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Abstract Optimizing the performance of multimodal freight transport networks

involves adequately balancing the interplay between costs, volumes, times of

departure and arrival, and times of travel. In order to study this interplay, we

propose an assignment model that is able to efficiently determine flows and costs in

a multimodal network. The model is based on a so-called user equilibrium principle,

which is at the basis of Dynamic Traffic Assignment problems. This principle takes

into account transport demands to be shipped using vehicles that transport single

freight units (such as trucks) or multiple freight units (such as trains and barges,

where demand should be bundled to reach efficient operations). Given a particular

demand, the proposed model provides an assignment of the demand over the

available modes of transport. The outcome of the model, i.e., the equilibrium point,

minimizes users’ generalized costs, expressed as a function of mode, travel time and

related congestion, and waiting time for bundling sufficient demand in order to fill a

vehicle. The model deals with these issues across a doubly-dynamic time scale and

in an integrated manner. One dynamic involves a learning dynamic converging

towards an equilibrium (day-to-day) situation, reflecting the reaction of the players

towards the action of the others. Another dynamic considers the possible departure

time that results in minimum expected costs, also due to the fact that players

mutually influence each other on the choice of departure times, due to congestion

effects and costs for early/late arrival of freight units. This is a choice within a given

time horizon such as a day or a week. We present a study on the influence and
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sensitivity of different model parameters, in order to analyse the implications on

strategic decisions, fostering a target modal share for freight transportation. We also

study under which conditions the different modes can be substitutes for each other.

Keywords Multimodal transportation planning � Equilibrium model � Dynamic

Traffic Assignment � Bottleneck model � Day-to-day dynamics

1 Introduction

Freight transport is an important building block of a supply chain, and a key process

for reducing costs and environmental emissions for logistic systems. This relates

mostly to the choice of mode to be used (continuous transport system, truck, train,

vessel, plane, …) and its speed and reliability. Different modes have different issues

related to the possibility to reach a final destination at a preferred time. Due to the

raising importance of just-in-time production and delivery, a reliable and timely

delivery is of crucial importance.

The freedom offered by transporting freight over road by truck is an extremely

valued asset for logistics networks. However, excessive truck usage, on traffic

networks that are already heavily used by passenger traffic, causes the emergence

and propagation of congestion, which decreases the attractiveness of transport over

roads. Other disadvantages relate to the environmental emissions, and economies of

scale, especially if Less-than-Full-Load shipments are considered. For the latter,

sharing and consolidation concepts have been often presented to companies as an

effective way for solving energy and emission problems, and improve economic

efficiency. From a general perspective such approaches also result in an effective

way to reduce the number of vehicles on the road, contributing to relieving of

networks from congestion, and in turn saving fuel and reducing pollution. For this

reason, policies are steadily discouraging truck distribution in favour of railway and

waterway distribution, which are seen as more environmentally sustainable

(European Commission 2001).

Beyond political and social reasons, the modal split in freight transport (i.e., the

division of freight over different modes of transport) is a result of economic factors.

It is therefore necessary to internalize the factors related to policy measures within

the decision-making process of transport companies in order to achieve desired

sustainable behaviour. Hence, in this study we develop a model that is able to study

multimodal networks and determine factors leading to the given modal share, which

might, for instance, identify policies that favour rail and barges to trucks. To this

end, we address the problem of assigning freight flows to multimodal freight

transport networks. This involves adequately balancing the interplay between costs,

volumes, times of departure and arrival, and times of travel between different modes

that have rather different characteristics. In order to study this interplay, we propose

a so-called equilibrium model that is able to efficiently determine flows and costs in

a multimodal network. Equilibrium models are widely used in car traffic analysis to

study the outcome of a variety of choices (departure times, modes, routes) and the

resulting costs for a set of travellers. The basic assumption that such models rely on
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is the assumption that every traveller will try to minimize a generalized cost

function, and choose the option that is best for him/her, given that the other

travellers will keep their own decision (Wardrop 1952). Equilibrium models can

model and forecast the choices of travellers and resulting performance of a transport

system in scenarios in which multiple factors and planning and management

measures interact, making the response of the system not easily predictable.

In this paper we adopt this classical transportation modelling paradigm in the

context of mode choice in freight transport. The innovative feature of the approach

is the consideration of multiple scales of time dynamics. One time scale involves a

learning dynamic over a long number of rounds (days); the other time scale involves

a departure time choice within a given time horizon (within-day). The combination

of these scales results in what can be called a within-day dynamic intertwined with a

day-to-day equilibrium in Dynamic Traffic Assignment terms (Tampère et al. 2010).

We are therefore able to consider an equilibrium process that goes beyond

traditional static equilibrium approaches and that moreover includes variations over

time, i.e. different modes can have different attractiveness at different times

compared to a preferred arrival time at destination. In the case of freight transport,

this attractiveness may also depend on the loading rate of each mode in a certain

time interval. This is a decisive step forward compared to static freight models (such

as those mentioned in Friesz et al. 1986; Guelat et al. 1990; Cantarella 1997) and

has paramount importance in demand-responsive logistic services, which strongly

vary their costs in time, and are characterized by different time-dependent

parameters and constraints. One typical constraint is congestion: the travel time of

all travellers depends on the decision of all travellers. We also include the relevant

issue that some modes characterized by vehicles with large capacity of freight units,

such as barges or trains, are aggregating demand, therefore exploiting economy of

scale principles. This translates further in the need to fill the vehicle, resulting in a

further dynamic over time.

Thus, the contributions of this paper are the following:

1. We define an equilibrium model (in Wardrop terms) able to deal with multiple

time scales, namely a day-to-day dynamic (i.e., the convergence towards an

equilibrium assignment) and within-day dynamics, i.e. the choice of departure

time so to minimize generalized costs;

2. We target multimodal transportation and consider discrete freight units such as

containers as means to utilize and/or share transportation services from a point

of origin to a specified destination;

3. For modes that carry multiple freight units, a collaborative decision process is

considered, i.e. a sufficient demand has to be bundled before a vehicle is

actually travelling. Vehicles are supposed to leave with Full Load. For modes

carrying a single freight unit, a vehicle can depart at any time;

4. For all modes different expressions of congestion are taken into account,

relating to simple cost-flow functions [e.g., the well-known BPR-function

(Bureau of Public Roads 1964) for road links] or a queuing model with a fixed

amount of slots (for railway and barge links);
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5. We evaluate the approach over a small theoretical network with multiple

modes, analysing sensitivity of the results to various parameters and incentives

that policy makers may consider.

The remainder of the paper is organized as follows. We review the literature in

freight planning, assignment, equilibrium models and multi-scale dynamics

approaches in Sect. 2. Section 3 presents a detailed and formal description of the

investigated problem, and the assumptions made. Section 4 proposes a methodology

and a mathematical model describing the equilibrium situation. Section 5 proposes

an algorithm to find the solution of the equilibrium problem when multi-scale

dynamics and multiple modes are considered. The proposed approach is evaluated

using experiments for a theoretical network in Sect. 6, and discussed in its

applicability in Sect. 7. Finally, Sect. 8 concludes the paper and provides directions

for future research.

2 Literature review

Here we briefly review the main issues in freight transport. For a general overview

of optimization approaches in freight transport routing and planning, we refer to the

recent survey in SteadieSeifi et al. (2014). There, the transport problem is divided

into multiple stages, of which the tactical planning relates to the choice of links,

modes, and assignment of freight volumes over links in terms of itinerary and

frequency. The vast majority of the solution approaches reported does not include

stochastic or dynamic aspects at this stage. Those dynamic aspects, or real-time

requirements, are normally taken into account only for operational control. This last

problem is generally addressed by very complex online scheduling and vehicle

routing problems (see e.g., Bock 2010).

2.1 Freight assignment

The problem of assigning freight flows to single-mode and multi-mode networks has

been studied, see for instance the works of Friesz et al. (1986), Guelat et al. (1990)

and Cantarella (1997). Those problems are all solved within a static setting, i.e., the

adopted cost-flow functions are time-independent and no departure–arrival time

choice is considered. This assumption limits the possibility to evaluate the

performance of the system especially in problems including scheduled processes

with arrival time windows.

In reality, the application of assignment solutions to freight networks is also

common in the context of seaways for freight. The amount of traffic planned by

liner shipping companies has been modelled with equilibrium models by Bell et al.

(2011). A general overview of the applicability of optimization and assignment

methods for container liner shipping is presented further in the recent review by

Khoi Tran and Haasis (2013). More recently, Bell et al. (2013) looked at the

minimization of expected costs in assignment models for maritime networks.

Assuming that routes and service frequencies are given, operating costs are fixed.
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The optimization then results in assigning routes to containers so that handling

costs, container rental and inventory costs are minimized. Infrastructure capacity in

port as well as in routes are included using linear constraints.

The extension to consider multiple modes and multiple geographical scales is

addressed among others by Newton (2008). This increase in complexity is justified

by the fact that multimodal transport is typically associated with longer distances

and international flows. A freight demand model WORLDNET is proposed that

describes a long distance, multimodal origin–destination matrix, and a network

model that covers Europe, its neighbours, as well as intercontinental routes, both

maritime and air cargo. A distribution model is applied to subdivide the trade flows.

A multimodal assignment procedure based on a mix of stochastic multi-class user

equilibrium for road, stochastic assignment for railways and so-called all-or-nothing

(which assigns flows to the cheapest combination of links) for maritime services is

then used to assign the flows to the transport modes.

The applicability for freight flows of assignment models originally developed for

passenger traffic is discussed by Jourquin and Limbourg (2006). They report on

different assignment techniques, namely the all-or-nothing, and more sophisticated

static assignment approaches, which consider also congestion or infrastructure

capacity constraints. Those latter approaches refer to the limited capacity of links,

typically captured by adding time penalties when the volumes of traffic on links

surpass certain levels (corresponding to a saturation flow). At the operational level,

an all-or-nothing approach is typically used to assign container flows in the

intermodal freight transport planning. This approach assigns the entire volume of

the transport demand to the route with the minimum value of the user-supplied

objective function, and normally refers to unlimited capacity of links. Consideration

of infrastructure capacity can be inserted by an incremental heuristic approach that

increases the flow along the intermodal route with the minimum costs until

infrastructure capacity will be reached. Next, the next best candidate intermodal

route can be considered, until the transport demand is completely served, in a

typical multi-commodity flow perspective. Such a solution can easily be represented

as a greedy algorithm that assigns flows incrementally, but it can deal in a very

limited manner with variable costs and traffic conditions, leading in general to

higher costs when put into practice. This issue can be solved by multimodal traffic

assignment methods, which consider different modes as virtual links generalizing a

connection between two points. Jourquin and Limbourg (2006) finally conclude that

the traditional four-steps model (i.e., forecasting based on trip generation, trip

distribution, mode choice and route assignment) used in traditional planning studies,

the all-or-nothing assignment, and the simple equilibrium assignment are still

unable to give adequate solutions; more sophisticated approaches must be explored.

In this paper, we explicitly address this issue, by providing approaches in which

costs and attractiveness of links are explicitly dynamic, and vary over time as a

consequence of choices of other users, and own choices. We moreover go beyond

the all-or-nothing assignment by considering a multi-path assignment, and a

description of link capacities completely in line with their study.

A similar discussion of innovative traffic assignment is proposed in the recent

work of Maia and do Couto (2013). The authors take into account infrastructure
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capacity constraint, and variable perception of costs between users. In typical traffic

assignment only complex stochastic assignment models could deal with both

requirements at the same time. To solve this issue, the authors use a step-wise

loading algorithm, that considers freight in multiple categories. One at a time, a

category is routed and loaded on the network in an incremental way, considering the

congestion effects resulting from the categories already routed and loaded. This

corresponds quite naturally to a situation in which some players have a stronger role

than others (for instance, leaders versus followers, long-distance transport versus

local, or old versus new to the market). The authors of this last work join many

others in stating that passenger car traffic assignment has been receiving much

attention lately and that its applicability to freight transport by assigning flows to

virtual networks and virtual links has started only more recently, see the works by

Harker (1987), Jourquin and Beuthe (1996) and Tavasszy (1996).

In passenger transport, and more specifically in vehicular traffic systems, traffic

assignment is usually formulated as a set of criteria through which the demand for

mobility is distributed over the links of a transport network. In this application

domain, the impact of time-dependent costs and flows is an essential element to

study, for example to include re-routing and/or re-scheduling strategies to avoid

congestion. The class of Dynamic Traffic Assignment (DTA) models deals

explicitly with such time-dependent dynamics, and overall to describe temporal

distributions of demand and supply. Traffic dynamics are in DTA explicitly

regarded by modelling opportunely the propagation of flows along the links in the

network and their interaction at nodes. Decision making dynamics about departure

time, modes are considered through various response functions based on

behavioural and economic principles. Tampère et al. (2010) report that the

complexity of DTA predominantly lies in finding a convenient trade-off between

mathematical rigorousness and realistic traffic and behavioural models.

The advantage of adopting DTA in this study is its property of dealing with the

time- and flow-dependency of the costs, i.e., delays due to queuing phenomena are

considered explicitly in the propagation of the flow, hence allowing to calculate

expected arrival times at the destination, and in turn to identify optimal departure

times, consistent with the scheduled arrival time windows. In the following we

focus on the DTA literature concerning collaborative modes, as the whole literature

on this domain is vast. For an overview one can refer to, e.g., Peeta and

Ziliaskopoulos (2001) or Viti and Tampère (2010).

2.2 Dynamic assignment for collaborative modes

Vehicular traffic assignment normally assumes individual non-cooperative drivers

and decision makers. Collaborative modes instead refer to the need of coordinating

multiple players before a trip is actually done. The advantage of collaborative

modes (i.e., sharing a vehicle with multiple travellers) is the possibility to increase

occupancy rates of vehicles and to reduce the total number of vehicles for the same

distances travelled. The resulting system is very attractive in terms of reduced

congestion, increased vehicle occupancy and therefore more environmentally

friendly.
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The model developed and analysed in this paper has strong analogies with the

field of dynamic ride-sharing, in which an agreement and a synchronization between

multiple travellers is required in order to start a trip. Dynamic Ride Sharing (DRS)

is the process by which some passengers do not take a car to reach their destination

but instead rely on taking a lift from some casual travellers that happen to take a car

and have available space for the same link. Despite the obvious potential economic

gains offered by this solution, and the adoption of many policies and incentives in

the past to foster its use, very few systems have been put into practice; such systems

are still far from reaching the modal share sought. This issue is reviewed in detail in

recent works such as Agatz et al. (2012) and Furuhata et al. (2013).

Equilibrium of ridesharing networks have been studied in the context of

deterministic and stochastic user equilibria (Huang et al. 2000), or using a

traditional bottleneck model (Qian and Zhang 2011). A factor still overlooked is the

departure time choice as function of the so-called matching rate, which has a direct

impact on the travel time experienced by people and thus their decisions. This has a

direct link in the freight transport world with the need to bundle demand before a

vehicle with large capacity can depart.

An active and complex field of research is moreover targeting intelligent

algorithms that can match travellers that will share a ride, based on their desires and

characteristics. Those matching problems are similar in practice to operational

planning problems for freight as categorized by SteadieSeifi et al. (2014). The

development of optimization algorithms capable of handling the complexity of

matching rides is studied in Ghoseiri et al. (2011). On the other hand, the impact on

travellers’ behaviour and on transport system costs is relatively unexplored; this is,

however, a critical issue when introducing such models for freight transport

assignment.

In recent research, we have developed a basic link assignment model to describe

ridesharing for traffic (Viti et al. 2012). We have also investigated equilibria,

considering the time-dependent nature of scheduling the ride matches. We have

shown in Viti and Corman (2013) that a region in the space of (travel time costs,

distance-related costs, and fixed costs) exists where shared-mode services can

compete with private vehicles, if the parameters determining mode choices are

opportunely chosen. In addition to this, the exploratory work of Viti and Corman

(2014) shows that by extending this single-dynamic model to account for within-day

dynamics, an emerging behaviour under congested conditions can be found: users

tend to increase their preference for participating in ridesharing services at the

expense of shifting their departure times to earlier time periods with respect to

drivers using a vehicle without sharing it.

2.3 Discussion

In this paper we make a step forward by bridging the gap between such an advanced

traffic assignment and the world of freight transport assignment. In fact, the need for

more sophisticated assignment methods has been put forward as an issue by many

researchers in the academic community (see Jourquin and Limbourg 2006). The

model proposed in this paper can be seen as an extension of Vickrey’s departure
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time choice model (Vickrey 1969), which includes the scheduling of modes with

bundling effects, and congestion in different modes.

We base our analysis on a user equilibrium principle, and take into account

vehicles that both transport single freight units (such as trucks) as well as multiple

freight units (such as trains and barges, where demand should be bundled together to

reach efficient operations). We refer to a time-responsive freight network, where the

time of arrival influences operational costs. The time of arrival is further a function

of the time of departure (a direct decision by the players), and the travel time (an

emerging value consequence of the choice of all other players, for what concerns

congestion, availability of vehicles, service frequency, etc.). This structure is based

on a distinct and precise representation of multiple time-scales, in contrast with the

simplicity of freight assignment models in the literature.

In the remainder of this paper, we refer to modes that require bundling of demand

as collaborative modes, in the sense that multiple transport demand units (equivalent

to users in our case) need to collaborate and find a match to have the transport

vehicle full and operated. This can reflect a variety of situations that include

companies that have their own distribution vehicles, and would like to achieve

economies of scale by offering the empty spots; as well as companies that do only

forwarding and distribution tasks, such as third party logistics companies. Thus the

approach is generic in the sense that multiple dynamic characteristics of supply

chain systems, such as collaboration and pooling, can be modelled via these

mechanisms.

We assume that cooperation between players may result in better choices for the

users and the system, but we consider only the former as being the driving force of

the change. In fact, we do not consider the fully-cooperative setting that is often

assumed by mathematical optimization approaches aiming at improving at once all

links of the supply chain. Instead, all players compete on the available transport

supply to reach the minimum transport cost. All those aspects make it an innovative

approach with regards to the freight assignment perspective, as well as in the

general traffic assignment world. This work is an exploratory study that aims at

determining the possibility and applicability of such an approach to freight transport

networks.

3 Problem statement

Given a multimodal transport network with a set of modes M, and given a demand

of discrete units of freights to be transported from an origin to a destination, the

problem we study consists of assigning the demand to the modes in order to

minimize total generalised costs.

We identify the freight units with the users to ease the comparison with user

equilibrium principles. We also consider all users as independent, and all of them

having a single transport unit. Those conditions may be relaxed in future research.

We assume in this study that the demand for trips is constant and that all the users

will make their trip, no matter how high the cost is. This assumption can be changed

by altering the model, for example by changing the demand from constant to elastic.
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Costs are in general a function of the time at which the destination node is reached

(i.e., delays are penalized, and early arrivals with respect to preferred arrival time

are also slightly penalized); the distance related costs that depend on the travel time,

mode, and amount of transport units carried, plus extra factors that may incentivize

a particular mode.

We use Fig. 1 to introduce the problem. Three modes are possible: barges, with a

specified large vehicle capacity in terms of transport units; rail, with a large vehicle

capacity, but smaller than barges; and trucks. The latter mode has a vehicle capacity

of a single transport unit. The three modes use different independent links.

A role has to be defined for modes using vehicles with a higher vehicle capacity

than a single discrete unit. In fact, a train or a barge can be hired to transport a large

amount of demand available, or an existing demand can be added in order to fill up

an existing train and save costs. This requires the definition of a role, within the

freight transport system. We refer to an active role if the demand is actively

associated with the generation and management of the vehicle: the traveller takes

initiative and would be able to travel by himself/herself if required. This for instance

relates to organizing the departure of a vehicle, such as a train or a barge, and being

the first one to load it. The vehicle, though, might still need more transport units to

be actually profitable. A passive role is instead the one of somebody who ‘‘jumps

on’’ an existing vehicle, this latter organized and started by some ‘‘active’’ role.

From a real-life point of view, one can think of active roles as forwarders or shipper

companies or third party logistics companies, while passive roles are customers of

such companies. By distinguishing between active roles (associated to the amount of

vehicles in the system) and passive roles (corresponding to transport demand, but

not to vehicles), the model is able to seamlessly consider the amount of vehicles as a

decision variable. This is the inherent result of the decision of the players, rather

than a fixed a priori decision.

An assignment is the tuple of (mode; a role; and a departure time) for all users/

freight transport units in the system. The assignment is composed of and completely

determined by the choices of users. Typical, each user tries to find the decision (i.e.,

his/her own assignment) that minimizes his/her own cost, given the decision of the

others (i.e., their assignment). The equilibrium assignment is the special assignment

that corresponds to the situation in which no user has incentive to change any

Fig. 1 Basic setting
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component of the assignment, i.e., to use another mode, to use another role, or

depart at a different time, as any of those choices will increase his/her own costs.

Despite the simplicity of this system, modelling its performance and functionality

in order to study the impact of different policies and decisions is not trivial. In fact,

the interplay of different modes and congestion effects make the economic and

time-related performance strongly depending on the number of participants/users,

and their mode choice. The outcome depends on a variety of factors relating to

attitudes (value of time, value of flexibility, etc.), on the costs associated to the trip

(duration of the trip, extra costs incurred in waiting for filling up the vehicle) and on

the interaction between users, mainly the rules adopted to share the travel costs.

Two main issues are considered only partially in our approach, namely the

matching problem (i.e., how to best match trips and demands in time and space,

what level of similarity for the routes is acceptable, etc.), and behavioural or

organizational challenges related to the perception and desires of the users.

The matching problem (in many variants possible) has been mostly analysed

from an operational research perspective. For instance Furuhata et al. (2013) review

the matching problem for ridesharing, i.e., matching between a driver and a

passenger. Cross-dock operations (Van Belle et al. 2012) are also often modelled as

a synchronization or matching problem. Khoi Tran and Haasis (2013) review liner

network design that involves matching between (time-dynamic) demand and a

timetable of services. Despite a study on how mathematical optimization can be

used within an assignment problem is a challenging research direction, it does not fit

into the scope of the current paper and is left for future research.

Behavioural and organizational aspects refer to the conditions under which users

choose to join an existing travel service, or rely on his/her own. This can be an issue

in fostering an uptake of multimodal and intermodal transport links in the freight

and logistics worlds (Kreutzberger and Konings 2013). More and more ICT

platforms are being set up, facilitating the ease of exchange of information

regarding transport demands, and transport supply available. (Port) community

systems create possibilities for transport service providers to take into account more

up-to-date information regarding current delays and traffic conditions in procedures

for planning numbers of transport vehicles required and amounts of crew to be made

available. Although technically such platforms seem very promising, effective use

of such platforms is only made if sufficiently many transport parties are willing to

exchange information. Trust, confidentiality of information, and fairness in costs/

benefits sharing are hereby an issue. These aspects will for the model proposed here

be analysed in future research.

We assume that all users in the transportation system have access to a system for

publishing demand and offers for capacity, i.e. similar to service centres of

infrastructure managers that collect path requests and publish possible opportunities

for transportation users. Moreover, everybody has access to truck transportation

(own or hired) and can resort to that in any case. This represents the fact that each

user, if not able to find a suitable transport supply by train or barge, can always use a

truck to have the shipping done. As all demand will always be transported, we are

studying an inelastic demand problem, and hence focus mainly on the mode choice

analysis. We thus assume that the match can be established on short-notice (a few
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minutes to a few hours from departure). The system that matches up available

vehicle capacity on barges and trains and request for vehicle capacity for barges and

trains operates on the basis of a First-In-First-Out queue. Regarding the mode choice

model, we assume that choices are made such that each traveller chooses the

alternative that maximizes his/her utility. Further issues include what each user

might find attractive other than pure economic costs, in order to describe a

generalized cost function. This includes the value of time, the accepted cost for

detour and rescheduling, how the participation to services bundling the demand over

larger vehicles and higher economies of scale can be incentivized.

At this stage, we do not consider additional costs not directly related to a single

mode choice, such as, for instance, the ownership of a vehicle. This might come

from either the fact that ownership is not a problem, i.e., companies might have

directly available a fleet of vehicles ready to be used, or that such a fleet can be

arranged within a short time, for instance by contacting dedicated shipping

companies that can arrange in short term a particular service. This is a growing trend

that has been seen in the aggregation of companies into intermodal and multimodal

Table 1 Reference parameters and used values

Name Description Mode Unit Default value

Ltruck Length of the link per mode Truck km 120

Lbarge Length of the link per mode Barge km 120

Ltrain Length of the link per mode Train km 120

FFTTtruck Free flow travel time per mode Truck Hour 2

FFTTbarge Free flow travel time per mode Barge Hour 3

FFTTtrain Free flow travel time per mode Train Hour 1.5

TD Total transport demand All Unit 10,000

Ptruck Price per kilometre per mode Truck Eur/km 0.3

Pbarge Price per kilometre per mode Barge Eur/km 0.2

Ptrain Price per kilometre per mode Train Eur/km 0.25

Captruck Vehicle capacity per mode Truck Unit/vehicle 1

Capbarge Vehicle capacity per mode Barge Unit/vehicle 160

Captrain Vehicle capacity per mode Train Unit/vehicle 80

a; bð Þ BPR congestion parameters truck Truck None (0.15; 4)

Struck Saturation flow parameters truck Truck Unit/h 250

Sbarge Saturation flow parameters barge Barge Vehicle/h ([40)

Strain Saturation flow parameters train Train Vehicle/h 6

qbarge Share of cost barge Barge None 1

qtrain Share of costs train Train None 1

VoT Value of time All Eur/h 4

a Early arrival cost All Eur/h 0.8

b Late arrival cost All Eur/h 2

c Waiting time cost All Eur/h 0.8
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transport service providers (Fazi 2014). Including the costs of ownership would be a

further addition to the two time dynamics already considered, namely whether a

company should buy or not a vehicle, and introduce further complexity in the mode

choice. Finally, some additional objectives are hard to be translated precisely to

cost, such as sustainability or flexibility of the transport link. Shinghal and Fowkes

(2002) gives an overview and empirical determination of those factors.

4 Model

4.1 Basic notation

We can now introduce the model. We first define the following parameters and

variables that are used in the model. The parameters used are the following Table 1.

A transport demand TD is given, assumed to be divided into a series of generic,

interchangeable units, as is common in container transport. This transport demand is

related to a single origin and a single destination. It is also assumed that no elasticity

effect is present, i.e., all transport demand needs to be moved to the destination.

Distance to be covered by each different mode will be a certain L, dependent on the

mode in general. All transport demand has the same origin and destination. The

transport demand is homogeneous also from the point of view of the time, as all

demand shares the same time horizon of minimum possible departure time and

maximum departure time, and preferred arrival time. Extending this approach to a

heterogeneous transport demand is an interesting subject for future research. We

consider a single link per mode, i.e., the final network will consider a link per mode

per OD, which makes it three links in total. Each link can be seen as the aggregation

of multiple successive links that are homogeneous for a particular mode. We discuss

the applicability towards networks with more than one link per mode, or multiple

origin–destination pairs in Sect. 7.

Every mode over its associated link has a given free-flow travel time FFTT, i.e.,

the minimum travel time possible, regardless of congestion effects; and a travel

related price, P, which depends on the distance and the mode. Some factors

influencing the travel price such as energy efficiency, technology used, etc., fall

outside the scope of this paper and are not considered explicitly here. Moreover,

every mode is characterized by a vehicle capacity Cap, which refers to how many

transport demand units can be transported in each vehicle. The congestion is

depending on a variety of factors that are expressed functionally in the next section,

and relate to a main saturation flow per mode, i.e., the maximum amount of vehicles

that can be travelling per time unit, plus additional parameters if required (in this

case the parameters a and b for the truck link). As for the barge, the actual

infrastructure capacity for barge is very high, and its saturation flow is very hard to

be reached. In particular, in the experiments proposed later, we find that the

maximum flow of barges seen is equal to 40 vehicles/h and the final flow at

equilibrium is 23 vehicles per hour. Thus any infrastructure capacity higher than 40

vehicles per hour would yield the same result.
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We assume to be able to describe the costs with the following set of parameters,

namely a value of time VoT to translate a delay into a cost, plus a share mechanism

that divides the cost for modes in which the vehicle capacity is more than one. This

depends on a parameter for barge and train that describes whether the cost allocation

is fair among all users (qmode ¼ 1; everybody using a vehicle pays a fraction of its

cost proportional to the vehicle capacity used), or might favour or disfavour active

roles, i.e., the active role (that is always one per vehicle) might pay less or more than

each passive role. Respectively, this corresponds to a policy setting in which a

stronger time-responsiveness is required, or one where demand will adhere with

greater compliance to an external given transport supply. Finally, there are three

cost parameters that are used to determine cost of early arrival, late arrivals with

regard to a preferred arrival time, and a cost for waiting for the full loading and the

departure of a vehicle with a capacity bigger than one.

Additionally, other costs factors can be considered, for instance incentives to

particular modes. These cost factors can be represented by a smaller cost per km, or

by one-off contributions, or depending on the loading rate of the vehicles. In

general, trucks will experience a higher costs as the total operating cost can only be

referred to a single discrete transport unit; modes such as train and barge can

achieve lower costs if they are fully loaded. Eventual fees, charges, monetary

incentive to participate, can be represented in such a framework, additional to the

above fixed costs.

4.2 Variables and functions

The model is able to deal with multiple time scales, namely the mutual influence of

the choice of departure times, congestion and costs for early/late arrival of freight

units, and the convergence towards equilibrium. The former dynamic is referred to

as within-day (and indexed by the variable t), as typically transport demand is

recurrent and roughly cyclic along period of time such as a day (or a week, or a

similar period of time of fixed length, without less of generality). The latter dynamic

refers to a process over a long time horizon, every time evaluating the decision takes

according the other dynamic. Thus, we refer the latter dynamic as day-to-day, and

index it by the variable d.

The within-day model works as follows. The users evaluate whether to change

mode of travelling, and at what time this decision has to be taken. The departure

time for all users should coincide and depend on the trade-off between congestion

costs and schedule delay costs. Congestion costs can be dealt with in a different way

across modes. Whereas truck traffic congestion may well be dealt with following

conventional cost-flow functions such as in vehicular traffic, this decision may not

be the most recommended in rail-based and inland navigation systems. In the

former, congestion can be considered due to a limited number of paths available per

unit of time, primarily due to the use of block sections and scheduling constraints.

The latter has normally a much higher capacity than the demand in reality, and thus

is a nearly-deterministic mode of transport from this point of view.

The earliest departure times and the travel time for the collaborative modes is

moreover a trade-off between the early arrival costs, the queue of requests and
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therefore the waiting time to find a match. So the interesting result of the above

model is to find both distribution and rate of mode choices, as well as to find the

time window where at equilibrium the highest chance of a prompt match is ensured.

The other time-scale considered in the approach relates to the typical way of

finding an equilibrium assignment, which involves modelling the decision of a set of

players along a finite amount of time. This basically assumes that the players are

repetitively seeking to perform a transport action (say every day), and every time

they learn from the past experiences. Each user, after experiencing a certain travel

cost at the end of day d, decides which combination of (mode, departure time t) is

giving the least expected costs for the next day d þ 1: Via an iterative process of

learning the decision (departure time choice and mode) of other users, a series of

assignment is found, that ultimately converges to an equilibrium assignment. This

point users’ costs, expressed as function of mode, travel time and related

congestion, departure time and waiting time for bundling sufficient demand in

order to fill a vehicle. At equilibrium, for all collaborative modes, active and passive

users should match in transport demand offered/requested. Moreover, the costs of

all three mode alternatives must be equal.

The main variables of the problem mainly relate to generalized costs

experienced, times and flows, and are described in the following Table 2, for each

mode.

We model implicitly the amount of vehicles as a decision variable of our model.

In fact, active roles act as trigger the start of a service or line, by requesting a new

vehicle that can be further used by many other users.

We further consider the within day dynamics as a time-discretized setting.

We next use variables and parameters in a set of functions that determine how

attractive a mode and choice of time and role might be. The costs have three major

components: a travel-time related component, i.e., the longer the travel time the

higher the cost; a distance and mode based component, i.e., for some modes the cost

per unit will be lower, and the costs will further shared over a large amount of units;

and a delay cost component, that refers to the reliability of the travel time. In other

terms, this latter component weighs the possibility to arrive at the preferred arrival

time, the costs for being early or late, and some costs associated to waiting in the

system. The cost functions per mode, per role, are as follows:

Table 2 Decision variables

Name Description Unit

Cmode;role t; dð Þ Generalized experienced cost per time t per day d per mode per role Eur

Fmode;role t; dð Þ Flow per time t per day d per mode per role Unit/h

TTmode t; dð Þ Travel time after departure per time t per day d per mode Hour

WTmode;role t; dð Þ Waiting time before departure per time t per day d per mode per role Hour

SDCmode;role t; dð Þ Schedule delay cost per time t per day d per mode per role Eur

Nmode;role t; dð Þ Cumulative flow per time t per day d per mode per role Unit/h
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Truck

Ctruck t; dð Þ ¼ TTtruck t; dð ÞVoT þ Ltruck Ptruck þ SCDtruck t; dð Þ ð1Þ

Barge active

Cbarge active t; dð Þ ¼ TTbarge t; dð ÞVoT þ
qbarge

Capbarge
Lbarge Pbarge þ SCDbarge t; dð Þ ð2Þ

Barge passive

Cbarge passive t; dð Þ ¼ TTbarge t; dð ÞVoT þ
1� qbarge=Capbarge

Capbarge � 1

� �
Lbarge Pbarge

þ SCDbarge t; dð Þ ð3Þ

Train active

Crail active t; dð Þ ¼ TTrail t; dð ÞVoT þ qrail
Caprail

Lrail Prail þ SCDrail t; dð Þ ð4Þ

Train passive

Crail passive t; dð Þ ¼ TTrail t; dð ÞVoT þ 1� qrail=Caprail
Caprail � 1

� �
Lrail Prail þ SCDrail t; dð Þ

ð5Þ

The cost function curves take generally into account that the cost of a trip will

increase if the traffic along the link is so high that there will be phenomena of

congestion and, due to this, extra travel time is observed. This is due to the travel

time function TT t; dð Þ: This is highly mode specific, and explained for the different

three modes in the following.

For road traffic, a congestion following a classic BPR-function is used (Bureau of

Public Roads 1964), with suitable choice of parameters ða; b; StruckÞ:

TTtruck t; dð Þ ¼ FFTTtruck 1þ a
Ftruck t; dð Þ

Struck

� �b
 !

ð6Þ

In this functional form, a controls the increase in travel time when the number of

vehicles in the system reaches congestion at its saturation flow, represented by the

parameter Struck: Additionally, the parameter b controls the sensitivity of the system

to congestion, i.e., how rapidly travel times increase when the demand is near or

above the saturation flow or the infrastructure capacity.

For train, a different travel time function is used, namely a queuing model in

which a determined amount of freight paths will be available per unit of time, and

the travel time is a fixed travel time plus a waiting time, equivalent to the service

time of the queue:
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TTrail t; dð Þ ¼ FFTTrail þ Nrail;active t; dð Þ þ Nrail;passive t; dð Þ
� �

=Caprail ð7Þ

Here, FFTTtrain represents the travel time in absence of congestion; Ntrain is the

total cumulative flow of train vehicles using the train mode up to time t, and Captrain
is the maximum amount of train per hour that can be travelling at the same time on

the train link. This assumes a flow of the train network very similar to a queue with a

First-In-First-out policy, with fixed travel time, and fixed processing rate. The

Travel time does not depend on the role, but rather depends on the amount of

vehicles only on the link. Both active and passive roles for the same vehicle will

experience the same travel time, apart from the time waiting for loading the full

vehicle and eventually depart.

A similar expression holds for barges, with a different vehicle capacity Capbarge:

TTbarge t; dð Þ ¼ FFTTbarge þ Nbarge;active t; dð Þ þ Nbarge;passive t; dð Þ
� �

=Capbarge ð8Þ

In practice, the actual infrastructure capacity for barge is very high, and its

saturation flow would be almost never reached. In that case, the equation simplifies

to a fixed travel time equal to the free flow travel time. Concerning the mode-

dependent costs, the shared mechanism described above is used, with the parameter

q deciding which share of the costs will be borne by the active users, i.e. those

initiating a new vehicle, and the passive ones, i.e. those looking for available spots

in existing community services and joining an already organized transport vehicle.

Concerning the Schedule Delay costs, we resort to a commonly accepted

treatment in the literature that goes back to the work on bottleneck traffic models of

(Vickrey 1969). Basically, a preferred arrival time PAT is given, and early arrivals

and late arrivals with regard to the preferred time are penalized by some linear

factors, respectively a; b: On time arrival is in fact of interest in case one wants to

increase the reliability of a supply chain link. Then the typical Schedule Delay cost

expression can be derived directly for the truck mode:

SCDtruck t; dð Þ ¼ a max 0;PAT � t � TTtruck t; dð Þð Þf gð Þ
� b min 0;PAT � ðt � TTtruck t; dð Þf gð Þ ð9Þ

For collaborative modes, extra waiting time while waiting for filling up the

vehicle is a key aspect that is not included in previous studies based on Vickrey’s

bottleneck model. This is the time spent for bundling enough demand going on the

same direction. In general, this time decreases with the amount of units to be

transported by the vehicles, as the wider the pool over which demand can be

bundled, the easier and faster the process would be. This time is also depending on

the ratio of active and passive roles, while the expressions above were independent

from the role chosen.

We introduce the concept of waiting timeWT t; dð Þ: This is the time span between

the time when the unit would be available to be shipped, i.e. loaded, sealed, in place

and ready, and the time when the vehicle actually starts is trip. This latter time

depends on having the vehicle full. As we assume that only full vehicles can be
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shipped, the time waiting for the actual begin of a trip is actually spent completely

to load the vehicle by other transport units.

From the point of view of the schedule delay costs, this waiting time is in fact an

extra delay that has to be taken into account while choosing the departure time.

Being available for departure earlier increases the chances of an early departure and

an on-time arrival. Being ready at the very last minute decreases some waiting costs,

as more slack is available to prepare the transport unit, but increases the risk that the

unit cannot be boarded on a vehicle and arriving on time. To weight this delay, an

additional parameter c is included, that expresses the relative importance for waiting

in the system. The extension of the Schedule Delay cost expression for train and

barge is thus as follows:

SCDrail;mode t; dð Þ ¼ a max 0;PAT � t �WTrail;mode t; dð Þ � TTrail t; dð Þ
� �� �� �

� b min 0;PAT � ðt �WTrail;mode t; dð Þ � TTrail t; dð Þ
� �� �

þ cWTrail;mode t; dð Þ
ð10Þ

In the definition of the waiting time the role (active or passive) is determinant. To

this end, we assume that there is commitment, i.e., once a mode is chosen this

cannot be changed within the same day; unless no matching is found at the end of

the time horizon. This latter case represents the situation when some vehicle is

waiting to be loaded, but there will not be enough demand to make it depart full. In

fact, transport units will be kept in the queue for a transport vehicle and will not

leave the queue unless they are also taking the same decision to switch to a different

option. In this case, we consider the possible alternative of by which the vehicles

does not depart at the end of the time horizon, and instead the transport units waiting

will be transported by trucks at the end of the time horizon. The cost of a truck

shipment is incurred. In this case, the choice will determine a different value for

waiting time, which will influence the costs, and also push users to adopt a particular

role, so that the generalised costs can be minimized. We here re-state that the

amount of active roles correspond to the amount of vehicles in the systems. Also,

given the assumption of full load vehicles, the ratio between active roles and passive

roles (for a given mode) is fixed and determined by the capacity of the vehicles.

5 Solution process

The main challenge is to determine an assignment algorithm that allows assigning

users to classes and departure times, i.e., allows computing equilibrium in the

setting defined above. The underlying mathematical problem is challenging in many

aspects, for instance existence, convergence and uniqueness of the equilibrium in

assignment is far from trivial, given the fact that user characteristics change when

they switch group. The basic problem to be solved is the re-assignment: based on

the costs of all other modes and all other roles at one iteration (or day d), and all

relevant time durations, find the best mode, role and time to be chosen for the next

day d ? 1.
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We refer to Fig. 2 for a graphical description of the procedure. The simulation of

one day d, i.e., a within-day dynamics, is reported graphically as a set of tasks to be

done iteratively, around the figure. We can start by the item at the bottom of the

Fig. 2, going counter-clockwise. Given a subdivision in classes, and departure

times, we determine first the time that passive participants in train and barges mode

have to spend waiting for a match,WTbarge;role t; dð Þ andWTrail;role t; dð Þ: To do so, we
consider a cumulative representation Nmode;role t; dð Þ; depicted on the right side in

Fig. 2.

The elements Ntruck t; dð Þ;Nbarge;mode t; dð Þ;Nrail;mode t; dð Þ represent the amount of

participants that have entered the system until time t and at day d. All participants

choosing for a truck can depart as soon as they enter the system. Instead,

Nbarge;mode t; dð Þ;Nrail;mode t; dð Þ include the amount of participants for the two modes

that starting offering (for active role) or requesting (for passive role) places on

available vehicles at the beginning of time t, plus some participants from previous

time periods that are still in the process of finding a match (i.e. the queue of

requests). As for the matching, we use a FIFO discipline. A user, say the Mth train

passive user requesting a place on a train will correspond to Nrail;passive t; dð Þ ¼ M;

and enter the system at time t. We assume that this user has to wait, i.e. the passive

users are more than the active users. In this case, this user will have to wait till the

Fig. 2 Graphical illustration of the solution process (Color figure online)
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vehicle identified by Nrail;active s; dð Þ ¼ M=Caprail will enter the system at time s; for
a total waiting time of s� t: The active user identified by Nrail;active s; dð Þ ¼
M=Caprail will have a waiting time of 0. In the opposite case, when passive users are

more than active ones, i.e. transport units are waiting for vehicles, the reasoning is

analogous and opposite. The waiting time will then be 0 for the passive users, and a

similar expression for the active users.

Some extra detail of the matching process for collaborative mode is reported in

Fig. 3. The Figure refers to barges, but for railways, the process is exactly

analogous. In the picture, the x-axis represents times, starting from an earliest

possible departure time (i.e. nobody perceives departing earlier attractive, for a

given Preferred Arrival Time) and going to a latest possible departure time

(departing after which will result in excessive scheduling delays even in free flow

conditions). The y-axis are the cumulative flows of barge users. Two curves are

plotted Capbarge � Nbarge;active t; dð Þ;Nbarge;passive t; dð Þ for a given day d, respectively

in purple and yellow. Those curves represent respectively the cumulative amount of

passive transport units amount that have entered the system, and are available for

matching; and the amount of vehicle capacity for extra units to be carried. The

minimum of the two curves, in other terms, the lower envelop of the curves,

represents the transport units on vehicles that have been fully loaded and can

actually depart. This latter correspond to the vehicle flow rate at time t during day d,

that is used among other things to determine the congestion and the travel time. The

step-like behaviour of CapbargeNbarge;active t; dð Þ originates from the discrete and large

vehicle capacity of a barge; every step corresponds to a new barge available, i.e.

Capbarge � 1 new places available for shipment. The one unit to be subtracted is for

the active role, which triggers the usage of the barge.

The two shaded areas correspond to the cases in which there are more active

barge users than passive users (i.e. barges are waiting to be filled up) in green, at the

left of the Fig. 2; and the case in which there are more passive users than active

ones, i.e. there is a queue of transport units to be loaded over a limited amount of

Fig. 3 Example of a matching process for barge users (Color figure online)
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barges, in red, top-right. To those two situations we can associate waiting time, also

reported in Fig. 2. The final gap between the number of active barge users and

passive barge users at the latest acceptable departure i.e. the difference highlighted

by the vertical blue arrow in the Fig. 2, corresponds to participants (in this case

passive) that will not be able to fill a vehicle and need to be transported in other

ways. They might depart as trucks, or share the extra costs of the partially full

vehicle. The matching mechanisms works analogous for the railway mode, with a

different parameter for Caprail: Once the amount of vehicles is determined, the

travel time per mode, and the total travel time can be computed, based on the link

congestion dynamics reported in the previous section.

Each user, after experiencing a certain travel cost at the end of day d, decides

which combination of (mode, departure time t) is giving the least expected costs for

the next day d þ 1: This a dynamics that is named day-to-day, and basically

represents a learning process on the decision of other users. This corresponds to the

left part of Fig. 2. The basic problem to be addressed is changing mode, changing

role, and changing departure time.

The problem is solved by considering that the new fraction of flows at each time

period chooses the least costly alternative, by means of a logit model. Logit models

describe the probability of choosing a certain mode alternative as function of the

expected cost differences. They explicitly consider stochasticity in this decision

caused by uncertainty in future costs, error perceptions and heterogeneity in the

value of times. The stochastic nature of the costs, typical in traffic assignment, is

also easily justifiable in freight transport. Different descriptions can be considered

for the logit function used for mode choice and the departure time choice, taking

into account the different elasticity of the users to switch mode or transport or adjust

departure time from 1 day to the other. In this study we use the simple Multinomial

Logit Model (Ben Akiva and Lerman 1985):

P mode ið Þ ¼ e�Cmode i t;dð ÞP
j

P
s e

�Cmode j s;dð Þ ; ð11Þ

where the probability of choosing a certain mode alternative i at time t on a day d is

dependent on the cost of i in comparison to the cost of all other alternatives and at

any time period s.
To simulate smoothing effects from incremental information acquisition and

learning we adopt the traditional Method of Successive Averages, which is common

in the literature for calculating the assignment process (Jourquin and Limbourg

2006). The MSA adopted calculates at every iteration the new costs given the mode

choices from the previous day, and updates the mode choices for the current day, but

swapping a part of the flows in inverse proportion to the number of days run in the

simulation. We call this a flow averaging (FA) criterion.

There is a variety of other approaches for assigning goods to the different mode

alternatives, and for modelling the convergence towards equilibrium. Different

methods have been considered and evaluated (e.g., deterministic assignment,

dynamic swapping algorithms), which however did not add insight or enriched the

analysis of this paper, and therefore their results are not included in this paper. To
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take into account that the elasticity of adapting the scheduling times may be

different than switching mode, we consider different flow averaging parameters for

the two choice levels. The procedure goes along the following operations:

Given the cost vector for day d

Calculate mode choice probabilities

Calculate total flow amount per mode

Calculate earliest departure time choice probabilities

Perform an MSA-FA and update flow observed at d to flow at day d ? 1

This procedure is iteratively performed by again computing the flows on links,

associating a cost, and so on, along the Fig. 2. At the end of iterative procedure a

solution is found, in which the all the decisions of the users (departure time, mode,

role) are in equilibrium. i.e. no user has incentive to change its choice to get a minor

cost. This final solution is the result of a few factors. Every day, the users evaluate

whether to change mode of travelling, and at what time this decision has to be taken.

The departure time for all truck users should coincide and depend on the trade-off

between congestion costs and schedule delay costs. The earliest departure times and

the travel time for barge and rail is moreover a trade-off between the early arrival

costs, the queue of requests, the waiting time to find a match and the travel time on

the link due to the restricted infrastructure capacity.

So the output of this model is the simultaneous determination of mode choice, as

well as to find the time window where at equilibrium the highest chance of a prompt

match is ensured. Having more users choose for the rail and barge increases the

chance of match, but also increases the amount of time lost due to congestion along

the link. At equilibrium, the costs of all three mode alternatives must be equal, or an

alternative should be considered by the users These effects can be graphically seen

in the next section where they are analysed when discussing Fig. 4.

Fig. 4 Choice of departure time in the resulting model: flows (left), costs (right)
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6 Experimental analysis

We apply the innovative model presented on a simple test case to show the

applicability and the outcomes. A systematic analysis can provide insights into the

factors determining increase/decrease in modal share, and which policies can be

used to promote further rail and barge in a multimodal transportation market. The

overall model is used to study the interplay between costs (dependent on the role

chosen), departure time (i.e. possible time spent waiting for a match, plus

experienced travel time) and congestion levels and waiting time experienced along

the link.

Again, we used the basic case reported in Fig. 1, with a single link per mode, and

a single origin–destination pair. We also used the values reported in Table 1 when

not differently reported. The model and solution algorithm here sketched have been

translated to software code, and implemented in Matlab R2014. The computation

for the simple single-origin destination, one link per mode, 10 h time horizon, 200

iterations of assignment, is performed within two seconds on a standard desktop

computer.

We analyse in Fig. 4 the equilibrium solution, in terms of flow per departure time

(left plot), generalized costs (right plot). For every plot, the departure time of the

transport unit time is on the x-axis, i.e., the time at which the transport unit will start

its trip towards the destination; flow (respectively cost) on the y-axis. Concerning

the flows, one can see how the vast majority of the flow can be transported via

collaborative modes such as barges and rail. The final modal share is 39 % (barge),

33 % (rail), 28 % (truck). Note that this share is largely influenced by the

Fig. 5 Difference between maximum flow by truck, across iterations (x-axis), when no information is
present versus when information about queue length is given
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parameters chosen. We present in this section and the following a sensitivity

analysis of the results, and a discussion on how to find realistic parameter values.

The different speed and time dynamics of the different modes result in different

peaks in departure times: this is between time 1 and 2 for the barges; trains feature a

smaller travel time and a lower vehicle capacity, and result in a peak at later times,

between 2 and 4. Also note that due the restricted infrastructure capacity available

on the rail, there are two peaks. The final peak of the trucks is even later, with the

maximum around 5. Looking only at the time of the peaks, and not at the total flow

per mode, it is mainly the responsiveness of the mode to determine the time of the

peak, and not the average travel time, as the speed for train is higher than for trucks.

The costs (Fig. 4, right) report that the different modes have competitive costs at

different times; and that the peaks in flows corresponds to those intervals where a

mode is cheaper in terms of generalized costs than another one, respectively barge,

rail, truck. This is a typical outcome at equilibrium.

The subject of a second evaluation is the sensitivity to the information policy. We

consider a case in which users will be able to know that a mode will result in no

match at the end of the time horizon, and have thus the possibility to choose the

truck earlier. It turns out that despite the modal share and the flows are different

through the iterations, the learning mechanisms (day-to-day) is able to incorporate

this, and the resulting equilibrium is actually the same. We report in Fig. 5 the

iterative procedure of convergence, namely the difference between the maximum

flow by truck (i.e., a measure of congestion), on the y-axis, from day 0 (i.e., the first

day) to day 200 (when the procedure converges), on the x-axis. The amount of

Fig. 6 Total units and modal share as influenced by rail infrastructure capacity, and the distance-related
costs of barge
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fluctuations relate to the algorithmic procedure of convergence. The difference is

always positive, i.e., when information is provided the amount of trucks on the road

are always less.

We finally study the sensitivity of the final assignment equilibrium, on multiple

parameters. For sake of illustration we limit our presentation the interplay of trains/

h, i.e. infrastructure capacity of the railway link, in terms of trains per hour allowed,

compared with the distance cost of the barges, i.e., cost per km. Such a sensitivity

study is interesting for instance to determine to which extent the modes of rail and

barge are substitute of each other, and favouring one (by means of fiscal incentives,

or improved link flow) will attract mostly users from the other collaborative mode,

or instead will result in a decrease of the truck movements.

To this end, Fig. 6 reports the share of flows in the three different modes as

resulting from the interplay of those two parameters. From the figure, it is evident

how the increase in the railway infrastructure capacity (for instance by building a

dedicated railway line, and with an improved signalling system of the railway, as

done in the Betuwe Route project in the Netherlands) allows a shorter travel time by

rail, and thus higher volumes in the rail link (left-top area). On the other hand, if

barge costs are made very competitive by some kind of fiscal incentive (left area)

then the vast majority of the flows will be transported by barge. In this case the time

dynamics and the capacity of the barges and the waterway infrastructure is such that

barges can actually achieve a very high modal share, depending on the incentive. On

the other hand, even the highest railway infrastructure capacity considered, i.e., 10

train paths per hour, or a freight train every 6 min, cannot attract all demand to the

railway mode, and trucks are still used. By providing exact parameter and calibrate

them to the actual freight flows, a possible application of such a system might be the

evaluation of infrastructure and economic decisions in the context of a multimodal

freight network.

7 Applicability to general networks

The model described so far has been presented using rather simplifying assump-

tions, with its relevance demonstrated on a small study case. Being a relatively

innovative approach, our interest lied in showing the main modelling characteristics

rather than its actual applicability in realistic case studies. We discuss in this section

the possibility to extend the theoretical model to general networks with realistic and

complex topology, and realistic flows. Further research should address the

translation of these recommendations into actual implementation in models and

software packages usable for stakeholders.

7.1 Realistic networks

The network with a single link per mode should be extended first to consider

multiple links connecting each origin and destination, and multiple origin and

destinations; trans-shipment along the network is not considered here; congestion
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propagation effects across links are also not modelled. We deal first with the case of

networks in which the assignment is performed for a single mode and multiple links.

In this case, established techniques from traffic assignment can be used; which

involve finding an implicit (node based or bush-based) or explicit (route-based) set

of origin–destination paths. More details on those models can be for instance found

in Tampère et al. (2010), Dial (2006) and Gentile (2014). A logit model (or other

random utility models) determines the flow per path and per time interval based on

the travel time of a path and the available alternatives. Moreover, the travel time per

link per time interval is considered based on the actual (time-dependent) flow.

Considering multiple origins and destinations will determine additional congestion,

and its characteristic back-propagation on the links and across the nodes, but this

issue has already been dealt with to an established state of the art in Dynamic Traffic

Assignment. Computational speed and mathematical quality of those approaches do

also not present particular challenges (Dial 2006; Gentile 2014).

7.2 Complex networks

Modelling the trans-shipment of goods along the network (and not a complete

modal choice for the origin–destination pair) is a further step forward. This is

similar to multimodal transport assignment in public transport where cars or bikes

can be used to reach a railway station and vice versa. Fundamentally different from

those approaches is the fact that a mode choice for a leg does not imply a mode

choice for another leg, i.e., if I go by car to the station I need to go back by car from

that station. In freight traffic, one can assume that bundling and consolidation at the

level of logistic operators make available vehicles at all nodes.

We assume that in this case some dynamics are inherently different due to the

different modes have to be coupled. By simplification and using so-called bush-

based or route-based algorithms, the problem can be translated to a simpler network

in which there is a particular (feeder) mode used, a transhipment activity; a

(connected) mode used. This is also common in DTA literature, where a general

approach is to approximate multi-commodity flow network models by using single-

commodity approaches. In that case, the flow and congestion in the first and last link

are mode-dependent and can be tackled in the general manner proposed in the

example of this paper. The transhipment activity can be modelled as an additional

time duration, which is made up of a fixed time (related to the unloading/movement,

loading of goods) plus a synchronization time, which depend on the departure time

of the connected mode. This latter process can be determined in an analogous

manner as the departure time choice of the barge and rail mode in the example

proposed in this paper.

7.3 Calibration

The realistic outputs of the model depend on a variety of parameters, which affect

the final results (modal share, flows, costs) to a certain extent. Calibration of

relatively large set of parameters can be performed based on the observed flows for

a given link (saturation flow, travel time), possibly integrating planning or
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operational data (for barges, railways, possibly trans-shipment). Practical

approaches such as those sketched in Jourquin (2005) or Zhang et al. (2013) are

here of interest. Determining precisely the VoT of goods and the responsiveness to

time, in the form of early cost, delay costs and additional penalties for trans-

shipment or mode choice can be determined by stated preference data, revealed

preference data, or policy guidelines. Policy incentives and implications, organi-

zational factors, commitment of players towards mode choice, integration in the

value chain of the all logistic service (more or less storage needed, additional

variability of deliveries,…) should also be taken into account when calibrating the

flows observed with those simulated.

8 Conclusions and future research directions

This paper proposes a Dynamic Traffic Assignment model for multimodal freight

networks. In freight networks, it is economically attractive to bundle demand over

modes that have large vehicle and infrastructure capacity such as barges or rail.

Moreover, this helps reaching the modal share (relating congestion and environ-

mental constraints) set by policy rules. The key problem solved is the determination

of expected freight volumes over different modes for planning and policy studies,

given some demand and parameters determining the dynamics of the different

modes.

The model proposed makes it possible to consider those modes in a more detailed

way compared to existing assignment models for freight networks. A key innovative

feature is the intrinsic consideration of time-varying aspects. This relates to the time

responsiveness in the assignment, the impact of congestion over links when peak

demand is travelling, and the synchronization of transport units using modes that

have large vehicle capacity (such as barge and rail). We consider two different time

dynamics: there is a learning dynamic over a long amount of rounds (days); and a

departure time and mode choice within a given time horizon (within-day). In the

model the generalized costs of modes varies over time, i.e. different modes can have

different attractiveness at different times compared to a preferred arrival time at

destination, due to congestion, synchronization constraints, bundling time. This is

has paramount importance in demand-responsive logistic services, which strongly

vary their costs in time, and are characterized by different time-dependent

parameters and constraints. This results in what would be called a within-day

dynamic intertwined with a day-to-day equilibrium in Dynamic Traffic Assignment

terms (Tampère et al. 2010). In fact, an ambition of this work is to start bridging the

gap between the relatively sophisticated models used for car traffic assignment and

the simplified ones that are still characteristic of freight.

We evaluate the model over a small theoretical network with multiple modes,

analysing sensitivity of the result to various parameters and incentives that policy

makers might consider, and studying the impact of different information sharing

polices, and the possible impact of cost incentives towards modal shift to barge or

rail from trucks. The approach is able to study the interrelation of multiple factors

and can determine a large region where a particular mode can be interestingly
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competitive with the other ones. From a policy perspective, the consequences of a

large set of incentives and constraints can be evaluated, and it is possible for

instance to determine to which extent rail and barge are competing against each

other, instead of taking over the modal share of the trucks.

Even though some of the assumptions used might need to be further study in

order to enhance the direct applicability of the model, we believe that this is a

preliminary investigation; and more realistic characteristics could be incrementally

included in future works. The integration of many operational aspects in planning

decisions, which would focus on the availability and quality of multimodal links,

impact of information sharing policies, as well as the possibility to define

synchronization of multiple modes along intermodal links might make the

evaluation of those latter factors more precise and reliable. In fact, the next steps

in this research will be to extend the study to (1) include unreliability in travel time,

test the impact over more complex networks where transhipment can occur, and

thus intermodal and synchromodal freight could be analysed; (3) evaluate the

impact of commitment and pre-reservation in the market for matching available

demand and vehicle capacity, as an additional decisional layer; (4) consider a game-

theory setting where the price paid is part of a bidding mechanism and can be

further differentiated between different category of users and finally (5) consider

realistic test cases to show the applicability to larger cases.
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