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Abstract
Measurements were conducted in the fully developed turbulent flow in a pipe with internal diameter D at a Reynolds number 
of Re

D
= 1.6 × 105 . The pipe walls were equipped with regularly spaced square ribs of relative height h∕D = 0.154 , while 

the pitch-to-roughness height was varied between p∕h = 1.67 and p∕h = 6.67 . The measurements include mean velocity 
components, Reynolds shear and normal stresses and pressure losses. It is investigated whether the effects of the large rough-
ness on the (time and axially averaged) velocity profile can be described by the classical rough-wall formulation by allowing 
the value of the von Kármán constant to deviate from its standard value of 0.41.

List of symbols
D  Pipe inner diameter, m
F  Additive constant,
K  Pressure loss factor,
Krib  Pressure loss factor per rib, -
L  Length of pipe segment, m
R  Pipe radius R = D∕2 , m
ReD  Reynolds number based on D,
Red  Reynolds number based on d,
VD  Bulk velocity based on D , m/s
Vd  Bulk velocity based on d , m/s
W   Wake function,
d  Rib inner diameter, m
dh  Displacement height, m
d+
h
  Dimensionless displacement height,

fD  (Darcy) friction factor,
h  Roughness height or rib height, m
h+  Dimensionless roughness height,
ks  Equivalent sand grain height, m
lm  Mixing length, m
p  Pitch, m
u  Mean velocity in axial direction, m/s
u′v′  (Specific) Reynolds shear stress,  m2/s2

u  Friction velocity, m/s
u+  Dimensionless mean velocity in axial direction,
v  Mean velocity in wall normal direction, m/s
w  Rib width, m
y  Wall distance, m
y+  Dimensionless wall distance,
Δp  Pressure drop, Pa
Δu+  Roughness function,
∏

  Wake strength,
κ  Von Kármán constant,
�  Kinematic viscosity,  m2/s
�  Density, kg/m3

�0  Wall shear stress, Pa

1 Introduction

In many engineering problems involving fluid flow, the 
relevant surfaces are rough. This may be the unintentional 
result of corrosion, wear, fouling (as in case of the forma-
tion of deposits on the walls of industrial boilers or the hull 
of a ship), or the result of a manufacturing process (like the 
presence of weld lines or riveting). In other cases, the wall 
roughness is intentionally created to promote turbulence and 
enhance heat transfer (as in heat exchanger tubes). Pipe flow 
is of particular practical importance, and the effects of sur-
face roughness on the main parameter of interest, i.e., the 
friction factor, has been the topic of many experimental and 
numerical investigations, see e.g. Jiménez (2004), or more 
recently, Chung et al. (2021) for an overview. Because of its 
practical relevance, there is a strong need for models that are 
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able to reliably predict the mean flow and turbulence char-
acteristics in pipes with (large) surface roughness and high 
Reynolds number, not only to determine the friction fac-
tor, but also to determine the occurrence of, e.g., cavitation 
(Schenker et al. 2013) or sound production (Eckeveld et al. 
2020). The problem is complicated by the fact that there is 
a wide variation in shapes, sizes, and spatial distributions of 
the roughness elements, and multiple length scales may be 
needed to characterize a rough surface (Langelandsvik et al. 
2008; Tao 2009; Tomas et al. 2017).

Initial experimental research on the effects of surface 
roughness in pipe flow was conducted in the 1930’s by 
Nikuradse who determined the (Darcy) friction factor fD as a 
function of Reynolds number for a smooth wall and for walls 
with uniform sand grains of height ks , see e.g. Nikuradse 
(1950). Here, the friction factor fD is defined as:

where Δp is the pressure drop over a pipe segment with 
length L and inner diameter D, ρ the fluid density, and VD 
the bulk velocity. For several other types of rough surfaces 
(e.g. staggered arrays of spheres, cones, etc.), Schlichting 
proposed to determine the equivalent sand grain size ks 
that yields the same friction factor as that of the real rough 
surface in the fully rough regime (Schlichting 1936). The 
equivalent sand grain size of a particular rough surface 
cannot be determined from the geometrical characteristics 
of the roughness elements, but typically follows from an 
experiment where the friction factor of that rough surface 
is determined in the fully rough regime. Colebrook (1939) 
proposed the following equation for the friction factor in the 
intermediate and fully rough regime:

where ReD is the Reynolds number based on the bulk veloc-
ity VD and the pipe inner diameter D . The well-known 
Moody chart displays the values of the friction factor fD as 
determined from Eq. (2) for rough pipe walls with different 
values of ks∕D up to ks∕D ≈ 0.04 . For the (internal or exter-
nal) flow over a rough wall, the mean velocity profile in the 
outer region is described by

where κ(= 0.41) is the von Kármán constant, C is a con-
stant with a typical value of 5.1 (for smooth walls), Δu+ the 
roughness function, W  the wake function, and Π the wake 
strength. Furthermore, u+ = u∕u�  and y+ = yu�∕� , where 
u� is the friction velocity, y the wall normal distance, and � 
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2
∏

κ
W(y∕R),

the fluid kinematic viscosity. The use of Eq. (3) for the mean 
velocity profile in the outer region is based on Townsend’s 
similarity hypothesis (Townsend 1976) for flows over rough 
surfaces where it is assumed that the primary effect of the 
surface roughness on the logarithmic part of the outer layer 
is a shift of the mean velocity profile that is determined by 
the roughness function Δu+.

According to Jimenez (2004), the above classical 
approach is valid when the ratio of the roughness height h 
to the boundary layer thickness δ (or pipe radius R ) is less 
than approximately 0.025. The requirement h∕𝛿 < 0.025 is 
not sufficient to guarantee the validity of classical theory. 
This was shown by Morgan and McKeon (2018) who con-
sidered boundary layer flow with periodic roughness with 
h∕𝛿 < 0.025 but the roughness was such that the wall paral-
lel length scales were much larger than h. Jimenez (2004) 
states that when the relative roughness height is sufficiently 
large (h∕𝛿 > 0.025) the effects of the roughness is no longer 
limited to the roughness sublayer, but instead extends across 
the shear layer and there will be little left of the original flow 
dynamics that characterize the classical theory. According 
to Jimenez (2004) such flows, i.e. when h∕𝛿 > 0.025 , can 
be better described as flows over obstacles, which implies 
that the effects of the roughness on the shear layer have to 
be investigated in detail for every roughness (or obstacle) 
geometry. This has severe consequences for many practical 
applications with relative roughness heights that are (much) 
larger than h∕𝛿 > 0.025 . For example, the ship-to-ship trans-
fer of liquefied natural gas (LNG) relies on the use of flex-
ible corrugated hoses with h∕R ≈ 0.2 . An accurate predic-
tion of the pressure loss in this high Reynolds number flow 
(

Reb > 106
)

 is very important since the LNG is transferred 
at near-boiling conditions, which makes it prone to local gas 
formation and cavitation (van Bokhorst and Twerda 2014).

There is, however, substantial evidence that the classical 
theory has a larger validity range in terms of h∕R . Flack 
et al (2007) carried out measurements on smooth and rough 
flat plate boundary layers using sandpaper and wire mesh 
as roughness. They reported that there was no influence 
of the roughness on the mean velocity profile and Reyn-
olds stresses in the outer layer even for the largest rough-
ness elements considered with h∕� = 0.053 . Castro (2007) 
and Amir and Castro (2011) performed experiments in flat 
plate boundary layers and showed that for several types of 
rough surfaces both the mean velocity profiles and Reynolds 
stresses collapse for values of �∕R up to 0.15. Leonardi et al. 
(2003) used direct numerical simulations to study turbulent 
channel flow with transverse square bars mounted on one 
wall. The ratio of the bar height h and the channel half height 
H was h∕H = 0.2 . The results indicated that the measured 
mean velocities exhibited a logarithmic region, and could be 
fitted to the mean velocity profile in the outer region. Ryu 
et al. (2007) reported on the results of a numerical study 
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of the flow through ribbed channels with h∕H = 0.1 . Their 
results indicated that the time- and space averaged velocity 
profile shows a logarithmic region even for the largest rib 
height.

In general, one may distinguish rough surfaces with the 
roughness elements placed at random locations from sur-
faces with structured roughness elements. Within the lat-
ter category, two-dimensional (2D) roughness elements 
(known as ribs) typically produce larger disturbances in the 
velocity field than their 3D equivalent (Flack and Schultz 
2014). Repeated ribs refer to ribs that are placed at a regular 
streamwise spacing (or pitch) p . Perry et al. (1969) distin-
guished two types of repeated ribs denoted as d-type (which 
occurs for relatively small values of the pitch to roughness 
height ratio p∕h < 4 ) and k-type roughness (which occurs 
for p∕h > 4 ). An intermediate regime is defined around 
p∕h ≈ 4 . In d-type roughness, more or less stable vortices 
are formed in the cavities in between the ribs with little shed-
ding of vortices from these cavities, and the bulk flow is not 
strongly affected by the roughness height h. In k-type rough-
ness, there is strong interaction between the cavity flow and 
the bulk flow through vortex shedding, and the characteris-
tics of the flow strongly depend on the roughness height h.

Webb et al. (1971) performed a systematic investigation 
of flows through ribbed tubes specifically for ribs with a 
square cross section. They proposed a correlation for the 
friction factor valid for p∕h > 10 . Han et al. (1978) con-
sidered the flow through channels that were equipped with 
repeated ribs (with square cross section) and extended the 
correlation proposed by Webb et al. (1971) to include the 
range 5 ≤ p∕h ≤ 10 . However, both studies were limited to 
relatively small roughness heights (0.01 ≤ k∕D ≤ 0.04).

The present investigation focuses on the f low 
through ribbed pipes with very large relative rough-
ness (h∕D = 0.154) at relatively large Reynolds numbers 
(

ReD > 105
)

 . The pitch to roughness height ratios considered 
vary between p∕h = 1.67 and p∕h = 6.67 , which includes 
the intermediate regime. The main objective is to determine 
whether it is possible to describe the flow using a classical 
rough wall approach, despite the very large relative rough-
ness. A secondary objective is to produce an accurate and 
extensive database on the turbulent flow through ribbed 
pipes with (large) repeated ribs that can be used for model 
development and validation.

2  Experimental setup

2.1  The flow loop

Figure 1 (top) shows a schematic of the flow loop that 
was used in this study. It includes a centrifugal pump, 

a flow meter, a 2.5-m long pipe segment (with internal 
diameter D = 50 mm) that is followed by the measurement 
section (also with 50 mm internal diameter). The pres-
sure drop Δp over the measurement section is measured 
with a differential pressure sensor (Validyne DP15 with 
0–140 kPa pressure range and an inaccuracy of 0.25% of 
the full scale). The flow meter used in the experiment is a 
KROHNE electromagnetic flow meter (type: IFS 4000F/6) 
with an inaccuracy of 0.3% of the reading. Downstream 
of the measurement section is a diffuser that gradually 
increases the internal pipe diameter to 100 mm. This low-
speed part of the flow loop acts as a de-aeration section. 
A Pt-100 thermometer measures the temperature of the 
water. This temperature was used to determine the viscos-
ity and the density of the water. The maximum Reynolds 
number (based on bulk velocity and internal pipe diam-
eter) that can be reached in this facility is ReD ≈ 3.6 × 105 . 
Figure 1 (bottom) shows a photograph of the measurement 
section when equipped with a number of ribs. The ribs 
have a rectangular cross section with a width w∕D = 0.19 
and a height h∕D = 0.15 giving rise to a rib inner diameter 
of d∕D = 0.70 . The ribs are connected to each other with 
threaded brass rods, and only one rib is connected to the 
tube wall with screws as can be seen in the photograph. 
The number of ribs mounted in the measurement section 
varied between 5 and 10, while the pitch p (defined as the 
distance between the upstream edges of two consecutive 
ribs) varied between p∕h = 2.00 and p∕h = 6.67 in steps 

Fig. 1  Top: schematic of the flow loop with its main components. 
Bottom: photograph of the measurement section with ribs
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of p∕h = 0.667 . Some measurements were carried out for 
a smaller pitch of p∕h = 1.67.

2.2  PIV measurements

The PIV system uses a dual-cavity Nd:YLF laser (Litron 
LDY 304) as the light source. The laser emits a pulsed 
beam, which is transformed into an approximately 2 mm 
thick light sheet passing vertically upward through the cen-
terline of the pipe. The laser sheet is somewhat wider than 
the field of view to reduce the effect of a lower light inten-
sity near the edges of the light sheet. A telecentric lens 
(Vicotar, T240/0,27a) is mounted on a high speed camera 
(Photron Fastcam APX-RS) that is equipped with a CMOS 
sensor with 1024 × 1024 pixels of size 17 μm × 17 μm. The 
field of view has dimensions 65 × 65  mm2 which is suf-
ficient to cover the full pipe diameter and at least two ribs 
inside the field of view. A so-called “optical box”, consist-
ing of a thin-walled rectangular box filled with the same 
liquid as the working fluid, i.e. water, is used to minimize 
optical distortion. It is not possible to obtain velocity data 
in the region between the top of the ribs (at r = D∕2 − h) 
and the centreline (at r = 0) , since the ribs are not fully 
transparent, and the refractive index of the rib material 
does not match the refractive index of water. Hollow glass 
spheres (Sphericel 110 P8) with a mean diameter of 10 μm 
were used as seeding particles.

Before applying the PIV algorithms, the individual 
images are pre-processed in three steps. Although the 
Nd:YLF laser used has a low pulse-to-pulse variation in 
energy, all images were normalized to minimize effects 
due to global intensity variations. Background subtrac-
tion is applied to remove reflections from the ribs and 
pipe walls. Finally, a 9 × 9 min–max filter (Adrian and 
Westerweel 2011) is used to normalize the contrast of the 
particle images; this reduces the occurrence of spurious 
vectors in the PIV evaluation. A digital mask was used to 
process only those parts of the images that contain PIV 
data. Details of the image preprocessing can be found in 
the thesis of Schenker-van Rossum (2022).

The estimated relative errors in the mean flow velocity 
and turbulence intensity are determined by using 
Eq. (9.41) and Eq. (9.47), respectively, presented in the 
book by Adrian and Westerweel (2011). Images were 
recorded at frame rates between 1000 and 7000 fps 
(depending on the flow velocity) with either 7561 or 
14,563 frames collected; each data set covered at least 300 
integral time scales, see Schenker-van Rossum (2022) for 
details. The error in the mean velocity relative to the bulk 
velocity is around 0.8% (r.m.s. value), for all flow condi-
tions (given that the particle-image displacement complies 
with the 1/4-rule). The error in the turbulence level, i.e. 

(

u�2
)1∕2

 , relative to the wall friction velocity is 4% (r.m.s. 
value).

3  Results

3.1  Pressure drop and friction factor

The pressure drop Δp over the measurement section was 
measured for different bulk velocities and for different num-
ber of ribs in the measurement section. The pressure drop is 
then made dimensionless by introducing a loss factor K as in

where ρ is the water density and Vd is the bulk velocity based 
on the rib inner diameter d. Figure 2 shows the loss factor 
K as a function of the (rib inner diameter based) Reynolds 
number Red for different values of the pitch as determined 
for a measurement section with eight ribs.

By repeating measurements for different number of ribs 
in the measurement section, the pressure loss factor per rib 
Krib in fully developed flow can be determined. Figure 3 
illustrates the procedure to determine the value of Krib for 
an experiment with a pitch p∕h = 3.33 and Reynolds number 
Red = 2.8 × 105 . The graph indicates that the value of K lin-
early increases with the number of ribs when eight or more 
ribs are used. The slope of the linear trend line then gives 
the value of Krib . The linear regime to which the trend line 
is fitted exists for every pitch and Reynolds number consid-
ered, indicating that the additional loss for every added rib 

(4)K = Δp∕
(

1

2
�V2

d

)

,

Fig. 2  Loss factor K as a function of the Reynolds number Re
d
 for 

different values of the pitch p and a measurement section with eight 
ribs
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becomes constant for sufficiently large number of ribs. The 
flow is considered fully developed in this regime.

The values of Krib obtained for every available Reynolds 
number are transformed into a Darcy-Weissbach friction 
factor fD to enable a direct comparison between the flow 
through the ribbed pipe and the more generic flow through 
pipes with sand grain type roughness. The relation between 
the friction factor fD and the loss factor per rib Krib is given 
by

Figure 4a shows the friction factor fD as a function of 
Reynolds number ReD for different values of the pitch. The 
dashed lines in Fig. 4a represent the Colebrook friction 
correlation (see Eq. (2)) for several values of the relative 
roughness ks∕D . The representation of the friction factors 
determined from the Colebrook relation as in Fig. 4a implies 
that the geometry is interpreted as a pipe with inner diameter 
D with the roughness (due to the ribs) extending inward 
from the surface. As can be seen from the magnitudes of the 
relative equivalent roughness  ks∕D indicated on the right-
hand side of Fig. 4a, this representation does not lead to a 
meaningful comparison as relative roughness values above 
0.5 are clearly not physical.

Figure 4b shows the friction factor based on the same 
data as in Fig. 4a but with a different interpretation, i.e., the 
cavities between the ribs are considered roughness elements 
extending outward from a pipe with inner diameter d . This 
change in interpretation results in adjustment factors from 
ReD to Red of D∕d and from fD to the friction factor based 
on the rib inner diameter fD,rib of (d∕D)5 . The results shown 
in Fig. 4b now appear shifted relative to the Colebrook 

(5)fD = Krib

D

p

(

D

d

)4

.

friction correlation. The equivalent sand-grain roughness 
for both approaches can be calculated using Eq. (2), and are 
seen to be much smaller than in Fig. 4a.

It can be seen in Fig. 4a that the values of the friction 
factor fD approach an asymptotic value for sufficiently 
high Reynolds numbers. Figure 5 shows the dependence of 
the asymptotic value on the pitch. (The asymptotic values 
were determined as the mean of the friction factor values 
for ReD > 8.0 × 104 ). The graph indicates a linear trend of 
the friction factor with pitch, with the exception of the data 
point for p∕h = 1.67 , which indicates a change in regime 
coinciding with the transition between d-type roughness 
and intermediate-type roughness described in literature 
(see e.g. Perry et al. 1969). The linear trend line crosses 
the line fD = 0 at a pitch of approximately 10 mm, which 
corresponds to the width of the ribs, w . This suggests that 
the physically relevant parameter for the scaling of the fric-
tion factor is the cavity width l = p − w rather than the pitch 
p . The linear increase in the friction factor with increas-
ing p∕h does not match the friction factor correlation for 
k-type roughness proposed by Webb et al. (1971) who have 

Fig. 3  Illustration of the fitting procedure used to determine the 
dimensionless pressure loss per rib K

rib
 for fully developed flow 

(p∕h = 3.33 , Re
d
= 2.8 × 105) . The goodness-of-fit for the dashed 

line is R2 = 0.983

Fig. 4  a Friction factor f
D
 as a function of the bulk Reynolds num-

ber Re
D
 for repeated ribs with square cross section. The dashed lines 

mark the friction factor as determined from the Colebrook correla-
tion (Eq. (2)) for different values of the relative equivalent sand grain 
height k

s
∕D . b Friction factor based on the rib inner diameter f

D,rib
 as 

a function of Re
d
 for repeated ribs with square cross section
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reported on a decreasing friction factor with increasing 
pitch for p∕h > 10 . However, the results for the pressure 
drag reported by Vijiapurapu and Cui (2007), who used large 
eddy simulations to study turbulent flow through ribbed 
pipes, indicated an increase in the friction factor between 
p∕h = 2 and p∕h = 5 which is consistent with the results 
shown in Fig. 5. The linear trend observed in the present 
measurements thus matches the characteristics of the inter-
mediate roughness regime, despite the fact that the transition 
from intermediate-type to k-type roughness is expected to 
occur at a relative pitch of p∕h = 6 (Jiménez 2004).

3.2  Mean velocity and Reynolds shear stress 
distributions

Figure 6 displays the distribution of the axial mean veloc-
ity for two values of the pitch (p∕h = 3.33 and p∕h = 5.33) 
at Red = 1.6 × 105 . When the axial mean velocity distribu-
tion is made dimensionless with the bulk velocity it appears 
that the distributions are virtually independent of Reyn-
olds number. Therefore, in the remainder of this work the 
main focus will be on results for a single Reynolds number 
(

Red = 1.6 × 105
)

 . Figure 6 indicates that the overall struc-
ture of the mean axial velocity distribution is that of a core 
flow with strong velocity gradients just above rib height, 
and recirculating flow inside the cavities in between the 
ribs. It can be seen that the mixing layer between the cav-
ity and core flow is much thicker, and penetrates further 
into the cavity, for the larger pitch. It can also be seen that 
the streamwise variation of the mean flow increases with 
increasing pitch.

Figure 7 shows the distribution of the Reynolds shear 
stress for different values of the pitch between p∕h = 2.67 
and p∕h = 6.00 in steps of p∕h = 0.67 at Red = 1.6 × 105 . 
Also shown in Fig. 7 are the streamline patterns as computed 
from the mean velocity vectors. A large recirculation zone at 
the downstream side of the cavity can be seen for all values 
of the pitch. It stretches in axial direction with increasing 
pitch and covers most of the cavity area. A much smaller 
secondary recirculation zone is present in the upstream 
corner of the cavity. For p∕h ≈ 4 (p = 30 mm), the core 
flow starts to enter the cavity area, moving further into the 
cavity with increasing pitch. The location of the center of 

Fig. 5  The asymptotic values of the friction factor f
D
 (extracted from 

Fig. 4) as a function of dimensionless pitch p/h. Note that this graph 
includes data for p/h = 1.67 (p = 12.5 mm)

Fig. 6  Distribution of the mean axial velocity u for different values 
of the pitch at Re

d
= 1.6 × 105 . Left: p∕h = 3.33 (p = 25 mm), right: 

p∕h = 5.33 (p = 40 mm). All dimensions are in mm. The bulk flow is 
from left to right. White lines represent streamlines. Vertical dashed 
lines indicate 25% (blue), 50% (green), and 75% (red) of the cavity 
width, see also Figs. 8 and 9

Fig. 7  Distribution of the Reynolds shear stress −�u�v� for val-
ues of the pitch between p∕h = 2.67 (p = 20mm) and p∕h = 6.00 
(p = 45mm) in steps of 5  mm at Re

d
= 1.6 × 105 . The bulk flow is 

from left to right. All dimensions are in mm. White lines represent 
streamlines
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the major recirculation region does not change in the axial 
direction with varying pitch. However, its location does 
change in wall-normal direction, with initially an increase 
in wall-normal position followed by a slight decrease from 
p∕h = 4.00 − 4.67.

3.3  Spatially averaged mean velocity and Reynolds 
shear stress

In the fully developed region, the mean flow and Reynolds 
shear stress distributions were spatially averaged in the 
axial direction over one or more full pitch lengths. Figure 8 
shows the spatially-averaged axial mean velocity profiles 
for six different pitch values at Red = 1.6 × 105. The maxi-
mum axial mean velocity occurs at the pipe centerline and 
increases with increasing pitch. This is consistent with a 
shift from a mean velocity profile with very steep gradients 
at rib height and shallow gradients further toward the core 
(for small pitch) to a mean velocity profile with less steep 
gradients near rib height but extending much further toward 
the core (for large pitch). The mean axial velocity becomes 
zero at approximately half the rib height for all values of the 
pitch and thus becomes negative in the region below that. 
Note that the axial mean velocity profiles do not resolve 
the thin viscous region where the mean velocity approaches 
zero at the wall.

Figure 9 shows the spatially-averaged Reynolds shear 
stress for six different pitch values at Red = 1.6 × 105 . For 
all pitch values, the profiles appear to increase linearly from 
zero at the pipe centerline to a maximum close to the rib 
crest. However, the subsequent decrease in the profiles 
toward zero inside the cavities appears to strongly depend 
on the pitch, similar to the findings that have been reported 
by Coceal et al. (2006) for staggered and aligned arrays of 
cubical obstacles mounted on a flat wall.

From the Reynolds shear stress and the gradient of the 
axial mean velocity, the effective mixing length lm can be 
computed as:

Figure 10 shows the resulting values of the mixing length 
lm as a function of wall distance for two different values of 
the pitch. Following the arguments by Coceal et al. (2006), 
assuming a linear relation of the effective mixing length with 
the wall normal coordinate, y , expressed by the relation

is equivalent to fitting a logarithmic mean velocity profile 
with the parameters κ and dh , which are the von Kármán 

(6)lm =

(

u�v�
)1∕2

du∕dy
.

(7)lm = κ
(

y − dh
)

,
Fig. 8  Effect of pitch on the spatially-averaged axial mean velocity 
for Re

d
= 1.6 × 105 . The dashed lines represent profiles of the axial 

mean velocity at 25% (blue), 50% (green), and 75% (red) of the cavity 
width, see Fig. 6

Fig. 9  Effect of pitch on the spatially averaged Reynolds shear stress 
for Re

d
= 1.6 × 105 . The dashed lines represent profiles of the Reyn-

olds shear stress at 25% (blue), 50% (green), and 75% (red) of the 
cavity width, see Fig. 6
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constant and displacement height, respectively. Castro 
(2009) and Leonardi and Castro (2010) argued that the von 
Kármán constant κ might not be a constant in flows with 
large wall roughness. In the present study, the effective mix-
ing length expression in Eq. (7) is fitted to the measured 
values determined from Eq. (6) in two different ways: (1) 
assuming the von Kármán constant has the standard value 
κ = 0.41 with the displacement height dh variable, and (2) 
assuming both κ and dh are variable. The magenta lines 
in Fig. 10 are the least-squares fits of Eq. (7) to the linear 
region of the mixing length data for a fixed value of the 
von Kármán constant, κ = 0.41 , and variable displacement 
height dh . The green dashed lines represent the least-squares 
fits when both κ and dh are assumed to be variables.

It can be seen in Fig. 10 that the fitting process that 
treats both κ and dh as variables yields the most accurate 
results, especially for the larger values of the pitch. It is 
also observed in Fig. 10 that the linear region of the effec-
tive mixing length lm occupies only a small portion of the 
flow. This is consistent with the expectation that the logarith-
mic region of the mean velocity profile does not extend far 
toward the centerline of the pipe or within the cavity region.

Figure 11 (top) shows the values of the von Kármán 
constant κ resulting from the two different fitting proce-
dures. The corresponding values for the dimensionless 
displacement height dh∕h are shown in Fig. 11 (bottom). 
Significant scatter is observed in the results for both 
parameters. However, an increase in the value of κ with 

increasing pitch is evident. The dimensionless displace-
ment height dh∕h is larger than 1 for the smallest value of 
the dimensionless pitch p∕h , consistent with the findings 
of Coleman et al. (2007). For increasing values of the pitch 
the displacement height is either continuously decreasing 
(for κ = 0.41 ) or the displacement height is close to the rib 
height (for variable κ ). The decrease in the displacement 
height with increasing pitch is also consistent with the 
results reported by Coleman et al. (2007). The obtained 
values of κ and dh are used as input parameters for the 
expression of the mean velocity profile for a rough wall 
given by (see Perry et al. 1969 or Jackson 1981)

where d+
h
= dhu�∕� . Equation  (8) has two independent 

unknowns, i.e., the friction velocity u� and the roughness 
function Δu+ . The values of these unknowns then follow 
from a least-squares fit to the logarithmic region.

Figure 12 shows the thus found values of the roughness 
function in terms of the additive constant F defined as

(8)u+(y) =
1

κ
ln
(

y+ − d+
h

)

+ C − Δu+,

Fig. 10  Effective mixing length lm as a function of wall distance 
for p∕h = 2.67 (top) and p∕h = 5.33 (bottom) at Reynolds number 
Re

d
= 1.6 × 105 . The right-hand side shows a zoom-in of the rele-

vant region. The green dashed lines represent the least-squares fit of 
Eq.  (7) to the linear region of the mixing length data. The magenta 
line is the least-squares fit for a fixed value of the von Kármán con-
stant, κ = 0.41

Fig. 11  The values of the von Kármán constant κ (top) and the 
dimensionless displacement height dh∕h (bottom) as a function of 
the dimensionless pitch p∕h . The green symbols pertain to the results 
obtained from the fitting process by using the standard value of the 
von Kármán constant, i.e. κ = 0.41 . The blue symbols show the 
results obtained when the value of κ  was optimized as part of the fit-
ting process
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where 
(

h+ = hu�∕�
)

 as a function of the dimensionless pitch 
p∕h for three different Reynolds numbers (colored spheres). 
The black symbols are the results reported by Coleman 
et al. (2007) for the turbulent flow through an open channel 
with height H where the bottom wall is equipped with two-
dimensional square ribs with relative roughness height h∕H . 
In the present experiment, the relative roughness height 
(h∕D = 0.154) is significantly larger than that considered 
by Coleman et al. (2007), but the use of a variable value of 
the von Kármán constant κ enables the application of Eq. (8) 
to adequately describe the mean flow profiles despite the 
much larger relative roughness.

Apart from the roughness function, the least-squares fit of 
the mean velocity profile given by Eq. (8) to the measured 
mean velocities also yields the value of the friction veloc-
ity u� . Figure 13 illustrates the resulting fits for p∕h = 4.00 
(with κ = 0.46 ) and for p∕h = 6.0 (with κ = 0.64 ). Once 
the friction velocity u� is known, the total friction can be 
determined using the height at which the computed wall 
shear stress acts as the effective radius rather than the pipe 
radius R = D∕2 . This is logically the same height as the 
displacement height dh , which is by definition the virtual 
origin of the logarithmic layer. In accordance with the 
method described in Coceal et al. (2006), the effective wall 
shear stress acting on the pipe surface �0 , is obtained by 

(9)F = C − Δu+ +
1

κ
ln
(

h+
)

,

extrapolating from a distance dh to the wall. The effective 
friction velocity u∗

�
 then follows from:

This gives the friction factor as fD = 8
(

u∗
�
∕VD

)2 . Fig-
ure 14 shows the computed friction factor fD for all consid-
ered values of the pitch and three different Reynolds num-
bers. Also shown are the friction factors as determined from 
the pressure measurements (reproduced from Fig. 5). The 
agreement between the two data sets is satisfactory up to 
a pitch of p∕h = 4.67 (p = 35 mm), with the friction factor 
based on the PIV measurements only slightly underestimat-
ing the friction factor based on the pressure measurements 
(Fig. 13). For larger pitch values, the friction factors deter-
mined from the PIV measurements are significantly lower 
than those determined from the pressure measurements. This 
may be the result of the increasing spatial variation of the 

(10)u∗
�
= u�

(

R∕
(

R − dh
))1∕2

.

Fig. 12  The values of the additive constant F as a function of the 
dimensionless pitch p∕h . The colored spheres correspond to the 
three Reynolds numbers considered in the present study (blue: 
Re

d
= 4.3 × 104 ; green: Re

d
= 1.6 × 105 ; red: Re

d
= 2.5 × 105 ). 

The black symbols correspond to the results for rectangular ribs 
placed on the bottom of an open channel with water height H (Cole-
man et  al. 2007). Solid spheres: h∕H = 0.09 , open squares & trian-
gles: h∕H = 0.1 , open circles: h∕H = 0.06. The solid line represents 
the theoretical limit for h∕H = 0

Fig. 13  Fit of the mean velocity profile given by Eq. (8) to the meas-
ured mean velocities for p∕h = 4.00 with κ = 0.46 (top) and for 
p∕h = 6.0 with κ = 0.64 (bottom)
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mean velocity profiles and the Reynolds shear stress profiles 
within the cavity for increasing values of the pitch as can be 
seen in Figs. 8 and 9.

4  Conclusion

The pressure loss, mean flow, and turbulence statistics were 
determined for pipe flow where the pipe wall was equipped 
with roughness elements in the form of repeated ribs with a 
square cross section and relative height h∕D = 0.154 . The 
measurements were carried out for a Reynolds number of 
ReD = 1.6 × 105 and the pitch to roughness height values 
varied between p∕h = 2.7 and p∕h = 6.0.

The axially averaged Reynolds shear stress and axially 
averaged velocity profiles were used to determine the mix-
ing length, which is then used to derive the displacement 
height and the von Kármán constant κ . The latter is not 
considered to be a constant but allowed to vary with the 
pitch. This resulted in relatively large deviations of κ from 
the commonly accepted value of approximately 0.41, but the 
agreement of the logarithmic region of the measured mean 
velocity profiles with the fitted velocity profile according to 
the theory for rough-walled flows was much better.

The use of a non-universal interpretation of κ enables the 
common parametrization of a rough-wall flow to be extended 
to larger values of the relative roughness height h∕D . How-
ever, care must be taken to use and interpret the resulting 
parameters, since the friction factor derived from the fitted 
velocity profile does not match the measured friction factor 

when the rib spacing increases beyond p∕h ≈ 5 . One may 
speculate on the physical mechanism leading to the increas-
ing values of κ with increasing values of the relative pitch 
p∕h . One remark is that in the range of relative pitch val-
ues considered in this work, the friction factor still strongly 
increases with relative pitch, rather than decreasing as it 
would for k-type roughness. Also, the mixing length in the 
core of the flow, as shown in Fig. 10, has clearly increased 
for the higher pitch values, indicating that throughout the 
tube the turbulent mixing process has changed.
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