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Optimizing Machine Learning Inference Queries for
Multiple Objectives

Ziyu Li* Mariette Schönfeld* Rihan Hai Alessandro Bozzon Asterios Katsifodimos

Delft University of Technology

Abstract—Given a set of pre-trained Machine Learning (ML)
models, can we solve complex analytic tasks that make use of
those models by formulating ML inference queries? Can we
mitigate different tradeoffs, e.g., high accuracy, low execution
costs and memory footprint, when optimizing the queries? In
this work we present different multi-objective ML inference
query optimization strategies, and compare them on their usabil-
ity, applicability, and complexity. We formulate Mixed-Integer-
Programming-based (MIP) optimizers for ML inference queries
that makes use of different objectives to find Pareto-optimal
inference query plans.

I. INTRODUCTION

Machine learning (ML) is used in application domains such

as video analytics [10], [23], autonomous driving [21], and

content moderation [8]. With the advances in ML research,

ML models become more accurate, often requiring both longer

training times but also inference times, depending on the

architecture of the model.

Combined with the trend for model reusability and report-

ing, pre-trained models are shared in the form of collections,

oftentimes referred to as “model zoos” or “model hubs” such

as Hugging Face and PyTorch Hub1. Typically these reposito-

ries structure the collections with metadata, such as the tasks

that those models can cover (e.g., object classes that that they

can detect within an image), the model’s performance (speed,

accuracy, recall, etc.) on these tasks, and other metadata. This

makes model zoos accessible for users to search for models

that suit their needs. Many ML-inference tasks cannot be

answered using a single model. For instance, consider the

task of retrieving images containing cars or person, (car ∧
person). We term such a query a machine learning inference
query [13], [22], in the form of Boolean expression consisting

of predicates connected by conjunctions or disjunctions. Now

consider the case where we have models answering either

one of the predicates (car or person) or both (specialized

models can be trained on a single class for higher efficiency

while maintaining high accuracy). Note that it is possible that

one model is selected for multiple predicates. In order to

answer the query, we can assign one model per predicate, or

one model to answer both.

When a model zoo is available, we could greedily select

the most accurate models for each predicate, and evaluate the

query. However, in the presence of a model zoo with models

of different accuracy/cost characteristics we could sacrifice an

1https://huggingface.co/, https://pytorch.org/hub/

*Authors have contributed equally to this work.

acceptable amount of accuracy in order to reduce execution

costs significantly. In addition, accuracy may not be the only

optimization target for inference queries. For instance, in

memory-limited GPUs, one may also want to minimize the

model size (memory footprint), and/or the model’s execution

time. For instance, in edge devices, storage or memory limita-

tions could have priority over accuracy due to limited resource

capacity. For complex video queries, the execution time should

be prioritized in order for the query to be able to keep up with

the 30 frames per second required for real-time object analysis

while maintaining accuracy with low cost.

This paper focuses with optimizing complex ML infer-

ence queries for multiple objectives. In the context of multi-

objective optimization (MOO), a good query plan should

balance accuracy and execution cost, as well as any other

objectives deemed relevant by the users. Given the multitude

of MOO techniques available [2], [14], we cannot choose a

single best optimization method and user preferences (i.e. the

importance of objectives in relation to one another other). In

particular, this work explores ways to reconcile the conflicting

demands of accuracy, execution time and memory footprint,

and examines the efficacy of various MOO approaches in

scenarios where objectives are in different preferences.

This work tackles the ML inference query optimization

problem by performing model assignment (i.e., assigning

models to predicates) from a given model zoo of pre-trained

models, and compares several MOO methods on their suit-

ability, usability, and complexity. In short, in this paper we

contribute an analysis of applying different MOO methods

for the problem of ML inference queries, and propose an

optimizer that can generate pareto-optimal ML inference query

plans for multiple objectives.

II. RELATED WORK

In this work, we tackle the problem of multi-objective ML

inference query optimization, whereas existing works often

only optimize for one objective during the ML inference

process (Sec. II-A). Multi-objective optimization has been

studied for database queries, but cannot be extended non-

trivially to ML inference queries (Sec. II-B).

A. Single-objective ML inference query optimization

The optimization goal of ML pipelines is usually either

efficiency or effectiveness. Recent studies [3], [6], [7], [11],

[13], [18] train and infer large-scale ML models over the sheer

volume of data, e.g., video and large text corpus. They target
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improving time-wise efficiency, while the accuracy is within a

given threshold. NoScope [11] and PP [13] filtered irrelevant

frames by training and deploying lightweight binary classifiers,

and Tahoma [3] trained specialized models and constructed

model cascades to process video frames. However, they only

aim to increase the efficiency of query processing without

considering any other objectives such as memory or storage

footprint. These objectives are paramount in practice, e.g.,

model inference over edge devices. In this paper, we tackle

the problem of ML inference query mitigating the tradeoffs

among multiple objectives.

B. Multi-objective query optimization in databases

Multi-objective query plan optimization has been studied

for database queries [4], [15]. Recent works calculate the

Pareto boundary for query plans that are measured using

multiple cost functions using the weighted sum method [19],

or use the weighted sum method for optimization in mobile-

cloud database environments [9]. These methods cannot be

extended to optimize multi-objective ML inference queries,

because their optimizers prioritize join-ordering and other

query operations that are irrelevant to ML inference queries.

We therefore need a different optimization algorithm as our

basis.

III. PROBLEM DEFINITION

We want to assign models to ML inference query predicates

while balancing multiple objectives. We start with introducing

the notions of model zoos and ML inference queries.

A. Model zoo

A model zoo is a repository that stores pre-trained ML mod-

els [1], [16], [17], [24] (in particular, we consider classification

models). In this work, we focus on four types of metadata of

a model zoo: inference classes (e.g., the classes that models

can identify), accuracy, execution cost, and memory footprint.

We formalize the model zoo and its metadata below.

Definition 1. A model zoo M is a set of ML models, and its
metadata is a tuple < P,A,C, S >, with
– P is the set of classes the models in M can infer.
– A ∈ [0, 1]

M is a matrix of size |M | × |P | representing the
accuracy of models m ∈M on classes p ∈ P .
– C ∈ N

|M | is a vector representing the execution cost of
m ∈ M in milliseconds. We assume this type of metadata is
provided along with the execution environment.
– S ∈ N

|M | is a vector representing memory footprint of m ∈
M in bytes.

Example 1. Consider the query from the Sec. I with the
following simplified model zoo example:

Model name C S Acar Ahuman

model 1 10 3000 80% 0%
model 2 30 8000 95% 0%
model 3 20 5500 0% 85%
model 4 40 9000 0% 95%

TABLE I: A model zoo example

B. ML inference queries

Definition 2. Given a model zoo M and its metadata
< P,A,C, S >, an ML inference query over M is a first-
order sentence of the form

((mp1
∧ ... ∧mpj

) ∨ ... ∨ (mpk
∧ ... ∧mpl

))

with pi ∈ P and mpi ∈ M . In this work we only consider

queries that are in Conjunctive Normal Form (CNF), i.e., con-

junctions of disjunction or Disjunctive Normal Form (DNF).

Example 2. Following the above definition, we reformulate
the query from the introduction as follows:

q := model 2car ∧model 4human (1)

In short, this means that model 2 will be used to evaluate

the predicate car and model 4 will be used to evaluate the

predicate human.

C. ML inference query optimization

Our goal is to optimize an ML inference query plan, such

that we find an objective-balancing assignment of models from

a model zoo to predicates. In this work we focus on three

objectives: accuracy, execution cost, and memory footprint.

Example 3. Continuing with Example 2, this model selec-
tion achieves 90.25% accuracy, execution cost of 70ms, and
17000B memory footprint, according to the model zoo in table
I, calculated with the objective functions in section IV-A2.

IV. APPROACH OVERVIEW

We solve the ML inference query optimization problem, by

formulating the model selection problem as a Multi-Objective
Mixed Integer Program (MOMIP). An MIP is an optimization

structure where the solution space is spanned up by a col-

lection of (preferably linear) equations. An objective function

allows optimization algorithms to navigate the solution space,

finding the optimal solution [20].

A. MOMIP formulation

1) constraint formulation: We start with an MIP formu-

lation of the model selection problem, where the decision

variables are denoted as

Xm,p =

{
1 when model m is assigned to answer predicatep

0 elsewhere
(2)

for (m, p) ∈M×P . To ensure that every predicate is answered

by exactly one model, we impose the following constraint:∑
m∈M

Xm,p = 1, ∀p ∈ P (3)

In our definition of model zoo metadata a lack of ability for a

model m ∈ M to infer on a predicate p ∈ P is indicated

with Am,p = 0. We want to avoid such model-predicate

combinations, so we introduce the following bound:

Xm,p ≤ �Am,p�, ∀p ∈ P,m ∈M (4)

We also define an “indicator” variable Bm to identify whether

model m is selected.: Bm is constrained as follows:
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Bm ≥ Xm,p

Bm ≤ ∑
p∈P Xm,p, ∀m ∈M

(5)

2) Objective functions: In this work we consider three

objectives, accuracy facc, execution cost fcost, and memory

footprint fmem.

Calculating accuracy. Consider an example DNF query,

(car ∧ outdoor) ∨ (chair ∧ indoor). The clauses in

the query is connected by disjunction. We first estimate the

accuracy of the clauses, referred as c1, c2. We assume the

predicates are independent to each other. Similar assumption

has been made in [13]. The accuracy of a conjunctive query,

e.g., car ∧ outdoor, can be estimated by multiplying the

accuracy of each models, acar ∗ aoutdoor. The accuracy of a

disjunctive query, e.g., car ∨ bus, can be computed using

inclusion–exclusion principle, as acar + abus − acar ∗ abus.

Following the same manner, we can calculate the accuracy,

facc, of more complex Boolean expressions.

In the canonical form of MOO problems all objectives either

have to be minimized or maximized however. Therefore we

introduce “accuracy loss”:

facc loss = 1− facc (6)

Minimizing facc loss is equivalent to maximizing facc.

Calculating execution cost. The second objective, execu-

tion cost fcost, is obtained by summing the execution cost of

all used models:

fcost(q) =
∑
m∈M

CmBm (7)

Calculating memory. The third objective, memory foot-

print fmem is obtained similarly. We assume all the models

are loaded in advance before executing them.

fmem(q) =
∑
m∈M

SmBm (8)

We derive the following MOMIP:

miny∈Y [facc loss, fcost, fmem]
such that (3), (4), (5) hold.

(9)

Where Y denotes the set of valid query plans.

3) Function normalization: Many MOO methods will pri-

oritize optimizing the objectives that naturally take larger

values (such as memory that ranges in the thousands, versus

accuracy that ranges from 0 to 1). To avoid this ‘preferential

treatment‘ we use a normalization method [14]:

fnorm
i (y) =

fi(y)− fmin
i

fmax
i − fmin

i

(10)

Which normalizes the objective functions fi between the

minimum and maximum obtainable value.

B. Multi-objective mixed integer optimization methods

Before we introduce the MOO methods, some important

definitions need to be introduced [14]:

Definition 3. A point y ∈ Y is Pareto optimal iff there does
not exist a point y∗ ∈ Y such that fi(y∗) ≤ fi(y) ∀ 0 ≤ i ≤ k
and fj(y

∗) < fj(y) for some j. y is weakly Pareto optimal iff
there does not exist a solution y∗ ∈ Y such that f(y∗) < f(y).

Example 4. The query plan in Example 3 is Pareto optimal:
with the models in example 1 we can only achieve lower cost
or memory footprint by decreasing accuracy.

Preference methods. We name the relative importance of

objectives preferences. Preferences can be indicated in may

ways (e.g. weights or hierarchies), which we name.

MOO methods. We consider three methods commonly used

in MOMIPs [2] and a naive greedy method of our own

contribution.

1) The weighted sum method: The weighted sum method

minimizes the weighted sum of all objectives. It guarantees

a Pareto optimal solution. The weighted sum model selection

MOMIP is formulated as follows:

miny∈Y wacc lossf
norm
acc loss + wcostf

norm
cost + wmemfnorm

mem

such that (3), (4), (5) hold.
(11)

2) The weighted min-max method: In the weighted min-

max method, also known as the weighted Tchebycheff method,

an ancillary variable λ is introduced as an upper bound

to every (weighted) objective, which is then minimized. It

generates weakly Pareto optimal solution. The weighted min-

max MOMIP model selection is formulated as follows:

miny∈Y λ
such that (3), (4), (5),

wif
norm
i ≤ λ,

i ∈ {acc loss, cost,mem} hold.

(12)

3) The lexicographic method: In the lexicographic method

a hierarchy of objectives is used to convey their importance.

First the program is solved for the most importance objective.

The objective value is then added as an upper bound to that

objective, and next the second most important objective is

used as the objective function. This means that the MOMIP

needs to be solved several times, and the method is inefficient

for finding compromise solutions. The lexicographic method

guarantees Pareto optimal solutions.

4) Greedy-MOO (Baseline): Our greedy baseline pairs

predicates to models using a basic weighted sum utility

function:

U(m, p) = wacc loss
1−Am,p

1−min{An,p|n∈M}
+ wcost

Cm

maxC + wmem
Dm

maxD

(13)

which is then used to calculate the following model selection:

Xm,p =

{
1 if U(m, p) = min{U(n, p)|n ∈M,An,p > 0}
0 elsewhere

(14)

Greedy-MOO does not guarantee Pareto optimal solutions,

which can be shown using simple counterexamples.

Example 5. We visualize a sample search space with solutions
found by the different MOO methods in Fig. 1. Note how the
solutions vary in their objective values, even when they use
similar preference profiles.
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Fig. 1: MOO solutions in an example search space

Fig. 2: Optimization time over different MOO methods

V. RESULTS

A. Setup

1) Data: The data that we are using for our experiments

are the COCO [12] dataset and Tweeteval [5] corpus. COCO

is a dataset aiming for object detection (OD) task, containing

123k images, covering 80 classes. Tweeteval is a corpus of 50k

tweets, covering natural language processing (NLP) tasks such

as sentiment analysis and topic classification, with 17 classes

in total. Each instance in both datasets contain multiple labels,

making them suitable for complex queries.

2) Model zoos: we have collected pretrained models from

several public model zoos (Hugging Face and the PyTorch

Hub). For the NLP and OD tasks we collected 47 and 31

models respectively. We finetune some NLP models to fit

Tweeteval to perform different tasks.

3) Metrics: We split the dataset into evaluation set and

test set, where we use evaluation set to retrieve metadata

regarding the models, and test set to measure the performance

of optimizers on complex queries. To test the efficacy of

the optimizers, we assume the data distribution of evaluation

set and test set is the same. For accuracy we measured

the quality of the models in f1-score. The execution cost is

measured as the time it takes to inference on a single data

point in milliseconds. The cost of models range from a few

milliseconds to a few hundreds.

4) Queries: To run our experiments we formulated 10

queries for the OD model zoo and 6 for the NLP model zoo,

half in CNF and half in DNF. The queries vary from 2 to 6

predicates, with 1 to 2 predicates per group. Queries are similar

to (person ∧ (car ∨ bike) ∧ emergency_light).

5) Optimization: We generate query plans for every query

over two preference profiles (see V-B2), execute them over

the test set, and record the resulting f1-score, and execution

cost. A preference profile consists of a hierarchy of the three

objectives, where the most important objective gets a weight of
1
2 , the second 1

3 , and the last 1
6 . We also compare the methods

on the time it takes to generate a query plan, for which we

use a larger number of randomly generated queries.

(a) f1-score (b) Execution cost

Fig. 3: Query plan performance for the NLP scenario

(a) Execution cost (b) Memory footprint

Fig. 4: Query plan performance for the OD scenario

B. Results

1) Optimization time: For optimization time, visualized in

Fig. 2 with aggregated results from different queries, we see

that the greedy-MOO and the lexicographic method perform

significantly better than the weighted sum and weighted min-

max method, that perform comparatively.

2) Query execution: To compare query execution perfor-

mance, we spotlight two use case scenarios and compare query

plans calculated with our 4 MOO methods on their two most

important objectives.

• NLP: accuracy > execution cost > memory;

• OD: execution cost > memory > accuracy.

We see that for both scenarios in Fig. 3 and 4 that the

greedy method performs poorly. Even for the most important

objective (accuracy in the NLP scenario, execution cost in

the OD scenario) it has bad scores. The lexicographic method

manages to score well for its most important objective, but

underperforms for the others. The weighted sum and weighted

min-max method perform very comparably, finding highly

similar query plans in most cases and balancing objectives

adequately. Due to its slightly lower computation time and

guarantee for Pareto-optimal query plans, the weighted sum

method would be the better choice for our optimizer.

C. Conclusion

We investigated the multi-objective ML inference query op-

timization problem and formulated as MOMIP that optimizes

for accuracy, execution cost, and memory footprint. We tested

several commonly used MOO methods and compared them

on their theoretical suitability and tested their performance

in different experimental settings. We note that the weighted-

sum based optimizer can process user preferences and balance

objectives accordingly, outperforming naive methods. Future

work can investigate effect of the assumptions.
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