
Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

M.Sc. Thesis

System-level Fault-Tolerance Analysis of
Small Satellite On-Board Computers

Dmitry Burlyaev

Abstract

Commercial Off-The-Shelf (COTS) electronic components offer
cost-effective solutions for the development of On-Board Computers
(OBCs) in the small satellite industry. However, the COTS parts are
not originally designed to withstand the space radiation environment.
Traditional fault-tolerance practices rely on expensive radiation tests
or are based on circuit-level knowledge which are not easily available.
This work proposes a novel simulation-based statistical approach to
assist the satellite designers in performing OBC fault-tolerance ana-
lysis.
The presented novel approach is based on high-level system modeling
and an object-oriented fault injection mechanism. Such a technique
allows the comparison between fault-tolerance techniques and reveals
the consequences of radiation effects in the COTS parts at early de-
velopment stages.
The work covers the implementation of the proposed simulation frame-
work which includes the OBC and fault modeling. The fault models
are based on the conducted radiation environment analysis. The range
of software and hardware fault detection and mitigation techniques are
investigated as case studies. They include time and hardware Triple-
Modular Redundancy (TMR), FPGA-based memory scrubbing with
Hamming encoding, and watchdog/co-processor monitoring. The case
studies reveal that the proposed approach can be used to choose suit-
able fault-tolerance techniques, increase their efficiency, and reduce
the required hardware resources.

System-level Fault-Tolerance Analysis of Small
Satellite On-Board Computers

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

Dmitry Burlyaev
born in Kamensk-Uralsky, Russian Federation

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Copyright c© 2012 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “System-level Fault-Tolerance Analysis of Small Satellite On-Board
Computers” by Dmitry Burlyaev in partial fulfillment of the requirements for the
degree of Master of Science.

Dated: 2 July 2012

Chairman:
Prof. dr. ir. Alle-Jan Van der Veen, CAS, TU Delft

Advisor:
Dr. ir. Rene van Leuken, CAS, TU Delft

Committee Members:
Dr. ir. Said Hamdioui, CE, TU Delft

Ir. Maxime Castera, Innovative Solutions In Space B.V. (ISIS)

iv

Abstract

COTS electronic components offer cost-effective solutions for the development of OBCs
in the small satellite industry. However, the COTS parts are not originally designed to
withstand the space radiation environment. Traditional fault-tolerance practices rely
on expensive radiation tests or are based on circuit-level knowledge which are not easily
available. This work proposes a novel simulation-based statistical approach to assist
the satellite designers in performing OBC fault-tolerance analysis.
The presented novel approach is based on high-level system modeling and an object-
oriented fault injection mechanism. Such a technique allows the comparison between
fault-tolerance techniques and reveals the consequences of radiation effects in the COTS
parts at early development stages.
The work covers the implementation of the proposed simulation framework which in-
cludes the OBC and fault modeling. The fault models are based on the conducted ra-
diation environment analysis. The range of software and hardware fault detection and
mitigation techniques are investigated as case studies. They include time and hardware
TMR, FPGA-based memory scrubbing with Hamming encoding, and watchdog/co-
processor monitoring. The case studies reveal that the proposed approach can be used
to choose suitable fault-tolerance techniques, increase their efficiency, and reduce the
required hardware resources.

v

vi

Acknowledgments

I would like to express my deep gratitude to my university thesis advisor Dr. ir.
Rene van Leuken, CAS, TU Delft for his invaluable input to my research progress and
support in the academic world. I also would like to thank the company ISIS for the
given freedom in the thesis topic choice and the industrial insight into satellite-related
problems. I am very grateful to Software and Simulation departments of ISIS company
and their leaders: Maxime Castera and Arthur Overlack.

I express the warmest thanks to my parents for everyday support and help in the
choice of my path.

Dmitry Burlyaev
Delft, The Netherlands
2 July 2012

vii

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis goal . 2
1.3 Contributions . 2
1.4 Outline . 3

2 Overview: OBC for Small Satellite missions 5
2.1 Micro and Nano satellite mission overview 5
2.2 OBC satellite subsystem . 6

2.2.1 Overview of OBC requirements 7
2.2.2 OBC fault-tolerance . 8

2.3 Conclusions . 9

3 Space Radiation Effects, Faults Detection and Mitigation 11
3.1 Space Radiation Environment Overview 11

3.1.1 Space Radiation Environment Assessment 12
3.1.2 Fault rate Assessment . 15
3.1.3 Radiation effects in COTS components 15
3.1.4 Conclusion . 22

3.2 Radiation fault-tolerance techniques . 24
3.2.1 Architectural-level techniques 25
3.2.2 Component-level techniques . 26

3.3 Conclusions . 29

4 OBC modeling 31
4.1 SystemC TLM modeling . 31
4.2 Related Works . 31
4.3 OBC architecture modeling - SmartFusion SoC model 32

4.3.1 FPGA fabric modeling as a SoC component 34
4.4 OBC system-level redundancy - I2C communication 36

4.4.1 OBC model extension by I2C controller model 36

ix

4.4.2 Model of interconnected OBCs (stacked OBC) 37

4.5 Supporting modules . 38

4.5.1 Injector . 38

4.5.2 Analyzer . 39

4.5.3 Observer . 40

4.6 Conclusions . 40

5 Radiation effects modeling 41

5.1 Radiation fault modeling . 41

5.1.1 CPU fault models . 42

5.1.2 SRAM and DRAM fault models 43

5.1.3 Flash-based memory fault models 43

5.1.4 Flash-based FPGA fault models 44

5.1.5 Failure modes . 44

5.2 Conclusions . 45

6 Simulation steps 47

6.1 Statistical fault-tolerance analysis . 47

6.2 Multidimensional analysis of memory fault consequences 47

6.3 Conclusions . 49

7 Model Verification,Validation, and Limitations 51

7.1 Model Verification . 51

7.2 Model Validation . 51

7.3 Model Limitations . 52

8 Case studies 53

8.1 Case Study: Recursive algorithm . 53

8.1.1 SEU injection into CPU registers 53

8.1.2 SEFI injection into CPU . 54

8.1.3 SEU injection into SRAM memory 56

8.2 Case Study: JPEG image compression 56

8.3 Memory scrubbing technique implementation 59

8.4 Case Study: Kalman filter of Attitude Determination and Control Al-
gorithm . 63

8.5 Case Study: Multidimensional analysis of memory fault consequences in
Adaptive filter . 66

8.5.1 Code execution without fault mitigation techniques 66

8.5.2 Code execution with fault mitigation 67

8.5.3 System-level behavior . 69

8.5.4 Clustering algorithm . 69

8.5.5 Conclusions . 71

8.6 Simulation time of the case studies . 71

x

9 Conclusions and Future Work 73
9.1 Conclusions . 73
9.2 Future Work . 75

Bibliography 77

A Appendix A 87
A.1 The Space Environment Information System (SPENVIS) settings for

Radiation Environment Estimation . 87

B Appendix B 89
B.1 MATLAB Fault rate estimation algorithm 89

C Appendix C 91
C.1 Printout of Two OBCs communication through I2C bus 91

D Appendix D 95
D.1 Top object of OBC model - code explanation 95

xi

xii

List of Figures

2.1 3U CubeSat with deployed antenna and solar panels 5
2.2 Existing OBC for Nano satellites [1] . 7

3.1 Solar Wind [2] . 11
3.2 Van Allen Belts and South Atlantic Anomaly (SAA)[2] 12
3.3 Proton concentrations within SAA[2] 12
3.4 Simulation results: Total Ionizing Dose (TID) vs aluminium shielding

width . 13
3.5 Simulation results: Spacecraft shielded LET(Si) spectrum 14
3.6 Threshold voltage shifting at different TID levels [3] 20
3.7 Single-Event Phenomenon (SEP) sensitivity wrt frequency [4] 21
3.8 Design process for use of commercial parts in Low Earth Orbit (LEO) [5] 24

4.1 SmartFusion System-on-Chip (SoC) Block Diagram[6] 33
4.2 Framework model structure: OBC model and supporting modules . . . 33
4.3 The FPGA fabric model as a part of the OBC model 35
4.4 AMBA AHB protocol consistency for single write and read cycles . . . 36
4.5 Example of the communication between the FPGA model and modeled

SRAM blocks . 36
4.6 Model of the OBC connected to I2C CubeSat bus 37
4.7 Model structure of two interconnected OBCs through I2C CubeSat bus 37
4.8 Functional diagram: OBC model and supporting objects in the simula-

tion flow . 38
4.9 Example of the fault list generated by the Injector module 39

5.1 Single-Event Upset (SEU) model representation 42
5.2 One-dimensional Multiple-Cell Upsets (MCU) model representation . . 42
5.3 Spatial MCU model representation . 43

6.1 Steps of one simulation iteration . 48
6.2 The representation of the multidimensional analysis 49

8.1 Influence of SEU rate in CPU on incorrect result ratio 54
8.2 Influence of SEU rate in CPU on Failure Mode ratio 54
8.3 Influence of SEFI rate on incorrect result ratio - untuned watchdog . . 55
8.4 Influence of SEFI rate on Failure Modes with the unturned (marked with

”1”) and tuned watchdog (marked with ”2”) 55
8.5 Influence of SEFI rate on incorrect result ratio - tuned watched 56
8.6 Influence of SEU rate in SRAM on Failure Mode, without mitigation

techniques . 57
8.7 Influence of SEU rate in SRAM on Failure Mode, without mitigation

techniques . 57
8.8 The source image for JPEG compression procedure 58

xiii

8.9 The output image after JPEG compression procedure 59
8.10 Example of the source image SEU corruption - w/o mitigation techniques 60
8.11 Difference distribution of unequal bytes in the source images w/o mitig-

ation techniques . 60
8.12 JPEG compression output under the source image corruption by SEUs

w/o mitigation techniques . 61
8.13 Difference distribution of unequal bytes in the compressed image w/o

mitigation techniques . 61
8.14 The source image SEU corruption - with Memory Scrubbing 62
8.15 JPEG compression output - with Memory Scrubbing 63
8.16 JPEG compression with introduced 56-bit long MCU; the source and

the output . 63
8.17 Correct Kalman filter output . 64
8.18 Kalman filter output with SEUs introduction 64
8.19 The simulation result of the adaptive filtering computation with one SEU

introduction (20 000 iterations) . 67
8.20 Histogram of system fault-tolerance with and without fault-mitigation

techniques (20 000 iterations) . 68
8.21 The dependency of system behavior on the number of simulation iterations 69
8.22 Clustering algorithm output . 71

xiv

List of Tables

2.1 Main OBC requirements . 9

3.1 DRAM radiation sensitivity - empirical data 16
3.2 SRAM radiation sensitivity - empirical data 17
3.3 Flash-based FPGAs radiation sensitivity - empirical data 21
3.4 Radiation sensitivity of COTS components, the worst case 22
3.5 Flash memory radiation sensitivity - empirical data 23

8.1 The source image parameters . 57
8.2 The output image parameters . 58
8.3 The output of CatapultC Synthesis for TMR and Hamming-based

memory scrubbing FPGA co-processors 64
8.4 The Memory Sections where SEUs are Injected 66
8.5 Simulation Time for the Version without Protection - One Iteration . . 66
8.6 Simulation Time for the Version with FPGA-based Protection - One

Iteration . 67
8.7 Simulation Time for the Version with Software Protection - One Iteration 68
8.8 Simulation Results, System Fault-Tolerance with and without Fault-

Mitigation Techniques . 68
8.9 The Simulation Time of the Case Studies 72

xv

xvi

Acronyms

ADC Analog-to-Digital Converter.
ADCS Attitude Determination and Control System Algorithm.
ASIC Application-Specific Integrated Circuit.

BRAM Block Random-Access Memory (RAM).

CalPoly California Polytechnic State University.
CMOS Complementary Metal-Oxide-Semiconductor.
COTS Commercial Off-The-Shelf.
CPU Central Processing Unit.

DAC Digital-to-Analog Converter.
DFF D Flip-Flop.
DMIPS Dhrystone MIPS(Million Instructions Per Second).
DRAM Dynamic RAM.

ECC Error-Correcting Code.
EDAC Error-Dectection And Correction.
ESA European Space Agency.

FG Floating Gate.
FIM Fault Injection Module.
FMEA Failure Mode and Effect Analysis.
FPGA Field-Programmable Gate Array.
FSM Finite State Machines.

GCRs Galactic Cosmic Rays.
GG Guard Gate.
GPP General-Purpose Processor.
GPR General-Purpose Register.
GPS Global Positioning System.
GUI Graphical User Interface.

IC Integrated Circuit.
IP Intellectual Property.
ISIS Innovative Solutions In Space B.V..

JTAG Joint Test Action Group.

LCI Logic Cell Like-Inverter.
LEO Low Earth Orbit.

xvii

LET Linear Energy Transfer.
LMA Load Memory Address.
LSI Large Scale Integration.

MBU Multiple-Bit Upsets.
MCU Multiple-Cell Upsets.
MLC Multi-Level Cell.
MPU Micro-Processor Unit.

NASA National Aeronautics and Space Administration.

OBC On-Board Computer.
OS Operating System.
OTP One-Time Programmable.
OVP Open Virtual Platforms.

PC Personal Computer.
PCB Printed Circuit Board.
PROM Programmable Read-Only Memory.

QoS Quality of Service.

RAM Random-Access Memory.
RTL Register-Transfer Level.
RTOS Real-Time Operating System.

SAA South Atlantic Anomaly.
SDRAM Synchronous Dynamic RAM.
SEE Single-Event Effect.
SEFI Single-Event Functional Interrupt.
SEL Single-Event Latchup.
SEP Single-Event Phenomenon.
SERVIS Space Environment Reliability Verification Integrated Systems.
SET Single-Event Transient.
SEU Single-Event Upset.
SHE Single Hard Error.
SIFT Software Implemented Fault Tolerance.
SLC Single-Level Cell.
SoC System-on-Chip.
SPENVIS The Space Environment Information System.
SPI Serial Peripheral Interface.

xviii

SPR Special-Purpose Register.
SRAM Static Random-Access Memory.

TID Total Ionizing Dose.
TLM Transaction-Level Modeling.
TMR Triple-Modular Redundancy.

VMA Virtual Memory Address.

xix

xx

Introduction 1
The On-Board Computer (OBC) of a satellite is its central subsystem that processes
information transmitted to the satellite and information provided by other on-board
subsystems (radio, power, payload, etc.)[7, p.348]. In spite of adverse effects of harsh
radiation environment, the OBC performance degradation should be minimized and
the efficiency of software/hardware fault-tolerance techniques have to be analysed to
provide clear understanding about satellite mission capabilities.

The radiation fault-tolerance techniques have become an especially active research
topic when newly introduced small satellites and CubeSats[8] began to use low-cost
Commercial Off-The-Shelf (COTS) components that are not designed to work in the
space radiation environment and, as a result, susceptible to the radiation effects.

In the next Sections the research motivation is given, the need to develop a
simulation-based approach for the OBC fault-tolerance analysis is explained, the main
contributions of this work are listed, and the thesis organization is presented.

1.1 Motivation

The main requirement for small satellite OBCs is their tolerance towards the faults
induced by radiation. While the complexity of each component and whole systems are
growing, the existing analytical methods for fault-tolerance analysis became infeasible
for complex heterogeneous systems and for COTS components whose Integrated Circuit
(IC)-level is unknown for the satellite designers.

The face-off between the requirements on the fault-tolerance and low-cost (COTS-
based design) are partially solved by using COTS parts with flight heritage and satellite
aluminium shielding. The former practice limits the OBC power efficiency and per-
formance, while the latter one increases the price of a satellite launch. The up-to-date
COTS devices can be used but require additional fault-tolerance analysis and clear un-
derstanding of the radiation effects consequences. Thus,an important existing question
is how to assess the efficiency of the applied fault-tolerance techniques for particular
applications and device set.

The benefits and correctness of implemented fault-tolerance techniques can be as-
sessed under the radiation tests at the final development stage. However, if the radiation
test is failed, the expensive and time-consuming re-design is required. The comparat-
ive analysis of the mitigation techniques and system-level debugging for fault-tolerance
are impossible due to high cost of radiation tests. Moreover, radiation testing does
not guarantee the injection of specific errors, nor explain their nature or the system
behavior[9, 10].

Additionally, the existing simulation methods for the OBC fault-tolerance ana-
lysis are based on IC-level which is unknown for the final user of COTS components.

1

Moreover, circuit-level simulations are time-consuming and cannot be used for extensive
statistical analysis.

Due to the complexity of each electronic component and the system as a whole, the
utilization of high-level abstraction modeling language, such as SystemC, is imperative.
The system-level fault-tolerance analysis through simulation is examined in this work.

1.2 Thesis goal

The goal of this thesis is the creation of the simulation framework that enables statistical
system-level fault-tolerance analysis of the OBC. The framework should assist software
developers and system designers to write OBC software and conduct Failure Mode and
Effect Analysis (FMEA) at early development stages. It should clarify radiation effect
consequences for typical CubeSat missions. Consequently, the evaluation of the space
radiation environment is required and the corresponding fault models have to be built.

The work should include several case studies where the framework utilization is
explained and the interpretation of the simulation results are given.

The framework should support software portability to real hardware. It should be
scalable and general enough to be easily adapted for other OBC architectures.

1.3 Contributions

The contributions of this thesis are:

• A novel statistical approach for system-level fault-tolerance analysis of satel-
lite OBCs is built (Section 6.1) and based on the high-level simulation frame-
work of two main components: SystemC-based OBC model (Section 4.1-4.4)
and C++-based fault injection mechanism (Section 4.5). The requirement on
the hardware-software co-design and co-simulation is met with Transaction-Level
Modeling (TLM) methodology [11]. The provided portability enables software-
hardware co-simulation and co-design in a way that the written software and
Field-Programmable Gate Array (FPGA) configuration are portable to the real
OBC hardware.

• The radiation environment for typical CubeSat missions is assessed using
European Space Agency (ESA) The Space Environment Information System
(SPENVIS) project(Section 3.1.1). The interconnection between the assessed ra-
diation environment, the electronic components’ cross section , and fault-rates is
defined (Section 3.1.2).

• The radiation sensitivity of modern electronic components is investigated using
the published empirical observations. The maximum fault-rates are calculated for
different types of electronic parts (SRAM, DRAM, Flash memories, etc.)(Section
3.1.3). The corresponding fault-models of possible radiation effects are built: the
models of Single-Event Upset (SEU), Multiple-Cell Upsets (MCU), and Single-
Event Functional Interrupt (SEFI) (Chapter 5).

2

• The model of the OBC based on SmartFusion System-on-Chip (SoC) is
built(Section 4.3). It incorporates Cortex-M3 ARM core (an instruction-accurate
model obtained from Open Virtual Platforms (OVP) project [12]), Flash-based
FPGA co-processor, the central AMBA bus (replaced by the Decoder unit), sev-
eral memory storages, watchdog, and timers. It is also shown how to build the
stacked OBC model with I2C-controller utilization(Section 4.4).

• Using the created OBC model, the work investigates the fault consequences for the
recursive and compression algorithms (Sections 8.1-8.3) as well as for the Kalman
and adaptive filters of Attitude Determination and Control System Algorithm
(ADCS)(Sections 8.4-8.5).

• The work shows how to compare the efficiency of such software and hardware
mitigation techniques as time Triple-Modular Redundancy (TMR) and FPGA-
based memory scrubbing (Section 8.5.2).

• The work shows that the simulation results can be used for the optimization of
mitigation techniques, e.g. for FPGA-based memory scrubbing with Hamming en-
coding and watchdog monitoring(Sections 8.5.4, 8.1.2). The dedicated clustering
algorithm has been developed for this purpose (Section 8.5.4).

Three conference papers have been written based on the results presented in this
thesis. The work has been appreciated in Europe and USA where it was presented at
ESA 4S Symposium[13] and North-Atlantic Testing Workshop[14] in 2012. The third
written paper [15] is being under the review of XXVII Conference on Design of Circuits
and Integrated Systems by the moment of this MSc thesis defence.

1.4 Outline

The rest of the work is organized as follows:
Chapter 2 observes small satellite and CubeSat missions; it also discusses the typical

OBC properties. Chapter 3 describes the space radiation environment, provides the
assessment of CubeSat radiation conditions , and briefly observes well-known fault-
tolerance techniques. Chapter 4 explains the principles of the chosen OBC modeling
approach and introduces the OBC model based on SmartFusion SoC[6]. Chapter 5
explains the fault models used in the simulation framework. Chapter 6 generalises the
FMEA with the proposed simulation approach and multidimensional analysis. Chapter
7 observes the OBC model validation, verification, and limitations. Chapter 8 contains
the case studies, their interpretation, and explanation how to use the framework for the
OBC fault-tolerance analysis. In the last chapter of this work conclusions are drawn
and directions for future work are given.

3

4

Overview: OBC for Small
Satellite missions 2
The previous chapter explains the need to create a new approach for the fault-tolerance
analysis of small satellite OBCs. Hereafter, the overview of small satellite missions is
presented(Section 2.1), and the typical OBC properties are discussed (Section 2.2).

2.1 Micro and Nano satellite mission overview

Nano and Micro satellites (for brevity small satellites in this work) are satellites with
mass ranges of [1..10) kg and [10..100) kg consequently [16, p.30]. COTS-based Nano-
satellites(or CubeSats)(Figure 2.1) were introduced in 1999 by California Polytechnic
State University (CalPoly) and Stanford University [17, 18]. CubeSats became very
popular in the scientific community due to the mission low cost. The low mission cost
dictates the use of COTS components and the reduction of satellite mass by the elim-
ination of heavy shielding. Both factors make satellite subsystems highly susceptible
to the space radiation. However, the satisfactory results of missions like Hiten [19],
TSUBASA [20], and Space Environment Reliability Verification Integrated Systems
(SERVIS) [10] certified the feasibility of COTS parts utilization in space.

Figure 2.1: 3U CubeSat with deployed antenna and solar panels

Nowadays, small satellites start to be used in long-term research projects, including

5

commercial ones where the mission success depends not only on the launch success but
on the provided Quality of Service (QoS)[21, 22, 23]. Despite of high radiation-tolerance
requirements, system engineers are compelled to use COTS components due to their
low cost, availability on the electronic market, and cutting edge performance[5].

A satellite system can be always divided into two main parts: a satellite platform
and a payload, in other words, a core component and a variable sybsystem[24]. The
core component consists of the communication, power, altitude control, and the OBC
subsystems[25]. These subsystems should possess re-usability property and meet pos-
sible requirements of future missions to reduce time-to-market and non-recurrent costs.

One of the distinguishing characteristics of small satellite missions is the short period
of satellite visibility to the ground station: with the typical altitudes of 300-750 km
above the sea level, the direct satellite visibility is limited to 3-14 minutes for one
ground station[26]. In conjunction with the limited communication data-rate[27, 28],
the short pass-by time introduces the higher requirements on the on-board processing
power[23]. This requirement is enforced by advancements in payload technology that
result in high demand of powerful on-board processing[2].

As for any autonomous vehicle with a rechargeable energy source, satellite sub-
systems have to consume as low power as possible. This requirement is dictated by
the limited number of charge/discharge cycles for lithium ion batteries and solar pan-
els efficiency. A power efficient OBC reduces the amplitude of lithium ion batteries
charge/discharge cycles, which prolongs the batteries operational life[29].

All the telemetry and OBC commands are transmitted between the subsystems via
a command and data handling bus. In CubeSats this bus is standardized by PC/104
bus standard[30] as well as the used Printed Circuit Board (PCB) size is limited by
10x10 centimeters[31, 8].

The kernel part of the satellite that performs the majority of mission tasks is the
OBC. The OBC takes responsibility for the satellite auto-operation within the power,
mass, size limitations and radiation-tolerance requirements discussed above. In details,
the typical OBC of small satellites is analyzed in the next Section 2.2.

2.2 OBC satellite subsystem

The satellite OBC is a computer or a system of computers that processes various
information transmitted to the satellite or from other on-board subsystems[7, p.348](see
Figure 2.2). The OBC performs all main operations, stores on-board data, and executes
the telecommands sent by the ground station[32, 24]. The OBC architecture has to be
flexible and general-purpose to increase its reusability[33].

The OBC should have the characters of future small satellites: short time-to-
market, high functional integration, flexibility, and low expenses with maximized fault-
tolerance[34, 24, 32]. Since the physical upgrade and repair of satellite electronics
are impossible after its launch, there is great need for condition-based maintenance,
self-repair and upgrade capabilities [35, 23, 36].

The overview of main requirements to the OBC design is presented in the next
Section 2.2.1.

6

Figure 2.2: Existing OBC for Nano satellites [1]

2.2.1 Overview of OBC requirements

To define the requirements on the OBC subsystem it is necessary to analyze the func-
tionality it should perform:

2.2.1.1 Processing power

The execution of an existing ADCS requires at least 80 DMIPS(according to an internal
Innovative Solutions In Space B.V. (ISIS) document). The unavailability of the correct
ADCS results for more than 5 minutes may cause the satellite orientation loss with
following communication loss and solar panels efficiency reduction.

The camera NanoCam[37] can be taken as a case study to conduct an analysis of
possible workload by a imaging payload. NanoCam can provide two pictures per second
through an I2C interface. The picture JPEG compression will take 317 ms and 45 kB
Random-Access Memory (RAM) on modern processors as Cortex-M3[38].

According to the aforementioned application requirements, the appropriate pro-
cessor will have at least 100-110 DMIPS of performance. One of such processors is
ARM Cortex-M3 with 1.25 DMIPS/MHz and frequencies higher than 80 MHz[39].

2.2.1.2 Memory capacity

Based on the NanoCam and altitude/orbit control algorithm characteristics, the OBC
needs at least 32 Mbytes of RAM to temporary keep and process pictures, measure-
ments, and payload data. Additionally, non-volatile high-capacitive memory storage is
needed to keep the telemetry and payload data until sending it to the ground station.
High-capacitive SD Flash memory is usually utilized for this purpose [1, 40].

7

2.2.1.3 Peripherals

Missions are becoming more diverse and complex; thus, satellites should be able to
accommodate various payloads[41]. Consequently, the OBC should demonstrate high
flexibility in term of available peripherals. The command and data handling bus (see
Section 2.1) requires one I2C bus; another I2C will be needed for a Global Positioning
System (GPS) receiver[42], camera, or Nano-RTU[43]. Two Serial Peripheral Interface
(SPI) interfaces can be utilized for communication with payloads. Sometimes both SPI
are used for one payload subsystem, e.g. in Nano satellites Tracking system[44].

2.2.1.4 Software

The principal requirement on the OBC software is bug-free. Additionally, in-
flight software update techniques and corresponding boot loader capabilities are
desirable[32].This approach will make the OBC architecture capable to recover from
software bugs by software in-flight reloading. Since except health-checking functional-
ity the OBC should perform ADCS, payload data processing,etc., the OBC tasks have
different importance. Utilization of a Real-Time Operating System (RTOS) provides
several priority levels for tasks execution[32].

2.2.2 OBC fault-tolerance

The previous Sections 2.1-2.2.1 explained the OBC importance and its main functional
characteristics. However, no OBC functionality can be provided if the OBC is not a
fault-tolerant system. The definitions of fault-tolerance and faults are discussed in a
few next paragraphs.

On one hand, a fault can be defined as the primary cause of changes in the system
structure or parameters that eventually lead to a degraded system performance or even
system functional loss[45, p.1-2]. Several examples of fault are listed hereafter[45, p.1]:

• An internal event in the system which breaks an information link.

• A wrong control action given by the human operator that brings the system out
of the required point.

• It may be a system design error that remained undetected until the system came
into a certain operation point where this error reduced the performance consider-
ably.

In order to avoid the negative fault consequences, the faults have to be found as
quickly as possible and the system has to be returned the the correct state as soon
as possible . These two steps: detection and recovery are carried out by different
fault-detection and fault-mitigation techniques (see Section 3.2). In conjunction these
techniques form fault-tolerance techniques. Systems use these techniques to meet the
limitations on the performance degradation caused by the introduced faults. As a result,
a system becomes fault-tolerant if the balance between the applied fault-mitigation
techniques and the faults’ severity is kept.

8

On other hand, the term ”fault” can correspond to the representation of a radiation
effect at the abstracted function level. In the contest of system defects, the term fault
corresponds to the representation of a defect at the abstracted function level [46, p.57-
58]. The terms ”radiation fault modeling” and ”radiation fault models” will be used in
this work with the meaning of the representation of a radiation effect at the abstracted
function level. The term ”fault” in the space industry is more commonly used according
to the aforementioned definition from[45, p.1-2].

In the case of small satellite OBCs, the fault-tolerant OBC is the systems that
uses fault-tolerance techniques to minimize the negative consequences of the radiation
effects.

2.3 Conclusions

This chapter presented the main characteristics of the appropriate OBC for small satel-
lite missions. The characteristics are summarized in Table 2.1.

OBC characteristic Required value

Processing power ≥ 100 MIPS
RAM (volatile memory) ≥ 32 Mbytes
Non-volatile memory storage SD card (≥ 1 Gb)
Peripherals ≥ two I2C, ≥ two SPI
Digital-to-Analog Converter (DAC) and
Analog-to-Digital Converter (ADC)

preferably for flexibility

FPGA preferably for flexibility
Termal conditions industrial standard,

[-40..+70] Celsius
Total power consumption ≤ 1 Watt

Table 2.1: Main OBC requirements

The processing power concentration in the OBC imposes the strict requirement on
correct and stable OBC operation. Taking into account the diverse radiation-induced
effects in COTS parts (see Chapter 3) and the absence of an appropriate shielding
protection, the adequate fault detection and mitigation techniques[41] have to be used
(see Section 3.2).

9

10

Space Radiation Effects, Faults
Detection and Mitigation 3
Space radiation influence on electronics has always been the central issue in the space
industry. However, it is necessary to assess the radiation environment particularly
for 300-750 km of altitude (see Chapter 2) to understand the impact of radiation on
different OBC components (Static Random-Access Memory (SRAM)-based and Flash-
based memories, FPGA,etc.)(Sections 3.1.3.1 - 3.1.3.5).

3.1 Space Radiation Environment Overview

Space environment significantly differs from terrestrial conditions, which introduces
serious problems for the OBC development and COTS components utilization.

Space-based radiation comprises atomic particles that have been spread by stellar
events within the solar system or beyond it (e.g. from The Milky Way galaxy)[2].
The particles stream generated within our solar system is referred to as the solar wind
(Figure 3.1).

Figure 3.1: Solar Wind [2]

The Earth’s magnetosphere traps, slows, or deflects the electrons,protons, and heavy
ions (isotopes of atom from Helium to Uranium) emitted during solar events such as
solar flares and mass coronal ejection[2]. As a result of protons and electrons inter-
actions with the Earth’s magnetic field, they are trapped within the Van Allen belts
(Figure 3.2). Thus, the orbits with altitude from 500 to 13 000 km are populated with
high energy protons[47].

The inner proton Van Allen belt has a region, South Atlantic Anomaly (SAA),
where the belt extends downwards the Earth. Consequently, the high concentration of

11

protons is observed in this region at lower altitudes(see Figure 3.3) and constitutes a
serious danger for small satellite missions.

Outer Electron Belt

Proton Belt

South
Atlantic
Anomaly (SAA)

Figure 3.2: Van Allen Belts and SAA[2]

10 protons cm squared/sec

500

100

Protons isoflux contours for energies above 34 MeV in the South Atlantic Anomaly
at 440 km altitude

(Units are degrees for both axes)

100

 200 300 310 320 330 340 350 0 10 20 30

Figure 3.3: Proton concentrations within
SAA[2]

Moreover, the statistical correlation between radiation-induced faults in the OBC
and solar activities was revealed by the Hiten satellite mission[35].

Solar flares or spatial anomalies cause variances of one or two orders of magnitude
in environmental effects. They cannot cause a system failure but the OBC limited
performance degradation is highly expected [5].

3.1.1 Space Radiation Environment Assessment

The radiation effects in electronic components can be classified into Single-Event Phe-
nomenon (SEP)(or Single-Event Effect (SEE)) and Total Ionizing Dose (TID) over the
mission lifetime [5, 25, 4]. SEP(or SEE) describes the reaction in a part or a system
caused by the impact of radiation[2]. TID is a total amount of radiation that a part or
a system is subjected to[2].

3.1.1.1 Total Ionizing Dose (TID)

Protons, heavy ions, and Galactic Cosmic Rays (GCRs) contribute to TID which is
measured in ”rad” units. TID affects Complementary Metal-Oxide-Semiconductor
(CMOS) devices by creating new electrical paths and depositing charge within the
component[2](e.g. in the oxide layers over the silicon[48]). Consequently, the electri-
city can flow in unexpected way.

In general, TID contributes to the device deterioration over time[34]. Despite the
ability of some TID effects to self-anneal, the time needed to recover can be longer than
a mission can afford. The OBC parts selection, parts derating, and shielding prevent
potential catastrophic failures due to TID[5].

Using ESA SPENVIS[49], TID has been estimated for the typical mission lifetime.
The mission lifetime is set to be three years (other simulator settings are described in
Appendix A). Various possible mission scenarios (altitude, inclination, and shielding
width) have been simulated and presented in Figure 3.4.

12

T
ot

al
 M

is
si

on
 D

os
e

(f
or

 3
 y

ea
rs

)

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0 1 2 3 4 5 6 7 8 9 10

300 km, 0 deg 300 km, 98 deg 500 km, 0 deg

500 km, 98 deg 750 km, 0 deg 750 km, 98 deg

1000 km, 0 deg 1000 km, 98 deg

mm

max 3.2 krad (Si)

Aluminium shielding width

Figure 3.4: Simulation results: TID vs aluminium shielding width

Since 1.5 mm aluminium shielding is usually supported by a standard CubeSat
structure, 1.5 mm is chosen as a shielding width for small satellites in this work. Ac-
cording to Figure 3.4, the worst case TID scenario for a 3-years mission within 300-750
km altitude corresponds to 3.2 krad. The correctness of this simulation result is suppor-
ted by the empirical National Aeronautics and Space Administration (NASA) model
APEXRAD [50].

3.1.1.2 Single-Event Effects (SEE)

SEEs (or SEPs) are the radiation effects that occur unpredictably with a range of
consequences[34]. The consequences depend on the damage caused by the passage of a
single high-energy particle through an electrical node[51]. Such particles are protons,
heavy ions, and GCRs. Depending on the device electric field configuration, the created
charge disposition can cause SEP or it can recombine without any effects [52].

Linear Energy Transfer (LET) is the rate at which ions or other particles loose
their energy when penetrating the material[2]. LET is defined as energy deposited per
traversing length per material specific density (MeV · cm2/mg)[53, p. 11]. Incident
energy, particle mass,and material density influence LET and the results of penetration.

Using ESA SPENVIS[49] tool, the LET spectrum of particles inside the satellite
shielding has been found for typical CubeSat missions. As previously, 1.5 mm alu-
minium shielding was taken as a case study. By comparing different orbital scenarios,
the worst case was also found at 750 km and 98 deg inclination (Figure 3.5).

The particle LET spectrum can be considered as equal to zero when the LET is
higher than 32.5 MeV · cm2/mg (see Figure 3.5).

Single-Event Effects (SEE) classification

SEE can be classified to subcategories based on the type of consequences [2, 34, 33]:

13

1.00E-03
1.00E-02
1.00E-01
1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08

1.
61

E
-0

3
2.

63
E

-0
3

4.
29

E
-0

3
7.

00
E

-0
3

1.
14

E
-0

2
1.

87
E

-0
2

3.
05

E
-0

2
4.

97
E

-0
2

8.
11

E
-0

2
1.

32
E

-0
1

2.
16

E
-0

1
3.

53
E

-0
1

5.
76

E
-0

1
9.

41
E

-0
1

1.
54

E
+

00
2.

51
E

+
00

4.
09

E
+

00
6.

68
E

+
00

1.
09

E
+

01
1.

78
E

+
01

2.
91

E
+

01
4.

74
E

+
01

7.
75

E
+

01

In
te

gr
al

 F
lu

x
(m

-2
sr

-1
s-1

)

LET(MeV cm2mg-1)

32.5 MeV cm2mg-1

Figure 3.5: Simulation results: Spacecraft shielded LET(Si) spectrum

• Single-Event Upset (SEU), or ”soft effect” according to [25]

• Single-Event Transient (SET)

• Single-Event Functional Interrupt (SEFI)

• Single-Event Latchup (SEL) , or ”destructive effect” according to [25]

• Multiple-Cell Upsets (MCU) are topological multiple SEUs [54]

• Multiple-Bit Upsets (MBU) are logical multiple upsets: error bits belong to the
same bit-word[54]

• Single Hard Error (SHE) or ”hard effect”, which denotes a stuck bit [25]

SEU happens when a single particle deposits enough charge at a sensitive node in
a microcircuit to cause the circuit state change. SEU appears as ”soft error” such as
a bit-flip or a spurious command [52]. Thus, the data state of the device is corrupted
without the permanent damage of the device. The nature of SHE is the same as SEU
has, but the bit cannot be returned to the normal operation by re-writing.

SET corresponds to the ion-strike-induced transient pulse[48]. The pulse can
propagate through the network and cause SEU in a storage element. Another SET
effect is the interaction with the internal clock signal by widening/narrowing the pulse
signal. Consequently, SET influences the speed of systems that are dependent on the
clock signal[53, p.12] and may corrupt the synchronized communication between two
nodes. The number of errors induced by SET is operating frequency dependant[55].

SEPs also incorporate SEFI that leads the electronic device to enter an unknown
state and stop responding[56].

Ionizing interaction of CMOS junction with charged particles causes SEL[53, p.12].
Burnout and gate rupture are possible SEL consequences[5]. The component hangs up
too in the case of SEL, but the part consumes excessive current and does not work
until the device is power cycled[33].

14

3.1.2 Fault rate Assessment

Since the testing results about the error cross section are published for many COTS
components, the rates of radiation effects occurrence(fault rates) can be calculated
according to the methodology presented hereafter.

A differential cross section with respect to primary particle flux is defined as[57]:

σ(Λ; θ, ϕ) =
dN(Λ; θ, ϕ)

Φ(Λ; θ, ϕ)dodΛ
, (3.1)

where do is the solid angular element, dN is the error number due to particles with
LET in the range Λ...Λ + dΛ,Φ[cm−2srerad−1(MeV · cm2/mg)−1]is differential fluency
per LET unit per solid angle.

Consequently, the full error rate can be calculated as:

R =

∫ ∫ ∫
σ(Λ; θ, ϕ)φ(Λ; θ, ϕ)d(cosθ)dϕdΛ (3.2)

where φ is flux (φ = dΦ/dt)
Instead of the cross-section σ(Λ; θ, ϕ), it is possible to introduce the averaged cross-

section < σ(Λ) > over the full solid angle 4π. According to the usual assumption that
the direction distribution of cosmic ray and corresponding LET spectrum are isotropic,
the flux can be averaged: φ(Λ) ∼= 4πφ(Λ; θ, ϕ)

Then, the next formula can be derived from (3.2):

R =

∫
< σ(Λ) > φ(Λ)dΛ (3.3)

As a result, if at least some discrete values of cross-section measurement results
and the flux simulation data are known, the fault rate can be calculated by polynomial
approximation and the following integration. The corresponding code has been written
in MATLAB to ease the fault rate calculation and presented in Appendix B.1.

3.1.3 Radiation effects in COTS components

Modern OBCs use different COTS components (see Chapter 2). Thus, the radiation
impact estimation is required for the range of COTS parts. Hereafter, such estimations
are presented; the fault rates are calculated according to the methodology of Section
3.1.2 and Appendix B.1.

3.1.3.1 SEE in DRAM

Two opposite trends are observed in DRAM memory[58]:

• the shrinking junction volumes that decrease the collected charge

• the relatively high node-capacitance due to an external three-dimensional cell
capacitor

15

As a result, DRAM fault-tolerance has remained roughly constant over many gen-
erations. However, soft errors in the bitline and sense amplifiers become dominant
because of the increased operating frequency[58].

The Table 3.1 contains the DRAM fault-tolerance information and its source:

Device/device component TID,
krad(Si)

Possible
SEE

Cond. Fault rate
(worst 5
minutes)

Source

Latest generation of Synchron-
ous Dynamic RAM (SDRAM)

50 SEU and
SEL

[59]

Peripherals circuits of DRAM SEU [60]
64 Mbytes SDRAM (Micron
company)

20 SEL
followed
by SHE

51
MeV −
cm2/mg

[61]

SEFI
followed
by MCU

[61]

64 Mbytes SDRAM (Elpida
company)

40 no SEL
even at:

85
MeV −
cm2/mg

[61]

SEU 1.4519 · 10−8

up-
set/bit/day

SEFI
followed
by MCU

zero

Micron MT47H256M8HG-37E SEU 3.9306 · 10−9

up-
set/bit/day

[62]

SEFI
followed
by the
whole

page or
column

corruption

1.3373 · 10−1

event/dev/day

Elpida EDE2108ABSE-8G-E SEU 3.6796 · 10−11

upset/ bit/
day

[62]

SEFI 1.5115 · 10−2

event/dev/day

Table 3.1: DRAM radiation sensitivity - empirical data

As a result, DRAM memory is tolerant towards the expected total mission dose
of 3.2 krad. According to the estimations, modern DRAM memory components will
not experience SEL during usual small satellite missions. However, DRAM memory is

16

highly susceptible to SEU, SEFI, and MCU. If the OBC contains 32 Mbytes of SDRAM
memory, then the memory will experience 4 upsets per day in the worst case.

3.1.3.2 SEE in SRAM

Beginning from the late 1990s, terrestrial neutron-induced soft errors have become the
main reliability issues in SRAM industry [60]. Research [63] explicitly shows that due
to technology scaling the SRAM memory is becoming less SEU sensitive but the ratio
and the size of MCU are increasing.

The Table 3.2 contains the SRAM fault-tolerance information and its source:

Device/device
component

TID,
krad(Si)

Possible SEE Conditions Fault rate
(worst 5
minutes)

Source

16-Mbit 130 nm
SRAM

MCU growing
with particle

energy

Particle energy:
21, 46, 96, and

176 MeV

[64]

65 nm SRAM
memory

45% of SEE -
SEUs, 55%

-MCUs; MCU is
shorter 20 bits

[65]

45 nm Single port
SRAM memory

SEU 1.2777 ·
10−4 up-

set/bit/day

[54]

no SEL even at: 60
MeV ·cm−2/mg,
125 C, voltage

110% of
nominal one

65 nm Single port
SRAM memory

SEU 1.2788 ·
10−4 up-

set/bit/day

[54]

90 nm SRAM
memory

SEU 800 km with 2.5
mm Al shielding

the same
as in 2

previous
cases

[66]

no SEL even at: 117
MeV ·cm−2/mg,
voltage 120% of

nominal one

Table 3.2: SRAM radiation sensitivity - empirical data

As a conclusion, modern SRAM memory will not suffer from SEL and TID during
small satellite missions. However, SRAM memory is more susceptible to SEU and
especially MCU (more than 50% of all SEE). Taking into account that the amount of
SRAM memory(e.g. in Micro-Processor Unit (MPU)) is usually limited by a hundred

17

of kilobytes, the expected SEU and MCU rate is about 105 upsets per day in the worst
5 minutes of the satellite mission. It corresponds to one upset every 15 minutes.

3.1.3.3 Flash memory radiation induced effects

Flash memory is a non-volatile, electronically erasable and programmable memory[67].
The basic storage element includes a control gate stacked over an isolated polysilicon
gate in the gate oxide (named Floating Gate (FG)), a source, and a drain[68]. Internal
charge pump generators provide higher voltages than external operating supplies for
programming and erasing Flash memory . The generators are radiation sensitive parts
of Flash-based memory[69] . Another vulnerable part of COTS Flash devices is the
complex control circuitry(Finite State Machines (FSM), output buffers).

COTS NAND flash memory is widely used in commercial and space application
as a mass storage device due to its high density, high I/O bandwidth, good retention
properties, and non-volatility[68, 70]. According to the experiments [71], NOR Flash
memory is much more prone to SEU and SEFI effects than NAND one. It can be
explained by the relative simplicity of control circuit in NOR memory in comparison
with NAND Flash memory.

Critical TID level is directly connected with the reduction of FG retention capability
by heavy ions[70].

Typically SEFI corrupts the large part of the memory when the read/write operation
is happening. Some SEFIs will self-recover once the device is re-read, other require a
power cycle or even re-initialization to return to normal operations.

The Table 3.5 contains the information about the fault-tolerance of Flash-based
memory.

As a result, Flash technology offers non-volatility and high density but limited in
terms of number of writes cycles and TID(mainly because of the charge pump circuit).
Therefore, Flash memory is usually used for long-term storage of critical system config-
uration data (e.g. programme code or FPGA configuration). Flash memory is usually
kept unpowered to extend its life expectancy. The main source of faults in Flash-based
devices is complex peripheral circuit.

3.1.3.4 FPGA components radiation induced effects

FPGAs are user-programmable devices that perform the functions of Large Scale In-
tegration (LSI) circuitry. They include from thousands to millions programmable logic
elements, each capable of performing any logic function[34]. FPGA reconfigurability,
high performance, low cost [4], and relatively low-power consumption are fruitful prop-
erties that can be used to develop innovative space systems [72].

FPGA reconfigurability lets system engineers to use the most current configuration
of FPGA-based processors and change their configuration during on-orbit stages[34, 73].
Moreover, FPGA enhances the OBC flexibility and adaptivity in terms of peripherals
and functionality[24].

FPGA on-the-flight reconfigurability is based on the volatile (SRAM) or non-
volatile(Flash) memory cells that store device programming information. These two
types of memory technology (SRAM and Flash) separate reconfigurable FPGA devices

18

into two groups: SRAM-based FPGA and Flash-based FPGA. The third group of
FPGAs is based on Anti-fuse technology and presents One-Time Programmable (OTP)
devices.

The scaling decrease of Vcc alleviated the SEL susceptibility in newer devices[48].
Meanwhile, due to scaling, functional, and performance advancements of FPGA, SEU
susceptibility is growing up.

Fundamentally, the radiation effects in FPGAs are the same as in any other CMOS-
based digital IC, but differences of radiation sensitivities originate in switch types[48].
Overview of the FPGA groups for space applications are presented hereafter:

SRAM-based FPGA

Volatile configuration memory of SRAM-based FPGA provides high speed for re-
configuration and unlimited number of reconfiguration cycles[74]. On the other hand,
such memory is sensitive to SEU, SET, and SEFI[72, 73]. When SEU hits the con-
figuration memory cell, the logic or routing is corrupted[75]. Moreover, SET can be
transformed into permanent SEU if it changes the configuration data[74, 48].Changes
in the configuration memory can lead to SEFI of the whole component[72, 73]. Since
both user and configuration memories are susceptible to SEU and SET, the whole OBC
becomes very radiation sensitive [74].

However, the SRAM-based FPGAs are tolerant to TID up to 100-200 krad(Si) [73].
Moreover, their TID tolerance is becoming higher: from functionality loss at 50 krad
level ten years ago[48] to 500 krad at Virtex-5 65 nm CMOS FPGA nowadays [53, p.
13].

Toshinori Kuwahara[53] evaluated the device failure rate due to radiation-induced ef-
fects at the altitude of 900 km with 99.03 degree of inclination. According to the results,
Virtex-II family (XC2VP 50) has 7.4610−5 device/sec failure rate due to SEU in config-
uration memory and 2.1010−5 device/sec failure rate inside Block RAM (BRAM), the
user SRAM-based memory. Thus, the configuration of SRAM-based FPGA is corrup-
ted every four hours in space, when the user memory will have an upset approximately
twice a day.

Flash-based FPGA

Non-volatile configuration memory of Flash-based FPGA is less sensitive to SEU
since the FPGA uses FG switches that are more tolerant to charge injection [72, 76].
Flash switches are immune to SEP and only logic modules determine the FPGA sens-
itivity [48].

FGs directly control the programmable interconnection points and the logic blocks
in Flash-based FPGAs[77]. However, a FG switch (e.g. in ProASIC3E FPGA) con-
tains two NMOS transistors and their threshold voltage is determined by the stored
charge[78]. Testing results showed that the induced charge can cause SET that may
temporarily alter the correct circuit implementation in Flash-based FPGA[77].

Since each programming point is potentially sensitive to SET, a temporary change
in the routing structure, implemented logic function, or in driven signal value can be
provoked. SET can lead to multiple faults when the transient pulses are sampled by the

19

user memory elements (flip-flops and embedded SRAM blocks)[79]. But Flash-based
FPGA configuration cannot contain permanent radiation effects, such as SEU[72, 4].

TID can lead to a variation in the threshold voltage of FG transistors disabling their
reprogrammability [77, 78](see Figure 3.6).However, the most dangerous TID effect is
the malfunction of the programming and erasing FPGA circuit caused by the radiation-
sensitive charge pump (similarly to Flash-based memory)[70].

A3P250 Rapiscan 20070523 070523DUT3 SUMMARY

0 krad
1 krad
2 krad
5 krad
10 krad
20 krad
30 krad
40 krad
50 krad

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

P
ro

ba
bi

liy
 (

%
) 99..999

99.99
99
90

70
50
30
10

1
0.1

0.01
0.01

0.0001

Figure 3.6: Threshold voltage shifting at different TID levels [3]

The Table 3.3 contains the information about the radiation sensitivity of Flash-
based FPGAs.

In summary, logical mapping, placement, and routing of Flash-based FPGAs al-
most do not influence the device radiation susceptibility if TID < 20 krad(Si). The
propagation delay and transistor threshold voltage are slowly increasing until from 20
to 40 krad(Si). The majority of devices experience a functional failure at 40 krad(Si).
User memory (flip-flops and embedded SRAM) can also be corrupted when SET are
sampled by the user memory elements[79].

Anti-fuse FPGA

As opposed to previous two FPGA types, Anti-fuse FPGAs can be programmed
only once. As a result, the configuration cannot be lost due to radiation effects[73].

TID tolerance of Anti-fuse Actel FPGAs is 100-300 krad(Si),depending on the device
and lot. However, Antifuse FPGAs can loose functionality at 30 krad because of TID
sensitivity of a charge pump circuit[48]. The sensitivity of the Antifuse devices is
determined by the CMOS logic part.

While both Anti-fuse and Flash-based FPGAs are susceptible to SET and SEU in
user memory, the price of Anti-fuse FPGAs are unaffordable for small satellite industry.

20

Device/
device com-
ponent

TID
krad(Si)

Possible SEE or other
effects

Condition Source

Flash-based
ProASIC3

20 [53, p.13]

50-60 delay degradation within
10%

[48]

40 SET linearly increases
with frequency

frequency >50
MHz(see

Figure 3.7)

[4]

30-40 functional failures [80]
SEL 68 MeV · cm2/mg [81]

A3P600
ProASIC3

20-24 delay degradation ≤ 10% [82, 83,
84, 78]

Flash-based
ProASIC3,
130-nm

40 21% delay degradation; Icc
growth, due to FG leakage

current growth

[78]

55 Icc is 200% of nominal one
SET 1.7298 · 10−6

upsets/Logic Cell
Like-Inverter
(LCI)/day

Table 3.3: Flash-based FPGAs radiation sensitivity - empirical data

6.00E-04

5.00E-04

4.00E-04

3.00E-04

2.00E-04

1.00E-04

0.00E+00

0.00E+00 2.00E+07 4.00E+7 6.00E+07 8.00e+07 1.00e+08 1.20E+08

Frequency [Hz]

D
es

ig
n

cr
os

s-
se

ct
io

n

Figure 3.7: SEP sensitivity wrt frequency [4]

21

3.1.3.5 MPU radiation induced effects

SEU and SEFI threshold for commercial multiprocessors range from 0.2 to 9 MeV ·
cm2/mg [85]; such low threshold causes from multiple upsets per day to a single upset
per year.

SEU can occur in MPU causing data errors. MPU is also susceptible to SEFI[35].
In comparison with memory storage, SEUs are rare events because of MPU’s small
sensitive cross-section.

MPU contains General-Purpose Register (GPR) and Special-Purpose Register
(SPR) and the corresponding consequences of their corruption are very different. SEU
in program counter causes the wrong program flow, meanwhile the SEU in GPR causes
the data corruption of the algorithm being executed.

Although, the probability of MPU SEP is small in comparison with memory faults,
the number of mitigation techniques were created for MPU due to its importance. Since
the cache memory occupies the majority of MPU area, proper mitigation techniques
have to be implemented to avoid data corruption caused by cache SEUs and MCUs.

3.1.4 Conclusion

According to the aforementioned analysis, the majority of modern COTS parts are
tolerant to the mission TID (see Section 3.1). Meanwhile, SEUs and MCUs stay the
main issues in volatile memory when SEFI poses a thread in Flash-based memory .

According to the investigation of published radiation test results, the estimated TID
and LET cannot lead to destructive consequences in COTS components(e.g. SEL or
SHE). Thus, the presented fault models are focused on SEE (see Chapter 5).

The fault-rates (8.9) are calculated using the output LET spectrum from SPEN-
VIS system and cross-sections from empirical observations; the worst case scenario is
presented in Table 8.9.

Component
type

Malfunction at
TID (krad(Si))

SEL at LET
(MeV −
cm2/mg)

SEU rate
(upset/ bit/

day)

SEFI rate (event/
device/ day)

DRAM > 20 51 1.45 · 10−8 0.26
SRAM 20 117 1.27 · 10−4 not observed
Flash NAND 15 - 1.38 · 10−9 0.013
Flash NOR 10-20 - tolerant 0.0013

Table 3.4: Radiation sensitivity of COTS components, the worst case

From radiation-immunity point of view, Flash-based FPGAs better suit small satel-
lite applications in comparison with SRAM FPGAs. At the same time, it is almost
inevitable to use hard Central Processing Unit (CPU) to provide high power-efficiency
and general-purpose capabilities. Consequently, a heterogeneous SoC with the hard
core and Flash-based FPGA fabric is a suitable choice for the OBC of small satellites.
SmartFusion SoC[6] meets these two requirements and incorporates Cortex-M3 ARM
hard core[86] and ProASIC Flash-based FPGA fabric [87].

22

Device/
device
compon-
ent

TID,
krad

(SiO2)

Possible SEE or
worn-out

Cond. Fault rate
(worst 5
minutes)

Source

NAND worn-out (105)-(106)
Program /

Erase (P/E)
cycles

[67]

4, 8 Gb 60
nm NAND

errors during P/E
cycles

after 106 P/E
cycles and 100

krad

[88]

Samsung
90nm

15-28 some blocks can be
programmed again after

500 hours unbiased

[68, 2]

NAND 50 [89]
Other tests failure of charge pump

circuits 814 krad
[89]

Other tests SEU in control logic
which is SEFI during

R/W cycles,

[68]

4 Gb
NAND
Micron

SEU 1.3871 · 10−9

upset/ bit/
day

[90]

SEFI 0.0130 event/
dev/ day

8 Gb Sam-
sung NAND

Single-Level Cell (SLC)
SEU

5.1449 · 10−10

upset-
s/bit/day

[88]

Multi-Level Cell (MLC)
SEU

4.8235 · 10−9

upset-
s/bit/day

SEFI 0.0131 event/
dev/ day

8 Gb Sam-
sung NAND

SEU 5.1449 · 10−10

upset-
s/bit/day

[88]

Modern
NAND

600 [91]

64Mb NOR
Spansion

Charge Pump failure 51.5
MeV · cm2/mg

[71]

SEU tolerant
SEFI 0.0013

event/dev/day

Table 3.5: Flash memory radiation sensitivity - empirical data

23

3.2 Radiation fault-tolerance techniques

The OBC must be robust against the radiation-induced effects (see Section 3.1.3).
Currently used space qualified computers are based on custom-built microprocessors
that utilize radiation hardening techniques such as semiconductor process flow modi-
fications. However, this approach results in the performance degradation, increase of
power consumption and the overall cost of the chip[56]. Other OBCs are based on
space heritage processors that still may provide robust and predictable performance in
radiation environment [25]. However, the processors with space heritage have higher
power consumption and may hardly meet the processing power requirements of future
satellite missions in comparison with state-of-art COTS processors.

Kaschmitter et al.[5] described how radiation effects influence the design process of
COTS-based systems (see Figure 3.8).

Determine Expected TID
for the mission

Space
Environment Parts Effect

Design
Implications

LET

Determine allowable part
dose

Determine shield thickness
vs TID

Characterize pars for LET
vs Latch-up (SEL)

Determine LET rate for
attenuated spectra

Characterize for SEU
susceptibility

Determine SEU rate for
shielding thickness

Select shielding for max
allowable TID + minimum

shielding

Increase shielding for
worst case SEL rate?

Add mitigation for residual
SEL effects

Design for SEU mitigation

TID

SEL

SEU

STEP 1 STEP 2 STEP 3

Figure 3.8: Design process for use of commercial parts in LEO [5]

First two step (see Figure 3.8) have been conducted in the previous Sections 3.1-
3.1.4. The chosen Aluminium shielding width (1.5 mm) is enough to prevent SEL and
significantly reduce SEE fault rate(see Section 3.1-3.1.2). This Section is dedicated
toward the Design Implication according to Kaschmitter et al.[5], particularly to the
overview of common radiation fault-tolerance techniques.

All radiation fault-tolerance techniques can be classified into three classes[9]:

24

• improved material hardness

• design techniques

• software methods, or Software Implemented Fault Tolerance (SIFT) techniques
[92]

Since the radiation hardened components are not affordable for small satellite mis-
sions, this chapter will make an overview of Design and Software mitigation techniques.
However, the most popular mitigation techniques (e.g. hardware or time redundancy)
can be applied on different architectural levels (e.g. PCB level, component level, FPGA
configuration level). Consequently, the system-level fault-tolerance techniques are de-
scribed first in Section 3.2.1, then Section 3.2.2 is focused on the component-level
mitigation techniques.

The presented overview of fault-tolerance techniques cannot be considered as the
complete one. The overview is required to understand Chapter 8 where the efficiency
of fault-tolerance techniques is investigated (see Chapter 4).

3.2.1 Architectural-level techniques

3.2.1.1 Shielding

Shielding is the engineering technique of providing radiation protective material
between at-risk parts and incoming radiation. One of the main disadvantages of this
approach is shielding mass that considerably increases the launch cost[2]. However,
the shielding can be performed on the satellite level, subsystem level, or component
level. Shielding is a countermeasure to TID effects; however, it does not guarantee SEP
prevention[35].

3.2.1.2 Resetting, Power Cycling by Watchdog Monitoring

Watchdog capability can provide resetting and power cycling on the microcircuit, com-
ponent, and/or system level in the case of its faulty operation or freezing(hang)[25].
Power cycling and reset are proven state-of-art methods of component and system re-
covery from SEFI[56, 93, 61]. A drawback of these techniques is that the processing
unit, microcircuit, or the whole system is unavailable and inoperable during the re-
set. Instead of power-cycling, customized interrupt handlers can be used; however, the
recovery through interrupt or even reset is not always successful[56, 61].

3.2.1.3 Windowing

Frequent erroneous communication requests of one component can cause faulty beha-
vior of the whole OBC (e.g. if the communication requests constantly cause interrupt
processes). The recipient device can close communication channel to the faulty device
to prevent wasting resources[35]. Another form of Windowing is described in [94] where
a RTOS task is considered to be faulty if its execution takes more time than predefined.

In general, windowing techniques can be described by the statement: an event is
considered to be faulty if the event is happening outside the pre-define time period or

25

is utilizing hardware resources it should not normally use. This principle is used in
Greenhills RTOS [95] that protects memory by memory pool restrictions to particular
tasks[32].

3.2.1.4 SEL mitigation

Quick and reliable detection of SEL is necessary to prevent burnout and gate rupture.
SEL can be detected by monitoring power consumption of the chip[53]. If anomal-
ous current is detected, the component/sub-systems should be power cycled[35, 33] or
separated from the power line [53, p.12].

One of the obstacles of reliable SEL detection is high dependency of current con-
sumption of CMOS logic from processing load. Thus, one of the ways to detect SEL
is to place the processor in a known processing state and sample the power-supply
current[5].

3.2.1.5 N-modular redundancy

N-modular redundancy can be taken as a systematic technique and be applied to the
processor cores, the memories, FPGA co-processor configuration, and the whole sub-
systems. But the significant hardware overhead has to be taken into account.

TMR is the the most popular sub-type of N-modular redundancy. In the majority
of cases, TMR is performing voting mechanism based on the assumption that only one
fault a time can occur[33, 60, 19, 25].

Two-modular redundancy can be utilized to determine the correct result of in-
struction execution and mitigate SEU. However, a software routing has to handle the
detected fault in this case. This approach can be named ”backward error recovery with
recovery point” technique[5, 94, 93].

3.2.1.6 Time redundancy

Time redundancy means performing the same computation over and over again until
the confidence in the result validity is gained[56]. The drawback of this method is
long-term resource occupation to verify that the result has not been corrupted by SEP.

SET can be detected by time redundancy with subsequent output comparison. Time
redundancy can be implemented on the task level by the programmer[96](or Operating
System (OS)) and on the instruction level during program compilation[97].

3.2.2 Component-level techniques

This Section is focused on component-level fault-tolerance techniques.

3.2.2.1 Mitigation techniques in MPU

The MPU protection from SEFI consequences can be performed by the MPU reset and
power-cycling. MPU can be reset by External or Internal watchdog as well as by an
exception handler process[35].

26

Errors in the cache memory can be recovered by Error-Dectection And Correction
(EDAC) that identifies SEU and rewrites the radiation affected cache blocks[5]. MCUs
also can happen in modern 90-nm electronics (see Section 3.1.3.2). Thus, the additional
fault-tolerance analysis is required to be sure that cache MCU are properly mitigated
and will not cause significant performance degradation.

Software mitigation techniques

Software mitigation techniques are an inherent part of the OBC software. They are
implemented to detect and recover from the radiation-induced faults.

Multiple independent but functionally equivalent software implementations help to
catch software design fault as in the case of N-version programming [98] and recovery
blocks[99]. Control flow faults can be detected by a number of techniques that are
based on the control flow signatures [100, p. 30].

Time redundancy on assembly instructions, procedure calls, and program levels
[100, p.41] can detect and fix the SEU induced during the program execution.

Illegal memory reference technique[101] is also a typical software fault detection
method, but it can be considered in Windowing Section(Section 3.2.1.3).

Critical recovery information must be kept in non-volatile memory preferably in
several copies to provide fast software recovery process(”warm” start) to increase the
OBC availability [5]. Another approach is to keep the recovery information in storage
that is not power cycled, but in this case the storage have to be SEL immune.

3.2.2.2 FPGA Reprogrammability and MPU Upgradability

Hardware reprogrammability of FPGA components and MPU software upgradability
can be considered as crucial properties for the survival of future spacecrafts in ultra-
long-life missions [102].

The main issue in software upgrade process is the performance loss, the OBC un-
availability, and the potential mission-failure risk caused by interrupt services of up-
grade procedure[102].

Hardware reprogrammability of FPGA requires a new configuration uploaded from
the ground station. The configuration file can be big, hence the upload process may
take several satellite orbit periods. For example, Xilinx Virtex 1000 requires 6 Mbytes
of configuration and four orbit rotations are required (as minimum) to upload the
configuration file.

On the other hand, reprogrammability and upgradability give an opportunity to
update the software and FPGA configuration with newer, optimized, and bug-less ver-
sions.

3.2.2.3 Mitigation techniques in Memory

Memory scrubbing is a background function of reading memory locations. If SEU or
MCU was detected, the data is corrected. The detection and correction can be per-
formed only if extra bits are allocated for this purpose[103]. Hamming code[25] is one of
the most popular linear error-correcting codes that are used nowadays, e.g. in Power PC

27

SRAM. EDAC with sufficient scrubbing frequency prevents SEU accumulation and SEU
consequences[33, 5]. However, MBU cannot be corrected by simple Error-Correcting
Code (ECC) scheme since the bits in error belong to the same bit-word [54].

As it is observed in [97], EDAC techniques and used periodic memory scrubbing in
DRAM improved the availability of the COTS board significantly: continues running
for a month with EDAC and a few days without this technique.

3.2.2.4 Mitigation techniques in FPGA

The Joint Test Action Group (JTAG) circuitry of all COTS FPGAs is not radiation
tolerant . Thus, FPGA test logic reset must be hardwired to the ground to provide
immunity to JTAG SEUs [73].

SRAM-based FPGA

SRAM-based FPGA are tolerant enough from TID point of view (100-300 krad usu-
ally). To mitigate SEP effects hardware redundancy [104] and/or time redundancy[79]
are employed: the design modules are replicated and SEP-filtering modules are added
to FPGA configuration.

TMR is the most widely used SEU mitigation technique[72]in SRAM-based FPGA
design. But at least 3.2-4x hardware overhead should be expected (triple logic replica-
tion plus voters)[104, 73, 93]. Moreover, the maximum circuit performance is decreased
at least by 10-20% when using TMR since the voters have to be inserted in the system
critical path[93, 73].

Due to SRAM-based FPGA susceptibility to SEUs, the OBC has to include a con-
figuration memory scrubbing circuitry for fault correction in the configuration memory
[74, 93]. According to the recommendation of NASA[73], memory scrubbing should be
performed at 10x more frequent than the expected upset rate. Some Xilinx and Virtex
FPGA already have such scrubbing capabilities, others can use small Actel Flash-based
FPGAs for this purpose[73, 34].

Consequently, TMR utilization, configuration memory scrubbing, and additional
support from such parts as Programmable Read-Only Memory (PROM)(to keep ori-
ginal configuration data), and watchdog timers are highly recommended to make
SRAM-based FPGAs SEU-tolerant [73].

Flash-based FPGA

The configuration memory of Flash-based FPGAs is immune to SEP (see Section
3.1.3.4). But the combinational logic is SET sensitive while the sequential logic (D
Flip-Flop (DFF)) could have SETs and SEUs.

The SET and SEU susceptibility can be mitigated by time redundancy tuned to the
width of the induced transient pulse [4].

Since SET is a pulse signal with very short width that propagates trough the com-
binational logic, it can be filtered by the delay elements introduction. A SET filter
consists of SET transition delay(e.g. an inverter chain) and a Guard Gate (GG) that
filters out SETs. But the main condition of SET filtering out is that the delay has to
be longer than the pulse width [53].

28

For SEU mitigation TMR principle can be applied: each combinational logic and
following DFF are triplicated.

SET filtering is more attractive for large combinational logics because it will not
take so much hardware recourses as TMR. However, SET filtering can introduce three
times higher performance penalty than TMR[3, p. 26].

3.3 Conclusions

This chapter gave an overview of space radiation environment for typical small satellite
missions and explained the possible radiation effects in COTS parts. The overview of
fault-tolerance techniques is presented in Section 3.2.

The verification that the mitigation techniques are working can be done through ra-
diation test that imitates the space environment. However, radiation tests are expensive
for small satellite industry. The comparative analysis between mitigation techniques is
impossible due to low interpretability of radiation test and uncontrolled fault-injection
procedure.

This work presents a simulation-based approach to solve the aforemention problem
of the fault-tolerance techniques comparison and the fault-tolerance analysis in general.
The next Chapters 4-5 will be dedicated to the explanation of the proposed approach.

29

30

OBC modeling 4
Previous Chapter 3 gives an overview of possible radiation effects in COTS electron-
ics (Section 3.1.3) and observes existing fault-tolerance techniques (Section 3.2). This
chapter proposes the SystemC-based simulation framework that can be used to de-
termine the influence of the radiation effects on the OBC functionality and compare
the efficiency of applied fault-tolerance techniques.

4.1 SystemC TLM modeling

As it was explained in Section 1.1, the radiation tests cannot be used for the compre-
hensive fault-tolerance analysis of the OBC. The utilization of high-level abstraction
modeling language, such as SystemC, is imperative in any simulation-based approach
due to high complexity of each electronic component and the OBC as a whole[105].

SystemC is a system-level modeling language that utilizes a mixture of various
abstraction levels[106]. SystemC-based design platforms take advantage of Intellectual
Property (IP) reuse to decrease the design complexity, development cost and time.

The requirement on the hardware-software co-design and co-simulation can be met
with TLM methodology[11]. The TLM goals is to reduce the modeling complexity
and increase the simulation speed while keeping enough accuracy for the design task.
The TLM function-communication separation allows a breakthrough in verification
time[107, p. viii-ix], which gives an opportunity to incorporate the fault-robust design
at early development phases.

The requirement on the advanced OBC fault-tolerance makes FMEA essential to
reveal and reduce the OBC vulnerability [108]. FMEA methods can be applied at
different abstraction levels: Register-Transfer Level (RTL) [109], TLM, etc. However,
the RTL application domain is limited due to the time and efforts spent on such detailed
models. Moreover, the RTL modeling is unapplicable for the OBC due to the unknown
internal structure of the COTS parts. SystemC TLM modeling level does not have
these disadvantages since it operates with the higher level of abstractions.

Based on the fault injection procedures of FMEA, the group of faults with significant
influence on the system behavior can be identified. Such an approach helps a designer
to focus on the most crucial failure cause and reduce resource investments[110].

4.2 Related Works

The simulation approach for the fault-tolerance analysis has already been used for
satellite sub-systems in works [111, 112]. These works investigate the fault-tolerance
through the fault injection into system models. However, the works are based on

31

circuit-level knowledge that are not available for the COTS parts. Moreover, the low-
level simulation is time-consuming; hence, it cannot be used for an extensive statistical
analysis. Since CubeSats utilize COTS parts, all electronic components should be
considered as black boxes.

A common existing SystemC approach to analyze fault effects is based on the inser-
tion of Fault Injection Module (FIM) into the interconnections of the functional blocks.
FIM plays a role of the fault injection controller that can be centralized [113, 114] or
distributed [115, 110, 116]. No modifications to the SystemC model source code are
required when FIM is introduced. However, such approach has been applied without
hardware-software co-design, fault-tolerance techniques analysis, and a comprehensive
fault model library.

The works [116, 110] use the TLM SystemC modeling with faults injection to re-
search only SoC-scale systems. In the case of the satellite OBCs, the SoC level stays
an essential part of the design modeling but not sufficient to estimate the efficiency of
fault-tolerance techniques and identify possible hazards. The OBC system consists of
several components with different possible faults, so the simulation capabilities have to
cover both software and diverse hardware OBC components.

This work proposes an innovative statistical method to analyze the fault-tolerance
of the COTS-based OBCs and compare hardware or/and software fault-tolerance tech-
niques’ efficiency at early development stages.

4.3 OBC architecture modeling - SmartFusion SoC model

A SoC with CPU and FPGA is chosen as a core component of the OBC model to
cover the most general OBC architecture. The SmartFusion SoC [6] (see Figure 4.1)
is one of the most appropriate candidates for the OBC (Section 3.1.3). It meets the
requirements on the performance, power consumption[117], and peripherals (see Section
2.3). It includes Flash-based FPGA that is more immune to radiation effects than
SRAM-based FPGAs [118].

The SmartFusion SoC incorporates the majority of on-chip subsystems that can be
found in the advanced COTS electronics: a hard-core ARM Cortex-M3, Flash-based
FPGA fabric, Embedded Flash and SRAM memories, Analog subsystem, AMBA bus,
etc. As a result, the examination of the OBC with the SmartFusion device is a good
basis for the comprehensive analysis of other OBC configurations.

The corresponding model structure of the OBC is presented in Figure 4.2. The
model structure includes the above-mentioned ARM Cortex-M3 CPU, memories, the
central bus (the Decoder plays the role of the central AMBA bus), FPGA fabric, a
watchdog, and timers. TLM is used for the interconnection (with target and initiator
sockets) between functional blocks (CPU, FPGA, Memory blocks, Timers, Decoder as
a central bus, etc.). The functional blocks can be considered as ”black boxes” since
their full configuration in COTS parts are unknown for satellite designers.

The existing instruction-accurate model of the processor ARM Cortex-M3 has been
obtained from OVP project[12]. The choice of OVP is dictated by two main factors:

1. Besides the model of Cortex-M3 processor, OVP offers a range of models for other

32

Microcontroller Subsystem

Programmable Analog

FPGA Fabric

SRAM SRAM SRAM SRAM SRAM SRAM

SysReg

ENVM

10/100
EMAC

ESRAM

Timer2

Timer1

APB

I2C 2

UART 2

SPI 2

DAC
(SDD)

DAC
(SDD)

PPB

........

........

..
..

..
..

..
..

VersaTiles

3 V

I2C 1

UART 1

SPI 1

IAP PDMA APB EMC

AHB Bus Matrix

EFROM

APB

Sample Sequencing
Engine

Post Processing
Engine

ADC

Analog Compute
Engine

PLL

Supervisor

WDT

OSC

32 KHz

RC
+

–

RTC

JTAG

Cortex™-M3

SWD

NVIC SysTick

MPU

S D I

Volt Mon.
(ABPS)

Temp.
Mon.

SCB

Curr.
Mon.

Comparator

ADC

Volt Mon.
(ABPS)

Temp.
Mon.

SCB

Curr.
Mon.

Comparator

3V

..
..

..
..

..
..

..
..

Figure 4.1: SmartFusion SoC Block Diagram[6]

CPU.obj

Injector.obj

Analyzer.obj

Observer.obj

Decoder.obj

Memory #1. obj Memory #2. obj

Address bus

Initiator

socket

Target

socket

Initiator

socket

Target

socket

Data bus

Initiator

socket
Initiator

socket

Target

socket

Target

socket

Watchdog.obj
reset

Initiator

socket

Target

socket

&obj

&obj Fabric Controller

Model.obj

Target

socket

Initiator

socket

Timers.obj

Target

socket

Interrupts

Initiator

socket

Target

socket

Initiator

socket

In
te

rr
u

p
t

P
o

rt
s

C++ TLM SystemC

Figure 4.2: Framework model structure: OBC model and supporting modules

modern popular CPUs. It provides high flexibility for the OBC model since the
processor can be easily replaced.

2. OVP provides SystemC TLM wrapper[119] for the ARM Cortex-M3 model which

33

makes its integration process into the OBC system model easier and faster.

Although the SystemC TLM wrapper is given, it has been changed to provide fault
injection procedures and higher model observability.

The Decoder object plays the role of the central AHB AMBA bus connecting all
other SoC components by initiator and target sockets. It translates the addresses
and transfer the data between the functional blocks. The Decoder has an ability to
introduce communication delays as well as faults.

The Memory object represents a memory storage. One of the parameters that
is required for the memory object creation is the memory type (e.g. Flash, SRAM)
that automatically defines the type of possible memory faults. For SRAM and DRAM
memory types the physical layout characteristics(number of rows and columns) has to
be specified for two-dimensional MCU introduction procedures.

The Watchdog and the Timers are connected to the Decoder as slaves but they are
also connected to the CPU as signal initiators.

The Watchdog has a configuration registers according to the SmartFusion
specification[86, p.163-171]. It is connected to the reset port of the CPU and clocked
at 100 MHz. When the Watchdog timeouts, the reset signal is raised and the simu-
lation of the CPU power-cycling (or reset) procedure happens. The Watchdog object
also signalizes to volatile memory (the volatility is set during memory object creation)
when the memory has to be flashed because of the simulated power-cycle. If the OBC
has an external watchdog timer too, the same Watchdog object class can be used to
instantiate the external watchdog.

The Timers.obj corresponds to two System Timers of SmartFusion device [86, p.302-
304] and provides interrupt capabilities. The Timers.obj is connected to the Decoder
as a slave and to the CPU interrupt ports as a signal initiator.

Although Figure 4.2 mainly represents the SmartFusion architecture, off-chip com-
ponents (e.g. external SDRAM) can be also simulated by their connection to the
Decoder. However, the communication delay of such components should be higher
than on-chip components have.

Except SmartFusion device, the OBC incorporates external 32 Mbytes SDRAM,
Flash SD-CARD as a memory storages. 32 Mbytes of SDRAM can be addressable
through SmartFusion memory map [86, p.20] beginning from the address 0x601D0000,
when SD-CARD is connected through SPI controller that can be a separate object in
the model.

The next Section is dedicated to the integration of the FPGA-fabric model to the
OBC model. Such integration plays an essential role in software-hardware co-design
and co-simulation.

4.3.1 FPGA fabric modeling as a SoC component

SmartFusion device has an embedded Flash-based FPGA fabric. The FPGA signi-
ficantly increases the flexibility of the OBC and expands the design space of possible
fault-tolerance techniques.

One of the prospective approaches is to outsource the fault detection or/and mitiga-
tion functionality to the FPGA. For instance, the FPGA can make copies of the data in

34

radiation vulnerable SRAM/DRAM memories and continuously compare them. Thus,
the FPGA can incorporate the memory scrubber functionality. Another example of such
functionality is EDAC techniques e.g. EDAC based on Hamming code (see Chapter 8).

However, the portability of the written software (and the FPGA configuration) is
reduced if the communication protocols are modeled with a high level of abstraction
(e.g. TLM-based). The intermediate layer ”Fabric Controller Model” has been intro-
duced between the Decoder and the modeled FPGA fabric to keep the TLM simplicity
and make the FPGA co-processor portable to the real hardware (see Figure 4.3).

The Fabric Controller Model (see Figure 4.3, red zone) is the TLM wrapper of
the synthesizable RTL SystemC FPGA configuration (see Figure 4.3, blue zone). The
portability of the RTL FPGA configuration to the real hardware is guaranteed by the
Fabric Controller Model because the Fabric Controller Model operates with the signals
according to the protocol standards (AMBA AHB and FIFO).

Figure 4.4 presents the process when one byte is read and written to two other
locations by the FPGA-based co-processor according to the AMBA AHB protocol.

Decoder.obj

Target socket

Initiator socket Target socket

Initiator socket

Fabric Controller Model

AMBA AHB (APB) compatible interface FPGA SRAM Blocks

Target socket

Initiator socket

Fab
ric

C
o

n
tro

ller
M

o
d

el

C
LK

R
ES

ET

D
A

TA

C
O

N
TR

O
L

A
D

D
R ...

CONTROL
WDATA

WADDR
RDATA
RADDR

FIFO
co

m
p

atib
le

in
terface

Synthesible FPGA configuration
(in SystemC)

R
TL

Sy
st

em
C

d
e

sc
ri

p
ti

o
n

H
ig

h
-l

ev
el

Sy
st

e
m

C
d

es
cr

ip
ti

o
n

Figure 4.3: The FPGA fabric model as a part of the OBC model

The FPGA fabric has Dual-Port SRAM blocks (Figure 4.1). This memory is access-
ible through the central AMBA AHB bus and through the Embedded FIFO Controller
from the FPGA fabric [87, p.22]. The direct access to on-chip SRAM blocks through
the FIFO controller is again modeled by the Fabric Controller Model (Figure 4.3).
Figure 4.5 presents the read and write procedures that take one clock cycle.

As a result, the OBC model incorporates the communication channels that corres-
pond to the real ones. The hardware-software co-design approach was introduced: the
CPU software and RTL SystemC FPGA configuration are simulated together and keep
the portability to the real hardware.

35

Time
HCLK=1

HREADY=1

HWRITE=0

HADDR[31:0] = 60100104

HRDATA[31:0]=00000005

HWDATA[31:0]=B2364D42

HSIZE[2:0]=100

HTRANS[1:0]=10 10

100

00360000 00280000

0028000000360000

6010010C 6030010C 6040010C 60100110

01B00000

01B00000

01200000

01200000

60300114601001146040011060300110

3 us2 us

Figure 4.4: AMBA AHB protocol consistency for single write and read cycles

Time
RCLK

WEN

REN

RADD[11:0]

WADD[11:0]

RD[17:0]

WD[17:0]

1 us

000

000

00000

00000

004

008

00005 00002

004

008

00005

1100 ns 1200 ns 1300 ns 1400 ns 1500 ns

Figure 4.5: Example of the communication between the FPGA model and modeled SRAM
blocks

4.4 OBC system-level redundancy - I2C communication

This Section is dedicated to the stacked OBC modeling and I2C interconnection mod-
eling. The stacked OBC is a computer system that contains two or more autonomous
OBCs. The stacked OBC can be considered as a typical example of hardware redund-
ancy. The central bus for CubeSats is I2C bus according to the CubeSat standard.
Thus, I2C controller and I2C bus modeling are the central topics of this Section.

4.4.1 OBC model extension by I2C controller model

The previous Section was dedicated to the OBC modeling (Figure 4.2). Figure 4.6
represents the extended model of the OBC. The I2C.obj is added to the OBC model
and connected to the next OBC functional blocks:

1. to the CPU.obj, particularly to the CPU interrupt port to provide interrupt cap-
abilities that are required for the I2C communication

2. to the Decoder.obj: the I2C configuration and data registers are included in the
model memory map according to the SmartFusion documentation[86]

3. to I2C Decoder.obj, which is similar to the Decoder.obj of the OBC. Additional
properties are added: e.g. pull down that corresponds to the I2C bus occupation

This object I2C.obj represents the I2C controller in the real device. The I2C con-
troller can be replaced or added by any other controller for networking, such as SPI or
CAN.

The model is written in SystemC TLM. The target and initiator sockets represent
the communication peripherals whose internal structure is unknown. While the I2C.obj

36

CPU.obj

Decoder.obj

Memory #1. obj Memory #2. obj

Address bus

Initiator
socket

Target
socket

Initiator
socket

Target
socket

Data bus

Initiator
socket

Initiator
socket

Target
socket

Target
socket

Watchdog.objreset

Initiator
socket

Target
socket

Timers.obj
Target
socket

Interrupts

Initiator
socket

In
te

rr
u

p
t

P
o

rt
s

OBC - TLM SystemC

I2C.obj

Target
socket

Initiator
socket

Interrupts

I2C_Decoder.obj

Target
socket

Initiator
socket

Initiator
socket

Target
socket

I2C bus

TLM SystemC

Figure 4.6: Model of the OBC connected to I2C CubeSat bus

represents the I2C controller, the I2C.obj is built as a FSM that corresponds to I2C
driver. The original I2C driver from Microsemi Corporation is used and guarantees the
software portability to the real device.

4.4.2 Model of interconnected OBCs (stacked OBC)

Figure 4.7 shows the simple interconnection model of two OBCs (the I2C Decoder plays
the role of I2C bus). The I2C Decoder does not limit the model to two computers. The
number of computers connected to the Decoder can be much more. Of course, the
OBC can have more than one I2C.obj (a I2C controller/interface in reality). Thus,
the modeling of internal satellite networks can be done by the creation of separate I2C
Decoder objects.

CPU.obj

Decoder.obj

Address bus

Initiator
socket

Target
socket

Initiator
socket

Target
socket

Data bus

In
te
rr
u
p
t
P
o
rt
s

TLM SystemC

I2C.obj

Target
socket

Initiator
socket

Interrupts

I2C_Decoder.obj

Target
socket

Initiator
socket

Initiator
socket

Target
socket

TLM SystemC

Initiator
socket

Target
socket

CPU.obj

Decoder.obj

Address bus

Initiator
socket

Target
socket

Initiator
socket

Target
socket

Data bus

In
te
rr
u
p
t
P
o
rt
s

TLM SystemC

I2C.obj

Target
socket

Initiator
socket

Interrupts

Target
socket

Initiator
socket

OBC #1 OBC #2
I2C bus

Figure 4.7: Model structure of two interconnected OBCs through I2C CubeSat bus

The FSM of the I2C.obj has been created based on the I2C controller datasheet [86].
The correctness of the I2C controller modeling is proved by the data sending/receiving
simulations (see Appendix C).

37

4.5 Supporting modules

The simulation framework has three interrelated supporting modules: Injector, Ana-
lyzer, and Observer (see Figure 4.2). Figure 4.8 shows the main functionality of these
three modules and their relationship to the OBC model. Each of them will be discussed
in the next subsections.

Injector.obj creation
inj_ptr = new

Injector(*systemClock);

Observer.obj creation
obs_ptr = new Observer();

Analyzer.obj creation
ana_ptr = new

Analyser("Analyser1",*systemClock);

OBC model creation
with 2 functional block
(e.g. CPU and SRAM block)

Functional block #2
creation, e.g. SRAM block

eSRAM ("eSRAM", "sp1",

0x100000,4,"sram", 36,12)

Functional block #1
creation, e.g. CPU #1

cpu1 ("cpu1", 0,...)

S
im

u
la

tio
n

flo
w

inj_ptr->Inj_reg_CPU(this);

inj_ptr->Inj_reg_MEM(this);

Fault rates/
number of faults

from user

Fault list/schedule
formation

obs_ptr->Observe_armm_obj(&cpu1);

obs_ptr->Obs_Registration("MEM",module_name,"dbg_transport");

Clock-sensitive Method
SC_METHOD(time_counter);

sensitive << _inclk.pos();

If it is fault time?yes

no

Fault injection with obj pointer

Change in functional block state
or block output

Simulation starts

Simulation ends

Output tracking files close

Output
tracking

files
formation

If an obj state changes,
save the description

of a new state

D
u
ra

tio
n
:
T

O
T

A
L
_

tim
e

Time=TOTAL_time?no

yes

O
B

C
s
im

u
la

tio
n

Fault registration

Figure 4.8: Functional diagram: OBC model and supporting objects in the simulation flow

4.5.1 Injector

The fault injection module or the Injector (see Figure 4.2 and Figure 4.8) is responsible
for the fault list/schedule creation, fault injection, and fault registration in the Observer
object. It contains the library of the predefined fault models that is used to create the
schedule of the induced faults per component(see Section 4.9). The Injector takes the
input parameters that define fault rates for each fault type.

The fault injection technique implemented in the proposed framework mainly op-
erates with object pointers. When any functional block is created (e.g. SRAM block
or a CPU block as in Figure 4.8), it sends its object pointer to the Injector (by calling
the dedicated procedure of the Injector object). Consequently, when the OBC model is
initialized, the Injector associates the available fault models from the predefined fault
library and the components (functional blocks) where particular faults can happen.

38

The fault rates or the number of faults are defined by a user (see Figure 4.8). The
Analyzer creates the fault list/schedule based on this information.

The location of the fault (memory cell, CPU register, particular bit, etc.) is chosen
randomly for the fault list. The seed of randomization algorithm is saved into the
report file. This seed is necessary to reproduce the same experiment to debug the OBC
and fault models as well as to investigate the system behavior with more details for
particular cases (details are provided by the Observer).

The fault probability distribution in time is assumed to be uniform due to the neg-
lectable difference of the radiation conditions that can happen during the execution
time of any OBC algorithm. The fault locations are also chosen with uniform probab-
ility distribution within the components of the same type(e.g. SRAM memory block,
Flash memory) since the expected fault rates for different components are different (see
Section 3.1.3).

The fault-selection criteria are introduced to let a user limit the space of possible
faults. These criteria for fault time and fault location are used when a particular
component or a particular time moment is under investigation.

36346: NS: SEFI: CPU: cpu1: (time:err_type:Module_name)

52232: NS: SEFI: CPU: cpu1: (time:err_type:Module_name)

163147: NS: SEU: CPU: cpu1: 9: 14: (time:err_type:Module_name:register:bit)

494789: NS: SEU: MEM: eSRAM: 3948: 4: (time:err_type:Module_name:address:bit)

Figure 4.9: Example of the fault list generated by the Injector module

As Figure 4.9 shows, the fault list consists of the description of the fault time
(in nanoseconds), the fault type, the location where the fault occurs. For example,
Figure 4.9 describes four faults: two SEFI and two SEUs (or bit-flips). The first SEU
happens in the 9th GPR register, the 14th bit; the second SEU happens in embedded
SRAM (eSRAM) memory storage in 3948 byte, the 4th bit. Due to the simplicity of
the fault list it can be written manually by a framework user.

When the OBC model and the fault list/schedule are built, the simulation of
TOTAL time can be started. The simulated time is limited because the OBC works
according to particular time schedule and the case with infinite available time does not
correspond to reality.

According to the signal from the Analyzer object, the Injector introduces the fault
into the simulated OBC and reports about the fault injection to the Observer that
includes it in the report file.

In summary, the Injector is the library of fault injection procedures that are executed
according to the Analyzer’s signal and the fault list/schedule. If no input parameters
are specified during the program execution, the Injector does not introduce fault, the
fault list stays empty, the Analyzer does not send any signals, and no fault injection
occurs.

4.5.2 Analyzer

The Analyzer is an object that has a method sensitive to the System Clock
(SC METHOD(time counter), see Figure 4.8). The System Clock has been set to 1

39

ns on the assumption that there is no modeled OBC components with working fre-
quency more than 1 GHz.

The Analyzer takes the fault list created by the Injector and compares the current
time with the time of the next scheduled fault. If the Analyzer detects that a fault is
planned this cycle, it sends all necessary data to the Injector to introduce the fault. In
comparison with the fault injection unit in [115], the created centralized injection unit
is not checking the whole fault list each cycle to decide about the fault introduction.
The Analyzer keeps only the time of the next fault event.

The Analyzer also finishes the simulation when the predefined period of time,
TOTAL time ns, has been simulated.

4.5.3 Observer

The Observer object has a capability to trace signals, components states, fault intro-
duction, and save all these information in separate files. For example, the Observer
saves the memory accesses, instruction execution, and register values. The Observer
also interleaves the tracking information with the time and the location of the fault
injection.

Since the simulation time is increased when the Observer writes a lot of tracking
information to files, the amount of the saved tracking data should be minimized.

4.6 Conclusions

This Chapter observed the main principles for the OBC modeling and the framework
operation. The simulation framework for the OBC fault-tolerance analysis was dis-
cussed :

• The simulation framework should be parallelizable and fast enough for the ex-
tensive simulation-based statistical analysis and repetitive simulation runs. This
requirement is mainly satisfied with high-level TLM SystemC modeling

• The portability of the written CPU software and the FPGA configuration is guar-
anteed by the model design: the intermediate TLM wrappers are used for RTL
SystemC FPGA configuration and original vendor drivers and compilers are used.

• High-level system/sub-system models can be built based on the information from
the device datasheets, as it was done with I2C controller (I2C.obj)

SmartFusion SoC is chosen as a case study for the OBC design since the SoC repres-
ents the most general architecture that incorporates different memory types (volatile,
non-volatile), FPGA, a hard ARM Cortex-M3 CPU, and extensive range of the required
peripherals. Moreover, SmartFusion SoC meets the OBC requirements formulated in
Section 2.3.

The stacked OBC model was presented as an example of a multi-processor redund-
ant computer system. The explanation of the top framework object is presented in
Appendix D

40

Radiation effects modeling 5
This Chapter describes how the radiation effects (Section 3.1) are modeled and integ-
rated to the simulation framework alongside with the OBC model(Section 4.3).

It is also necessary to distinguish the fault meanings/definitions in the contest of
system defects [46, p.57-58] and in the contest of radiation space environment (see also
Section 2.2.2). A radiation fault can be defined as the radiation cause of changes in the
system structure or parameters that eventually leads to a degraded system performance
or even system functional loss[45, p.1-2]. The terms ”radiation fault model” or ”fault
model” will be used in the meaning of the representation of a radiation effect at the
abstracted function level.

5.1 Radiation fault modeling

Since the internal structure of COTS parts are unknown, the radiation effects can be
modeled by changing the output or/and the state of a simulated functional block.

• The change of block outputs is done at TLM initiator sockets. Particularly, TLM
transaction objects (e.g. tlm generic payload) is changed upon the fault introduc-
tion. TLM transaction objects correspond to the data saved in memory cells in
real hardware.

• The change of the block state is limited by the knowledge about the real com-
ponent the block corresponds to. In the case of the CPU block, the block state
change corresponds to the register change; in the Memory block - to the change
of its memory array. However, the knowledge about the control logic of COTS
parts are limited and the creation of dedicated fault models for the control logic
is impossible.

Internal fault consequences may be projected to the output of the function block
when the information about the block internal structure is limited.

The accuracy of the fault-tolerance analysis in the proposed method depends on
how well the high-level fault models correspond to the real system behavior. For small
satellites at typical orbits (lower 750 km) the fault models for the next radiation effects
are valid based on the published empirical observations [61, 66, 90, 2] and the conducted
radiation effects analysis (Chapter 3):

• SEU - or bit-flip in a memory cell (CPU registers, memory arrays, block outputs,
etc.)

• MCU - or multiple SEUs in adjacent memory cells (CPU registers, memory arrays,
block outputs, etc.)

41

• SEFI- the functional block/electronic component is put into an unknown state or
frozen in reality. SEFI corresponds to the radiation-induced fault in the control
circuit of a component. SEFI is simulated by freezing of a functional block or
randomization of its state

SETs are also expected in COTS components. However, unless SET is latched in a
memory cell, it is not causing any changes in the OBC’s operations. If SET is latched,
it changes the memory cell content. The memory content change corresponds also to
SEU/MCU fault models and SEFI fault models (if the changed memory cell belongs to
control logic). Consequently, additional SET fault models are not required in high-level
modeling of digital components.

Hereafter, fault models for different components are specified separately.

5.1.1 CPU fault models

SEU fault model is implemented as the content change in a memory cell of the CPU
registers (see Figure 5.1). MCU fault models are represented by the models of SEUs in
adjacent bits beginning from the random bit at a random register (or the fault location
is user defined) (see Figure 5.2). The length of all registers in ARM Cortex-M3 core
is 32 bits. In comparison with SRAM/DRAM memory, it is difficult to say how one
MCU can flip the bits of several registers because their physical locations are unknown.
Consequently, if MCU starts at 32nd bit (the last one), it can be considered as SEU.
Such approach is not correct for SRAM and DRAM memories: if MCU happens in the
last bit of a byte, the rest bit-flips of MCU will happen in the next byte (if the byte,
where MCU starts, is not the last one in the memory storage).

1 or 0

Memory Cell

1 0

10

OR

Cell content change due to
SEU

Figure 5.1: SEU model representation

1 or 0

Cell content change due to
MCU

Adjacent memory cells

1 or 01 or 01 or 0 zzxw

¬z¬z¬x¬w

one dimension axis

one dimension axis

other cells keep the content

MCU length

Figure 5.2: One-dimensional MCU model representation

42

The SEFI fault model corresponds to the simulation behavior when CPU functional
block stops instruction execution (freezes) [35]. Power cycling and CPU reset are
simulated when the reset signal is raised at the CPU block port. After the reset signal,
the CPU starts execution from zero address.

Although radiation faults inside CPU registers are very low probable due to the
small size of the CPU area, the CPU fault models can also represent the SEEs in
control and bus logic due to the fault propagation. Such SEEs are much more probable
than SEUs in registers by direct particle influence.

5.1.2 SRAM and DRAM fault models

SEU fault model and MCU fault model are implemented in the same way as it is done
for CPU registers. Additionally, the fault model for spatial (two-dimensional) MCUs
is added (see Figure 5.3).

1 or 0

Cell content change due to
spatial MCU

Spatially adjacent
memory cells

1 or 01 or 01 or 0

1st dimension axis

1 or 01 or 01 or 01 or 0

2
n
d
d
im
e
ns
io
n
ax
is

dcba

1st dimension axis

zyxw

¬d¬c¬b¬a

¬z¬y¬x¬w

other cells keep the content

2
n
d
d
im
e
ns
io
n
ax
is

M
C
U
he
ig
h
t

MCU width

Figure 5.3: Spatial MCU model representation

The fault model for a spatial MCU requires the information about the physical
layout of the used memory storage, in particular, the number of rows and columns.
Other two extra parameters are required to specify the shape of the MCU: MCU width
and height. Consequently, the spatial MCU may corrupt data not only on the same
row but also in the same column.

SEFI in memory can be modeled by the memory functional block that stopped
responding[35].

5.1.3 Flash-based memory fault models

As it was identified in Section 3.1.3.3, SEFI occurs during read/write process and the
whole memory block can be corrupted in Flash-based memory storages. Consequently,
the fault injection in this case is not time dependent but dependent on the read/write
cycles . The period of Flash SEFI occurrence with a random component (to introduce
randomness) is predefined. The dedicated counter of the Analyzer object is incremented
each read/write cycle and the decision about the simulated fault introduction is made.

43

The alternative way is the fault introduction according to the fault list/schedule
defined by a user.

5.1.4 Flash-based FPGA fault models

As it was identified in Section 3.1.3.4, the corruption of the user memory (flip-flops
and embedded SRAM) are possible by SEE in Flash-based FPGAs. However, the used
memory resources for FPGA co-processors cannot be defined before the co-processor is
mapped. Consequently, the fault models can be injected only in the modeled commu-
nication channels of the FPGA functional block (particularly corrupting the content of
TLM transaction objects).

As a result, faults inside the user memory of Flash-based FPGA fabric can be
modeled by utilizing the Fabric Controller Model as a usual FIM.

5.1.5 Failure modes

The OBC fault-tolerance analysis is based on the FMEA method [108, 110]. The
potential failure modes of particular OBC configuration can be found from the fault
injection procedure during each simulation iteration. All system failure modes can be
classified as:

1. Incorrect data/Correct time (ID/CT): a benchmark execution is finished normally
on time (takes ≤ the allocated simulated time), but the final execution results are
wrong.

2. Correct data/Incorrect time (CD/IT): execution results are correct, but the pro-
cess takes longer time than originally allocated.

3. Incorrect data/Incorrect time (ID/IT): execution results are not correct, the sim-
ulated execution is not finished as expected by the program flow and was inter-
rupted externally.

4. Processor Deadlock (PD)

5. Read Align Exception (RAE)

6. Write Align Exception (WAE)

7. Arithmetic Exception (AE)

8. Read, Write, or Fetch Privilege Exception (RPE, WPE, or FPE consequently)

PD, RAE, WAE, RPE, WPE, FPE and AE may belong to ID/IT or CD/IT [120,
p. 29-30], but can be researched separately to see the overall picture more clearly.

44

5.2 Conclusions

This chapter discussed two main topics: fault modeling of the possible radiation-
induced effects that were identified in Chapter 3.

The fault models for SEU, MCU, and SEFI are built for main COTS components
(e.g. CPU, volatile and non-volatile memory storages). However, the limitation of the
knowledge about the internal structure of COTS parts (e.g. control logic) introduces
inaccuracy to the whole simulation framework. The limitations of the presented frame-
work are mainly discussed in the Chapter 7 with following case studies in Chapter
8.

45

46

Simulation steps 6
This Chapter introduces the statistical fault-tolerance analysis(Section 6.1) and its gen-
eralization, Multidimensional analysis of memory fault consequences (Section 6.2). The
simulation flow has already been discussed in the context of the supporting modules’
functionality (Section 4.5). This Chapter explains the sequences of simulation steps
that have been used to obtain the simulation results presented in Chapter 8.

6.1 Statistical fault-tolerance analysis

The simulation approach is based on the assumption that only one fault can happen
during the algorithm execution in the OBC. The expected fault rates are neglectable
in comparison with CPU execution speed for small satellites at typical orbits less than
750 km. The maximum estimated fault rate is not more than one fault in 15 mins (
512 kbytes SRAM block) for modern COTS components. Consequently, the one fault
injection per algorithm execution is a justified approach.

Since only one fault for algorithm execution (corresponds to the simulation run)
is possible, then the iterative approach is used: the simulation with one random fault
introduction is repeated to see the influence of the fault injection on the simulated
computational output.

The usual simulation sequence of one iteration is represented in Figure 6.1.
Afterwards, the fault mitigation techniques can be applied and the iterative simu-

lation should be repeated. The simulation output files (see Figure 6.1) can be analysed
and the simulation results can be compared for different OBC configurations, e.g. with
and without fault-mitigation techniques.

If several fault models are available, then other fault model is chosen and the sim-
ulation is repeated. Thus, the trends and the overall picture can be understood.

In some cases, the introduction of more than one fault is required to understand
where the threshold of the algorithm tolerance/robustness is located. Such an ex-
periment can provide satellite designers with additional data for the fault-tolerance
analysis.

The iterative nature of the statistical simulation can be realized with shell scripting
as it is done in this work. Shell scripting provides a full external control of the simulation
process and supports several simultaneous simulations, the output files manipulation
and processing.

6.2 Multidimensional analysis of memory fault consequences

The proposed multidimensional analysis is the generalization of the statistical analysis
discussed in the previous Section 6.1.

47

Simulation clock definition:
systemClock = new sc_clock("SYSCLK", clk_period);

Supporting objects creation:
inj_ptr = new Injector(*systemClock);

obs_ptr = new Observer();

ana_ptr = new Analyser("Analyser1",*systemClock);

OBC model creation:
OBC_lev1 top("top", variant);

CPU program loading:
top.cpu1.loadLocalMemory(app1);

Fault list creation
based on input data array:

pp_proc_ptr->PRE_rates(inj_ptr,input_array);

START the simulation:
sc_core::sc_start(TOTAL_time,SC_NS);

Output file and Error list close:
obs_ptr->Close_trace_files();

ana_ptr->Ana_close_err_list();

Figure 6.1: Steps of one simulation iteration

Building the OBC model, it is possible to identify used memory locations (e.g.
memory ranges, list of registers). Collecting the corresponding memory locations, the
memory address axis can be formed(see Figure 6.2). The second axis corresponds to the
time of a memory fault introduction. Other dimensions (the third and higher) corres-
pond to the computational quality measurements (introduced by OBC designers) that
represent the correctness of the computation output. For different programs the quality
measurements can be different: a total execution time, an output value deviation from
the correct result, the final computation fault mode [108, 110], etc. The introduction
of one or several quality measurements allow the comparison between fault-tolerance
of different OBC implementations.

The whole OBC software can be divided into sub-programs that are executed se-
quentially by a CPU. If there is a program flow dependency between the execution of
the previous sub-program f1 and the next sub-program f2 (e.g. the shared data in the
stack, see Figure 6.2), the influence of a fault, that happened during the execution of
f1, on the output of f2 sub-program can be investigated by the fault introduction to
the commonly used memory locations just before f2 starts execution. Thus, the fault
injection into the memory ranges used by different sub-programs can be limited to the
injection when the sub-program (f0, f1, or f2) is being executed.

48

quality

measurement(1)

quality

measurement(n-1)

quality

measurement(n)

Time, NS

memory address

Used CPU registers

(shared memory resource)

R0 R1

...

DRAM
(addr: 0x... - 0x...)

f0 (addr, time)

(e.g. bootloader)

addr: 0x... - 0x...

 Flash-memory
(addr: 0x... - 0x...)

total execution time, NS

shared memory

(e.g. stack)

addr: 0x... - 0x...

f1 (addr, time)

addr: 0x...- 0x...

 f2 (addr, time)

addr: 0x... - 0x...

Figure 6.2: The representation of the multidimensional analysis

Introducing the fault models in the different memory addresses at different time
iteratively, it will be possible to see the picture how the introduced faults influence the
program output. Additionally, after the implementation of the fault-mitigation tech-
niques and the repetition of the experiment, the real effect of the used techniques can
be seen. The whole picture will assist satellite designers to optimize the fault-tolerance
techniques and pay attention to the areas which corruption significantly damage the
output results.

6.3 Conclusions

This Chapter gives an overview of the proposed iterative simulation approach that
allows the statistical and multidimensional fault tolerance analysis. The presented
simulation steps have been followed to obtain the results presented in Chapter 8.

49

50

Model Verification,Validation,
and Limitations 7
Model Verification and Validation are discussed in this Chapter since they are important
steps of the model development process. A model hardly ever starts to be used in
decision making without its verification and validation. This Chapter also discusses
the limitations of the presented framework.

7.1 Model Verification

Model verification ensures that the model specification is complete and that mistakes
have not been made in the model implementation. Verification does not ensure that
the model corresponds to the real world - Validation is responsible for such checking.

The model verification can be done by extensive testing trying to find possible errors,
bugs, or algorithmic mistakes. The verification of the model also can be done by peers’
review.

In this work the model verification is performed each time after a new model com-
ponent is introduced (e.g. functional blocks like memory storages or CPU, supporting
objects). Testing have been applied to each model component to check the correctness
of its functionality. For instance, the fault injection mechanism was tested according
to the next operation sequence:

• a memory location reading

• a fault injection to the memory location

• the memory location reading again

• comparison and checking if the fault was really inserted

Additionally, the peers review happened after the aforementioned functionality test-
ing.

7.2 Model Validation

The model validation is answering on the questions if the model represents/corresponds
to the reality and what the credibility of the model is.

The first obstacle for the model validation is the absence of the controlled experi-
ment that can prove that the created model (the system model plus the fault model)
corresponds to the real radiation effect in the system. Such controlled experiment
does not exist since the radiation testing does not provide controlled fault injection
capabilities.

51

The high-level system modeling operates with the abstract representations of the
OBC and radiation effects. Consequently, the simulation results’ accuracy and cred-
ibility are limited by the accuracy of the OBC and fault modeling. Thus, the limited
knowledge about COTS components and the whole range of possible radiation effects
decreases the model accuracy. On the other hand, the accuracy cannot be increased
even with the knowledge about the components’ IC-level because the detailed model-
ing slows down the simulation procedure and makes the extensive statistical analysis
impossible.

Since the OBC and fault models are used in conjunction for the simulation, the
inaccuracy of one component (e.g. a fault model) can be partially compensated by
the accuracy of other one (e.g. the OBC model). For example, the limited knowledge
about the control circuit can be replaced by the comprehensive fault model library that
accurately describes the possible component-level behavior scenarios.

The additional validation of SEU and MCU fault models is not required since these
fault models are generally acknowledged. It benefits the proposed multidimensional
fault-tolerance analysis(see Section 6.2). The discussed SEFI fault-models are based
only on the published empirical observations and cannot be strictly validated.

In summary,the created SEFI models cannot be fully validated. However, the models
and the presented methodology can be used to maximize the OBC fault-tolerance within
the available knowledge. SEU and MCU modeling are carried out on the functional
level which limits the validation to the correctness checking of the injection procedure.
Thus, the proposed simulation-based fault-tolerance approach has the limitation that
are discussed in the next Section 7.3

7.3 Model Limitations

The absence of knowledge about the structure of control logic makes SEFI modeling
almost impossible. Some observations about SEFI consequences (CPU freezing, not
responding memory) can be found in the published literature (as it was presented in
Chapter 3). However, all published materials can be considered as one-time observation
of the radiation effect that might not happen again. The diversity of SEFI consequences
in the control logic is directly connected with the size of FSM that represents this control
logic.

Another limitation is the inaccuracy in performance analysis for models of complex
systems. The high-level modeling significantly simplifies the internal and communic-
ation processes. E.g. OVP instruction-accurate model of ARM Cortex-M3 core is
utilized in this with work, so the time accuracy of the model cannot be more than the
time of one instruction execution. However, some components may work with much
higher frequency than the instruction-execution time. Consequently, the additional
analyses is required for the interaction of subsystems with different speeds.

Inaccuracy of the model again can be solved by making each model component more
accurate and detailed, which slows down the simulation and prevents the statistical
analysis. As a result, the well-known trade-off between fast inaccurate models and slow
accurate ones exist.

52

Case studies 8
This Section presents several case studies that show how the created OBC model can
be used for hardware-software co-design and the OBC fault-tolerance analysis.

8.1 Case Study: Recursive algorithm

The calculation of a Fibonacci sequence is chosen as a benchmark algorithm because
it represents the family of recursive algorithms (Recursive Fast Fourier Transform Al-
gorithm is another representative of this family[121]). The execution lasts till the 15th

Fibonacci element. Each element is calculated in recursive way which guarantees that
the calculation of the n and n+1 element are data independent and the later calcu-
lation takes longer than the former one. Each simulation is repeated for 300 times to
obtain a statistical overview of possible influence of SEU induced in the CPU registers.
The simulation shows the dependence between the fault modes and fault rates as well
as the dependence of the incorrect result ratio on the fault rates.

The Cortex-M3 processor performance is 100 Dhrystone MIPS(Million Instructions
Per Second) (DMIPS) for these simulations.

8.1.1 SEU injection into CPU registers

Figure 8.1 shows the dependency of the incorrect calculated values of Fibonacci se-
quence on the SEU rate in CPU control and general purpose registers. It explicitly
presents that the ratio of the incorrect results is growing with the fault rate growth
(from right to left- from blue to red) and the execution time duration.

On the other hand, it is essential that the calculation of the first Fibonacci members
are less susceptible to the randomly introduced errors. The fact, that the code to
calculate these first members is executed first and faster, in comparison with calculation
of other Fibonacci member with higher indexes, reduces the probability that the result
for the first members will be incorrect.

Picture 8.2 shows how the ratio of different failure modes (see Section 5.1.5) depends
on the SEU rate. One of the important observation is the visible growth of Processor
Deadlock (PD) failure mode with higher fault rates.

Meanwhile the percentage of Incorrect Data/Correct Time(ID/CT) (or Silent Data
Corruption[110]) stays approximately the same. This observation means that for this
particular program the ratio of faults that do not cause the CPU freezing or CPU
exceptions, but do corrupt the final results, stays approximately the same. This sim-
ulation results can be explained by the small number of GPR registers used for the
algorithm execution and the increasing probability that the CPU will freeze at higher
fault rates, which increases PD ratio and masks ID/CT faults.

53

0 5
10

15

0
25

50
75
0

0.5

1

Fibonacci sequenceSEU Fault rate (SEU/ms)

R
at
io
of
in
co
rr
ec
t

F
ib
.v
al
ue
s

Figure 8.1: Influence of SEU rate in CPU on incorrect result ratio

SEU fault rate (SEU/ms)
0 25 50 75

CD/IT
ID/IT
Correct
ID/CT
PD
RAE
WAE
RPE

1

0.8

0.6

0.4

0.2

0

R
at

io
 o

f
F

ai
lu

re
 M

od
es

Figure 8.2: Influence of SEU rate in CPU on Failure Mode ratio

Additionally, it is necessary to say that if CPU deadlock appears during the calcula-
tion of nth Fibonacci element, the element n+1 during this simulation iteration will not
be calculated at all and the result for n,(n+1),..., nmax will be wrong. Consequently,
the exponential growth of incorrect results is expected.

8.1.2 SEFI injection into CPU

In the next experiment, the same Fibonacci sequence calculation is executed but the
CPU resets the watchdog after each member computation. SEFI (or CPU hanging)
are randomly introduced into the CPU during execution. Consequently, if the CPU
freezes(SEFI happens), the watchdog resets the CPU which restarts the program.

The simulated watchdog provides this functionality. It is counting down at the
frequency of 10 MHz. When the watchdog has counted down to zero, it resets the
CPU. The period of the watchdog is set to 409.5 us, which corresponds to 0xfff in the
configuration register of the watchdog.

Since the CPU is unavailable for some time after SEFI introduction, the correct
results cannot be calculated within the same allocated time as it happens without

54

SEFI. Consequently, a three time longer period is allocated for the execution.
Figure 8.3 shows the dependency between the fault rate, execution time, and the

ratio of incorrect results.
Figure 8.4 presents the case (marked with ”1”) where the watchdog has a longer

timeout period than the calculation requires (timeout period equals 409.5 us).The cal-
culation of the first Fibonacci elements is almost always correct: with the given SEFI
rate it is always possible to execute some instructions (including first element calcula-
tion) till the next SEFI happen.

0
5

10
15

2.5
5

7.5
10

12.5
0

0.5

1

Fibonacci sequence
SEFI fault rate (SEFI/ms)

R
at
io
of
in
co
rr
ec
t

F
ib
.v
al
ue
s

Figure 8.3: Influence of SEFI rate on incorrect result ratio - untuned watchdog

0

0.2

0.4

0.6

0.8

1

2.5 5 7.5 10 12.5
SEFI fault rate (SEFI/ms)

R
at

io
 o

f
F

ai
lu

re
 M

od
es

Figure 8.4: Influence of SEFI rate on Failure Modes with the unturned (marked with ”1”)
and tuned watchdog (marked with ”2”)

As a result, CPU waits for an extended period of time as opposed to the second case,
marked with ”2” (see Figure 8.4). In the 2nd case, the watchdog timeout period has
been reduced by approximately four times, to 102.3 s (by setting configuration register

55

to 0x3ff). This watchdog period is more tuned to the algorithm; hence in the case of
SEFI the CPU is halted for a shorter period of time before the watchdog times out
and resets the CPU. Consequently, the allocated time becomes sufficient to execute the
whole algorithm at low fault rates, which is indicated by the pulled-down right corner
of the surface (see Figure 8.5).

0
5

10
15

2.5
5

7.5
10

12.5
0

0.5

1

Fibonacci sequenceSEFI fault rate (SEFI/ms)

R
at
io
of
in
co
rr
ec
t

F
ib
.v
al
ue
s

Figure 8.5: Influence of SEFI rate on incorrect result ratio - tuned watched

The results of the simulations with SEFI injection shows that the watchdog timeout
tuning to the algorithm is indispensable for OBC fault-tolerance.

8.1.3 SEU injection into SRAM memory

Instruction and data code are located in SRAM for this simulation(in general, it is not
necessary, and the Instruction code can be executed from embedded Flash-memory in
SmartFusion device). Consequently, introducing SEU to SRAM we can corrupt both
data types. Since Fibonacci benchmark program does not operate with a lot of data,
only array of Fibonacci sequence, the ratio of Incorrect Data/Correct Time(ID/CT)
failure mode is relatively small and prevails only until SEUs start to cause Processor
Deadlock (PD) (12.5 SEU/bit/sec, see Figure 8.7). The grows of incorrect results at
higher fault rates (left surface corner, Figure 8.6) is caused by instruction corruption
at the beginning, which causes PD since CPU cannot decode the instruction.

8.2 Case Study: JPEG image compression

JPEG image compression standard introduced by Joint Photographic Experts Group
(JPEG) is one of the most wide-spread digital image processing algorithms with lossy
compression. The flexibility of the algorithm is provided by the adjustable compression
degree, which gives an opportunity to reduce the picture size without visible quality
loss (up to 10 times compression).

As it was mentioned in Section 2.2.1, the radio downlink of Micro and Nano satellites
is limited. Thus, the JPEG compression plays an important role in the on-board data

56

Fibonacci sequence

15
10

5
00.5

2.5
12.5

52.5
312.5

1562.4

SRAM SEU fault rate (SEU/bit/sec)

1

0.8

0.6

0.4

0.2
0R

at
io

 o
f

in
co

rr
ec

t

F

ib
.v

al
ue

s

Figure 8.6: Influence of SEU rate in SRAM on Failure Mode, without mitigation techniques

0 0.5 2.5 12.5 62.5 312.5 1562.5
SRAM SEU fault rate (SEU/bit/sec)

CD/IT
ID/IT
Correct
ID/CT
PD
RAE
WAE
RPE

1

0.8

0.6

0.4

0.2

0

R
at

io
 o

f
F

ai
lu

re
 M

od
es

Figure 8.7: Influence of SEU rate in SRAM on Failure Mode, without mitigation techniques

processing. This Section presents the case study with more than 30 times compression
and slightly visible image quality degradation to emphasize the high JPEG capabilities.

For the case study, the source picture (see Figure 8.8) was chosen with parameters
presented in Table 8.1

Initial Extension Bitmap Picture(BMP)
Initial size 373 302 bytes
Width 432 pixels
Height 288 pixels

Table 8.1: The source image parameters

JPEG compression algorithm is well-known and its source code can be easily found

57

Figure 8.8: The source image for JPEG compression procedure

on the Internet. For this particular implementation, JPEG algorithm structures have
been taken from Embedded JPEG Codec Library[122] of Joris van Emden. However,
while the core algorithmic part is unchangeable, the code has to be cross-compiled for
the chosen ARM-based platform. Consequently, some changes were introduced to the
original code:

• The input and output procedures have been changed in a way to save the original
picture to the external DRAM (address 0x60100100) and to write the output
pictures just after the original one in the memory map - address 0x6015B336.

• The algorithm has been partially changed mainly because of the different inter-
pretations of char data types by ARM processor cross-compiler and standard gcc
compiler (char = unsigned char in gcc and char = signed char in ARM compiler).

To verify the correctness of the final version of JPEG library for the chosen ARM-
based platform, the output picture has been compared byte-by-byte with the result of
original code execution on PC with gcc compiler utilization.

The compressed picture is presented in Figure 8.9 and its main parameters are
observed in Table 8.2.

Final Extension JPEG
Final size 10 647 bytes
Width 432 pixels
Height 288 pixels

Table 8.2: The output image parameters

As a result, the pictures was compressed about 35 times with visible picture quality
degradation.

58

Figure 8.9: The output image after JPEG compression procedure

The essential difference of this algorithm and the Fibonacci sequence calculation is
the image processing. The image is located in SEU-sensitive Dynamic RAM (DRAM)
memory. Thus, the next simulation is aimed to investigate the influence of the intro-
duced bit-flips in DRAM memory on the final picture appearance.

8.3 Memory scrubbing technique implementation

Fault-mitigation techniques can be implemented in the Flash-based FPGA fabric of
SmartFusion device to release the General-Purpose Processor (GPP) Cortex-M3. The
simplest version of memory scrubbing is based on several copies of the original inform-
ation and continuous checking if copies are the same.

As a case study, the discussed JPEG compression algorithm is used and SEU are
injected in the memory where the original picture (not compressed picture) is located.
The purpose of such experiment is to identify the influence of SEU on the final JPEG
compression output. It is assumed that the faults are equally distributed in time and
in space. SEU are not injected in the instruction data in this case.

Figure 8.10 presents the source picture after SEU injection. Some of the faulty
pixels are marked with the orange outline.

It is difficult to visually assess the differences between the damaged source picture
and the original image. So a byte-by-byte comparison has been conducted which has
shown exactly 40, 400, and 2000 corrupted bytes (since each contains a faulty bit). If
we build the distribution of the the absolute difference between bytes that are not equal
each other (see Figure 8.11), it will be discrete at particular values: 1, 2, 4, 8,..., 128.

The output pictures are presented in Figure 8.12 and the corresponding bytes’ differ-
ence distribution in Figure 8.13. Taking into account the fact that the whole size of the
output picture is 10647 bytes, it is possible to state that even with 40 corrupted bytes in
the source image the output picture differs significantly. The statistical difference can

59

Figure 8.10: Example of the source image SEU corruption - w/o mitigation techniques

100

150

200

250

300

N
um
be
r
of
co
rr
up
te
d
by
te
s

2000 bit-flips

40 bit-flips

400 bit-flips

0

50

0 50 100 150 200 250 300

N
um
be
r
of
co
rr
up
te
d
by
te
s

128643216

Figure 8.11: Difference distribution of unequal bytes in the source images w/o mitigation
techniques

be explained by the fact that JPEG compression algorithm averages the picture, and
faulty source pixels slightly change the average value. The difference distributions(see
Figure 8.13) show that the majority of the pixels differ on small absolute values, which
is not visually noticeable.

To prevent corruption that is visible in Figure 8.12, the FPGA scrubbing technique
is implemented. After the CPU starts the JPEG compression execution, the scrubbing
unit, implemented in the FPGA, begins to copy the source picture to two backup

60

Figure 8.12: JPEG compression output under the source image corruption by SEUs w/o
mitigation techniques

30
40
50
60
70
80
90

100

N
u

m
b

er
o

f
co

rr
u

p
te

d
b

yt
es 2000 bit-flips

40 bit-flips

400 bit-flips

0
10
20
30

0 50 100 150 200 250 300

N
u

m
b

er
o

f
co

rr
u

p
te

d
b

yt
es

Figure 8.13: Difference distribution of unequal bytes in the compressed image w/o mitigation
techniques

versions. Since the SEU occurrence is randomly distributed in time, the copied pictures
may have small or zero number of corrupted pixels. After copying, the FPGA scrubber
continuously compares the source picture, with which the CPU is working, to the first
backup copy. If the scrubber finds a difference, it compares it to the corresponding
byte in the second backup copy and makes a decision about the most probable correct

61

value of this byte.

As a result, the number of corrupted bytes in the source image has been reduced
by 80-87% (see Figure 8.14) and there is no visual corruption in the output picture(see
Figure 8.15). Byte-by-byte comparison of the output picture with the faultless com-
pressed version reveals the difference in a majority (more than 92%) of the files bytes.
However, this difference cannot be seen since the JPEG compression is making a local
average of the pixel color values. This way SEUs are filtered out.

Figure 8.14: The source image SEU corruption - with Memory Scrubbing

When MCUs are introduced, the corruption becomes visible in the compressed pic-
ture (see Figure 8.16, no scrubbing implemented). But the probability of such long
bit-flips is significantly lower.

The aforementioned memory scrubbing utilizes the TMR of the memory, which may
be not supported by the limited OBC memory resources. Hence, more memory efficient
approach should be used, e.g. memory scrubbing with Hamming encoding [123, 124].
While Hamming encoding requires memory only to save the syndromes, its implement-
ation requires more FPGA logic due to a complicated control FSM. The encoding phase
also requires an extensive number of multiplexers. RTL SystemC compilation to RTL
has been conducted using CatapultC Synthesis[125]; the results are presented in Table
8.3 (frequency 50 MHz).

The co-processor with Hamming encoding is discussed in detail in Section 8.5.

62

Figure 8.15: JPEG compression output - with Memory Scrubbing

Figure 8.16: JPEG compression with introduced 56-bit long MCU; the source and the output

8.4 Case Study: Kalman filter of Attitude Determination and
Control Algorithm

A satellites ADCS provides knowledge and control over its orientation in space. In the
case of possible erroneous operation the orientation can be disturbed, which can have
a detrimental effect on the satellite mission. To understand what kind of effects SRAM
SEUs have on this type of algorithm, 1000 SEUs have been randomly introduced to
the memory where the algorithms variables are stored (sections .bss and .data). The

63

Scrubbing type Latency Cycles Slack Total Area

TMR 1500 12.25 29723.13
Hamming 177081 7.55 181677.10

Table 8.3: The output of CatapultC Synthesis for TMR and Hamming-based memory scrub-
bing FPGA co-processors

injected errors are uniformly distributed in time and physical area. The correct output
of Kalman filter, which is the part of the ADCS, is presented in Figure 8.17 (three
axes). The Kalman output with SEUs injection is presented in Figure 8.18.

0 100 200 300 400 500 600 700 800 900
-0.01

-0.005

0

0.005

0.01

0.015

Time, sec

A
n

g
u

la
r

ra
te

,
ra

d
/s

ec

Figure 8.17: Correct Kalman filter output

0 100 200 300 400 500 600 700 800 900
-0.01

-0.005

0

0.005

0.01

0.015

Time, sec

A
n

g
u

la
r

ra
te

,
ra

d
/s

ec

Figure 8.18: Kalman filter output with SEUs introduction

Comparing Figure 8.17 and Figure 8.18, it is easy to see the effect of the injected
errors. The detection of such behavior plays an important role since, if Kalman filter
losses stability (as it happened after 875 sec), it may not converge again until the
external reset. The software fault detection mechanism has been implemented based
on the detection of the output value jump bigger than 0.001 rad/sec. If the output value
jump has been found, the current output value is ignored and the Kalman filter resets.
As a result of the implemented technique, the output values became very close to the

64

correct result, Figure 8.17: the average difference between the correct filter output and
the output with the described software fault-tolerance technique equals 1.710−7 rad/sec
for the period 0-900 seconds. This difference is acceptable and can be considered as
negligible since it is four orders of magnitude less than the scale of the output values.

65

8.5 Case Study: Multidimensional analysis of memory fault
consequences in Adaptive filter

As an example of the multidimensional fault-tolerance analysis, one SEU is introduced
each simulation iteration to the memory region where the program of an ADCS adaptive
filter is saved (see Table 8.9).

Name Size Virtual Memory Address
(VMA)=Load Memory

Address (LMA)
.text 0x000101c 0x0000000
.rodata 0x0000044 0x000101c
.data 0x0000178 0x0001060
.bss 0x0000020 0x00011d8

Table 8.4: The Memory Sections where SEUs are Injected

The single SEU per iteration is again motivated by low possible fault-rates on alti-
tudes less than 750 km in comparison with the short execution time of the algorithm.

8.5.1 Code execution without fault mitigation techniques

The CPU executes the code of an adaptive filter used in a ADCS algorithm for filtering
the measurements of solar sensors and magnetometers (Table 8.5). The adaptive filter
during one simulation iteration calculates 30 results for 3 axis, 90 double values in
total. The chosen quality measurement is the average relative deviation of 90 values
calculated with SEU introduction from 90 correctly calculated filter outputs. The result
of the simulation is presented in Figure 8.19.

CPU type: armm (Cortex-M3)
Nominal MIPS: 100
Simulated instructions: 105,515
User time: 0.79 seconds
Elapsed time: 0.83 seconds

Table 8.5: Simulation Time for the Version without Protection - One Iteration

Figure 8.19 shows that during the SEU introduction to particular parts of software
(particular memory addresses) the calculated results differ from the correct ones signi-
ficantly (these cases are marked with colored dots). At the same time, SEU introduction
to other regions, e.g. the very beginning of the memory (address 0x0-0x19a), does not
influence the calculation output. It can be explained by the interrupt vectors that are
located at the beginning of the memory and not directly used during this simulation
and during the real computation. The computation in main function starts particularly
at address 0x19a where we can observe first error results(represented by colored dots).

66

0

5

10
x 10

5

00x1F40x3E80x5DC0x7D00x9C40xBB80xDAC0xFA00x11940x1388

-100

0

100

200

300

400

T
im
e,
N
S

Memory address

R
el
at
iv
e
de
vi
at
io
n
fr
om

th
e
co
rr
ec
to
ut
pu
t

(i
n
lo
g
sc
al
e)

Figure 8.19: The simulation result of the adaptive filtering computation with one SEU intro-
duction (20 000 iterations)

8.5.2 Code execution with fault mitigation

Since SmartFusion SoC includes FPGA fabric, some fault-tolerance techniques can
be implemented in FPGA. Memory scrubbing based on Hamming encoding has been
chosen as an example (see Table 8.6). Since .text and .rodata section of the program
are static, they can be protected with the memory scrubbing technique.

Nominal MIPS: 100
Simulated instructions: 199,195
User time: 2.36 seconds
Elapsed time: 2.47 seconds

Table 8.6: Simulation Time for the Version with FPGA-based Protection - One Iteration

Before the algorithm execution the CPU sends to the FPGA co-processor the num-
ber and locations of memory ranges that should be protected by FPGA scrubbing.
FPGA co-processor encodes the data saving the syndromes and one backup copy of the
protected memory regions. After the syndromes generation, the FPGA co-processor
sends to the CPU a message indicating that the CPU can continue algorithm execution.
Since the syndromes are known, FPGA starts scrubbing the protected memory calcu-
lating syndromes again and comparing them with the saved ones that are supposed
to be correct. However, the syndromes can also be damaged by SEU; so the backup
version is used when the syndromes difference is found to clarify if the syndrome or the
protected region is damaged.

Another used fault-mitigation technique is a software-based value limitation: the
difference between consecutively calculated outputs are limited (see Table8.7). The
limitation is based on the expected parameters range and the speed of their changes
. In the case study, the limit on the output value change is set to 10−4 when the
filter output values lie in the scale of 10−5 and 10−6. If the limit is not met, the filter

67

recalculates the values.

Nominal MIPS: 100
Simulated instructions: 123, 442
User time: 1.26 seconds
Elapsed time: 1.28 seconds

Table 8.7: Simulation Time for the Version with Software Protection - One Iteration

The simulation results are shown in Figure 8.20 and Table 8.8.

Relative deviation
of the values from
the correct ones

Ratio of iterations with such deviation (20 000 iterations in total)
without

protection
SW limitation FPGA-based Hamming

encoding
[0-10)% 82.81% 84.58% 88.60%
[10− 20)% 2.36% 1.76% 1.45%
[20− 30)% 0.57% 0.27% 0.21%
[100− 110)% 11.31% 11.75% 7.93%

Table 8.8: Simulation Results, System Fault-Tolerance with and without Fault-Mitigation
Techniques

10
0

10
1

10
2

10
3

10
-8

10
-6

10
-4

10
-2

10
0

Relative incorrectness 1 corresponds to the deviation of 10% from the correct result

R
at
io
of
th
e
ca
se
s
th
at
be
lo
ng
s

to
de
vi
at
io
n
ra
ng
es
w
ith
st
ep
10
%

without encoding
with encoding
SW output limitation

Figure 8.20: Histogram of system fault-tolerance with and without fault-mitigation techniques
(20 000 iterations)

The jump when the relative incorrectness equals 11 (see Figure 8.20)can be ex-
plained by the next observation. In many cases after the fault injection, the CPU
raises the exception. If the exception routine is not written (as in the presented case),
the algorithm execution stops and the memory region, where the filter output values

68

should be written to, stays equal zero. When the output value is zero the relative devi-
ation from the correct result equals one. The peak is located at 11 relative incorrectness
since 11 corresponds to [100%, 110%) deviation from the correct result.

Figure 8.20 and Table 8.8 show the expected tendency: the ratio of the iterations
with the correct results or results with less than 10% deviation from the correct values is
increasing when fault-mitigation techniques are implemented. Additionally, Figure 8.20
shows that the ratio of rare detrimental faults (right bottom corner of the plot) is
reduced by the memory scrubbing with Hamming encoding.

8.5.3 System-level behavior

As it was observed from Figure 8.19 , the corruption of some memory regions causes
significant degradation in the correctness of the final result; while the corruption of
other regions has less detrimental or none effects.

While 20 000 iterations (one SEU per iteration) cannot cover the whole space of
possible SEU introduction options (200 000 executed instructions and 36 800 memory
bits), some system characteristics converge as it is shown in the next experiment.

The same filtering algorithm was executed 1000, 5000, 10000, 20000, 30000, and
40000 iterations (one SEU per iteration). Figure 8.21 represents the histogram obtained
during these simulations.

10
0

10
1

10
2

10
3

10
-8

10
-6

10
-4

10
-2

10
0

Relative incorrectness 1 correspodns to the deviation of 10% from the correct result

R
at

io
of

th
e

ca
se

s
th

at
be

lo
ng

s
to

de
vi

at
io

n
ra

ng
es

w
ith

st
ep

10
%

Hist (1 000 iterations)
Hist (5 000 iterations)
Hist (10 000 iterations)
Hist (20 000 iterations)
Hist (40 000 iterations)

Figure 8.21: The dependency of system behavior on the number of simulation iterations

8.5.4 Clustering algorithm

Since the OBC has strict limitations on the used hardware resources, the optimization
of fault-mitigation techniques is required.

69

According to the observation in Section 8.5.2, the memory regions have different
influence on the whole program execution. However, the visual identification of these
regions is not always an appropriate way to find the memory region with the biggest
influence on the final execution results. The currently existing clustering algorithms
are oriented to the division of the whole set into clusters. Meanwhile, in our case it is
necessary to find only clusters that meet the requirements on the density and severity
of the incorrect results. Consequently, it is highly probably that some memory regions
should not be included in clusters since SEU introduction in this region rarely cause
the damage of the computation result. Such regions that should not be included into
clusters will be considered as outliers by existing clustering algorithms. Usually, such
outliers are interpreted as the noise. In our case such regions cannot be considered
as something additional, since they are highly expected to appear and should be just
ignored from clustering.

The developed clustering algorithm consists of several steps, described hereafter:

1. Euclidian distance calculation with adjustment coefficients.

2. The building local clusters around each of the dots (rule: every other dot is
included in the cluster of the current dot if the Euclidian distance for that dot is
less than the given threshold).

3. Merging the local clusters if each pair of them have particular number of the
common dots (we are starting merging the biggest clusters, the required number
of the common dots is calculated as a pre-defined percentage of the all dots of the
smaller cluster from the pair).Thus, the biggest clusters have an opportunity to
include smaller ones, to form even more bigger clusters.

4. Additional: Overlap clearing. For more clear picture, it is possible to eliminate
the overlaps between clusters. We are starting from the biggest ones according
to the rule: if the bigger cluster contains the dots of the smaller cluster, then the
smaller cluster looses the dots.

The algorithm contains several parameters to be tuned. For example, the distance
to other dots that will be included in the local cluster; the percentage of the common
dots of the smaller cluster that will be enough to merge two clusters; the coefficient
for Euclidian distance calculation. Such parameters can be tuned for example by the
genetic algorithm automatically.

Figure 8.19 is taken as an input data. The simulation result is presented in Fig-
ure 8.22 (500 simulation iterations/dots).

The presented clustering approach assists a designer to understand the most im-
portant memory regions from OBC fault-tolerance point of view and save hardware
resources without significant loss in fault-tolerance. For example, it is not practical to
scrub 45% of .text and .rodata regions since they do not have such detrimental effect
as other regions (Figure 8.19). Thus, we can implement FPGA-based scrubbing only
for other 55% which will reduce the scrubbing turnaround period and the amount of
the allocated memory for syndromes and backup copy.

70

0
2

4
6

8
10 x10

5

0
0x3E8

0x7D0
0xFA0

0x1F40
0x1388

0

2

4

6

8

10

x 10
271

Time, NSMemory address

R
el

at
iv

e
de

vi
at

io
n

fr
om

 th
e

co
rr

ec
t o

ut
pu

t

Figure 8.22: Clustering algorithm output

8.5.5 Conclusions

The chosen benchmark program is an adaptive filtering algorithm for the satellite at-
titude control. The FPGA-based memory protection with Hamming encoding is im-
plemented, assessed, and optimized basing on the simulation results. The comparison
between FPGA-based memory scrubbing and a software mitigation technique is presen-
ted. The importance of exception handling for satellite OBCs is explained: the proper
exception handling may cover up to 11% of wrong computation results.

A shown optimization method based on the proposed clustering algorithm can assist
satellite designers in system-level analysis, development, and optimization. Using the
proposed method, the limited OBC hardware resources can be allocated with high
efficiency. In the presented case study, the method helped to reduce the scrubbing
turnaround period and the used memory resources almost by half.

Using the presented modeling and simulation methodology for the OBC fault-
tolerance analysis, well-known fault mitigation techniques can be investigated and im-
proved for different applications.

8.6 Simulation time of the case studies

This section provides the information about the simulation time of the presented case
studies (see Table 8.9). All simulations have been conducted on a Personal Computer
(PC) with an Intel Core i5-2430M and 4 GB of DDR3 memory. As was expected,
SystemC TLM modeling provides fast simulation capabilities even for complex cases
as the software JPEG image compression with the FPGA-based memory scrubbing.

71

Case study (one run) Number of
Instructions

User Time
(sec)

System
Time(sec)

Elapsed
Time(sec)

Fibonacci sequence calcu-
lation(15 elements)

28,912 0.25 0.01 0.26

Fibonacci sequence calcu-
lation with watchdog

28,940 0.26 0.01 0.27

JPEG image compression
(432x288 pixels)

22,079,255 185.93 0.09 186.89

JPEG image compression
with memory scrubbing

22,079,255 225.90 0.10 226.99

Kalman filtering 120,504 1.56 0.04 1.67
Adaptive filtering 105,515 0.79 0.01 0.83
Adaptive filtering with
memory scrubbing (Ham-
ming encoding)

199,195 2.36 0.01 2.47

Adaptive filtering with
software fault-tolerance
technique

123,442 1.26 0.01 1.28

Table 8.9: The Simulation Time of the Case Studies

72

Conclusions and Future Work 9
9.1 Conclusions

The traditional fault-tolerance analysis of COTS-based satellites is limited due to the
hardware unavailability at early development stages and low interpretability of radi-
ation tests. The existing simulation techniques assume that IC-level of used electronic
components is known or propose time-consuming complex analytical approaches which
are unapplicable in small satellite industry. This work presents an innovative simula-
tion approach for the statistical fault-tolerance analysis that assists satellite designers
to develop fault-tolerant OBCs and OBC software in fast and cost-effective manner.

The proposed simulation methodology for the fault-tolerance analysis allows
(Chapters 6,8):

• to understand the influence of each software and hardware component on the
system fault-tolerance

• to compare the efficiency of fault-tolerance techniques

• to understand the consequences of diverse radiation effects

• to develop OBC software and conduct design exploration at early development
stages

The presented methodology includes two main components:

• a SystemC-based OBC model (Chapter 4)

• a C++-based fault injection mechanism with a fault model library (Sections 4.5,
5)

The OBC model has been built based on an heterogeneous SoC, SmartFusion device
from Microsemi Corporation (Section 4.3). Such OBC model covers the most general
architecture and can be easily adapted for other OBC configurations. The work also
shows how to build the stacked OBC model which is a typical representative of system-
level redundant computers.

The radiation environment for typical CubeSat missions (with orbits lower 750 km)
is estimated (Section 3.1):

• TID for 3-years satellite mission < 3.2 krad

• LET spectra can be considered as equal to zero when the LET is higher than 32.5
MeV · cm2/mg

73

The corresponding possible radiation effects for the assessed radiation environment
include: SEU, MCU, and SEFI. Fault models for these radiation effects have been built
(Chapter 5) and used by the object-oriented fault injection mechanism to simulate the
consequences of radiation effects in the modeled OBC.

The work covers the next case studies: the fault-tolerance of adaptive and Kalman
filters of ADCS, a recursive and compression algorithms. The next results have been
obtained:

• the error of the ADCS Kalman filter is minimized to 1.7 · 10−7rad/sec using the
SIFT technique (Section 8.4) .

• the number of accumulated memory bit-flips is reduced by 80-87% during JPEG
image compression using the FPGA-based TMR memory protection technique
(Section 8.3).

• the comparison between the FPGA-based memory protection with Hamming en-
coding and the software fault detection technique is conducted(Section 8.5.2).

• the scrubbing turnaround period and allocated memory resources are reduced
almost by 50% with the proposed clustering algorithm (Section 8.5.4).

• the importance of CPU exception handling is highlighted since it may cover up
to 11% of wrong computation results(Section 8.5.2).

• the importance of watchdog monitoring is explained (Section 8.1.2).

Three conference papers have been written based on the research results presented in
this thesis. The work has been appreciated in Europe and USA where it was presented
at ESA 4S Symposium[13] and North-Atlantic Testing Workshop[14] in 2012. The third
written paper [15] is being under the review of XXVII Conference on Design of Circuits
and Integrated Systems by the moment of this MSc thesis defence.

The proposed approach has been adopted for software development at the company
ISIS B.V.

74

9.2 Future Work

This Section lists several items that can be considered as future work for the presented
thesis research:

1. One of the required further steps to increase the usability of the proposed simu-
lation framework is to add Graphical User Interface (GUI).

2. While the simulation time is short enough to conduct the presented statistical
analyses, it is necessary to investigate the ways to reduce the total simulation
time, e.g by parallelization. Although the object-oriented injection mechanism
proposed in this work simplifies the OBC modeling, an additional comparison
between the presented approach and well-known FIM is required especially for
more complex system models.

3. Other satellite sub-systems can be modeled in the way similar to the OBC mod-
eling. However, the modeling of analog sub-systems or mixed-signal sub-systems
requires the utilization of SystemC-AMS library. The possible radiation effects on
these sub-systems and the fault modeling can be considered as future work and
may lead to SEL modeling.

4. The analysis of the typical radiation conditions presented in this work has shown
that permanent effects like SHE will non be observed during a usual small satellite
mission. Nevertheless, the presented simulation framework can be used for the
modeling of such permanent effects and observing their consequences.

In general, the work can be considered as a basis for the creation of system-level
debugging and validation environment. The unavailability of a satellite sub-system can
be solved by its simulation on PC in the presented way. The PC interconnection with
the satellite central bus can be done through modern digital analyzers. Such approach
may have real-time limitations that should be additionally investigated.

75

76

Bibliography

[1] Datasheet of NanoMind A702B OBC, GomSpace company. http://www.

gomspace.com/documents/GS-DS-NM702-2.1.pdf.

[2] Kurt Anderson. Low-cost, radiation-tolerant, on-board processing solution. IEEE
Aerospace Conference, pages 1–8, March 2005.

[3] Sana Rezgui. RT ProASIC3: New RT Flash-Based FPGAs. CMOS Emerging
Technologies Workshop, Whistler, Canada, May 2010.

[4] N. Battezzati, F. Decuzzi, L. Sterpone, and M. Violante. Soft Errors in Flash-
based FPGAs: Analysis methodologies and first results. International Confer-
ence on Field Programmable Logic and Applications, pages 723 – 724, August-
September 2009.

[5] J. L. Kaschmitter, D. L. Shaeffer, and N. J. Colella. Operation of commercial
R3000 processors in the LEO space environment. IEEE Transactions on Nuclear
Science, 38(6):1415–1420, December 1991.

[6] Microsemi Corporation. SmartFusion Customizable System-on-Chip (cSoC), Au-
gust 2011.

[7] Dolkart V. V., G. Kh. Novik, and I. S. Koltypin. Miniaturized aerospace digital
computers. Soviet Radio, Moscow, 1967.

[8] California Polytechnic State University. The CubeSat Program. CubeSat Design
Specification, 12 edition.

[9] Andrew S. Keys and Michael D. Watson. Radiation hardened electronics for
extreme environments. NASA Marshall Space Flight Center.

[10] The official web-site of SERVIS project. http://www.usef.or.jp/english/f3_
project/servis/f3_servis.html.

[11] Frank Ghenassia. Transaction Level Modeling with SystemC TLM Concepts and
Applications for Embedded Systems. ISBN 10 0-387-26232-6. Springer, 2005.

[12] The official web-site of OVP project. http://www.ovpworld.org.

[13] D. Burlyaev and R. van Leuken. A simulator of on-board computers for evaluating
fault-mitigation techniques. In the ESA Small Satellites Systems and Services
Symposium, Grand Hotel Bernardin Convention Centre, Portoroz, Slovenia, June
2012.

[14] D. Burlyaev and R. van Leuken. SystemC-based on-board computer modeling for
design fault-tolerance assessment. In the 21st IEEE North Atlantic Test Work-
shop, Woburn, MA(Greater Boston Area), USA, May 2012.

77

http://www.gomspace.com/documents/GS-DS-NM702-2.1.pdf
http://www.gomspace.com/documents/GS-DS-NM702-2.1.pdf
http://www.usef.or.jp/english/f3_project/servis/f3_servis.html
http://www.usef.or.jp/english/f3_project/servis/f3_servis.html
http://www.ovpworld.org

[15] D. Burlyaev and R. van Leuken. System fault-tolerance analysis of small satel-
lite on-board computers. In the XXVII Conference on Design of Circuits and
Integrated Systems, Avignon, France, November 2012.

[16] Rainer Sandau, Larry Paxton, and Jaime Esper. Small Satellites for Earth Ob-
servation. ISBN: 978-1-4020-6942-0. Springer, 2008.

[17] J. Puig-Suari, C. Turner, and R. J. Twiggs. Cubesat: The development and
launch support infrastructure for eighteen different satellite customers on one
launch. 15th Annual/USU Conference on Small Satellites, (SSC01-VIIIb-5):1–5,
2001.

[18] J. Puig-Suari, C. Turner, and W. Ahlgren. Development of the standard CubeSat
deployer and a CubeSat class picosatellite. IEEE Aerospace Conference, year =.

[19] The official web-site of Hiten project. http://www.isas.jaxa.jp/e/enterp/

missions/hiten.shtml.

[20] The official web-site of TSUBASA project. http://www.jaxa.jp/projects/

sat/mds1/index_e.html.

[21] The official web-site of QB50 project. https://www.qb50.eu/project.php.

[22] The official web-site of NASAs Cubesat Launch Initiative, August 2011. http:

//www.nasa.gov/directorates/heo/home/CubeSats_initiative.html.

[23] Tanya Vladimirova and Xiaofeng Wu. On-board partial run-time reconfiguration
for pico-satellite constellations. The First NASA/ESA Conference on Adaptive
Hardware and Systems, pages 262 – 269, June 2006.

[24] Lei Xing, Zhaowei Sun, and Guodong Xu. FPGA On-Board Computer design
based on Hierarchical Fault tolerance. The 2nd International Symposium on
Systems and Control in Aerospace and Astronautics, pages 1 – 5, December 2008.

[25] M.M.Ibrahim, A.M.Tobal, M.Y.E. Nahas, and M.K. Refai. FPGA-based On-
Board Computer for LEO satellites. IEEE International Conference on Space
Science and Communication (IconSpace), pages 314 – 319, July 2011.

[26] James R. Wertz, Hans F.Meissinger, Lauri Hraft Newman, and Geoffrey N. Smit.
Mission Geometry; Orbit and Constellation Design and Management. ISBN-10:
0792371488. Microcosm Press and Kluwer Academic Publisher, 1 edition, October
2001.

[27] Datasheet of Lithium UHF/VHF Radio LI-1. Astronautical development LLC
company. http://www.astrodev.com/public_html2/downloads/datasheet/

LithiumUserManual.pdf.

[28] Datasheet of Highly Integrated S-Band Transmitter for Pico and Nano
Satellite. http://www.cubesatshop.com/index.php?page=shop.product_

details&flypage=flypage.tpl&product_id=84&category_id=5&option=

com_virtuemart&Itemid=67.

78

http://www.isas.jaxa.jp/e/enterp/missions/hiten.shtml
http://www.isas.jaxa.jp/e/enterp/missions/hiten.shtml
http://www.jaxa.jp/projects/sat/mds1/index_e.html
http://www.jaxa.jp/projects/sat/mds1/index_e.html
https://www.qb50.eu/project.php
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html
http://www.astrodev.com/public_html2/downloads/datasheet/LithiumUserManual.pdf
http://www.astrodev.com/public_html2/downloads/datasheet/LithiumUserManual.pdf
http://www.cubesatshop.com/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=84&category_id=5&option=com_virtuemart&Itemid=67
http://www.cubesatshop.com/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=84&category_id=5&option=com_virtuemart&Itemid=67
http://www.cubesatshop.com/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=84&category_id=5&option=com_virtuemart&Itemid=67

[29] TEKTRONIX company. Guidelines for Lithium-Ion Battery Maintenance, 001-
1501-00 edition. http://www.newark.com/pdfs/techarticles/tektronix/

LIBMG.pdf.

[30] PC/104 Consortium. PC/104 Specification, 2.3 edition, June 1996. http://

versalogic.com/support/pdf/pc104-23.pdf.

[31] Pumpkin Incorporated, San Fransisco, CA, USA. CubeSat Kit PCB Specification.

[32] M. Duma, H. Urhan, O. Turhan, O. Kozal, and M. Gurun. A new generation
On-Board Computer and Solid State Data Recorder suitable for SpaceWire Plat-
forms. The 3rd International Conference on Recent Advances in Space Technolo-
gies, pages 429 – 432, June 2007.

[33] Hiroyuki Yashiro and Teruo Fujiwara. A high assurance on-line recovery tech-
nology for a Space On-board Computer. The 5th International Symposium on
Autonomous Decentralized Systems, pages 47 – 56, August 2002.

[34] C.A. Hulme, H.H. Loomis, A.A.Ross, and Rong Yuan. Configurable Fault-
Tolerant Processor (CFTP) for space based applications. IEEE Aerospace Con-
ference, 4:2269 – 2276, March 2004.

[35] T.Takano, T. Yamada, K. Shutoh, and N. Kanekawa. In-orbit experiment on the
fault-tolerant space computer aboard the satellite Hiten. IEEE Transactions on
Reliability, 45:624 – 631, August 2002.

[36] Cedric V. W. Armstrong and Eli T. Fathi. A fault-tolerant multimicroprocessor-
based computer system for space-based signal processing. IEEE Micro, 4:54 – 65,
December 1984.

[37] GomSpace company. Datasheet of NanoCam C1U camera, GS-DS-NANOCAM-
1.1, 1 edition, August 2011. http://www.gomspace.com/documents/

GS-DS-NANOCAM-1.1.pdf.

[38] Atmel Corporation. Passive InfraRed Reference Design (PIRRD) for SAM3S Mo-
tion Detector Camera. http://atmel.com/dyn/resources/prod_documents/

doc11091.pdf.

[39] ARM company. Cortex-M3 Devices, Generic User Guide, a edition, December
2010.

[40] Pumpkin, Inc. CubeSat Kit Motherboard (MB), J edition, September 2009. http:
//cubesatkit.com/docs/datasheet/DS_CSK_MB_710-00484-D.pdf.

[41] Day-Young Kim, Ki-Ho Kwon, Jong-Wook Choi, Jong-In Lee, and Hak-Jung
Kim. Design of a new On-Board Computer for the new KOMPSAT bus. IEEE
Aerospace Conference, pages 1 – 12, March 2005.

[42] Surrey Satellite Technology US LLC. Space GPS Receiver SGR-05U, July 2011.
http://www.sst-us.com/getdoc/c408ce26-bd0b-4c43-88e0-6999372040a1.

79

http://www.newark.com/pdfs/techarticles/tektronix/LIBMG.pdf
http://www.newark.com/pdfs/techarticles/tektronix/LIBMG.pdf
http://versalogic.com/support/pdf/pc104-23.pdf
http://versalogic.com/support/pdf/pc104-23.pdf
http://www.gomspace.com/documents/GS-DS-NANOCAM-1.1.pdf
http://www.gomspace.com/documents/GS-DS-NANOCAM-1.1.pdf
http://atmel.com/dyn/resources/prod_documents/doc11091.pdf
http://atmel.com/dyn/resources/prod_documents/doc11091.pdf
http://cubesatkit.com/docs/datasheet/DS_CSK_MB_710-00484-D.pdf
http://cubesatkit.com/docs/datasheet/DS_CSK_MB_710-00484-D.pdf
http://www.sst-us.com/getdoc/c408ce26-bd0b-4c43-88e0-6999372040a1

[43] F. Bruhn, E. Lamoureux, G. Chosson, J. Bergman, K. Yoshida, T.George,
R. Thorslund, and J. Kohler. Bridging the space technology Valley of Death:
two spaceflights in 2009 to validate advanced MEMS/Microtechnology systems
and subsystems. CANEUS workshop NASA Ames, March 2009. http://www.

aaerospace.com/index.php/inovator-on-rubin-92-h2-2009/19.html.

[44] Franz Newland, Elliott Coleshill, Ian DSouza, and Jeff Cain. Nanosatellite track-
ing of ships - Review of the first year of operations. The 7th Responsive Space
Conference, (AIAA-RS7-2009-6005):1–6, April 2009.

[45] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-
Tolerant Control. ISBN-10 3-540-35652-5. Springer, 2 edition, 2006.

[46] Michael L. Bushnell and Vishwani D. Agrawal. Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits. Kluver Academic Publishers,
2002.

[47] C. Miller, R.Owen, M. Rose, P.M.Rutt, J. Schaefer, and I.A.Troxel. Trends in
radiation susceptibility of commercial DRAMs for space systems. IEEE Aerospace
conference, pages 1 – 12, March 2009.

[48] J. J. Wang. Radiation effects in FPGAs. The 9th Workshop on Electronics for
LHC Experiments, pages 1–10, September-October 2003.

[49] The official web-site of SPENVIS project. http://www.spenvis.oma.be/.

[50] The official web-site of APEXRAD empirical model. https://creme.isde.

vanderbilt.edu/CREME-MC/help/apexrad.

[51] P.J. McNulty. Charged particles cause microelectronics malfunction in space.
Physics Today, 36(1):9, January 1983.

[52] Solar flare proton and heavy ion modeling for single event effects. NASA Preferred
Reliability Practices, (Practice No. PD-EC-1105):1–3, June 1995.

[53] Toshinori Kuwahara. FPGA-based Reconfigurable On-Board Computing System
for Space Application. PhD thesis, the University of Stuttgart, October 2009.

[54] G.Gasiot, S. Uznanski, and P. Roche. SEE test and modeling results on 45nm
SRAMs with different well strategies. IEEE International Reliability Physics
Symposium, pages 407 – 410, May 2010.

[55] S.Rezgui, J. J.Wang, Y.Sun, B.Cronquist, and J.McCollum. New reprogram-
mable and non-volatile radiation tolerant FPGA: Rta3p. Proceedings of the IEEE
Aerospace Conference, 2008.

[56] R. Czajkowski, M. P. Pagey, P. K. Samudrala, M. Goksel, and M. J. Viehman.
Low power, high-speed radiation hardened computer & flight experiment. IEEE
Aerospace Conference, pages 1 – 10, March 2005.

80

http://www.aaerospace.com/index.php/inovator-on-rubin-92-h2-2009/19.html
http://www.aaerospace.com/index.php/inovator-on-rubin-92-h2-2009/19.html
http://www.spenvis.oma.be/
https://creme.isde.vanderbilt.edu/CREME-MC/help/apexrad
https://creme.isde.vanderbilt.edu/CREME-MC/help/apexrad

[57] Gennady Ivanovich Zebrev, Igor Olegovich Ishutin, Rustem Galeyevich Useinov,
and Vasily Sergeyevich Anashin. Methodology of soft error rate computation in
modern microelectronics. IEEE Transactions on Nuclear Science, 57(6):3725–
3733, December 2010.

[58] Robert Baumann. The impact of technology scaling on soft error rate perform-
ance and limits to the efficacy of error correction. Digest. International Electron
Devices Meeting, pages 329 – 332, 2002.

[59] Leif Scheick. SEE measurement for the SDRAM and the Blackjack Application-
Specific Integrated Circuit (ASIC). The Jet Propulsion Laboratory, December
1999.

[60] Nobuyasu Kanekawa, Eishi H. Ibe, Ta kashi S uga, and Yu taka Uematsu. De-
pendability in Electronic Systems. Mitigation of Hardware Failures, Soft Errors,
and Electro-Magnetic Disturbances. ISBN 978-1-4419-6714-5. Springer, 2011.

[61] R.K. Lawrence. Radiation characterization of 512 Mb SDRAMs. IEEE Radiation
Effects Data Workshop, July 2007.

[62] K. Grurmann, D. Walter, M. Herrmann, and F. Gliem. Studies of radiation SEE
effects in NAND-Flash and DDR types of memories. R&D Final Presentation
Days, ESTEC, Nordwijk, March 2011.

[63] D.Giot, P. Roche, G.Gasiot, L.Autran, and R.Harboe-Sorensen. Heavy ion test-
ing and 3D simulations of MCU in 65nm standard SRAMs. The 9th European
Conference on Radiation and Its Effects on Components and Systems, pages 1 –
6, September 2007.

[64] M. Baba et al. Installation and application of an intense 7Li(p,n) neutron source
for 2090 MeV region. Radiation Protection Dosimetry, 123(1-4):1317, 2007.

[65] F.X.Ruckerbauer and G. Georgakos. Soft error rates in 65nm SRAMs–analysis
of new phenomena. The 13th IEEE International On-Line Testing Symposium,
pages 203 – 204, July 2007.

[66] E.H. Cannon, M.Cabanas-Holmen, J.Wert, T.Amort, R.Brees, J.Koehn,
B.Meaker, and E.Normand. Heavy ion, high-energy, and low-energy proton SEE
sensitivity of 90-nm RHBD SRAMs. IEEE Transactions on Nuclear Science,
57(6):3493 – 3499, December 2010.

[67] Kathrin Peter. Data distribution algorithms for reliable parallel storage on Flash
memories. Computer science research. Zuse Institute Berlin.

[68] D.N. Nguyen, S. M. Guertin, and J. D. Patterson. Radiation tests on 2Gb NAND
Flash memories. IEEE Radiation Effects Data Workshop, pages 121 – 125, July
2006.

[69] D.N. Nguyen, S.M. Guertin, G.M. Swift, and A.H. Johnston. Radiation effects on
advanced Flash memories. IEEE Transactions on Nuclear Science, 46(6):1744–
1750, December 1999.

81

[70] G.Cellere et al. A model for TID effects on FG memory cells. IEEE Transactions
on Nuclear Science, 51(6):3753 – 3758, December 2004.

[71] Farokh Irom and Duc N. Nguyen. Single event effect characterization of high
density commercial nand and nor nonvolatile flash memories. IEEE TRANSAC-
TIONS ON NUCLEAR SCIENCE, pages 2547–2553, December 2007.

[72] N. Battezzati, S. Gerardin, A. Manuzzato, A. Paccagnella, S. Rezgui, L. Sterpone,
and M. Violante. On the evaluation of radiation-induced transient faults in Flash-
based FPGAs. The 14th IEEE International On-Line Testing Symposium, pages
135 – 140, July 2008.

[73] Ramin Roosta. A comparison of radiation-hard and radiation-tolerant FPGAs
for space applications. NASA Electronic Parts and Packaging Program, (JPL
D-31228), December 2004.

[74] Dae-Soo Oh, Dong-Soo Kang, and Kyoung-Son Jhang. Design and implementa-
tion of a radiation tolerant On-Board Computer for science technology Satellite-3.
NASA/glsesa Conference on Adaptive Hardware and Systems, pages 17 – 23, June
2010.

[75] F.Lima, L.Carro, and R. Reis. Designing fault tolerant systems into SRAM-based
FPGAs. Design Automation Conference, pages 650 – 655, June 2003.

[76] Gregory R. Allen and Gary M. Swift. Single event effects test results for advanced
field programmable gate arrays. IEEE Radiation Effects Data Workshop, pages
115 – 120, July 2006.

[77] N.Battezzati, L.Sterpone, M.Violante, and F.Decuzzi. A new software tool for
static analysis of SET sensitiveness in Flash-based FPGAs. The 18th IEEE/IFIP
VLSI System on Chip Conference (VLSI-SoC), pages 79 – 84, September 2010.

[78] F.L. Kastensmidt, E.C.P. Fonseca, R.G. Vaz, O.L. Goncalez, R. Chipana, and
G.I. Wirth. TID in Flash-based FPGA: Power supply-current rise and logic
function mapping effects in propagation-delay degradation. IEEE Transactions
On Nuclear Science, 58(4):1927 – 1934, August 2011.

[79] S. Rezgui et al. New methodologies for SET characterization and mitigation in
Flash-based FPGAs. IEEE Transactions on Nuclear Science, 54(6):2512–2524,
December 2007.

[80] Sana Rezgui. Radiation-Tolerant ProASIC3 FPGAs Radiation Effects. Actel
Corporation, 2061,Stierlin Court, Mountain View, CA,USA, April 2010.

[81] Actel Corporation. Radiation-Tolerant ProASIC3 Single-Event Latch-Up, April
2010. Test Report.

[82] S. Rezgui, J. J. Wang, Y. Sun, B. Cronquist, and J. McCollum. TID character-
ization of 0.13-micrometer Flash-based FPGAs. RADECS Workshop, pages 1–6,
2008.

82

[83] S. Rezgui, J. J. Wang, Y. Sun, B. Cronquist, and J. McCollum. New reprogram-
mable and non-volatile radiation tolerant FPGA: RTA3P. Proc. IEEE Aerospace
Conference, pages 1–11, March 2008.

[84] G. Allen, S. McClure, S. Rezgui, and J. J. Wang. TID characterization results
of Actel ProASIC3, ProASIC3E, and IGLOO Flash-based Field Programmable
Gate Arrays. Proc. Military Aerospace Programmable Logic Devices (MAPLD),
pages 1–11, 2008.

[85] J.W. Howard Jr., M.A. Carts, R. Stattel, C.E. Rogers, T.L. Irwin, C. Dunsmore,
J.A. Sciarini, and K.A. LaBel. Total dose and single event effects testing of the
Intel Pentium III and AMD K7 microprocessor. IEEE Radiation Effects Data
Workshop, pages 38 – 47, July 2001.

[86] Actel Corporation. Actel SmartFusion Microcontroller Subsystem Users Guide,
50200250-1 edition, May 2010.

[87] Actel Corporation. Actel SmartFusion FPGA Fabric Users Guide, 50200249-0
edition, March 2010.

[88] Timothy R. Oldham, M. Friendlich, M. A. Cartsand C. M. Seidleck, and Ken-
neth A. LaBel. Effect of radiation exposure on the endurance of commercial
NAND Flash memory. IEEE Trnasactions on Nuclear Science, pages 3280 –
3284, December 2009.

[89] T. R. Oldham, R. L. Ladbury, M. Friendlich, H. S. Kim, M. D. Berg, T. L.
Irwin, C. Seidleck, and IEEE K. A. LaBel, Member. SEE and TID characteriza-
tion of an advanced commercial 2Gbit NAND Flash nonvolatile memory. IEEE
Trnasactions on Nuclear Science, 53(6):3217–3222, December 2006.

[90] Farokh Irom and Duc N. Nguyen. Single event effect characterization of high
density commercial NAND and NOR Nonvolatile Flash memories. IEEE Trans-
actions on Nuclear Science, pages 2547 – 2553, December 2007.

[91] F.Irom, D.N.Nguyen, R.Harboe-Sorensen, and A.Virtanen. Comparison of TID
response and SEE characterization of single- and multi-level high density NAND
Flash memories. European Conference on Radiation and Its Effects on Compon-
ents and Systems, pages 606–608, September 2009.

[92] Arbi V. Karapetian, Raphael R. Some, and John J. Beahan. Radiation fault
modeling and fault estimation for a COTS based space-borne supercomputer.
Proceeding IEEE Aerospace Conference, 2002.

[93] M.S. Reorda, M. Violante, C. Meinhardt, and R. Reis. An On-Board Data-
Handling Computer for deep-space exploration built using Commercial-Off-the-
Shelf SRAM-based FPGAs. The 24th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pages 254 – 262, October 2009.

83

[94] Xinping Zhu and Wei Qin. Prototyping a fault-tolerant multiprocessor SoC with
run-time fault recovery. The 43rd ACM/IEEE Design Automation Conference,
pages 53 – 56, September 2006.

[95] The official web-site of Green Hills Software company. http://www.ghs.com/.

[96] C. C. Li and W. K. Fuchs. CATCH - compiler-assisted techniques for checkpoint-
ing. FTCS-20,IEEE Computer Society, page 7481, 1990.

[97] P.P. Shirvani, N. Oh, E.J. McCluskey, D.L. Wood M.N.and Lovellette, and K.S.
Wood. Software-implemented hardware fault tolerance experiments COTS in
space.

[98] L. Chen and A. Avizienis. N-version programming: A fault tolerance approach
to reliability of software operation. FTCS-8, page 39, 1978.

[99] B. Randell. System structure for software fault tolerance. Processing International
Conference on Reliable software, page 437449, 1975. New York, NY, USA: ACM
Press.

[100] Demid Borodin. Performance-Oriented Fault Tolerance in Computing Systems.
PhD thesis, TU Delft, Delft, the Netherlands, 2010.

[101] M. Namjoo and E. J. McCluskey. Watchdog processors and capability checking.
FTCS-12. Washington, DC, USA: IEEE Computer Society, page 245248, 1982.

[102] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, and W.H. Sanders. Low-cost error
containment and recovery for onboard guarded software upgrading and beyond.
IEEE Transactions on Computers, 51:121 – 137, February 2002.

[103] Krzysztof Iniewski. Radiation Effects In Semiconductors. Taylor and Francis
Group, 2011.

[104] C.C. Yui et al. SEU mitigation testing of Xilinx Virtex II FPGAs. IEEE Radiation
Effects Data Workshop, pages 92 – 97, July 2003.

[105] K. J. Chang and Y. Y. Chen. System-level fault injection in SystemC design
platform. Proc. 8th Int. Symposium on Advanced Intelligent Systems, pages 354–
359, 2007.

[106] T. Grtker, S.Liao, G.Martin, and S.Swan. System Design with SystemC. ISBN
978-1-4020-7072-3. Kluwer Academic Publishers, 2002.

[107] Leena Singh, Leonard, Drucker, and Neyaz Khan. Advanced Verification Tech-
niques: A SystemC Based Approach for Successful Tapeout. ISBN: 1-4020-7672-X.
Kluwer Academic Publishers, 2004.

[108] J.-C.Ruiz, P. Yuste, P. Gil, and L. Lemus. On benchmarking the dependability of
automotive engine control applications. International Conference on Dependable
Systems and Networks, pages 857 – 866, June-July 2004.

84

http://www.ghs.com/

[109] R.Mariani, G.Boschi, and F.Colucci. Using an innovative SoC-level FMEA meth-
odology to design in complience with IEC61508. Proc. Design, Automation &
Test in Europe Conf. &Exhibition, pages 492–497, 2007.

[110] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu. SoC-level risk assessment
using FMEA approach in system design with SystemC. IEEE International Sym-
posium on Industrial Embedded Systems, pages 82–89, July 2009.

[111] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto. A framework
for reliability assessment and enhancement in multi-processor Systems-On-Chip.
The 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, pages 132 – 142, 2007.

[112] O. Ruano, J.A. Maestro, P.Reyes, and P. Reviriego. A simulation platform for the
study of soft errors on signal processing circuits through software fault injection.
IEEE International Symposium on Industrial Electronics, pages 3316–3321, 2007.

[113] K.Rothbart and et al. High level fault injection for attack simulation in smart
cards. The 13th Asian Test Symposium, pages 118 – 121, November 2004.

[114] K.Rothbart and et al. A smart card test environment using multi-level fault
injection in SystemC. The 6th IEEE Latin-American Test Workshop, pages 103–
108, March-April 2005.

[115] Kun-Jun Chang, Yung-Yuan Chen, and Jian-Min Peng. SoC-level fault injection
methodology in SystemC design platform. Asia Simulation Conference - the 7th
International Conference on System Simulation and Scientific Computing, pages
680 – 687, October 2008.

[116] Yung-Yuan Chen, Chung-Hsien Hsu, and Kuen-Long Leu. Analysis of system
bus transaction vulnerability in SystemC TLM design platform. Proc. the 3rd
WSEAS International Conference on Computer Engineering and Applications,
(ISBN:978-960-474-41-3):284–289, 2009.

[117] Microsemi Corporation. SmartFusion: System Power Optimization Using Low
Power Modes, application note AC364 edition, March 2011.

[118] G. Allen, S. McClure, S. Rezgui, and J.J. Wang. Total ionizing dose characteriz-
ation results of Actel ProAsic3, ProAsic3L, and IGLOO Flash-based FPGA. The
Jet Propulsion Laboratory, California Institute of Technology and Actel Corpor-
ation, September 2008. https://nepp.nasa.gov/mapld_2008/presentations/
w/10%20-%20Allen_Gregory_mapld08_pres_1.pdf.

[119] Imperas Software Limited. Using OVP Models in SystemC TLM2.0 Platforms,
1.10 edition, September 2011.

[120] Imperas Software Limited. OVPsim and Imperas CpuManager User Guide, 2.0.43
edition, November 2011.

85

https://nepp.nasa.gov/mapld_2008/presentations/w/10%20-%20Allen_Gregory_mapld08_pres_1.pdf
https://nepp.nasa.gov/mapld_2008/presentations/w/10%20-%20Allen_Gregory_mapld08_pres_1.pdf

[121] Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform.
ISBN 0-89871-285-8. the Society for Industrial and Applied Mathematics, Cornell
University, Ithaca, New York, USA, 1992.

[122] Joris van Emden. Embedded JPEG codec library. http://sourceforge.net/

projects/mb-jpeg.

[123] Actel Corporation. CoreEDAC Handbook, January 2006.

[124] Actel Corporation. Using EDAC RAM for RadTolerant RTAX-S FPGAs and
Axcelerator FPGAs, application note AC273 edition, July 2006.

[125] The official web-site of CatapultC Synthesis tool from Mentor Graphics company.
http://www.mentor.com/esl/catapult/overview.

86

http://sourceforge.net/projects/mb-jpeg
http://sourceforge.net/projects/mb-jpeg
http://www.mentor.com/esl/catapult/overview

Appendix A A
A.1 SPENVIS settings for Radiation Environment Estimation

Mission overview
Orbit around: Earth
Number of mission segments: 1
Mission start: 01/01/2011 00:00:00
Mission end: 31/12/2013 00:00:00
Mission duration: 1095.00 days (3.00 years)
Satellite axis: velocity vector

Orbit type: general
Apogee: 750.00 km
Perigee: 750.00 km
Inclination: 98.00
R. A. Ascending Node: 0.00
Argument of Perigee: 0.00
True Anomaly: 0.00
Period: 1.66 hrs
Number of orbits: 14.45
Duration: 1.00 days
Orbit start: 01/01/2011 00:00: 0.0
Orbit end: 02/01/2011 00:00: 0.0
Segment end: 31/12/2013 00:00: 0.0
Segment length: 1095.00 days

Trapped proton model: CRRESPRO Quiet
Internal magnetic field model: DGRF 1990 updated to 1990.0
External magnetic field model: Olson-Pfitzer 1977

Solar flare model: CREME-96 (peak 5 min-1)
Magnetic shielding: eccentric dipole/quiet magnetosphere/unchanged magn. mom./all
arrival directions
Ion range: H - Ni

Overview input
Ion range: H - Ni
GCR model: ISO 15390
Solar activity data: May 1996

87

Magnetic shielding: eccentric dipole/quiet magnetosphere/unchanged magn. mom./all
arrival directions

Test 1. Environment assessment
Overview input
Particle spectra : trapped protons + solar particles (H - Ni) + GCR particles (H - Ni)
Spacecraft shielding thickness (Al equivalent) : 0.15 cm

88

Appendix B B
B.1 MATLAB Fault rate estimation algorithm

1 \% Fault rate calculation

clear all ;
\% Algorithm

flux_data = xlsread (’spectra.xls’ ,’flux_data’) ;
LET_flux=flux_data (: , 1) ; \%MeV*cm^2/g

6 Integral_flux=flux_data (: , 2) ;\ %1/m^2/sr/sec

\%experiment
exper_data = xlsread (’spectra.xls’ ,’sram2_fig2_65’) ;
LET_exper=exper_data (: , 1) ;\ %MeV*cm^2/mg!

11 Cros_section_exper=exper_data (: , 2) ;\ %cm^2/bit

\%conversion everything to the same units

LET_flux_uni=LET_flux /10000; \% MeV*m^2/g

Integral_flux_uni=Integral_flux ;\ %1/m^2/sr/sec
16

LET_exper_uni=LET_exper ∗1000/10000;\%MeV*m^2/g
Cros_section_exper_uni=Cros_section_exper /10000;\%m^2/bit

\% integration

21 sum=0;
previous=0;
for i=1:1:1000

for j=1:1: length (Cros_section_exper_uni)
26 if (LET_flux_uni (i)<LET_exper_uni (j))

j=j−1;

if j<1
j=1

31 end ;

break ;
end ;

end ;
36

sum=sum+Integral_flux_uni (i) ∗Cros_section_exper_uni (j) ∗(
LET_flux_uni (i)−previous) % events/bit/sec

previous=LET_flux_uni (i) ;
end ;

89

90

Appendix C C
The checking of the model work has been done by sending the message from OBC #1
to OBC #2 through modeled I2C bus. Some steps during the communication included
printf operation to see the correctness of the event sequence (see the next Section).
After sending the data from OBC #1 to OBC #2,OBC #2 checks the received data:

Reg checking::23
Reg checking::45
Reg checking::ab
Reg checking::cd
Reg checking::ef

These 4 bytes are exactly the same that were sent by OBC #1. The next lines are
derived from the C code executed by OBC #1 :

write data[0] = 0xab;
write data[1] = 0xcd;
write data[2] = 0xef ;
uint16 tstart address = 0x2345;

First two bytes 0x23 and 0x45 is the serial address of the receiver-OBC. The receiver
was found, bytes were transfered, and the communication have been finished (see the
communication printout in the next Section).Thus, the communication happened in
correct way, the driver software is working, and FSM for I2C.obj has been created
without mistakes.

C.1 Printout of Two OBCs communication through I2C bus

1
| | PLATFORM | | : : Starting the timing for simulation

| | COMPUTER_1 | | before start

| | COMPUTER_2 | | before start

The I2C has been enabled

6 The I2C has been enabled

| | COMPUTER_1 | | this_i2c−>target_addr : : e : : e
Line is not occupied−> we now occupy the line : : COMPUTER_I2C_0_1
| | COMPUTER : : I2C_0_1 | | Execution of 0x08
| | I2C_0_1 | | the 1st interrupt is sent

11 | | COMPUTER_1 | | −interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_START : : 0 x08

| | COMPUTER_1 | | isr : : ST_RESTART : : 0 x10

| | I2C_0_1 | | I am sending the next target address : : e

91

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
16 | | I2C_0_2 | | : : just received the request from the I2C

decoder

| | I2C decoder : : data | | : : len : : adr | e | 1 | 0 |
| | I2C_0_2 | | received address equals my serial number : : : : e
| | I2C_0_2 | | I am calling the 1st interrupt at the receiver

side

| | COMPUTER_1 | | main1 . . .
21 | | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−

| | COMPUTER_2 | | isr : : ST_SLAVE_SLAW
| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is

found

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 0 : : Socket id : : 1
| | I2C_0_1 | | : : just received the request from the I2C decoder

26 | | I2C decoder : : data | | : : len : : adr | 1 | 1 | 1 |
| | I2C_0_1 | | : : ACK has been received about the proper target address−>

going to send the 1 byte

| | COMPUTER_1 | | −interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_SLAW_ACK : : 0 x18

| | I2C_0_1 | | I am sending the DATA to I2C Decoder in state 0x18
31 | | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
| | I2C_0_2 | | : : just received the request from the I2C decoder

| | I2C decoder : : data | | : : len : : adr | 2 3 | 1 | 0 |
| | I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK back

| | COMPUTER_2 | | −−interrupt_ I2C0_IRQHandler triggered−−
36 | | COMPUTER_2 | | isr : : ST_RDATA

| | COMPUTER_2 | | I am saving : : 2 3 : : 0
| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is found

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 0 : : Socket id : : 1
| | I2C_0_1 | | : : just received the request from the I2C decoder

41 | | I2C_0_1 | | : : ACK has been received about the proper target address−>
going to send the 1 byte

| | COMPUTER_1 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_TX_DATA_ACK : : 0 x28

| | I2C_0_1 | | I am sending the DATA to I2C Decoder in state 0x18
| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
46 | | I2C_0_2 | | : : just received the request from the I2C

decoder

| I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK

back

| | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_2 | | isr : : ST_RDATA
| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is found

92

51 | | I2C Decoder | | : : I am sending out the message to every

target that I

| | I2C_0_1 | | : : just received the request from the I2C decoder

| | I2C_0_1 | | : : ACK has been received about the proper target address−>
going to send the 1 byte

| | COMPUTER_1 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_TX_DATA_ACK : : 0 x28

56 | | I2C_0_1 | | I am sending the DATA to I2C Decoder in state 0x18
| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
| | I2C_0_2 | | : : just received the request from the I2C

decoder

| | I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK back

| | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−
61 | | COMPUTER_2 | | isr : : ST_RDATA

| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is found

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 0 : : Socket id : : 1
| | I2C_0_1 | | : : just received the request from the I2C decoder

I2C decoder : : data : : len : : adr | 1 | 1 | 1 |
66 | | I2C_0_1 | | : : ACK has been received about the proper target address−>

going to send the 1 byte

| | COMPUTER_1 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_TX_DATA_ACK : : 0 x28

| | I2C_0_1 | | I am sending the DATA to I2C Decoder in state 0x18
| | I2C_0_1 | | I am sending the DATA to I2C Decoder : : cd

71 | | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
| | I2C_0_2 | | : : just received the request from the I2C

decoder

I2C decoder : : data : : len : : adr | cd | 1 | 0 |
| | I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK back

| | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−
76 | | COMPUTER_2 | | isr : : ST_RDATA

| | COMPUTER_2 | | I am saving : : cd : : 3
| | COMPUTER_2 | | isr : : Nothing has been executed

| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is found

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 0 : : Socket id : : 1
81 | | I2C_0_1 | | : : just received the request from the I2C decoder

I2C decoder : : data : : len : : adr | 1 | 1 | 1 |
| | I2C_0_1 | | : : ACK has been received about the proper target address−>

going to send the 1 byte

| | COMPUTER_1 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_1 | | isr : : ST_TX_DATA_ACK : : 0 x28

86 | | I2C_0_1 | | I am sending the DATA to I2C Decoder : : ef
| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
| | I2C_0_2 | | : : just received the request from the I2C

93

decoder

I2C decoder : : data : : len : : adr | ef | 1 | 0 |
| | I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK back

91 | | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−
| | COMPUTER_2 | | isr : : ST_RDATA
| | COMPUTER_2 | | I am saving : : ef : : 4
| | COMPUTER_2 | | isr : : Nothing has been executed

| | COMPUTER : : I2C_0_2 | | I am sending ACK to the source to

say that target is found

96 | | I2C Decoder | | : : I am sending out the message to every

target that I have : : 0 : : Socket id : : 1
| | I2C_0_1 | | : : just received the request from the I2C decoder

I2C decoder : : data : : len : : adr | 1 | 1 | 1 |
| | I2C_0_1 | | : : ACK has been received about the proper target address−>

going to send the 1 byte

| | COMPUTER_1 | | interrupt_ I2C0_IRQHandler triggered−−
101 | | COMPUTER_1 | | isr : : ST_TX_DATA_ACK : : 0 x28

| | COMPUTER_1 | | 0x28 : : 3rd option

| | COMPUTER : : I2C_0_1 | | I am sending STOP signal for everybody to indicate

the end of sending

| | I2C Decoder | | : : I am sending out the message to every

target that I have : : 1 : : Socket id : : 0
| | I2C_0_2 | | : : just received the request from the I2C decoder

106 I2C decoder : : data : : len : : adr | 2 | 1 | 1 |
| | I2C_0_2 | | I have received new DATA going to call the

interrupt and send ACK back

| | COMPUTER_1 | | main2 . . .
| | COMPUTER_2 | | interrupt_ I2C0_IRQHandler triggered−−

111 | | COMPUTER_2 | | isr : : ST_RSTOP
| | COMPUTER_2 | | c4 . . .
Reg checking : : 2 3
Reg checking : : 4 5
Reg checking : : ab

116 Reg checking : : cd
Reg checking : : ef
| | COMPUTER_2 | | finishing . . . 1

| | COMPUTER_1 | | finishing . . . 1
SystemC : simulation stopped by user .

121 | | PLATFORM | | : : Finished sc_main .

94

Appendix D D
D.1 Top object of OBC model - code explanation

This Section covers some important parts of the model code to clarify the modeling
approach. Listing D.1 shows the definition of model components. I2CDecoder is the
I2C Decoder that provides the interconnection between the computers. Parameters
< 2, 2 > means that the I2C Decoder has 2 initiator sockets and 2 target sockets,
which is expected since each OBC model has one target socket and one initiator socket
towards I2C Decoder. reset wire and reset wire1 are signals from watchdog towards the
CPU to simulate the reset procedure of the CPU. Any I2C controller has configuration
registers that are modeled with the memory regions PerifBBReg and PerifBBReg 2
(bit-bang regions).

Listing D.1: The definition of model components

I2Cdecoder <2,2> I2CDecoder1;
///*** OBC1 (PCB 1)

decoder <2,6> Decoder1;///Internal
4 Memory_module eFlash;

Memory_module eSRAM;
Memory_module DRAM;
armm cpu1;
watchdog wdog1;

9 icmNetObject reset_wire; ///reset wire

///---Peripherals

14 Memory_module PerifBBReg;
I2C I2C_0_1;

///***OBC2 (PCB 2)

19 decoder <2,6> Decoder2;///Internal
Memory_module eFlash2;
Memory_module eSRAM2;
Memory_module DRAM2;
armm cpu2;

24 watchdog wdog2;
icmNetObject reset_wire2;///reset wire

///---Peripherals

Memory_module PerifBBReg_2;
I2C I2C_0_2;

95

Different memory storages at different positions of the SmartFusion memory map
are modeled with different objects of Memory model type. During the object creation
the memory parameters are defined: volume, name, etc. (see Listing D.2). Memory
ranges are defined in the constructor (see Listing D.3).

Listing D.2: The Model components initialization

, Decoder1("Decoder1")
30 , eFlash ("eFlash", "sp1", 0x100000,4,"flash",0,0)

, eSRAM ("eSRAM", "sp1", 0x100000,4,"sram", 36,12)
, DRAM ("DRAM", "sp1", 0x2000000,4,"flash", 36,12)
, cpu1 ("cpu1", 0, ICM_ATTR_DEFAULT|ICM_ATTR_SIMEX, attrsForcpu(variant))
, wdog1("wdog1","sp1",0x1000,4)

35 , reset_wire("resetNet")

///--- Peripherals

,I2CDecoder1("I2CDecoder1")
,PerifBBReg("PerifBBReg", "sp1", 0x1000000,4,"sram", 36,12)

40 ,I2C_0_1 ("I2C_0_1", "sp1", 0x1000,4)

///**** OBC2 (PCB 2)

, Decoder2("Decoder2")
, eFlash2 ("eFlash2", "sp1", 0x100000,4,"flash",0,0)

45 , eSRAM2 ("eSRAM2", "sp1", 0x100000,4,"sram", 36,12)
, DRAM2 ("DRAM2", "sp1", 0x2000000,4,"flash", 36,12)
, cpu2 ("cpu2", 1, ICM_ATTR_DEFAULT|ICM_ATTR_SIMEX, attrsForcpu(variant))
, wdog2("wdog2","sp1",0x1000,4)
, reset_wire2("resetNet2")

50 , PerifBBReg_2 ("PerifBBReg_2", "sp1", 0x10000000,4,"sram",0,0)
, I2C_0_2 ("I2C_0_2", "sp1", 0x1000,4)

Listing D.3 also shows the structure of the interconnections, e.g. cpu1 is connected
to Decoder1. cpu1 uses 2 target sockets of Decoder1 #0 and #1 (first 3 line of Listing
D.3). These two interconnections correspond to Data and Address buses.

Listing D.3: The Model components’ constructor

cpu1.INSTRUCTION.socket(Decoder1.target_socket[0]); /// CPU

cpu1.DATA.socket(Decoder1.target_socket[1]);

55 /// Decoder1 slaves

///-- embedded SRAM memory

Decoder1.initiator_socket[0](eSRAM.sp1); /// Memory >> Embedded SRAM

Decoder1.setDecode(0, 0x0, 0xfffff);
///-- embedded Flash memory

60 Decoder1.initiator_socket[1](eFlash.sp1); /// Memory >> Embedded Flash

Decoder1.setDecode(1, 0x00100000, 0x001fffff);
///-- Decoder1 connect to Watchdog slave

Decoder1.initiator_socket[2](wdog1.sp1);/// Watchdog

Decoder1.setDecode(2,0x40006000,0x40006fff);
65 ///-- DRAM memory

Decoder1.initiator_socket[3](DRAM.sp1); /// Memory >> External DRAM

Decoder1.setDecode(3, 0x60100100, 0x621000ff);

96

/// -***- Peripherals -***-

70 Decoder1.initiator_socket[4](PerifBBReg.sp1); /// Memory of Peripheral

///Bit-Band (BB) Region

Decoder1.setDecode(4, 0x52000000,0x52ffffff);

///-- I2C_0_1 address space and registers

75 Decoder1.initiator_socket[5](I2C_0_1.sp1); /// Memory >> I2C

Decoder1.setDecode(5, 0x40002000,0x44002fff);
I2C_net.connect(&I2C_0_1,PerifBBReg.getMemory()−>get_mem_ptr()+0x40000);
/// I2C connection with the I2C net through TLM

I2C_0_1.socket_send.bind(I2CDecoder1.target_socket[0]);
80 I2C_0_1.socket_receive.bind(I2CDecoder1.initiator_socket[0]);

I2C_0_1.register_decoder(&(I2CDecoder1.BUSY),&(cpu1)); /// registration of

///the decoder and the corresponding processor

Listing D.3 represents how memory ranges for different memory storages can be
specified. We also can see how the sockets of I2C.obj are connected to I2CDecoder.

TLM methodology simplifies the communication procedures and the model com-
ponents: the data sending is based on a package sending. The high observability of
the model structure allows the tuning of TLM model to a particular interconnection
architecture. It is also possible to define the latency of sending the particular amount
of data.

97

SystemC-based On-board Computer Modeling

for Design Fault-Tolerance Assessment

Burlyaev Dmitry (the presenter, a student)

EEMCS/ME/CAS

Delft University of Technology

Delft, the Netherlands

burlyaev.dmitry@gmail.com

Tel.: +31634767736

Rene van Leuken

EEMCS/ME/CAS

Delft University of Technology

Delft, the Netherlands

t.g.r.m.vanleuken@tudelft.nl

Abstract— Space radiation can induce catastrophic faults

in electronic systems. Since CubeSat satellites utilize

Commercial Off-The-Shelf (COTS) components that are

radiation-sensitive by nature, the CubeSat On-Board

Computers (OBCs) have to use fault mitigation techniques

to prevent mission failures. The traditional analysis of the

OBC fault-tolerance is limited due to the hardware

unavailability at early development stages and low

interpretability of radiation tests. This paper presents a

SystemC-based modeling methodology which allows the

evaluation of the fault mitigation techniques and the

observation of fault consequences. The methodology

includes the use of fault models of possible radiation

effects in different electronic components that are based

on published empirical observations. A dedicated fault-

injection mechanism controls and tracks the fault

introduction into the system model during real CubeSat

control algorithm execution. Consequently, we can trace

the injected faults in the different components and observe

the resulting errors. This allows us to assess fault

mitigation techniques as will be shown in several

examples, an attitude control and a JPEG compression

algorithm. The work shows how the error of the attitude

control algorithm can be minimized to 1.7•10-7rad/sec and

the number of accumulated memory bit-flips can be

reduced by 80-87% during the image compression.

Keywords- CubeSat, SystemC modeling, fault mitigation

techniques, system-on-chip, FMEA.

I. INTRODUCTION

Modern electronic systems are becoming more and
more complex incorporating a large number of
transistors whose sizes are shrinking from one
generation to another. When chip fabrication entered the
deep submicron technology, the reliability issues arose
on the component level and on the system level
consequently [1-3]. One of such existing issues is
radiation-induced soft errors that are common not only
in the open space but in terrestrial conditions too [4].
Thus, fault mitigation techniques became the integral
part of any system level design that prevents system
failures and disastrous consequences in such dependable
applications as satellites, avionics, medical, and
automotive devices.

An important question in the design of dependable
systems is how to assess the efficiency of the applied
fault mitigation techniques for particular application.
Such approach as testing for radiation-induced faults
does not necessarily guarantee specific errors, nor
explain their nature or behavior [5]. Another problem is
to estimate the influence of the radiation sensitivity of
each component on the system level behavior taking into
account that modern components incorporate sub-
systems of different technologies. However, both of
these issues can be resolved by system and fault
modeling that can reveal the most vulnerable parts of the
design. Due to the high complexity of each component
and the system as a whole, the utilization of high level
abstraction modeling language, such as SystemC, is
imperative.

SystemC is a system-level modeling language that
allows utilizing a mixture of various abstraction levels
[6]. SystemC-based design platforms take advantage of
Intellectual Property (IP) reuse to reduce design
complexity, development cost and time.

Since modern electronic devices can incorporate
both a processor and Field-Programmable Gate Array
(FPGA) (or their variations, e.g. a processor realized in
FPGA), the requirement on the hardware-software co-
modeling and co-simulation is essential for early
development stages. This requirement can be satisfied
with SystemC Transaction-Level Modeling (TLM)
methodology [7]. TLM cleanly dissociates functions and
communications in SystemC models reducing the
modeling complexity and the simulation time.

System vulnerability can be revealed by Failure
Mode and Effect Analysis (FMEA) methodology [8]
that is usually accompanied with the fault injection
techniques to analyze the impact of system/component
failures and to measure the risks of the system [9]. A
common SystemC fault injection approach is the
insertion of Fault Injection Module (FIM) into the
interconnections of the functional blocks, where FIM is
the controller of a fault injection process that can be
centralized [11] or distributed [9].

The research in this paper was carried out under a contract with

Innovative Solutions In Space B.V.

However, until now the SystemC TLM design level
modeling with faults injection has been applied only to
SoC-scale systems [9, 10] without consideration of
software-hardware co-design, fault mitigation
techniques implementation, and a comprehensive fault
model library.

This work is focused particularly on the software-
hardware co-modeling that provides an opportunity to
understand the system behavior when diverse faults are
introduced into different components. The introduced
approach makes it possible to assess the efficiency of
the applied fault mitigation techniques on the system
level.

This work has been done in the context of satellite
applications, in particular for CubeSat [12] On-Board
Computers (OBCs). This category of applications is
naturally exposed to the high level of radiation and,
consequently, to diverse radiation-induced faults.
However, the presented approach has a generic
character, which makes it applicable for any electronic
system.

The rest of the paper is organized as follows. Section
II presents the modeling approach of the OBC. Section
III observes how the fault injection technique has been
integrated to the OBC system model. Section IV
demonstrates several case studies (Fibonacci sequence
calculation, JPEG image compression, and Kalman
Filtering for Satellite Attitude Control) that show how
mitigation techniques can be assessed and hardware-
software co-modeling implemented.

II. SYSTEM MODEL

System-on-Chip (SoC) with CPU and FPGA is
chosen as a core component of the OBC model to cover
the most general OBC architecture. The SmartFusion
SoC [13] is one of the most appropriate candidates for
the satellite OBC that has to work in the space radiation
environment at altitudes lower 750 km. Thus, it is
chosen as a reference architecture for this work.

SmartFusion SoC includes Flash-based FPGA that

is more immune to soft errors [14] than SRAM-based

ones. SmartFusion SoC incorporates the majority of on-

chip subsystems that can be met in the advanced

Commercial Of-The-Shelf (COTS) electronics: a hard-

core Cortex-M3, Flash-based FPGA fabric, Embedded

Flash and SRAM memories, Analog subsystem, AMBA

bus, etc.

A. OBC architecture modeling

The model structure of the OBC is presented in
Fig.1; it incorporates the above-mentioned Cortex-M3
CPU, memories, the central bus (the Decoder plays the
role of the central AMBA bus), FPGA fabric, a
watchdog, and timers.

The existing instruction-accurate model of the
processor Cortex-M3 has been obtained from the Open
Virtual Platforms (OVP) project [14]. OVP provides a
SystemC TLM wrapper for the Cortex-M3 model which
makes the integration of the processor into the OBC
model easier and faster.

Figure 1. OBC model structure

The Watchdog and the Timer objects correspond to
Watchdog and System Timers of the SmartFusion
device [15]. The Watchdog object is connected to the
reset port of the CPU and clocked at 100 MHz. When
the Watchdog timeouts, the reset signal to CPU
simulates the power-cycling (or reset) procedure. The
Watchdog object also signalizes to volatile memories
(the volatility is set during memory object creation)
when it is to be erased because of the simulated power
cycle. The Timer objects are connected to CPU interrupt
ports and provide interrupt capabilities.

Although Fig.1 mainly represents the SmartFusion
architecture, off-chip components (e.g. external
SDRAM) can be also simulated by their connection to
the Decoder. However, the communication delay of
such component should be higher than on-chip
components have.

B. FPGA fabric model incorporation

This work introduces the software-hardware co-
design approach when the software executed by CPU
and FPGA configuration described in RTL SystemC are
simulated together. This approach provides an
opportunity to verify and research the behavior of the
system when both CPU and FPGA participate in OBC
work. In order to introduce the FPGA fabric
configuration to the OBC model, the intermediate FPGA
wrapper has been created.

The Fabric Controller Model, represented in Fig.1
and Fig.2, is the wrapper of the synthesizable FPGA
RTL SystemC configuration. The portability of the
FPGA configuration to the real hardware is guaranteed
by the Fabric Controller Model as it operates with the
signals according to the protocol standards (AMBA
AHB, FIFO, etc.).

Figure 2. The FPGA fabric model as a part of the OBC model

The FPGA fabric in the SmartFusion device has a
direct access to on-chip SRAM blocks through a FIFO
controller that is modeled again by the Fabric Controller
Model (see Fig.2).

The Flash-based FPGA fabric significantly increases
the flexibility of OBC design and widens the design
space of fault-mitigation techniques. One of the
prospective approaches is to outsource the fault-
mitigation functionality to the FPGA as it will be shown
in Section IV. For instance, the FPGA can make copies
of the data in radiation vulnerable SRAM/DRAM
memories and continuously compare them. Thus, the
FPGA can incorporate the memory scrubber
functionality. Another example is the implementation of
Error Detection and Correction (EDAC) techniques in
the FPGA fabric, e.g. EDAC based on Hamming code.

III. FAULT INJECTION FRAMEWORK

A. Fault Injection Supporting Objects

The fault injection technique implemented in the

OBC model mainly operates with the object pointers.

When any object is created (e.g. CPU, memory

storage), it sends the identification information and the

object pointer to the Injector object (see Fig.1).

Consequently, when the OBC model is initialized, the

Injector is aware of the OBC’s hardware configuration

and it associates the fault models and fault occurrences

with each component according to the predefined fault

rates. Thus, it generates the fault list that is used during

the simulation to inject faults at a predefined moment in

time (controlled by the Analyzer object).

The faults inside the user memory of Flash-based

FPGA fabric can be modeled by utilizing the Fabric

Controller Model as a usual FIM.
The Observer object saves necessary tracking

information about the simulation process (e.g. sequence
of the executed instructions per time, transactions on the
central bus).

B. System failure modes

The OBC fault tolerance estimation is based on the
FMEA method [9]. The potential failure modes of the
OBC can be found from the fault injection procedures
during each simulation cycle. The system failure modes
can be classified as:

1. Incorrect data/Correct time (ID/CT): a
benchmark execution is finished normally (on time) but
the final execution results are wrong

2. Correct data/Incorrect time (CD/IT): execution
results are correct, but the process takes a longer time
than originally allocated

3. Incorrect data/Incorrect time (ID/IT): execution
results are not correct, the simulated execution is not
finished as expected by the program flow and was
interrupted externally

4. Processor Deadlock (PD)

5. Read Align Exception (RAE)

6. Write Align Exception (WAE)

7. Read Privilege Exception (RPE)

PD, RAE, WAE, and RPE may belong to ID/IT or
CD/IT, so these failure modes are researched separately
to see the final picture more clearly.

IV. CASE STUDIES

This section presents several case studies that show
how the created OBC model can be used for software-
hardware co-design and system vulnerability estimation.

A. Fibonachi sequence calculation

The calculation of Fibonacci algorithm is chosen as
a benchmark algorithm. The computation of the
algorithm is performed up to the 15

th
 element. Each

element is calculated in a recursive way which
guarantees that the calculation of the n

th
 and (n+1)

th

element are data independent and the calculation of each
element takes longer than the preceding one. Each
simulation is repeated for 300 times to obtain a
statistical overview of possible influences of bit-flips
induced in CPU registers (or Single Event Upsets -
SEU). The simulation results show the dependence of
the incorrect result ratio on the fault rate (see Fig. 3) as
well as the dependence between the fault modes and the
fault rate (see Fig. 4).

Figure 3. Influence of SEU rate in CPU on incorrect result ratio

Figure 4. Influence of SEU rate in CPU on Failure Mode ratio

Both Fig. 4 and Fig. 5 show expected results: the
incorrect results ratio grows with higher fault rate. The
success of the calculation also depends on the execution
time: the faster the calculation is performed, the lower
the probability that the fault occurs during this short
period of time. The percentage of ID/CT (or Silent Data
Corruption [9]) stays approximately the same (see
Fig.4). This observation means that for this particular
program the ratio of faults that do not cause the CPU
hanging, nor exceptions but do corrupt the final results
stays approximately the same. This simulation result can
be explained by the small number of General Purpose
Registers (GPR) used for the execution of the algorithm
and the increasing probability that the CPU will hang at
higher fault rates, which increases PD ratio and masks
ID/CT faults.

In the next experiment, the same Fibonacci sequence
calculation is performed but after each member
computation, the CPU resets the watchdog. Single Event
Functional Interrupts (SEFI, or CPU hanging) are
randomly introduced to the CPU during execution.
Consequently, if the CPU freezes, the watchdog resets it
which restarts the program.

Fig.5 Influence of SEFI rate on Failure Modes

Fig.6 Influence of SEFI rate on Failure Modes with the tuned
watchdog

Fig.5 presents the case where a watchdog allows a
longer period than the calculation requires. As a result,
CPU waits for an extended period of time as opposed to
the case of Fig.6. Fig. 6 presents the case where the
watchdog timeout period has been reduced by
approximately four times, to 102.3 µs. This watchdog
period is more tuned to the algorithm; hence in the case
of SEFI the CPU is halted for a shorter period of time
before the watchdog times out and resets the CPU.
Consequently, the allocated time becomes sufficient to
execute the whole algorithm at low fault rates; the
allocated time equals tree execution time without the
faults injection.

B. JPEG image compression

Typically, the data rate of Cubesat downlinks is very
limited (lower 1 Mbit/sec). Therefore, the JPEG
compression scheme plays an important role in on-board
data processing.

Fig.7 shows a black-and-white source image with
2000 SEUs (several SEUs marked with orange). The
JPEG compression output (30 times compressed) is
presented in Fig. 8. The corruption of the output pictures
is visible and marked with orange. While 2000 SEUs is
an exaggerated value, they do allow the visualization of
the effect, whereas 40 or 400 bit-flips did not show any
visible change in the JPEG output.

Fig. 7 Source image with 4000 SEUs

Fig. 8 JPEG output, the source is corrupted

To prevent corruption visible in Fig.8, the FPGA
scrubbing technique mentioned in Section II.B is
implemented. After the ARM core starts the JPEG
compression execution, the scrubbing unit implemented
in the FPGA, begins to copy the source picture to two
backup versions. Since the SEU occurrence is randomly
distributed in time, the copied pictures may have small
or zero number of corrupted pixels. After copying, the
FPGA scrubber continuously compares the source
picture, with which the CPU is working, to the first
backup copy. If the scrubber finds a difference, it
compares it with the corresponding byte in the second
backup copy and makes a decision about the most
probable correct value of this byte.

As a result, the number of corrupted bytes in the
source image has been reduced by 80-87% and there is
no visual corruption in the output picture (see Fig.9).
Byte-by-byte comparison of the output picture with the
faultless compressed version reveals the difference in a
majority (> 92%) of the file’s bytes. However, this
difference cannot be seen since the JPEG compression is
making a local average of the pixel color values. This
way SEUs are filtered out.

Fig.9 JPEG output, source is corrupted, FPGA scrubbing
implemented

Fig. 10 JPEG compression with introduced 56-bit long
multiple bit flip

Only when multiple bit flips are introduced, the
corruption in the compressed picture becomes visible
(see Fig. 10, no scrubbing implemented). Although, the
probability of long bit-flips like this is significantly
lower.

C. Kalman filter of Attitude Control Algorithm

A satellite’s determination and attitude control
algorithm provides knowledge and control over a
satellite orientation in space. In the case of possible
erroneous operation the orientation can be disturbed,
which can have a detrimental effect on the satellite’s
mission. To understand what effects SRAM SEUs have

on this type of algorithm, 1000 SEUs have been
randomly introduced to the memory where the
algorithm’s variables are stored (sections .bss and .data).
The injected errors are uniformly distributed in time and
physical area. The correct output of Kalman filter is
presented in Fig.11(three axes). The Kalman output with
SEU introduction is presented in Fig.12.

Fig.11 Correct Kalman filter output

Fig.12 Kalman filter output with SEUs introduction

Comparing Fig. 11 and Fig.12, it is easy to see the
effect of the injected errors. This can be easily detected
by software. The detection of such behavior plays an
important role since if Kalman losses stability (as it
happened after 875 sec), it may not converges again
until the external reset. We have implemented the
software fault detection based on the detection of the
output value jump bigger than 0.001 rad/sec. If such
fault has been identified, the current output value is
ignored and the Kalman filter resets. As a result of the
implemented technique, the output values became very
close to Fig. 11: the average difference between the
correct filter output and the output with the software
mitigation technique equals 1.7·10

-7
rad/sec for the

period 0-900 seconds. This difference is acceptable and
can be considered as negligible since it is four orders of
magnitude less than the scale of the output values.

V. CONCLUSIONS

In this study, a novel methodology for fault-
tolerance assessment of CubeSat OBCs is presented. It
solved the problem of software-hardware co-design
when the hardware may be not available. The
methodology allows the early assessment of system
vulnerability, which may help to improve the overall
satellite reliability.

The required FPGA modeling approach is presented
and the comprehensive OBC model is built.
Consequently, the fault mitigation techniques that are
implemented in FPGA or CPU can be verified and their

efficiency can be evaluated. The fault injection
methodology is described and the case studies are given.

 The case studies include the investigation of the
system behavior under faults injection conditions. The
chosen benchmark programs include Fibonacci
sequence calculation, JPEG compression algorithm, and
Kalman filtering for the satellite attitude control
algorithm. The work shows how to reduce the number
of accumulated memory bit-flips by 80-87% using a
FPGA-based memory scrubbing technique. The paper
presents a solution how to minimize the malfunction of
a Kalman filter due to soft errors to guarantee the correct
CubeSat orientation: the error was minimized to 1.7·10

-7

rad/sec on average on axis. The benefits of the presented
methodology are also shown in the JPEG picture
compression case study.

The exaggerated fault rates have been used to
explicitly show the trends in the system behavior.
Hence, the comparative analysis of radiation effects and
the mitigation techniques is possible and was
demonstrated in this paper.

The Actel SmartFusion platform was chosen for the
realization of OBC implementation. This SoC includes a
Cortex-M3 ARM core, FPGA fabric, and an Analogue
Compute Engine, allowing the creation of a highly
flexible design. The created model can be easily adapted
for other OBC configurations.

REFERENCES

[1] C. Constantinescu, “Impact of Deep Submicron Technology on
Dependability of VLSI Circuits”, IEEE Intl. Conf. On
Dependable Systems and Networks(DSN), pp. 205-209, 2002.

[2] P. Shivakumar, “Modeling the Effect of Technology Trends on
the Soft Error Rate of Combinational Logic,”DSN, pp. 389-
398,2002.

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft
Errors Caused by Single Event Upsets in CMOS Processes,”

IEEE Trans. On Dependable and Secure Computing, Vol. 1, No.
2, pp. 128-143, April-June 2004.

[4] N. Kanekawa, Eishi H. Ibe, Ta kashi Suga, and Yu taka
Uematsu,”Dependability in Electronic Systems. Mitigation of
Hardware Failures, Soft Errors, and Electro-Magnetic Dis-
turbances.” ISBN 978-1-4419-6714-5. Springer, 2011.

[5] Andrew S. Keys and Michael D. Watson, “Radiation Hardened
Electronics for Extreme Environments,” Source of Acquisition
NASA Marshall Space Flight Center.

[6] T. Grtker, S.Liao, G.Martin, and S.Swan, ”System Design with
SystemC,” ISBN 978-1-4020-7072-3. Kluwer Academic
Publishers, 2002.

[7] Frank Ghenassia, “Transaction Level Modeling with SystemC
TLM Concepts and Applic-ations for Embedded Systems,”
ISBN 10 0-387-26232-6. Springer, 2005.

[8] J.C.Ruiz, P. Yuste, P. Gil, and L. Lemus, “On Benchmarking
the Dependability of Automotive Engine Control Applications,”
International Conference on Dependable Systems and
Networks, pages 857-866, June-July 2004.

[9] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, “SoC-level
Risk Assessment using FMEA Approach in System Design with
SystemC,” IEEE International Symposium on Industrial
Embedded Systems, pp. 82-89, July 2009.

[10] Yung-Yuan Chen, Chung-Hsien Hsu, and Kuen-Long Leu,
“Analysis of System Bus Transaction Vulnerability in SystemC
TLM Design Platform,” Proc. the 3rd WSEAS International
Conference on Computer Engineering and Applications,
pp.284-289, 2009.

[11] K.Rothbart, et al, “A Smart Card Test Environment using Multi-
level Fault Injection in SystemC,” 6th IEEE Latin-American
Test Workshop, pp. 103-108, March-April 2005.

[12] S. Lee , A. Hutputanasin, A. Toorian, W. Lam, R. Munakata,
“The CubeSat Program. CubeSat Design Specification,” 12
edition. California Polytechnic State University. Available
from:<http://www.cubesat.org/>.

[13] Microsemi Corporation. “Smartfusion Customizable System-on-
Chip (CSoC),” Revision 7, August 2011.

[14] The official web-site of Open Virtual Platforms (OVP) project.
<http://www.ovpworld.org/> .

[15] Actel Corporation, “Actel SmartFusion Microcontroller
Subsystem Users Guide,” 50200250-1 edition, pp.163-171,
pp.302-304, May 2010.

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
1

A Simulator of On-Board Computers for Evaluating Fault-Mitigation Techniques

Burlyaev Dmitry
(1)

, Rene van Leuken
(2)

(1)

 Delft University of Technology (EEMCS/ME/CAS)/Innovative Solutions In Space B.V.,

Molengraaffsingel 12-14, 2629 JD, Delft, the Netherland, (+31) 634 767 736,

d.burlyaev@isispace.nl
(2)

 Delft University of Technology (EEMCS/ME/CAS), Postbus 5, 2600 AA, Delft, the Netherland,

t.g.r.m.vanleuken@tudelft.nl

ABSTRACT

This paper presents a SystemC-based methodology for CubeSat On-Board Computers (OBCs)

modeling and simulation which allows the evaluation of the software and hardware fault mitigation

techniques and the observation of radiation-induced fault consequences. The traditional analysis of

the OBC fault-tolerance is limited due to the hardware unavailability at early development stages

and low interpretability of radiation tests. Using the presented approach, the OBC model has been

built and used for the comparative analysis of the mitigation techniques. The radiation environment

for typical CubeSat missions are estimated, fault rates are calculated, and the corresponding fault

models are created based on published empirical observations. The radiation-effects influence on

the output of a CubeSat control algorithm was observed through a fault injection procedure into the

OBC model. The methodology allows us to assess fault mitigation techniques as it will be shown in

several examples, such as an attitude control and a JPEG compression algorithms. The work shows

how the error of the attitude control algorithm can be minimized to 1.7•10
-7

rad/sec and the number

of accumulated memory bit-flips can be reduced by 80-87% during the image compression. The

short simulation time allows the extensive statistical analysis for such modeling and simulation

approach.

1 INTRODUCTION

Modern electronic systems are becoming more and more complex incorporating a large number of
transistors whose sizes are shrinking from one generation to another. With the introduction of the
deep submicron technology, reliability issues significantly increased on the component and system
levels [1-3]. One of such issues is radiation-induced soft errors. To circumvent the effect of the soft
errors, fault mitigation techniques are used in critical applications as satellites, avionics, medical
and automotive devices.

An important question in the design of dependable systems is how to assess the efficiency of the
applied fault mitigation techniques for a particular application. Testing for radiation-induced faults
using radioactive isotopes does not guarantee the injection of specific errors, nor explain their
nature or behavior [4]. Another problem is to estimate the influence of the radiation sensitivity of
each component on the system level behavior taking into account that modern components
incorporate sub-systems of different technologies. Both of these issues can be resolved by system
and fault modeling. Such modeling provides the controlled fault-injection procedure and reveals
the most vulnerable parts of the design. Due to the high complexity of each component and the
system as a whole, the utilization of high level abstraction modeling language, such as SystemC, is
imperative. The requirement on the hardware-software co-design and co-simulation is met with
Transaction-Level Modeling (TLM) methodology [6].

This work has been done in the context of satellite applications, in particular for CubeSat [11] On-

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
2

Board Computers (OBCs). This category of applications is naturally exposed to the high level of
radiation and, consequently, to diverse radiation-induced faults. The radiation environment
assessment for CubeSat satellites is also presented in this paper.

The reminder of the paper is organized as follows. Section 2 observes the related works about the

system modeling and fault-tolerance analysis. Section 3 presents the modeling approach of the

OBC. Section 4 observes the ESA SPENVIS simulation results for the typical CubeSat radiation

conditions. Section 5 shows how the fault injection technique has been integrated into the OBC

system model. Section 6 demonstrates several case studies that show how mitigation techniques can

be analyzed and hardware-software co-simulation implemented. Section 7 concludes the paper and

summarizes the presented work.

2 RELATED WORK

A common existing SystemC approach to analyze the fault effects is based on the insertion of Fault
Injection Module (FIM) into the interconnections of the functional blocks. FIM plays a role of the
controller of a fault injection process that can be centralized [10] or distributed [8, 9]. However,
such approach has been applied without consideration of hardware-software co-design, fault
mitigation techniques implementation, and a comprehensive fault model library.

A general framework for reliability assessment in Multi-Processor SoC has been presented in the
work [17]. The framework was created for the design space exploration and is not concentrated on
radiation-related faults in COTS components, e.g. Single-Event Functional Interrupts (SEFI). The
space-related works, like [18 and included], mainly discuss the RTL simulation with the assumption
that the IC configuration of the used components are known. However, since CubeSats utilize
COTS parts, all electronic components can be considered as black boxes.

When working with the limited knowledge about the internal components configuration, extensive
fault-model library (based mainly on previous empirical observations) and statistical approaches are
required to explore possible system behavior. The presentation of such approach is the main
contribution of this paper.

3 SYSTEM MODEL

System-on-Chip (SoC) with CPU and FPGA is chosen as a core component of the OBC model to
cover the most general OBC architecture. The SmartFusion SoC [12] is one of the most appropriate
candidates for the CubeSat OBC that has to work in the space radiation environment at altitudes
lower 750 km. It includes Flash-based FPGA that is more immune to soft errors [13] than SRAM-
based FPGAs. The SmartFusion SoC incorporates the majority of on-chip subsystems that can be
met in the advanced COTS electronics: a hard-core Cortex-M3, Flash-based FPGA fabric,
Embedded Flash and SRAM memories, Analog subsystem, AMBA bus, etc.

3.1 OBC architecture modeling

The model structure of the OBC is presented in Fig.1; it incorporates the above-mentioned Cortex-
M3 CPU, memories, the central bus (the Decoder plays the role of the central AMBA bus), FPGA
fabric, a watchdog, and timers [14].

The existing instruction-accurate model of the processor Cortex-M3 has been obtained from the
Open Virtual Platforms (OVP) project [13]. OVP provides a SystemC TLM wrapper for the Cortex-
M3 model which makes the integration of the processor into the OBC model easier and faster.

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
3

Figure 1. OBC model structure

The Watchdog object is connected to the CPU reset port and clocked at 100 MHz. When the
Watchdog timeouts, the reset signal to CPU simulates the power-cycling (or reset) procedure. The
Watchdog object also signalizes to volatile memory (the volatility is set during memory object
creation) when it is to be erased because of the simulated power-cycle. The Timer objects are
connected to CPU interrupt ports and provide interrupt capabilities.

Although Fig.1 mainly represents the SmartFusion architecture, off-chip components (e.g. external

SDRAM) can be also simulated by their connection to the Decoder. However, the communication

delay of such components should be higher than on-chip components have.

3.2 FPGA fabric model incorporation

We introduce the hardware-software co-design approach where the software, executed by CPU, and
FPGA configuration, described in RTL SystemC, are simulated together. This approach provides an
opportunity to verify and study the behavior of the system when both CPU and FPGA are used
concurrently. An intermediate FPGA TLM wrapper has been created in order to introduce the
FPGA fabric configuration to the OBC model.

The Fabric Controller Model, represented in Fig.1 and Fig.2 (red zone), is the TLM wrapper of the
synthesizable RTL SystemC FPGA configuration (blue zone). The portability of the RTL FPGA
configuration to the real hardware is guaranteed by the Fabric Controller Model as it operates with
the signals according to the protocol standards (AMBA AHB, FIFO, etc.).

Figure 2. The FPGA fabric model as a part of the OBC model

The FPGA fabric in the SmartFusion device has a direct access to on-chip SRAM blocks through a
FIFO controller. This communication is again modeled by the Fabric Controller Model (see Fig.2).

The Flash-based FPGA fabric significantly increases the flexibility of OBC design and widens the

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
4

design space of fault mitigation techniques (see Section V).

4 RADIATION ENVIRONMENT ASSESSMENT FOR CUBESATS

The radiation environment for CubeSat missions has been estimated using European Space Agency
(ESA) SPENVIS system [15]. The estimated total mission dose with 1.5 mm aluminum shielding is
never higher than 3.2 krad at 750 km regardless the inclination for the typical CubeSat operational
lifetime (three years) (see Fig.3). This is also supported by the empirical APEXRAD model [16].
The particle spectra can be considered as equal to zero when the Linear Energy Transfer (LET) is
higher than 32.5 MeV·cm

2
/mg (see Fig.4).

Figure 3. Simulation results: Total mission dose vs aluminium shielding width

Figure 4. Simulation results: Spacecraft shielded LET(Si) spectrum

T
o

ta
l

M
is

si
o

n
 D

o
se

Aluminum shielding width

In
te

g
ra

l
F

lu
x

 (
m

-2
sr

-1
s-1

)

LET (MeV cm
2
mg

-1
)

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
5

According to the investigation of published radiation test results (see Table I), such levels of Total
Ionizing Dose (TID) and the width of LET spectrum cannot lead to destructive consequences in
COTS components, like Single-Event Latchup (SEL) or Single Hard Error (SHE). Thus, the
presented fault models are focused on soft errors and Single-Event Functional Interrupts (SEFI).
The fault-rates (Table I) are calculated using the output LET(Si) spectrum from SPENVIS system
and cross-sections from empirical observations according to the method described in [19].

TABLE I. Radiation sensitivity of COTS components, the worst case

Component type Malfunction

at TID

(krad)

SEL at LET

(MeV-cm
2
/mg)

SEU rate

(upset/bit/day)

SEFI rate

(event/device/day)

DRAM [21] > 20 51 1.45·10
-8

0.26

SRAM [22] 20[20] 117 1.27·10
-4

 not observed

Flash NAND [23] 15 [24] - 1.38·10
-9

 0.013

Flash NOR [23] 10-20 - tolerant 0.0013

While the empirical observations show low fault rates, this work also includes the case studies with

exaggerated fault rates to show the trend of the system behaviour.

5 FAULT INJECTION FRAMEWORK

5.1 Fault Injection Supporting Objects

The fault injection technique implemented in the OBC model mainly operates with object pointers.

When any object is created (e.g. CPU, a memory storage), it sends the identification information

and the object pointer to the Injector object (see Fig.1). Consequently, when the OBC model is

initialized, the Injector associates the fault models and fault occurrences with each component

according to the predefined fault rates and the fault model library.

The faults inside the user memory of Flash-based FPGA fabric can be modeled by utilizing the

Fabric Controller Model as a usual FIM.

The Observer object saves the necessary tracking information about the simulation process (e.g.

sequence of the executed instructions, transactions on the central bus).

5.2 System failure modes

The OBC fault tolerance analysis is based on the Failure Mode and Effect Analysis (FMEA)

method [7-8]. The potential failure modes of the OBC can be found from the fault injection

procedures during each simulation cycle. The system failure modes can be classified as:

1. Incorrect data/Correct time (ID/CT): a benchmark execution is finished normally (on time)

but the final execution results are wrong.

2. Correct data/Incorrect time (CD/IT): execution results are correct, but the process takes a

longer time than originally allocated.

3. Incorrect data/Incorrect time (ID/IT): execution results are not correct, the simulated

execution is not finished as expected by the program flow and was interrupted externally.

4. Processor Deadlock (PD)

5. Read Align Exception (RAE)

6. Write Align Exception (WAE)

7. Arithmetic Exception (AE)

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
6

8. Read, Write, or Fetch Privilege Exception (RPE, WPE, or FPE consequently)

PD, RAE, WAE, RPE, WPE, FPE and AE may belong to ID/IT or CD/IT [28], but researched

separately to see the final picture more clearly.

6 CASE SATUDIES

This section presents several case studies that show how the created OBC model can be used for

hardware-software co-design and radiation effect analysis.

6.1 Fibonacci sequence calculation

The calculation of a Fibonacci sequence is chosen as a benchmark algorithm because it represents

the family of recursive algorithms. The computation of the algorithm is performed up to the 15
th

element; each element is calculated in a recursive way. Each simulation is repeated for 300 times to

obtain a statistical overview of possible influence of bit-flips induced in CPU registers (or Single

Event Upsets - SEU). The simulation results show the dependence of the incorrect result ratio on

the fault rate (see Fig. 5) as well as the dependence between the fault modes and the fault rate (see

Fig. 6).

Figure 5. Influence of SEU rate in CPU on incorrect result ratio

Figure 6. Influence of SEU rate in CPU on Failure Mode ratio

Both Fig. 5 and Fig. 6 show expected results: the incorrect results ratio grows with higher fault rate.

The percentage of ID/CT (or Silent Data Corruption [8]) stays approximately the same (see Fig.6).

This observation means that for this particular program the ratio of faults that do not cause the CPU

deadlock, nor CPU exceptions but do corrupt the final results stays approximately the same. This

simulation result can be explained by the small number of General Purpose Registers (GPR) used

for the execution of the algorithm and the increasing probability that the CPU will freeze at higher

fault rates, which increases PD ratio and masks ID/CT faults.

In the next experiment, the same Fibonacci sequence calculation is executed but the CPU resets the

watchdog after each member computation. Single Event Functional Interrupts (SEFI, or CPU

hanging) are randomly introduced into the CPU during execution. Consequently, if the CPU

freezes, the watchdog resets it which restarts the program.

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
7

Figure 7. Influence of SEFI rate on Failure Modes with the unturned (marked with "1") and
tuned watchdog (marked with "2")

Fig.7 presents the case (marked with "1") where the watchdog has a longer timeout period than the

calculation requires. As a result, CPU waits for an extended period of time as opposed to the second

case, marked with "2". In the 2
nd

 case the watchdog timeout period has been reduced by

approximately four times, to 102.3 µs. This watchdog period is more tuned to the algorithm; hence

in the case of SEFI the CPU is halted for a shorter period of time before the watchdog times out and

resets the CPU. Consequently, the allocated time becomes sufficient to execute the whole algorithm

at low fault rates; the allocated time equals tree times the execution time without the faults

injection.

6.2 JPEG image compression

Typically, the data rate of CubeSat downlink is very limited (lower 1 Mbit/sec). Therefore, the

JPEG compression scheme plays an important role in on-board data processing.

Fig.8 shows a black-and-white source image with 2000 SEUs (several SEUs marked with orange).

The JPEG compression output (30 times compressed) is presented in Fig. 9. The corruption of the

output pictures is visible and marked with orange. While 2000 SEUs is an exaggerated value, they

do allow the visualization of the effect, whereas 40 or 400 bit-flips might not show any visible

change in the JPEG output.

Figure 8. Source image with 2000 SEUs

Figure 9. JPEG output, the source is corrupted with 2000 SEUs

To prevent corruption that is visible in Fig.9, the FPGA scrubbing technique is implemented. After
the CPU starts the JPEG compression execution, the scrubbing unit, implemented in the FPGA,

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
8

begins to copy the source picture to two backup versions. Since the SEU occurrence is randomly
distributed in time, the copied pictures may have small or zero number of corrupted pixels. After
copying, the FPGA scrubber continuously compares the source picture, with which the CPU is
working, to the first backup copy. If the scrubber finds a difference, it compares it to the
corresponding byte in the second backup copy and makes a decision about the most probable
correct value of this byte.

As a result, the number of corrupted bytes in the source image has been reduced by 80-87% and
there is no visual corruption in the output picture. Byte-by-byte comparison of the output picture
with the faultless compressed version reveals the difference in a majority (more than 92%) of the
file’s bytes. However, this difference cannot be seen since the JPEG compression is making a local
average of the pixel color values. This way SEUs are filtered out.

When multiple bit-flips are introduced, the corruption becomes visible in the compressed picture
(see Fig. 10, no scrubbing implemented). But the probability of such long bit-flips is significantly
lower.

Figure 10. JPEG compression with introduced 56-bit long multiple bit-flip;
the source and the output

The aforementioned memory scrubbing utilizes the Triple-Modular Redundancy(TMR) of the
memory, which may be not supported by the limited OBC memory resources. Hence, more
memory efficient approach should be used, e.g. memory scrubbing with Hamming encoding [25,
26]. While Hamming encoding requires memory only to save the syndromes, its implementation
requires more FPGA logic due to a complicated control Finite State Machine (FSM). The encoding
phase also requires an extensive number of multiplexers. RTL SystemC compilation to RTL has
been conducted using CatapultC Synthesis[27]; the results are presented in Table II (frequency 50
MHz).

TABLE II. The output of CatapultC Synthesis for TMR and Hamming-based memory scrubbing
FPGA co-processors

Scrubbing type Latency Cycles Slack Total Area

TMR 1500 12.25 29723.13

Hamming 177081 7.55 181677.10

6.3 Kalman filter of Attitude Control Algorithm

A satellite’s attitude determination and control (ADC) algorithm provides knowledge and control
over its orientation in space. In the case of possible erroneous operation the orientation can be
disturbed, which can have a detrimental effect on the satellite’s mission. To understand what kind
of effects SRAM SEUs have on this type of algorithm, 1000 SEUs have been randomly introduced
to the memory where the algorithm’s variables are stored (sections .bss and .data). The injected
errors are uniformly distributed in time and physical area. The correct output of Kalman filter,
which is the part of the ADC algorithm, is presented in Fig.11 (three axes). The Kalman output
with SEUs injection is presented in Fig.12.

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
9

Figure 11. Correct Kalman filter output

Figure 12. Kalman filter output with SEUs introduction

Comparing Fig. 11 and Fig. 12, it is easy to see the effect of the injected errors. This can be easily

detected by software. The detection of such behavior plays an important role since, if Kalman filter

losses stability (as it happened after 875 sec), it may not converge again until the external reset. We

have implemented the software fault detection based on the detection of the output value jump

bigger than 0.001 rad/sec. If such fault has been identified, the current output value is ignored and

the Kalman filter resets. As a result of the implemented technique, the output values became very

close to Fig. 11: the average difference between the correct filter output and the output with the

software mitigation technique equals 1.7•10
-7

rad/sec for the period 0-900 seconds. This difference

is acceptable and can be considered as negligible since it is four orders of magnitude less than the

scale of the output values.

6.4 Simulation time of the case studies

This section provides the information about the simulation time of the presented case studies (see
Table III). All simulations have been conducted on a PC with an Intel Core i5-2430M and 4 GB of
DDR3 memory. As was expected, SystemC TLM modeling provides fast simulation capabilities
even for complex cases as the software JPEG image compression with the FPGA-based memory
scrubbing.

TABLE III. The Simulation Time of the Case Studies

Case study (one iteration) Number of

Instructions

User

Time

(sec)

System

Time

(sec)

Elapsed

Time

(sec)

Fibonacci sequence calculation

(15 elements)

28,912 0.25 0.01 0.26

Fibonacci sequence calculation

with watchdog

28,940 0.26 0.01 0.27

JPEG image compression

(432x288 pixels)

22,079,255 185.93 0.09 186.89

JPEG image compression with

memory scrubbing

22,079,255 225.90 0.10 226.99

Kalman filtering 120,504 1.56 0.04 1.67

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
10

7 CONCLUSIONS

This paper proposes the simulation approach for fault-tolerant analysis of the CubeSat OBC based
on Commercial Off-The-Shelf (COTS) components. The presented method allows to understand
the influence of each software and hardware component on the OBC fault tolerance at early
development stages. The paper presents the system and fault modeling approaches that in
conjunction indentifies the satellite sub-system behavior in radiation environment.

The worst-case radiation conditions for CubeSat mission at 750 km altitude has been assessed and
the correspondent fault-models of possible radiation effects are created. This faults have been
introduced to the CubeSat OBC model according by the dedicated fault-injection mechanism to
assess the radiation effect influence on final computation results of benchmark programs.

The chosen benchmark programs include Fibonacci sequence calculation, JPEG compression
algorithm, and Kalman filtering for the satellite attitude control algorithm. The work shows how to
reduce the number of accumulated memory bit-flips by 80-87% using a FPGA-based memory
protection technique. The paper presents a solution how to minimize the malfunction of a Kalman
filter due to soft errors to guarantee the correct CubeSat orientation: the error was minimized to
1.7•10

-7
 rad/sec on average on axis. The benefits of the presented methodology are also shown in

the JPEG picture compression case study.

Using the presented modeling and simulation methodology for the fault-tolerance assessment of an
OBC, well-known fault mitigation techniques can be investigated and improved for different
applications. This allows for the early assessment of system vulnerability, improving the overall
satellite reliability. The presented methodology can be easily adapted for other OBC configurations.

8 REFERENCES

[1] C. Constantinescu, Impact of Deep Submicron Technology on Dependability of VLSI

Circuits, IEEE Intl. Conf. On Dependable Systems and Networks (DSN), pp. 205-209, 2002.

[2] P. Shivakumar, Modeling the Effect of Technology Trends on the Soft Error Rate of

Combinational Logic, DSN, pp. 389-398, 2002.

[3] T. Karnik, P. Hazucha, and J. Patel, Characterization of Soft Errors Caused by Single Event

Upsets in CMOS Processes, IEEE Trans. On Dependable and Secure Computing, Vol. 1, No. 2, pp.

128-143, April-June 2004.

[4] Andrew S. Keys and Michael D. Watson, Radiation Hardened Electronics for Extreme

Environments, NASA Marshall Space Flight Center, December 15, 2007.

[5] T. Grtker, S.Liao, G.Martin, and S.Swan, System Design with SystemC, ISBN 978-1-4020-

7072-3. Kluwer Academic Publishers, 2002.

[6] Frank Ghenassia, Transaction Level Modeling with SystemC TLM Concepts and Applic-

ations for Embedded Systems, ISBN 10 0-387-26232-6. Springer, 2005.

[7] J.-C.Ruiz, P. Yuste, P. Gil, and L. Lemus, On Benchmarking the Dependability of

Automotive Engine Control Applications, International Conference on Dependable Systems and

Networks, pages 857-866, June-July 2004.

[8] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, SoC-level Risk Assessment using

FMEA Approach in System Design with SystemC, IEEE International Symposium on Industrial

Embedded Systems, pp. 82-89, July 2009.

[9] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, Analysis of System Bus Transaction

Vulnerability in SystemC TLM Design Platform, Proc. the 3rd WSEAS International Conference on

Computer Engineering and Applications, pp.284-289, 2009.

[10] K.Rothbart, et al, A Smart Card Test Environment using Multi-level Fault Injection in

SystemC, 6th IEEE Latin-American Test Workshop, pp. 103-108, March-April 2005.

The 4S Symposium 2012 – D. Burlyaev, R. van Leuken
11

[11] S. Lee , A. Hutputanasin, A. Toorian, W. Lam, R. Munakata, The CubeSat Program.

CubeSat Design Specification, 12 edition. California Polytechnic State University. Available from:

<http://www.cubesat.org/>.

[12] Microsemi Corporation. SmartFusion Customizable System-on-Chip (CSoC), Revision 7,

August 2011.

[13] The official web-site of Open Virtual Platforms project. <http://www.ovpworld.org/>.

[14] Actel Corporation, Actel SmartFusion Microcontroller Subsystem Users Guide, 50200250-1

edition, pp.163-171, pp.302-304, May 2010.

[15] The offcial web-site of SPENVIS system: <http://www.spenvis.oma.be/>.

[16] The official web-site of APEXRAD model. <https://creme.isde.vanderbilt.edu/CREME-

MC/help/apexrad>.

[17] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, D. Sciuto, A Framework for Reliability

Assessment and Enhancement in Multi-Processor Systems-On-Chip, 22nd IEEE International

Symposium on Defect and Fault-Tolerance in VLSI Systems, pp. 132 - 142, 2007.

[18] O. Ruano, J.A. Maestro, P.Reyes, and P. Reviriego, A Simulation Platform for the Study of

Soft Errors on Signal Processing Circuits through Software Fault Injection, IEEE International

Symposium on Industrial Electronics, pp. 3316-3321, 2007.

[19] G.I. Zebrev, I.O. Ishutin, R.G.Useinov, and V.S.Anashin, Methodology of soft error rate

computation in modern microelectronics, IEEE Transactions On Nuclear Science, 57(6): 3725-

3733,December 2010.

[20] R. Koga, P. Yu, K. Crawford, J. George, and M. Zakrzewski, Synergistic Effects of Total

Ionizing Dose on SEU Sensitive SRAMs, IEEE Radiation Effects Data Workshop, pp. 127 -

132,2009.

[21] R.K. Lawrence, Radiation characterization of 512Mb SDRAM, IEEE Radiation Effects Data

Workshop, July, 2007.

[22] E.H. Cannon, et al., Heavy ion, high-energy, and low-energy proton SEE sensitivity of 90-

nm RHBF SRAMs, IEEE Transactions on Nuclear Science, 57(6)L3493-3499, December 2010.

[23] Farokh Irom and Duc N. Nguyen, Single Event Effect Characterization of High Density

Commercial NAND and NOR Nonvolatile Flash memories, IEEE Transactions on Nuclear Science,

pp. 2547-2553, December, 2007.

[24] Kurt Anderson, Low-cost, radiation-tolerant, on-board processing solution, IEEE

Aerospace Conference, pp. 1-8, March, 2005.

[25] Actel Corporation, Using EDAC RAM for RadTolerant RTAX-S FPGAs and Axcelerator

FPGAs, Application Note AC273,July 2006.

[26] Actel Corporation, CoreEDAC Handbook, January 2006.

[27] The official web-site of CatapultC Synthesis tool from Mentor Graphics company:

< http://www.mentor.com/esl/catapult/overview>.

[28] Imperas Software Limited, OVPsim and Imperas CpuManager User Guide, Version 2.0.43,

November 2011, p. 29-30.

System Fault-tolerance Analysis of

Small Satellite On-board Computers
Abstract—This paper proposes the statistical simulation

approach for fault-tolerance analysis and software-hardware co-

design of Small Satellite On-board Computers (OBCs) based on

Commercial Off-The-Shelf (COTS) components. The presented

method allows to understand the influence of each software and

hardware component on the system fault tolerance at early

development stages and when the IC-level of COTS parts are

unknown. The proposed approach allows the comparison

between the efficiency of fault-mitigation techniques as it is

presented in the paper. As a case study, the work presents the

model of SmartFusion System-On-Chip (SoC) and the fault-

tolerance analysis of a satellite attitude determination and control

algorithm. The FPGA-based memory protection with Hamming

encoding is implemented, assessed, and optimized basing on the

simulation results. The comparison between FPGA-based

memory protection and a software mitigation technique is

conducted. The importance of CPU exception handling for

satellite OBCs is explained: the proper exception handling may

cover up to 11% of wrong computation results. A presented

optimization method based on a clustering algorithm helped to

reduce the scrubbing turnaround period and allocated memory

resources almost by half.

Keywords- SystemC; fault-tolerance analysis; on-board

computer; Single-Event Effects; fault-mitigation techniques

I. INTRODUCTION

The main requirement for small satellite OBCs is their
tolerance towards faults caused by radiation. While the
complexity of each component and whole systems are growing,
the existing analytical methods for fault-tolerance analysis
become infeasible for complex heterogeneous systems and for
COTS components whose IC-level is unknown for satellite
designers. Since COTS-based small satellites are sensitive to
radiation due to low radiation-tolerance of COTS components,
the satellite designers use well-known fault-mitigation
techniques. The benefits and correctness of implemented fault-
mitigation techniques can be assessed under the radiation tests
at the final development stage. However, if the radiation test is
failed, the expensive and time-consuming re-design is required.
The comparative analysis of the design space and system-level
debugging for fault-tolerance are impossible due to high cost of
radiation tests. Moreover, testing for radiation-induced faults
using radioactive isotopes does not guarantee the injection of
specific errors, nor explain their nature or the system behavior
[10].

An alternative approach for the system-level fault-tolerance
analysis is through simulation, which is examined in this work.

The rest of the paper is organized as follows: Section II
observes the related works. Section III presents the proposed
SystemC-based simulation approach with the explanation of
the implemented system modeling (Section III.a) and radiation
fault modeling (Section III.b). Section IV gives an example of

the approach use for SmartFusion SoC [11] that executes the
parts of satellite attitude determination and control algorithm.

II. RELATED WORKS

The simulation approach for fault-tolerance analysis has
already been used for satellite sub-systems in works [1, 2].
These works investigate the fault tolerance through the fault
injection into the system model. However, the works are based
on the assumption that we know the circuit level of the
components we use, which is not the case when COTS parts
are used. Moreover, the low-level simulation is time
consuming; hence, it cannot be used for statistical analysis.

Due to the high complexity of each component and the
system as a whole, the utilization of high level abstraction
modeling language, such as SystemC, is imperative. A
common existing SystemC approach to analyze fault effects is
based on the insertion of Fault Injection Module (FIM) into
the interconnections of the functional blocks. FIM plays a role
of the controller of a fault injection process that can be
centralized [4] or distributed [5, 6]. However, such approach
has been applied without consideration of hardware-software
co-design, fault mitigation techniques implementation, and a
comprehensive fault model library that are covered in this
work.

This work proposes the innovative method to analyze the
fault-tolerance of COTS-based satellite on-board computers
and compare hardware or/and software mitigation techniques'
efficiency at early development stages.

III. PROPOSED METHOD

The proposed method is based on two main components:
the system model of an electronic device/computer and the
library of fault models. The supporting modules such as a
dedicated fault-injection mechanism (hereafter 'the Injector')
and a dedicated data tracking mechanism (hereafter 'the
Observer') are also required (Fig. 1). The Injector controls the
fault injection procedure according to the created schedule and
the created fault-models; the Observer provides information
about the system state (memory content, bus transactions, etc.)
at different moment of simulation for a user.

Figure 1. System model structure

A. System Modeling

The requirement on the hardware-software co-design and
co-simulation is met with Transaction-Level Modeling (TLM)
methodology [3] (Fig.1, the green section). The TLM
approach significantly simplifies the system model and
shortens the simulation time. TLM is used for interconnection
(with target and initiator sockets) between functional blocks
(CPU, FPGA, Memory blocks, Timers, Decoder as a central
bus, etc.) that can be considered as "black boxes" since their
full configuration in COTS parts are unknown for satellite
designers. However, the standardized interconnections should
be simulated not with high-level TLM approach but with
Register-Transfer-Level (RTL) in some cases, e.g. the
interconnection between FPGA fabric and the central bus (see
Fig. 2).

Figure 2. The FPGA fabric model as a part of the system model

Fig. 2 shows how the interconnection between the central
SoC bus (e.g. AMBA bus) and the FPGA co-processor unit can
be created using an intermediate level to support the portability
of the co-processor unit from the simulation environment to a
real device. The Fabric Controller Model is an intermediate
level that communicates with the co-processor according to the
particular protocol using signals (e.g. AMBA protocol) but
connected to the Decoder through a TLM channel. The co-
processor configuration (Fig.2, blue section) is described in
RTL SystemC.

Consequently, the presented system model supports
software-hardware co-design and applicable for system
performance analysis.

B. Fault-Modeling and Tolerance Analysis

The proposed fault injection technique mainly operates
with object pointers. When any object is created (e.g. CPU,
Memory blocks), it sends the identification information and the
object pointer to the Injector (see Fig.1). Consequently, when
the system model is initialized, the Injector associates the fault
models and components where particular faults can happen.
The Injector creates a fault-injection schedule (see Fig.3)
according to the predefined fault rates or uses the schedule
written by a user.

Figure 3. The example of the fault schedule created automatically or
defined by a user

Since the internal structure of COTS parts are unknown, the
effects of different faults can be simulated by changing the
outputs or/and the state of simulated functional blocks. The
change of block outputs can be done at TLM initiator sockets
(Fig.1, 2). The change of the block state depends on the
knowledge about the block, e.g. it corresponds to the register
change in the CPU block and the memory array change in the
Memory block. Thus, the fault-models are high-level as well.

The accuracy of fault-tolerance analysis in the proposed
method depends on how well the high-level fault models
correspond to the real system behavior. For small satellites at
typical orbits (lower 750 km), the next fault models are valid
based on the published empirical observations [12-15] :

1) Single-Event Upset (SEU) - or bit-flip in a memory cell

(CPU registers, memory arrays, block outputs, etc.)

2) Multiple-Cell Upset (MCU) - or multiple SEUs in

adjacent memory cells (CPU registers, memory arrays, block

outputs, etc.)

3) Single-Event Functional Interrupt (SEFI)- the

functional block/electronic component is put into an unknown

state or frozen. SEFI corresponds to the radiation-induced

fault in the control circiut of a component

According to the published observations [16], SEFI in CPU
can be modeled by the CPU freezing, and SEFI in memory can
be simulated by the memory block that stopped responding.
The common, if not only, SEFI mitigation techniques are the
component reset or power-cycle. The knowledge about
possible SEFI consequences is limited since the IC-level of
control logic is unknown; thus, it is necessary to be sure that at
least power-cycling will work in the majority cases of system
behavior. According to the observations [16], the component
reset cannot assure SEFI mitigation as opposed to power-
cycling.

Single-Event Transient (SET) faults are also expected in
COTS components in space; however, unless SET is latched in
a memory cell, it is not causing any changes in the OBC's
working process. If SET is latched, it may change the memory
cell content. The memory content change corresponds also to
SEU/MCU fault models and SEFI fault models if the changed
memory cell belongs to control logic; thus, additional SET
fault models are not required.

Both SEU and MCU can be modeled by changing the
content of memory cells (e.g. in registers, memory blocks) or
TLM transaction objects (e.g. of tlm_generic_payload type).
TLM transaction objects also correspond to the data saved in
memory cells in real hardware. Hereafter, we propose the
generalized simulation approach for system fault-tolerance
analysis in the case of single memory-based faults (SEU and
MCU).

C. Multidimentional analysis of memory fault consequences

Building the OBC model, it is possible to indentify used
memory locations (e.g. memory ranges, list of registers). For
some cases, e.g. FPGA co-processors before mapping, we
cannot identify used memory resources. In such cases the fault
models can be implemented only in the modeled

communication channels of these functional blocks
(particularly corrupting the content of TLM transaction
objects). For instance, faults inside the user memory of Flash-
based and Anti-fuse FPGA fabric can be modeled by utilizing
the Fabric Controller Model as a usual FIM. Flash-based and
Anti-fuse FPGAs are more immune to soft errors [17] than
SRAM-based FPGA type, that is not considered in this work.

So, we can identify memory resources used for different
purposes. Collecting the corresponding memory locations, we
can form the memory address axis(see Fig.4). The second axis
corresponds to the time of the memory fault introduction. Other

dimensions (the third and higher) correspond to the
computational quality measurements (introduced by OBC
designers) that represent the correctness of the computation
output. For different programs the quality measurements can be
different: a total execution time, an output value deviation from
the correct result, the final computation fault mode [18-19],
etc. The introduction of one or several quality measurements
allow the comparison between fault-tolerance of different OBC
implementations.

For small satellites at typical orbits less than 750 km, the
fault rates are negligible in comparison with CPU execution
speed. The maximum estimated fault rate is not more than one
fault/sec for modern COTS components. Consequently, the one
fault injection per algorithm execution is a justified approach.

The whole OBC software can be divided into sub-programs
that are executed sequentially by a CPU. If there is a program
flow dependency between the execution of the previous sub-
program f1 and the next sub-program f2 (e.g. the shared data in
stack, see Fig. 4), the influence of a fault that happened during
the execution of f1 on the output of f2 sub-program can be
investigated by fault introduction to the commonly used
memory locations just before f2 starts execution. Thus, the fault
injection into used memory ranges by different sub-programs

can be limited to the injection when the sub-program (f0, f1, or
f2) is being executed.

IV. SMARTFUSION SOC: CASE STUDY

As a case study, the model of the SmartFusion device [11]
has been created and the proposed fault-tolerance analysis is
applied. The existing instruction-accurate model of the
processor Cortex-M3 from the Open Virtual Platforms (OVP)
project [9] is used as the CPU block. Each simulation iteration
one SEU is introduced to the memory region where the
program of an adaptive filter is saved (Table I). The single

SEU per iteration is motivated by low possible fault-rates on
altitudes less than 750 km in comparison with the short
execution time of the algorithm.

A. Code execution without fault mitigation techniques

The CPU executes the code of an adaptive filter used in a
satellite attitude determination and control algorithm for
filtering the measurements of solar sensors and magnetometers
(Table II). The adaptive filter during one simulation iteration
calculates 30 results for 3 axis, 90 double values in total. The
chosen quality measurement is the average relative deviation of
90 values calculated with SEU introduction from 90 correctly
calculated filter outputs. The result of the simulation is
presented in Fig.5.

TABLE I. THE MEMORY SECTIONS WHERE SEU ARE INJECTED

Name Size VMA=LMA

.text 0x000101c 0x0000000

.rodata 0x0000044 0x000101c

.data 0x0000178 0x0001060

.bss 0x0000020 0x00011d8

Figure 4. The representation of multidimensional analysis

TABLE II. SIMULATION TIME FOR THE VERSION WITHOUT PROTECTION-

ONE ITERATION

CPU type: armm (Cortex-M3)

Nominal MIPS: 100

Simulated instructions: 105,515

User time: 0.79 seconds

Elapsed time: 0.83 seconds

Fig.5 shows that during the SEU introduction to particular

parts of software (particular memory addresses) the calculated
results differ from the correct ones significantly (these cases
are marked with colored dots). At the same time, SEU
introduction to other regions, e.g. the very beginning of the
memory (address 0x0-0x19a), does not influence the
calculation output. It can be explained by the interrupt vectors
that are located at the beginning of the memory and not directly
used during this simulation and during the real computation.
The computation in main function starts particularly at address
0x19a where we can observe first error results(represented by
colored dots).

B. Code execution with fault-mitigation

Since SmartFusion SoC includes FPGA fabric, some fault-
mitigation techniques can be implemented in FPGA. Memory
scrubbing based on Hamming encoding has been chosen as an
example (Table III). Since .text and .rodata section of the
program are static, they can be protected with the memory
scrubbing technique.

Before the algorithm execution the CPU sends to FPGA co-
processor the number and locations of memory ranges that
should be protected by FPGA scrubbing. FPGA co-processor
encodes the data saving the syndromes and one backup copy of
the protected memory regions. After the syndromes generation,
the FPGA co-processor sends to the CPU a message indicating
that the CPU can continue algorithm execution. Since the
syndromes are known, FPGA starts scrubbing the protected

memory calculating syndromes again and comparing them with
the saved ones that are supposed to be correct. However, the
syndromes are also can be damaged by SEU; so the backup
version is used when the syndromes difference is found to
clarify if the syndrome or the protected region is damaged.

TABLE III. SIMULATION TIME FOR THE VERSION WITH FPGA-BASED

PROTECTION- ONE ITERATION

Nominal MIPS: 100

Simulated instructions: 199,195

User time: 2.36 seconds

Elapsed time: 2.47 seconds

Another used fault-mitigation technique is a software-based
value limitation: the difference between consecutively
calculated outputs are limited (Table IV). The limitation is
based on the expected parameters range and the speed of their
changes . In the case study, the limit is E-4 when the filter
output values lie in the scale of E-5 and E-6. If the limit is not
met, the filter recalculates the values.

TABLE IV. SIMULATION TIME FOR THE VERSION WITH SOFTWARE

PROTECTION- ONE ITERATION

Nominal MIPS: 100

Simulated instructions: 123, 442

User time: 1.26 seconds

Elapsed time: 1.28 seconds

The simulation results are shown in Fig.6 and Table V.

Figure 5. The simulation result of the adaptive filtering computation with one SEU introduction (20 000 iterations)

Figure 6. Histogram of system fault-tolerance with and without fault-

mitigation techniques (20 000 iterations)

The jump when the relative deviation histogram equal 11
(marked with orange oval) can be explained by the next
observation. In many cases after the fault injection, the CPU
rises the exception. If the exception routine is not written (as in
the presented case), the algorithm execution stops and the
memory region, where the filter output values should be
written to, stays equal zero. When the output value is zero the
relative deviation from the correct result equals one. The peak
is located at 11 relative incorrectness since 11 corresponds to
[100%, 110%) deviation from the correct result.

TABLE V. SIMULATION RESUTLS, SYSTEM FAULT-TOLERANCE WITH

AND WITHOUT FAULT-MITIGATION TECHNIQUES

Relative

deviation of

the out values
from the

correct resutl

Ratio of iterations with such deviation (20 000

iterations in total)

without

protection

SW limitation FPGA-based

Hamming
encoding

[0-10)% 82.81% 84.58% 88.60%

[10-20)% 2.36% 1.76% 1.45%

[20-30)% 0.57% 0.27% 0.21%

[100-110)% 11.31% 11.75% 7.93%

Table 5 shows the expected tendency: the ratio of the
iterations with the correct results or results with less than 10%
deviation from the correct values is increasing when fault-
mitigation techniques are implemented. Additionally, Fig.6
shows that the ratio of rare detrimental faults (right bottom
corner of the plot) is reduced by the memory scrubbing with
Hamming encoding.

C. System-level behavior

As it was observed from Fig.5 , the modeled system has
shown the system behavior: the corruption of some memory
regions causes significant degradation in the correctness of the
final result; when the corruption of other regions has less
detrimental or none effects.

While 20 000 iterations (one SEU per iteration) cannot
cover the whole space of possible SEU introduction options (~
200 000 executed instructions and 36 800 memory bits), some
system characteristics converge as it is shown in the next
experiment.

The same filtering algorithm was executed 1000, 5000,
10000, 20000, 30000, and 40000 iterations. Fig. 7 represents
the histogram obtained during these simulations:

Figure 7. The dependency of system behavior on the number of simulation
iterations

Consequently, it is not necessity to survey the whole space
of fault introduction to compare the efficiency of fault-
mitigation techniques if the convergence is observed.

D. Optimization of fault-mitigation techniques

Since the OBC has strict limitations on used hardware
resources, the optimization of fault-mitigation techniques is
required.

According to the observations from the previous sub-
sections, the memory regions have different influence on the
whole program execution. The simple clustering algorithm can
be used to find out the most influential memory regions taking
Fig.5 as an input data.

We created the clustering algorithms that is based on the
Euclidian distances in the multidimensional space discussed in
Section III.C. The simulation result is presented by Fig.8 (500
iterations).

Figure 8. Clustering algorithm output

The presented clustering approach assists the designer to
understand the most important memory regions from OBC
fault-tolerance point of view and save hardware resources
without significant loss in fault-tolerance. For example, it is not

practical to scrub 45% of .text and .rodata regions since they
do not have such detrimental effect as other regions (Fig.5).
Thus, we can implement FPGA-based scrubbing only for other
55% which will reduce the scrubbing turnaround period and
the amount of allocated memory for syndromes and backup
copy.

V. CONCLUSIONS

This paper proposes the statistical simulation approach for
fault-tolerant analysis of Small Satellite OBCs based on COTS
components. The paper presents the system and fault modeling
approaches that in conjunction can be used to understand the
satellite sub-system behaviour in radiation environment and
compare the efficiency of different software/hardware fault-
mitigation techniques.

The work presents how to build the high-level system
model for COTS-based OBCs, incorporate the dedicated fault
injection and tracking mechanisms, and keep software and
FPGA configuration portability to real hardware. The papers
clarifies the choice of fault models for Small Satellite with
orbits lower 750 km.

As a case study, the work presents the model of Microsemi
SmartFusion System-On-Chip (SoC) that incorporates Cortex-
M3 CPU, Flash-based FPGA fabric, SRAM and Flash memory
storages, Watchdog, Timers, etc. The chosen benchmark
program is an adaptive filtering algorithm for the satellite
attitude control. The FPGA-based memory protection with
Hamming encoding is implemented, assessed, and optimized
basing on the simulation results. The comparison between
FPGA-based memory scrubbing and a software mitigation
technique is presented. The importance of exception handling
for satellite OBCs is explained: the proper exception handling
may cover up to 11% of wrong computation results.

A shown optimization method based on a clustering
algorithm can assist satellite designers in system-level analysis,
development, and optimization. Using the proposed method,
the limited OBC hardware resources can be allocated with high
efficiency. In the presented case study, the method helped to
reduce the scrubbing turnaround period and used memory
resources almost by half.

Using the presented modeling and simulation methodology
for the fault-tolerance assessment of an OBC, well-known fault
mitigation techniques can be investigated and improved for
different applications. This allows for the early assessment of
system vulnerability, improving the overall satellite reliability.
The presented methodology can be easily adapted for other
OBC configurations.

REFERENCES

[1] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, D. Sciuto, “A
Framework for Reliability Assessment and Enhancement in Multi-

Processor Systems-On-Chip,” 22nd IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems, pp. 132 - 142, 2007.

[2] O. Ruano, J.A. Maestro, P.Reyes, and P. Reviriego,“A Simulation
Platform for the Study of Soft Errors on Signal Processing Circuits
through Software Fault Injection,” IEEE International Symposium on
Industrial Electronics, pp. 3316-3321, 2007.

[3] Frank Ghenassia, “Transaction Level Modeling with SystemC TLM
Concepts and Applic-ations for Embedded Systems,” ISBN 10 0-387-
26232-6. Springer, 2005.

[4] K.Rothbart, et al, “A Smart Card Test Environment using Multi-level
Fault Injection in SystemC,” 6th IEEE Latin-American Test Workshop,
pp. 103-108, March-April 2005.

[5] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, “SoC-level Risk
Assessment using FMEA Approach in System Design with SystemC,”
IEEE International Symposium on Industrial Embedded Systems, pp.
82-89, July 2009.

[6] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, “Analysis of
System Bus Transaction Vulnerability in SystemC TLM Design
Platform,” Proc. the 3rd WSEAS International Conference on Computer
Engineering and Applications, pp.284-289, 2009.

[7] J.-C.Ruiz, P. Yuste, P. Gil, and L. Lemus, “On Benchmarking the
Dependability of Automotive Engine Control Applications,”
International Conference on Dependable Systems and Networks, pages
857-866, June-July 2004.

[8] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, “SoC-level Risk
Assessment using FMEA Approach in System Design with SystemC,”
IEEE International Symposium on Industrial Embedded Systems, pp.
82-89, July 2009.

[9] The official web-site of Open Virtual Platforms (OVP) project.
<http://www.ovpworld.org/> .

[10] Andrew S. Keys and Michael D. Watson, “Radiation Hardened
Electronics for Extreme Environments”, NASA Marshall Space Flight
Center, December 15, 2007.

[11] Microsemi Corporation, “SmartFusion Customizable System-on-Chip
(CSoC) ”, Revision 7, August 2011.

[12] R.K. Lawrence,“Radiation characterization of 512Mb SDRAM, IEEE
Radiation Effects Data Workshop”, July, 2007.

[13] E.H. Cannon, et al., “Heavy ion, high-energy, and low-energy proton
SEE sensitivity of 90-nm RHBF SRAMs, IEEE Transactions on Nuclear
Science”, 57(6)L3493-3499, December 2010.

[14] Farokh Irom and Duc N. Nguyen, “Single Event Effect Characterization
of High Density Commercial NAND and NOR Nonvolatile Flash
memories”, IEEE Transactions on Nuclear Science, pp. 2547-2553,
December, 2007.

[15] Kurt Anderson, “Low-cost, radiation-tolerant, on-board processing
solution”, IEEE Aerospace Conference, pp. 1-8, March, 2005.

[16] T.Takano, T.Yamada, K.Shutoh, and N.Kanekawa, “In-orbit experiment
on the fault-tolerant space computer aboard the satellite HITEN”, IEEE
Transactionson Reliability, 45:624-631, August 2002.

[17] GregoryR.Allen and Gary M. Swift, “Single event effects test results for
advanced field programmable gate arrays”, IEEE Radiation Effects
DataWorkshop,pages 115-120, July2006.

[18] J.-C.Ruiz, P. Yuste, P. Gil, and L. Lemus, “On Benchmarking the
Dependability of Automotive Engine Control Applications”,
International Conference on Dependable Systems and Networks, pages
857-866, June-July 2004.

[19] Y. Y. Chen, Chung-Hsien Hsu, and Kuen-Long Leu, “SoC-level Risk
Assessment using FMEA Approach in System Design with SystemC”,
IEEE International Symposium on Industrial Embedded Systems, pp.
82-89, July 2009.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Thesis goal
	Contributions
	Outline

	 Overview: OBC for Small Satellite missions
	Micro and Nano satellite mission overview
	OBC satellite subsystem
	Overview of OBC requirements
	OBC fault-tolerance

	Conclusions

	 Space Radiation Effects, Faults Detection and Mitigation
	Space Radiation Environment Overview
	Space Radiation Environment Assessment
	Fault rate Assessment
	Radiation effects in COTS components
	Conclusion

	Radiation fault-tolerance techniques
	Architectural-level techniques
	Component-level techniques

	Conclusions

	OBC modeling
	SystemC TLM modeling
	Related Works
	OBC architecture modeling - SmartFusion SoC model
	FPGA fabric modeling as a SoC component

	OBC system-level redundancy - I2C communication
	OBC model extension by I2C controller model
	Model of interconnected OBCs (stacked OBC)

	Supporting modules
	Injector
	Analyzer
	Observer

	Conclusions

	Radiation effects modeling
	Radiation fault modeling
	CPU fault models
	SRAM and DRAM fault models
	Flash-based memory fault models
	Flash-based FPGA fault models
	Failure modes

	Conclusions

	Simulation steps
	Statistical fault-tolerance analysis
	Multidimensional analysis of memory fault consequences
	Conclusions

	Model Verification,Validation, and Limitations
	Model Verification
	Model Validation
	Model Limitations

	Case studies
	Case Study: Recursive algorithm
	SEU injection into CPU registers
	SEFI injection into CPU
	SEU injection into SRAM memory

	Case Study: JPEG image compression
	Memory scrubbing technique implementation
	Case Study: Kalman filter of Attitude Determination and Control Algorithm
	Case Study: Multidimensional analysis of memory fault consequences in Adaptive filter
	Code execution without fault mitigation techniques
	Code execution with fault mitigation
	System-level behavior
	Clustering algorithm
	Conclusions

	Simulation time of the case studies

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A
	spenvis settings for Radiation Environment Estimation

	Appendix B
	MATLAB Fault rate estimation algorithm

	Appendix C
	Printout of Two OBCs communication through I2C bus

	Appendix D
	Top object of OBC model - code explanation

