthe individual is maximally different. It is
also possible that a highly fit individual from a prosperous island visits islands,
taking part in reproduction.

replacement scheme”

After generating the offspring, several representative strategies fhat can be
proposed for old generation replacemenft exist. In fthe case of generational
replacement, the chromosomes in the current population are completely replaced by
the offspring. Therefore, the population with size N will generate N offspring.

Another modification for generational replacement is that nof all of fthe
chromosomes of the subpopulation are used for the next generation. Only a portfion
of the chromosomes (usually the fittest ones) are used to replace the
chromosomes in the populafion.

Knowing that a larger number of offspring implies heavier computafion in each
generafion cycle, the other scheme is fo generate a small number of offspring.
Usually, the worst chromosomes are replaced when new chromosomes are inserfed
info fthe population. A direct replacement of fhe parents by fhe corresponding
offspring may also be adopted. Another way is to replace the eldest chromosomes,
which stay in the population for a long time. However, this may cause the same
problem as discarding the best chromosome.

robustness’”

There are many instances where it is necessary to make the characteristics of the
system variables adaptive to dynamic signal behaviour, and ensure that they are
capable of sustaining the environmental disturbance. These offen require an
adaptive algorithm to optimise time-dependent optima which might be difficult to
obfain by a conventional GA. When a simple GA is being used, the diversity of the
population is quickly eliminated as it seeks out a global opfimum. Should the
environment change, it is often unable fto redirect its search to a different part of
the space due to the bias of the chromosomes. To improve the convergence of the
standard GA for changing environments, two basic strategies have been developed.

The first strategy expands the memory of the GA in order to build up a repertoire
of ready responses to environmental conditions.

The random immigrant mechanism and fthe friggered hypermutation mechanism are
grouped as fhe second straftegy. This approach increases diversity on the
population fo compensate for the changes encountered in the environmenf. The
random immigrant mechanism is used to replace a fraction of a conventional GAs

7 Man [25]
*® Man [25]
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population, as determined by the replacement rate, with randomly generated
chromosomes. If works well in environments where fhere are occasional, large
changes in fthe location of the optimum.

multi-objective and multi-modal”

The GA always has the distinct advantage of being able to solve multi-objective
problems that other gradient fype of opfimisers have failed fo meet. Indeed,
engineering problems offen exist in the class of multiple objectives.

Another atfribute of the GA is ifs capability for solving multi-modal problems.
However, there is no guarantee that the exact global opfimum will be obtained by
using GA (which hold true for any optimisation technique), although there is the
tendency for this fo occur.

constraints®

In the process of opfimisaftion, the problem of constraints is offen encounfered.
This obstacle is not always handled properly by the conventional, but
mathematically governed optimisation techniques. By contrast, constraints present
no problems to the GA and various methods can be used in this area.

® searching domain
the search space of a chromosome can be confined to embed the
condifion of consfrainfs in the system. This approach guaranfees
that all chromosomes are valid and that the consfrainfs will nof
be violated. This method of solving the constraint problem
requires no additional compufing power, and all chromosomes
creafed are regarded as potential solutions to the problem;

® repair mechanism
the repair mechanism is a direct analogy fo the DNA repair
system. If any condition of the consfraint is violated by a
chromosome, the chromosome will be ‘corrected’ so that it
becomes valid. This can be achieved by modifying some genes
randomly within fthe valid solution space, or backtracking foward
its parents’ genetic maferial;

e penalty scheme
invalid chromosomes can be given a penalty, such that they
become less fit. The constrained problem is then fransformed to
an unconstrained condition by associating the penalty with all the
constraint violations.

* Man [25]
® Man [25]
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concluding remarks

Based on fhe biological evolutionary process, the genetic algorithm method is a
technique to find an opfimal solution in a large search space. Since the work of
John Holland, numerous variaftions of the conventional GA have been proposed.

A standard simple GA is, actually, nothing more than a repeated process of a few
number of simple operations. Genetic algorithms start with a random initial
population of possible solutions. Every solution is an individual member of a large
population of a generally fixed size. These individuals, also referred fo as
chromosomes, sfore a number of genes which are associated with a specific
characteristic of the solution. In the fraditional GA, the genes are usually bit-
values (eg. 0 or 1), but they can actually contain strings, integers, real values, or
Boolean operators as well. Affer generating the initial generatfion, a GA calls a
sequence of operafions, guided by the relative fitness value of the individuals, and
drives the population to evolvement over a number of generations. The goal is to
continually improve the fitness of the best (fittest) individual, until some or more
termination criteria is/are satisfied.

Although, this process of evolution is relatively robust, the convergence of a GA is
rather slow. In essence, a GA will waste time by testing the fitness of sub-optimal
solutions as well. Also, the user must realise that genetic algorithms will only by
chance find an optfimal solution, whereas some traditional methods will find if
exactly. But with the utfilisation of the GA in the preliminary design stage, it is not
completely necessary fto find the optimal solution, as adaptations to the design are
very likely. The question, however, remains; how fit, is fit enough?
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structural optimisation projects

After the introduction of some computational optimisation techniques, the question
may arise; in what way these techniques can be implemented in building engineering
of building design. As an answer to this, several structures will be shown which
are already built with the philosophy of structural optimisation. Four of them, with
each different techniques are described in this chapter; The Groningen Twister
project - Groningen [The Netherlands], The Web of North-Holland - Haarlemmermeer
[The Netherlands], The Akutagawa Project - Takatsuki [Japan], and The Folded Roof
Project - Frankfurt [Germanyl.

Groningen Twister — Groningen, The Netherlands®®

The Groningen Twister is a collaborafive project befween the design team of Kees
Christiaanse Architects & Planners (KCAP) in Rotterdam, an engineering team of
Arup in Amsterdam and the chair for Computer Aided Architectural Design (CAAD)
at the ETH Zurich. The project was inifiafed in February 2003. The aim of the
project was fo develop a CAD-tool which would help the architects of KCAP to
solve a complex design ftask. Underneath a pedestfrian area fthat links fthe main
station to fthe city cenfre of Groningen, there was a need for parking space for
approximately 3000 bicycles [Figure 5.1].

Fig. 5.1. Model view of the Groningen Stadsbalkon [31]

* Scheurer [31]
%2 ETH [37]
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To support the concrefe slab of the pedestrian level, the desired design called for
more than one hundred columns of different sizes to be placed in a random
paftern, but to be then sized and controlled according to structural, functional, and
aesthefic needs. To solve this problem, soffware was developed at the chair for
CAAD that simulates a growth process for the columns. The distribution of the
columns is defined by structural rules, provided by ARUP's engineers, as well as
functional and design rules provided by KCAP's designers. The resulfs are
presenfed fo the user as a three dimensional, dynamically evolving model. At any
time during fhis process the user is able to control the model on the screen
inferactively. The user can control the process in two disfinct ways, on the one
hand by direcfly confrolling the placement of single columns, on the ofher hand by
adjusting various paramefers fhat define fthe properties of fthe columns and the
environment. The system provides real fime feedback, as the column disfribution
tries fo adapt fo the changed configuration. This allows the user fo fest various
alternative solutions in very short time [Figure 5.2].
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Fig. 5.2.  Screenshot of the Groningen Twister model
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After a stable and satisfactory condition is achieved, the resulting column locations
can be exported for construction documents in various digital file formats [Figure
5.31.

Fig. 5.3.  Colour coding by kinetic energy [31]

The columns represent particles in a swarm system. Each column in the system is
an autonomous individual, exploring the habifat and reacting to its neighbouring
columns. According fo the fwo layers of the habitaf, the column model consists of
two independent parts. The botfom end can move freely within the ground plane of
the model, whereas fthe top end can move in the plane described by fthe slab. The
actual column position, length and ftilt are defined by the connecting line. It has to
be assured, that the tilt angle stays below the assigned maximum [Figure 5.4].

fop mass

Y
(#8— bearing radivs ——

battomn mass

Fig. 5.4 The column model with a maximum bearing
capacity and tilt [31]
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This behaviour is easily described by a spring-mass-system [for more on particle-
spring systems, see Appendix C]: punctual masses are connected by a virtual spring
that pulls depending on fthe distances between fthe masses. In the model each
organism is composed of two masses which describe the top and bottom end of the
column and a spring in befween. The force of this spring is proportional to the
horizontal distance and, since the move of the masses is confined within the two
planes of the habitat, they are drawn fo positions above each ofher.

The columns are interacting with fheir adjacent columns as well as with fthe
surrounding habitat following the same simple principles of aftraction and repulsion
by virfual springs. If fthey come fo close, the top masses of each column are
repelled by fthe slab outline, the holes, and the areas without cellar. The boftom
masses are repelled by the paths.

To get fthe desired effect of distributing the columns, fthey seek to sfay af a
certain “social distance” to each other. This distance is defined by the maximum
spanning distance of the slab and the bearing capacities of the respective columns.
The bearing capacity of a column defines a circle around the top end marking the
area where column is able fo support the slab. Neighbouring columns therefore
have to be aligned so that their radii fouch or overlap slightly. This is also
accomplished by virtual springs that push or pull between their respective top
masses.

The specifications of the columns were given by Arup. There are three types
(thicknesses) of columns with different diameters and bearing capacities. The
bearing capacity results from the maximum radius of the column and defines the
distance between the columns. The tilt angle of the columns was limited to 10
degrees so that this factor could be ignored in structural calculations. Also the
height differences between the ground plane and the slab were not cared for and
an average height of 3,0 meters was used throughout the habitat. The approximate
number of columns needed was estimated by Arup based on the maximum radii and
the building budget which would only allow for a certain number of columns.

By making the columns pressure sensitive for the lateral pressure from their
neighbours and able to change their radius, an actual growth process was possible.
Instead of assigning a column diamefter and bearing radius from the beginning, the
columns are able to adapt to their surroundings by changing their size
autonomously.
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A column fthat is foo far away from its neighbours detects a low surrounding
pressure and starts fo grow in diamefer in discrefe steps, matching the column
types. If it reaches the largest possible stafe and still has no close neighbours, it
splifs info two small columns, which both start growing again. If a column gefs to
close with ifs neighbours or the edges of the habitat, the resulting pushing
increases the pressure and it starfs shrinking in just the same way. And if it
reaches the smallest state while the pressure remains high, it finally dies. Thus, by
“seeding” a single column the whole area of the slab is filling up with columns over
time [Figure 5.5].

a
=/ (4

slab edges and expansion joints

column

| O

00’0 Q9!

bicycle and foot paths growth and birth (split) shrinkage and death

Fig. 55.  The relation between the habitats and the
‘agents’ en the growth, birth, shrinkage and
death of the columns [31]
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5.2  Web of North Holland - Haarlemmermeer, The Netherlands®

Although the Web of North-Holland, is not an example of a structure based on
computafional sfructural opfimisation, it is presented in this section, as
computafional aspects play a key role, and an optfimal link between design and
milling is aimed for. In other words, the Web was designed with fthe consfruction
costs as one of the main opfimisation objectives.

For the Dufch province of North Holland ONL designed a pavilion for fthe world
horticultural exhibition ‘Floriade’ 2002. Architecturally there is no disfinguishable
difference between wall, floor or ceiling [Figure 5.6].

Fig. 5.6. A rendering of the Web of North Holland [5]

The design was based on a topological surface that governs the logical aesthefic
confinuity of the shape. The specific shape of the surface came about in a design
process which combined milled physical models of the compufter model with again
computer modelling of adaptfations to the milled models fo aftain a good space for
ifs program as well as infroducing the rigorous styling requirements of ONL. During
this process a clear vision arose of the concave / convex dynamics and fthe shaping
lines, the folding lines fthat fade in and fade ouf of the shape. ONL described the
styling requirements in a number of shaping rules of fthe design. It was important
to describe the design nof in mass, buf in a number of design rules and guidelines
since its internal program was sfill to change. To confrol the shape and fthe look
of the design a NURBS surface was created [Figure 5.7, on the next pagel.

® Boer [5]
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Fig. 5.7 The NURBS surface of the design [5]

NURBS is an acronym for Non-Uniform Rational Bezier Splines, a container for a
number of polynomial algorithms. Its use is widespread in the design and character
animation industry. In architecture the use of these technigues involves a genuine
paradigm shift away from the use of two dimensional plans and sections. Simply
puf, one cannot build a double curved surface using plans and sections, because
every plan and every section is different at different section planes. The logical
reaction is to use the NURBS surface as the plan by having it govern the integrity
of the construction. Expanding on the conventional paradigm of a construction grid
ONL mapped a triangular grid with the internal integrity of an icosahedron (a 20-
faced polyhedron on the NURBS surface.
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The icosahedron system was chosen for a number of reasons, the main reason
being that it is a closed system, like the design [Figure 5.8].

Fig. 5.8.  Mapping of a constructive grid based on a
icosahedron [5]

With fthe pavilion for the Web of North Holland ONL reaffirmed their strong beliefs
acquired by previous projects [Elhorst-Vloedbelt, saltwater pavilion] that one can
gain a maximum design freedom and keep the budget in check by gaining control
over a system of similar, but different elements. A number of techniques can be
determined that make this possible:

1. File to Factory: A construction process is greatly simplified by connecting
the file created by the architect to the machine, eliminating intermediate
steps that are inefficient - and even more so - susceptible fo errors.

2. Mass cusfomization: An irregular shape can only exist by the grace of
irregular elements, fherefore control over mass customization greatly
increases design freedom.

3. Parameterisation: One Building, One Detail. Ideally, in a mass customized
solution more parameters can be found than those that account for shape
alone. These can be utilized to optimise the design. ONL mentioned earlier
that an iterating construction calculation program can converge towards a
construction that does not only have variable thicknesses, but also
variable heights and an optimal point distribution. Similarly, in a design
process parametfers can change in accordance to design requirements and
iterative scripts can be written to accommodate very specific demands.
This is however, very complex (or perhaps impossible) in practice.
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Fig. 5.9. 3D model of the panels with the construction
showing [5]

4. Design confrol hierarchy: In this specific pavilion the shape is described in
a single NURBS surface, essenfially all that follows will refer fto fhis
surface. A NURBS surface is created using NURBS lines, keeping this
creation link infact yields confrol on a higher level, by changing the line,
the surface changes and fthe enfire system changes. Primarily for
designers this nofion is paramount.

5. Body Styling: These techniques give fthe architect / designer full freedom
to shape fthe volume of fhe building, fo propose styled creases and
smooth transitions of creases disappearing info the surface of the overall
body. In the meantime ONL now has two projects in the production phase
that have been designed with the above in mind: the Cockpit building and
the Acoustic Barrier. The Cockpit building is part of a fluid design of the
Acoustic Barrier, to accommodate the transition from the one to the other
the design control hierarchy proved to be essential, both projects share
the same outlines, but differ in construction principle. Construction is
based on a streamlined File-to-Factory process described earlier.

Soon, the ftransferred Web will be delivered in front of the faculty of Architecture,
Delft University of Technology.

Fig. 5.10.  Specific view to illustrate the effectiveness
of the application of the Hylite [5]
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5.3  Akutagawa River Side Project - Takatsuki City, Japan®

The Akutagawa River Side project is fthe project which brought a practical project
to appeal the potential and possibility of the computational morphogenesis mefhod
for the future. The present project has been designed not only as to be effective
as a leading project to fhe campaign, but also to have an affractive appearance,
even if it does not have a big mass.

The west and south side wall development diagram of the building affer complefion
(April of 2004) is shown in Figure 5.11 together with a rendering of the complete
building. As can be seen from the diagram and the rendering, the west side and
south side wall sftructures have a non-geomefrical form, which has been generated
through the proposed process of compufafional morphogenesis through usage of
the extended ESO method.

Fig. 511.  The west and south side wall development
diagram of the building and a perspective view
of the building in a rendering [27]

* Qhmori [27]
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Figure 5.12 shows fhe evolutionary process of the extended ESO mefhod from which
it can be observed how the south side wall form has been changed through the
process of delefion of the porfion with low densify of Von Mises’ relative sfress,
as well as the process of addition of the necessary portion. In the evolutionary
process, it has to be noticed that the slabs of each floor level are freated not fo
be delefed by fthe evolutionary process.

o

step 0 step 3 step 6

]

step 35 step 60 step 65
Fig. 5.12.  The evolution process of the south wall [27]

In order to ensure and proof that the structure with the form obtained through
the computational morphogenesis procedure has enough capability, 3D elasto-plastic
numerical analysis is carried out. Figure 5.13, on the next page respectively shows
the deflection stafe of the whole structure subjected to the horizontal loads in x-,
y-direction and also in the direction at an angle 45 degrees to fthe x-axis. In Figure
5.14, on the next page a photograph is given with the building under consfruction.
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x-direction y-direction angle

Fig. 513.  The limit state deflection of the whole
structure subjected to horizontal loads in x-,
y-direction and under an angle [27]

Fig. 5.14. Inside views and oufside views of the
completed building [27]
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Folded Roof Project - Frankfurt, Germany®

The Folded Roof Project, a large roof sfructure assembled from steel members and
nodes standing on a cenfral foof, was developed by Fabian Scheurer of the chair
for CAAD in collaboration with Bollinger+Grohmann Engineering in Frankfurt. By
combining structural analysis soffware with a genetic algorithm, it was possible to
evolve possible solufions for a highly sophisticated problem. In terms of topology
the structure is a single plane, friangulated in a regular pattern of 289 nodes and
800 members, fthree-dimensionality and stability are achieved by folding. The nodes
are arbifrarily translated along the z-axis within certain boundaries. At the foof,
the plane folds down fo the ground. This posed a tricky problem to the engineers.
To achieve the necessary canfilevering capacity, the structure needed to have deep
folds running from the centre to the rim of the roof [Figure 5.15]. But since there
are no members spanning across fhe hole in the middle, a tfension-bearing ring
around fhe hole is the only way of keeping it from being drawn apart. Obviously,
those are two confradicting concepts.
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Fig. 5.15. The optimised folded roof structure [32]

Since it was impossible fo find a set of geometric rules for creating stability, the
only way fo defermine the structural performance was to simulate the behaviour of
the whole structure with analysis software and fo optimise if based on fhese
results - which took about & seconds per run. By encoding the z-coordinates of all
nodes info a genome and using a genefic algorithm, which allowed for crossover and
mutation, the performance of the structure could be significantly improved. As a
fitness criteria, the deflection of fthe nodes under self-weight was calculated by
the analysis software, the worst node defining the inverse fitness fore each
individual instance.

% Vrachliotis [33]
% Scheurer [32]
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After 200 generations with 40 individuals each, the deflection repeatedly reached a
minimum of 129 mm - at a cantilever of 25 meters [Figure 5.16].

max. displacement
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Fig. 5.16.  Node displacement values of 200 generations
with 40 individuals [32]

In this case, the results generated have not (yet) used to build the structure, but
were used as a ‘proof of concept’ and to develop an understanding for the
mechanisms which could be used fo create an optimal design. Interestingly, nof one
of the engineers on the project, with an impressive amount of experience between

them, would have come up with the same engineering concepts fthat evolved from
the A-life algorithm.
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55 concluding remarks

As shown in the four building projects, presented in Chapfer 5, optimisaftion methods
can be and are implemented in fhe design process. And as was shown, fthe
opfimisaftion objectives can be different for every project, be if a stress-related
objective (The Groningen Twister and The Akutagawa River Side project), a
construction and cost-related objective (The Web of North-Holland), or a
serviceability - in the sense of the displacements - related objective (The Folded
Roof project). It can be expected that the number of building projects, based on or
driven by Al optimisation methods will increase over fthe upcoming years.
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6 concluding remarks and recommendations of the Master's thesis

This chapter concludes book two of the Master's thesis 'optimisation of structural
transfer zones in multi-use buildings’. Here conclusions are given in two distinct
sub sections. The first deals with conclusions on structural optimisation, the second
with conclusion on genetic algorithms. Finally, recommendations are posted for
further research on fthe subject dealt with in book ftwo in the field of building
engineering.

conclusions on structural optimisation

optimisation techniques

e As non-standard and free form (or befter difficult-form) architecture is
gaining more interest, optimisation of structures or structural elements
will play an important role in the design process. The building engineer can
adopt both manual and computational optimisation methods and technigues,
in order to optimise the structure to be designed. The goal of utilising
these methods and techniques is to explore unforeseen solutions to
structural problems and to compare their overall design value with
standard solutions.

® As the spread of different methods is very large, a number of fhese
manual and computational optimisafion fechniques, some of which are based
on the new artificial intelligence mefthods, are presenfed in fhe Master's
thesis. And as the main result from this research, it can be concluded that
many opfimisation methods can be implemented in fthe concepfual and
preliminary design stage, but that fthe choice for the technique fo be used
is largely dependant on the problem to be solved.

threats
® The biggest threat in using the computational technigues lies in the aspect
that frequenfly, no or hardly any insight is given in the procedures and
functions of the computational run. That is why, it must be avoided that a
structural designer will adopt fhe results acquired from a computfational
opfimisation tool, without using his engineering abilifies to check fthe
outcome.
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Another threat can be the formulation of the design objectives of the
model. On one hand, the number of objectives may not be ftoo large, as the
optimisation process will then not converge fast enough or will not
converge at all. On the other hand, many aspects play an important role in
the design process and omifting some of these aspects results in an
inadequate model.

expectations

Various projects are already built based on or driven by optimisafion
techniques, and it can be expected that fthe number of building projects
with optfimisation aspects in the design process will increase exponentially
in the upcoming years. This aspect mainly comes from the good results of
these projects and the prediction that first, the structural designers will
gain more interest and experience in the field of optimisation, and second
that the collaboration with computer scientists will lead to more defiant
designs.

conclusions on genetic algorithms

GA in general

Genetic algorithms are known to be able fo come fo optimal results for a
specific given problem, with metaphorically evolving living creatures in a
well-defined environment. Key issue in adopting genefic algorithms is the
fitness function with which these ‘living creaftures’ or individuals are
evaluated. In contrast to more some tradifional numerical technigues,
genefic algorithms operafte on entire populations of possible solufions to
find an optfimal solution. This makes it much more likely to locate a global
peak than the traditional techniques. So in conclusion, especially problems
with numerous possible solutions that have to comply with a set of
boundary conditions can be solved using genetic algorithms.

disadvantages

Attempts to optimise ‘everything’ by filling the fitness function with to
many paramefers, have a higher probability of generation total chaos
rather than emergent pafterns®.

Another drawback is the extensive test and validation procedures that
need to be undertaken to acquire the best GA paramefers, such as the
crossover and mutation rate [see the addendum of this Master's thesis].
With the characteristic of a relative slow convergence speed and the fact
that the optimal solution of a GA run is merely an estimate based on
probability, the utilisation of GA’'s as an optimisation tool is not always
justified with the advantages given above.

¥ Scheurer [32]
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usability

® |t can be stated that with the right type of genetic operators and the
right values of the genetic parameters, new tools based on GA can be
created that become full members of the design process of structural
engineers. Of course, as long as the problem to be solved contfains
objective functions characterised by many local optima and a large search
space. In this situation, the genetic algorithms offer a powerful alternative
for the fraditional methods.

recommendations

e When dealing with new (computational) techniques, ageing of knowledge on
this subject can be somewhat problematic. Besides, as the fields of
building engineering and computational engineering are relatively far apart
from each other in terms of collaboration, it can be well recommended that
both a structural engineer and a computer scientist, working closely
together, must ‘attack’ the design process including the structural
optimisation aspects together. In order to achieve this, both academics
need fo be educated to a small extent in the field of their colleague. In
other words, it is recommended that structural and building engineering
students can have the opportunity (and it is to them to grasp it) of
education on computational (optimisation) techniques.
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Appendix A. introduction in Finite Element Analysis®® 8% 90

Structural opfimisation has achieved far less popularity in practice compared to
finite element analysis, despife fthe exfraordinary progress of the optimisation
theory and associated algorithms over the last three decades. This is caused by
the difficulties and complexities of existing structural optimisation methods. The
finite element method (FEM) is a numerical technique for analysing structures and
confinua and has been widely used by design engineers and researchers in all
engineering fields. In the finite element method, a structure or sfructural
component is discretised into finite geometrical parts (finite elements). These
elemenfs defined by fheir coordinates describe the shape of the component, which
may be very complex. The mefhod generates many simultaneous algebraic equations
that are solved on a digifal computer. One of fthe great advantages of the FEM is
its versatility. The FEM can be applied fo various physical problems with arbifrary
shape, loads and support conditions and fthe mix elements of different fypes,
shapes and material properties can be used. Another advantage of the FEM is that
the finite element model physically represents the actual structure. With advances
in digital computers, the FEM had become a computational fool in the performance-
based design of engineering structures.

The PBO method employs the FEM as a modelling and computational tool. From the
results of the finite element analysis (FEA), the PBO programs identify the
underutilised elements that are inefficient in carrying the loads. The underutilised
elements are then removed from the structure to improve its performance. The
process of the FEA, performance evaluation and element removal is repeated until
the optimal structure is generated.

So, the finite element method is a numerical procedure for analysing structures and
continua. Usually the problem addressed is tfoo complicated fto be solved
satisfactorily by classical analytical methods. The finite element procedure produces
many simultaneous algebraic equations, which are generated and solved on a digital
computer. The results are rarely exact. However, errors are decreased by
processing more equations, and results accurate enough for engineering purposes
are obtainable at reasonable cost.

The finite element mefthod originated as a method of sfress analysis. Problems that
previously were ufterly unsolvable are now solved routinely.

® Cook [8]
® Liang [23]
* Xie [34]
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Appendix B. travelling salesman problem’' ®?

A combinatorial optimisation problem is either a maximisation or a minimisafion
problem which has associated a sef of problem instances. The term problem refers
to the general question to be answered, usually having several paramefers or
variables with unspecified values. The term insfance refers to a problem with
specified values for all the paramefers. Although some imporftant combinatorial
opfimisation problems have been shown to be solvable in polynomial fime, for the
great majority of combinaforial problems no polynomial bound on fthe worsf-case
solution time could be found so for. For these problems the run fime of the best
algorithms known increases exponentially with fthe instance size and, consequently,
so does fhe fime required fo find an opfimal solution. A noforious example of such
a problem is the Travelling Salesman Problem.

The ftravelling salesman problem is the problem faced by a salesman who, starting
from his home town, wants fo find a shortest possible trip through a given set of
customer cities, visiting each city once before finally returning home. The TSP can
be represented by a complete weighted graph G = (N,A) with N being the set of n
= |N| nodes (cities), A being the set of arcs fully connecting the nodes. Each arc
(ij) € Ais assigned a weight dy which represents the distance between cities / and

J

d; = [(Xf _X/)z +(r, _yf)z]z

The TSP is the problem of finding a minimum length Hamiltonian circuit of the graph,
where a Hamiltonian circuit is a closed walk (a tour) visiting each node of G exactly
once. Thus, an opfimal solution fo the TSP is a permutation m of the node indices
{1,2,...n} such that the length f(m} is minimal, where f(r}is given by

n—1

fln) = z Drintion + Dt

i=1

*" Bonabeau [4]
* Dorigo [10]
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Tours are constructed by applying the following simple constructive procedure to
each ant.

1. choose, according some criterion, a start city at which fthe ant is
posifioned;

2. use pheromone and heuristic values fo probabilistically construct a tour by
iteratively adding cities fthat the ant has nof visited yef, until all cifies
have been visited;

3. go back to the initial city.

In ant opfimisation the main mechanism at work in ACO algorithms that triggers the
discovery of good tours is the positive feedback given fhrough fthe pheromone
update by fthe anfs. The shorfer the anf's tour, the higher the amount of
pheromone the ant deposits on the arcs of its tour. This in fturn leads to the fact
that fthese arcs have a higher probability of being selected in the subsequent
iterations of the algorithm.

With good parametfer seftings, the long-term effect of the pheromone trails is to
progressively reduce the size of fthe explored search space so that the search
concentrates on a small number of promising arcs. Yef, this behaviour may become
undesirable, if the concentration is so strong that it results in an early stagnation
of the search. Search stagnation is defined as the situation in which all the ants
follow the same path and construct the same solution. In such an undesirable
sifuation the system has ceased to explore new possibilities and no better four is
likely to be found anymore.

Although generality is a desirable property, it makes theoretical analysis much
more complicated, if not impossible.

It is important to note that, when considering a stochastic optimisation algorithm,
there are at least two possible types of convergence: convergence in value and
convergence in solution. Informally, and making the hypothesis that in case of
problems with more than one optimal solution we are interested in convergence
toward any of them, when studying convergence in value we are inferested in
generating an opfimal solution at least once. On the contrary, when studying
convergence in solution we are interested in evaluating the probability that the
algorithm reaches a state which keeps generating the same optfimal solution. Note,
however, that although in general convergence in solution is a stronger and more
desirable result to prove than convergence in value, in optfimisation we are
interested in finding the optimal solution once (after is has been found the problem
is solved and the algorithm can be stopped), so that convergence in value is all
that we need.
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Appendix C. particle-spring systems”

Particle-spring systems serve as an excellent approximation for hanging models.
These systems are based on lumped masses, called particles, which are connecfed
by linear elastic strings [Figure A1]. Each spring is assigned a constant axial
stiffness, an inifial length, and a damping coefficient. Springs generate a force
when displaced from their rest length. External forces can be applied fo the
parficles, as in the case of gravitational acceleration. To solve for the equilibrium
geometry of parficle-spring systems, fthere are many fechniques with varying
degrees of efficiency and stability

Fig. A1 Equilibrium of a simple particle spring system [19]

Each particle in the system has a position, a velocity, and a variable mass, as well
as a summarised vecfor for all the forces acting on it. A force in the parficle-
spring systems can be applied to a partficle based on the force vector's direction
and magnitude. Alfernatively the magnitude of the force can be calculated using a
function as in the case of springs. Springs are mass-less connectors befween two
particles that exercise a force on the particles based on the spring's offset from
its length. Parficles can be restrained in any dimension, so if is straightforward to
add supports by resfraining the displacement vectors of an individual particle. The
particle-spring system is usually nof in equilibrium when the simulation is starfed
and there will be movement throughout fthe system as the particles and springs
seek their equilibrium positions. To prevent oscillations of the particles abouf their
equilibrium positions, it is necessary to apply damping fo the sysftem, which can be
applied as a coefficient fo each spring. Another damping method is the subjection of
viscosity to each particle in the surrounding environment.

* Kilian [19]
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How fhe particles move given the forces acting on them is described as follows

d’x
a= -
dt

f

where f is the force on a particle, m its mass, x its position, and a its
acceleration. Note that f, x, and a are vectors in a 3D space (x,y,z).

The second order system can be written as ftwo first order differential equations
making them easier to solve.

dx dv
v=— and g =—
dt dt

There are two data structures required, one for the particles and one describing
the springs. The structure for the particles includes their mass (normally constant)
and the instantaneous position, velocity and force.

The structure for a spring includes the two parficles it connects, and various
spring aftributes required for the force calculafion, see lafer.

The key to determining the dynamics of fthe system is calculating the forces acting
on a parficle given the currenft state of the whole system. Three forces will be
considered here, they are*

1. Gravitation
This normally acts downwards and is added fo the force vector of each
particle individually.

f=m-g
where g is normally (0,0,-9.8). Often particle systems don't include

gravitation unless they are constrained in some way otherwise the
particles keep “falling”.

* Bourke [36]
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Viscous Drag

This acts to resist mofion and like gravitation it acts on each particle
independenfly of fthe ofhers, depending only on the current velocity of the
parfticle.

ax
f=—kd-;=—kd-v

-k, is called the drag coefficient, if zero then the particles are in a
frictionless environment (vacuum), high values simulate drag in liquids.

Hooks Spring Law

This defermines the forces on two particles connected by a spring. We
only need to work out the force on particle “a" due to parficle "b", the
force on "b" due to "a" is the negative of the first force. Each spring has
a rest length, if the spring length is greater than this length then the
force acts to pull the two particles together, if the spring length is less
than the rest length then the force acts to repel the two particles. The
spring damping force depends on the difference in the velocity of the two
particles. Both of these forces act along the line defined by the two
particles.

The force on particle "a" due to particle "b" is given by:

X, = X, X, = X,

d

f=—kllx,=—x, || =r)+ k,lv, =v,)
%, = x, L%, =%, I

Where k_is known as the spring constant, k, is the damping constant and
r is the rest length.

The parficles might exert a gravitational aftraction on each other. The
gravitational aftraction of one parficle “a" due to another particle "b" is
given by

_ G-m,-m, X=X

x, =%, I 1x, = x, |

and is in the direction along the line joining the two particles. G is
referred to as fthe universal gravitational constant and equals 6.672 x 10
ﬂN mZ kg-z
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The partficles could have a charge, this very similar in form to the
gravitational law except that now fthe particles may repel if the charges
are the same sign and atfact if they are the opposite sign. The exact
relationship is given by Coulombs law

klalla]  x, —x,
_ iy
I, —x, IF 1%, = x, |

where k is known as Coulombs constant equal to 8.9875 x 10° N m? C% As
for the gravitational force fhe electrostatic force acts along the line
defined by fthe positions of the tfwo parfticles.

Other forces can be added fo fthis list dependenft on requirements, it is
only necessary fo deftermine the appropriate physical forces involved.

One of the primary aftractions of fthe particle-spring approach is that it allows the
user to wafch the system approach equilibrium and to intervene during the solutfion
process [Figure A2]. The user can alter the applied loading, add or subtract
structural elemenfs, and change fthe support condifions in order to discover new
structural forms while the simulation is running®.
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Fig. A2.  Solution process for a cable with forty discrete
masses at equal spacing [19]

s Kilian [4]

7 ’ 12 appendices



final report - book two

By nafure of the solution procedure, fthe particle-spring system always finds a
possible load path for which the forces are in equilibrium if it exists [Figure A3l.

Fig. A3. A simple square mesh supported near the
corners [left] and a stafically determinate
funicular form in 2D modelled with particle-spring
simulations [19]

However, the parficle-spring systems have fo deal with some disadvantages as
well. Due to fthe properties of axial springs they not only contract upon being
strefched but also expand upon being compressed. This creates the possibility of
tension and compression members being presenf in a hanging strucfure at the same
time. Additionally, the choice of an appropriate mesh pafttern can allow for
statically indeterminate systems, such fthat each particle is afttached to three
springs or fewer for fthree dimensional structures. The solution procedures are
somewhat expensive computationally, which limits the size of real-time simulation at
this point. Current solutions are practical for solving up to 1,000 particles in real-
time on a desktop computer. There is also a slight loss of precision due to the
approximation of the simulation. The process is not static but the addition of string
elements is dynamic so that the shape and form is constantly in flux. The final
equilibrium shape emerges from the modelled topology. As in the case of a physical
hanging model, any addition disturbs the balance of the initial shape. Finally,
another disadvantage is that for very complex problems in combination some
solutions can become unstable.

Although this method has a long way to go before it can becomes a standard
approach in structural form-finding, the particle-spring system provides a powerful

new method in structural designing.

Roel van de Straat 7, 13



