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Abstract

This report presents the work carried out for a research into the application of Reinforcement Learning (RL)
and Computer Vision (CV) for the autonomous flight of Unmanned Aerial Vehicles (UAVs). The goal of the
thesis is to “design a reinforcement learning based guidance controller for an AR Drone 2 that uses vision
sensed features for state estimation and reward generation”.

There is a growing demand for the autonomous functioning of UAVs. UAVs that can autonomously find its
own way can be useful in the case of surveillance, inspection of infrastructure, or in search and rescue oper-
ations. However, current autonomous systems rely on an Integrated Localization System ,such as the Global
Positioning Sysytem (GPS), for guidance and navigation. This can limit the UAV’s autonomy by reducing its
capacity to travel in GPS denied environments such as indoors or in tunnels.

This project contributes to the autonomy of UAV’s by implementing an RL based guidance controller for
a quadcopter that does not need an Integrated Localization System for guidance and navigation. Instead,
visual information is encoded to define a state which is a “relative description” of the quadcopters’s position.
The vision-based relative state information is used by the RL agent to make guidance and navigation deci-
sions.

The developed vision-based RL controller is implemented in a Parrot AR Drone 2 and tested in a robot
testing facility of the Aerospace Faculty of TU Delft. First, a preliminary study into the general character-
istics of vision-based relative description of th state is performed in a gridworld simulation. Consequently,
concepts for the vision-based state, the guidance task and the RL agent are created and a learning scheme
selected. Following this, the learning of the guidance by the designed agent is simulated using PaparazziUAV
and FlightGear. During implementations the guidance task is simplified and the RL agent is redesigned. The
defined tasks consist of travelling to a red goal in a room (one goal task), travelling to a red goal and a blue goal
in a room (two goal task) and turning past a corridor to travel to a red goal (corridor task). After redesigning
and simulating the agent, it is implemented in an AR Drone 2 and flight tests performed.

The gridworld study shows that the agent is unable to learn if there is insufficient information in the rela-
tive state description. Attempting to learn a fully greedy policy causes the learning to diverge. The simulation
of the task in PaparaziiUAV and FlightGear shows that the agent can learn the task, and the learning can be
made faster by incorporating expert knowledge. An action that lasts over multiple steps, called an option is
implemented to overcome the problems associated with ambiguity in the state description, and the agent
is encouraged to turn when not seeing a goal through the reward function. The ability of the agent to learn
other, similar tasks, is demonstrated by teaching the corridor task to the agent for the two goal task. The
performance of the RL agent is compared to a rule based autopilot and an absolute position based autopilot.
The trained agent performs nearly as good as the rule based autopilot, but it takes over twice the amount of
time to perform the task than the absolute position based autopilot.

After simulations, the agent is implemented in an AR Drone 2 and trained to perform the one goal task.
The real life agent learns to perform the task, albeit with greater variance in the performance than the simu-
lated agent. This is believed to be a result of the real life noise that is unmodeled in the simulations. The real
life agent has a delay in the perception of the vision states. This delay causes an offset in the performance be-
tween the simulated agent, and the real life agent when Q-values learned from simulation are implemented
in the AR Drone 2.

The work in this project shows that it is possible to train simple guidance and navigation tasks to quad-
copters using only vision information and RL.
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1
Introduction

This document presents the design and testing of a vision-based Reinforcement Learning (RL) agent for the
guidance of a quadcopter. The motivation for the design of such a system, the goals of the overall project, the
scientific context of the project, and finally the structure of this report are presented in this chapter.

1.1. Motivation
Recent developments in electronics and software have led to UAVs becoming cheaper(Kendoul, 2012). Al-
though the early drive for UAVs was from the military, these developments have led to the emergence of a
consumer market for UAVs for either recreational or professional uses. Hobbyists are buying them for the
pleasure of flying them or using them for photography. Businesses, research institutions and governments
are buying them for mapping, monitoring and logistics. The widespread demand has been fueling a push
to UAV research in order to improve them and enable them to perform even more tasks (Valavanis, 2008;
Kendoul, 2012).

One of the points of attention for the development of UAVs is their autonomy (Salichs & Moreno, 2000;
Kendoul, 2012). Not only does a more autonomous UAV provide significant advantages over a human con-
trolled one, it opens up venues of applications which are inaccessible to them due to current limitations in the
technology. For instance the ability to autonomously adapt the internal controller to various circumstances
may lead to UAVs which can work autonomously under all weather conditions, adapt the control action to
changing aerodynamic model with ageing or adapt its control action to mitigate some damage to itself. A UAV
capable of autonomous navigation and survey may regularly launch itself, monitor an area, perform detailed
surveillance on areas of interest and alert human operators in case it detects any problems. This will decrease
the costs of manually monitoring and surveilling an area. Such systems can be used by security companies,
maintenance companies or natural preserves.

Driven by these needs, a study is performed to improve the autonomy of UAVs. The focus of this work
is on the autonomous flight of UAVs in GPS-denied environments. The reason for this is the limitations of
current methods of autonomous flight for UAVs in GPS-denied environments and the potential gains in UAV
autonomy as a result of such a system. A lot of the work towards solving this challenge uses vision and laser
sensors to simultaneously locate the UAV and map its environment using Simultaneous Localization and
Mapping (SLAM) (Bachrach, Prentice, He, & Roy, 2011; Grzonka, Grisetti, & Burgard, 2012; Tomic et al., 2012).
This work aims to explore other tools from the field of Artificial Intelligence (AI) to solve this problem.

Namely, the goal of this work is to use RL and Computer Vision (CV) to teach a UAV to perform a guid-
ance task without GPS information. RL has been used by the AI and the Control Engineering community
to approach numerous problems (Tesauro, 1995; Abbeel, Coates, Quigley, & Ng, 2007; Mnih et al., 2015). In
comparison to other AI methods, RL has the distinct advantage of being able to learn without supervision
(Sutton & Barto, 1998). This feature is useful for autonomy as it provides a level of autonomous behavior
unattainable by supervised learning. However, there are numerous complications and challenges with the
applications of RL which must be kept in consideration. For example, dealing with partial observability, the
exponentially increasing search space with increasing dimensions of the state-action space and the trade-off
between exploring the environment against exploiting learned knowledge leads to complications in robotics
applications (Kober, Bagnell, & Peters, 2013).

1



2 1. Introduction

Over the past few decades numerous innovations in CV (Zhang, 2000; Lowe, 2004; Viola & Jones, 2004;
Davison, Reid, Molton, & Stasse, 2007) have made it one of the most information rich sensor for the control of
robots. The enabling technologies of CV and the potential benefits of using vision has encouraged numerous
studies into the application of CV for UAV guidance and navigation(Bonin-Font, Ortiz, & Oliver, 2008). Due
to the capacities of CV and the intuition that vision is important for guidance and navigation, it is selected as
the alternative to GPS for this study.

1.2. Research Goals
The research goal for the thesis is to “design of reinforcement learning guidance controller for an AR Drone
2 that uses vision sensed features for state estimation and reward generation”. In order to accomplish this
goal, the following research questions are defined:

RQ1 What is the current state of the art for RL in UAVs and vision-based RL for robotics applications?

RQ2 What will be the task and the architecture the controller simulated and tested in this study?

RQ2.1 What are some options for vision-based states that can be used by RL for learning a guidance
and navigation task?

RQ2.2 How should the guidance and navigation task be framed to make it achievable by a vision-based
RL quadcopter?

RQ2.3 What type of learning scheme are suitable for this study?

RQ3 Which learning schemes and vision-based states are simulatable and testable within the resources of
this project?

RQ4 What is the performance of the designed controller?

RQ4.1 How does the controller perform in terms of (a) rate of learning, (b) time taken to perform the
task?

RQ4.2 How does the developed algorithm compare to other guidance methods?

RQ4.3 Can the developed agent be used to learn other guidance tasks?

RQ4.4 How well does the information learned in simulation transfer to real-life?

1.3. Scientific Context
The work carried out in this project is related to two fields of knowledge; namely, Aerospace Engineering and
Artificial Intelligence. Specifically it focuses on the control task of UAVs which is a sub-topic of Aerospace
Engineering. The sub-categories of Artificial Intelligence pertinent to this work is reinforcement learning and
computer vision.

Since it is an applied research it makes no theoretical contributions to the aforementioned fields. It’s goal
is to combine the knowledge present in these fields and apply them to the improvement of the autonomous
flight of UAVs. The intended contribution is the design of a vision-based RL guidance controller for a quad-
copter.

1.4. Report Structure
The next chapter (Chapter 2) presents a stand alone article which provides a brief introduction to the ideas
used in this project and documents its most interesting results. The RL agent and the validation of the simu-
lation as described in Chapter 2 provide answers to RQ3 ,RQ4.1 and RQ4.4 (and partly to RQ4.2)..

Backgrounds on the concepts and theories used in this project are described in Chapter 3. Namely, it
discusses the autonomy of UAVs, explains the working principle of RL, and describes some computer vision
methods relevant for vision-based state design. The discussion about the state of the art in RL and CV in
Chapter 3 addresses RQ1. In Chapter 4, a gridworld simulation is carried out to obtain ideas and insights
about the design of a vision-based state. Concepts for the state description, the guidance task and the initial
design of the RL agent are presented in Chapter 5. The concepts for the state, task and agent answers RQ2.



1.4. Report Structure 3

Experimental results answering some of the remaining research questions are described in Chapter 6. The
RL controller is compared to an absolute position based controller to complete the answer to RQ4.2. RQ4.3 is
answered by using the designed RL agent to learn a different navigation and guidance task. Following Chap-
ter 6, conclusions from this project and recommendations about future work are presented in Chapter 7.

Readers with prior knowledge of RL and CV are recommended to start by reading the article in Chapter
2 and than move onto Chapter 6. These two chapters contain all the results from the vision-based RL agent
that has been developed in this project.
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Flight test of Quadcopter Guidance with Vision-Based
Reinforcement Learning

Manan Siddiquee∗Faculty of Aerospace Engneering, TU Delft

Reinforcement Learning (RL) has been applied to teach quadcopters guidance tasks. Most applications
rely on position information from an absolute reference system such as Global Positioning System (GPS).
The dependence on “absolute position” information is a general limitation in the autonomous flight of Un-
manned Aerial Vehicles (UAVs). Environments that have weak or no GPS signals are difficult to traverse
for them. Instead of using absolute position, it is possible to sense the environment and the information
contained within it in order to come up with a “relative” description of the UAV’s position. This paper
presents the design of a RL agent with relative vision-based states and rewards for the teaching of a guid-
ance task to a quadcopter. The agent is taught the task of turning towards a red marker and approaching
it in simulation and in flight tests. A more complex task of travelling between a blue and a red marker
is trained in simulation. This work shows that relative vision-based states and rewards can be used with
RL to teach quadcopters simple guidance tasks in simulations and in real flights. The performance of the
trained agent is inconsistent in simulation and flight test due to the inherent partial observability in the
relative description of the state.

Nomenclature

IMU Inertial Measurement Unit UAV Unmanned Aerial Vehicle
GPS Global Positioning System MAV Micro Aerial Vehicle
UAS Unmanned Aerial System RL Reinforcement Learning
UDP User Datagram Protocol MDP Markov Decision Process
HTTP Hypertext Transfer Protocol INDI Incremental Non-linear Dynamic Inversion
RGB Red Green Blue YUV

I. Introduction

APPLICATIONS such as urban search and rescue, surveillance and infrastructure monitoring require Unmanned
Aerial Systems (UAS) which can safely and autonomously fly in unknown environments without position

information from the Global Positioning System (GPS). For these types of applications the Unmanned Aerial
Vehicle (UAV) must perceive the environment to get an idea of where it is, identify where it needs to go and
guide itself to its goal. Perception uses vision, distance sensors and other on-board sensors to come up with a
relative description of the position and attitude of the UAV. These approaches are either computationally expen-
sive or they require heavy hardware (for example laser distance sensors or stereo-vision setups) which can be
challenging for Micro Aerial Vehicles (MAVs) with limited payloads. Furthermore, if the UAV is limited to using
pre-programmed flight plans and routines for autonomous behavior, it cannot adapt to changing environments or
mission requirements without human supervision. The limitations of current methods and lack of methods which
enable higher levels of autonomy constrain their use in the aforementioned applications.

Presently, there are three main approaches to guidance in GPS denied environments. The earliest and simplest
approach is dead reckoning. Estimates for the acceleration is obtained from the IMU, but it can also be obtained
using novel methods such as visual odometry [1]. Using dead reckoning alone is problematic for UAVs due
to sensor noise and drift. Therefore, it is often fused with other localizing systems in order to improve their

∗MSc. Student, Department of Control & Simulation, Faculty of Aerospace Engneering, TU Delft
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accuracy [2–5]. Another approach is replacing GPS with some other local integrated positioning system [5,6]. The
problem with this method is the requirement of an external system. The final approach is using a laser rangefinder
or a camera to create a map of the environment and localize the UAV within the generated map. This approach
is called Simultaneous Localization and Mapping (SLAM) [7]. The drawback of this method is its computational
cost which makes real-time applications challenging. Research into this method has yielded numerous guidance
and navigation systems which use some form of speeded up SLAM, enabling GPS free navigation [8–10]. An
example of a map generated using SLAM is shown in Figure 1.

Figure 1: Maps of the first floor of MIT’s Stata Center as presented in [8]. The left image shows the map created by
the autonomously flying UAV developed in [8] using laser range finders. The right image shows the architectural floor
plan.

Vision is often a key element in many of these non-GPS localizing methods. The volume of information in
vision and the lightweight nature of most cameras make it a desirable source of information required for guidance
and navigation [5, 9, 11–13]. Bipin, Duggal and Krishna [14] used supervised learning to train depth estimates
from visual data which is later used for trajectory planning. Purely vision-based SLAM is not very common. Weiss
et al. [9] and Shen et al. [15] use purely vision-based SLAM for the autonomous navigation of MAVs. Research
efforts to incorporate vision into the autonomy of UAVs has focused on specific tasks [9] such as landing [16,17],
hovering [18], corridor following and obstacle avoidance [19]. Some of these methods calculate optic flow [20]
to estimate the attitude of the UAV and generate control actions. The accessibility of visual data and the relatively
smaller amount of work carried out on the guidance of UAVs using vision-based reinforcement learning (RL)
motivates its use in this study.

The core characteristic of autonomous systems is their ability to perform tasks with limited or no human
interaction. Many of the work on the autonomous flight of UAVs in the previous decade used hard-coded software
that has little or no learning capacity [13]; this limits their autonomy. In this regard, techniques from the field of
Artificial Intelligence (AI) and robotics have been applied in UAS to incorporate learning and adaptation into its
flight. Out of the machine learning methods available, RL promises the distinct advantage of being able to learn
without supervision [21].

The increase in sensing and acting potential of UAVs brought on by improved electronics has encouraged the
application of RL in its guidance and control. Abbeel, et al. [22] demonstrated autonomous aerobatic maneuvers
by a helicopter using inverse RL. It has been used to train optimal shapes for a morphing UAV at different flight
conditions by Valasek et al. [23]. Valasek et al. [24] has also used RL to teach a simulated fixed wing UAV to
track a target for surveillance using vision feedback; the path taken by one of their trained controller is presented
in Figure 2b. The performance of a non-linear autopilot is compared to a controller learned using RL in [25].
The study found that the designed non-linear controller slightly outperformed the RL taught controller. It has
been used by Sharma [26] to train a UAV autopilot using a method called Fuzzy Q-learning and by Junell et
al. [27] to tune the gains of a quadcopter using policy gradient RL. Further, it has been used for exploring an
unknown environment and find paths to defined goals in [28] (see Figure 2a). The ideas of RL have been used
in [29] and [30] to come up with methods that enable UAV guidance and navigation in unknown environments
with obstacles in the former study and cooperatively plan paths to avoid threats in the latter study.

A broader use of RL in UAVs is restricted due to several challenges with its implementation. Issues such as
dealing with partial observability, the intractable state-action space for complex tasks and the trade-off between
exploration and exploitation lead to problems in robotics applications [31]. Specifically for UAVs, RL implemen-
tations that aim to carry out on-line learning needs to ensure safe exploration [32] and fast convergence. This
factor discourages learning in flight tests with such systems.
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(a) Representation of the guidance problem that
was solved using RL in [28]. The agent is posi-
tioned in a 6x6 gridworld with the goal of find-
ing an optimum route to photograph the ruins
all the while accounting for available memory.

(b) Simulation results from [24]. Here an RL
agent controlling a fixed wing UAV (blue) learns
to give the right bank angle commands in order
to keep a tracked target (red) in its view. This
plot shows the trained agent tracking an errati-
cally moving target.

Figure 2: Application of RL to UAV guidance

UAV guidance and vision-based RL have been researched as separate topic. However, there has been relatively
little work on the application of vision-based RL for UAV guidance. This work aims to contribute to the filling
of this “knowledge-gap” by implementing a vision-based RL guidance system in an AR Drone 2. First a RL
agent learning a guidance task using vision-based states and rewards is simulated. Following this the agent is
implemented in an AR Drone 2 and real life tests carried out. The differences between the simulation and practical
tests (i.e. the “reality gap”) is studied. The developed RL agent uses a vision-based state, thus there is no need for
absolute position information. Furthermore, the UAV explores the environment by itself in order to find “good”
paths to perform the navigation task. This makes the system more autonomous than one with a pre-programmed
flight plan. The proposed method abstracts the mapping and localization by using relative vision-based states.

Simulation of the guidance tasks are carried out. The tasks consist of traveling to goal locations marked by
colored rectangles. PaparazziUAV and FlightGear are used to simulate the RL agent. The learned policies are
consequently uploaded to an AR Drone 2 and the performance of the real and simulated quadcopter are compared.

The next section (Section II) provides some background on RL and describes the algorithms used in this study.
Section III discusses the navigation tasks, the evironment of the guidance tasks and details about the agent. After
this the simulations and the flight tests are expanded upon and their results explained in Sections IV and V. Finally,
the report is concluded in Section VI with a statement of the findings of this paper and directions for further work.

II. Background on Reinforcement Learning

The following subsection provides a generalized explanation of the elements that make up RL and its working
principle. After that an overview of two key concepts of RL, the ideas of value and policy, are explained. Lastly
the learning method used in this work is described. The information provided in this section is sufficient to create
the vision-based RL agent that will be taught a guidance task.

A. Overview of RL

RL is a machine learning method which can be used to teach a software agent sequential decision making tasks
that have delayed rewards. In RL, the learning entity is called the agent. It acts in an environment in order
to accomplish a defined goal. While acting in the environment the agent senses its state and a scalar reward
accompanied with every state transition. The reward is a scalar measure of how “good” it was to take the previous
action from the previous state. The goal of an RL agents is the maximization of the sum of future rewards that it
can accumulate.

One of the most basic forms of the RL problem is characterized by a finite and discrete time Markov Decision
Process (MDP). A MDP is a decision process whose state and state transitions satisfy the Markov Property. For
a description of the state and the consequent state transition brought on by the environment to be Markov, future
states must only depend on the current state and the current action. This property is important for many RL
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methods as it allows learning based on the current state. Since all future states the agent can be in are fully
determinable by its current state and action, the expected sum of rewards the agent can gather from any state is
also function of its current state and action.

A finite MDP can be described using the five following elements: a finite state space (S), a finite action space
(A), the transition probability (P (st−1, st, a)) between the states, a reward model (R(s, a)) and the discount
factor (γ).

State Space (S) The state space consists of all the possible discrete states the agent can be in.
Action Space (A) The action space consists of all the actions the agent may take.
Transition Probability (P (st−1, st, a)) The transition probability is the system model. It describes the likelihood

of ending up in state st given the agent takes action a from state st−1.
Reward Model (R(s, a)) The reward model describes the reward, rt, that the agent obtains when it transitions to

a new state.
Discount Factor (γ) The discount factor is used to make the sum of rewards to infinity bounded for non-episodic

tasks.

B. Return, Value and Policy

The sum of rewards the agent obtains is called the return. RL agents aim to maximize the return. The value
(V (s)) of a state is given by the expectation of the discounted sum of rewards from that state to the terminal state
(Eq. (1)). An RL agent learns better ways of performing a task by acting in its environment and estimating the
value of each of the states. The value is an estimate of the return that may be obtained from a state while following
a certain policy. Being in states of higher value implies the agent will be able to accumulate more rewards.

V π(st) = E

[ ∞∑
t=0

γtrt

]
(1)

The policy (π(s, a)) expresses the probability of taking an action when in a specific state. The value of a
state depends on the way the agent acts, thus the estimated values in RL depend on a specific policy (V π(s)).
The optimal policy (π∗) maps the action which leads to the maximum return to every state (i.e. the best action is
selected 100% of the time). A goal of RL is to find the optimal policy (π∗). Choosing an action which leads to the
state of highest value is referred to as acting “greedily”.

π∗(st−1) = argmax
a

∑
st

P (st−1, st, a)V
∗(st) (2)

C. Q-Learning

Temporal difference (TD) learning [21] is a RL method which can be used to find optimal policies by estimating
the value of each state through interactions with the environment. TD learning works by adjusting the estimate of
the value of a state based on the reward and the value of the next state.

V (st−1) = V (st−1) + α(rt + γV (st)− V (st−1)) (3)

On the one hand, the agent must explore the environment to estimate the value of the states. On the other hand,
it must use the estimated values to act optimally. These two contradictory requirements lead to the dilemma of
exploration versus exploitation in RL.

An approach to deal with the dilemma is using a policy that encourages random actions at the start of learning
and optimal actions at the end of learning. This study uses the ε-greedy policy which picks a random action with
probability 1− ε and a greedy (or optimal) action with probability εa

Through the use of such a policy, a value approximation relation of Eq. (3) and an optimal action definition
of Eq. (2), it is possible to come up with progressively better policies by interacting with the environment. With
sufficient exploration and improvement of the policy, the optimal policy will be found given the problem is a
discrete time MDP [33].

aMany prefer to use another interpretation of ε, where a higher ε implies more random actions
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However, without a model of the system one cannot find the optimal actions from the state values (V (s))
alone as the agent has no way of knowing how every action causes the state to transition. The model is needed to
estimate the optimal action shown in Eq. (2). There are numerous solutions to this problem; the one used in this
study is Q-Learning as proposed by Watkins [34]. In Q-learning state-action values (or Q-values) are used instead
of state values to bypass the need for a model.

Q(st−1, at−1) = Q(st−1, at−1) + α
[
rt + γmax

a
Qπ(st, a)−Q(st−1, at−1)

]
(4)

π∗(st) = argmax
a

Q∗(st, a) (5)

Estimating the Q-values for acting optimally allows the agent to select the best actions without a transition
probability as it can pick the action with the maximum value from the state it is in (Eqs. (4), (5)). An added
advantage of Q-learning is its off-policy learning capacity. This makes any policy that sufficiently explores the
state-action space a viable option for approximation of the Q-values. This is the case as Q-learning always makes
the Q-value updates based on the next optimal action (Eq. 4).

III. Tasks and Agent

This section describes the guidance tasks, the designed RL agent and a rule based controller for performance
comparison with the RL agent. The exact nature of the vision-based state and the reward scheme selected are
described. Following this, the performed simulations and their results are discussed in Section IV.

A. Guidance Tasks

The guidance task consists of approaching fixed markers in an obstacle free 8m by 8m square room (Figure 3a).
The goals are physically represented by colored rectangles of dimensions approximately 42 cm by 60 cm (the
dimension of an A2 papers). Two guidance tasks are defined:

One goal One red goal is placed at the middle of the South wall. The quadcopter must turn and approach the goal
until a threshold amount of red pixel is seen. With fixed initializations, the quadcopter starts facing 180◦

away from the goal at a distance of 4m from the goal (Figure 3b).
Two goal A blue goal is placed near the northern side of the East wall and a red goal is placed near the southern

side of the West wall (Figure 3c). The quadcopter must approach both goals until the threshold amount of
the specific goal is seen. With fixed initializations, the quadcopter starts in the middle of the room facing
the North wall; one goal is in its front left and another in its rear right .

(a) Dimensions (b) One goal task (c) Two goals task

Figure 3: The dimensions of the environment, position of the goals for the two tasks and their initialization state

The room for the flight test is a 10m by 10m enclosure called the Cyber Zoo. It is equipped with a motion
sensing systemb which accommodates experiments with robots. The quadcopters environment is constricted to an

bOptitrack: Motive Tracker http://www.naturalpoint.com
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8m by 8m region bounded by virtual walls inside the Cyber Zoo. For the simulation, an approximate 3D model
of the 8m by 8m environment of the quadcopter in the Cyber Zoo is created. Snapshots from the real and the
simulated environments are presented in Figure 4.

Figure 4: A picture of the real environment (left) and simulated environment (right).

The tasks are simulated with two sets of actions in order to look at the effect of incorporating expert knowledge
into the RL agent through pre-programmed actions. Additionally, the effects of fixed and random initialization are
studied.

B. Agent

This subsection discusses details about the agent: the vision-based state used by the agent is described, its learning
and exploration scheme are discussed, the two action sets used in this study are presented and the reward scheme
is characterized.

1. Vision-Based State

The separate components of the vision-based state is shown in Figure 5. The first component of the state consists
of three integers which represent seeing the goal at different parts of the quadcopter’s field of view. The second
component represents the amount of pixels being seen by the quadcopter and provides a sense of distance to the
goal. The third and fourth components are memory states; the third component represents which goals have been
visited and the fourth component represents a collision with the wall during the previous action.

Figure 5: Representation of the vision-based state and its constituents

The first and second components of the state contain the information required to guide the agent towards
the goal. The task requires the agent to approach colored markers (goals). Thus, the agent has to be able to
distinguish the colored markers and get an idea of where it is relative to the markers from vision information.
The first component of the state represents the information about the specific colored marker being seen and the
relative lateral location of the marker with respect to the quadcopter.

The image frame is divided into three columns and the number of pixels above predefined thresholds are
counted in each of columns. The three integers represent the detection (or no detection) of colored pixels above
the threshold in the three columns. Some examples of what the quadcopter sees and the corresponding first
component of the vision-based state are shown in Figure 6. The integers take a value of “0” if there are no pixels
above the threshold, a value of “1” if there are pixels above the red threshold and a value of “2” if there pixels
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above the blue threshold. Therefore the state “0,0,1” represents the presence of red pixels (above the threshold) in
the right column.

Figure 6: Three snapshots of the quadcopter’s vision during simulation. The segmentation of the image into three
columns and the consequent dominant columns part of the vision state have been depicted.

The detection of the red or the blue goal is based on the detection of pixels whose values are higher than a
threshold. The thresholding for the detection is in RGB color space in the simulation and in YUV color space
in the flight tests. In simulation, the RGB values of each pixel is summed and the percentage of red and blue
calculated. A pixel is considered a red or a blue goal if more than 75% of its value is in the respective color. In
flight tests, a pixel is considered red if its U components is less than 0.0 and its V component is greater than 0.13.
The thresholds for detecting the blue are not defined for the flight tests as only the one goal task is performed in
real life.

The second component (fourth integer) of the state represents how much of a goal is being seen by the quad-
copter, and is a relative description of the distance to the goal. The sum of pixels above the threshold is divided
by 5000 and the resulting number floored to obtain a discretized representation of the number of pixels above the
threshold which are being seen. This integer is named the “Color Fraction” in this study. Its other use is deciding
if a goal has been visited. In the simulations, the red goal is considered visited if the color fraction is greater
than “3” and the blue goal is considered visited if the color fraction is greater than “2”. The difference in the two
thresholds is due to the lighting in the models of the environment which makes the blue goal less visible. Hence
the range of values for this component of the state is between “0” and “3”.

The third component (fifth integer) is a memory state which is relevant for the two goal task. This integer
remembers which of the goals has been visited. It has a value of “0” when neither goals have been visited, a value
of “1” if the red goal has been visited, a value of “2” if the blue goal has been visited and a value of “3” if both
goals have been visited. For the one goal task this component can take one value; for the two goal task this state
has three possible values.

The fourth component (sixth integer) of the state represents a collision with the wall caused by the previous
action. This information is used to teach the agent to avoid walls . Its value is “1” if a forward movement in the
previous action would have resulted in a collision with the wall. In such a case, the quadcopter does not make a
forward movementc. For all other actions, its value is “0”.

Such a state description leads to a total permutation of 64 states for the one goal taskd and 748 states for the two
goal taske. However, in reality the number of states are lower than this due to the definition of the environment.
For example, it is not possible to see a disjoint goal f neither is it possible to see two goals at the same timeg.

2. Learning scheme and parameters

This study uses Q-learning with an ε-greedy policy. The values for the learning rate (α) and the discount factor (γ)
are kept constant at 0.3 and 0.9 respectively. As the goal of this work is the real life application of a vision-based
RL agent on a quadcopter, a sensitivity of the agent to the RL parameters is not performed, as long as there is
learning and convergence with the used values.

The exploration-exploitation problem is handled by increasing the greediness of the agent sequentially as the
training progresses. A number of starting exploration rates (i.e. ε0) were tried out in simulation; the trials led to
a starting value of 0.60. A high early exploration rate was found to be wasteful in terms of learning rate as the

cIt is assumed that it has some kind of distance sensor to obtain this information
d23 × 4× 1× 2
e33 × 4× 3× 2
fthe state “1,0,1” is not possible
gthe state “1,2,0” is not possible
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number of possible states in either of the tasks are not significantly high. The schedule of increasing the ε for the
two simulated tasks and the flight test is presented in Figure 7.

Figure 7: The ε schedule for training the RL agents in this study

3. Actions

Two sets of actions are defined for the agent. The primitive action set consists of going forward, turning left by
22.5◦ or turning right by 22.5◦. The extended action set consists of the actions in the primitive set supplanted with
an additional action. The extra action is a temporally extended action, called an option [35], which causes the
agent to keep turning right until it sees a goal. The option is available to the agent only when it is seeing nothing
(i.e. in the state 0,0,0;0;x;x). It is implemented with the intention of speeding up learning by incorporating external
knowledge. The two sets of actions available to the agent are visualized in Figure 8.

Figure 8: Depiction of the primitive actions and the extended action that are avalable to the agent.

4. Reward scheme

The reward scheme is defined with the objective of teaching the RL agent the task of guiding itself to (and between
the) goals in the least number of steps. The designed reward accomplishes this objective by encouraging (or
discouraging) three things: all movements are penalized to minimize the number of steps, seeing an unvisited goal
is encouraged while seeing a visited goal is discouraged and finally visiting an unvisited goal is encouraged. A
flow chart depicting the logic of the reward scheme is presented in Figure 9.

The logic for these three encouragements to the agent through the reward scheme are colorcoded in Figure 9.
The green rhombuses are the initial penalty applied to every action as it is desired to minimize the number of steps
required to finish the task. Simulations found that incorporating the knowledge of moving forward when seeing a
goal and turning when not seeing anything in the reward scheme speeds up learning.

The orange rhombuses represent the reward for taking an action that ends up with the goal in sight. This
reward is higher if more of the goal is seen and thus depends on the color fraction. For the two goal task, there is
a penalty for having a visited goal in sight. This encourages the agent to visit the other goal. Finally, the agent is
awarded a big positive reward for visiting an unvisited goal through the logic in the purple rhombus.
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Figure 9: Flowchart depicting the selected reward scheme for the task. rt represents the current reward and Pfrac

represents the count fraction. The reward for each step is initialized at 0 and modified according to the logic presented
in this chart.

C. Rule based controller

The performanceh of the trained RL agent is compared to a rule based controller using the same vision-based
states as for the RL agent. The action selection logic of the rule based controller is presented below:

Action logic for approaching one goal

1. If not seeing goal→ Turn right
2. Else if seeing goal:

(a) If “Hitwall” = 0 (False):
i. if “Color Fraction” <= 2

A. If goal ONLY in middle column : → Move forwards
B. Else : → Turn towards goal

ii. Else if “Color Fraction” > 2 : → Move forward
(b) Else if “Hitwall”= 1 (True): → Turn away from goal

Action logic for approaching two goals

1. If seeing visited goal→ Turn right
2. Else→ Use logic for approaching one goal

IV. Simulation

The goal of this work is the implementation of a vision-based RL guidance agent in an AR Drone 2. A
simulation is performed before trying out a real life implementation. This section describes the setup and results
of the simulations.

hin terms of the steps required to reach the goal
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A. Setup

The software used, the training scheme it’s scheme are described in this section.

1. Software

The simulations are carried out using a combination of the PaparazziUAV’s [36] simulator and FlightGear [37].
PaparazziUAV uses JSBSim [38] to simulate the autopilot software that it generates. FlightGear is an open source
flight simulator which generates the vision information required for simulation.

The two features which make FlightGear appropriate for vision simulation with PaparazziUAV are its capacity
to obtain state information from an external software and its ability to run a local HTTP server on a specified port.
The server can be used to obtain screen shots of FlightGear’s rendering of the environment. PaparazziUAV has
built in infrastructure to interface with FlightGear and send it the aircraft state information. FlightGear can use
this state information to visualize the environment of the aircraft.

The software for the RL agent has been implemented as a module inside PaparazziUAV. The state and rewards
of the RL agent are defined based on visual data. A submodule for vision simulation is created which down-
loads screenshots from a pre-programmed HTTP address. The flight dynamics of the agent is simulated using
PaparazziUAV’s JSBSim. This data is fed to FlightGear through a prescribed UDP porti. FlightGear renders the
environment and uploads its current view to the screenshot path of the HTTP server upon receiving a HTTP request
on that path (e.g. http://localhost:9723/screenshot). This is the pre-programmed address in the vision simulation
submodule. The screenshot is then unencoded as a RGB bitmap from JPEG and used to generate the vision based
state and the reward.

Figure 10: The interactions between the simulated autopilot software and FlightGear.

2. Task Training

The parameters and the training scheme are described in the following paragraphs. Both tasks are simulated with
the fixed and random initializations; each initialization is simulated with the primitive and the extended action
sets (Figure 8). This leads to a total of four factor levels for each of the tasks. First the learning in both the tasks
are presented. The four cases trained are : (a) Fixed initialization; Primitive action set (b) Fixed initialization;
Extended action set (c) Random initialization; Primitive action set (d) Random initialization; Extended action set.
Furthermore, the performance of the trained RL agents are compared to a rule based autopilot (see Section III-C).

The one goal task is trained for 300 episodes using Q-learning. The training runs are repeated 50 times to
obtain statistical estimates of the performance. The schedule for increasing the greediness (ε) is presented in
Figure 7. The learning rate (α) is kept at 0.30 and the discount factor (γ) is kept at 0.90. The two goal task is
trained for 500 episodes with 50 repetitions. The ε is increased according to Figure 7 and like the one goal task,
the α and γ are kept at 0.30 and 0.90 respectively.

B. Results

This section discusses the learning performance in terms of the number of steps required to reach the goal. Note
that to improve readability, the RL agent is referred to as the agent, and the rule based autopilot as the autopilot.

iThe FlightGear and the simulation software need to be run with specific arguments for this to work
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The learning of the agents for the one goal and the two goal task are summarized in Figures 11 and 12. In
both figures, the left plot shows the change in steps, the middle plot shows the sum of changes to the Q-values and
the right plot shows the sum of reward over the 50 runs. The sum of changes to the Q-values are calculated by
summing the changes made to the Q-values at each step, over the whole episode.

Two means are taken in order to obtain the statistics of the run as presented in Figures 11 and 12. For both
tasks the aforementioned quantities at each episode is averaged over the 50 repetitions of the training. Than the
means over 50 repetitions are split in groups of 60 episodes for the one goal task and 100 episodes for the two goal
task. The data points in Figures 11 and 12 represent the grouped run means. The reason for grouping 60 episodes
for the one goal task and 100 episodes for the two goal task is based on the number of episodes over which the
greediness (ε) is increased by 10%.

Figure 11: Learning of the one goal task for four conditions

Figure 12: Learning of the two goal task for four conditions

The decreasing trend of the steps and the increasing trend of the returns in Figures 11 and 12 show that, for
both tasks and all simulated factors, the agent manages to learn to perform the task better as it accumulates more
experience. However, there are differences in the learning and final performance of the trained agents.

ONE GOAL TASK: Table 1 compares the performance of the trained agents and the autopilot. The table shows
that the randomly initialized agents take more steps to learn and perform the task than the agents with fixed
initializations. It also shows that the agents perform worse than the autopilot in all the simulated conditions. The
agent performs nearly as good as the autopilot only for the one goal task with fixed initializations.

The exclusion of the episodes, where the autopilot gets stuck in infinite loops, is one of the reason for its lower
mean steps to reach the goal with random initializations. The autopilot gets into infinite loops when it is initialized
near the wall, while also seeing a goal. The inability of the vision-based state to remember a collision with the
wall for more than one step causes this infinite loop. When the autopilot collides with a wall, while it is seeing a
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goal, it first tries to turn away from the goal. On the very next step it turns towards the goal to put it in the center
of its field of view. After having the goal in the center, it tries to move forward again. The forward movement
results in a collision, restarting the cycle.

However, the agent does not necessarily get stuck forever in these kinds of loops. The value of the learned
actions keep changing while it goes goes through the loop. At some point, the values of the actions causing the
loop may decrease low enough that another action become more valuable in comparison to it. This causes the
agent to pick the other action, breaking the loop.

Table 1: Performance metrics of the agent and the autopilot for the two tasks

Initialization Fixed Random
Action set Primitive Extended Primitive Extended

One goal task

Sum of steps 15839.08 5960.18 20317.54 7336.20
Steps to goal (RL) 14.89 14.91 24.22 19.27

Steps to goal (Rule based) 14.56 15.26

Two goals task

Sum of steps 61311.12 36419.14 72941.62 43149.54
Steps to goal (RL) 52.25 41.22 74.40 58.40

Steps to goal (Rule based) 35.04 33.57

The extended action of turning until a goal is seen, decreases the steps required to learn the one goal task by a
factor of approximately 2.5 (Table 1). This is on account of the way the tasks and the agents are formulated in this
study. There is greatest ambiguity in the states when the agent does not see anything. Most of the real positions
and headings the agent can be in, maps to seeing nothing. The positions for four different headings where the
agent sees nothing is illustrated in Figure 13. Having the option to turn until a goal is seen allows the agent to
circumvent part of this ambiguity; the agent can use the option to transition from the ambiguous state of not seeing
any goals to a less ambiguous one of seeing a goal.

Figure 13: Figures illustrating the regions in the environment where the quadcopter cannot see anything for four
different headings. Grey represents seeing nothing and white represents seeing a goal. The leftmost figure shows the
dimension of the environment, the goal and the field of view of the quadcopter. The leftmost figure shows the quadcopter
facing the reference North.

The agents using the extended action set have a better final performance than the ones using the primitive action
set (see Table 1). Due to the ambiguity in the state description, the optimal policy is dependent on the initialization
of the quadcopter. For example, of the environment and the task implies that for some initial headings the goal
will be in the left region of the quadcopter, while for others it will be in it’s right. The optimal actions for these
different initial headings are left and right turns respectively. However, as both initializations of the heading have
the same vision-based state (i.e. “0,0,0”), they can map to one action. The vision-based state does not encode
any information about the relative heading of the quadcopter with respect to the goal. Thus the agent cannot learn
optimal actions for this case, and performs sub-optimally.
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TWO GOALS TASK: The use of the extended action decreases the steps required to learn the two goal task by
a factor of approximately 1.5. The improvement in learning is less than in the one goal task because the option
is less effective in reducing the ambiguity for the two goal task. Firstly, the option does not always transition the
state of the agent from seeing nothing to seeing an unvisited goal. If, for example, the agent has already visited
the blue goal and turns left a number of times resulting in a state where it sees nothing, choosing the option will
transition the quadcopter back to seeing the blue goal again. Secondly, the agent has to spend more time in a
region of the state-space where the option is not available. The agent cannot choose the option when it is seeing a
goal. In the two goal task, the goal is in sight of the quadcopter for a bigger part of the environment and it has to
spend more time learning the right values for each action while seeing either of the goal.

Unlike the one goal task, both initializations with the two goal task perform worse than the rule based autopilot
(see Table 1). The two goal task is harder to learn; the state space is bigger and the agent has to learn more things.
Furthermore, there are more points where the agent and the autopilot can get stuck near the wall. There are two
goals in the environment, thus there are more points where the agent can be initialized next to a wall with the goal
in front of it. As, with random initializations, the autopilot gets into infinite loops more in the two goal task than
the one goal task. Ignoring the infinite loop episodes have a greater effect in decreasing the mean of the autopilot
in the two goal task.

Figure 14: Box plots of the steps taken by the agent for the two tasks after training

The means and standard deviations of the final performance for both tasks with both initializations is presented
in Figure 14. The box plots are created using the final fully greedy parts of the training for the two tasksj. Due
to the small variance for the one goal task with fixed initialization, their boxes appear as lines in Figure 14. The
smallness of the variance in the final performance of the one goal agent with fixed initialization is evidence of the
convergence of the learning.

A difference is observed in the number of outliers with and without options. The number of outliers are higher
for the primitive action set for both tasks, with both initializations. This indicates that with the primitive action set
the agent may get lost, but with the option the agent performs consistently.

There is a bigger gap in the mean performance of the trained agent between the two action sets for the two
goal task than for the one goal task. This can be explained by the difference in the “usefulness” of the option in
performing the different tasks. As the one goal task comprises of turning to the red goal and approaching it, it is
simpler and there is a smaller chance for the quadcopter to get lost. Hence near optimal performance is easier to
obtain without the need for an action which helps bring the quadcopter back to the more relevant region of the
state space (i.e. when it is seeing a goal). The two goal task on the other hand comprises of four steps: turning
towards the closest goal, approaching it, turning towards the other goal and approaching it. There is a bigger
chance of getting lost and following a trajectory which adversely influences the Q-value estimates this case. With
the extended actions, the quadcopter stays in trajectories which reduce the variance in the value estimate that result
from the state ambiguity. Therefore, the final performance is better and the variance in the performance is lower
with the extended action set for the two goal task.

ji.e. the last 60 episodes for the one goal task and last 100 episodes for the two goal task
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V. Flight test

The RL agent is implemented in an AR Drone 2 and trained to perform the one goal task in real life flights.
The flight tests aim to show that a vision-based RL agent can be trained to perform a guidance task in real life.
Q-values learned in simultion are tested on the AR Drone 2 to study the reality gap in the simulations.

A. Setup

The setup of the one goal task has been described in Section III. This section discusses the other elements of the
flight tests. First, the AR Drone 2 and its applicability to this study is outlined. After this, an overview of the
software and hardware elements of the autopilot, and their interactions is provided. Lastly, differences between
the simulated and the real life vision are discussed.

1. AR Drone 2

This study uses a Parrot AR Drone 2 Elite Edition (see Figure 15a) to perform flight test on the developed RL
agent. The key features of the quadcopter which make it suitable for these flight tests are its onboard camera and
its use of an open source operating system.

The specifications of the AR Drone 2 meet the requirement of this study. The forward facing camera is capable
of producing 1280 by 720 pixel video at 30 FPS. The simulations are carried out at 800 by 600 resolution and the
designed agent takes at least 1 second for each step. As it takes 1 second for each step, it requires a new estimate
of the vision information at approximately 1 Hertz (i.e. it requires images to be processed at 1 FPS). Therefore
both the resolution and the video frame rate of the AR Drone 2 are sufficient. It uses BusyBox, a distribution
of Linux, as its operating system. This enables the use of open source autopilots such as PaparazziUAV for its
control.

(a) Parrot AR Drone 2 Elite edition (b) Controller architecture

Figure 15: The AR Drone 2 and the controller architecture

A key limitation of small quadcopter, such as the AR Drone 2, is their short flight times. On full battery, the
AR Drone 2 is capable of approximately 12 minutes of flight. This creates a challenge for RL which requires
a thorough exploration of the state-space. The quadcopter is tethered to an external power supply to enable the
prolonged flights required for RL.

2. Autopilot Elements

An overview of the interaction between the different elements of the system is presented in Figure 15b. Three parts
of the PaparazziUAV autopilot are visualized: the implemented “RL” module, the position controlling navigation
module (“Nav”) and the rate controlling Incremental Non-linear Dynamic Inversion (“INDI”) [39] module. The
hardwares these modules interact with are the actuators, the communication system, the IMU and the camera.

PaparazziUAV’s autopilot controls the internal rate, position and attitude loops using feedback from the quad-
copters IMU and the motion sensing system of the CyberZoo (see Section III). The RL agent is a higher level

14 of 20

American Institute of Aeronautics and Astronautics



controller which decides between going forward or turning in either direction so that the quadcopter can reach the
goal.

The movements of the quadcopter are also detected by the external motion sensing system of the Cyber Zoo.
This information is passed to the autopilot through the ground station. Although the autopilot uses absolute
position and attitude information for stabilization and position control, the RL agent makes higher level guidance
choices based solely on the visual data. The inner loop control, although a challenging fields in its own regard, is
out of the scope of this study.

3. Differences with simulated vision

The visual stream from the real runs have the following differences in comparison to the simulation runs:

• There is no noise in the vision data in the simulation but real life vision data from the quadcopter is noisy
(see Figure 16).

Figure 16: A noisy viewing (left), a less noisy viewing (middle) and a blurred viewing (right) of the red goal captured
during flight tests. The red pixels are detections.

The simulations are carried out with the time of day and the lighting conditions frozen at a specific point.
Although the CyberZoo is enclosed in three directions, ambient light can still get in and change the nature
of the visual data depending on the time of day. Further, blurring of the visual data (see right image in
Figure 16) caused by the motion of the quadcopter is not present in the simulated vision as FlightGear does
not support it.

• The resolution of the image, the field of view of the camera and the colorspace are different between the
simulation and the real-life system. The real system is tuned such that its outputs resemble that of the vision
module in simulation.

• The computer vision module operates at a frequency of about 1 Hz in the real-life implementation. The total
time to perform one action is between 1 to 3 seconds. There is a chance for the agent to use an image frame
from before an action is over to estimate its vision state after the action is taken. This can result in the RL
agent sensing the wrong vision-state. Figure 17 illustrates the delay in perception. This does not happen in
simulation as the RL agent grabs a frame from FlightGear only after performing an action. The problem
of delayed perception can be mitigated by modifying the implementation; modifications to alleviate this
problem are not attempted due to time constraints of the project.

Begin EndTurn right

Time

Perceived
State

Real
State

t = 1 t = 2 t = 3

t = 2.75

t = 0

Grabbed
frames

0,0,1 0,0,1 0,1,0

Real
vision-state

Figure 17: Illustration of the erroneous perception resulting from the fixed update rate of the real-life vision module.

• The camera distorts the visual data due to its

– varying sensitivity to the different spectrums of visual light
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– fixed focal length which blurs objects out of its depth of field
– imperfections (or flaws) in the lens

B. Results

Flight tests are performed to demonstrate the learning in real life and study the reality gap between the learning in
simulation and in real life.

FLIGHT TESTS: The one goal task is trained for the shorter duration of 100 episodes in the flight tests. Simula-
tions of the one goal task with 100 episodes of training showed that the agent can learn the task with 100 episodes
of training. The leftmost and rightmost plots in Figure 19 visualizes the steps required by the simulated agent
during and after training with 100 episodes.

The scheme for increasing the ε is justified in Section III and visualized in Figure 7. Figure 18 shows the
mean trends in the learning over the 5 runs of the flight tests. The datapoints in Figure 18 represent means over 10
episodes which corresponds to a 5% increase of ε.

Figure 18: The learning metrics from 5 flight test of the one goal task

Figure 19: The two left figures show steps against episode for the 50 simulated runs and the 5 flight test runs. The
rightmost figure shows the statistics of the fully trained performance.

Figure 18 shows a decreasing trend in the steps and the sum of changes to the Q-values along with an increasing
trend in the returns over the training. These indicate that the agent manages to learn the task better as it explores the
environment. The performance of the agent gets worse when learning with full greed; this is seen in the rightmost
parts of the plots in Figure 18. The decrease in performance with fully greedy actions is on account of the
ambiguity of the state description. Ambiguity in the state leads to an unstable reward function and consequently,
to non-convergent learning.

Some of the differences between the real life learning and the simulated learning can be seen when comparing
the left and right plots of Figure 19. The figure shows the steps required to reach the goal for the 5 flight test runs,
and the 50 runs of the simulation with 100 episodes of training.

The trajectories taken by the real and the simulated quadcopter, at different episodes of the training, from a
specific training run are visualized in Figure 20. The trajectories of the agent in the flight test are more erratic
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because of the greater amount of noise present in real flights. Besides the noisy motion, there are visible loops in
the quadcopter’s trajectory during the flight tests. These occur when the quadcopter chooses the option and keeps
yawing until it sees a goal. The inherently unstable yawing motion of quadcopters and the introduced forces by
the power tether contributes to the drift of quadcopter while it yaws, which results in the aforementioned loops.
The simulated quadcopter also has these loops, but their diameter is smaller.

Figure 20: Trajectories taken by the simulated and the real quadcopter during one training

There is more variance in the steps required to reach the goal in flight tests in comparison to the simulations.
The of noise in the setup of real-life flights and in the flights themselves cause this variance. The noise in the flight
introduces variance in the result of the state transitions, which gets reflected in the Q-values. Noise in the vision
information makes the quadcopter “see” erroneous things. Erroneous state perception leads to erroneous Q-value
updates, leading to a greater variance in its estimate. Further, there are inconsistencies in the initialization of the
quadcopter and on the accuracy of the motion sensing system. Small variations in the initialization and calibration
of the motion sensing system make the motion of the real quadcopter different from the simulated quadcopter.

Another observable feature is the maximum number of steps required to reach the goal in simulation and in
flight. Figure 19 shows two of the episodes in the flight test requiring more than 250 episodes to reach the goal.
The maximum steps required to reach the goal in simulation out of all the episodes from all the runs is about 125
steps. In general the learning performance indicates that the performance in simulation is more consistent. This is
expected as the simulation does not include many factors, such as the noise in the vision, which makes learning the
task harder in reality. The fully trained quadcopter performs nearly as well as the quadcopter trained in simulation
(rightmost plot in Figure 19) but with higher variance in the final performance.

SIMULATION VALIDATION: The reality gap in the transfer of policies learned in simulation to the real quad-
copter is examined. This information is desirable because online learning with quadcopters is often challenging,
and learning in simulation is the preferable way to attempt RL based solutions.

The Q-values learned by an agent over 300 episodes of training in simulation are uploaded and tested in
the AR Drone 2. The Q-values at specific points in the training is uploaded to the quadcopter and 10 real life
episodes performed with the trained Q-values. The performance of the agent in the flight test over this 10 episodes
is compared to that of the simulated agent over the 10 episodes from the corresponding training region. The
comparison is visualized using box plots in Figure 21.

There are two confounding factors in the validation study. Firstly, no repetitions are carried out for the episodes
performed with the real quadcopter. Secondly, the seed for the random number generator in the simulation and the
flight test are not the same; the random actions picked by the policy are different between the simulated agent and
the real life agent.

The rightmost plot in Figure 21 shows the difference in the mean steps required to perform the task over 10
episodes for the five validation points. There is a difference of about 80 steps between the simulated and the
real-life agent with the Q-values after 60 episodes of training. Q-values from consequent phases of the training
have a difference of between 10 to 20 steps with the simulated agent.
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Figure 21: Statistics of the validation runs. The performance of the simulated agent and the real-life agent for 10
episodes at different points of the training is presented in the left plot; the middle plot is a zoomed view of the left plot.
The right plot presents the difference between the mean steps over the 10 episodes at the different validation points.

Besides the noise, the delayed perception in the flight test (Figure 17) causes the performance of the agent
trained in simulation to degrade when transferred to to real-life quadcopter. When the agent is trained in flight,
this delay is incorporated into the learning of the agent. However, in the validation flights, the Q-values on which
the real life agent acts are trained without the delayed perception of the real world. The underlying transition
model between the states in the simulation and the flight test are different.

This validation study led to three findings: First, the real life agent is bad at incorporating Q-values from early
stages of the training. Second, there is a near constant offset between the performance of the simulated agent and
the real life agent for Q-values which are relatively stable. Third, the delayed perception in the flight tests is one
of the causes for the difference in behavior.

VI. Conclusions

This work explores the possibility of a learning vision-based guidance controller for a quadcopter. Such
systems may improve the flight of Unmanned Aerial Vehicles (UAVs) in dynamic and Global Positioning Systems
(GPS) denied environments. The possibility for such a guidance controller is investigated by developing a vision-
based Reinforcement Learning (RL) controller for an AR Drone 2 and training it to perform simple guidance tasks
first in simulation and later in real flights.

The descriptions of the state, reward and terminal condition for the tasks are derived from vision data. The
training of one task, consisting of turning to a red marker, is performed in simulation and in flight test. A more
complex task of approaching two markers (one red and one blue) is trained in simulation. The effect of incorporat-
ing knowledge into the agent is studied by expanding the actions it can take to include a multi-step action, called
an option, designed to decrease the ambiguity in the state perception of the agent. The robustness of the learning
is examined by simulating it with fixed and random initializations.

The simulation results show that the agent performsk the tasks better with increasing exploration of the envi-
ronment. The option of turning until a goal is seen improves the learning rate. Further, if the task is relatively
simple and the options are made to consist of a sequence of primitive actions, both the set of primitive actions and
the set of extended actions can converge to the optimal performance. As the complexity of the task is increased,
for example by using a random starting position, the final performance of the agent with the extended set of action
is better than the agent with the primitive set of actions. This is on account of the increased ambiguity in the state
perception with random initializations which the option is better able to mitigate.

The agent in the flight test also manages to learn the task, albeit with worse learning and final performance
than in simulation. The noise in the visual perception and motion of the quadcopter in flight tests lead to greater
variance in the real-life learning in comparison to the simulated learning. Other factors that contribute to the

kNote that “performance” is used refer to the steps required to perform the task after full training and “learning performance” is used to
refer to the steps required to learn the task.
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reality gap are the delay in perception of the vision-based state in the real-life agent and the greater drift of the
quadcopter position while yawing in real life.

The simulations and flight tests are carried out without any tuning or sensitivity analysis on the hyperparame-
ters in order to meet time constraints. This does not have consequences for the final performance of the simulated
agent performing the one goal task with fixed initialization. The observed final performance of that agent is close
to the performance of the rule based autopilot. This is not true for any of the other simulations or the flight tests.
Hence, the final performance for the other agents and the learning characteristics of all the trained agents in this
study can potentially be improved by tuning the learning rate (α), the discount factor (γ) and trying out other
policies. Namely a higher discount factor should speed up learning as more accurate information of the value of a
state-action gets propagated backwards.

The development of a learning and vision-based guidance system for UAVs will broaden their domain of
operation and thus increase their demand. This technology will enable the development of generic Unmanned
Aerial Systems (UAS) that can be targeted towards specific markets. For example, a generic learning and vision-
based UAS that is designed for checking the inventory will be usable in warehouses, supermarkets, workshops
etc. Using learning and vision-based systems for guidance will remove the need to setup a local positioning
system or programming the UAS autopilot for the environment on an ad-hoc basis. Furthermore, as one software
architecture can be used to learn different tasks, there are potential savings in terms of software development for
the UAV manufacturers. If vision-based learning can be made generic, it can be marketed to mass consumers who
train their UAVs for personalized applications they desire. As the trained agent takes over the task of guiding the
UAV, operating them will require less man power.

New regulatory bodies will need to be created to certify the systems and operators of learning based UAVs
like the ones presented in this study. Social norms and outlooks will need to adapt to the emergence of mobile
robots that are not defined by their programming, but have the capacity to improve on their designed roles over
time. Before the mass marketing of learning based UAS, the manufacturers will have to ensure the safety and
security of their owners and the societies where they are being marketed. Typical questions pertaining to the
use of artificial intelligent systems in daily life will need to be answered. Questions such as who will be held
accountable for damages caused by the autonomous operation of these systems and how to ensure the livelihood
of people whose jobs are going to be replaced by such systems will need to be answered.

Perhaps the biggest factor which prevents the use of RL based controllers in current UAS is the time they take
to learn. The agent designed in this study takes about two hours of flight to learn the relatively simple task of
turning and approaching a goal. The learning time increases as the dimensionality of the state space is increased
to enable more complex tasks. The results show that incorporating programmed behaviors can speed up learning.
However, it also increases complexity of the design and implies the encoding of expert knowledge into the system.
The time required for an agent to learn forces most applications to carry out the learning offline and then implement
the learned policies in the UAS. Besides the slow learning in RL, vision-based applications need to deal with the
problem of making sense of the large volume data that are contained in images. Generalized RL structures to map
pixel based vision data to actions exist [40], although these methods are still expensive in terms of memory and
computations.
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3
Background

This chapter provides background on the concepts and methods used in this project. Section 3.1 defines
guidance, navigation and autonomy within the context of this project. The following section explains the
working principle of RL. The final section discusses some computer vision method which can be used for the
autonomous guidance and navigation of UAVs. RQ1 “ What is the current state of the art for RL in UAVs and
vision-based RL for robotics applications?” is answered in Section 3.2.

3.1. Autonomous Guidance and Navigation of UAVs
Within the context of this project, guidance is defined as “the planning and decision-making functions to
achieve assigned missions or goals” and navigation is defined as “the process of monitoring and controlling
the movement of a vehicle from one place to another” (Kendoul, 2012). Usually, guidance and navigation is
performed using an Integrated Localization Systems such as GPS or through the use of constructed beacons.
However, these are not always available (Salichs & Moreno, 2000; Kendoul, 2012) and for increased autonomy,
a robot requires localization systems which are self-contained. This project ignores methods of navigation
based on Integrated Localization Systems and focuses on more self-contained methods.

The autonomous guidance and navigation of robots has become an increasingly relevant field both in
industry and academia (Kendoul, 2012). There are four major drivers for the improvement of autonomous
navigation.

1. A desire for a more efficient alternative to human based navigation.
2. The need to control robots which are hard to communicate with, as in with probes sent around the

solar system.
3. The replacement of mundane or dangerous tasks such as vacuuming or exploring burning buildings.
4. The limits of human controllers. For example, using an individual human controller to control a swarm

of UAVs will in most cases be worse off than optimized swarm control algorithms.

(a) The Curiosity rover on Mars (b) The Roomba vacuuming a floor (c) The Kiva robot moving goods

Figure 3.1: Some autonomous robots1
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A formalism for the problem of autonomous guidance and navigation of robots in unknown environ-
ments has been proposed by Salichs and Moreno (2000). They divide the problem into following five sub-
problems: Motion Control problem, World Modeling problem, Localization problem, Planning problem and
Architecture problem. This project intends to provide a solution to the World Modeling, Localization and
Planning problems by introducing a vision-based RL control system. An alternate means to model the world
is proposed by the use of a vision-based state which the quadcopter will use to obtain a sense of where it is
(i.e. localize itself); the planning problem will be solved by the learning of the task.

Kendoul (2012) classifies navigation systems in the three following categories: systems which are based
on conventional IMU/GPS systems, vision-based systems and range sensor based systems. GPS based sys-
tems are outside the scope of this project; purely IMU based navigation systems (i.e., odometry) are ignored
because of their inherent bias. Simultaneous Localization and Mapping (SLAM) (Durrant-Whyte & Bailey,
2006) uses estimates of the distance to elements in the environment and/or vision information for operation.
Vision systems mainly focus on visual information to make judgments about their state and the environment.
The rest of this chapter discusses SLAM and vision-based methods of autonomy.

SLAM (Durrant-Whyte & Bailey, 2006) is currently the state of the art for environmental modeling and
mapping. The technology can be used to map a robot’s environment and localize itself at the same time. It
has been used for UAVs without a distance sensors (Weiss, Scaramuzza, & Siegwart, 2011; Kim & Sukkarieh,
2004), although most applications rely on the distance information (usually from a laser rangefinder) such as
in (Bachrach et al., 2011; Grzonka et al., 2012). SLAM can be problematic for real time applications due to
it’s computational and memory requirements. This problem is mitigated by the use of alternate versions of
SLAM which require less computation and memory.

Figure 3.2: Architecture of the GNC system from (Tomic et al., 2012)

Vision contains a lot of information which can be used for the autonomous guidance and navigation of
robots(Bonin-Font et al., 2008). Optic flow has been used in (Kendoul, Fantoni, & Nonami, 2009) to control
the position and velocity of a quadcopter. Recognizing objects and estimating distances to them can be used
as a landmark based means of navigation. Tomic et al. (2012) came up with a fully on-board implementation
which uses optic flow to aid the odometry and object recognition for vision-based navigation. An architecture
of their multi-layered guidance navigation and control scheme is visualized in Figure 3.2. An application of
vision-based guidance using supervised learning has been described in (Bipin, Duggal, & Madhava, 2015).
They use supervised learning to estimate the distance to objects from labeled images. The knowledge of the
distance to objects is than used to plan an obstacle free path.

1http://mars.nasa.gov/multimedia/images/?ImageID=4845&s=2; Last accessed: 25/01/2017
https://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx; Last accessed: 25/01/2017
http://www.marketwatch.com/story/amazon-deploys-fleet-of-robotic-elves-2014-12-01; Last accessed: 25/01/2017

http://mars.nasa.gov/multimedia/images/?ImageID=4845&s=2
https://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
http://www.marketwatch.com/story/amazon-deploys-fleet-of-robotic-elves-2014-12-01
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3.2. Reinforcement Learning
A brief introduction to RL is provided in Chapter 2; this section presents a more detailed description of RL.
RL is based on models of animal learning; numerous similarities have been found between the mechanism
of animal learning and RL (Wörgötter & Porr, 2005).

As an example, an experience in the life of a hippopotamus is first described using natural language and
than using RL terminology. The situation consists of a hippopotamus who wants to go from being on the
shore to being inside water. She had experiences of pleasure when she went into the water on a hot day, so
she knows that getting into the water will make her feel good. Equivalently, we can say, she (the agent) wants
to act in her environment to change her state because she wants to increase the amount of total reward she
can accumulate. Here the reward is proportional to the relative comfort she enjoys.

In RL the agent is a software entity which carries out a desired task. The agent can be a robot that acts
in a physical environment or a software acting in a digital environment. The agent takes actions, and like
the hippopotamus, learns desired or undesired actions based on a scalar of feedback. In RL, the feedback of
the “desirability” of an action is called the reward. The goal of the agent is to maximize the sum of reward it
receives over its lifetime.

The next section defines the framework of RL. Following this, the elements used to define the RL problem
are explained. The next two parts deal with explaining the representation of the delayed reward in RL and
using the perception of the agent and the reward information to learn ways of taking actions that maximize
the long term sum of rewards. Finally the state of the art in RL and its application to robotics are discussed,
answering RQ1.

3.2.1. Framework of RL
The RL problem consists of an agent that acts in an environment in order to accomplish a defined goal.

Agent The agent is the entity that acts in the environment and tries to maximize its long-term sum of rewards.
Firstly, it needs to be able to manipulate the environment which is often manipulating itself within the
environment. Secondly, it needs a way to perceive the effects of its manipulations. Thirdly, it needs to
use the obtained reward to approximate the expected sum of rewards that can be obtained from the
different states.

Environment The environment is the space where the agent lives, acts and performs its task. The envi-
ronment is assumed to contain everything pertinent to the problem. The agent picks an action. The
environment transitions the agent to the next state based on its current state, the action it took and the
transition probabilities. It also gives the agent the reward based on the transition.
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3.2.2. Representation of the RL Problem
The agent needs to take actions and change its state to accomplish a predefined goal. The state transitions
are based on the transition model and each state transition is accompanied with a scalar reward. The reward
is used by the agent to learn better actions. The Markov Decision Process is used to formally describe a generic
RL problem.

State (s) The state is a representation of the information required to perform the RL task. It is a group of
numbers2 which encodes information from the environment, that is used to make a decisions. For
an autonomous car agent, the state can be represented by the kinematic quantities of the car. For an
agent that controls investments, it can be the current value of investments, the available capital, current
projected profits etc.

In order to satisfy the Markov property, the state should contain enough information to be able to de-
termine the probability distribution of consequent possible states given the current state and a chosen
action.

Action (a) The agent takes actions to perform the task. It is the goal of the agent to discover “good” actions
by exploring the state and action space.

Transition model This is a probabilistic model that maps the probability of ending up in state s′ given the
agent is at s and takes action a. It is expressed by Pa

ss′ .

Reward (r ) The reward is designed such that maximizing its sum leads to the best performance of the task.
The reward model is represented by Ra

ss′ which expresses the expected reward at the next time step

given action a, current state s and expected next state s′3.

Markov decision process A Markov decision process (MDP) consists of a set of states, actions, the transition
model, the reward model and a discount factor (these terms are described in Sections 3.2.2 and 3.2.3). A
MDP must satisfy the Markov property which states that the transition probability of the environment is
fully defined by the current state and action. That is, the probability distribution over the next possible
states depends only the current state and action. Temporal difference based RL methods (see Section
3.2.5) assumes an underlying MDP when estimating values.

3.2.3. Representation of Delayed Rewards
A problem of learning optimal ways of acting is the fact that actions taken now influences the possibility of
future (unknown) rewards that can be accumulated. This section introduces returns, policies, values and
action-values, ideas which are used to represent the total reward the agent can accumulate from its current
situation.

Return (Rt ) The sum of the reward an agent receives over its lifetime is called the return. The agent tries to
select actions that lead to the highest return. The RL algorithms describe ways to estimate the return
from each state. If the return from each state can be estimated, best actions can be selected by the
selection of actions that lead to states of higher return.

There are three main types of return modeling (Kaelbling, Littman, & Moore, 1996). The flat reward
model is used for finite-horizon cases and is expressed by the following expression:

Rt =
h∑

t=0
rt

The discounted reward scheme is used for infinite-horizon cases. Here a discount factor, γ (|γ| < 1), is
used to make the infinite sum of the reward bounded.

Rt =
∞∑

t=0
γt rt

2It is theoretically possible for the state to be non-numeric. However, almost always its representation in an RL problem is numeric for
two reasons: (1) dynamics are already described using numbers (2) computers only understand numbers

3Note this can also be read in a way where s′ is the current state, a and s were the previous states and actions respectively, while Ra
ss′ is

the reward obtained from the previous transition
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The average reward scheme estimates the long-term return by averaging over the long-run rewards.

Rt = lim
h→∞

1

h

h∑
t=0

rt

Policy (π) The agent uses the policy to decide what it should do. Mathematically, it is a mapping from state
to action. It can be stochastic, deterministic or a combination of both. π(s, a) represents the probability
of selecting action a given state s following policy π. The designer has to select a policy that trades off
the amount the agent explores the environment against how much obtained knowledge is exploited to
maximize rewards, a dilemma called the “exploration-exploitation” problem in RL.

A way to explore the environment is to randomly pick different actions out of the ones available. But if
an agent always behaves randomly it is almost always non-optimal. The ε-greedy policy takes a greedy
action 4 with probability ε and a random action with probability 1− ε. Increasing the value of ε is an
approach to tackle the exploration-exploitation problem.

Value (V (s)) The expected return of a state is its value. The value function (V π(s)) represents the expected
return given current state is s and the agent follows policy π from s onwards.

V π(s) = Eπ {Rt |st = s}

The techniques of RL deal with estimating V and the corresponding policy (or policies) (π) that lead to
maximum returns. The optimal value function is represented by V ∗.

Note that one still requires a transition model to pick optimal actions after estimating the values. Al-
though the agent knows the value of each state, it still needs to have a way to find which actions lead to
states of higher values.

Action-value (Q) function Action-value functions represent the value of state-action pairs instead of just
states. These functions represent the expected return given an initial state s and an action a. Including
the action into the estimation of the return gives the agent information of the values associated with
each of the actions. This allows it to directly pick actions which maximuze the long-term sum of re-
wards. In small and discrete cases one can make a table with the states along the rows and the actions
along the column. With such a table, acting optimally becomes a matter of picking the column (i.e. the
action) with the maximum value for the current row (i.e., state).

V π(s, a) = Eπ {Rt |st = s, at = a}

3.2.4. Learning Optimal Actions
The values of states are estimated using the Bellman equations. RL methods use the agents experiences
(samples) to learn better actions. The idea of progressively improving the estimate of the value by using
previous estimates (bootstrapping) is important for temporal difference based RL methods.

Bellman equations The Bellman Expectation Equation (Equation 3.1) expresses the value of a state before
an action, in terms of the reward received after the state transition and the value of the next state. This
equation can be used to calculate the expected value of states under a policy π. The state values can
than be used with the model to learn optimal actions.

V π(s) =∑
a
π(s, a)

∑
s′
Pa

ss′ [R
a
ss′ +γV π(s′)] (3.1)

The innermost term, Ra
ss′ +γV π(s′), represents an estimate of the value of the initial state s given the

agent took action a and ended up in state s′. A weighted sum of the values relating to the possible
states s′ that a may result in, is performed in the next layer. The weight is the transition probability
Pa

ss′ . This accounts for the stochasticity of ending up in different states after taking action a. The last

4Actions which maximize the return based on the current knowledge of the problem are called greedy actions.
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layer is a weighted sum of the of the probability of picking different actions a, given the current state s.
The Bellman Optimality Equation, as shown in Equation 3.2, is used to find the optimal value function.

V ∗(s) = max
aεA(s)

∑
s′
Pa

ss′ [R
a
ss′ +γV ∗(s′)] (3.2)

The corresponding action-value functions for Equations 3.1 and 3.2 are Equations 3.3 and 3.4 respec-
tively.

Qπ(s, a) =∑
s′
Pa

ss′ [R
a
ss′ +γ

∑
a′
π(s′, a′)Qπ(s′, a′)] (3.3)

Q∗(s, a) =∑
s′
Pa

ss′ [R
a
ss′ +γmax

a′ Q∗(s′, a′)] (3.4)

Sampling Sampling is the idea that the state (or state-action) values can be estimated by taking samples of
experiences from the RL problem in question. The Monte Carlo and the Temporal difference methods
use sampling for value estimation.

In large multi-dimensional state spaces one is faced with the problem of dealing with an exponentially
growing number of states with increasing dimensions of the state space. This cannot be managed by
Dynamic Programming (DP) (see Section 3.2.5) methods since they find the best actions by searching
through all possible trajectorie the agent may take.

Sampling sidesteps this problem by storing experiences (i.e. states, actions and rewards) which are
later used to obtain multiple realizations of the return from a state. The state value can be estimated by
averaging the stored returns from a state.

Bootstraping Bootstrapping is the idea of updating an estimate based on an older estimate(Sutton & Barto,
1998). Dynamic programming methods use this during policy and value iterations. Namely, in order to
improve the current estimate of the value of a state(V π

k (s)), its previous estimate (V π
k−1(s)) is used.

3.2.5. Solution Methods
In this section some of the basic solution methods of RL are described. These explanations are summarized
accounts of the explanations from (Sutton & Barto, 1998) and from the lectures on RL by David Silver that are
available on the internet 5.

Dynamic programming (DP) DP methods iteratively estimate the state values for a policy (policy evalua-
tion), and improve the policy based on new estimates of the value (policy improvement). They are
model based methods which can be used to find optimal policies for known MDPs.

The Bellman Estimation Equation (Equation 3.1) is used to estimate the value of the states. Corre-
spondingly, greedy actions6 are selected to improve the policy. Some generic DP methods are described
below:

Policy iteration (PI) A step of policy evaluation followed by a step policy improvement.
Value iteration (VI) One need not wait for the convergence of the value in policy evaluation. One iter-

ation of policy evaluation is followed by policy improvement. Its mathematical form is obtained
by converting the Bellman Optimality Equation (Equation 3.2) into an iterative form as shown in
Equation 3.5.

Vk+1(s) = max
aεA(s)

∑
s′
Pa

ss′ [R
a
ss′ +γVk (s′)] (3.5)

Asynchornous DP Heuristics can be used to select states whose values and actions should be updated
based on defined criteria. Such heuristics can speed up DP by bypassing redundant calculations.

5UCL course on RL (COMPM050/COMPGI13) by David Silver (2015); Course website: http://www0.cs.ucl.ac.uk/
staff/d.silver/web/Teaching.html; Lecture videos: https://www.youtube.com/playlist?list=PL7-jPKtc4r78
-wCZcQn5IqyuWhBZ8fOxT; Last Accessed: 12-04-2017

6Actions that lead to states of highest value based on its current estimate.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/playlist?list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
https://www.youtube.com/playlist?list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
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Monte Carlo (MC) methods In MC methods the agent acts in the environment to obtain samples of the MDP
describing the RL problem. The agent stores the state, action and reward while it performs a task and
the at the end, uses the stored experience to calculate the return from each state visited in that episode7.
As it experiences more episodes in the environment it gets more measurements of the return from each
state. These measurements can be averaged to obtain a statistical estimate of the value of the states
under a specified policy.

In contrast to DP, MC samples experiences from the environment and does not bootstrap. Not boot-
strapping makes MC estimates of the value bias free, as the sampled experiences are averaged and no
underlying MDP is assumed. However, this causes the estimate of the value to fluctuate leading to a
higher variance. As MC methods do not assume an underlying MDP, they suffer less when the state is
non-Markov.

Temporal difference (TD) learning In TD methods the agent acts in the environment to sample the value
of state-action pairs, while also using a previous estimate to make new estimates (bootstrapping). The
algorithm initializes with a policy that allows sufficient exploration and an arbitrary action-value func-
tion. The agent takes action a transitioning from s to s′. This transition is accompanied with the reward
Ra

ss′ (or r in Equation 3.1). The value of the initial state , V (s), is updated towards its new estimate after
taking action a, using Equation 3.6.

The reward is being sampled and the previous estimate of the value (Vk (s)) is being bootstrapped to
obtain the new estimate (i.e. Vk+1(s)). The α in Equation 3.6 is the learning rate and it determines how
much the previous estimate of the value is moved towards the new estimate.

Vk+1(s) =Vk (s)+α[r +γV (s′)−Vk (s)] (3.6)

The learning is slow in TD as only one state is being updated at each step. The idea that all the previous
states the agent was in has something to do with the current reward it receives is incorporated into TD
learning using the idea of “Eligibility traces”. At each step, the value of all previous states are updated
by a factor called their eligibility. An array of eligibility traces is maintained for all available state-action
pairs. This eligibility is decayed each episode for all state-actions except for the current one, whose
eligibility is increased (see Figure 3.3). In a way this assigns updates to states based on an idea of how
much that state is responsible for the current rewards; i.e., recent states are updated more than states
visited long time ago.

Figure 3.3: The eligibility of a state, decays with time unless it is visited, in which case its eligibility is incremented (Sutton & Barto,
1998).

If an optimal policy is desired without model knowledge, one must use the action-value function. This
extension results in the TD algorithm called SARSA (State Action Rewards nextState nextAction) for
value estimation and Q-learning for optimal value estimation. The SARSA the Q-learning updates are
given by Equations 3.7 and Equation 3.8.

Bootstrapping has two consequences in TD learning in comparison to MC learning. Firstly, the state
in the problem needs to be “more Markov” for TD learning than it needs to be for MC learning as
bootstrapping works based on the assumption of an underlying MDP. Secondly, the value estimations
are biased and have lower variance than in MC methods.

7In RL, performing a task (i.e. going from the intial to the terminal state) is called an episode. Non-episodic taks do not have an episode.
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Q(s, a) =Q(s, a)+α[r +γQ(s′, a′)−Q(s, a)] (3.7)

Q(s, a) =Q(s, a)+α[r +γmax
a

Q(s′, a)−Q(s, a)] (3.8)

3.2.6. State of the Art
Some of the challenges of applying RL to robots are its inability to deal with multidimensional state spaces,
partial observability, noise, safe exploration, model inaccuracies and difficulties in reward definition (Kober
et al., 2013); these challenges are discussed in this section. As the use of vision-based RL for the control of
UAVs has been discussed in the article (Chapter 2), some applications of vision-based RL to land robots are
mentioned.

The problem of large state spaces can be made tractable by using function approximators to describe the
state space. Xu, Zhao and Huang (2014) reviewed the use of function approximators in policy search, value
function and actor-critic methods. They find many applications of value-based RL methods and claim that
their popularity is on account of their simplicity.

RL cannot be used to solve problems of large state space as the number of computations required to come
up with solutions scales exponentially with the dimensions of the state and action spaces. a phenomena
called the “Curse of Dimensionality”(Sutton & Barto, 1998). A way to deal with the “Curse of Dimension-
ality” is to divide the task into subtasks using Hierarchical Reinforcement Learning (HRL). The three main
approaches to it in HRL are through a relative description of the state, division of the state space into subdo-
mains and division of the action space into subdomains(Xu et al., 2014).

When the state is not fully observable, the problem can be framed as a Partially Observable MDP (POMDP)
(Wiering & Van Otterlo, 2012, pg. 387). Hutter (2009) proposes a different framework for the POMDP, called
ΦMDP. In ΦMDP a mapping of the past observation-reward-action history to a state is used to convert a
POMDP into a MDP.

A method called Safety Handling Exploration with Risk Perception Algorithm (SHERPA) has been pro-
posed by Manucci et al. (2018). In the algorithm, the state space is divided into Fatal State Space (FSS) and
Safe State Space (SSS). SHERPA assumes the agent can perceive risk and that it starts from a known SSS. It
extends the SSS as it explores more of the environment. While exploring the environment it always keeps a
backup of a sequence of control action that transitions it to a state in the SSS. When it perceives risk, it uses
the backup to return to a safe state.

The reward for the agent can be defined based on demonstrations of good (or ideal) actions to the agent,
using Inverse RL (IRL). IRL is a type of RL where a value function is extracted from expert demonstrations and
optimal policies found based on the extracted value function. Abbeel, Coates, Quigley and Ng (2007) demon-
strated numerous aerobatic maneuvers with helicopter in autonomous flight, using Inverse RL.

In (Mnih et al., 2015) a deep Convolutional Neural network (CNN) is used to train an RL agent to play
various Atari 2600 games based on pixel data from the screen and score information as a reward signal. The
agent manages to learn to play a diverse set of Atari 2600 games without any modifications to the CNN con-
figuration and outperform human testers for more than half of the games they tried it on.

Vision based RL is used to control a land robot by Gaskett, Fletcher and Zelinsky (2000). They use a Neural
network based, continuous state-action implementation of RL. The camera view is gridded and correlation
between pixel values of the grids is used as state information. Vision-based RL schemes that use supervised
learning to interpret visual information and use the information for tasks learned using RL are presented in
(Michels, Saxena, & Ng, 2005; Cicirelli, D’Orazio, & Distante, 2005; Choi, Lee, & Won, 2011). Michels et al.
(2005) uses the vision information to teach a remote control car obstacle avoidance, Cicirelli et al. (2005) uses
it to learn how to approach a door and Choi et al. (2011) uses it to learn line tracking and obstacle avoidance
using a land robot.
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Figure 3.4: A schematic representation of the NN used to train the RL agent in(Mnih et al., 2015).

3.3. Computer Vision
In this section, prospective Computer Vision (CV) algorithms that maybe relevant to this research are ex-
plored. CV is in itself a very broad topic. Since the primary aim of this project is contributing to the autonomy
of UAVs, a detailed study of computer vision is not performed. Rather some of the basic techniques which
are considered relevant for this project have been outlined. Pixel-based methods, distance estimation tech-
niques, object recognition, optic flow and vision-based guidance and navigation are reviewed.

Pixel-based methods In this study pixel-based methods are used to refer to CV methods which directly use
the pixel value to interpret higher-level information from the image. Numerous examples of such systems are
provided in (Jimenez, Ceres, & Pons, 2000). Due to the simplicity of pixel based methods of detection, such a
technique can be implemented easily. This makes them a very good method for this project.

Distance estimation One of the techniques to estimate distance in CV is by using two photographs of the
same scene from different positions and/or orientations. The position information of the photographing
points along with the two photographs can be used to estimate the distance of points in the real world from
the observation point. Points in one image are matched to the other image and the pixel distance between
them is used to estimate the real life distance of the point.

Object recognition The Scale Invariant Feature Transform (SIFT) (Lowe, 1999) and Speeded Up Robust Fea-
tures (Bay, Ess, Tuytelaars, & Van Gool, 2008) are reviewed in order to look at techniques that use generalized
features for object detection. The SIFT algorithm describes points (using the SIFT descriptor) in images which
can be matched to rotated and scaled instance of that point in another image. This makes SIFT suitable for
detecting possible landmarks. SURF is another algorithm that uses the working principle of SIFT but trades
off robustness for computational efficiency. The upright variant of SURF (U-SURF, (Bay et al., 2008)) maybe
of specific interest to this project as it opens up the possibility of using simple designed landmarks which can
aid guidance and navigation. Examples of a designed landmark can be a printed barcode patterns as in (Lin
& Chen, 2011; Briggs, Scharstein, Braziunas, Dima, & Wall, 2000).

Viola and Jones (2004) came up with a fast method for face detection. They calculated integral images
based on the input image (Figure 3.5) and defined feature windows (Figure 3.6) which are used to filter out
regions of an image that are not faces.

The current state of the art for object recognition is convolutional Neural-network based feature extrac-
tion and deep-learning for training the networks.

Optic Flow Optic flow measures the change in pixel location from frame to frame in order to come up with
an estimate of the motion of the camera and/or the external environment. The inability to distinguish be-
tween the nature of the origin of the motion is often solved by defining a boundary conditions.
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Figure 3.5: The left image shows how each pixel in the integral image takes the sum of a region of pixels. The right image shows how
having the integral image allows the calculations of the intensity of region D by accessing four memory locations. The sum of intensity
of the D region is equivalent to I4 − (I2 + I3)+ I1 where Ii represents the value at the specific pixel in the integral image. (Viola & Jones,

2004).

Figure 3.6: The left figure visualizes the elimination of sub-windows from the image and the right figure shows the feature windows
used for the filtering in (Viola & Jones, 2004).

Optic flow can be used to estimate the linear and angular velocities of a vehicle. These velocities can be
integrated in time to obtain estimates of the vehicles position, which is called Visual odometry. It can also
be used for obstacle avoidance and tracking. The pattern of optic flow that is created when moving inside
different environments (e.g. corridors, rooms, stairs, fields etc.) may be usable to define a state which is able
to distinguish those environments.

Simultaneous Localization and Mapping: Namely graph based SLAM (Grisetti, Kummerle, Stachniss, &
Burgard, 2010) and the Parallel Tracking and Mapping (PTAM) (Klein & Murray, 2007) are considered inter-
esting for this study. The graph based approach is appealing for this study as it has lower computation and
memory requirements than dense SLAM implementations.

In (Weiss et al., 2011) a vision-based SLAM for the navigation of a quadcopter is developed. Weiss et al.
(2011) uses a monocular camera and off-board SLAM to map and navigate an environment. Consequently
(Shen et al., 2013) presented a fully onboard system that use an IMU and a laser scanner directed in the up-
down direction for pose estimation. The pose information is combined with vision information and passed
to a simplified SLAM algorithm for onboard mapping. Figure 3.7 shows some of the 3D maps generated by
(Shen et al., 2013).

Vision-based navigation Although vision-based navigation is not a CV method, it is mentioned here due
to its relevance for the goal of this project. Vision information can be encoded for guidance and navigation
purposes in many different ways(Bonin-Font et al., 2008). For example the processed pixel values, object
detection values or situational awareness values can be binned into a histogram to represent the general
state of the robot. The raw image can be used as an identifier for a location. Landmarks can be placed in the
robots environment or it can be given the ability to identify unique elements in its environment as landmarks
dynamically. The interpreted information can be used to generate direct motor commands or plan paths.
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Figure 3.7: The left and right images show the 3D maps of a building generated by (Shen et al., 2013). The left figures shows different
views of a three-story building that was mapped. The right figures shows the UAV mapping a room.

3.4. Summary
This chapter discussed some background required for the work described in this report. First, a discussion
about the autonomous flight of UAV was presented. After this, the RL problem and some methods of learning
values in the RL problem was discussed. Through a review of current RL methods in Section 3.2.6 RQ1 “What
is the current state of the art in RL in UAVs and vision-based RL for robotics applications?”, has been answered.
Lastly, some CV methods are reviewed; the knowledge from this review will be used to come up with proposals
for a vision-based state to answer RQ2.1 in Section 5.1. Before coming up with concepts for the vision-based
RL agent to be designed in this project, a simplified gridworld study is carried out in Chapter 4.
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4
Gridworld Simulation Study

A simpler simulation of a vision-based guidance and navigation task is created in order to get more insight
into the problem. The nature of the simplified vision-based state and the influence of RL parameters on the
performance of the algorithm is studied. The first part of this chapter provides a description of the simulation
task and the implementation of the simulation tool. Than the findings from the simulations are discussed.

4.1. Simulated Reinforcement Learning Task
A task is defined where an agent has to learn optimal ways to travel to two goals in a gridworld. This task is
performed with absolute position information and simulated vision information. The vision information is
simulated by defining a state which consists of information about the contents of the gridworld in front of the
agent. Details about the task, the environment and the learning are provided below.

Guidance Task The task is to find an optimal route between two static goals (grids) in a gridworld while
visiting each of them at least once. Here, optimal means using the least number of actions.

Gridworld A 9 by 9 gridworld is used for most of the simulations. Only the study into the effect of environ-
ment size uses 3 other dimensions. Namely the performance in a 20 by 20, a 40 by 40 and a 60 by 60
gridworlds are compared. Note that none of the goal locations are changed for the bigger gridworlds.

Figure 4.1: The 9 by 9 gridworld used in the simulations. The green square is goal 1 and the blue square is goal 2.

Goals There are two goals in the gridworld. The first goal is at the 2nd row and 3rd column 1. The second
goal at the 7th row and 7th column 2. Each of the goals are assigned a “vision signature”. Which lets the
agent distinguish between objects when using vision-based information. Further elaboration about
vision-based states and the vision signatures are presented in the following paragraph.

Vision-based States These are defined by creating numerous grids in front of the agent to simulate its line of
sight and assigning values to those grids based on their contents in the gridworld. This loosely reflects

1i.e., (2,3) using a (row,column) convention for co-ordinates in the gridworld and starting the count from 1
2i.e., (7,7)

41
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gridding the vision stream on a real life agent and assigning values to the grids based on their contents.
The exact configuration of two vision states used in the simulations are visualized in Figure 4.2.

(a) vis0 (b) vis01 (c) vis1 (d) vis11

Figure 4.2: The vision grids used in the simulations. The reward for having a goal in the grids labeled 1 through 5 are 0.75, 0.5, 0.25, 0.25
and 0.1 respectively.

The grids take the value of the object inside of them. The set value for objects of interest in the gridworld
are defined as the “vision signature” of the object in this report. In general, the vision grid takes a value
of 0 if nothing is in it, a value of 1 if the base grid is in it, a value of 2 if goal 1 is in it and a value of
3 if goal 2 is in it. For some of the simulations other recognizable non-goal objects are put into the
gridworld to study the effect of more detectable features. The extra objects have vision signature 4 and
5. The conflict between seeing two goals in one vision-cell is resolved by always prioritizing goal 1 i.e.,
selecting goal 1 in case both goals 1 and 2 are seen in one vision-cell. Lastly, some simulations test the
effects of incorporating wall detection. If a vision-cell is fully outside of the gridworld, it is labeled as a
wall cell and given a vision signature of 8.

For most of the experiments the only visually recognizable elements in the gridworld are goals 1 and
2; even for simulations where the agent only has to go to goal 1. For numerous other experiments the
agent is given the ability to detect walls. Extra identifiable objects (i.e., ones with vision signatures) are
added for simulation where the effect of having more features are studied.

Actions The baseline set of actions consist of turn left, turn right and go forward. The turning action is
considered a requirement for the simulation as there is need for the agent to be able to change its
heading so that it can see different things around it. An extended set of action is defined which extends
the baseline set by adding 3 more actions. The extended set adds the actions go backward, strafe left
and strafe right. The actions are visualized in Figure 4.3.

(a) Baseline set of actions (b) Additions in the extended set

Figure 4.3: The two action sets in the gridworld simulations.

State representation Two types of states are used in these experiment: absolute states and vision-based
states. Both of the state descriptions are appended with the compass heading of the agent. As the
agent can only see what is infront of it, the heading is a relevant piece of information for performing
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the guidance task. Further, the states are appended with information about goals the agent already
visited as that information is required for the task.

The absolute state space is described using a 5 character long string. The first character is a letter
representing the compass heading. The next two characters represent the row location, and the next
two the column location. The vision-based state is also represented as a string, but its length depends
on the number of vision grids. Numerous vision grids are used in the simulations, all with 4 or more
grids. The first character in the vision-state encodes the compass heading of the agent. The following 4
or more numbers represents the contents of the vision grids.

Figure 4.4: The two types of states used in the simulations

When the task consists of going to one goal, just the absolute position or the vision grid information
is sufficient. However, for the task of travelling to two goals, the state needs to be appended with in-
formation about goals visited. Hence, for the task of optimally going to the two different goals, the
state is appended with a binary number (represented as a string). A memory state is defined, but this
is not used for anything in the simulations3. The goals visited part of the state is used to define the
terminal state. The state is represented by an array of three objects: a string consisting of the absolute
or the vision-based state, an integer representing the memory state, and a string of a binary number
representing which of the two goals have been visited.

Policies Two types of policies are tried out. The random policy picks an action in random and the ε-greedy
policy picks a greedy action with probability ε(i.e., higher ε is used to signify higher greediness). The
simulations are carried out with a random policy to benchmark the ε-greedy policies. The absolute and
vision-based state simulations are performed using an ε-greedy policy to study the effects of the type
of state on the performance of RL.

Rewards Two reward schemes are defined. The absolute position based reward scheme awards the agent a
reward of 1 when it is on the cell of an unvisited goal. The vision-based reward scheme, rewards the
agent when an unvisited goal is in one of the vision grids, or when it is on top of an unvisited goal. The
reward for reaching a goal is set to 1 and the reward for seeing a goal is based on the vision-cell the
agent sees the goal in. If it sees multiple goals in its grids (i.e., seeing goal 1 in cell 1 and goal 2 in cell 3)
the rewards from the grids are summed. The reward for seeing the goals in different grids are 0.75, 0.5,
0.25, 0.25 and 0.1 for each of the different grids. The grids are organized such that the ones closer to the
agent have higher rewards for having the goal in them. Both the reward schemes have a penalty of -1
for hitting a wall and of -0.1 for every action. Penalizing every action causes the agent to minimize the
number of steps.

State-value functions The state-value function is in the form of a Q-table. The row indices are the states and
the column headings are the different actions. Each cell in the table represents the Q-value for taking
the action on the column while being in the state on the row. The values are initialized at 0. As all
actions have a penalty, such an initialization encourages the exploration of unvisited states.

3It was included to perform tasks as described in (Junell, Van Kampen, de Visser, & Chu, 2015)
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Transitions The state transitions are deterministic. The agent can take the turning actions at all states. The
translational actions (i.e., forwards, backwards, strafe left and strafe right) are restricted when it causes
collision with the wall.

Terminal conditions The episodes are terminated either when a fixed number of maximum steps4 are reached,
or when the agent visits both goals.

4.2. Findings
The gridworld simulations and their findings are described in this section.

4.2.1. Learning with Vision-Based States
The agent is simulated with the absolute position based state and the “vis0” gridded vision-based state in a 9
by 9 gridworld. The agent has to travel to the two defined goals. The task is also performed with fully random
actions for comparison with the RL agents. The learning is carried out using a constant ε of 0.6, an α of 0.3
and a γ of 0.95. Both simulations are run for 500 episodes.

Figure 4.5: Mean of the steps and changes to Q-values over 20 episodes for the whole run.

Figure 4.5 shows the steps in each episode over 500 episodes for a random policy, absolute position states
and vision-based states. From the figure we can conclude that vision-based state information as an effect
on the performance as the agent performs better than with the random policy. However, there is no learning
with the vision-based states. In contrast, the agent using absolute states learns to perform the task better as
it gains more experience.

Figure 4.6: Statistics from the last 100 episodes for the absolute position and the vision-based state.

The box plots (Figure 4.6) show the performance while using absolute position based and vision-based
states for the last 100 episodes. They show that the vision-based learning makes more changes to its value
function compared to the absolute position based learning. This is on account of the ambiguity in the vision
state information.

The agent cannot distinguish its real life absolute position based on the vision information. Many ab-
solute grid locations (cells) have the same vision state as shown in Figure 4.7. Since the return (sum of the

45000 steps for most simulations
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cumulative reward) from the different cells is different, but the agent is unable to distinguish between them,
the estimated value of the vision state which maps to many real life states keeps fluctuating around a locally
optimal policy as shown in Figures 4.8c and 4.8d.

Figure 4.7: The figures shows all the cells where the vision-based states (for a “vis0” gridding) in the North heading maps to the value
“N0000”. The three figures on the left show example situations in those locations with the agent and its vision grid superimposed. The

right most figure shows all the cells where the vision-based state is “N0000” by tinting them in a red hue.

(a) Absolute; episode 500 (b) Absolute; episode 520 (c) Vision; episode 500 (d) Vision; episode 520

Figure 4.8: Change to greedy policy for the North heading over 20 episodes for absolute position based states (left) and vision-based
states (right). Forward, left and right are represented by triangles facing North (towards the top of the page), East and West repsectively.

The dark red grids represents the two goal states.

4.2.2. Sensitivity Study
Figures 4.9 and 4.10 show how the performance of the agent changes with ε, α and γ for the absolute position
based and the vision-based agent. While varying one of the parameter the other parameters are kept at a
value of 0.5. The agent has to learn to travel over two goals in a 9 by 9 gridworld.

Figure 4.9: The sensitivity of the RL parameters for a absolute position based state.

When using absolute position (Figure 4.9) the most influential parameters on the performance are ε and
α. Very low discount factors (γ) lead to worse performance. On account of the lack of propagation of the
reward from states further backwards in time. The behavior of ε is as expected. The quadratic shape of the
learning rate (α) is because both low and high learning rates lead to unconverged policies; the former due to
lack of adaptation and the latter due to too much adaptation to newly observed values.

The effect of these parameters on the performance of the vision-based agent are different than their ef-
fects on the absolute position based agent. Figure 4.10 shows how the performance varies (nearly) quadrati-
cally with the greediness (ε) of the policy and (nearly) linearly with learning rate (α). A low ε is bad as the agent
does not act greedily; however a high ε is worse as the ambiguity in the state information makes it impossible



46 4. Gridworld Simulation Study

Figure 4.10: The sensitivity of the RL parameters for a vision-based state.

to obtain a mapping from state to an optimal action. The decrease in performance with increasing α can also
be explained by the state ambiguity. Since states are ambiguous, adapting them less to newly experienced
rewards and values lead to a better overall performance.

(a) (b)

Figure 4.11: Heatmap depicting the performance on the navigation task for different values of α and ε. The mean steps from 500
episodes after 500 episodes of training for the absolute position based and the vision-based state have been plotted.

Based on the findings of the parameter analysis, a realtionship between varying two of the parameters and
the performance is simulated and plotted in Figure 4.11b. The γ value is kept at 0.5 for this study. The per-
formance of the absolute position based state improves linearly with increasing ε and changes quadratically
with α. The quadratic relation decreases with increasing ε. The performance of the vision-based agent gets
linearly worse with increasing α and varies quadratically with ε. The heatmap shows the best performance
can be obtained with an ε between 0.5 and 0.6 while keeping α lower than 0.1.

A limitation of this sensitivity study is the use of the number of steps required as a measure of perfor-
mance. These parameters also influence how fast the agent learns and how good it adapts to changes among
other things.

4.2.3. Effect of a Larger Gridworld
Simulations are run in a bigger gridworld to observe the effect of the size of the environment on the learning,
memory requirements and end performance. For this investigation the simpler task of reaching one goal is
used with a constant ε of 0.6, an α of 0.3 and a γ of 0.95. Gridworlds of dimension 20 by 20, 40 by 40 and 60
by 60 are simulated to study the effect of environment size. The vision grid “vis0” is used for the vision-based
states. The simulations are run for 500 episodes in the 20 by 20 and the 40 by 40 gridworlds. Since the agent
takes much longer to learn in the 60 by 60 world, that simulation is run for 3500 episodes and visualized sep-
arately.
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Figure 4.12: The mean steps during learning for the 3 gridworlds (Left: 20 by 20 and 40 by 40; Right: 60 by 60). Note that about 3000
episodes are required to train the absolute position based controller in the 60 by 60 gridworld; thus only for that gridworld 3500

episodes are run. The mean is taken every 50 episodes for the 60 by 60 gridworld case.

The left plot in Figure 4.12 shows the steps and sum of changes to the Q-values averaged over 20 episodes
for the 20 by 20 and the 40 by 40 gridworlds. The vision-based agent starts off performing better due to its
ability to learn faster, but it does not learn as much as the absolute position based agent. With more learning,
the absolute position based agent starts outperforming the vision-based agent. The vision-based agent’s
perception does not have enough granularity to distinguish states whose optimal actions are different.

These simulations show how the time required to learn can increase with increasing number of states.
Approximately 163,000 steps are required by the absolute position based agent in the 20 by 20 gridworld to
achieve its final performance. In contrast, the agent in the 60 by 60 gridworld needs approximately 5,500,000
steps to reach its final performance. For a 9 times growth of the state space, the required computations to
approach convergence grows by a factor of 30 .

The mean steps per episodes for the last 100 episodes and the number of unique states in the Q-table
for the 3 gridworlds with two types of state are presented in Table 4.1. The number of unique states for the
absolute position based state in comparison to the vision-based states shows an advantage of using vision-
based states; 14400 unique states for the absolute position based agent compared to 29 for the vision-based
agent.

The performance of the vision-based agent is worse off. It takes about 3 times the steps compared to the
absolute position based agent, to finish the task in the 20 by 20 and the 60 by 60 gridworlds. The trend in
the learning of the agents in the 40 by 40 gridworld indicate that the absolute position based agent will out
perform the vision-based state with more episodes of training.

Table 4.1: Mean steps in the last 100 episodes and the number of unique states for the two state types in the different gridworlds

State type Mean steps in last 100 episode Number of unique states
20 by 20 40 by 40 60 by 60 20 by 20 40 by 40 60 by 60

Absolute 145 1065 668 1600 6400 14400
Vision-based 485 1148 1502 29 29 29
Random - - 4628 - - -

4.2.4. Effect of Increasing Features for Vision-Based State
All the previous simulations have two identifiable objects, the two goal grids. In this study, four cases are
simulated to study the effect of more visually distinguishable features for the vision-based agent. The addi-
tion of an extra identifiable object, the addition of two extra identifiable objects, wall detection but no extra
identifiable objects and lastly wall detection with the addition of one identifiable object are simulated.

All the simulations are run in a 9 by 9 gridworld with a constant ε of 0.6, an α of 0.3 and a γ of 0.95. The
“vis0” vision grid is used. Five hundred episodes are simulated for each of the cases. The first extra identifiable
object is added at (4,5) and second one is added at (7,2) as shown in Figure 4.13.

There is an improvement in the performance of the vision-based agent as the number of identifiable
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Figure 4.13: New features introduced to the environment

features are increased. This can be seen in the left plot of Figure 4.14. The improvement is bigger with wall
detection.

This is believed to be due to the negative reward associated with hitting a wall and the fact that walls
exist all around the gridworld making them good features for the state. Since the addition of features only
improves the richness of the state space without providing a task based advantage, it does not lead to similar
improvements. This is true notwithstanding the fact that the two feature case and the wall detection both
have similar number of unique states; 168 for the 2 feature case and 164 for the wall detection case.

Figure 4.14: Statistics of the steps required and the sum of changes made to the Q-values for the last 100 episodes.

These simulations show how the performance of the vision-based agent is dependent on recognizable
features in the environment. This can be used to mitigate the drawback from large state spaces as described
in Section 4.2.3. The requirements for large memories to store big Q-tables can be reduced by designing
feature based states tailored to the environment and the task.

4.2.5. Effect of Changing Action Space
The effect of improving the acting potential of the agent is analyzed by extending the actions available to it.
The absolute position based agent and the vision-based agent are trained the task of travelling to two goals
using the baseline action set and the extended action set. The simulations are performed in a 9 by 9 gridworld,
with an ε, α and γ of 0.6, 0.3 and 0.95 respectively. The “vis0” vision grid is used for vision-based states.

A simulation of 2000 episodes are run for each of the above cases and the statistics of the steps per episode
for the last 500 episodes are plotted in Figure 4.15. Figure 4.15 shows that extending the action set improves
the performance for the absolute position based agent. However, it has a negative effect for the vision-based
agent; it requires about 100 more steps on average with the extended set of actions than with the baseline set
of actions.

In order to explain the difference in the performance of the vision-based agent with the extended actions,
its trajectory in an episode is analyzed. It is found that the extended action set leads to local regions of op-
timality in the Q-function when using vision-based states. The ability to translate backwards, leftwards and
rightwards makes sets of actions available to the vision-based agent, where it can keep getting rewards if it
keeps going back and forth The reward scheme for the vision-based agent rewards it for having the goal in the
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Figure 4.15: The performance with the baseline and extended set of actions for the absolute state case (left) and the vision-based case
(right). The last 500 episodes are used to make the plots.

its “line of sight”, which encourages this back and forth movements when seeing the goal. This idea is tested
by running simulations with the vision-based agent for the two action sets with two different reward schemes.

Four simulations are run, all using vision-based states with the “vis0” vision grid. The vision-based reward
is simulated with the two different actions sets (i.e. the baseline set and the extended set). Each action set
is simulated with the absolute position based and the vision-based reward schemes. The usual simulations
conditions are used: 9 by 9 gridworld and a constant ε,α and γ, of 0.6, 0.3 and 0.95 for the task of travelling to
both goals.

Figure 4.16: Statistics of the steps required from the last 500 episodes of the simulation for the different sets of rewards schemes and
action sets.

A 1000 episode simulation is performed and the statistics of steps in each episode for the last 500 episode
are presented in Figure 4.16. It is found that the agent with the absolute-position based reward and the ex-
tended actions performs the best among four the cases simulated.

The vision-based agent with the vision-based rewards and extended actions performs poorly for the rea-
sons discussed before. Namely the agent finds states where it can keep getting rewards from seeing the goal,
thus it tends to jump between those states. The increased mobility and the removal of vision-based rewards,
for the agent with the extended action set and position based rewards, are the reasons for its improved per-
formance. When the agent is no longer rewarded for having the goal in its line of sight, it does not get stuck
in local rewarding loops and learns to use it increased mobility to get to goal faster than the agent with the
baseline action set.

4.3. Summary
The findings for the design of a vision-based RL agent from the gridworld simulation studies are summarized
in this section.

Lack of learning with vision-based states: The simulated vision-based agent does not learn the task; its per-
formance does not improve over time. This is on account of the non-Markovness of the vision-based
states.
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Need for stochasticity with ambiguity in state descriptions: Due to the inherent ambiguity in generalized
state descriptions, the vision-based RL problem is partially observable. Thus, policies with a random
component or the application of Partially Observable MDP models may be required to ensure good
performance.

Effect of action space: It is shown that the selected action space is related to the quality with which a vision-
based agent can perform a task. There are relations between the defined rewards and the available
actions. The vision-based agent with the extended action set performs worse as the interaction between
the rewards and the actions lead to local minima in the value function.

The design of an RL agent should consider the interactions between the defined actions and reward
scheme, and how they cause the agent to behave. A reward scheme and an action space should be
selected which enables the agent to perform the task. The action scheme shall allow the agent as much
freedom as possible without causing it to lose performance, by for instance, introducing local minima
in the value function.

With some ideas about the behavior of a RL agent using vision-based state, concept for the vision-based
state, the guidance task and the agent to be implemented in this study are presented in Chapter 5.



5
Concepts for Vision-based States,

Guidance Task and Agent

This chapter presents the conceptual design of the vision-based state, the guidance task, and the agent. Fol-
lowing these discussions, an initial starting point for the design of a vision-based RL agent is described. Lastly,
the differences between the implemented agent and the initial concept are considered. The sections in this
chapter provide answers to the sub-questions of RQ2: “What will be the task and the architecture of the con-
troller simulated and tested in this study?”. Further, the work presented in Chapter 2 and the discussion about
the implemented agent in this chapter are an answer to RQ3: “Which learning schemes and vision-based
states are simulatable and testable within the resources of this project?”.

5.1. Vision-Based State
This section discusses possible concepts for vision-based states that can used in this study. First, absolute
and relative states are compared. Than three ideas for vision-based states are presented. This will answer
RQ2.1: “What are some options for vision-based states that can be used by RL for learning a guidance and
navigation task?”.

5.1.1. Absolute or Relative States
The goal of this project is to use vision-based RL for the guidance of a quadcopter, therefore, the position in-
formation has to be obtained from visual sources. Two ways of obtaining position from vision are considered.
One way is to attempt to create a map of the environment using visual resources, and using the map to locate
oneself in absolute terms. The other way is to use some kind of relative position information.

Note that the difference between an absolute description of the state and a relative description of the state
is not based on their frame of reference. Both absolute and relative descriptions of the state will have their
own form of a “frame of reference”. The absolute description of the state is based on the usual description
of position and attitude as has been the basis in guidance and navigation. Relative descriptions of the state
have some information, but they are not as clear or crisp as the absolute information.

For example an absolute description of a quadcopters state can be (with respect to a local reference):
“4.57m North, 2.45m East, 035◦ Heading”. A relative description can be: “5±1m away from base; base in
South West quadrant relative to self 1”. For this project, some form of representation of the visual information
that can be used by the agent to perform the guidance task will be a relative description of the state.

The pros and cons of absolute and relative positioning are examined in Table 5.1. They are partly de-
rived from the simulation study discussed in Chapter 4. Due to the relative simplicity of vision-based relative
states over vision-based absolute states and due to the lack of experience of the author on SLAM based vision
methods, it is decided to use vision-based relative states for this project.

1Self is the quadcopter in this example
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Table 5.1: A comparison of using vision-based absolute or relative states

Absolute states Relative states

1 Has no state ambiguity State ambiguity is likely

2
Suffers strongly from the Curse of dimen-
sionality

Suffers less from the Curse of dimension-
ality

3
Knowledge is focused on specific imple-
mentation

Function focused knowledge

4
No need to come up with representation
since the absolute states are sufficient

A representation of the states which is
sufficient for the task needs to be created

5.1.2. Concepts
Three concepts for vision-based relative states are proposed and a selection made for the first iterations of
task and agent designs.

VisSta1: Landmark The agent can look for and remember unique objects from its environment and esti-
mate its current location based on the relative size and position of the object in the image. The landmark does
not need to be an object, it can be a blob of color or a barcode. Once an object is identified, its size in pixels is
estimated. Seeing the landmarks from different places will make it appear bigger or smaller in relation to its
initial viewing. The ratio of the current dimension in comparison to the initially observed dimension can be
used as part of the state to signify proximity to the object. The relative heading with respect to the quadcopter
at which the identified object is seen can be used to get an idea of quadcopter’s heading.

There are issues of perspective, skewing and noise among other things, when trying to estimate dimen-
sions of objects that are detected using computer vision. SIFT features provide some invariance to scale and
rotation. A method of tracking the different views of a landmark can be considered at the cost of further in-
creasing the implementation challenges. Monocular distance estimation techniques can be used to come up
with estimates of the distance to the landmark. This can be used to generate a coarse map of the quadcopter’s
environment. Using these techniques in the design will increase the difficulty of implementing such a system.

Figure 5.1: The mug is selected as a landmark. Its approximate relative dimensions and lateral position are shown from three different
point of views.

An example state vector can be one number representing the index of the landmark being tracked, an-
other expressing its relative size in comparison to the first observation and a third number expressing the
relative heading of the landmark with respect to the heading of the quadcopter. In order to get rid of ambigu-
ity, the absolute heading of the quadcopter will also need to be included. This is required because the relative
size and lateral position of an object will be the same when the quadcopter is facing it from opposite sides.

Assuming a quadcopter heading and relative landmark heading representation in discrete steps of 45◦,
leads to 8×8 possible permutations for the headings and landmark headings. Using a relative size range of
0.3 to 2.4 in steps of 0.3 leads to 8 different values for the relative size. This leads to 512 possible combinations
for the position. If there are 4 trackable landmark, there will be 2048 possible states. This is a big number
of states to learn in real life flights. If such a method is selected, a significantly coarser representation of the
state space will have to be used.
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VisSta2: Visual grids The visual feed can be divided in grids and the grids assigned values based on their
contents. Easily identifiable objects, such as plain blobs of color, are good options for visual content as they
will simplify the CV implementation. A one dimensional array, the size of the number of grids, will hold the
vision information. Each of the possible visual elements will be represented by a number, thus each cell in
the array will take the numerical value of the contents of the corresponding grid. This array can be used to
represent a relative vision state. An early inspiration of such a state is obtained from (Gaskett et al., 2000).

(a) 9 grids (b) 10 grids (c) 6 grids

Figure 5.2: Possible ways of dividing the vision stream into grids

A simple implementation of this can be based on a color filter and a few goal locations marked by solid
colored objects, such as colored cubes. If there are two goal locations and the vision is divided into 9 cells,
the state can be represented using an array with 9 integers where each integer takes a value of 0 if it sees
nothing and a value of 1 or 2 if it sees a goal object in the grid. The quadcopter can see this in four possible
headings, which is assumed to be part of the state. If we make the assumption that no two goal objects can
appear on the same grid, the total number of possible states sum to 4042. This is a relatively small number
and manageable by RL algorithms.

If only seeing nothing or seeing goal objects are considered in a k grid (i.e., cells in the state array) vision
state with n possible goal objects, the number of visual grid states is given by Equation 5.1. P and C are the
permutation and combination functions respectively. There are k Pr possible permutations for seeing r goals
in k grids. If there are n goals, the combination of ways r goals are seen at one time is given by nCr . The
product of these two numbers are the number of possible states for a k gridded vision state with r of the n
goals in its line of sight. The sum of the aforementioned product over all values of r is the number of possible
states. If we want to consider walls as another visual entity that is recognized, properly estimating the total
number of states becomes more complicating. In such a case estimating an upper bound is more tractable.

n∑
r=0

k Pr
nCr (5.1)

This example state also highlights a problem of such a state definition. Although there are 404 states,
only four states represents seeing nothing. There can be many different real locations where the agent sees
nothing. Thus seeing nothing is not sufficient to tell what the following state will be, given an action. This
makes such a state description non-Markov and difficult for TD learning methods.

The problem of state ambiguity can be alleviated by introducing more goal objects for the task, and trying
to minimize the numerous real states which maps to the “seeing nothing” visual state. This puts us against
one of the typical trade-off in representation: increase in the detail of the feature that is interpreted by the
system (which for this state description means using more grids), is accompanied with decreasing computa-
tional efficiency due to the growing state-space.

2Note the goal states 1 and 2 cannot appear more than once in a cell. 9× 8 possible states where the first and second goals are seen
together. 9×2 possible states where either the first or the second goal is seen. 1 possible state where nothing is seen. It can see these
things in 4 possible directions
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VisSta3: Location tagging This concept for a vision-based state uses visual information to represent a
coarse description of the quadcopters location inside a structured environment. Features such as specific
trees observed by the quadcopter, patters on a wall, relative position of doors and windows in a room etc. can
be used by it to localize itself coarsely.

Such a state can be defined by an array of numbers, each representing specific features. For example there
can be number representing the wall color, the number of doors observed, the number of windows observed
etc. If there is sufficient detail and disambiguation in the state definition, it can be used to identify the differ-
ent rooms in a building. This information can be used by the quadcopter to guide itself to different rooms in
a building. For such information, the quadcopter will have to perform scans of its environment and the CV
algorithms will need to perform object recognition and matching to generate the state.

Figure 5.3: The left part of the image shows the ground plan of a building with four rooms. The location has been tagged based on the
number of doors, windows and the presence or absence of furniture in each room. The right part of the image shows the corresponding

location tag states for this ground plan.

The problems of this state definition are the facts that it cannot be used for precise positioning of the
quadcopter and that high level interpretation of the visual data is required in order to localize itself. As it is
incapable of fine localization, it may be used to guide the quadcopter on a higher level, such as finding paths
in a graph based representation of an apartment. This system is also more challenging to implement as object
recognition systems will need to be developed.

Selected configuration: At this stage it is decided to use the visual grid states (VisSta2). VisSta2 is selected
due to the ease of implementing such a system in comparison to a landmark (VisSta1) or a feature based
(VisSta3) system. Moreover, if a feature based state is used, the guidance task has to be over places with
different external features, which will be hard to do in the Cyber Zoo.

From the three types of vision states described above, the visual-grids and landmark based method are
suitable for fine positioning while the location tagging method is suitable for coarse positioning. This leads to
the idea of a possible system which uses feature based information for coarse navigation and than switches
to either grid based or landmark based positioning for finer guidance to its goal. However, such a compound
system is out of the scope of this study as it is too complex.

Goals are considered to be boxes of a specific color. If extra detail is desired, barcodes can be used in
which case vision-based barcode reading algorithms will be required.

5.2. Guidance and Navigation Task
This section presents possible guidance and navigation task for the RL agent. First, the various competing
requirements that the defined task needs to satisfy are considered. Than, concepts for guidance tasks for this
project are described. This section attempts to answer RQ2.2 by defining a task that will be used for this study.
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5.2.1. Requirements for Guidance and Navigation Task
The following requirements are defined for the guidance task:

TaskReq1: The task should use vision-based information and no external localization system (such as GPS)
in order to localize itself.

TaskReq2: The task must be performable by an RL agent. It must be attempted to define a task such that the
benefits of using an RL agent over other autonomous means of control are highlighted.

TaskReq3: The task should be simulatable with the resources available to this project.
TaskReq4: The visual information required for the task must be attainable within the limits of this project.

The task will be performed by an AR Drone 2, thus the vision information shall be obtainable and pro-
cessable within the limitations of its onboard camera and CPU.

TaskReq5: The task should be performable in the Cyber Zoo of TU Delft.
TaskReq6: The task should represent a challenge to the field of autonomous navigation of UAVs. It must

attempt to contribute something that can be related to a real application for autonomous UAVs.
TaskReq7: The defined task needs to be simple enough so that flight tests can be performed.

The first two requirements are higher level requirements that are derived from the core goal of this project.
The next three requirements are related to defining a task that can be useful to accomplish the defined goals
of the project. The last two requirements are related to the quality and feasibility of the guidance task.

5.2.2. Outline of Possible Tasks
Four guidance and navigation task are defined based on the assumption of using some form of the visual
grids state (VisSta2). One task will be chosen for the design of the RL agent.

RLTask1: Photograph points in a 2D space There are four points in a room the size of the Cyber Zoo that
have to be photographed once by the quadcopter. This means there is no reward for photographing
the same point twice. The quadcopter has a memory of carrying two images after which it must return
to base. The RL agent has to find a path to photograph two points, return the images to base and
photograph the two remaining points.

On visiting the base, the memory is returned to zero and the quadcopter is reinitialized. One way to
reinitialize is to place the quadcopter in a random position of the Cyber Zoo. Another way is to reinitial-
ize it at a specific location around base. For this task, a state that keeps an account of the photographed
sites will need to be appended to the state.

RLTask2: Photograph points in an indoor situation Four points are placed within four separate rooms, each
of which have a passage into two of their neighbors. One of the rooms represents the base station. As in
the previous task, the quadcopter has to photograph the four points with the added difficulty of having
to navigate through the passageways after photographing a point. This will be difficult to test in the
Cyber Zoo because it will be hard to create the 4 separate rooms. This task can be performed outside
the Cyber Zoo, in a place with two or more interconnected rooms. However, the lack of stabilization
feedback of the motion sensing system will add other challenges.

RLTask3: Run a race course Running a race course is another task. Points will be visually marked to be
checkpoints. The quadcopter has to travel to these points in the Cyber Zoo and hover over them for
a set duration, before the next checkpoint is revealed. The quadcopter has to fly over the checkpoints
as fast as possible.

The reward can be given to the agent based on reaching and hovering over the current checkpoint. The
RL agent will control the heading and the velocity of the quadcopter.

RLTask4: Follow a target Learning to follow another quadcopter, while keeping it in the center of its vision,
could be a task for the RL agent. This task is inspired by the work of Valasek et al. (2016).

If the image of the tracked object becomes bigger, the quadcopter needs to slow down and vice versa.
The quadcopter can choose to yaw or move laterally to track the target. Different transformation of the
visual representation of the tracked object will be mapped to different motions by the RL agent.

This project will use RLTask1: photographing points in a flat space(Figure 5.4) as the starting point for the
design of the RL agent. This task is considered to be sufficiently representative of a real life task a quadcopter
may need to perform.
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Figure 5.4: A representation of RLTask1: photographing points in a 2D space. An example path the quadcopter can take to act near
optimally is shown. The four goal locations are marked by the small filled square, circle, pentagon and triangle. The yellow grid shows a

possible visual grid.

5.3. Initially Proposed Agent
With an idea of the state representation and the task the agent needs to perform, other details about the
agent can be defined. Here, a learning scheme is selected, a more detailed definition of the state and actions
is created and lastly a reward scheme is decided upon. Selecting a learning scheme will lead to an answer of
RQ2.3.

5.3.1. Learning Scheme
At this point, SARSA is considered to be the most appropriate learning method for this project. Q-learning
is potentially problematic as the results with the gridworld study indicates (Chapter 4) that learning with full
greed leads to suboptimal solutions, when the state description is non-Markov. DP methods are undesirable
as the goal of this project is to eventually carry out learning with a real life quadcopter and real time learning
is simpler with TD methods. Also there is no transition model as is required by DP methods. Due to the
non-Markov nature of the state and transitions, MC methods maybe superior to DP methods. However, MC
require more iterations for convergence in comparison to TD methods(Sutton & Barto, 1998) and it updates
the values after each episode, which ares undesirable for real-life learning.

For the time being, other more complicated methods, such as the use of a continuous description of the
state space or the use of RL methods such as LSPI or Deep Q-Learning are avoided due to inherent complex-
ities of the project goal. The training of a vision-based RL controller for an AR Drone 2 presents a significant
enough challenge.

5.3.2. State and Actions
State: The visual grid (VisSta2) state will be used for the task. The value of each grid will be based on the
contents of that grid. The goals will be represented by cubes of a specific color. Decisions have to be made
regarding the use of the forward facing and the bottom cameras. Further, the exact division of the visual feed
into grids will need to be fixed.

One goal object may end up occupying multiple grids. In such a case, the grid that contains the bigger
portion of the detected goal will represent the value of the grid. Multiple goal objects can end up occupying
the same grid too. In such a case two measures will be taken. First, if there is a previously visited goal in the
grid, it will be ignored. If there are still multiple goals, the grid’s state will be defined by the bigger goal object.

For the initial implementation, it is decided to consider a hover over goal when the goal object is brought
to the grid closest to the quadcopter’s forward facing camera. This ignores the requirement of having to hover
exactly over the target. It simplifies the task as hovering over a goal would either enlarge the state space or re-
quire the use of complicating methods such as two different high level controller or the use of Hierarchical RL.

A 3 by 3 gridding of the vision stream is selected for the initial design. The state will consist of a vector
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containing twelve numbers. Nine of these numbers will represent the vision information from the nine vision
grids. One number will represent the memory state, another will represent the goals that have already been
visited and one number will represent the heading of the quadcopter.

The vision states will take a value 0 if nothing is seen, a value of 1 if the base is seen and a value between
2 and 5 if one of the four goals are seen. This leads to a total of

∑4
r=0

4Cr
9Pr = 39806 possible vision states.

Such a large number of vision states makes this problem definition intractable. Even without considering the
other parts of the state, it is evident that the task needs further simplifications.

Hence for first iterations of the guidance task, many simplifications are made. The number of goals will
be decreased from four to two, the memory is decreased from two to one and the visual grid is simplified
to 6 grids (Figure 5.2c). This brings the possible vision states down to 229 and the total number of states to
24,000 states. This number is still big and further simplifications will be made during implementations. Wall
detection is not included into the state description as the state space is already big.

(a) Full state

(b) Example state values from situation in Figure 5.4

(c) Simplified state

Figure 5.5: A visual representation of the full and simplified state vectors

Action: Three actions are defined for the agent. The actions are move forward, turn left 30◦ and turn right
30◦. For the actions to require similar amounts of time, their magnitude (the real distance moved or angle
yawed) will be defined based on simulation results. An extra action of setting the quadcopter heading towards
a target may be included. This action will require other supporting logic for picking targets.

5.3.3. Rewards

The reward scheme must cause the agent to perform the guidance task optimally. The reward scheme is
defined for the full guidance task. It can be adjusted for simplified task as defined in Subsection 5.3.2. We
want the agent to find an optimal path of photographing the two closest goals, returning to base, and than
photographing the remaining two before returning to base again. An example of an algorithm that always
goes to the closest goal has been presented below:
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Go to closest goal algorithm

1. Start in random location on the map
2. Make a scan to find closest goal object
3. Head towards closest goal object and hover over it; remove current object

from list of goals
4. If memory not full go to step 2, else go to next step
5. Scan for base; head for base
6. Check if this is the first time the quadcopter came to base; if yes than go to

step 2, else end episode

There should be some kind of intermediate reward guiding the quadcopter towards the goals. This can be
a small reward when the quadcopter sees an unvisited goal in one of the farthest grids which slowly increases
as the goal object moves to rows closer to the quadcopter. This shaping reward needs to be implemented
carefully as the preliminary simulation found that one can cause the performance to degrade by giving the
agent rewards for having the goal in its line of sight (Subsection 4.2.5); i.e., if the agent can transition between
states where it can keep the goal in its line of sight and keep getting rewards, it will be encouraged to keep
repeating those states.

The reward for seeing an unvisited goal in a vision grid should be awarded only once. After the quadcopter
reaches the goal it should receive a big reward for having accomplished an objective. After visiting a goal, all
rewards associated with it should be removed to encourage the quadcopter to visit other goals.

The reward for the base should be 0 when the memory is empty while the reward of goals are left changed.
The reward for the goals should be progressively reduced to 0 and the base to a high value as the memory gets
filled. A small negative reward should be awarded at each step which would encourage the agent to learn
actions which perform the whole task faster.

Due to the influence of the state and the reward scheme on the performance of the RL algorithm, these
are two most likely candidates for tweaks and modification. By the end of the project, numerous changes
and modifications may lead to significantly different representations of the state and reward scheme than
discussed above.

5.4. Comparison with Final Task and Agent
This section discusses the differences between the implemented agent as described in Chapter 2 and the
initial concept. Further, some characteristics of the designed controller, not elaborated upon in Chapter 2,
are also included.

Task: The implemented agent has been described in Chapter 2. The implemented task is simpler than the
initial concept. The tasks consists of approaching markers on the wall of a square room. Three task are
simulated, all of which are significantly less complex than RLTask1. The simulated tasks are:

1. approaching a red goal; only task performed in flight tests
2. approaching a red goal and a blue goal
3. travelling across a corridor to approach a red goal.

Simpler tasks are more desirable for this project as its goal is the implementation of the agent on a real-life
system.

State: The final form of the vision state consists of 3 numbers instead of the predicted 6(see Chapter 2). The
divisions of the image is made using straight lines instead of curved lines as initially considered. No memory
states or headings are used. Instead a state to record wall hits and another to represent the amount of goal
seen (the Color Fraction) is used. Learning is faster in smaller state space, thus this simplification of the state
space is beneficial for real life tests.

Actions: The action of going forward remains the same. For the turning actions, an angle of 22.5 ◦ instead
of the 30 ◦ is used. Further, an option of turning until a goal is seen is introduced.
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Although the idea of the option is taken from (Sutton, Precup, & Singh, 1999), the exact way it updates the
value has been implemented in a differently. In (Sutton et al., 1999), the value of an option is updated with
the sum of the discounted reward that was obtained while performing the option. The update to the value is
made after the option has been fully carried out.

It was found in this study that updating the option every step, as if it was a primitive action, leads to faster
learning than updating it in the end. Since the option is available in primarily one state3, update to the value
of the option every step would be an iterative update to itself which ensures the correct state-action is being
updated.

Learning: Q-Learning is used instead of SARSA in the final agent. The initial idea was to use SARSA as
the gridworld simulations (Chapter 4) indicated a degree of randomness in the action is desirable when the
there is ambiguity in the state descriptions. However, the actions in the implemented agent implies a more
predictable transition model than in the gridworld simulation. The results from the simulation and flight tests
with the designed agent show that the Markovness in the state description for the one goal task is sufficient
to allow fully greedy actions without divergence.

5.5. Summary
The initial concepts for the vision-based states, the guidance task and the agent are described. Following this,
the differences with the implemented agent are highlighted. In general, the initial concept was optimistic
of what can be accomplished. The requirement to focus on a RL problem which can be implemented and
learned in real life led to a simpler task and state description in the implemented system.

This chapter has answered RQ2: “What will be the task and the architecture of the controller simulated
and tested in this study?”. Furthermore, Chapter 2 has answered RQ3: “Which learning schemes and vision-
based states are simulatable and testable within the resources of this project?”. Remaining questions regard-
ing the performance of the agent are answered in Chapter 6.

3It is also found in the less common seeing nothing, wall hit state (0,0,0;0;x;1)
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6
Additional Results

The findings from the implemented controller, not described in Chapter 2, are presented here. The compari-
son of the RL agent with the rule based controller in Chapter 2 and with an absolute position based autopilot
in Section 6.1.4 answers RQ4.2. The agent developed for the two goal task is trained to perform the corridor
task in Section 6.1.6 answering RQ4.3.

6.1. Results
Simulations are performed to see how many episodes are required to learn the task. The sensitivity of the
learning to γ and α is studied. However, as only one repetition is carried out for the different values of the
parameters, the results from the sensitivity study are not statistically significant. The effect of changing the
reward function by incorporating less knowledge is simulated. Incorporating more knowledge in the reward
function improves the learning of the task. The performance of the agent is compared to a programmed flight
plan which uses absolute position information. The absolute information based autopilot does the task twice
as fast as the trained agent. The effect of fully random exploration is compared with ε-greedy exploration and
the benefit of using an ε-greedy policy demonstrated. The agent for the two goal task is trained a corridor task
to demonstrate the generalized applicability of the designed agent.

6.1.1. Number of Episodes Required for Training
The number of episodes required to train the one goal task (with fixed initialization) is studied by training it
for a range of different durations. The ε is increased from 60% (greedy) to 100% (greedy) in all the runs. Each
simulation is repeated 50 times. The agent is trained for:

• 30 episodes (ε increased every 3 episodes)

• 50 episodes (ε increased every 5 episodes)

• 100 episodes (ε increased every 10 episodes)

• 200 episodes (ε increased every 20 episodes)

• 300 episodes (ε increased every 30 episodes)

The number of steps required to reach the goal in the last episode of every run from every training du-
ration is visualized using a box plot in Figure 6.1. The figure shows that the performance for the learning
of the one goal task degrades only for the 30 episode training case. Four outliers are present from the runs
with 30 episodes of training, each requiring more than 20 steps to do the task. There are no outliers (of above
20 steps) when the agent is trained for 100 or more episodes. Further, the spread in the final performance,
i.e. the variance in final steps required to perform the task, decreases with more episodes of training. These
results indicate that the task can be trained satisfactorily with 100 episodes of training.

6.1.2. Sensitivity to γ and α
The sensitivity of the training to varying γ and α are shown for 1 run in Figures 6.2 and 6.3. As these results
contain data from only one run, they are not statistically significant. Results from the only run indicate that a
higher γ and a higher α can speed up the learning of the one goal task.
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Figure 6.1: Box plots of the steps required in the last episode of the 50 repetitions of each experiment factor (i.e. for each training
duration).

Figure 6.2: Varying γ

6.1.3. Effect of Changing the Reward Scheme
The reward scheme used in the study encodes an extra reward if the quadcopter is moving towards a visited
goal compared to an unvisited goal. Simulations are performed without this extra element in the reward
scheme to study its effects. The change to the reward scheme, visualized in Figure 6.4, is studied (full reward
scheme presented in Chapter 2). It can be seen in Figure 6.5 that encoding the knowledge of going forward
when seeing color speeds up learning (RewScheme1). The lower curve of the steps required with the vision-
based penalty (orange line in the leftmost plot of Figure 6.5) indicates that the agent trains with fewer steps
in total.

6.1.4. Comparison with Absolute Position Based Autopilot
The time to perform the task by the RL agent is compared to a pre-programmed autopilot. This is done as
time is a more realistic metric of performance than steps for guidance and navigation systems.

The one goal task is carried out approximately 15 seconds faster by the pre-programmed autopilot than by
the fully trained agent (see Figure 6.6). Further, the pre-programmed autopilot does not need any training or
the design of an abstracted state. Although performance of the RL agent is worse in terms of time, is has some
features which the autopilot does not. The autopilot is not independent of an absolute positioning system
and it is incapable of learning or adaptation.

6.1.5. Fully Random and ε-greedy Exploration
The effect of learning the Q-values for the one goal task with a fully random exploration and an ε-greedy
exploration are compared. The one goal task is trained 50 times, and the final learned policies are visualized
to look at the stability of the learning.

Figure 6.7 visualizes the number of times a specific action is selected as the final action from the 50 runs.
The one goal task is performed with a fully random exploration and an ε-greedy exploration. The dominant
color of the columns and the color fraction part of the state are expressed along the x-axis of Figure 6.7. The
number of times the different actions are learned as the final policy are expressed by the lengths of the bars
of specific colors for each state.
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Figure 6.3: Varying α

Figure 6.4: Change to reward scheme

The ambiguity in the state perception is demonstrated in Figure 6.7. Most of the runs should converge to
the same action for states which are less ambiguous and their bars in the figure should be mainly of one color.
States which are ambiguous or where optimal actions are difficult to find, will converge to different actions
for the different runs; thus their bars in Figure 6.7 will consists of 2 or more colors. If the state is more Markov,
than a bigger fraction of the runs will converge to one action and there will be a big difference between the
lengths of the two colors in the bar of the state. Conversely, when the state is less Markov, the lengths of the
two (or more) colors in the bar of a state will be similar.

In general, Figure 6.7 shows that the learning with ε-greedy exploration converges to one action more
frequently than with random exploration. For example with the goal in the middle (0,1,0) the learning with
the ε-greedy exploration converges to the forward action for almost all of the runs. However, with random
exploration, the agent converges to the left or right actions more often. The non-Markovness of the states
makes Q-learning with fully random exploration less convergent than with ε-greedy exploration.

The ε-greedy exploration, although more convergent than random exploration, also has numerous non-
convergent states. For example with the state “0,1,1;0” the agent trained with the ε-greedy policy converges
to the left action for a number of the runs (top plot of Figure 6.7), although it would be better for the agent to
turn right as the goal is towards the right and relatively far.

A possible reason for this is the skewing of the goal when viewed from different angles (see Figure 6.8).
When the goal is viewed obliquely, it gets skewed, and the area it takes on the visual stream changes due to
perspective effects. Perhaps in some of the runs taking a left action increased the area of the goal, leading to
higher rewards from turning left in the “0,1,1;0” state.
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Figure 6.5: Effect on learning with the two reward schemes

Figure 6.6: State (The heading and Y positions (with origin being 0) of the RL agent and the rule based agent performing the one goal
task

6.1.6. Corridor Task
The initial goal of this thesis was to have a representative guidance and navigation task to demonstrate the
use of RL for vision-based guidance (Section 5.2.1, TaskReq6). However the final tasks performed are rather
simple (see Chapter 2). In order to increase task complexity a corridor task is designed. In this task the agent
initializes at the end of a corridor and has to learn to turn past a corridor to reach its goal (see Figure 6.9).

The two goal agent is used for the training of the corridor task with one exception: there is no reward for
visiting the blue goal. The blue goal acts as an intermediate beacon for guiding the agent to the red goal. The
state description and action space are the same as the two goal task agent. The learning scheme is also the
same as the two goal task: 500 episodes of training with γ= 0.9, α= 0.3 and ε going from 0.6 to 1.0 in steps of
0.05 every 50 episodes. The steps to the goal and the trajectories taken by the agent have been visualized in
Figure 6.10. It can be seen that with training, the agent manages to learn to perform the corridor task better.

6.1.7. RGB versus YUV in Flight Tests
Initially the computer vision (CV) module converted the YUV data (that is natively available from the vi-
sion module of PaparazziUAV) to RGB. This was done because he simulation is implemented in the RGB
colorspace. Converting the YUV information to RGB allowed the direct application of the vision modules de-
veloped in simulation to the real-life agent. This worked out fine until the first quadcopter crashed beyond
repair and a replacement had to be used. The replacement quadcopter had higher noise in the vision data;
tests with YUV revealed that it was less noisy. Thus, YUV was used for the final flight tests and for drawing
conclusions in this study.

Figure 6.11 shows the steps against episodes for the runs using the RGB based and YUV based CV modules.
The right most plot in Figure 6.11 visualizes the mean trends over the runs. The plot shows that the final
performance is better with the YUV based agent. However, the YUV based agent has a higher variance in the
steps required during the learning phase.
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Figure 6.7: Stacked bar charts of the frequency of selection of specific actions for two types of exploration: ε-greedy with increasing ε
(top) and fully random exploration (bottom).

(a) 22.5◦ left; 17k (b) Initial; 15k (c) 22.5◦ right; 19k

Figure 6.8: The skewing increases the number of pixels of the goal detected. The relative heading and the thousands of red pixels
detected are mentioned in the captions.

The two left plots in Figure 6.11 visualize the statistical insignificance of the study. For the RGB based
agent, two runs diverge from the optimal solution in the last phase of the training. In comparison, only one
run diverges in the final phase for the YUV based agent. If, for example, 5 more repetitions are carried out
with the YUV based agent and the RGB based agent, the means of the performance over the runs may turn
out different.

External factors such as the time of day and internal factors such as the differences in the tuning of the
YUV detection in comparison to the RBG detection influences the performance. Differences between the
tuning of the RGB and the YUV modules could be one of the possible causes of the higher variance in the
training with the YUV based agent. Such sources of errors in the flight tests and the differences between the
performance with the RBG and the YUV based CV modules are not studied in greater detail due to the time
constraints of this project.

6.2. Summary
The additional results from the simulations are summarized here.

Number of episodes to train (6.1.1): 100 episodes are enough to learn the one goal task.

Sensitivity test (6.1.2): As enough repetitions are not performed the sensitivity study is not statistically sig-
nificant. Data from the one run at the different factor levels indicate that a higher γ and α can speed up
learning.
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Figure 6.9: The corridor task. Left: Rendering of the environment; Right: Floor plan

(a) Steps to goal (b) Trajectories

Figure 6.10: Results from the corridor task

Flat penalty versus vision based penalty (6.1.3): It is shown that the agent learns faster with a vision-based
penalty.

Comparison of Performance (6.1.4): A rule based autopilot is designed (based on intuition) to estimate the
steps required to perform the two tasks with random initializations. The simulations reveal that the
state description is insufficient to learn the task. The memory of hitting a wall only lasts for one step
which is insufficient information to avoid a wall, and track a goal at the same time.

The mean number of steps required to reach the goal by the rule based autopilot with random initial-
izations is found to be near the optimal number with fixed initialization. This mean is calculated by
excluding the episodes where rule based the autopilot got stuck on the wall due to the aforementioned
lacking in the state description. The exclusion of these episodes in the calculation of its mean perfor-
mance makes its performance appear better than it really is.

The comparison with the absolute position based autopilot reveals that it can perform the one goal task
15 seconds faster than the trained agent. This is expected as the RL agent takes discrete steps towards
the goal. The autopilot, based on absolute position information and the use of waypoints, uses a PID
controller to guide itself smoothly and continuously to the goal.

Random vs ε-greedy exploration (6.1.5): The study found ε-greedy exploration with increasing ε to be better
for the convergence of the learning.

Corridor task (6.1.6): A corridor traversal task is trained with the designed vision-based RL agent. The agent
manages to learn the task with the defined agent in simulation.

RGB and YUV based computer vision (6.1.7): There are effects in the flight test which are not fully analyzed
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Figure 6.11: Learning in flight tests using RGB and YUV color spaces for processing vision.

due time constraints of the project. The limited amount of tests show that the YUV based system has
a higher variance in the steps to reach the goal during learning than the RGB based system. The re-
sults also indicate that the final performance of the YUV based agent is better. However, as only five
repetitions are performed, the data is not statistically significant.

The comparison of the trained agent with the rule based controller (in Chapter 2) and absolute informa-
tion based controllers are answers to RQ4.1 and RQ4.2. A task where the agent has to learn to move forward
and turn past a corridor is performed with the RL agent designed for the two goal task, answering RQ4.3.
The results of experiments about the transfer of knowledge between simulation and real life (RQ4.4) is pre-
sented in Chapter 2. With the answers to these sub-questions, RQ4 “What is the performance of the designed
controller” has been answered.

All the research questions posed in this project have been answered. Chapter 7 sums up the findings from
this project and makes recommendations about future work on the topic.
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7
Conclusion

The design and implementation of a vision-based Reinforcement Learning (RL) controller for the guidance
and navigation of a AR Drone 2 has been described. The developed controller is a contribution to the field of
autonomous flight of Unmanned Aerial Vehicles (UAVs) as it does not use absolute position information and
is capable of learning.

The method proposed in this project uses pixel values for the detection of goals and Q-learning to find
ways to approach the goal. The state of the art for vision-based guidance and navigation in UAVs is Simulta-
neous Localization and Mapping (SLAM). SLAM is computationally expensive and often requires a laser range
finder. The computations in the method developed in this study are fast. However, the developed method is
not a generalized solution like SLAM which has been shown to be applicable for the guidance and navigation
in generic in-door environments(Bachrach et al., 2011; Grzonka et al., 2012). The state used by the RL agent
is designed for the specific task of travelling towards (or between) colored goals on the walls in an obstacle
free room 1.

The goal of this project was to “design a reinforcement learning guidance controller for an AR Drone 2
that uses vision sensed features for state estimation and reward generation”. Five research questions were
posed to organize the project and structure the process of achieving the aforementioned goal. The questions
are regarding the state of the art in vision-based RL for UAVs (RQ1), conceptual design of the state, task and
agent for this study (RQ2), the implementation (RQ3) and testing (RQ4) of the RL agent.

RQ1 has been answered in Chapter 3 through the discussion on recent work in RL, computer vision and
vision-based RL in robots. Following this a preliminary study in the effect of vision-based states are carried
out by simulations in gridworld; the results from the gridworld study are presented in Chapter 4. Concepts
for the vision-based state and the guidance task, along with design of the RL agent are presented in Chapter
5; these descriptions are an answer to RQ2. The implementation of the vision-based RL agent in a simulation
and later in flight tests as described in Chapter 2 answering RQ3. Finally, the performance of the RL agent is
compared to hardcoded controllers and its ability to perform another similar task studied in Chapter 6. The
discussions in Chapter 6 along with the study to see how policies learned in simulation transfer to real life in
Chapter 2 answers RQ4. Through the answers to the research questions, the goal of the design of vision-based
RL guidance controller for an AR Drone 2 has been achieved.

7.1. Findings
A gridworld task is defined which consists of the agent travelling to two goal grids in a 9 by 9 gridworld. The
results from this project are discussed in the following paragraphs. The vision-based agent in the gridworld
simulation does not learn the task better with more training. The ambiguity in the state description for the
gridworld task is too high to allow the learning of an optimal policy. A ε-greedy policy with 50% random
actions is found to be optimal in terms of the steps required by the agent to travel to two goals in the gridworld.
This also means Q-learning is not applicable for the gridworld task with the vision-based agent as fully greedy
action causes divergence in the learning with the vision-based states. Further, interactions between the state
description, the action space and the reward function can lead to situations where non-optimal sequences

1And the room is considered to have no other object with the color of the goals
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of actions result in higher sum of rewards than optimal sequences of actions. Thus, the agent will learn non-
optimal action.

Three vision-based guidance and navigation tasks are defined. The defined tasks consist of travelling to
a red goal in a room (one goal task), travelling to a red goal and a blue goal in a room (two goal task) and
turning past a corridor to travel to a red goal (corridor task). The simulation of the defined guidance task is
carried out by using PaparazziUAV and FlightGear. Q-Learning is used to train the agent as the task and the
state definition allows the learning of an optimal policy. Simulations are carried out to show that the learning
is better with an ε-greedy exploration than with random exploration.

The incorporation of external knowledge improves learning. An option2 is designed to decrease the ambi-
guity in the state and a reward scheme is used which encourages going forward when seeing the goal through
the reward function. Both of these improve the learning. The performance of the trained agent is compared in
simulation to a rule based controller and an autopilot using absolute position information. The trained agent
performs3 as good as the rule based controller for the one goal task and nearly as good as the rule based con-
troller for the two goal task. The absolute position based agent is found to perform the one goal task over
twice as fast as the trained agent; 30 seconds for the RL agent and 15 seconds for the absolute position based
autopilot.

The agent is trained in flight tests to demonstrate the learning in real life. The agent is trained the task of
travelling to one goal for 100 episodes and the training is repeated 5 times. The real life agent learns the task
but performs worse than the simulated agent. The differences between the performance in simulation and
the performance in real life are as a consequence of the following factors:

• the effect of the tether on the quadcopter dynamics
• the noise in the dynamics of the real life quadcopter
• the noise in the vision perception
• discrepancies between the tuning of the simulated and real life vision modules
• the variance in the initialization of the flight tests
• fixed update rate of the vision state perception in real life implementation

When Q-values learned in simulation are tested in fight tests, the real life agent shows a nearly constant offset
in performance with the simulated agent for higher values of ε (i.e. for more greedy actions). There is a delay
in the state perception of the real life agent which is as a result of the fixed update rate of vision-based state in
the AR Drone 2. This delay is believed to be the cause of the offset in performance when transferring Q-values
learned in simulation to real life.

7.2. Impact
There are numerous application for systems which can autonomously learn to guide and navigate themselves
in GPS denied environments. The development of a learning and vision-based guidance system for UAVs will
broaden their domain of operation and consequently increase their demand. This technology will enable the
development of generic Unmanned Aerial Systems (UAS) that can be targeted towards specific markets.

For example, a generic learning and vision-based UAS that is designed for checking the inventory will
be usable in warehouses, supermarkets, workshops etc. Using learning and vision-based systems will remove
the need to setup a local positioning system or programming the UAS autopilot for the environment on an ad-
hoc basis. Furthermore, as one software architecture can be used to learn different tasks, there are potential
savings in terms of software development for the UAV manufacturers. If vision-based learning can be made
generic, it can potentially be marketed to mass consumers who train their UAVs for specific applications. As
the trained agent takes over the task of guiding the UAV, operating them will require thus less man power.

Moreover, the developments of such systems will have effects on society which are hard to predict. New
regulatory bodies will need to be developed to certify the systems and operators of learning based UAVs as the
one presented in this study. Social norms and outlooks will need to adapt to the emergence of mobile robots
that are not strictly defined by their programming, but have the capacity to improve on their designed roles
over time, by themselves. Before the mass marketing of learning based UAS, the manufacturers will have to

2a action that lasts over multiple steps(Sutton et al., 1999)
3The performance metrics are steps to reach the goal for comparison with the rule based autopilot and time to finish the task for com-

parison with the absolute position based autopilot.
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ensure the safety and security of their owners and the societies where they are being marketed. Typical ques-
tions pertaining to the use of artificial intelligent systems in daily life will need to be answered. Questions
such as, who will be held accountable for damages caused by the autonomous operation of these systems
and how to ensure the livelihood of people whose jobs are going to be replaced by such systems, will need to
be answered.

7.3. Limitations
Some of the limitations of this study and the developed controller are discussed in the following paragraphs.
The differences between the real life environment and the simulated environments are not studied in detail.
Further, the hyperparameters of the designed RL agent are not tuned. Therefore, the agent can potentially
learn faster with better tuning of the parameters. The guidance and navigation task is framed such that a
RL agent will be able to learn it with Q-learning. The implemented RL agent is simple and more complex
implementations may outperform the designed agent. The simulation has many differences with real life (see
Section 7.1) which makes the simulations findings less representative of real life and decreases its external
validity.

Additionally, the simulation cannot be time accelerated past a limit due to its high computation costs.
The images are obtained by taking screenshots of FlightGear’s rendering of the environment. The rendering
of images is computationally expensive. If the simulation is accelerated past a certain time factor, the render-
ing cannot keep up with the simulation and the agent gets erroneous state information. As a consequence,
the time acceleration has to be capped at a point4.

The developed system lacks many elements which are desired from autonomous UAS. First and foremost,
the real life training is carried out with a tethered power supply; a UAV loses most of its functionality if it has
to be tethered to a power supply. Secondly, the tasks in this study are simple and not highly representative of
real world situations. Thirdly, the agent is incapable of adapting to new information and lastly, the solution
implemented is specific to the defined tasks.

The performance of the agent is compared to a rule based controller and an absolute position based
controller. In terms of the steps required to perform the task, the trained agent is as good as the rule based
autopilot for the one goal task but worse for the two goal task. In terms of time to perform the task, the trained
agent takes over twice as much time as the absolute position based autopilot for the one goal task. Thus, the
performance of the developed controller is satisfactory.

7.4. Further Work
The work carried out in this project can be continued by:

Improvements to state description Not using colors for goal object detection will relax the requirements on
the environment. All objects of specific colors will not have to be removed from the environment. The
goal object can be simple, such as shapes or bar codes. But the recognition of more complex indoor
objects will allow the design of states which will be usable for performing more realistic tasks.

The ability to recognize stoves, beds, couches and toilets will allow a vision-based quadcopter agent to
distinguish between different rooms in a house. Similarly, being able to interpret numbers will allow
the UAV to learn paths of travel between labeled racks in a warehouse, for instance.

The raw image data can be used as the state if a Deep Q-learning (DQL)(Mnih et al., 2015) framework
is used. However, a MSc. thesis into the applicability of DQL to quadcopter guidance(Kisantal, 2018)
revealed many challenges and complexities of such an approach.

A simple addition to the state description can be a better wall and/or obstacle detection. This will allow
the agent to learn to avoid walls or obstacles while performing guidance and navigation tasks.

Improvements to the action space The work in this project showed that the incorporation of external knowl-
edge into the actions can improve the agent’s performance. The action space can be extended further,
improving the capacity of the agent to act optimally and increasing the range of things that can be done

4During this study the limit was found to be around a time factor of 5; a higher time factor can be obtained with better computational
hardware
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by it. For example, with a continuous action space the agent will have the ability to perform the tasks
faster. The agent can be allowed to make translational movement (i.e. surge and sway).

Training more complex tasks The initial concept of the guidance task (see Section 5.2, RLTask1) was sig-
nificantly simplified in this project in order to enable a real-life implementation. Now that a real-life
implementation has been carried out, studies can be performed with more complex tasks.

Exploration of other RL frameworks This project focused on a simple RL method: table based Q-learning.
One extension to that is using Monte Carlo (MC) methods for learning. The non-Markovness of the state
degrades the performance of the agent. MC learning methods suffer less from the non-Markovness of
the state.

The incorporation of continuous states and actions implies changes to the RL framework. With contin-
uous states and/or actions some variant of the Actor-Critic method will have to be used with function
approximators to represent the values.

The application of model based RL methods are interesting as having a model of the transitions en-
ables some new applications. For example, an agent can be designed that uses a vision-based state
description to locate itself in rooms of a house (like VisSta3 in Section 5.1.2). If the agent learns the
transition model between the different rooms, it can later use a different reward function and dynamic
programming to find paths between different points in the house.

Safe exploration and adaptability are not addressed in this study. The work on safe exploration in
(Mannucci et al., 2018) can be used to incorporate safe exploration into the developed agent.

Lastly, Hierarchical RL can be used with vision-based descriptions of the state to potentially tackle com-
plex guidance and navigational task. The challenge in terms of the time required for learning of tasks
such as RLTask1 can be mitigated by dividing the state and action space into subdomains and applying
Hierarchical RL to learn the task.

Performing the task without position feedback The implemented controller uses position feedback from
the motion sensing system for the control of the quadcopter. The information is used for stabiliza-
tion and for navigation5. The position feedback from the motion sensing system removes the drift in
the heading and position that will be experienced by Attitude and Heading Reference System (AHRS)
without absolute position information. Optic flow can be used for stabilization, but if the environment
does not have many edges and/or visually distinct elements, optic flow methods will not work. Mono-
ocular depth perception techniques with feature detection can potentially be used for closing position
and heading loops. Like optic flow, this will require visually identifiable elements in the environment
along with a relatively complex computer vision implementation.

Implementation in fixed wing UAV Guidance tasks for fixed winged UAVs have been learned in simulation
using vision information(Valasek et al., 2016). Such controllers can be implemented in PaparazziUAV
and flight tested on fixed wing UAVs.

Improvements to the simulation framework The simulation grabs screenshots of FlightGear. This is waste-
ful as the image data can be directly taken from FlightGear, skipping this computation heavy rendering
step. This is not a contribution to the autonomous flight of UAVs, but it can be part of a work which
aims to use vision-based state descriptions and needs a faster simulation environment.

Design of “Battery replacement and recharging station" The AR Drone 2 has a stated flight time of approx-
imately 12 minutes; the learning is found to take nearly 2 hours. The real life training of the RL agent
is only possible as it uses a tethered power supply. As the real quadcopter is incapable for such a pro-
longed flight, this system is inapplicable to nearly all applications where a GPS free navigation and
guidance is required. A design of a “Battery replacement and recharging station" would be a good con-
tribution to the real life autonomy of quadcopters.

Identification of the visual noise in the Cyber Zoo The Cyber Zoo is used for numerous vision-based tests
of UAVs. Most of these tests are influenced the effect of noise in the vision data which results from
the Cyber Zoo itself, objects around it and the time of day. Studies can be carried out to quantify the
noise so that its effect on vision-based experiments can be better understood and ways of mitigating
the noise suggested.

5The RL agent only uses the vision information to make its decisions.
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This chapter ends the report documenting the work carried out for the development of a vision-based RL
guidance controller for an AR Drone 2.
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A
Gridworld Implementation Details

The gridworld simulations are implemented in Python 2.7.6. Four external libraries are used in the imple-
mentation. The Pandas library is used to record the Q-tables and the Numpy library is used for computations.
Matplotlib and Seaborn are used for visualization. The built-in libraries copy, itertools, sys and pickle are used
to incorporate other functionalities into the simulation tool. A tool to visualize the episodes is created using
the library pygame. This "episode visualizer" is used to debug the code and observe agent behavior.

An object oriented approach is used in the implementation of the simulation. Two major classes are used
to create the simulation; the environment class and the exp_template class. The environment class contains
the gridworld of the environment and methods to transition the agent. It contains an array that represents
the locations of the agent and the objects in the environment.

The rest of the simulation is in the exp_template class. It controls both the agent and the experiment (i.e.,
the learning, recording of data, visualization of data). The exp_template contains a reward object which han-
dles the rewards during learning. It may also contain a vision object which is responsible for the simulated
vision of the agent; an instance of this object is only created when a vision-based state is used. The vision
class consists of numerous grid objects based on how the exact vision state is defined.

Note that since the program is in development, the code is disorganized and volatile. For any questions
or queries, do not hesitate to get in touch with the author.
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B
PaparazziUAV Simulation Implementation

The simulation is implemented using PaparazziUAV and FlightGear. The reasons for using PaparazziUAV
are its built-in flight simulator, its ability to interface with FlightGear and the fact that it is used to compile
the autopilot software for tests on the R Drone 2. Likewise, FlightGear is used since it can be used to send
screenshots of the 3D world simulated to PaparazziUAV. The developed program has been tested in FlightGear
version 2017.2.1 and PaparazziUAV version 5.13.

B.1. PaparazziUAV
PaparazziUAV is an "open-source drone hardware and software project" 1. A module named "my_visrl" is cre-
ated which is used for both the simulation and the real life agent. A core set of RL functions are implemented
in the visrl.c file Vision modules are implemented separately for the simulation and the real life autopilot in
the files vis_nps and vis_ap respectively. The module consists of six files, namely: visrl, simsoft, mynavfuncs
mydict, vis_ap and vis_nps.

visrl: All of the RL elements are implemented in this file; the state, actions, and Q-value updates are the
agent functionalities that are implemented. Besides the agent, there are functions which parses the vision
data into states and numerous other helper functions. The functions which implement the RL have been
tabulated in Table B.1.

Table B.1: Table of functions in visrl.c

Name Description
pick_action picks action based on an ε-greedy policy

get_state_ext Runs the computer vision function from manan_test and uses it to format
the state for the RL agent. Also implements the logic for remembering which
goals have been visited.

rl_init_ep Initializes an episode for starting the RL. Resets numerous counters and
booleans and calls the rl_set_nxt function.

rl_set_cur Sets the "cur_sta" and "cur_act" to the values of "nxt_sta" and "nxt_act".
rl_get_reward Uses the vision information and wall hit information to come up with a re-

ward for the current state-action pair.
rl_set_nxt Sets the "nxt_sta" and "nxt_act" variables. The "nxt_sta" is set by a call to

get_state_ext and the "nxt_act" is set by a call to pick_action
rl_take_cur_action Looks at the "cur_act" variable to decide if to go forward, turn left or turn

right. In case an action causes a hit with the wall it sets the value of the
"hitwall" variable to 1, otherwise it is set to 0.

rl_update_qdict Looks up the value of the current and next state-action pairs in the Q-table
and makes a SARSA update based on the reward and the values.

rl_check_terminal Checks if the terminal condition for the episode are met; at this stage checks
if both goals are visited which is indicated by one of the numbers in the state.

1http://wiki.paparazziuav.org/wiki/Main_Page
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simsoft: Functions for setting up the simulation environment, logging the data and carrying out multiple
runs of the training are implemented in this file.

mynavfuncs: There are 6 navigation functions in the "mynavfuncs.c" file. The functions have been tabu-
lated in Table B.2.

Table B.2: Table of navigation functions in mynavfuncs.c

Name Description
set_nav_heading Sets the heading to the provided input in radians.

increase_nav_heading Increases the heading by the input value in radians.
moveWaypointForwards Moves the given waypoint forward by the given distance.
moveWaypointLeftwards Moves the given waypoint left by the given distance.

setHeadingNorth Smoothly sets the heading to north. Due to internal limitations of
PaparazziUAV it cannot handle big heading changes; this limitation
led to this function.

setAltToWp Sets the altitude of one waypoint to that of anothers.

mydict: This file implements a linked list data structure and the corresponding functions required to add,
remove and search through the list. This is required to hold the Q-table for the RL task. Functions required to
print the Q-table to text file and read it from a text file are also implemented in this file.

vis_nps: The required functions to obtain screenshots from FlightGear and process them to generate out-
puts required for the vision state are implemented in this file. These functions are described in Table B.3.

Table B.3: Functions in vis_nps.c file

Name Description
WriteMemoryCallback Helper function for curl2mem. Handles the writing of the data from

the source HTTP into the memory. Needs to follow format provided
by libcurl.

curl2mem Uses libcurl functions to load the screenshot from the FlightGear
HTTP server into the programs memory.

get_bmp Decompresses the jpeg image obtained from curl2mem into a bitmap
containing the pixel data.

get_pointertopix Helper function that returns the pointer to a pixel given its row and
column. Assumes that each pixel contains 3 bytes of information.

colmax Takes the 3 by 3 array of the RBG counts of each grid as input and
writes a 3 element array which represents the color with the maxi-
mum number of pixels above threshold for each grid.

count_pixels_in_three_grids Counts the RBG pixels above internally defined thresholds for each of
the 3 grids. It also calculates the sum of RGB pixels above the thresh-
old in the whole image and the color of the most number of pixels
above threshold for each of the grid. This information is made avail-
able through the arrays count_arr, sumcount_arr and domcol_arr.

cv_3grids This function implements the whole computer vision function by
downloading an image to memory using curl2mem, than decom-
pressing it using get_bmp and finally estimating the pixels above
threshold in 3 grids using count_pixels_in_three_grids
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vis_ap: The required functions to process the vision information from the UAV cameras are defined in this
file. This is needed for the real life implementation of the computer vision. The functions in the file are
described in Table B.4.

Table B.4: Function in the vis_ap.c file

Name Description
colmax Same as colmax in Table B.3.

my_image_yuv422_colorcounter Same as count_pixels_in_three_grids in Table B.3 with the exception
that HSV is used for pixel detection instead of RGB.

visrl_cv_func This function packages the my_image_yuv422_colorcounter function
so it can be added to the computer vision thread of PaparaazziUAV.

vis_ap_init This function is called when visrl module is initialized and it adds
visrl_cv_func to the computer vision thread of the autopilot.

cv_3grids This is dummy function that does not do anything; it is included in
the vis_ap to remove errors that were showing up with the compila-
tion.

Flight plan All the elements of the RL agent that are defined in the module are implemented through the
flight plan. A visual overview of the elements and logic of the flight plan is presented in Figure B.1.

B.2. FlightGear
FlightGear can take the state data from PaparazziUAV in order to render of the UAV’s environment. A model
of the CyberZoo is placed at a specific longitude and latitude inside FlightGear’s database of 3d objects2. The
origin of the flight plan in PaparazziUAV is made to coincide with the longitude and latitude of where the
room was placed in FlightGear.

B.3. Running the Simulation
FlightGear and the PaparazziUAV simulator need to be run with specific arguments for the simulation to
work. It is better to manually start the PaparazziUAV simulator from a console3 as that allows the user to
increase the simulation upto a certain limit. Due to certain limitations of the implementation the FlightGear
needs to be started first; after that the flight simulator from PaparazziUAV should be started. The commands
for starting them are included below.
Command to start FlightGear:

fgfs --fdm=null --native-gui=socket,in,30,,5501,udp --aircraft=ufo
--httpd=1234 --config=$HOME/.fgfs/Export/ufo-model-export.xml --com2=121.9
--timeofday=morning --enable-clock-freeze --geometry=800x600
--prop:/sim/menubar/visibility=false

Command to start PaparazziUAV simulator:

$PAPARAZZI_HOME/sw/simulator/pprzsim-launch -a ardrone2 -t nps --fg_host 127.0.0.1

After both the simulators have started, one can use run the ground control station and the PaparazziUAV
server and datalink from the PaparazziUAV application (i.e. the Paparazzi Center 4).

2Object is placed by following the guidelines in a FlighGear Wiki page: http://wiki.flightgear.org/Howto:Place_3D_objects
_with_the_UFO

3Documentation about how to start the simulator from the console can be found at “Running the Simulation" section of the website
https://wiki.paparazziuav.org/wiki/NPS

4https://wiki.paparazziuav.org/wiki/Paparazzi_Center

http://wiki.flightgear.org/Howto:Place_3D_objects_with_the_UFO
http://wiki.flightgear.org/Howto:Place_3D_objects_with_the_UFO
https://wiki.paparazziuav.org/wiki/NPS
https://wiki.paparazziuav.org/wiki/Paparazzi_Center
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Figure B.1: The general flight plan for the RL agent
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