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Abstract

Background: For both hospitals and patients it would be beneficial if the scan time of
MR images could be reduced. At the moment, Compressed Sensing (CS) is introduced
to reduce the scan time, however, new methods are developed such as a deep learning
method, called the Recurrent Inference Machine (RIM). In this study the effect of recon-
structing undersampled MRI images with lesions, using the RIM and CS, was evaluated.
In data of a healthy control, lesions were simulated. Evaluation is done by checking if
the lesion has the correct intensity and shape after reconstruction of undersampled data.
Methods: In raw data of a healthy control lesions were simulated. To test the RIM
and CS, the images with lesions where first undersampled 4x, 6x, 8x and 10x. After
undersampling, the images were reconstructed with both RIM and CS. First, the peak
intensity difference was measured between the reference image (with simulated lesions)
and reconstructed images for both RIM and CS. Second, one lesion was undersampled
ten times with different undersampling masks creating different noise, for 3 different ac-
celeration factors (4x, 6x, 8x). These lesions were reconstructed with both RIM and
CS. The maximum intensity difference between reference and reconstructed image was
measured and averaged over the ten different undersampled images.
Results: In total seven different lesions were simulated in a healthy control with differ-
ent intensities varying between 10% and 100% of the GM-lesion intensity in a FLAIR
weighted scan. The intensities of all lesions were more accurately reconstructed with
the RIM compared to CS at higher acceleration factors: the average intensity per lesions
after 10 times reconstruction with RIM was more equal to the correct intensity compared
to the reconstruction with CS.
Conclusion: The RIM shows robust and accurate results on data with simulated lesions.
Moreover, the RIM outperformed CS on data that was more undersampled. Therefore,
the RIM may be used for reconstruction of MRI data that is acquired with shorter ac-
quisition time. And since the reconstruction time is better, it could replace CS in the
future. However, before the RIM could be used, further evaluations on actual patient
data are needed.

Keywords: MRI, Acceleration, Compressed Sensing, Deep Learning,, Lesion
Simulation, Reconstruction, Recurrent Inference Machine, Under sampling
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1. Introduction

Physicians often use magnetic resonance imaging (MRI) to image in vivo tissue of the
human body for diagnostic, disease progress or research. MRI can distinguish differences
in soft tissues, and is therefore very often used in the brain, but is also used for imaging
breast, hart and blood vessels. The advantage of MRI is that it is a non invasive method
to scan in vivo compared to Computed Tomography (CT). A disadvantage of the MRI
compared to CT it that acquisition times are longer for MRI. For diagnostics, it takes
around 30 minutes compared to 3 minutes for CT. During the acquisition of the image
subjects should lie still in the scanner. Healthy controls sometimes have already problems
with this, and it is even more difficult for patients with Parkinson’s disease or small
children. Moreover, planning these long scans results in higher cost for hospitals.

For cost effective purposes, as well as improvement of patient experience it is impor-
tant to make the scans as short as possible without having to compromise much data
quality. Research into this field has been done for many years now. Also manufactur-
ers have been optimizing the hardware and software to get the best scan in the shortest
amount of time. While the higher field strength MRI scanners were developed to improve
the resolution of the images, it does not contribute to shortening in the acquisition time.
Therefore, research in the field of acquisition methods and data reconstruction methods
is done.

Algorithms as Compressed Sensing (CS), Sensitivity encoding (SENSE) and general-
ized auto-calibrating partial parallel acquisition (GRAPPA) are already used to recon-
struct usable MR images from under-sampled data. Relatively new is the use of Deep
Neural Networks to the field of image reconstruction. It is already proven that neural
networks can reconstruct MR data. The Recurrent Inference Machine (RIM) is a re-
current neural network used for MRI reconstruction. This methods showed promising
results for reconstruction. However, it is not know yet if the method could be used on
clinical data that would be used for diagnosis of neurological diseases. For example,
the most important pathology of multiple sclerosis (MS) are inflammatory lesions in the
white matter (WM). These MS lesions are spots on the MR images that can by hyper
or hypo-intense compared with the surrounding WM. For diagnostics and research the
amount of lesions in the brain is important and therefore when using the RIM all the
lesions should be reconstructed correctly. Therefore, we aimed in this study to com-
pare the reconstructions of the RIM with reconstruction of compressed sensing and the
reference images to concluded if the lesions are correct reconstructed by RIM.
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2. Methods

2.1. MRI Acquisition and Reconstruction

An MRI signal is generated by the net magnetic field of the protons within the
human body. A strong static magnetic field (B0 field) polarizes net magnetic moment
in the same direction and a magnetic moment parallel to the static field is resulting.
Due to radio frequency excitation, called the B1 field, a rotating magnetization m(~r)
component is generated transversely to the B0 field. Consequently a radio frequency
signal is emitted by the rotating magnetization which is detectable by an receiver coil.
This signal is dependent on many different physical attributes of the tissue [1]. For
imaging the signal, depicting the spatial distribution of m(~r), is done in MRI. To encode
the spatial distribution extra magnetic fields are superimposed on the B0 field to create
gradients. These gradients can be applied in the three Cartesian directions ( Gx, Gy and
Gz). This causes the rotation frequency to change linearly along the axis and the signal
is distinguishable in a spatial grid and the receiver coil detects the encodes signal by the
linear phase. The MRI signal equation has the form of a Fourier integral [1],

s(t) =

∫
R

m(~r)e−i2π
~k(t)·~rdr, (1)

where k(t) ∝
∫ t
0
G(s)ds. The received signal at time t is the Fourier transform of the

object m(~r) sampled at the spatial frequency k(t)[2]. These multidimensional signals are
recorded in a spatial frequency space, or k-space. A good visual example has been given
by Lustig et al.[2], which is shown in figure 1.

Figure 1: (Image from [2]).The MR signal directly samples the spatial frequency domain of the im-
age. The gradients apply an linear frequency distribution, which cause frequency differences in time at
different spatial positions.

After acquiring data in k-space, an inverse Fourier transform is applied to the k-
space to retrieve the image. Important for a successful image reconstruction is that the
sampling in k-space abides the Nyquist-Shannon sampling theorem[3]. The Nyquist-
Shannon sampling theorem states that the function must be sampled at intervals of
maximum length 1/2 ∗ Bandwidth(B). Violating this theorem will result in aliasing
artifacts. Applied to MRI, B is determined by the distance from the origin to the edge
of the k-space and since B is a spatial frequency, the resolution will be limited to 1/2B.
For a given bandwidth, it is the k-space sampling rate that determines the size of the
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region covered inside the scanner. Thus, if the object being scanned is larger than the
field of view, the periodic properties of the Fourier transform cause the object’s signal to
wrap around and appear as aliasing artifacts in the image[4][5].

Encoded sampling and the freedom of choosing the path to fill up the k-space makes
MRI suited for accelerated reconstruction methods. By skipping values in the k-space
and zero fill them aliasing artifacts are introduced. Periodic undersampling introduces
coherent aliasing artifacts, while random sampling introduces incoherent aliasing artifacts
which, on the eye, look like a noise like artifact, as can be seen in figure 2.

Figure 2: (Image from [2]).Aliasing artifacts. The difference between coherent (left) incoherent (right)
artifacts.

In this Master thesis we used fully sampled data, which we will undersample with self
made masks to impose sampling artifacts. As we will see later, incoherent noise is the
favorable artifact we seek to solve with different reconstruction techniques. Therefore,
we used undersampling masks with a random Gaussian like distribution. Since multiple
accelerations are used for testing and training, different accelerating masks were made
with different acceleration factors (figure:3). The undersampling masks are multiplied
with the fully sampled k-space.

Figure 3: Undersampling masks. FLTR: 4x, 6x, 8x and 10x accelerated. White are the sampled k-lines.

2.2. Compressed Sensing

Undersampling MRI produces artifacts as seen in figure 2. A method to solve the
incoherent artifacts is Compressed Sensing. CS exploits the inherent compressibility of
the signal it seeks to reconstruct. Therefore, to use CS, the signal it is reconstructing
needs to have an invertible sparsifying transform Ψ, such that u = Ψx.

Sparsity in an image means that there are relatively few pixels with non-zero values.
Images can have a sparse representation in some domain (Wavelet, finite differences). The
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same holds for MRI images, for example angiograms are extremely sparse in the pixel
domain. More complex images do not have a sparse representation in the pixel domain
and can be transformed into, for example, the wavelet domain. In the wavelet domain
an image is described in wavelets. The wavelet transform describes both frequency and
location information in the image. Figure 4 is an example of a wavelet transform. The
amount of zero values has increased significantly and the signal can be called sparse.

Figure 4: Example of a 2-D discrete wavelet transform.

The possibility of exploiting transform sparsity is proved by data compression in
imaging. Natural images typically have inherent potential to be compressed without
any visual loss of information, concluding that some information in images is abundant
and probably did not have to be acquired in the first place. This inspired the theory
of acquiring a compressed MRI signal while still being able to reconstruct it properly.
According to the theory of compressive sampling[6][7], if an image has an sparse repre-
sentation in some domain and the artifacts are incoherent, the signal can be recovered
from the undersampled k-space data provided a nonlinear recovery scheme is used.

In other words, CS in MRI has three requirements: 1) The image must have a sparse
representation in some domain, 2) The aliasing artifacts are incoherent and 3) a nonlin-
ear reconstruction scheme has to be used. The scheme must enforce sparsity and data
consistency of the image representation. Point 1 and point 2 were both described. Now
we will look further into the nonlinear reconstruction scheme. Let the image be a vector
m, let Ψ be the linear operator that transforms the vector into a sparse representation,
and let Fu be the undersampled Fourier transform. The reconstruction can be done by
solving the following optimization problem:

argmin
x

{
||Fu − y||22 + λ ||Ψm||1

}
(2)

where Ψ is the sparsifying transform to transform the image into a sparse domain, y is
the actual measured k-space data and Fu is the Fourier transform for the data that was
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employed. The first term enforces the data consistency via the least-squares difference.
It ensures that the reconstructed image m is consistent with the data that is actually
measured in k-space. The second term enforces sparsity in the appropriate transform
domain. The L1-norm is used, which calculates the degree of sparsity in the image by
summing the absolute value of the pixels. So this basically means that the equation
finds the image m which is both sparse and also consistent with the data that has been
measured in k-space. The regularizer, λ, controls the relation between the two terms.
A small λ will lead to an image that is close to the measured data, relying less on the
sparsity, while using a high λ will lead to an image that is relying more on the sparsity
and deviate more from the collected data.[8]. Different approaches have been described
in the literature for solving equation 2[9].

For this master thesis we used a CS toolbox, the ”Berkeley Advanced Reconstruction
Toolbox (BART)”, to reconstruct the undersampled data. To use the bart toolbox, the
data need to be correctly shaped, which means that the dimensions are assigned like this:

• 0 readout

• 1 phase-encoding dim 1

• 2 phase-encoding dim 2

• 3 coil dim

• 4 ESPIRiT maps

Since we don’t have the sensitivity maps directly from the measurements, the bart tool-
box can calculate them for us by using the ”ecalib” function. This function creates
sensitivity maps based on the ESPIRiT method [10] from raw k-space data. With this
data the parallel-imaging compressed-sensing (’pics’) function from the toolbox is used
to reconstruct the data. Many variables can be given to this function. Here I will name
the most important ones we considered for this study:

• l1/l2 toggle l1-wavelet or l2 regularization.

• lambda(r) regularization parameter

• R generalized regularization option

The data for input was the raw k-space (dim 0-3) and the above mentioned sensitivity
maps (dim 4).

2.3. Recurrent Inference Machine

2.3.1. Forward model

For explaining the RIM, we first have to explain the forward model. Let x ∈ Cm be
the true image signal and let yi ∈ Cm , be the set of sparsely sampled frequency signals
measured in k-space by one of the scanner’s receiver coils. The measured signal can then
be described by the true image,

yi = PFSix+ ni, i = 1, ..., c. (3)
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where P is the subsampling mask, which reduces the amount of signals measured and
therefore accelerates the scanning time, F is the Fourier transform representation of the
original data x, and Si are the coil sensitivity maps. Measurements are assumed to
be subjected to additive, normally distributed noise ni. We assume that the noise can
be modeled as independent and identically distributed across coils, pixels and complex
components [4]. In figure 5, the forward model is illustrated.

Figure 5: Image from [4]. Top left: Fully sampled MRI. Bottom left: k-space measurements which is
related to image space through a coil sensitivity weighted map, followed by a Fourier transform. Bottom
right: Accelerated measurements with subsample mask P. Top right: Reconstructed sparsely sampled
k-space, where incoherent aliasing artifacts are visible. Reconstruction methods to find the function to
go from the aliased MRI to the fully sampled high resolution MRI is the goal.

The forward model is described by going from the target to the undersampled im-
age in figure 5. SENSE [11] reconstruction is used to reconstruct the Parallel imaging
acceleration with coil sensitivity maps, which leads to the undersampled k-space, which
contains incoherent aliasing artifacts when the inverse Fourier transform is taken.

Solving a function to find the inverse transform of the forward model to solve x in

yi = PFSix+ ni, i = 1, ..., c. (4)

is called the inverse problem. A common strategy is optimizing the maximum a posteriori
(MAP) estimator given by,

xMAP = argmax
x

log p(y|x) + log p(x), (5)

which is the maximization of the sum of the log-likelihood and log-prior distributions y
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and x. This can be reformulated as optimizing the regularized problem,

argmin
x

{
c∑
i=1

d(yi, PFSix) + λR(x)

}
(6)

where d evaluates the data consistency between the reconstruction and measurements,
R is a regularizer, with regularization factor λ. Under the assumption of independent,
identically and normally distributed measurement errors as seen in 3, the log-likelihood
in 5, the data consistency term in 6 is given by,

log p(y|x) =
1

σ2

c∑
i=1

‖PFSix− yi‖22 (7)

Together with the regularization term, this equation looks the same as 2 for CS if ‖Ψ‖1
is the regularizer R.

2.3.2. Model design

The RIM aims to optimize equation 6 by learning an iterative scheme over t recurrent
time-steps. Each time-step receives information on the current state of the reconstruction
process as an input, which produces an incremental step ∆xτ to take in image space as
output. The problem of evaluating the gradient of the log-prior distribution in equation
5 is solved by passing the current estimate, or external state, xτ as an input to the
network.

In figure 6 the structure of the update function and the model is shown. The model
(on the left) consists of τ timesteps. The updatefunction for each timestep has as input
the estimate xτ , the internal states sτ and the gradient of the log-likelihood. The RIM
update functions (h) are responsible for producing the next internal state, which the
RIM needs in order to keep track of iterations (timesteps) and modify its behaviour
based on the progression of the reference procedure [4]. The update function consists of
convolutional layers and gated recurrent unit cells (GRU) [12]. An GRU has the ability
to be trained to keep information from many timesteps ago, without washing it through
time or remove information which is irrelevant to the reconstruction. More detailled
information of the networks structure can be found in [13, 4].
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Figure 6: Image from [4] The Recurrent Inference Machine (RIM) model on the left. A detailed view
on the update function h on the right. Magnitudes of intermediate internal states s1 and s2 at timestep
t were averaged over features. Bold lines depict connections within a single time-step, whereas dotted
lines represent recurrent connections that pass information to the next time-step.

The RIM uses the MSE as a loss function, where the estimate xτ is evaluated against
the true image x for each time-step. A weighted sum of the MSE over the time-steps t
is minimized to train a good model.

2.3.3. Training and testing data

The model is trained on T1-weighted three-dimensional magnetization prepared rapid
gradient echo (MPRAGE) weighted MRI images. The images were made on a 3.0T
Philips Ingenia scanner equipped with a 32-channel head coil with a resolution of 1 mm3

and a FOV 256 x 240 mm2, 225 slices with sagittal slice encoding direction. TFE factor
150, interval 2500 ms, inversion delay 900ms, flip angle 30° and first order shimming.
The data was fully sampled with an elliptical shutter. The total scanning time was 10.8
min. In the article of Lnning et al. (2019) this same model was tested. The results
showed it outperformed CS an various other DL reconstruction methods. Moreover, the
article also showed that training and reconstructing on differently weighted MRI scans
should not cause a problem. Since this model was tested thoroughly while trained on
the above mentioned data, we adopted this model for the rest of our project and used in
on T2-weighted scans.

2.4. Data

In this project we used a T2-weighted fluid attenuated inversion recovery (FLAIR)
scan of the brain, made on a 3T Philips scanner with a 32 channel head coil. The
resolution was 1.1 mm3. The scan was scanned with an acceleration of 7x. The raw data
received from this scan was reconstructed with CS. This reconstructed data is now used
as the target for the rest of the study. Obtaining a fully sampled scan was impossible
since it would take very long and image quality would be affected by movement artifacts.
The scan was made for a study into a specific medication for treating Multiple Sclerosis,
called Tecfidera and approved for by the medical ethical committee. Only one participant
was included, based on which multiple data containing lesions were simulated.
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2.5. Lesion Simulation

To test the reconstruction methods, complex valued raw data from the MRI scanners
is needed. Unfortunately, past studies within the research group do not have raw data
both with and without lesions. We solved this by simulating lesions in healthy controls.
Lesions were introduced by augmenting the magnitude signal of a reference standard
into the raw data of the healthy control. In our somewhat simplified model for lesion
simulation, we assumed that the lesions cause a higher intensity in the magnitude image
and the phase would stay unchanged.

2.5.1. Intensity and implementation

When simulating a lesion, the position of the lesion and the intensity of the lesion
are the two factors to be determined. Positioning of the lesions was determined by
studying at other lesion maps annotated by neurologists and copying them by drawing
our own lesion maps on the image of our own healthy volunteer. Most of the lesions were
drawn in the deep white matter, distant from cortical gray matter. In figure 7 we see
all the lesions drawn in our healthy volunteer. As for the intensity, the lesions from the
Prediva study were observed and the average increase in intensity relative to the WM
was calculated. We found that the a maximum intensity increase of two times occurred
in lesion compared to the WM. Therefore, it was decided to scale the intensity of the
lesions from 1.1 to 2.0 times the WM intensity.

Figure 7: One slice of a healthy volunteer with all the simulated lesions at different locations (lesions at
70% of gray matter intensity).

The intensity and the position of the lesions are embedded in a mask that had the
size of the actual image. To change only the magnitude of the image and keep the phase
of the image unchanged, the mask was multiplied only with the magnitude of the image,
see figure 8.
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Figure 8: Simulation process of lesions in an MRI. Top row are the images in image space. Bottom row
are the Fourierspace representations of the top row. Multiplying in image space is a multiplication in
Fourierspace.

After insertion of the lesion, the k-space is expected to change according to the rule
that a multiplication in image space, is a convolution in Fourierspace (and vise versa).
which implies, that the information in k-space containing the lesion position and intensity
is spread out in k-space. After undersampling, every point measured still should contain
information about the lesion. The lesions were inserted in the fully sampled image and
in image space. For undersampling and reconstruction, the image was transformed back
into the k-space.

2.6. Design of experiment

Testing the reconstructions with simulated lesions is done with two algorithms:

• Compressed Sensing

• Recurrent Inference Machine trained on T1 weighted MRI images without lesions

The methods are tested on the accuracy and robustness in two experiments. In the
first experiment 7 different lesions were simulated at different locations in one slice of
a healthy control. These lesions are simulated in a range of intensities. The maximum
intensity is the intensity of the gray matter and the minimum intensity is 10% of the
maximum. Each image with the different lesions and intensities is accelerated with 4
different factors: 2x, 4x, 6x and 8x. All these images are reconstructed with both CS
and the RIM. To compare the accuracy of reconstructing the correct contrast and shape
we looked at the mean pixel intensities of a horizontal and vertical line through the
lesion, we will cal this the Mean Intensity Line (MIL). These lines cross each other at
the maximum intensity pixel in the lesion. From this line we will get information about
intensity loss and shape differences in the lesion. In Figure 9 is an example of such a
measurement.
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Figure 9: A plot of the mean intensity lines going through the center of the lesion. The original image
with lesions, CS-constructed and RIM-constructed is plotted. Under the plot the CS reconstruction and
RIM reconstruct is imaged. The red lines show the horizontal and vertical line over which the average
is taken.

In the second experiment only one of the simulated lesions is used in a healthy control
MRI slice. This slice is undersampled 4x, 6x, and 8x. And like the first experiment
different intensities for lesion simulation are used with a maximum of 100% of the gray
matter intensity. The same slice is undersampled ten times for each acceleration factor
and each intensity. Again reconstruction is done with the CS and RIM for all images.
For analysing the differences in contrast of the maximum value if the MIL between
the reconstruction method and the reference will be used to rate the robustness of the
reconstruction methods.
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3. Results

In Figure 10 a visual overview is shown of the simulated and reconstructed lesions.
The images are 8 times accelerated and the lesions have an intensity of 70%. In total
seven lesions on different locations were simulated in healthy controls. Visual inspection
shows that reconstruction with the RIM gives a smoother result in and around the lesions
compared to CS, for all seven lesions compared to the original simulated lesions. There
is however different smoothness visible for the different locations. When looking at the
subcortical lesions (1, 2, 6 and 7), the details of the surrounding white matter seem to be
more ”smooth” compared to the cortical lesions (3, 4, 5). Whereas in the CS it seems to
be more noisy at every lesion position. Whether this impacts the reconstruction of the
lesion is not visible. As seen in Figure 10 it is not visible that the intensity and shape of
lesions are different after reconstruction with both RIM and CS.

Also the plots of the intensity lines of these seven simulated lesion show that the
intensity is not much different after reconstruction, see Figure 11.

13



Figure 10: All seven lesions, reverence, RIM reconstructed and CS reconstructed. Lesions are zoomed
in the top corner for a detailed view.
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Figure 11: Seven plots of the Mean Intensity Lines going through the center of each of the seven lesions.
Per plot are three lines, one of the reverence, second for the RIM and the third for the CS.

Figure 12 shows for both the RIM as CS the peak intensity difference over all lesions
compared to the original simulated lesions. The different lesion intensities are measured
at four different acceleration factors (2x, 4x, 6x and 8x), resulting in four different plots
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per reconstruction methods and for every acceleration ten different intensities setting in
a plot. The plots for the RIM are more widespread at higher acceleration factors and
higher intensities compared to the CS. The plots of CS shows a more stable pattern,
therefore are less affected by acceleration factor and intensity.

Figure 12: Boxplots of the peak intensity differences for RIM (upper four) and CS (lower four) for the
four different accelerations factors. At the x-axis the lesion intensity of the reverence image is plotted
(1 =10%, 10=100%). The y-axis plots the difference in peak intensity averaged over all lesions. These
plots show the consistency of the reconstruction methods in terms of intensity.

3.1. Reconstruction of the MR images with one Simulated Lesion

The reconstruction of one lesion was analyzed more thoroughly. The result of the
reconstruction with CS and RIM are depicted in figure 13. In this figure the perfor-
mance gain of the RIM compared to the CS per acceleration factor is visible. In the
three plots we see three different acceleration factors (4x, 6x and 8x). Each plot has
the lesion intensity on the x-axis and the normalized contrast on the y-axis, containing
three different measurements; the reference line, the CS reconstructed results and the
RIM reconstructed results. The CS and RIM reconstruction are averaged over ten recon-
structions with varying random masks and added noise. In the second part of the figure,
under the graphs, the reconstructed lesions are shown for four different intensities, at an
acceleration of 8x. The first column has the original lesion. Then all the CS results are
shown followed by all the RIM results.
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Figure 13: For three acceleration factors (4x, 6x and 8x), there were 10 reconstruction per reconstruction
method. The average per lesion intensity is plotted.
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4. Discussion

4.1. Overview

It would be beneficial for both the patient as the hospital if the scanning time of
MR images could be reduced. Several options are addressed to shorten the acquisition
time, for example undersampling the data followed by an reconstruction with CS or
an other Deep learning method. However, not known yet is if the undersampling and
reconstruction have influence on visible pathology in a MRI. Therefore, the aim of this
thesis was to look at the gain in robustness and accuracy of reconstructing MRI data
with lesions using the RIM compared to CS. To generate the data we simulated various
lesions with various intensities scaled between 10% and 100% of the gray matter intensity.
The data was undersampled to simulate accelerations 2x, 4x, 6x and 8x compared to
fully sampling the MRI. Consequently, two different experiments were done. First the
accuracy was measured and compared for both reconstruction techniques. Secondly, the
robustness was measured. When looking at the results it shows us that RIM outperforms
CS at higher acceleration factors, but has no significant gain at the lower acceleration
factors. More specifically, the RIM appeared to be more robust in maintaining image
quality at higher acceleration levels. On the other hand, the accuracy of the RIM seems
to be a bit worse (Figure 12 at lower acceleration factors, although it reaches the same
results as the CS at higher acceleration levels. In the next section the results will be
discussed in more detail.

4.2. Performance of RIM versus CS

In the results it seems that the RIM, in general, does not underperform compared to
CS. The process of the RIM to solve the reconstruction via the inference process is focused
on removing aliasing artifacts in the image and not, as many other deep learning methods
do, solving by imaging features. By doing so, also the noise in image is reduced as we have
seen in Fig. 10. Unfortunately, noise-like details in (especially the subcortical regions)
are removed during the reconstruction as well. Nevertheless, the lesions, which cover a
larger spatial extent than the voxel-by-voxel noise pattern, are constructed good in terms
of robustness and shape (Figure: 13) and almost no intensity is lost compared to the
reference image. Comparing to the CS, we see that the same can be said for CS at lower
accelerations. But starting from 6x accelerated we begin to see a drop in performance
of CS compared to the RIM. The distortion of the image at higher acceleration levels
seems to be high for reconstruction via CS. It might be that the sparsity term in Eq. 2 is
treating too much of the aliasing artifact as noise and therefore will be removed, which
leads to a lower contrast and consequently a lower intensity of the lesion.

When looking at Figure 12, we see that the RIM is not outperforming CS in terms of
consistency, since the values are averaged over lesions at different positions. We suspect
that the RIM might face performance differences when comparing lesions cortically or
more subcortically at a brain MRI. More detailed research should be done to look into
why this is the case. It could be the case that this is an artifact of the data being trained
on different sort of MRI then it is tested on.

4.3. Extension of studies

This research can be extended into multiple directions. For one, the lesion simulation
is a simplified model. This can be extended into a model that accounts for more variables,
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like the shape of the lesion. Lesions could be segmented from other MRI scans to preserve
the shape. We were not able to do this in this study because the data needs to be in RAW
format, which basically means that the data still needs to be complex valued, which was
not available at the time. Another extension that might be looked at for lesion simulation
is how iron content in lesions might change the phase image of the MRI [14]. It is known
that lesions can be detected based on iron content in the brain. Also a higher iron content
at the position of the lesion might result in a difference in magnetisation and therefore
result in a change in the phase image. This results in a more complex pathology then we
studied in this thesis which involves only a magnitude augmentation. Such a study would
reveal whether the RIM is also robust to phase modulations in addition to magnitude
modulations.

An extension of this research might also be to train the RIM on data which does
contain lesions. When having generated more data like described in the paragraph before,
training the data with lesions becomes more easy. On one hand it might be very promising
that the RIM obtains results like this while trained on a dataset which does not contains
lesions, this might be a big advantage because you perhaps do not have to train the model
for every pathological decease which you want to detect. On the other hand it might
be very interesting to see what the performance gain or loss would be when training on
data containing lesions.

Another extension could be to use different data, because in this study the lesions
were simulated in only one healthy control image. The difference in data could be data
of different scanners or/and data with different acquisitions parameters. CS should be
robust for these different scanners and acquisitions parameters. For the RIM no studies
have been done yet on pathology dataset. However, we expect that the RIM could also be
robust against these changes, mainly if the RIM is retrained on a data set that includes
also data of with the same pathology.

4.4. Clinical relevance

The clinical relevance of this study was to evaluate if the acquisition time of the MR
images could be shortened by undersampling the image data and reconstruct is via the
RIM algorithm or CS. Both RIM and CS showed promising results for using it in more
clinical data. However, as said before, more testing should be done first for the RIM.
As in this study only data of one scanner was used and one type of pathology more
evaluation of the methods should be done.

4.5. Conclusion

Lesion simulation facilitates research because more data can be created to test, train
an validate reconstruction techniques. In this study simplified WM lesions are simulated
in healthy controls in raw data. But more research needs to be done to create an more
detailed simulation. In this study, the simulated lesions were used to investigate whether
CS and RIM were able to reconstruct the lesions accurately and robustly. Both method
performed good, however, RIM is outperforming CS on terms of robustness, especially
when images are more accelerated. As CS is used in clinical settings and research studies,
it would be possible that the RIM could replace CS eventually. This may result in faster
reconstruction, as well as in higher acceleration factors for MRI. However, follow up
studies should be done to improve the RIM and more testing should be done before
application in the clinical setting is warranted.
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A. Literature: Deep learning for accelerating MRI

A.1. Introduction: Accelerated MRI

Magnetic resonance imaging (MRI), as a bio-medical imaging modality, provides im-
ages with good soft tissue contrast. Magnetic Resonance (MR) systems deploy several
measuring sequences to produce a specific contrast for the intended purpose. Reducing
the acquisition time for MRI is an ongoing challenge to enable imaging of certain biolog-
ical processes that need to be imaged at high spatial resolution. In the current scanners
some accelerated algorithms are already implemented. Some examples are Sensitivity en-
coding (SENSE) [11], generalized autocalibrating partial parallel acquisition (GRAPPA)
[15] and compressed sensing (CS)[9]. Relatively new in the field of acceleration is the
implementation of deep learning (DL) algorithms for the image reconstruction. Man-
ufacturers have not implemented a DL algorithm for the reconstruction in the scanner
software yet, however this is still an active area of research. In this literature paper we
will give an general overview of accelerated MRI and highlight four methods that can be
used. The first method will be CS, the three other methods will be DL based methods;
the U-Net, a Variational Network (VN) and a Recurrent Inference Machine (RIM). RIM
will be used as the main reconstruction method for the rest of this Master thesis.

A.1.1. Undersampling and the inverse problem.

A MRI scanner measures the data in k-space (frequency space). Sampling has to
obey the Nyquist-criterion which states that the minimal amount of samples needed for
a accurate reconstruction is two times the highest frequency present in the signal [3].
However, there are physical constraints to the data acquisition process, which prolong
the time to produce an image. When violating the Nyquist criterion, aliasing artifacts
will occur in the image which obviously is not favorable for diagnostics.

Different undersampling patterns produce different undersampling artifacts (Figure
A.14). Random undersampling gives a noise-like artifact. By using de-aliasing algo-
rithms these artifacts can be removed. This introduces solving ”the inverse problem”:
in the context of accelerated MRI reconstruction, the forward model is a known process
that describes the transformation taking the true image signal to the measured samples.
What needs to be solved is the model’s inverse transformation, which will produce a
reconstruction of the original image. The inverse problem is often solved with CS, an ac-
cepted reconstruction method used by many MR manufactures. However, nowadays the
inverse problem could also be solved with different DL algorithms. Solving the inverse
problem with DL could reconstruct an image which approaches the quality of the ground
truth and outperforms the CS method [4]. An other advantage of DL over CS might be
an decrease in reconstruction time. Training of the model might take a long time (hours
or days), but when a model is trained, it reconstructs a dataset within seconds[4].
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Figure A.14: (Image from [9]). Violation of the Nyquist criterion causes artifacts in linear reconstruc-
tions, which depend on the sampling pattern. Left; A fully sampled k-space. Second left; Only center of
k-space sampled, but still obeying the Nyquist criterion. Second right; Sequentially undersampled. Alias-
ing artifacts occur, which can be solved with Sense reconstruction[10]. Right; Random undersampled.
Noise like artifacts occur, which can be solved with CS and DL algorithms.

Papers about MRI reconstruction with DL are being rapidly published at the moment.
In this brief literature study, it is not possible to cover all the DL methods, and therefore
we will only discuss the three different DL methods which will be described A.3 and
compare it to a more traditional algorithm CS.

A.2. Compressed Sensing
Compressed sensing (CS) in the literature is described as a mathematical approxima-

tion theory[6]. The reconstruction technique in CS exploits the inherent compressibility
of the signal it seeks to reconstruct. Therefore, to use CS, the signal it is reconstructing
needs to have a sparsifying transform Ψ, such that u = Ψx. Naturally, images have a
sparse representations, this feature is used a lot by image compression with file types
like JPEG and MPEG[16]. Logically, it can therefore be expected that MRI images are
compressible too. The sparsifying transform can vary with the application it is used for.
Often the wavelet transform is used in CS reconstruction[17]. A second condition for
using CS states that the aliasing artifacts of the image should be incoherent. This means
a noise like artifact that should not show any distinguishable pattern that is seen in for
example periodic undersampling artifacts (folding). The third and last condition needed
to perform CS reconstruction is that the image should be reconstructed by a nonlinear
method that enforces both sparsity of the image representation and data consistency of
the reconstruction with the acquired samples[9]. The problem is formulated as:

argmin
x

{
||Fu − y||22 + λ ||Ψm||1

}
(A.1)
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where Ψ is the sparsifying transform to transform the image into a sparse domain. An
example of this transform is the wavelet transform. y is the actual measured k-space data
and Fu is the Fourier transform for the data that was employed. The first term enforces
the data consistency via the least-squares difference. It ensures that the reconstructed
image m is consistent with the data that is actually measured in k-space. The second
term enforces sparsity in the appropriate transform domain. The L1-norm is used, which
calculates the degree of sparsity in the image by summing the absolute value of the pixels.
So this basically means that the equation finds the image m which is both sparse and also
consistent with the data that has been measured in k-space. The regularizer, λ, controls
the relation between the two terms. A small λ will lead to an image that is close to the
measured data, relying less on the sparsity, while using a high λ will lead to an image
that is relying more on the sparsity and deviate more from the collected data.[8]. In
Figure A.15[8] a schematic drawing of a simplified compressed sensing algorithm solving
equation A.1 is shown. The top row shows the part which enforces sparsity and the
bottom row enforces the data consistency. Other techniques can be used to solve this
minimization problem as well, like convex sets or iterative soft thresholding.

Figure A.15: (Image from [8]) Simplified CS reconstruction. Random undersampled k-space data is
collected (bottom left). Linear reconstruction leads to an image which exhibits noise-like aliasing artifacts
(top left). By applying a specifying transform, like finite differences (highlighting the edges), or the
wavelet transform sparse representation is made. The noise-like artifacts make it possible to retain most
of the significant pixels in the sparse image while removing some noise-like artifacts due to thresholding
of the image. After thresholding, only the clear edges remain in the image. Some valuable edges might
have disappeared due to the thresholding. An updated image is generated by transforming the threshold
specified image back to image space and update the image with the reduced aliasing artifacts. Then
the image is transformed back into k-space, which may contain data that is different from the collected
data. To enforce data consistency, the original k-space data is reinserted into the k-space of the updated
image. This updated k-space is then converted into an image. This image should have both the data
from the aliased free image as the data from the measured k-space. This process is iterated until a
convergence criterion is met or a number of iterations is reached.
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A.2.1. Compressed Sensing and Parallel Imaging

Compressed Sensing can be used to accelerate 2D and 3D static images in the spatial
transforms. It can also be used in dynamic imaging, where the temporal dimension can
be accelerated[18]. Parallel imaging, like SENSE [11] or eSPIRiT, [10] can be combined
with compressed sensing to accelerate even further. Acceleration factors of up to 10x
are reported in the literature[19]. One application of compressed sensing reconstruction
combined with parallel imaging is L1 SPIRiT [20], using the SPIRiT [21] method to-
gether with a spatial wavelet transform to sparsify the data. L1 SPIRiT is an iterative
reconstruction that is typically used with 3D Cartesian datasets collected using a pseudo-
random Poisson disk sampling pattern. This technique has the potential to accelerate
clinical MRI scans by a factor of 8 in applications such as pediatric body imaging[22][21].

A.3. Deep Learning and MRI

Rather then using a pre-defined sparsifying transform, which is done in CS, suitable
MRI prior distributions can be learned from data. A set of different possible MR-images
is huge, even when restricted to a particular anatomical region, contrast mechanism or
resolution[4] the variation within the image is big. From each image, a large set of
corrupted images can be augmented, one for each permitted k-space sub-sampling mask.
Using deep learning to find a function that maps each corruption back to the original
signal, for all possible original signals, is a highly complex problem[4]. We have seen
that CS does this by using compressibility and sparsity, while parallel imaging uses coil
sensitivities.

If we now first consider the forward model again, the measurements can be written
as:

yi = PFSix+ ni, i = 1, ... , c (A.2)

The image is decomposed into a set of c partial coil images through the sensitivity maps
Si. This partial image is then projected onto the Fourier domain by F . The subsample
mask P reduces the measurements by discarding values in k-space which consequently
accelerate the scanning time. Measurements are assumed to be subjected to additive,
normally distributed noise, ni. The inverse problem is used to solves this equation for x.
Often the strategy taken is to optimize for the maximum a posteriori (MAP) estimator
from statistics, given by:

xmap = argmin
x
{log p(x|y) + log p(x)} (A.3)

which is the maximization of the sum of the log-likelihood and log-prior distributions of
y and x. This is commonly reformulated as optimizing the regularized problem [13]

xmap = argmin
x

{
c∑
i−1

(yi, PFSix)d+ λR(x)

}
(A.4)

where d evaluates the data consistency and λ is the regularization factor.
DL offers the ability to learn the reconstruction parameters, thereby eliminating the

need to pick a prior with some suitable sparse transformation beforehand. Another
benefit is that the tuning of λ can be moved away from inference and put into the
training procedure.
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The combination of accelerated MRI reconstruction with deep learning is relatively
new. Although, there have been several deep learning proposals for accelerated MRI
reconstruction recently. We will discuss only three different methods: a U-net [23], a
Variational Network (VN) [24] and a Recurrent Inference Machine(RIM)[4][13].

A.3.1. U-net

The U-net is a known DL algorithm that was first proposed for image segmentation[23].
The writers of this papers took the model of the U-net and used it for image reconstruction[25].
In contrast to CS, the image reconstruction with the U-net is not iterative. Taking the
corrupted image as input, the U-net has two major components. The first component
extracts features from local patches through standard CNN architecture of convolutions
and max pooling layers. This produces a lot of features at the cost of global context
needed for reconstruction. The second component finds a solution for the loss of global
context by using unpooling layers. To obey the data consistency, the values in k-space
which were measured are placed back to there original value, which they call k-space
correction.

Results of the U-net were measured in terms of Structural Similarity Index Measure
(SSIM) and the Mean Squared Error (MSE) and only compared to the fully sampled
ground truth. The results as shown in the paper [25] displays an increase in image
quality when using the U-net with k-spce correction. However, without comparison
with other DL reconstruction methods or CS, no conclusion can be made whether its
reconstructions had better results.

A.3.2. Variational Network

Hammernik et al.[24] introduce an efficient trainable formulation for accelerated PI-
based MRI reconstruction that they call a Variational Network (VN). The model incorpo-
rates a generalized CS concept, formulated as a variational model, within a deep learning
approach. The VN can reconstruct complex-valued multichannel MR data in an iterative
way. The generalized concept taken from the CS is the sparsifying transform used to
denoise the image. They take the Total Variation transform and extent it to a Field of
Experts model[26]. This model is then substituted for the sparsifying term in formula
A.1 and can be solved iteratively. Basically, one iteration of an iterative reconstruction
can be related to one step in the network. Training for the VN is done on retrospectively
undersampled data of musculoskeletal imaging. Evaluation is done for different accelera-
tion factors. Using both retrospectively and prospectively undersampled clinical patient
data, they investigate the applicability of the VN model approach. Evaluation is also
done on clinical patient data with pathology’s that were not seen in the training set. For
each experiment they trained a new model but kept the models architecture fixed.

They did three main experiments. The first one was testing if the model would suffer
from structured artifacts as shown in figure A.14, or if it performs better with incoherent
undersampling artifacts. This they tested for acceleration factors 3x and 4x with two
different contrasts. In the second experiment they evaluated the potential of the model
to generalize with respect to different contrasts and orientations. In the last experiment
they evaluated how the model works on prospectively accelerated data. Measures used
for evaluation where mainly the MSE, Normalized Root Mean Squared Error (NRMSE)
and SSIM.
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The results show that VN reconstruction of the images with both structured artifacts
as with incoherent artifacts performed better then CS and SENSE. It performed equally
good on dictionary learning. The top row in figure A.16 shows a qualitative result of
the reconstructions with structured artifacts. The table in figure A.17 shows the results.
From this table the conclusion can be drawn that in all three of the experiments the VN
showed better results compared to other reconstruction techniques.
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Figure A.16: (Table from [24]) Results of the three experiments
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Figure A.17: (Image from [24]) Coronal PD-weighted scan with acceleration 4x of a 32-year-old male.
The green bracket indicates osteoarthritis. The first and second row show reconstructions with regular
Cartesian sampling, the third and forth row show reconstructions with random sampling. Zoomed
views show that the learned VN reconstruction appears slightly sharper than the PI-CS TGV and
dictionary learning reconstruction. The dictionary learning and VN reconstruction can significantly
suppress artifacts unlike CG SENSE and PI-CS TGV. Results based on random sampling show reduced
residual artifacts and slightly increased sharpness in comparison to regular sampling

A.3.3. Recurrent Inference Machine

Recurrent Inference Machines (RIM) were first proposed by Putzky and Welling
(2017)[13] as an inverse problem solver. Later this is used by Lnning (2017) [4] to
apply it for accelerated MRI reconstruction. This model constrains the solution space by
learning an iterative process, where step-wise reassessments of the maximum a posteriori
estimate lead to an incremental update that infers the inverse transform of the forward
model[4].

The authors’ hypothesis is that the RIM is capable of reconstructing data of multiple
acceleration factors while only trained on a single acceleration factor. They verified this
by comparing the performance of the models trained on a single acceleration factor with
models trained on a range of acceleration factors. They also claim that the RIM has the
ability to generalize structures that were unseen during training.

To test the performance of the reconstructions the SSIM [27], NRMSE and Peak
Signal-to Noise Ratio (PSNR) are used as metrics. The images were also rated by a
experienced neurologist in a double blinded test.
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Figure A.18: (Image from [4]) Boxplots of SSIM- and PSNR-values for CS and the RIMs (both with
PI) trained on all three types of data: 1.0mm T1-weighted brains, 0.7mm T2∗-weighted brains, and
0.5-0.6mm T2-weighted knees. Hues indicate the model and, in the case of the RIM, the type of data
trained on, whereas columns indicate the type of data evaluated on.

Figure A.19: (Image from [4]) Shows the 8 time accelerated images of a T1-weighted scan. Trained on
T1, T2∗ and T2 weighted models. On the eye, there are very little differences.
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Figure A.20: (Image from [4]) The bars show the average score assigned by the neurologist.

The paper [4] shows SSIM- and NRMSE-scores for RIMs trained and cross-evaluated
on three types of data, along with CS (which was optimized for this dataset). The
first column of figure A.18 is illustrated qualitatively in figure A.19. It shows the 8x
accelerated image from a T1-weighted brain dataset. In figure A.20 the double blinded
test results from the neurologist were shown.

As we can see in the figures, the RIM outperforms the existing CS method in terms
of image quality. The neurologist scores the RIM reconstructed image even higher then
the fully sampled image. This might be the case because the RIM slightly smooths the
fine structures, and human perception is positively sensitive for that.

A.4. Conclusion

As we have seen, the above described methods all do reconstruction in a different way.
All perform well with the specific data they used in their study. The MSE and SSIM
results of the studies are difficult to compare, because the studies use different data-sets
and trained the models on different data. In the study on RIM and VN the methods were
compared to other reconstruction methods and had better results then CS. Furthermore,
as VN was the only network that was tested on pathological data (of the knee), it seemed
to perform fine. Thus even though image quality seems to be excellent for the three DL
algorithms in this study, more research has to be done on how well the performance
is with pathological data. Moreover, a study that compares the methods should give
an better interpretation of performance of the methods compared to each other and for
example CS. As a result of this conclusion, there is merit in further investigation of the
difference in performance between the RIM, which has promising results, and CS.
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