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Abstract

The offshore renewable energy market is rapidly growing, particularly in wind and solar sectors. The
intermittent nature of these energy sources underscores the necessity for offshore energy storage
solutions. Among the techniques being explored, Marine Pumped Hydro-Energy Storage (MPHES)
emerges as a promising option. This innovative concept operates similarly to artificial lakes, where
water is stored and released to generate electricity. In the MPHES system, a seabed-based reservoir
is established, in which water flows, driving turbines to generate electricity. During periods of energy
surplus, the system is charged by pumping water out of the reservoir.

The available energy storage capacity increases with both depth and volume. Current designs pro-
posed in the literature discuss installation depths ranging from 600 to 1000 meters, while achieving
internal volumes of 9.000 to 12.000 cubic meters. These system adopt a spherical shape of the reser-
voir, with external diameters ranging from 30 to 34 meters. The material of choice for these structures
is concrete.

Through extensive interviews and a review of relevant literature, two significant challenges have been
identified in these designs. The spherical shape and large dimensions of the reservoir make construc-
tion highly complex. The most promising construction approach outlined in the literature, involves a
hybrid method of 3D Concrete Printing (3DCP) and conventional casting, where the formwork is con-
structed using 3DCP followed by concrete pouring. However, this method relies on unproven tech-
niques that have never been implemented on this scale. Additionally, the draught of the structure is at
least 26 meters. Despite using pontoons to provide extra buoyancy, this considerable draught seems
too challenging for construction even in some of the world’s largest dry docks.

The aforementioned challenges have prompted questions regarding the suitability of a spherical reser-
voir. Initially chosen for its effectiveness in distributing hydrostatic forces associated with significant
depths, the spherical shape is now being reassessed. Investigations were undertaken to explore the
most optimal shape for anMPHES system, considering the viability of a cylinder or torus. These shapes,
identified through a literature review, maintain rounded features for efficient distribution of hydrostatic
load, while potentially being constructible with existing techniques and offering a lower draught. How-
ever, it is anticipated that the cylinder and torus may require more material. The key question here is
whether the ability to adopt simpler construction methods and achieve a lower draught outweighs the
increased material usage, while also factoring in considerations of transportation and installation.

To assess the efficiency of a shape, a novel parameter, the CIV-ratio
(

Vconcrete
Vinternal

)
is introduced. This quan-

tifies the correlation between costs, indicated by the volume of material used, and benefits, expressed
in internal volume. Through analytical methods and verified numerical simulations, the spherical reser-
voir has emerged as the most advantageous shape in terms of the CIV-ratio. With an internal volume
of 10.000 m3 and a depth of 1000 meters, the sphere demonstrates a CIV-ratio of 0, 78, whereas the
cylinder exhibits a CIV-ratio of 1, 09. At this volume, the cylinder and torus have a slenderness value
of 12. While the method to achieve these results has not been applied to the torus, it showed results
very similar to those obtained for the cylinder in other analyses. A neutral buoyant CIV-ratio is 0, 75.
Ultimately, the sphere exhibits a CIV-ratio that is 23% to 29% lower than that of the cylinder.

The slenderness values for the cylinder are defined as the ratio between its length and its internal radius,
while for the torus, it is the ratio between its major radius and its minor radius. An analytical examination
revealed that for both the cylinder and torus, a higher slenderness results in a lower CIV-ratio. However,
higher slenderness values lead to significantly larger external dimensions of the reservoir, presenting
challenges in terms of constructability and transportability. Drawing insights from reference projects
involving dry docks and immersed tunnel construction, a favorable slenderness range of 10 to 20 was
identified for the cylinder. A slenderness value of 12 in combination with an internal volume of 9.000
m3 yields an external diameter of 12, 92 meters and a length of 129, 0 meters. However, applying a
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similar methodology, no such favorable range was found for the torus. Its external dimensions become
impractically large, with a major diameter of approximately 100 meters for an internal volume of 9.000
m3 and acceptable slenderness values. These substantial dimensions impose constraints on feasible
construction sites for the torus, contradicting the initial goal of avoiding such limitations. Consequently,
further consideration of the torus was discontinued.

After conducting a literature review of reference projects and examining general concrete construction
methods, five approaches for constructing a cylinder were identified and assessed. Through deductive
analysis, reasoned evaluation, and expert interviews, the horizontal jump-forming technique emerged
as the most practical method. This approach entails a semi-continuous process wherein the cylinder
is constructed gradually using ring elements. The production cycle of each ring element begins with
extending a launching girder, onto which inner formwork is affixed. Subsequently, the outer formwork
is positioned to facilitate the pouring of concrete.

In contrast to the construction method for the sphere, literature demonstrates that the horizontal jump-
forming technique has proven successful in tunnel construction, underscoring its reliability. Notably,
while the preferred construction method for the cylinder is not suitable for the sphere, the reverse is
not true. This observation suggests that constructing a cylinder is comparatively less complex than
constructing a sphere.

During transport, the cylinder would be submerged and suspended from two or more catamaran-like
pontoons, with tug boats facilitating the transportation process. This method, as evidenced in literature
and verified analytically, seems to pose no more pronounced complications than transporting a sphere,
which would also rely on tug boats for transportation and installation.

Furthermore, a review was conducted to assess the favorability of adopting a hemispherical cap design
for the cylinder compared to a flat one. Through analytical calculations, it was found that opting for
a hemispherical cap design can result in a significant reduction in material usage. Additionally, the
hemispherical design proves to distribute hydrostatic pressure more effectively than its flat counterpart,
with no significant additional stresses observed, as confirmed through finite element analysis.

A comparative analysis suggests that the cylindrical design presents a feasible option, especially for
larger internal volumes. Here, the additional costs associated with increased material usage may be
offset by the enhanced constructability of the cylindrical design, making it more desirable than the
spherical option. Potential investors should therefore carefully consider the trade-off between higher
material consumption and a simpler construction process. Nonetheless, for lower internal volumes, it
is evident that the sphere still stands out as the optimal choice.
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1
Introduction

The world is at a critical juncture when it comes to meeting its energy needs. With growing concerns
over CO2 emissions and the limited availability of fossil fuels, the global focus on renewable energy
has intensified. Notably, wind and solar energy have emerged as promising contenders, contributing
approximately 6,6% and 3,5% of the world’s electricity production in 2021, with their proportion contin-
uing to increase [1, 2]. However, their intermittent nature poses a significant distribution challenge. In
this context, energy storage emerges as a critical solution to address this issue.

At present, approximately 90% of the world’s energy storage capacity relies on pumped hydro-energy
storage (PHES) systems, colloquially referred to as artificial lakes or reservoirs [3]. These innovative
setups harness the height difference between two reservoirs, allowing water to be pumped to the up-
per reservoir during periods of energy surplus. When energy demand rises, the water is released to
the lower reservoir, generating electricity through turbines. These systems naturally operate on land,
requiring a specific geographical layout for the construction of the upper and lower reservoirs.

Figure 1.1: Concept overview of MPHES

In 2011 a novel deep-sea PHES system was presented by German physicists Professor Horst Schmidt-
Böcking and Dr. Gerhard Luther [4]. It involves a lower reservoir in the form of a concrete sphere situ-
ated on the seabed [5]. During periods of energy surplus, the sphere is charged by pumping water out
of it. When energy demand increases, the ocean water is released, flowing back into the sphere, and

1



1.1. Problem definition 2

generating electricity through turbines. This innovative idea explores the potential of utilizing the ocean
floor for energy storage, offering a promising alternative to traditional land-based PHES systems.

This concept, illustrated in Figure 1.1, is referred to as marine pumped hydro-energy storage (MPHES).
While the system has not been implemented yet, current designs envision a sphere-shaped reservoir
with a diameter of up to 30 meters. The construction and scalability of such structures pose significant
challenges and raise questions about the suitability of a sphere as the shape for the reservoir.

This thesis undertakes an in-depth exploration and assessment of cylindrical and toroidal-shaped reser-
voir designs for the MPHES system. The core question driving this research is: What is the optimal
shape for a Marine Pumped Hydro Energy Storage system, taking into account factors such as ma-
terial usage, construction feasibility, and installation requirements? By addressing this question, this
study aims to move the concept of deep-sea energy storage one step closer to practical realization and
implementation. This exploration will contribute to our understanding of how to enhance the viability of
deep-sea energy storage as a sustainable and efficient solution.

1.1. Problem definition
The concept of MPHES was introduced in 2011 [4]. However, despite initial promising experiments
and investigations into its technological feasibility, full-scale tests and actual implementation of the
system are yet to be achieved. To propel the technological progress of MPHES and attract potential
investors, further research is imperative. The conducted experiments have successfully demonstrated
the proof of concept for MPHES as a viable energy storage solution. Additionally, extensive investi-
gations have been carried out to assess the technological feasibility of the system. The results indi-
cate that, under suitable conditions, MPHES holds promising potential and can attract investor interest.
However, at present, the construction phase poses a significant bottleneck in the overall development
process.

As described in Section 2.7 the proposed spherical shape of the MPHES system presents notable
challenges in the construction phase. Amonolith is favorable because of its watertightness, but reuse of
the formwork is complex. A component-method on the other hand offers reusability of the mold, but the
watertightness and the weight of the components become a challenge. Currently, the most promising
construction method involves 3D Concrete Printing. However, its effectiveness on the intended scale
remains uncertain.

Furthermore, the ambitious scale of the project results in significant draughts of the structure, which
traditional dry docks cannot accommodate.

The complexities associated with the spherical design prompt a critical examination of the system’s
shape. A sphere is theoretically the optimal shape for distributing internal pressure under hydrostatic
conditions. However, practical constructability poses substantial complications, necessitating the con-
sideration of alternative shapes as potential solutions. Exploring different shapes can lead to a more
feasible and efficient construction process for the MPHES system, ensuring its successful implemen-
tation and functionality as an effective energy storage solution. Important aspects in the consideration
are concrete to internal volume ratio, watertightness of the design, constructability, transportability and
the foundation design.

1.2. Shape proposal
The assumption of a spherical design as the starting point for all publications on MPHES necessitates
a critical reassessment of its suitability. A literature gap exists regarding the study of alternative shapes
for these systems. Although the spherical shape offers unmatched internal pressure distribution, ex-
ploring other shapes becomes essential to optimize the construction process and overall efficiency.
Two particularly promising shapes to consider are the cylinder and the torus.

Both of these shapes still have a circular cross-section, an advantageous property for the installation of
a structure at substantial depths. A form-finding analysis into the optimal cross-sectional shape of an
immersed tunnel showed that at greater depths, the optimal shape of the cross-section for distributing
pressure quickly converges to a circle [6]. Therefore, only circular shapes are considered.
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The cylindrical configuration can be likened to a tube with enclosed ends. Although the cylindrical
shape is inherently suitable for withstanding high external pressures, concerns arise regarding the end
caps. At the transition from the cylindrical midsection to the end caps, an edge disturbance may arise,
due to a change in curvature, potentially increasing internal stresses in this area. Reinforcement or ad-
ditional concrete might be necessary to address this concern. Nonetheless, the cylinder’s construction
is envsioned to be less complicated, its utilization possibly allowing for reusable formwork, making it a
strong contender.

On the other hand, the torus represents a long cylinder with its end connecting back to the start. This
unique property eliminates edge disturbances that may occur with the cylinder design. The torus may
lend itself well to construction with multiple prefabricated components, such as eight sections.

Both the cylinder and torus experience a maximum membrane force approximately twice as high as
that of a sphere when subjected to the same hydrostatic pressure, as quantified in Table 1.1. To gain a
comprehensive understanding of the internal pressure distribution in the three shapes (sphere, cylinder,
and torus), detailed information is available in Appendix C.

Shape Max. membrane force [N/m]

Sphere −pa

2
Cylinder −pa
Torus < −pa

Table 1.1: Membrane forces across sphere, cylinder and torus under distributed normal load p

Due to these higher membrane forces, a cylinder and torus require a thicker concrete wall than a
sphere to resist the same hydrostatic pressure. Consequently, it is hypothesized that a higher volume
of concrete is required for these shapes to achieve the same internal volume. This thesis revolves
around the question of whether the higher material usage of the cylinder or torus, compared to the
sphere, can be justified by simpler construction methods.

Further research and analysis are necessary to determine the most appropriate shape for MPHES. An
illustrative design for each shape is presented in Figure 1.2, adhering to a constant internal volume
across all shapes.

Figure 1.2: Design for spherical, cylindrical and toroidal reservoir
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1.3. Research question
The analysis of construction feasibility, coupled with the unexplored potential of the torus and cylinder
shapes, gives rise to the following research question:

What is the optimal shape for a Marine Pumped Hydro Energy Storage system, taking into ac-
count material usage, construction feasibility and other implementation aspects?

For this study, three shapes will be considered: the sphere, cylinder, and torus. The research ques-
tion will be addressed by investigating the following sub-questions, which will be explored for all three
shapes.

• What key design parameters must be considered initially for each shape?
• What is the total material usage for each shape, taking into account both the reservoir and foun-
dation components?

• What are the dimensions of each shape, and which construction methods are most appropriate
for those dimensions?

• What factors need to be taken into account regarding transportation, installation, and ensuring
watertightness for each shape?

1.4. Project approach
The research methodology adopted in this thesis is structured to systematically address the research
inquiries and achieve the set objectives. The sequence of the research will align with the identified
questions, guiding the formulation of an optimal design for the MPHES system. Given the iterative
nature of the design process, it is expected that adjustments will be made following the exploration of
sub-questions, with opportunities for significant optimization emerging as the design progresses. Addi-
tionally, potential areas for optimization may become apparent as the design process unfolds, allowing
for further refinement towards the conclusion of the thesis. The approach to the design process is
delineated as follows:

1. Identification of Design Parameters:

• Conduct a comprehensive literature review to identify relevant design parameters for the
MPHES system.

• Perform basic hand calculations to determine essential parameters such as installation depth,
storage volume, and pressure distribution.

2. Initial Design:

• Utilize the identified design parameters as input to generate initial designs for the sphere,
cylinder, and torus.

• Conduct analytical calculations to establish the initial dimensions of each shape, considering
factors such as internal volume, slenderness, and concrete class.

• Apply established relationships to assess the impact of various design aspects on the dimen-
sions and performance of each shape.

• Evaluate the material utilization-to-internal volume ratio for each design to determine perfor-
mance and economic viability of the proposed designs.

3. Construction Method Development:

• Review existing construction methods for the sphere.
• Engage in interviews with experts and conduct literature research to establish construction
methods tailored to the cylinder and torus.

• Evaluate the feasibility and effectiveness of each construction method for the MPHES sys-
tem.

4. Implementation aspects:
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• Identify appropriate transport and installation methods for the MPHES system, considering
structural requirements and logistical constraints.

• Estimate watertightness by studying similar projects and consulting with experts to ensure
the integrity of the system during operation.

5. Evaluation of assumptions and optimization:

• Evaluate the impact of key assumptions on the accuracy of design results.
• Identify areas for potential optimization in the design process, considering factors such as
material usage, structural efficiency, and operational performance.

• Recognize the iterative nature of the design process and be prepared to revisit and adjust
assumptions as necessary.

6. Synthesis:

• Summarize the findings and conclusions drawn from the research and design process.
• Draw conclusions regarding the optimal shape for the MPHES system based on perfor-
mance, feasibility, and economic considerations.

Considering the established designs for spherical reservoirs, one might contend that reassessing wall
thicknesses and concrete volumes for this geometry is redundant. However, the methodologies em-
ployed to derive these parameters in extant literature lack transparency. Consequently, adapting such
methodologies to cylinder and torus configurations becomes intricate. Thus, there arises a compelling
need to devise a novel approach for establishing an initial design and estimating wall thicknesses
and concrete volumes. This effort is essential for ensuring a fair comparison among spherical, cylin-
drical, and toroidal geometries, thereby maintaining methodological rigor throughout the assessment
process.

Throughout the project, an iterative design process will be applied, allowing for adjustments and im-
provements as new insights are gained. The combination of literature research, expert interviews,
analytical calculations, and finite element simulations will contribute to a comprehensive study that
guides the design and implementation of an efficient and effective MPHES system. It remains possible
that certain shapes may be eliminated from consideration if they prove impractical or uncompetitive
relative to others during the process.

1.5. Report structure
This report systematically investigates the optimal shape for an MPHES system. Initially, a compre-
hensive literature review is conducted to identify the current state-of-the-art, focusing on construction
feasibility and implementation aspects of the sphere, detailed in Chapter 2. Following this, starting
parameters for the initial design are outlined in Chapter 3. Subsequently, an initial structural design for
the reservoir and foundation is developed for three shapes: sphere, cylinder, and torus, as discussed
in Chapter 4, with a focus on estimating material usage for each shape.

Next, a construction method for the cylinder is elaborated upon in Chapter 5, along with other implemen-
tation considerations. Chapter 6 involves verification and optimization processes. Firstly, the accuracy
of material usage determination assumptions is verified, followed by an optimization of the cylinder cap
design.

In summary, Chapters 3 and 4 examine all three shapes, while Chapters 5 and 6 focus on a specific
investigation into the cylinder.

Finally, the results and findings are synthesized, leading to conclusions drawn in Chapter 7.



2
State of the art

Energy storage plays a crucial role in addressing the imbalance between energy production and de-
mand, particularly in the context of renewable energy sources characterized by intermittent production.
The concept of MPHES is specifically tailored to function as an energy storage facility for floating wind
farms or solar panel farms, aligning its storage capacity with the specific needs and demands of these
renewable energy installations. Since the storage capacity of a single unit has limitations in scalability,
the number of units must be carefully determined to ensure the overall storage capacity requirement
for an energy farm is fully met. By strategically managing the number of units, the MPHES system can
effectively accommodate the energy needs of the renewable energy farm it serves.

The energy storage capacity of a single MPHES system relies predominantly on two key parameters:
the height difference between the upper and lower reservoirs and the volume of water they can hold. A
greater hydraulic head translates to increased turbine drive, while larger reservoir volumes offer more
water to power the turbines. However, these factors pose limitations on the structural design of MPHES.
Higher hydraulic heads are achieved at deeper depths, resulting in greater hydrostatic forces exerted
on the structure. Larger storage volumes necessitate larger sphere diameters, leading to higher internal
stresses within the structure. Both these factors demand a thicker sphere or higher concrete class to
withstand these forces, inevitably leading to increased construction costs. The tradeoff between energy
storage capacity and the volume of concrete used is a critical factor in the design and will significantly
influence the overall performance of MPHES systems.

2.1. Depth, volume and energy storage potential
The feasibility of MPHES is contingent on a substantial water depth. During the early stages of its
development, minimal construction depths of 200 meters were considered achievable [5]. Currently,
the Fraunhofer Institute, the leading developer of this concept, is targeting an installation depth ranging
from 600 to 800 meters [7, 8, 9]. It was found that a minimum depth of 600 meters is required for
techno-economically sufficient storage capacity. A different case study off the coast of Scotland aimed
for a greater depth of 1000 meters [10]. For comparison, traditional PHES systems typically operate
with a hydraulic head ranging from below 100 to more than 1000 meters [11]. Among the five largest
pumped hydro-energy storage (PHES) systems, their hydraulic heads range from 350 to 550 meters
[12].

Where intended installation depths may differ in various studies, the targeted internal volume of the
MPHES construction remains relatively consistent, ranging from 9.000 to 12.000 m3 [5, 8, 9, 10]. Cor-
respondingly, for a sphere, this would result in an inner diameter ranging between 25,8 and 28,5 me-
ters.

Ultimately, the performance of the concept is dependent on the storage capacity. The relation between
that, the internal volume and depth can be expressed by Equation 2.1 [5]:

6
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C = ρsw · g · d · Vinternal · ηturbine (2.1)

Where:

• C is the storage capacity
• ρsw is the density of seawater
• g is the gravitational constant
• d is the operational depth
• Vinternal is the internal volume of the reservoir
• ηturbine is the efficiency of the turbine

It is important to note that the efficiency of the entire system is not solely reliant on the efficiency of
the turbine, but also dependent on the efficiency of the pumps. Key parameters, derived from [5, 8],
are outlined in Table 2.1. Utilizing these parameters, a storage capacity of 22,9 MWh is calculated,
employing a conversion factor of 3,6E9 to transform units from Joules to MWh.

C =
1025 · 9, 81 · 1000 · 10.000 · 0, 82

3, 6E9
= 22, 9 MWh

Considering these illustrative parameters, one can anticipate a roundtrip efficiency of approximately
73% for the MPHES system. However, it is worth noting that experiments conducted to date have not
yet achieved this level of efficiency, primarily because the focus has been on establishing a proof of
concept rather than optimizing pump efficiency [13].

Parameter Symbol Value Unit
Density seawater ρsw 1025 kg m -3

Gravitational constant g 9, 81 m s-2
Construction depth d 1000 m
Internal radius of sphere a 13, 37 m
Internal volume of sphere Vinternal 10.000 m3

Wall thickness t 2, 72 m
Electrical storage capacity C 22, 9 MWh
Installed electrical capacity P 5 MW
Efficiency of turbine ηturbine 0, 82 -
Efficiency of pumps ηpump 0, 89 -

Table 2.1: Illustrative parameters for MPHES-sphere

2.2. Required storage capacity
The necessary storage capacity of an energy storage system is closely tied to the power output of
the energy farm it supports. Within the framework of MPHES, offshore wind and solar energy emerge
as the primary and compelling candidates for energy storage. Offshore wind farms are experiencing
a notable surge, both in their increasing numbers and a discernible trend toward higher capacities
[14, 15]. Conversely, offshore solar farms, while not yet widespread, exhibit clear potential for growth.
A noteworthy projection from TNO suggests the installation of 45 GW of offshore solar power in the
Netherlands by 2050 [16]. This trajectory underscores the dynamic evolution of renewable energy
landscapes, underscoring the need for adaptive energy storage solutions like MPHES.

As depicted in Figure 2.1, over 50% of offshore wind farms in 2019 had a power capacity of 100 MW
or higher, with 20% exceeding 300 MW [14]. Considering an MPHES system designed to provide
energy for approximately 4 hours in the absence of wind [7, 8, 9], a storage capacity of 400 MWh is
required for more than 50% of existing offshore wind farms and is at the lower limit of meeting energy
demands.
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Using Equation 2.1 and the data provided in Table 2.1, 400 MWh of storage capacity translates to a total
internal volume of 175.000 m3. Represented differently, this internal volume could be achieved with 18
spheres of 10.000 m3 at a depth of 1000 meters. Alternatively, considering the same parameters, it
involves the need for 290.000 m3 of storage at a depth of 600 meters.

Vinternal =
C

ρsw · g · d · ηturbine

=
400 · 3, 6E9

1025 · 9, 81 · 1000 · 0, 82
= 174.645 m3

Figure 2.1: Installed offshore wind capacity in 2019 [14]

While this simplified model lacks precision for actual storage capacity demands, it provides valuable
insight into the envisioned scale of the MPHES system. In essence, storage farms demand significant
total internal volumes tomeet the energy storage requirements of offshore wind farms, and as the power
capacity of these wind farms continues to increase, so does the scale of the necessary storage.

2.3. Reservoir size
As discussed in section 2.2, the need for significant amounts of storage capacity for offshore wind
farms results in a substantial required total internal volume of the reservoirs in the MPHES system.
This prompts the exploration of the optimal reservoir size. The central inquiry revolves around whether
constructing multiple smaller reservoirs or a single larger reservoir is more advantageous.

Commencing with the recognition of a conceivable upper limit to the internal volume for a single unit—
albeit undefined at this stage—practical constraints, such as construction and transportation feasibility,
imply its existence.

A pivotal factor in this decision-making process involves the pump/turbine system. The escalation in the
number of pump/turbine combinations within an MPHES system corresponds to an increased potential
for asset breakdowns, thereby elevating operational risks and costs. Given that pumps represent the
most maintenance-intensive aspect, expanding their quantity results in heightened operational expen-
ditures. The impact on capital expenditures between multiple smaller pump/turbine combinations and
a single, larger pump/turbine combination remains uncertain.
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The efficiency of hydro power turbines tends to ascend with greater capacity. Larger turbines provide an
expanded flow area, leading to diminished friction losses. Moreover, large-scale hydro power systems
are typically designed with precision, contributing to heightened efficiency [17].

While a single pump/turbine system could potentially serve multiple reservoirs, this necessitates central
placement among the reservoirs, interconnected by pipes. However, engineering challenges arise, in-
cluding the need for these conduits to withstand considerable hydrostatic pressure at significant depths
[13]. Settlement variations in the reservoirs further pose challenges, potentially exerting significant
loads on the connecting pipes. Consequently, each reservoir should ideally possess its own pump/tur-
bine system.

Given that larger pump/turbine systems offer superior efficiency, lower operational expenditures, and
reduced risks, coupled with the necessity for each reservoir to have its own pump/turbine system, the
conclusion emerges that each reservoir should be designed to maximize its internal volume for optimal
energy generation. The determination of the largest feasible internal volume and the consideration of
its effect on the usage of material are crucial aspects explored in Chapter 4.

2.4. Competetiveness of MPHES to exisiting storage techniques
Energy storage techniques play a crucial role in addressing the intermittent nature of renewable en-
ergy sources like wind and solar. One of the key factors influencing the profitability of energy storage
systems is the price arbitrage, which refers to the difference in energy prices between periods of low
demand and peak demand. Price arbitrage is typically expressed in €cents per kWh. A higher price
arbitrage signifies a larger disparity between low and peak energy prices, creating a more favorable
and financially viable environment for energy storage systems. As the world transitions from fossil fuels
to renewable energy sources, the intermittency of energy production tends to increase. This shift can
lead to a rise in the price arbitrage, as the variation in energy supply becomes more pronounced with
the integration of renewable energy technologies.

Figure 2.2: Power and energy densities of different energy storage techniques [18]

Today, a variety of energy storage systems serve diverse purposes and harness different forms of en-
ergy. These include Pumped Hydroelectric Energy Storage (PHES), Compressed Air Energy Storage
(CAES), hydrogen fuel cells, Superconducting Magnetic Energy Storage (SMES), flywheels, batteries,
and ultracapacitors, the latter commonly employed for regenerative braking in automobiles [19]. These
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systems vary in storage capacity, power capabilities, and duration of load and release cycles, as de-
picted in Figure 2.2. The x-axis of the graph represents power output in Watts, while the y-axis indicates
typical total energy storage in Watt-hours associated with each energy storage technique. The lower
left quadrant of the Figure corresponds to short load and release cycles, generally with lower energy
storage capacities, whereas the upper right quadrant represents longer-term load and release cycles
with higher energy storage capacities.

Recalling the electrical storage capacity of a single sphere from Table 2.1, which is approximately 20
MWh, and the installed electrical capacity of 5 MW, the combined operation of multiple spheres as a
storage system positions MPHES in the top right of Figure 2.2. This indicates that MPHES operates
on a comparable scale in terms of power and energy densities, positioning it as a competitor to PHES
and CAES. Hence, a techno-economic assessment comparing MPHES to these two storage systems
is pertinent. Such an assessment has been conducted in [9].

PHES plants are known for their long asset life, reaching up to 100 years, relatively long discharge times
(≥ 4 hours), high capital costs but low operation and maintenance costs, and a roundtrip efficiency of
75% to 80% [9, 20, 21].

With several plants in operation and numerous ongoing projects, CAES is a commercially proven large-
scale technique. CAES facilities typically utilize large underground storage caverns to accommodate
high capacity systems, necessitating specific geographical conditions. Energy is stored by compress-
ing air in these spaces, and later released to drive a turbine and generate electricity [22]. CAES plants
typically exhibit discharge times of 4 or more hours in underground installations and 2-4 hours in over-
ground installations, achieving a roundtrip efficiency of approximately 70% [23].

In [9] it was estimated that the investment costs for a single MPHES unit varies from €7,8 to €9,9
million, depending on the farm size, with 120 and 5 units considered. With a power capacity of 5
MW, this translates to specific investment costs of approximately €1560 to €1980 per kW of installed
capacity. Considering the storage capacity of each unit, which is 18,3 MWh, the specific costs become
approximately €426 to €541 per kWh of storage capacity.

Figure 2.3: Comparison of specific investment per installed capacity and storage capacity of MPHES, PHES and CAES [9]

According to [9], the annual costs for a farm amount to €1,3 million to €1,6 million per unit, including
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the capital investment, over an expected service life of 20 years. With an assumption of 1000 cycles
per year, the specific power generation costs for MPHES are estimated to be in the range of 7,2 €cents
to 8,9 €cents per kWh.

In Figure 2.3, the investment costs of MPHES are compared with those of PHES and CAES. The x-axis
denotes the total investment costs per installed kilowatt of power capacity, while the y-axis represents
the total investment costs per kilowatt-hour of energy storage capacity. A lower position on the graph
indicates a more favorable ratio of investment per storage and power capacity.

The strikingly wider range of investment costs associated with both CAES and PHES, as compared to
MPHES, is notable. For PHES, this variation can be attributed to geographical and topological factors,
as well as capacity considerations. Investment costs are significantly influenced by the availability of
naturally occurring elevation differences in the terrain and proximity to the electrical grid. Similarly, for
CAES, the wider range is influenced by comparable factors. The presence of an underground storage
cavern has a significant impact on investment costs. Overground CAES typically incurs higher invest-
ment costs due to the necessity of constructing containment facilities for air compression, whereas un-
derground storage utilizes the existing landscape as a readily available compression chamber.

Figure 2.4: Comparison of power generation costs of MPHES, PHES and CAES [9]

In Figure 2.4, the comparison focuses on power generation costs rather than investment costs, as seen
in Figure 2.3. The wider range observed for PHES and CAES, as opposed to MPHES, in Figure 2.4
can be attributed to the methodology used to obtain the data. The figures for PHES and CAES were
derived from literature studies, whereas the numbers for MPHES were estimated through calculations
as outlined in [9].

Analysis of Figures 2.3 and 2.4 suggests that MPHES can be cost-competitive with both PHES and
CAES.

Figure 2.5: Price arbitrage in correlation with yearly storage operation hours for net zero annuity for a farm with 80 units [9]

The annual costs and revenues in [9] were calculated using the annuity method, which is a financial
tool used to determine the equal periodic payments required to repay a loan or investment over a
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specified period. This method allows for the transformation of the initial investment, as well as any
non-recurring and regular payments, into a constant business ratio that occurs periodically throughout
the investment’s assessment period [24]. In this context, a positive annuity represents an annual net
profit.

For MPHES, the estimated annuity for a single unit varies from €231.770 to €544.090, contingent
upon the farm size (120 or 5 units, respectively). As previously noted, the profitability of MPHES is
significantly influenced by price arbitrage and operational hours. A correlation between these factors
has been established and is depicted in Figure 2.5. In this graph, the threshold of net zero annuity is
represented by the line. Operations above this line are deemed cost-effective, while those below it are
not. To achieve a net zero annuity within a range of 1000 to 4000 operational hours, a price arbitrage
of 20 €cents to 4 €cents per kWh, respectively, is necessary.

2.5. Requirements for potential MPHES installation locations
In the context of PHES systems, traditional implementations typically necessitate large head differences
between reservoirs, making countries with lowland topography unsuitable [25]. However, the novel con-
cept of MPHES introduces its own unique topographic requirements. The energy-generating potential
of a location is of utmost importance; without significant wind or solar energy generation, there would
be no energy to store. Additionally, water depth plays a crucial role in determining the performance of
the MPHES system, while considering other geomorphological, geotechnical, and social properties [5,
8].

For the successful installation of the MPHES system, a flat seabed is essential. A sloped or hilly
seabed cannot support a stable foundation, leading to uneven distribution of stresses in the structure.
Therefore, geomorphologies such as trenches, spreading ridges, rift valleys, canyons, seamounts, es-
carpments, and fans are considered unsuitable [8]. While a foundation on piles might be conceivable,
it was not discussed in the literature, and introducing piles at the intended depths could pose unnec-
essary challenges. Moreover, the bearing capacity of the soil at these depths, primarily composed of
muddy sand [10], is limited. Although identifying site-specific soil conditions may be complex, some
frameworks are available for this purpose [26].

The suitability of a location for MPHES implementation is not solely determined by the presence or
absence of wind- or solar farms, as MPHES systems can be seamlessly integrated into an existing
energy infrastructure, where wind or solar farms have yet to be constructed. However, the presence
of such farms in a region indicates a demand for energy procurement, which is a crucial requirement.
In the absence of electricity demand, energy storage becomes redundant. Hence, proximity to the
electrical grid is a significant factor in identifying suitable locations, necessitating close vicinity to cities
or industrial centers. Moreover, the distance from the shore should be reasonable and should not
conflict with other marine activities, such as fishing or military operations [5]. Furthermore, the identified
area should not fall within a marine protected area.

To identify potential installation sites, a Geographical Information System (GIS) analysis was performed.
The analysis allocated potential locations to the Exclusive Economic Zones of various countries, using
the following hard parameters [8]:

• Water depth: 600-800 m
• Bedslope: ≤ 1 °
• Unsuitable geomorphology as mentioned earlier
• Distance to electrical grid: ≤ 100 km
• Distance to maintenance bases: ≤ 100 km
• Distance to installation bases: ≤ 500 km

Figure 2.6 illustrates the results of the conducted GIS analysis, focusing on potential installation loca-
tions around the Mediterranean Sea. However, the complete study revealed other suitable locations
worldwide, with the United States emerging as the most promising candidate, as shown in Table 2.2.
The identification of suitable areas was done by the GIS-analysis and the capacity was determined
based on the assumption of a 20x20 grid of spheres per km2, providing 50x50 meters of available
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Figure 2.6: Potential installation locations in Mediterranean sea [8]

Country Area [km2] Share of total area Capacity [GWh]
Total area 111.659 100% 817.344
TOP 10 64.965 58% 475.544
United States 10.226 9% 74.854
Japan 9511 9% 69.621
Saudi Arabia 8535 8% 62.476
Indonesia 8002 7% 58.575
Bahamas 6201 6% 45.391
Libya 5836 5% 42.720
Italy 5572 5% 40.787
Spain 4299 4% 31.469
Greece 3476 3% 25.444
Kenya 3307 3% 24.207

Table 2.2: Potential locations for MPHES [8]

space per sphere. It was further assumed that each sphere provides 18,3 MWh of storage capacity.
Similar site-location analyses were also conducted in [5].

2.6. Experiments
This Section describes two distinct experiments and the plans for a third one. The first one, carried out
by the Massachusetts Institute of Technology (MIT) and presented in [5] during 2013, primarily aimed
to validate the concept of MPHES. The second experiment, executed by the Fraunhofer Institute and
published in 2017, involved a 1:10 scale test conducted in Lake Constance [7].

MIT Experiment
In the MIT experiment, a concrete sphere with an inner diameter of 75 centimeters was utilized, con-
structed by joining two hemispheres together. To simulate depth, a water reservoir was placed 10 me-
ters above ground level. For an overview of the test setup, refer to Figure 2.7. Given the limited scale
of this setup, a separate pump and turbine were employed, though the full-scale system is envisioned
to feature a single pump-turbine system. The necessity of a ventilation line to maintain atmospheric
pressure inside the sphere was point of discussion. It was hypothesized that the inflow of water might
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compress the remaining air, potentially leading to a decrease in generated power.

Figure 2.7: The MIT experimental configuration: (a) SolidWorks model of the test setup, (b) the physical representation of the
built system, and (c) the comprehensive test assembly, including the high reservoir. [5]

During testing, the researchers found that the absence of a ventilation line could actually be used as an
advantage, by reducing the pressure inside the sphere when it was empty. This increased the roundtrip
efficiency without ventilation line from 11% to 12%. This effect is considered to be less significant in
deeper water. Although the experiments yielded relatively low efficiencies, it is important to note that
these were attributed to the generally low pressures during the tests and do not raise concerns about
the efficiency of a full-scale system.

Fraunhofer Experiment
The Fraunhofer experiment was conducted offshore in lake Constance at a depth of 100 meter. The
1:10 scaled prototype measured an outer diameter of 3 meter, inner volume of 8 m3 and weighed 21
tons. It was built by Hochtief Solutions (HTS). As opposed to the MIT-setup, which mainly aimed to
validate the concept, all tasks in this experiment were completed with regard to the application of the
full-scale system [7]. The setup was transported over the road to the test site and lifted in the water with
a crane. The complete installation was heavier than the weight of the displaced water, so lift bags were
used to tug it to the final installation site, where it was submersed by means of a winch. An overview
of the test-setup is displayed in Figure 2.8. The prototype’s final shape deviated slightly from a perfect
sphere, incorporating cylindrical extensions at the top and bottom to accommodate the pump and form
a foundation, while the full-scale system is intended to be more spherical in shape.
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In total a series of 12 full cycles with open ventilation and 10 cycles with closed ventilation were per-
formed. It was found that closed ventilation did not lead to significant efficiency decreases, although
charging the system did require more time and energy. This discovery indicated that ventilation is not
a strict requirement for operating the system. This is a great advantage, as ventilation lines to the wa-
ter surface impose complicated challenges at the projected installation depth. Roundtrip efficiencies
of 39% were described in the experiment. The main identified complications in the implementation
of the full-scale system are the construction and assembly of the full-scale sphere, offshore logistics
operations, the electro-mechanical equipment and the grid integration of the system [7].

Figure 2.8: The Fraunhofer experimental configuration: (a) lift operation, (b) tugging operation to the final location in the lower
left, and (c) the comprehensive test assembly on the right. [7]

Future planned experiment
Another experiment is envisioned to take place in 2025 off the coast of California. This experiment
is set to be conducted at a reduced scale of 1:3, featuring a sphere with an approximate diameter of
10 meters. The targeted depth for this experiment is 500 meters. As of now, the logistics regarding
whether the system will remain afloat during the experiment after its descent from a barge or be placed
on the seabed are yet to be determined.

This experiment is the result of a collaborative effort between several key players, including the Fraun-
hofer Institute, Hochtief Solutions, and RCAM Technologies. In this venture, RCAM Technologies will
be responsible for constructing the sphere, employing 3DCP. Hochtief Solutions will plan the logistics
and assess the loads on the structure throughout the construction and transportation phases.

The primary objective of this experiment is to enhance understanding of the intricacies involved in
constructing, transporting, and installing the MPHES system, thereby shedding light on the practical
challenges and opportunities in this pioneering field [13, 27, 28].

2.7. Construction methods spherical design
The realization of energy storage at the seabed holds immense promise, yet constructing the required
spherical storage tanks poses a significant challenge. This Section delves into various proposed con-
struction techniques to address this challenge, all of which begin with a spherical design for the seabed
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reservoir. Specific focus is placed on construction methodologies employing concrete, a material char-
acterized by its wide availability and cost-effectiveness — qualities particularly advantageous given
the anticipated volumetric requirements. Moreover, concrete possesses well-established properties,
excelling in its ability to endure compressive forces. Given the substantial intended operational depth,
the suitability of concrete as the material of choice becomes apparent.

2.7.1. Hemisphere concept by MIT
In [5] a preliminary construction method was presented consisting of two identical hemispheres with a
grout line at the circumferential interface. These hemispheres can be cast using a simple two-piece
mold. Subsequently, the hemispheres are sealed together by pumping epoxy grout in the grout line.
The bottom of each hemisphere can be a steel plate or a pre-cast post-tensioned concrete plate,
which serves as part of the mold during concrete casting and provides extra weight to counter buoy-
ancy.

This design takes into account the potential dual-functionality of the system to serve as an anchor for
a floating wind turbine (FWT). In this configuration, the FWT would be connected to the anchor with a
mooring line. The estimated time required for casting two hemispheres is 42 hours [5]. No estimations
were provided for the required time to complete the rest of the construction or the installation process.
The construction method is illustrated in figure 2.9.

Figure 2.9: Hemisphere concept by MIT [5]

2.7.2. Hybrid 3D concrete printing and casting method by RCAM
As concrete design subcontractor on the STORE Consortium, Witteveen+Bos supervised a TU-Delft
graduation project on a novel MPHES construction-method [29]. This master’s thesis examined a
hybrid technique involving casting and 3D concrete printing (3DCP), as illustrated in Figure 2.10. A
prefab element is utilized for the bottom of the sphere, and a formwork is constructed using 3DCP.
Inner and outer shells are 3D printed, and concrete is poured between them. A minimum free height
of the formwork is dictated by the hardening time of 3D printed concrete. Conversely, the maximum
free height of the formwork relies on its resistance against buckling. As 3DCP can not be applied at an
inclination of more than 45°, the top of the sphere is constructed using a prefab element. The minimum
total construction time for this method is reported to be 24 days. This method will be referred to as the
RCAM-method. RCAM Technologies, member of the STORE Consortium is a tech company dedicated
to achieving 3D Concrete Printed Renewable Energy and Energy Storage. RCAM is an abbreviation
of Reinforced Concrete Additive Manufacturing.
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Figure 2.10: Hybrid 3DCP + in situ casting construction method [29]

2.7.3. Air pressured formwork by HTS
An innovative construction technique patented by HTS (EP2700594A1) and approved in 2014, involves
pouring concrete as a monolith within a specially designed spherical formwork on pontoons [30]. The
formwork comprises stacked toroidal rings, reinforced by air pressure, and a membrane as depicted
in Figure 2.11). To facilitate the process, the concrete is poured from a curved truss structure that
can rotate. The construction occurs in several phases, allowing the concrete to gain stiffness before
each subsequent pour. Gradual stacking of the toroidal rings takes place between pours, with gluing
and hook-and-loop fasteners serving as the primary connection methods. An essential feature of this
technique is the creation of a circular opening approximately 3 meters in diameter at the upper area of
the construction. This is achieved by anchoring a steel ring to the concrete shell. Subsequently, the
inner formwork and auxiliary scaffolding tower can be removed through this opening and reused for
further construction purposes. The production of one sphere will approximately take eight days and
the installation will require eight additional days [7]. For a more detailed explanation of this construc-
tion technique, please refer to appendix B. In light of HTS’s decision not to assume responsibility for
sphere production in the future, it has led to the discontinuation of the development of this particular
construction method [28].

Figure 2.11: Formwork system for full-scale construction patented by HTS [7]
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2.7.4. Other construction techniques
Several other construction techniques have been found in literature, although they have not been ex-
tensively developed, likely due to early-stage recognition of potential challenges or perceived limited
feasibility. Here, a brief overview of these techniques is provided:

• Bringing six equal sections (i.e. staves) together and banding them with steel cables, similar to
the construction of a barrel [5]. A similar concept, using prefab elements, was presented in [29]
and rejected due to its limited scalability and concerns regarding watertightness.

• Using 3DCP to print the entire sphere [29], a method that is reported to be time-consuming.
• Slip/jump forming the sphere, wherein the formwork is moving and the construction is carried out
piecewise [29]. This method may also be time-consuming, and multiple formwork segments are
required due to variations in the diameter of the rings forming the sphere at different heights.

2.8. Implementation aspects spherical design
In this Section, the discussion revolves around the construction location, transport and installation,
followed by an analysis of the watertightness of the design. The complete module, comprising the
sphere, pedestal, and foundation, is considered, as illustrated in Figure 2.12.

Figure 2.12: Potential design of MPHES-system, including pedestal and foundation[10]

2.8.1. Construction location
The initial consideration in the logistical process is the construction location of the sphere. During
construction, it is planned to cover the holes in the pedestal to entrap air between the sphere, pedestal,
and foundation. This ensures that the module’s weight is approximately equivalent to the displaced
water [10].

As discussed in Appendix A, the proposed spheres have a draught of over 25 meters without providing
additional buoyancy. Standard dry docks are not equipped to handle such a draught, presenting signif-
icant challenges in selecting suitable construction locations for the spheres. Consequently, it becomes
essential to use pontoons with substantial air volumes to provide buoyancy.

In a technical report, it was mentioned that pontoons with a total volume of 8.500 m3 were required
to provide sufficient buoyancy for the structure to be floated out of a dry dock at a draught of 11, 7
meters. It was proposed to use two pontoons with dimensions of 50 meters by 30 meters by 2, 84
meters [10]. However, it should be noted that most dry docks cannot accommodate pontoons of such
large dimensions. A list of the world’s largest dry docks is available in Appendix G.2.
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Alternatively, building the sphere in a fjord presents a more viable option. The serene weather con-
ditions and ample depths facilitate smooth construction operations. However, constructing in a fjord
introduces complexities, as the construction site is now situated on water. Moreover, the availability
of suitable fjords worldwide is limited. For more information on suitable construction locations, refer to
Appendix G.

2.8.2. Transport
Once the structure is liberated from its construction location, it can be towed to the final installation
site. The design, as outlined in [10], is essentially weightless in water, facilitating its transportation to
the installation location. This implies that minimal or no additional buoyancy is required in open sea.
Tugboats can handle the transportation process.

As an alternative proposal, there is a suggestion to pack the spheres together in units of 3, 4, or 6,
resembling an egg carton [31]. These grouped spheres would then be placed on a semi-submersible
vessel (SSV). Upon arrival at the installation location, the spheres are unloaded from the SSV. However,
this configuration appears to be most advantageous when using smaller units, which can be easily
loaded from the construction location onto the SSV. Unfortunately, an illustration cannot be provided
as the report containing this information is confidential.

2.8.3. Installation
Upon reaching the installation location, the holes in the pedestal are exposed, allowing water to fill the
free area between the sphere, pedestal, and foundation. The weight of the water results in the module
acquiring negative buoyancy. At this point, the module can be lowered to the seabed.

Prior to any installation activities, a survey campaign will take place to ensure seabed is suitably clear,
level and conditioned for installation of spheres. A special boulder grab tool is employed to clear any
boulders [31].

2.8.4. Watertightness
The RCAM method stands out as the most promising construction approach, a decision that is detailed
further in Section 2.9.3. In this approach, the prefab bottom is attached to themid-section of the spheres
through a cold joint. Subsequently, the prefab top is placed atop the mid-section and connected, pre-
sumably using a wet joint. In both types of joints, ensuring watertightness is crucial.

To enhance watertightness in cold joints, waterstops can be employed, as discussed in Appendix H.
Similarly, in wet joints, virtually the same techniques are applied, resulting in a cold joint on either side
of the wet joint concerning watertightness.

Additionally, the presence of cracks in the concrete significantly influences the watertightness of the
structure. Therefore, verifying the maximum crack width of the structures is crucial. However, this
aspect is not further discussed in this report.

2.9. Feasibility considerations
This Section provides an assessment of the feasibility of MPHES and offers a reflective analysis of
its standing in the current state of the art. First the market potential for energy storage is examined,
followed by an evaluation of the financial aspects of MPHES. Finally, the feasibility of its construction
is discussed. The topographical feasibility is not considered, as its requirements have been previously
established in Section 2.5.

2.9.1. Market feasibility
The transition from fossil fuels to renewable energies is an inevitable and essential step in combating
climate change and ensuring a sustainable energy future. As the share of wind and solar energy in
the energy mix increases, the need for effective energy storage solutions becomes increasingly critical.
The intermittent nature of renewable energy sources creates a market demand for energy storage
technologies to balance energy supply and demand and enhance grid stability.

Research and development in the field of energy storage are rapidly growing worldwide, as scien-
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tists and engineers seek innovative and efficient techniques to store renewable energy for later use.
Large-scale energy storage solutions are becoming increasingly necessary to address the challenges
of integrating variable renewable energy sources into the grid effectively.

MPHES, as a large-scale energy storage system, has shown great potential as a competitor to estab-
lished energy storage technologies like PHES and CAES. As demonstrated in [9], MPHES operates
on a comparable scale in terms of power and energy densities and can be cost-competitive with other
large-scale storage systems.

2.9.2. Financial feasibility
While MPHES has demonstrated potential cost-competitiveness with other large-scale energy storage
techniques, there are several considerations from a financial standpoint. Figure 2.3 indicates that
MPHES is not yet within the most favorable region of the graph, represented by the lower left. The
wide investment cost ranges for both CAES and PHES, influenced by geographical properties, can
be misleading. The overlapping region of MPHES with CAES and PHES does not inherently imply
consistent cost-competitiveness. Instead, it suggests that MPHES could be more financially attractive
in regions where geographical and topographical constraints make the implementation of CAES or
PHES more expensive, such as areas near offshore wind farms.

For MPHES to garner investor interest, it must offer a net positive annuity. The study in [9] estimated
that a single MPHES unit could yield a positive annuity of several hundred thousand euros. However, as
depicted in Figure 2.5, achieving a net zero annuity for an MPHES farm with 80 units requires significant
price arbitrage, necessitating at least 4 €cents per kWh at 4000 operation hours. This implies that the
plant should ideally achieve 1000 full cycles in a year, or 2,7 full cycles per day. This operational
requirement is substantial, and the expected price arbitrage poses a potential challenge. Research in
[32] demonstrated that the daily price differentials in Europe ranged from 0.8 €cents per kWh in Norway
to 5,5 €cents per kWh in Ireland. These figures indicate that the outlook presented in [9] might be overly
optimistic.

Overall, while MPHES shows potential as a cost-competitive energy storage solution, careful consid-
eration of multiple factors, including price arbitrage, operational hours, and geographical location, is
crucial to determine its economic viability and attractiveness to investors in practical applications. Fur-
ther research and real-world data will be essential to provide a more comprehensive assessment of
MPHES’s profitability in various scenarios.

2.9.3. Construction feasibility of spherical design
The construction feasibility of MPHES is an important aspect to consider when assessing the practicality
of implementing such large-scale energy storage systems. As mentioned in the previous sections, sev-
eral construction techniques have been proposed for MPHES, each with its advantages and challenges.
However, it is important to note that the construction of a full-scale MPHES system has not been real-
ized yet. The largest sphere built was only a 1:10 scale model, which was constructed as a monolith
with conventional casting. Reflecting upon the aforementioned construction approaches:

• Hemisphere concept by MIT
• Air pressured formwork concept by HTS
• Hybrid method of 3DCP and concrete casting by RCAM

The hemisphere concept by MIT was proposed in [5], which was published in 2013. The technique
has shown difficulties in achieving a proper seal at the circumferential interface of the two hemispheres
during the 1:35 scale experiment. This raises concerns about the feasibility of scaling up this construc-
tion method to full-size spheres. Additionally, the weight of a single hemisphere with a diameter of 30
meters would be 10.000 tonnes of concrete. Once the hemispheres are sealed together, the pump/-
turbine installation should be installed and the construction is loaded onto a barge. At this point, the
construction is heavier than the highest weight a crane has ever lifted, which is 20.000 tonnes [33]. The
lack of further publications on this specific construction technique may suggest considerable difficulties
in overcoming the identified challenges or a potential abandonment of the project.

The air pressured formwork concept by HTS, while avoiding the lift problem by constructing in a dry
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dock or water, presents other challenges. Many dry docksmay not be able to accommodate the draught
of the MPHES structure [34]. Furthermore, execution of the air pressured formwork seems like a
challenge. Pneumatic formwork is generally suitable for thin curved shells [35]. With a radius of 15
meter and thickness of 2,5 meter, the MPHES sphere will be a typical thick shell [36]. Hence, the lateral
pressure of the wet concrete on the air pressured toroidal rings might become problematic. Moreover,
the proposed connection methods between the rings with hook-and-loop fasteners or glue may not be
sufficient for the intended scale. As previously mentioned, this project was abandoned by HTS.

The hybrid method of RCAM has its own flaws. While the application of 3DCP offers the advantage
of casting the structure as a monolith, the use of a prefab element as the base of the sphere deviates
from this approach and may potentially impact the watertightness of the structure. The same concern
applies to the top of the structure, where it will be completed with another prefab element. Additionally,
the use of 3DCP is time-consuming, which becomes a disadvantage when multiple spheres need to
be constructed.

The primary objective of the examined construction techniques is to tackle the intricacies associated
with spherical formwork. Considering that a fully operational MPHES system comprises multiple units,
the reusability of formwork becomes instrumental in reducing construction time and costs. However,
achieving formwork reusability while adhering to the specific spherical configuration required forMPHES
units presents a notable challenge.

The hemisphere concept by MIT poses scalability challenges, while the air pressured formwork by
HTS appears somewhat makeshift. Among the proposed construction methods in literature, the RCAM
method stands out as the most promising. This is supported by the development of various construction
methods for the MPHES sphere in [29], where the RCAMmethod was assessed as the most promising.
Additionally, the Fraunhofer Institute, a leading developer of this concept, plans to collaborate with
RCAM and use the RCAM method for constructing the spheres.

In addition to the challenges associated with the construction techniques discussed earlier, the choice
of construction location for MPHES spheres introduces its own set of difficulties. Most dry docks are
not equipped to handle the draught of the sphere, and fjords, which can accommodate substantial
draughts, are not widely distributed globally. Consequently, the feasibility of implementing MPHES
systems with a spherical design appears to be constrained to installation locations near some of the
world’s largest dry docks or fjords. This limitation further underscores the intricate nature of addressing
both the construction method and the suitable installation sites for these innovative energy storage
systems.

2.10. Cost analysis
As highlighted in Section 2.4, a techno-economic analysis has demonstrated that MPHES can achieve
cost competitiveness compared to existing energy storage techniques. Beyond this assessment, it is
insightful to examine the detailed breakdown of the overall costs associated with the implementation
and operation of the MPHES system. According to [9], a significant proportion. Specifically, 73, 7%
of the annual costs is allocated to servicing capital investments. In Figure 2.13, an expanded view
of the capital-related costs provides a closer look at how these costs are distributed among various
expenditure categories.

The intriguing revelation from the analysis is that the pump turbine claims the most significant share of
the investment, closely trailed by the expenses associated with the construction and installation of the
concrete sphere. It is essential to recognize that these figures are estimations, given that the system
has not been physically implemented, and hence specific data on the costs is unavailable. Nonetheless,
despite being projections, this assessment proves instrumental in pinpointing critical factors influencing
the economic viability of the MPHES system.

The costs linked to construction and installation constitute 2, .8% of the total annual costs of the system,
making up 30, 9%of the 73, 7%capital-related costs. While the calculations in [9] lack full transparency, it
is assumed that factors such as material costs, construction labor costs, rental costs of the construction
location (dry dock or factory hall), rental costs of construction material (crane, concrete pumps, etc.),
and rental costs of towing boats and immersion ships have been considered.
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Figure 2.13: Pie-chart of annual costs of implementation of MPHES-system[9]

Recognizing that the list provided is not exhaustive, and acknowledging the inherent complexity of es-
timating the actual construction costs of the system, it is crucial to note that only 22, 8% of the total
annual costs are estimated to be allocated to construction and installation. From this, one can infer
that material costs exert a modest influence on the overall project costs. Therefore, the anticipated
additional material associated with the construction of the cylinder and torus might be deemed accept-
able. These increased material costs might even be offset by the cylinder and torus outperforming in
other expenditure categories.

2.11. Conclusions from literature
The review of literature has provided valuable insights applicable to the design considerations. Firstly,
the energy storage capacity of an MPHES system must align with the specific requirements of the sup-
ported energy farm, with a typical demand exceeding 400 MWh for offshore wind farms, as discussed
in Section 2.2.

The potential energy storage capacity increases with greater depth and internal volume. However,
limitations on installation depth, considering topography, hydrostatic pressure, and accessibility, ne-
cessitate a focus on augmenting storage capacities by increasing the total internal volume of the sys-
tem.

As outlined in Section 2.3, achieving a higher total internal volume for a storage farm is more favorable
by enhancing the internal volume of individual units rather than increasing the number of units. This
preference is shaped by considerations related to system efficiency, vulnerability, and capital expendi-
tures, particularly those associated with the pump/turbine system. Additionally, it is advisable for each
reservoir to have its own pump. The impact of increasing the internal volume on the material usage of
the reservoir is a critical consideration, explored extensively in Chapter 4.

While GIS analyses have indicated suitable locations for installing the MPHES system, some analyses
are limited to specific regions, such as the Mediterranean Sea, and may require updates. Moreover, a
technoeconomic assessment has highlighted the clear potential for economic profitability of the MPHES
system. However, the current construction feasibility of the system appears to be a significant bottle-
neck that warrants further exploration.

From the proposed construction techniques found in literature, the RCAM-method, which uses a com-
bination of 3DCP and conventional casting, emerges as the most promising construction method for
the sphere.

Due to the required dimensions, constructing the sphere is highly complex. Current proposed con-
struction methods rely on unproven techniques. Additionally, the high draught of the structure during
construction limits potential construction locations. Therefore, the construction process should prioritize
the feasibility of the construction method over optimizing construction costs.



3
Starting points for initial structural

design

In this Chapter, the foundation for the design process is laid through the establishment of key starting
points, analysis of initial parameters, and consideration of structural loads. It serves as the basis for
the subsequent calculations that determine the material usage for each shape in Chapter 4.

To evaluate the effectiveness of a shape, a new parameter, the CIV ratio
(

Vconcrete
Vinternal

)
, is introduced. This

metric quantifies the relationship between costs, represented by the volume of material used, and
benefits, expressed in internal volume.

The chapter begins by establishing the intended installation depth, guiding the selection of materials
for the project. Following this, key definitions at the cross-section of each shape are documented,
providing clarity and context. A detailed layout of the design is then presented. Finally, the chapter
delves into discussions surrounding structural loading conditions.

3.1. Starting points
This Section outlines the initial parameters for the design phase. The selected water depth for these
structures is initially fixed at 1000 meters. As discussed in Section 2.1, this depth represents the most
ambitious depth in existing literature. While shallower installation sites are feasible, the choice of this
depth is normative. A design suitable for 1000 meters can also be adapted for shallower depths. It is
important to note that shallower depths offer advantages like thinner walls and reduced concrete usage,
but come with the trade-off of smaller storage capacities.

Consistent with earlier designs documented in the literature (refer to Section 2.7), concrete emerges as
the material of choice for this project. The selection is underpinned by its widespread availability and
cost-effectiveness, both of which are pivotal factors due to the substantial volume of concrete required
for construction. Moreover, concrete is renowned for its capacity to withstand significant compressive
forces, a quality of paramount importance given the intended operational depth.

In the analyses in this Chapter, the concrete grade C60/75 is employed. Taking into account a material
safety factor of γc = 1, 5, the design compressive strength (fcd), is established at 40 N/mm2.

In this specific phase of the design process, the consideration of reinforcement is deliberately omitted.
The focus of this chapter is to estimate the requisite concrete volumes for each structural configuration.
It is not intended to preclude the possibility of reinforcement being required in the reservoir, foundation,
or structural detailing. Given the considerable length of cylinders and tori, it is anticipated that some
reinforcement will be essential for resistance against bending. However, at this stage, such consider-
ations are intentionally set aside.

The design of the reservoir assumes a level seabed, facilitating the adoption of a shallow foundation

23
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design. While the possibility of employing a foundation supported by piles exists, it is important to note
that this aspect is beyond the current scope of the report. The emphasis remains on the feasibility and
practicality of a shallow foundation design.

Throughout this report, several parameters frequently recur, ensuring consistency and clarity in the
calculations. They are listed in Table 3.1.

Parameter Symbol Value Unit

Concrete compressive design strength fcd 40 N mm-2

Density concrete ρconcrete 2400 kg m-3

Density seawater ρsw 1025 kg m-3

Depth d 1000 m
Gravitational constant g 9,81 m s-2
Hydrostatic pressure p N mm-2

Membrane force n N m-1

Maximum effective compressive stress σmax N mm-2

Table 3.1: Frequently recurring parameters

3.2. Shape geometries
In this Section, the parameters that shape the geometry of each form are detailed. Referring to this
Section helps in remembering the definitions of the parameters within their context and facilitates visu-
alization.

3.2.1. Sphere
In Figure 3.1 a visualization of the cross-section of the sphere design is presented. The parameters
are also listed in Table 3.2. The parameter a refers to the inner radius of the sphere.

Figure 3.1: Schematic cross-section of sphere
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Parameter Symbol Unit Formula

Internal radius a m
Shell thickness t m
Pedestal height hpedestal m
Pedestal thickness tpedestal m
Foundation plate thickness tplate m
Foundation plate diameter � m 2 (a+ t)

Internal volume Vinternal m 4

3
πa3

Table 3.2: Sphere dimensional parameters

3.2.2. Cylinder
The cylindrical reservoir adopts a tube design with flat, circular plates serving as caps. While this design
may not be the most optimal for withstanding hydrostatic pressure, transmitting internal stresses arising
from edge disturbances, or conserving concrete usage, its simplicity facilitates a preliminary estimation
that yields useful results at this stage in the design process.

The shell of the reservoir mainly transfers the hydrostatic loads into membrane forces. However, it is
expected that a bending moment will arise in the center of the cap. To resist this bending moment, it is
assumed that the caps require twice the thickness of the shell. This is not further elaborated on.

A visualization of the cylindrical design is presented in Figure 3.2, while Table 3.3 explains the param-
eters. Both a and L refer to the internal surface of the reservoir.

(a) Longitudinal section

(b) Cross-section

Figure 3.2: Schematics of cylinder
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Parameter Symbol Unit Formula

Internal radius a m
Shell thickness t m
Internal length L m
External length Lexternal m
Width of foundation base Wbase m

Slenderness - - L

2a
Internal volume Vinternal m πa2L

Table 3.3: Cylinder dimensional parameters

3.2.3. Torus
The torus closely resembles the cylinder, essentially a curved tube with connected ends, eliminating
the need for a cap design. However, as discussed in detail in Appendix C, the membrane force is not
uniform across the entire circumference of the cross-section.

The maximummembrane force is slightly higher than that of the cylinder, while the minimummembrane
force is marginally lower. Refer to Appendix C for a detailed derivation of these findings. The positions
of these membrane forces are indicated in Figure 3.3b. The membrane force acts in a tangential
direction, as discussed in Section 3.3.

The cross-sectional thickness, determined by the capacity to withstand the maximum membrane force,
remains constant around its circumference. This may potentially lead to overdimensioning, as the
design thickness is based on the normative membrane force. Optimizing the location of the tunnel
through the torus shell by placing it more outward can result in a more efficient distribution of the load,
thereby leading to material savings [37].

A visualization of the torus is provided in Figure 3.3, and detailed parameters are explained in Table 3.4.
Similar to the sphere and cylinder, a refers to the internal surface of the torus. The major radius b
remains unaffected by the shell thickness, eliminating any distinction between internal and external
major radii.

Parameter Symbol Unit Formula

Minor radius internal a m
Major radius b m
Shell thickness t m
Width of foundation base Wbase m

Slenderness - - b

a

Internal volume Vinternal m 2π2a2b

Maximum membrane force nmax N m-1 −pa
− 1

2 + b
a

−1 + b
a

Minimum membrane force nmin N m-1 −pa
1
2 + b

a

1 + b
a

Table 3.4: Torus dimensional parameters
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(a) Major cross-section

(b) Minor cross-section

Figure 3.3: Schematics of torus

3.2.4. Slenderness
When designing a structure with a specified volume, the choice of shape and its dimensions becomes
crucial. For a sphere, the volume solely depends on the radius a, simplifying the design process.
Conversely, for a cylinder, the shape is dictated by the ratio of its radius a to its length L. Similarly, for
a torus, the shape is determined by the ratio between its minor radius a and major radius b. Utilizing
these dimensions, one can compute the membrane forces within these structures, which in turn are
instrumental in estimating the required thickness of the structural material.

For cylinders and tori, the ratios between length and width are referred to as slenderness. They are
defined as, L

2a for cylinders and
b
a for tori, where a higher value represents a more slender shape.

Table 3.5 demonstrates various configurations of cylinders and tori, highlighting the impact of increasing
these parameter ratios. These configurations illustrate how higher ratios can lead to structures that
are significantly slender, potentially compromising their robustness. It is important to note that the wall
thickness in Table 3.5 does not necessarily reflect the actual required thickness to withstand hydrostatic
pressure at a depth of 1000meters. The primary focus here is to showcase different slenderness values
for cylinders and tori.

A significant portion of the figures in this chapter contains plots for different slenderness values for the
cylinder and torus. To ensure consistency, plots with selected slenderness values of 4, 8, and 12 have
been chosen. Three different values are sufficient to demonstrate that slenderness has an influence
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on the calculated results, and it allows for the observation of observable trends. Including more than
three values could make most plots unclear.

Cylinder Torus

L

2a
= 4

b

a
= 4

L

2a
= 8

b

a
= 8

L

2a
= 12

b

a
= 12

L

2a
= 20

b

a
= 20

Table 3.5: Illustrative configurations for cylinder and torus
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3.3. Definitions of membrane forces and internal stresses
In Chapter 4, the determination of wall thickness is based on the maximum membrane force. The
sphere, due to its geometry, experiences membrane forces solely in the tangential direction, as illus-
trated in Figure 3.4. Conversely, the cylinder and torus encounter membrane forces in both longitudinal
and tangential directions, depicted in Figures 3.5 and 3.6 respectively.

To establish the wall thickness, considering the maximum membrane force, it is crucial to identify
whether the longitudinal or tangential membrane force prevails. For thin-walled cylinders, the following
relationships apply [38]:

nLL,cylinder = −pa

2

nθθ,cylinder = −pa

Regarding a torus, longitudinal and maximal tangential membrane forces have been derived in Ap-
pendix C:

nLL,torus = −pa

2

nθθ,torus = −pa
− 1

2 + b
a

−1 + b
a

Given that for a torus b
a > 1, the maximal tangential membrane force consistently exceeds the longitu-

dinal membrane force. In fact, the minimum tangential membrane force for a torus is − 3pa
4 , a derivation

detailed in Appendix C. Refer to Section 3.2 for definitions of a and b.

In Chapter 4, the assumption is made that the normal tangential stress in the shell wall σθθ is constant
across the wall thickness. This assumption generally holds for membranes with a a

t ratio exceeding
4000. For thin shells (with 4000 > a

t > 30), the normal stress in the shell wall linearly varies over the
shell thickness [36].

Earlier designs of the spherical reservoir indicate a thickness-span ratio of a
t = 5.26 [8] and a

t = 5.38
[10]. Classified as a thick shell, these typically exhibit a non-linear stress distribution over the shell
thickness [36]. Consequently, it is expected that in reality, σθθ varies non-linearly across the shell
thickness.

Despite this expectation, calculations based on the assumption are still deemed valuable. The verifica-
tion of this assumption is undertaken in Section 6.2.
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(a) Tangential membrane force nθθ (b) Radial stress or distributed force σrr

(c) Tangential stress σθθ

Figure 3.4: Sphere membrane forces and stress definitions at cross-section
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(a) Tangential and longitudinal membrane forces nθθ and nLL (b) Radial stress or distributed force σrr

(c) Longitudinal stress σLL (d) Tangential stress σθθ

Figure 3.5: Cylinder membrane forces and stress definitions at cross-section
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(a) Tangential and longitudinal membrane forces nθθ and nLL (b) Radial stress or distributed force σrr

(c) Longitudinal stress σLL (d) Tangential stress σθθ

Figure 3.6: Torus membrane forces and stress definitions at cross-section

3.4. Pump/turbine system placement
The designs discussed in Section 3.2 do not address the placement of the pump/turbine system. Given
that the primary emphasis of this thesis is on constructing the reservoir, the placement of the pump/-
turbine system is considered more suitable for later design stages. This Section outlines potential lo-
cations for the placement of the pump and provides a qualitative assessment. However, it is important
to note that this aspect is not further explored in this thesis.

Several key considerations come into play when determining the placement of the pump/turbine, in-
cluding the lowest point of the reservoir, accessibility, and the impact on the structural integrity of the
reservoir.

To ensure effective pumping of all water out of the reservoir, the pump’s inlet should be positioned at the
lowest point in the reservoir. Failure to do so could result in water being trapped, reducing the available
internal volume and diminishing the overall system efficiency.

Given that the pump/turbine is a critical component requiring frequent monitoring and maintenance, it
is crucial to ensure easy access to the pump [13]. Accessibility is vital for inspections and potential
removal of the pump to the surface. Consequently, burying the pump in the seabed or placing it under
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the reservoir is not advisable.

Moreover, the placement of the pump/turbine should not compromise the structural integrity of the
reservoir. Openings in the shell of the reservoir, whether accommodating the pump/turbine or auxiliary
tubes, should be minimized. Larger openings could potentially lead to increased stresses around the
opening.

(a) Cross-section of pump/turbine system incorporation;
applicable to sphere, cylinder and torus

(b) Cylinder longitudinal section

(c) Torus longitudinal section

Figure 3.7: Potential incorporated pump/turbine designs

Taking these considerations into account, the placement of the pump/turbine can be either on the ex-
terior of the reservoir or incorporated within it, as depicted in Figure 3.7. When placed on the exterior,
the pump/turbine needs to be connected to the reservoir’s lowest point using tubes capable of resisting
hydrostatic pressure. However, there is a potential risk of damage due to differential settlements be-
tween the pump/turbine and the reservoir. On the other hand, incorporating the pump/turbine within the
reservoir eliminates the concerns related to differential settlement and minimally impacts the available
internal volume. As mentioned in [13], the required pump/turbine, with a diameter of 0,5 meters and
a length equal to the internal diameter of the sphere, would occupy less than 0,05% of the available
internal volume when used in a reservoir with an internal diameter of 28,8 meters, providing a storage
capacity of 12.500 m3.

Vpump
Vinternal

=
1
4πd

2
pumphpump

Vinternal

=
1
4π · 0, 52 · 28, 8

12.500
= 0, 0452%

3.5. Loading conditions
The applied loading conditions in the calculations represent a simplification of the actual loads, which in-
clude hydrostatic pressure, gravity, horizontal water flow, transport loads, and accidental loads. Among
these, hydrostatic pressure is the most significant factor. At a depth of 1000 meters, the hydrostatic
pressure amounts to 10, 06 MPa.
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phydrostatic = ρswgh

= 1025 · 9, 81 · 1000
= 10.055.250 N/m2

In reality, there exists a gradient in the hydrostatic pressure value. However, considering that the
structure’s height will be a maximum of approximately 30 meters and the depth is 1000 meters, the
pressure variation is less than 3% from the bottom to the top of the structure. Since this gradient
introduces only a minor discrepancy in load between the top and bottom of the structure, it is neglected
in the calculations. Therefore, all computations consider a constant distributed normal force of 10, 06
MPa.

Two different loading conditions are distinguished, considering the filling level of the reservoir, as de-
picted in Figure 3.8. When the reservoir is full, the hydrostatic pressure inside the reservoir pushes
against the wall of the reservoir. In addition to the constant hydrostatic pressure on the exterior of the
reservoir, this results in a compression-compression situation inside the concrete wall, which is favor-
able for the material. Therefore, the situation where the reservoir is empty, and no hydrostatic pressure
is present in the interior of the reservoir, is considered normative.

It is essential to clarify that the exterior hydrostatic pressure, denoted as pout, does not exert the same
force on the interior of the reservoir under normal operational conditions. This scenario only occurs
when the pump/turbine opening is uncovered, and a static situation prevails with no water flow. How-
ever, the system is not designed to operate in this manner. The intentional filling of the last available
volume in the reservoir would lead to a shock wave due to the water hammer phenomenon. To avert
this, it is necessary to gradually close the pump/turbine opening during the reservoir filling process.
Consequently, in the context of hydrostatic pressure, if the structure is used as intended, only the load-
ing conditions depicted in Figure 3.8 are relevant during the use phase. In the case of a calamity, the
structure should be able to resist the water hammer-induced shock wave. However, this aspect is not
further elaborated in this report.

Conflicting statements regarding the available internal volume for filling were found in the literature. Ac-
cording to the STORE Consortium, an available filling level of 90% was reported, leaving the remaining
volume for air. It was mentioned that this air was necessary to initiate the pumps [10]. In a full-reservoir
situation, the compressed air would then exert pressure on the interior wall of the reservoir. In contrast,
the Fraunhofer Institute assumes a 100% available internal volume, achieved by creating a vacuum
in the empty reservoir before installation [13]. This report opts to work with a 100% available internal
volume, acknowledging that the last bit of volume cannot be practically filled due to the water hammer
phenomenon, as described earlier.

Gravitational load of the structures own weight is considered negligible. The weight of concrete in water
is ρconcrete − ρsw = 1375 kg / m3. A concrete column of 30 meters thick would then exert a pressure
on the structure that is equal to a mere 4% of the hydrostatic pressure.

pconcrete column = (ρconcrete − ρsw) ghstructure

= (2400− 1025) · 9, 81 · 30
= 404.663 N/m2

There is little temperature change in the deep ocean, as it is far removed from significant heat sources,
making it one of the most thermally stable regions on earth. Temperature may fluctuate by less than
half a degree per year in the deep ocean [39]. Given the intended installation depth in the deep ocean,
temperature loads—resulting in structural expansion and contraction—are not considered relevant for
this analysis.

Moreover, flow velocity loads are disregarded. At the intended installation depth, flow velocities are
typically low [40]. Consequently, loads induced by flow are omitted, although they might influence the
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stability of the structures. However, such considerations are beyond the scope of this report. Addition-
ally, accidental loads and transport loads are not addressed here.

(a) Reservoir is full (b) Internal water pressure is present

(c) Reservoir is empty (d) No internal water pressure is present

Figure 3.8: Load situations for empty and full reservoir



4
Initial structural design

In this Chapter, the CIV-ratios for the reservoirs and foundations are analyzed. Each of the proposed
shapes— sphere, cylinder, and torus— undergoes a comprehensive assessment based on preliminary
calculations. These initial analyses serve as the basis for subsequent design choices.

It is crucial to emphasize that, in the interest of clarity and scientific rigor, the spherical design is antici-
pated to yield a lower and thusmore favorable CIV-ratio. However, the advantages of the cylindrical and
toroidal designs may stem from different aspects, such as constructability and transportability. There-
fore, the cylinder and torus are not immediately dismissed even in the presence of an unfavorable
CIV-ratio.

In this Chapter, a description of the principles that guide the calculations is provided where neces-
sary. To ensure transparency, the calculations leading to the findings presented herein are available
in Appendix D.

4.1. Initial reservoir design
In this section, an estimation is performed for the necessary concrete volume required to construct
spherical, cylindrical and toroidal reservoirs. Subsequently, these results are employed to determine
the CIV-ratio specific to each shape. The procedural steps for these calculations are outlined in Fig-
ure 4.1.

Choose shape,
internal volume
and slenderness

Determine
internal radius a

Determine
max. mem-
brane force n

Determine
required wall
thickness t

Determine
volume of

concrete Vconcrete

CIV-ratio:
Vinternal
Vconcrete

Figure 4.1: Workflow for determining required volume of concrete

In the initial design phase the membrane forces n are utilized as a starting point. These forces operate
within the plane of the shell. In the context of this Chapter, they represent the force experienced within
an infinitesimally thin structural wall and are quantified in units of Newtons per meter. Table 4.1 provides
a comprehensive overview of the maximum membrane forces and volumes for spheres, cylinders, and
tori. The parameters involved include the hydrostatic pressure denoted by p and the respective internal
radii for each shape (a for spheres and cylinders, and both a and b for tori). Refer to Section 3.2 for
their definitions. The derivation of the values in Table 4.1 is outlined in Appendix C.

36
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Given that required internal radii are established according to a specified internal volume and, if ap-
plicable, slenderness, the equations for volume presented in the first column of Table 4.1 have been
reformulated to express the internal radius as a function of volume and slenderness. These revised
equations are depicted in the third column.

Shape Volume (V ) Slenderness Internal radius (a) Max. membrane force (n)[
m3
]

[−] [m] [N/m]

Sphere 4

3
πa3 − 3

√
3V

4π
−pa

2

Cylinder πa2L
L

2a
3

√
V

2π L
2a

−pa

Torus 2π2a2b
b

a
3

√
V

2π2 b
a

−pa
− 1

2 + b
a

−1 + b
a

Table 4.1: Membrane forces and volumes for sphere, cylinder, and torus

4.1.1. Initial thickness estimation
The relation between the membrane force n [N/m] and the compressive design strength of the concrete
fcd [N mm-2] is articulated through Equation 4.1:

t =
n

fcd
(4.1)

In this context, t [m] represents the required thickness of the concrete, assuming an idealized scenario
of uniform stress distribution across the cross-section, as discussed in Section 3.3. It is important to
acknowledge that in reality, stress distribution is non-uniform across the cross-section, necessitating a
greater thickness. However, for the purposes of this Chapter, this simplified approach yields practical
results. It is worth noting that this thickness is applied exclusively to the external surface of the structure,
ensuring that no internal volume is sacrificed in the design process. This methodology allows for a
preliminary assessment of the concrete volume needed for constructing the reservoir across different
shapes.

The results of this parameter identification and thickness estimation process are depicted in Figure 4.2,
illustrating the CIV-ratio for spheres and various configurations of cylinders and tori. Interestingly, the
relationship between the volume of concrete and the internal volume exhibits a linear correlation for
each shape, although the slopes vary with shape and slenderness.

The neutral buoyancy is also depicted in the plot. This line represents the volume of concrete necessary
to counteract buoyant forces. Any design situated below this line will inherently display buoyancy and
remain afloat. With the exception of non-slender cylinders, all reservoirs have positive buoyancy. Nev-
ertheless, it is important to acknowledge that some additional concrete is anticipated to be incorporated
in the foundation design, which would contribute to stabilizing the structure.

These initial findings confirm the expected result that, for the same internal volume, a sphere requires
a smaller volume of concrete compared to a cylinder or torus. In other words, the sphere demonstrates
a more favorable CIV-ratio than the cylinder and torus. The influence of different slenderness values
on cylinders and tori has been explored. Strikingly, slenderness values significantly affect the required
volume of concrete. The slope of the lines in the plot indicates that higher slenderness values result in
a lower CIV-ratio for cylinders and tori.

In the case of the cylinder, the caps are configured as circular plates with double the thickness of the
shell. Notably, when the caps are completely excluded from the design, effectively transforming the
cylinder into a tube, the slenderness no longer influences the required volume of concrete. In this case,
all various configurations of the cylinder converge onto the same line in Figure 4.2. To maintain clarity,
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this line is omitted from the graph. This observation underscores that the non-linear behavior in the
cylinder’s CIV-ratio is solely attributable to the design of the caps.

Figure 4.2: Concrete and internal volume relation for a sphere and various cylinder and torus configurations with initial
thickness estimation; at d = 1000 m and fcd = 40 MPa

4.1.2. Iterative adjustment of thickness
The previously described approach, where an infinitesimally thin wall was employed, not only simplifies
the analysis but also overlooks the impact of altering dimensions due to changes in thickness. Specif-
ically, as the thickness of the structure is adjusted, the radius of the cross-sectional shape undergoes
corresponding changes, resulting in variations in the membrane forces as dictated by the equations in
Table 4.1.

It is essential to emphasize that the determination of the required thickness was initially based on achiev-
ing the maximum allowable compressive stress within the cross-section, as defined by Equation 4.1.
Any increase in the membrane forces automatically results in exceeding the maximum allowable com-
pressive stress, necessitating an increase in the shell’s thickness.

To address this iterative requirement, an algorithm outlined in Figure 4.3 was utilized. A tolerance of
0,001 MPa was selected, allowing for smooth results.

Comparing the results of this iterative approach with the initial thickness estimation, the differences are
evident in Figure 4.4. Clearly, employing the iterative approach to determine the shell thickness results
in a higher CIV-ratio for each shape. These effects are more pronounced for shapes that initially had
an unfavorable CIV-ratio. The iterative process significantly enhances the performance of the spherical
design compared to the cylindrical and toroidal designs in terms of the CIV-ratio. This outcome aligns
with the fact that shapes with unfavorable CIV-ratios initially have thicker shell requirements, resulting
in a higher increase in membrane force and necessitating a greater increment in thickness.

For instance, with the iterative approach in place, the increase in concrete volume is more significant for
the torus (78%) than for the cylinder (42%) when b

a = L
2a = 4. However, this discrepancy diminishes for

higher configurations and stabilizes at 39%, whereas the sphere exhibits a concrete volume increase of
16%. It is noteworthy that the percentage increase in the volume of concrete remains consistent relative
to the internal volume, explaining the linear data observed in both Figure 4.2 and Figure 4.4.
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maximum
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Determine re-
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ness to exter-
nal surface

Recalculate
maximum
membrane
force (nnew)

σmax − fcd >
0, 001 MPa?

Final thickness
is determined

Recalculate
thickness
t = nnew

fcd

no yes

Figure 4.3: Algorithm for determining shell thickness for sphere, cylinder and torus

Figure 4.4: Concrete and internal volume relation for a sphere and various cylinder and torus configurations with iterative
thickness estimation; at d = 1000 m and fcd = 40 MPa
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4.1.3. Internal Radius - Wall Thickness Relation
The iterative approach previously described yields the necessary wall thickness, determined by the
shape and internal radius, and in the case of the cylinder and torus, the slenderness as well. In Fig-
ure 4.5, the required wall thickness for a specific internal radius is graphed for various internal volumes
and different slenderness values.

When the sphere is chosen as the shape for a given internal volume, the algorithm produces a singular
wall thickness. In contrast, for the cylinder and torus, the wall thickness for a given internal volume
is also contingent on the slenderness. In Figure 4.5, the wall thickness for the cylinder and torus
is determined using 4 ≤ b

a = L
2a ≤ 20. This results in a single data point per internal volume per

slenderness value, representing the sphere as dots and the cylinder and torus as lines.

The relationship between internal radius and wall thickness is linear for the sphere and cylinder. This
aligns with the observation made in subsection 4.1.1, where it was noted that the non-linear behavior in
the cylinder’s CIV-ratio is solely attributable to the design of the caps. Conversely, the wall thickness of
the torus increases exponentially for larger internal radius. This effect can be attributed to the non-linear
relation between the membrane force and the internal radius of the torus.

It is noteworthy that for both the cylinder and the torus, the lower ends of the data ranges represent
higher slenderness values. For the cylinder, the wall thickness is inversely proportional to the slen-
derness. In the case of the torus, there exists an inverse exponential relationship between the wall
thickness and the slenderness.

Figure 4.5: Relationship between internal radius and wall thickness for the sphere, cylinder, and torus with different
slenderness values; at d = 1000 m and fcd = 40 MPa

4.1.4. Optimization of cylinder- and torus-configuration
Further investigation of the slopes of the lines in Figure 4.4 reveals that the correlation between vol-
ume of concrete and internal volume can be optimized by adjusting the ratio between the dimensions
of cylinders and tori. Figure 4.6 showcases the optimized CIV-ratio for various cylinder and torus con-
figurations under the same depth and concrete strength conditions.

This optimization process suggests that, at the specified depth and concrete compressive strength, an
optimal configuration exists for cylinder and torus shapes in terms of material usage, characterized by
L
2a = b

a ≈ 40. Notably, the most significant improvements occur at lower ratios, after which the curves
approach a plateau.

However, as greater slenderness is inherently associated with increased external dimensions, particu-
larly the length of the cylinder and the major diameter of the torus, it appears that a favorable range for
the slenderness of the cylinder and torus lies between 10 and 20. The benefits in terms of the CIV ratio
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diminish beyond a slenderness value of 20.

Figure 4.6: Optimized concrete to internal volume ratios for cylinder and torus configurations with iterative approach;
at d = 1000 m and fcd = 40 MPa

Moreover, the sphere consistently maintains a more favorable concrete-to-internal volume ratio, uti-
lizing 37% less material than the cylinder and torus for high values of slenderness. The sphere’s
advantage over the cylinder and torus fluctuates with varying concrete strengths. For further insights
into the influence of concrete strength, please refer to the results of the sensitivity analysis in Sec-
tion 4.1.5.

While Figure 4.6 provides valuable insights into favorable configurations for the cylinder and torus, it is
crucial to remain aware of the limitations of the model. It is essential to emphasize that the thickness
estimation, which directly influences the required concrete volume, is merely indicative. This approach
does not account for all internal forces within the structures, as moments are expected to be present
in addition to the membrane forces.

4.1.5. Sensitivity study concrete strength
As previously mentioned, the strength of concrete exerts a significant influence on the CIV-ratio. In the
initial approach, the effect of the adjusted cross-sectional shape radius due to the estimated thickness
was not considered, resulting in a linear relationship between the CIV-ratio and the concrete strength
class. However, a shift in this relationship occurred upon the adoption of the iterative approach, as
elaborated in Section 4.1.2.

Referring to the flowchart presented in Figure 4.3, which outlines the thickness iteration process, it is
evident that the recalculated maximum membrane force necessitates an increase in thickness. This
augmented thickness, in turn, results in a heightened maximum membrane force, necessitating an
increment in the volume of concrete. After numerous iterations, a state of equilibrium is achieved
between these two consequences.

When dealing with concrete possessing lower strength properties, a more significant increase in thick-
ness is essential, resulting in higher membrane forces and the need for an even thicker shell. This
phenomenon becomes less pronounced when using concrete of higher strength, as a slight augmen-
tation in thickness adequately addresses the escalating maximum membrane force. Consequently, a
nonlinear correlation between the concrete-to-internal-volume ratio and the concrete strength is estab-
lished.

This relationship is visually demonstrated in Figure 4.7. Notably, the influence of varying concrete
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strength is most pronounced for shapes already exhibiting an unfavorable CIV-ratio. This is particularly
evident in the case of the torus with a slenderness value of 4. However, the non-linear association
between CIV-ratio and concrete strength is unmistakable. Across all shapes, the advantages of higher
concrete strength are evident, as they result in substantial material savings.

When examining Figure 4.7, it is essential to recognize that the changes in concrete volume shown on
the y-axis are specific to the given shape and its configuration. It is important not to misinterpret the
greater percentage of material savings observed for the torus, with a configuration of b

a = 4, at higher
concrete strength as indicating a more advantageous CIV-ratio compared to the sphere.

Figure 4.7: Sensitivity analysis of concrete strength

4.2. Initial foundation design
This Section outlines the foundation design process for sphere, cylinder and torus. The discussion
commences with the design of the sphere, followed by the cylinder and torus. The foundation design for
the cylinder and torus exhibits significant similarities, and as such, their designs are presented together.
In conclusion, the designs of these three foundations are compared, focusing on their CIV-ratios.

4.2.1. Foundation design spherical reservoir
The concept for the spherical foundation draws inspiration from the configuration presented in [10].
The layout incorporates a ring-shaped pedestal to provide support for the sphere. The pedestal, in
turn, is supported by a shallow circular foundation slab. In this specific design, the internal volume of
the sphere is 9.000 m3, with the pedestal having a thickness of 1 meter. The circular foundation slab
boasts a diameter of 30 meters and a thickness of 1,6 meters. A visual representation of this structural
configuration is illustrated in Figure 4.8.

To reduce weight and optimize buoyancy control, circular holes are strategically extruded from the
pedestal wall. During transport, these holes are covered to increase buoyancy, making it easier to
move the structure. Once the structure reaches its intended location, the holes are uncovered, allowing
for a gradual descent to the seabed.

In the described design, the concrete sphere exerts a compressive force on the pedestal due to its
weight. The pedestal, which has a thickness of 1 meter, is responsible for supporting this load. As a
result, the vertical compressive stress at the base of the pedestal can be calculated, yielding a value
of 1,15 N/mm2 in [10].

In this stage of the design, the thickness of the ring-shaped pedestal is determined based on the com-
puted vertical compressive stress. To accommodate various internal volumes, the algorithm presented
in Section 4.1.2 is employed to calculate the required thickness of the sphere shell. Subsequently, the
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Figure 4.8: Sphere foundation design with pedestal and shallow foundation [10]

required thickness of the ring-shaped pedestal is calculated, ensuring that it maintains the same level
of compressive stress in the bottom of the pedestal.

Figure 4.9: CIV-ratio for concrete volume of spherical foundation design vs. Internal volume;
at d = 1000 m and fcd = 40 MPa

Within the foundation structure, the vertical compressive load is supported by the perimeter of the
circular slab. The soil exerts a reaction force on the slab, generating a negative bending moment at
the center of the slab. Consequently, the foundation slab must possess the capacity to withstand this
bending moment. In the design discussed in [10], the thickness of the foundation primarily hinges on
its ability to resist this bending moment.

During this particular design phase, a simplified approach is employed to calculate the magnitude of
the bending moment in the center of the slab. The bending moment in [10] is noted to be 5,76 MNm,
necessitating a plate thickness of 1,6 meters. A bending moment resistance of 5,76/1,6 = 3,60 MNm
per meter of plate thickness is used to determine the required thickness for the scaled foundation
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design.

While it is acknowledged that this approach might lack precision and does not encompass all load
combinations within the structure, it effectively serves the purpose of providing initial estimates for the
required concrete volume. The outcomes derived from this methodology are valuable at this stage of
the design process.

The findings from this approach are visually presented in Figure 4.9, depicting the relationship between
the CIV-ratio and the internal volume for the spherical foundation design. Notably, the CIV-ratio tends
to rise as the internal volume increases.

4.2.2. Foundation design cylindrical and toroidal reservoir
During this design phase, the foundation for both the cylinder and torus adopts a straightforward ap-
proach. It involves the creation of a solid base designed to establish a level and stable surface on
the ground. The width of this base is determined based on the maximum allowable foundation pres-
sure.

Given the absence of a specific installation location, it is assumed that the soil consists of muddy sand,
similar to the assumptions made in [10]. As precise soil parameters for muddy sand are unavailable,
they are derived from those of clean compact sand. According to the Dutch National Annex (NEN-
EN 1997-1/NB) to Eurocode 7 (EN 1997-1) the bearing capacity for clean compact sand is 1000 kPa.
To account for the influence of cohesion and the assumption that the soil is essentially muddy sand,
a safety factor of 5 is applied. This results in a maximum allowable bearing capacity of σf,d = 200
kPa.

Assume initial
foundation width

Determine
volume of con-
crete and area
of foundation

Calculate total
vertical pressure
(σf,eff) on soil

|σf,eff − σf,d| >
0, 5 kPa?

Increase foun-
dation width
with 0,05%
of total width

Decrease
foundation width

with 0,05%
of total width

Final founda-
tion width is
determined

Yes; σf,eff < σf,d Yes; σf,d < σf,eff

no

Figure 4.10: Algorithm for determining foundation width for cylinder and torus

The design of the foundation depends on the dimensions of the cross-section of the reservoir. For
both the cylinder and the torus, these dimensions are intricately linked to the specified internal volume
and the slenderness, as described in section 4.1 To determine the required width of the foundation
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that would yield the specified foundation pressure, an initial estimate is made, expressed as a percent-
age of the total width of the cross-section. Subsequently,the volume of concrete within the foundation
is computed and the total weight of the structure is calculated. Following this, the pressure that this
foundation exerts on the soil is calculated. If the calculated pressure exceeds the maximum bearing
capacity of the soil, the foundation should be wider. Conversely, if the pressure falls below the soil’s
maximum bearing capacity, the width of the foundation can be reduced to economize on material us-
age. This iterative process is visually represented in Figure 4.10. The tolerance of 0,5 kPa and the
increase/decrease factors of 0,05% provide smooth results.

Figure 4.11: Foundation design: CIV-ratio vs. Internal volume for different cylinder and torus slenderness values; with
corresponding base widths;

at d = 1000 m and fcd = 40 MPa

The determination of concrete volume in the cylinder foundation relies on trigonometric principles. Es-
sentially, the foundation is conceptualized as a solid block, and the intersecting circular cross-section of
the cylinder is subtracted from it. The width of the cylinder’s foundation plays a crucial role, significantly
influencing the overall structural stability.

In contrast, the concrete volume in the torus foundation is calculated using numerical methods. The
base is divided into a set of n cylinder-shaped rings, each with a thickness equal to base width

n . The
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height of each cylinder corresponds to the point where the base intersects with the torus ring. The
volume of each cylinder is computed, and their summation yields the volume of the torus foundation.
This approach proves to be both precise and reliable when n ≥ 100.

The process described in Figure 4.10 was implemented to determine the dimensions of the foundation.
The results are portrayed in Figure 4.11. The CIV-ratio reveals an observable trend: it increases with
higher internal volumes and lower values of slenderness. Additionally, the torus consistently exhibits a
lower CIV-ratio than the cylinder when their slenderness values are identical.

Notably, the contribution of the foundation to the CIV-ratio is minimal, with the highest value observed
in this graph being an order of magnitude smaller than the values obtained in the reservoir design (as
seen in Figure 4.4).

To visually convey the foundation widths corresponding to the CIV-ratio results, Figure 4.12 is presented.
This figure illustrates the extreme widths, both high and low, for the cylinder and torus. These values
are derived from Figure 4.11, where they are marked with a transparent square.

The wall thicknesses displayed in this figure were determined through the earlier established procedure.
It is worth noting that the wall thickness for the torus with b

a = 4 (Figure 4.12c) is noticeably higher than
that of the other configurations.

(a) Cylinder; Vinternal = 15.000 m3; L
2a = 4;

foundation width is 66% of total width
(b) Cylinder; Vinternal = 1000 m3; L

2a = 12;
foundation width is 16% of total width

(c) Torus; Vinternal = 15.000 m3; b
a = 4;

foundation width is 50% of total width
(d) Torus; Vinternal = 1000 m3; b

a = 12;
foundation width is 11% of total width

Figure 4.12: Cylinder and torus cross-section visualisations

Furthermore, the low foundations widths observed in Figure 4.12b and Figure 4.12d suggest that the
design could potentially eliminate the need for a foundation. In such cases, the structure could be
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placed directly on the seabed. However, for the cylinder, this raises concerns about its stability. In the
absence of a level surface on the ground, the structure might be susceptible to rolling over.

4.2.3. CIV-ratio comparison in foundation design
The methodologies outlined in Sections 4.2.1 and 4.2.2 were employed to determine the concrete vol-
umes necessary for the construction of foundations for both spherical, cylindrical and toroidal structures.
These volumes were subsequently divided by the internal volume of the respective structures, resulting
in the CIV-ratio.

A comparison of the results presented in Figure 4.9 and Figure 4.11 reveals a noteworthy discrepancy
between the CIV-ratios in the foundation design for the spherical structure and those for the cylindrical
and toroidal structures. Specifically, the CIV-ratio for the sphere is approximately an order of mag-
nitude larger than that for the cylindrical and torus foundations. This observation is important, as it
influences the evaluation of the sphere’s suitability when compared to the cylindrical and toroidal alter-
natives.

It is worth noting that the CIV-ratios display substantial variation across different internal volumes in
all three cases. This variation can be attributed to the increasing dimensions of the structures as the
internal volume increases. A larger internal volume necessitates a greater width and height for each
shape. As these structures become wider and taller, the dimensions of the foundation also grow in
size.

In the case of the spherical structure, the increase in reservoir dimensions leads to a higher overall
weight and subsequently results in a greater line-load under the pedestal. This, in turn, induces an
increase in the negative bending moment experienced by the foundation plate, necessitating a corre-
sponding increase in thickness.

Similarly, for the cylindrical and torus-shaped structures, increased dimensions result in a heavier struc-
ture, thereby elevating the load exerted on the soil. To maintain a constant stress level on the soil, a
wider foundation is required. Consequently, the augmentation in the volume of concrete necessary for
the foundation design is primarily attributed to the expansion in the foundation’s width.

These findings underscore the complex interplay between internal volume, structural dimensions, and
foundation design parameters, further emphasizing the importance of evaluating these factors when
making design choices.

4.3. Reservoir and foundation design combination
The figures showcased in Sections 4.1 and 4.2 present results pertaining to the CIV-ratios for the
construction of both the reservoir and foundation, encompassing all three geometric shapes. These
findings have been consolidated to generate Figure 4.13. In this graph, the data for the spherical
configuration is depicted on the lower x-axis, and it varies in response to changes in internal volume,
exclusively influenced by the scaled foundation design of the sphere.

On the upper x-axis, one can observe the data for both the cylinder and torus configurations, displaying
variations in response to changes in slenderness. It is worth noting that the CIV-ratio for the cylinder
and torus shows marginal fluctuations as internal volume varies, though these differences are of minor
significance. This observation is further supported when closely examining Figure 4.11. However, this
is not entirely the case for cylinders with a slenderness value of approximately 4. Nonetheless, as
discussed in Section 4.1.4, such low slenderness values are not considered relevant. Therefore, the
slight discrepancy in the contribution of the foundation to the total CIV ratio for these lower slenderness
values is deemed insignificant. Consequently, for both cylinders and tori, the internal volume was
maintained constant at 10.000 m3.

It becomes apparent that, when considering the foundation design, the CIV-ratio of the sphere tends
to converge with that of the cylinder and torus. Nevertheless, a noticeable gap remains, especially
evident at lower internal volumes of the sphere, where the foundation’s contribution to the CIV-ratio
remains minimal.

In summary, the following conclusions can be drawn from the analyses in this Chapter:



4.3. Reservoir and foundation design combination 48

Figure 4.13: CIV-ratios of reservoir and foundation design combined;
at d = 1000 m and fcd = 40 MPa

• The CIV-ratio for both the cylinder and torus decreases with an increase in slenderness.
• The CIV-ratio of the sphere’s reservoir is 37% lower than that of slender cylinders and tori.
• The CIV-ratio of the sphere’s foundation is a factor 10 higher than than of the cylinder and torus
• The CIV-ratio of the sphere exhibits variations with changing internal volume, while for the cylinder
and torus, this influence is negligible.



5
Construction and implementation of

cylindrical design

This chapter is dedicated to formulating construction methods and considering implementation aspects
for the cylindrical designs. While construction methodologies have been established for the spherical
design, the techniques for the cylindrical configurations remain undetermined. The level of detail at-
tained in the construction methods for the spherical reservoir is not expected to be exceeded in the
development of construction methods for the cylindrical design. Consequently, the construction tech-
niques for the spherical design are not covered in this Chapter. It is essential to note, however, that the
existing plans for constructing the spherical design may not be fully matured. Nevertheless, the level of
detail currently achieved in those plans will not be achieved for the cylinder in this Thesis work.

It became apparent that the toroidal design is not suitable as a reservoir shape, as its dimensions
become too large to facilitate a smooth construction process. Further elaboration on this can be found
in Section 5.1.

The construction methods discussed in this Chapter have been devised with a focus on internal volume,
repetitiveness and complexity.

Internal volume
As detailed in Section 2.3, each reservoir should possess significant internal volume. Opting for a single
large reservoir with the same internal volume is preferred over multiple smaller reservoirs. However,
the construction process serves as a limiting factor in maximizing internal volume.

Repetitiveness
The second criterion involves the repetitiveness of the construction methodology. As discussed in
Section 2.2, achieving the required total internal volume involves the construction of multiple units.
Therefore, an efficient construction process is essential to reduce time and costs. Thus, construction
methods should prioritize construction time and material reusability.

Complexity
As discussed in Section 1.1 and Section 2.9.3, the intricate challenges faced in constructing the spher-
ical reservoir led to the motivation for this thesis project. The existing plans for the spherical reservoir
are complex, involving partially or entirely new methods, significant time consumption, and heavy lifting.
Noteworthy construction methods discussed in this context include:

• Constructing and connecting two hemispheres (MIT method)
• 3D-printing formwork and casting (RCAM method)
• Air pressured formwork by HTS

49
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Considering that the elevated CIV-ratios of the cylinder and torus are accepted based on the assumption
that the construction method is significantly simpler, it is imperative to avoid unnecessary complexities
in the construction process development.

Chapter outline
To gain an understanding of the relevant dimensions for the cylinder and torus designs, an overview
is provided in Section 5.1. It concludes that, for the torus, maximizing internal volume conflicts with
construction location flexibility, ruling it out as an option. For the cylinder, a two-step method is devised
to select the most suitable construction approach.

5.1. Dimensions of cylindrical and toroidal designs
This section aims to provide insights into the dimensions of the proposed structures, considering various
slenderness values. As discussed in Section 4.2, the slenderness of the reservoirs plays a crucial role
in the CIV-ratio, with higher slenderness values showing more favorable outcomes.

The dimensions in this Section are presented for slenderness values of 12, 16, and 20, deviating from
those in most plots in Chapter 4, where values of 4, 8, and 12 were utilized. While no final decision
on the ultimately used slenderness value has been made yet, it was shown in Section 4.2 that more
slender reservoirs have a lower CIV-ratio. Hence, higher slenderness values become more relevant in
this Section.

5.1.1. Cylinder dimensions
The dimensions of the cylinder are intricately linked to its internal volume and slenderness. Following
the methodology outlined in Chapter 4, the required wall thickness (t) is calculated. The caps of the
cylinder are designed as flat circular slabs with a thickness twice that of the shell. The overall length of
the cylinder is determined by the length of the tube, augmented by four times the shell thickness. For
a cross-sectional sketch, refer to Section 3.2.2.

Figure 5.1 showcases the external dimensions of the cylinder for various internal volumes and slender-
ness values. Notably, as internal volumes increase, the dimensions become substantial, resulting in
elongated structures for higher slenderness values and relatively taller and wider structures for lower
slenderness values.

Figure 5.1: External cylinder dimensions for various internal volumes and slenderness values;
at d = 1000 m and fcd = 40 MPa
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5.1.2. Torus dimensions
In the case of the torus, relevant parameters include the internal minor radius (a) and major radius (b).
The wall thickness is determined using the algorithm outlined in Section 4.2. Refer to Section 3.2.3 for
a cross-sectional sketch.

Figure 5.2 provides insights into torus dimensions for different internal volumes and slenderness values.
Even at low internal volumes, the dimensions are substantial, considering the major radius of the torus
present in 360°. The structure appears both long and wide.

Figure 5.2: External torus dimensions for various internal volumes and slenderness values;
at d = 1000 m and fcd = 40 MPa

5.1.3. Evaluation of dimensional suitability for construction locations
As detailed in Appendix G, potential construction locations for large concrete projects are classified
into on-land factories, dry docks, fjords, and open sea. For the MPHES system, both constructing
the entire structure and assembling parts at open sea are deemed impractical due to the complexities
of stabilization operations and the high costs associated with offshore construction vessels. Without
specifying a construction method, it is inferred that the structure should be transported to the final
installation location as a whole. Consequently, construction of the reservoir is narrowed down to options
on land, in a dry dock, or in a fjord.

Analysis of Figures 5.1 and 5.2 reveals that, for the same internal volume, the dimensions of the cylin-
der are mainly substantial in length, whereas the torus’s dimensions are significant in both length and
width. With a slenderness value of 16 and an internal volume of 10.000 m3, a cylinder has a length of
approximately 155 meters and a diameter of about 12 meters. In comparison, a torus with the same
internal volume and slenderness has a major diameter of roughly 110 meters and a diameter of about
8, 5 meters, with dimensions increasing for larger internal volumes. As discussed in Section 2.3, maxi-
mizing internal volume is crucial, with the construction process being the limiting factor.

The cylinder, resembling a large ship due to its long and narrow shape, can be constructed on land
and launched similarly to a ship, or it can be built in a dry dock. Larger dry docks can accommodate
its construction, with the allowed draught being an essential consideration.

Conversely, the torus, with its non-ship-like shape and dimensions, cannot be launched like a ship.
Additionally, its size prohibits construction in a standard dry dock, as most docks cannot accommodate
both the length and width of the structure. Consequently, the torus should be constructed in multiple
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elements that can be assembled in a fjord. However, as outlined in Appendix G.3, fjords are limited to
polar regions, making locations like the Mediterranean Sea impractical.

As the system aims to be adaptable and not case-specific, withminimal limitations on its implementation,
the torus will not be further investigated due to the challenges associated with constructing a reservoir of
high internal volume combined with the need for flexibility in location selection. While it is not excluded
that the torus might be a viable option at installation locations near a fjord, it is ruled out for the rest of
this research.

5.2. Exploration construction methods cylindrical design
In this section, five construction methods for the cylinder are presented and evaluated. Each method’s
execution and features are explained, and their suitability is assessed using a trade-off matrix. The
focus is on selecting the two most promising methods for further exploration.

As highlighted in Section 3.1, the need for reinforcement is yet to be addressed. With the cylinder’s
substantial length, bending moments are anticipated along its structure, especially during transport or
immersion, where it is hung on cables, or at the seabed with potential uneven surfaces. Thesemoments
result in tensile stresses, necessitating the incorporation of longitudinal reinforcement. Hence, the eval-
uation of proposed construction methods includes an assessment of their suitability for implementing
reinforcement.

In Section 5.1.3, it was established that the cylinder can be constructed on land or in a dry dock. Post-
construction, the structure must be transferred to water for shipping and towing to its final location.
Launch, in this context, denotes the transfer of the structure from the construction location into water,
involving either a process akin to ship launch or the flooding of a dry dock.

5.2.1. Cast-in-place
In the traditional cast-in-place method, a monolithic cylinder is formed by continuously pouring concrete
between inner and outer formwork. To accommodate the weight of the structure, construction either
begins on a launching system or in a dry dock. The process involves:

1. Placement of formwork outer shell
2. Placement of reinforcement
3. Placement of formwork inner shell
4. Casting of concrete
5. Removal of formwork
6. Launch of structure

The suitability of cast-in-place for a structure of this magnitude is validated by notable examples such as
the Shanghai Tower, where 60,000 m3 of concrete was continuously poured, without any post-cooling
measures [41]. While facilitating the incorporation of reinforcement and ensuring a seamless struc-
ture, challenges arise from the substantial use of formwork, possibly contributing to over 50% of total
construction costs [42]. Retrieving inner formwork poses difficulties, requiring careful consideration of
leaving it behind or removing it through a hole in the cylinder, subsequently demanding concrete cov-
erage. Alternatively, inflatable formwork allows for simpler retrieval. However, at the intended scale, it
has not yet been applied [43].

5.2.2. Precast elements
The precast elements approach involves constructing the cylinder using multiple precast ring-shaped
elements produced in a controlled factory environment. Assembly can take place in the same factory
on a launching system or in an adjacent dry dock. The production process includes:

1. Production of reinforced concrete elements in factory
2. Lifting elements to assembly location
3. Connection of elements
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4. Launch of structure

Prefabrication ensures high concrete quality and facilitates the integration of reinforcement. Thismethod
requires two distinct molds: a standard mold for constructing the mid-section rings and a custom mold
for the caps. The length of the elements is yet to be determined. Some of the world’s largest precast
elements are currently under construction at the Fehmarnbelt tunnel project, where tunnel elements of
over 200 meters in length and 40 meters in width are built [44].

Similar to the first phase of concrete silo construction, production of the elements can be performed
upright, ensuring a flat bottom that can rest on the ground without requiring auxiliary scaffolding [45].
Alternatively, construction of the ring-shaped elements can be done horizontally.

Closing the seams is a critical aspect, as the structure must be watertight [31].

5.2.3. Horizontal jump-forming
Horizontal jump-forming is a process where a moving formwork constructs the tubular mid-section of
the cylinder horizontally [46]. The process ensures monolithic construction of the mid-section, while
the caps are installed separately. The production process involves:

1. Placement of formwork outer shell
2. Placement of reinforcement
3. Placement of formwork inner shell
4. Casting of concrete
5. Continue launching girder and repeat steps 1 to 4
6. Prefab production and connection of cap elements
7. Launch of structure

This challenging technique, detailed in Appendix F.3, has been successfully executed, resulting in a
substantial, monolithic mid-section [47]. To facilitate the launch of the structure, construction should
take place on a launching system or in a dry dock.

Special attention is needed for the connection between the mid-section and the caps.

5.2.4. Vertical slip-forming
Applied in high-rise core construction, vertical slip-forming involves continuous vertical concrete pouring
as the formwork moves. The process includes:

1. Placement of formwork outer shell
2. Placement of reinforcement
3. Placement of formwork inner shell
4. Casting of concrete
5. Jack up formwork and repeat steps 1 to 4
6. Rotation of upright mid-section to flat position
7. Prefab production and connection of cap elements
8. Launch of structure

Unlike horizontal slip-forming, this configuration does not require immediate stiffness of the concrete,
as there is no span [48].

Rotating the monolithic mid-section from upright to flat presents challenges, such as toe-crushing, sta-
bilization issues and bending [49, 50]. This rotational movement restricts the maximum length of the
mid-section. An alternative approach would involve constructing and rotating the structure in water.
However, since the draught of the cylinder is directly related to its length, this method necessitates a
considerable water depth, often reaching many tens of meters. As previously discussed, the require-
ment for such depths significantly restricts potential construction locations worldwide.



5.3. In-depth analysis construction methods cylindrical design 54

Special attention is needed for the connection between the mid-section and the caps.

5.2.5. Hybrid 3DCP + cast-in-place
This innovative technique involves 3D concrete printing of formwork and casting concrete horizontally,
with construction in a dry dock or on a launching system [29]. The steps are:

1. Production and placement of prefab bottom element
2. Placement of reinforcement
3. 3D printing of outer formwork
4. 3D printing of inner formwork
5. Pouring of concrete
6. Repeat steps 3 to 5 until required height of cross-section is met
7. Production and connection of prefab top element
8. Launch of structure

By integrating 3DCP formwork into the final structure, the need for separate formwork is eliminated.
However, as outlined in Appendix F.5, the 45°maximum overhang angle of the printed material poses
challenges [51]. Consequently, the bottom and top of the structure must be prefab elements, with
their dimensions limiting the scalability of this method. Additionally, attention is required for the seam
between the prefab element and the 3DCP body.

5.2.6. Trade-off
To evaluate the described construction methods, a trade-off matrix is utilized, assigning scores as
follows:
++ Very good
+ Sufficient
- Poor
- - Bad

The methods undergo assessment based on a comprehensive evaluation, considering the critical fac-
tors of complexity, construction time, and scalability in order to identify the most promising construction
methods for the next phase of exploration. Complexity is crucial, as the construction method should
be simpler than those used for the sphere. Decreasing construction time not only reduces costs but
also enhances the feasibility of the project. Given the goal of maximizing reservoir size, scalability of
the construction method is equally significant.

Cast-in-place Precast Horizontal Vertical Hybrid 3DCP +
elements Jump-forming slip-forming cast-in-place

Complexity ++ + + + -
Construction time + ++ + + +
Scalability - ++ ++ - - - -

Table 5.1: Trade-off exploration cylinder construction methods

The trade-off matrix in Table 5.1 guides the selection of the precast elements approach and the horizon-
tal jump-forming method for further in-depth analysis. The remaining methods will not be considered
further.

5.3. In-depth analysis construction methods cylindrical design
This section provides a more detailed analysis of the two selected construction methods for the cylinder:
precast elements and horizontal jump-forming. Eachmethod’s construction process is visually depicted,
thoroughly discussed, and associated risks are identified.
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To illustrate the analysis, a cylinder is considered with an internal volume of 10.000 m3 and a slender-
ness ratio of L

2a = 12. The properties of this illustrative cylinder are presented in Table 5.2.

Parameter Value Unit

Internal volume 9.000 m3

Volume of concrete 7.958 m3

Slenderness 12 [-]
Internal radius 4,92 m
Wall thickness 1,65 m
External length 124,8 m
Cross-sectional weight 153,04 · 103 kg m-1

Table 5.2: Dimensions of illustrative cylinder

5.3.1. Precast elements
This method involves precasting concrete-reinforced elements in a controlled factory environment. The
method is graphically displayed in Figure 5.3. Notably, the base is seamlessly integrated into the ele-
ments, allowing for the simultaneous casting of the foundation and reservoir. However, this integration
is not illustrated in Figure 5.3.

(a) Construction of element (b) Assembly of elements

Figure 5.3: Precast element method

Element size
Determining the appropriate element size in this method is a multifaceted aspect of the design pro-
cess. The mid-section comprises multiple standard elements, with two special elements needed for
constructing the caps. Given that a single standard element represents the entire cross-section of the
cylinder, its length becomes the variable factor.

As elements become longer, their weight increases. As indicated in Table 5.2, the weight of each
element is 153 tonnes per meter. Although these weights can be lifted, the associated crane rental
costs escalate significantly with increasing length.

During the assembly process, ensuring watertight joints is critical. Joints represent the most vulnerable
part of the entire structure, emphasizing the need to minimize their number. One strategy to achieve
this is by increasing the length of the elements.

Element connection
As highlighted previously, ensuring a secure element connection is a critical aspect of the construction
method. Achieving watertightness is paramount, adding complexity to the connection process. Rubber
joints, commonly employed in immersed tunnels, have demonstrated efficacy at depths below 50 me-
ters [52]. However, the suitability of rubber joints in the context of extreme depths, as in this proposed
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structure, remains debatable. It is worth noting that rubber joints often introduce ductility and accom-
modate significant displacements, which may not be essential for the intended characteristics of the
cylinder.

Considering this, an alternative approach involves the use of wet joints. However, the primary challenge
lies in preserving watertightness. The probability of watertightness failure is directly tied to the number
of joints, highlighting the imperative need to minimize their occurrence in the structure.

5.3.2. Horizontal jump-forming
This semi-continuous construction method involves the use of a launching girder, supporting the in-
ner formwork. The process is graphically displayed in Figure 5.4. Notably, the foundation is directly
integrated into the formwork.

Launching girder
The girder is supported by already hardened concrete on one side and by the ground on the other side.
The length of the girder dictates the length of each segment, a critical aspect determining the number
of cold joints and construction time.

Concrete shrinkage is a crucial consideration, with thermal shrinkage being particularly relevant due
to the substantial thickness of the elements. The exothermic reaction during the concrete hardening
process causes expansion, followed by shrinkage upon cooling. This can lead to high internal stresses,
posing a risk of cracking [53]. This is especially relevant at the interface between fresh and existing
concrete. Reinforcement helps resist the internal stresses caused by shrinkage. At the free end, de-
formation is not restrained, so shrinkage is less of an issue.

As the length of the segment increases, it not only leads to a rise in the amount of costly formwork but
also extends the span and increases the weight that the launching girder must support. The substan-
tial weight of the cylinder’s thick wall places a considerable load on the launching girder, suggesting
potential limitations on its maximum length.

Cap connection
The construction of the cylinder’s ends deviates from the semi-continuous process used for the mid-
section. Consequently, a dedicated connection method needs to be developed. Potential options
include the use of rubber seals or wet joints. Notably, the caps of the cylinder experience compression
in the longitudinal direction, enhancing the feasibility of achieving a watertight connection.

The connection of the caps and the construction of the last element are critical stages in the construc-
tion process. The envisioned approach begins with precasting the caps of the cylinder, initiating the
construction process. Subsequently, production cycles start by connecting the caps to the first ele-
ment. Progress then occurs from both ends, with the production cycles moving towards the center of
the cylinder. As the two emerging tubes converge in the middle, the final ring element is constructed.
This methodology effectively separates the complex task of connecting the cap to the cylinder from
the intricate process of pouring the last element, thereby streamlining the overall construction process.
However, a drawback of this method is the requirement for two launching girders, one of which needs
to be removed from inside the cylinder upon completion of construction.

5.3.3. Watertightness
Both of the remaining construction methods, precast elements, and horizontal jump-forming, require
connections in the design since both methods do not allow for a fully monolithic structure. Two types of
connections are involved in these designs. One pertains to connecting an existing concrete member
with a freshly poured element, commonly known as a cold joint. The other involves connecting two
precast concrete elements, termed the ’precast connection.’ More background information on joint
types is available in Appendix H.

Cold joints are a key point of attention regarding watertightness. Enhancing the casting surface’s rough-
ness can improve the concrete-concrete bond, and the continuation of longitudinal reinforcement can
be achieved using reinforcement couplers. Additional measures, such as waterstops, can also be
implemented. However, products like waterstops have not been used at these depths, and the water-
tightness of a cold joint remains uncertain [54].
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(a) Starting position of jump-forming process (b) Continuance of reinforcement

(c) Continuance of launching girder (d) Placement of inner formwork

(e) Placement of outer formwork and concrete pouring

Figure 5.4: Construction cycle of horizontal jump-forming method

Precast connections can be implemented using either rubber joints or wet joints. The only rubber
joint capable of resisting the hydraulic pressure at the intended installation depth is a compression
seal. Ensuring watertightness with such a seal requires a contact pressure equivalent to 2.5 times the
hydraulic pressure, maintained consistently around the connection’s circumference [55]. When a wet
joint is used, any longitudinal reinforcement should extend through the joint. Additionally, the freshly
poured concrete should bond to the precast elements, essentially creating a cold joint on either side of
the freshly poured concrete.

The proposed connections are all fixed. Generally, opting for a more flexible connection, such as a
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Gina gasket or other rubber profile, typically results in reduced watertightness [56]. As elaborated
in section 3.5, no expansions or contractions of the structure due to changes in temperature should
be anticipated, given the intended installation depth. Consequently, flexibility might only be deemed
necessary to accommodate unequal settlements [56].

Figure 5.5: Cylinder possible axial stresses at connections

In Figure 5.5, three distinct axial stress situations in the cylinder are illustrated. From left to right, the
first scenario shows axial stress induced by the hydraulic pressure. In the second scenario, there is
a potentially reduced axial stress near the middle of the cylinder, as some of the axial stress might
be transferred to the foundation. Lastly, the third scenario depicts a potential foundation settlement,
resulting in a bending moment that causes non-uniform axial stress in the cylinder.

Both the potentially reduced axial stress and the non-uniform axial stress situation are unfavorable for
the functioning of a rubber seal. The required contact pressure might not be guaranteed, making rubber
seals unfeasible as connecting elements in the middle of the cylinder. However, rubber seals might be
feasible at the ends of the cylinder to create the connection between the cylinder and the cap.

These challenges become less prominent when employing a wet joint for connecting precast elements,
as its performance is not directly dependent on contact pressure. In fact, there is no contact pressure
involved, as the wet joint seamlessly integrates both concrete elements together. However, the ability of
a wet joint to retain water is highly influenced by the concrete-concrete bonding, present on both sides
of the joint. A wet joint has two concrete-concrete bonds, whereas a cold joint only has one. Therefore,
the wet joint is considered a higher risk for compromising the watertightness requirement. To avoid the
use of wet joints or rubber seals, the horizontal jump-forming method can be applied.

Apart from connections in the structure, watertightness can be influenced by cracks in the concrete.
The maximum crack width and its path along the thickness of the wall are crucial. These effects can
be reduced by applying enough reinforcement. While this issue may arise at wet joints or cold joints
too, it is not further elaborated.

Certainly, the watertightness of the structure is directly affected by the number of connections present
within it. A lower quantity of connections enhances watertightness. In the precast element method,
the number of connections is tied to the length of the elements, constrained by the maximum lifting
capacity of the crane. With a weight of 154 tonnes per meter, as indicated in Table 5.2, the elements
quickly become exceedingly heavy. On the other hand, in the horizontal jump-forming method, the
length of the elements is restricted by the maximum extension length of the launching girder. As this
girder must support the weight of the wet concrete, it bears a substantial load. While a larger crane can
be rented, and a more robust truss structure for the launching girder can be implemented, the limiting
factors in both options appear to be more financial than structural in nature. It is assumed, without
further elaboration, that increasing the dimensions of the launching girder is comparatively inexpensive
in contrast to the heightened rental expenses associated with higher lifting capacities. No additional
attention is spent on this aspect.

A summary of the described connection elements and their applicability to the precast element method
and the horizontal jump-forming method is presented in Table 5.3. Cold joints are deemed more wa-
tertight than wet joints. As a result, the precast element method is concluded to have a lower level of
watertightness compared to the horizontal jump-forming method.
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Precast elements Horizontal jump-forming

Precast connections At mid-section and caps -
Potential type of mid-connections Wet joints Cold joints
Number of mid-connections Dependent on max. Dependent on max.

lifting capacity of crane length of launching girder
Potential type of cap connections Rubber seals or wet joints Rubber seals or wet joints
Water tightness Complex Feasible

Table 5.3: Concrete connection types of cylinder

5.3.4. Evaluation
The summarized features of both construction methods are presented in Table 5.4. The conclusion
drawn is that the horizontal jump-forming method holds an advantage over precast elements, partic-
ularly in terms of achievable watertightness. This aspect takes precedence as it significantly impacts
the overall performance of the system.

Precast elements Horizontal jump-forming

Construction location Factory and dry dock Dry dock
Operations Lifting elements in dry dock Continuance of launching girder
Water tightness Complex Feasible

Table 5.4: Summary features precast element method and horizontal jump-forming method

5.4. Implementation aspects cylindrical design
This section addresses the transportation and installation methods for the cylinder. A specific method is
formulated, and the principal loads acting on the structure during transport and immersion are identified
and quantified.

5.4.1. Transport
Due to its oblong shape, the launching methods for the cylindrical reservoir are akin to those used
for ships. Common ship launching techniques include longitudinal or side-way slide launching and
floating-out launching. In slide launching, the ship is slid down a slope, utilizing gravity to initiate mo-
tion. However, during the initial contact with the water, the ship encounters resistance, leading to
deceleration. This approach may be deemed unfavorable for the cylinder, as the dynamic impact of
the water could impose a significant load on the structure [57].

Conversely, floating-out launching is a more gradual and controlled process. In this method, the dry
dock where the ship (or, in this case, the cylinder structure) is constructed is flooded, causing the
structure to become immersed. Due to the gravitational load on the cylinder exceeding its buoyant
force, the cylinder will remain immersed throughout the process.

Consequently, the cylinder must be lifted by pontoons and then towed to its final location, a method
commonly utilized in the construction of submerged floating tunnels [58, 59]. A graphical representation
of this process is provided in Figure 5.6. The catamaran-like pontoons bear the cylinder, and towing
boats facilitate its transportation. The base of the cylinder contributes to stabilizing it during transport.
In this scenario, the cylinder is supported by two pontoons, a number that can be increased if necessary
to reduce the load per cable and the bending moment.

Alternatively, employing a gradual skidding technique imposes minimal stresses on the structure. This
method involves the structure being incrementally moved from land into water utilizing reinforced rubber
or steel cylinders as skidding beams, facilitated by the controlled lowering from cables [60]. Such an
approach is well-established in the transportation of large objects, exemplified by the launching of the
Pavilion Bridge in Zaragoza, Spain, where a 140-meter-long steel bridge was smoothly maneuvered
into its installation position [61]. This skidding process necessitates the placement of the structure
on designated skidding beams and still entails the utilization of pontoons for subsequent transport.
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Although not further detailed herein, this method remains a viable alternative.

(a) Securing of cylinder to dry dock cranes (b) Flooding of dry dock; lifting and moving cylinder

(c) Securing first catamaran floater (d) Moving of cylinder; securing second catamaran floater

(e) Moving of cylinder; repositioning catamaran floaters (f) Complete launch; transport of cylinder

Figure 5.6: Launch and transport of cylinder

When lifting the cylinder, a bending moment is induced. The cylinder, supported by catamaran floaters,
can be conceptualized as a 1D beam with two hinged supports. The distributed load q [kN/m] on this
beam is equivalent to the cylinder’s own weight in water. Tominimize the bendingmoment, the supports
are strategically placed at L

4 and 3L
4 , where L is the external length of the cylinder. Utilizing parameters

from Table 5.2, the following simplification is made in the schematization.
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qd = γdqown weight in water

= γd
(Vconcrete (ρconcrete − ρsw)− Vinternalρsw) g

Lexternal

= 3
(7.958 (2400− 1025)− 9.000 · 1025) 9, 81

124, 8

= 404.91 kN/m

It is important to note that this representation does not account for the flat caps, which are better
modeled as point loads. This simplification is adopted with the understanding that in a subsequent
design phase, as outlined in Section 6.1, the caps will bemodeled as hemispheres. These hemispheres
are significantly less massive and closely resemble the situation outlined below.

To account for dynamic loads induced by waves, a safety factor of γd = 3 is considered.

The distributed load is then translated into the mechanical scheme presented in Figure 5.7.

Figure 5.7: Mechanic scheme of cylinder hanging from floater

The maximum shear force and moment are:

Vmax =
qL

4
=

404, 91 · 128, 4
4

= 12, 63 MN

Mmax =
qL2

32
=

404, 91 · 128, 42

32
= 196, 08 MNm

Assuming a 50% activity of the cross-section, the maximum shear stress is 0, 43 MPa.

σshear =
Vmax

1
2Across-section

=
12, 63

1
2 ·
(
(4, 92 + 1, 65)

2 − 4, 922
)

= 0, 43 MPa
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The section modulus W of the cylinder, neglecting the contribution of the base, is calculated as fol-
lows:

W =
π
(
(a+ t)

4 − a4
)

4 (a+ t)

=
π
(
(4, 92 + 1, 65)

4 − 4, 924
)

4 (4, 92 + 1, 65)

= 152, 69 m3

Consequently, the stress in the outermost fiber, induced by the bending moment, is equal to ±1, 29
MPa. The concrete should be able to withstand this load, even under tension.

±σoutermost fibre = ±M

w
= ±197, 08

152, 69
= ±1, 29 MPa

5.4.2. Immersion
Once the structure has been towed to its installation location, the next step is to lower it down to the
seabed. Given the substantial depth of 1000 meters, the own weight of the cables will become a
significant factor.

Assuming that the cylinder is lowered using four cables, each cable must bear qL
4 = 12.63 MN of the

cylinder’s own weight. To meet this requirement, a cable with a design yield strength of fy = 1500
MPa, a density of ρsteel = 8, 000 kg/m3, and a diameter of 15 cm is sufficient. This calculation is made
with a material safety factor of γc = 1.15 and a static load factor of γ = 1.2 applied to account for the
self-weight of the cable.

Fed,cable =
qL

4
+ γρsteelgAcabledepth

=
404, 91 · 128, 4

4
· 10−3 + 1, 2 · 8000 · 9, 81 · π · 0, 0752 · 1000 · 10−6

= 14, 30 MN

FR,cable =
fydAcable

γc

=
1500 · π · 0, 0752

1, 15

= 23, 05 MN

U.C. =
Fed,cable

FR,cable
=

14, 30

23, 05
= 0, 62

The influence of potential horizontal forces generated by the current is not taken into account in this
analysis. However, it may be necessary to deploy a remote-operated vehicle to manage the cylinder
and ensure a controlled installation [31].
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5.4.3. Stability
As detailed in Section 4.2.2, the foundations do not necessitate significant widths to distribute the weight
of the structure sufficiently to the soil. In some instances, it was suggested that the foundation width
might be minimal or even eliminated. However, this consideration does not account for horizontal loads
at the seabed.

Although the current at the seabed is low, it imposes a horizontal load on the structure. The impact
of this load on the stability of the structure has not been verified. However, it may be necessary to
implement additional measures, such as a wider base or a different base design, to ensure sufficient
stability.



6
Optimization

The content of this Chapter is twofold. First, an attempt is made to improve the design of the cap of the
cylinder. Secondly, it is verified to what extent the most important assumption of this thesis, uniform
compressive stress in the wall of the reservoir, deviates from reality. These findings are then used to
reestablish material usage.

6.1. Cap refinement cylindrical design
The flat cap design of the cylinder, as introduced in Section 3.2.2, is reevaluated in this section. Initially
presented as a simplified version for early CIV-ratio determinations in Chapter 4, it deviates from an
optimized design, potentially resulting in high concentrated stresses. Apart from significant bending
moments at the plate’s center, the abrupt disruption of curvature at the cylinder ends is expected to
induce concentrated local stresses. To mitigate these effects, a smoother transition from the cylinder
tube to its cap is considered.

In addition to the differences in curvature, stress concentrations in the connection between the cylinder
tube and cap are expected as a result of an edge disturbance. In this context, the edge disturbance
is a consequence of the difference in radial stiffness, krad, defined as the resistance of the member
against radial deformation of the cross-section ∆a, as illustrated in Figure 6.1.

Figure 6.1: Radial stiffness, krad [N m-1]

64
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6.1.1. Reduction of the edge disturbance
As a thought experiment, the connection between a cylindrical tube section (on the left) and three
different shapes (on the right) is considered, as illustrated in Figure 6.2. The tube-tube connection in
Figure 6.2a is present in each cross-sectional cut of the monolithic cylinder tube. It is obvious that
such a ’connection’ does not result in an edge disturbance. Conversely, it is conceivable that the radial
stiffness of the tube in Figure 6.2b is substantially lower than that of the flat plate it is connected with,
causing an edge disturbance. This disturbance can lead to high bending moments and concentrated
stresses at the connection.

It is hypothesized that there is a hemisphere-like cap design that allows for the minimization of edge dis-
turbances at the connection interface between the cylinder tube and cap. Such a design, as presented
in Figure 6.2c, has a radial stiffness that is approximately equal to that of the cylinder tube.

(a) Tube-tube connection (b) Tube-flat plate connection (c) Tube-hemisphere connection

Figure 6.2: Alternative cap designs for cylinder can reduce or eliminate edge disturbances

Edge disturbance in boiler drums
In a cylindrical pressure vat with a hemispherical cap, an edge disturbance arises due to a discrepancy
in radial stiffness. Consequently, a bending moment occurs, as illustrated in Figure 6.3. The magnitude
of the bending moment and the tangential membrane force are determined by Equations 6.1 - 6.4 [62].
It is essential to note that these equations are applicable only to thin shells, where the thickness of the
cylindrical shell is equal to the thickness of the hemispherical shell.

Figure 6.3: Bending moment and transition of tangential membrane force at cylinder-hemisphere connection [62]

mxx =
pl2i
8π2

sin πxc

li
exp −πxc

li
(6.1)

mϕϕ =
pl2i
8π2

sin πxs

li
exp −πxs

li
(6.2)

nθθ,cylinder = pa

(
1− 1

4
exp −πxc

li
cos πxc

li

)
(6.3)
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nθθ,sphere = pa

(
1

2
+

1

4
exp −πxs

li
cos πxs

li

)
(6.4)

6.1.2. Hemispherical cap design
A thin walled sphere and cylinder under constant pressure p are considered. The tangential strains of
these shapes are calculated as follows:

ϵsphere =
σsphere
Econcrete

=
nsphere

tsphereEconcrete

=
pa

2tsphereEconcrete

ϵcylinder =
σcylinder
Econcrete

=
ncylinder

tcylinderEconcrete

=
pa

tcylinderEconcrete

Imposing ϵsphere = ϵcylinder results in:

tsphere =
tcylinder

2
(6.5)

This analogy is useful for making an initial estimation of the required wall thickness of the hemispheri-
cal cap. When the tangential strains of a thin-walled sphere and cylinder are equal, their radial strains
will also be equal. Therefore, Equation 6.5 is used as a starting point in the hemispherical cap de-
sign.

For thin-walled structures, it can be assumed that the deformation is concentrated in the centre line
of the wall. Therefore, in an initial design, the hemispherical cap is connected to the cylinder tube
in such a way, that the center lines are continuous, as illustrated in Figure 6.4a. As explained in
section 3.3, the cylinder and hemisphere are not truly thin-walled, rendering the mentioned relations
as approximations.

Under the assumption of uniform stress throughout the wall thickness, the suggested relationship
between the thicknesses of the cylinder and hemisphere, with th = 0, 5tc, leads to equal tangential
stresses in both the cylinder and hemisphere walls. However, the resulting longitudinal stress in the
cylinder wall is half the magnitude of the corresponding tangential stress in the hemisphere wall.

σθθ,hemisphere =
nθθ,sphere

themisphere
=

pa

2themisphere
=

pa

tcylinder

σθθ,cylinder =
nθθ,cylinder

tcylinder
=

pa

tcylinder

σLL,cylinder =
nLL,cylinder

tcylinder
=

pa

2tcylinder
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(a) Base hemisphere cap design

(b) Transition zone of non-equal membrane forces;
tangential stresses match

(c) Transition zone of non-equal membrane forces;
longitudinal stress cylinder does not match tangential stress

hemisphere

Figure 6.4: Hemisphere cap details

These Equations are graphically displayed in Figures 6.4b and 6.4c. It is important to note that the
abrupt change from lower longitudinal stress in the cylinder to higher tangential stress in the hemisphere
cannot occur instantaneously. Instead, there will be a transitional zone, as illustrated in Figure 6.4. The
stress distribution in this region is uncertain for varying thicknesses of the hemisphere.

For thin shells where the cylinder and hemisphere share the same thickness, the stress distribution
in the transition zone is well-defined, as shown in Figure 6.3 and described by Equations 6.3 and 6.4.
In contrast to the earlier case, the discrepancy in stresses here arises from a mismatch in tangential
membrane forces.

To address potential stress concentration zones, various semi-hemispherical cap designs are proposed.
Subsequently, these designs are modeled in Diana FEA and subjected to comprehensive analysis in
Section 6.1.4. Prior to the detailed analysis, various thicknesses are tested to evaluate the impact of
the hemisphere’s thickness on the magnitude of the bending moment.

6.1.3. Numerical verification of edge disturbance reduction
To verify the hypothesis that the edge disturbance can be minimized by varying the thickness of the
hemispherical cap, a Diana FEA model is employed. Using the axisymmetry of the cylinder and hemi-
sphere, the structure is modelled by a slice, representing the full structure. Since it is only interesting
to verify the bending moment near the cylinder edge, a reduced length of the cylinder is used. It is
validated whether this model still accurately represents the full structure in Appendix I.2.

As previously mentioned, the bending moment resulting from the edge disturbance can be analytically
determined using Equations 6.1 and 6.2. However, it is essential to recognize that these equations
are tailored for thin shells. Given that the cylinder and hemispherical cap under consideration here
are classified as thick to very thick shells, the outcomes derived from numerical analysis regarding
edge disturbance lack validation against an analytical solution. Additionally, in cases where the hemi-
sphere wall thickness differs from that of the cylinder, there exists no analytical solution, even for thin
shells.

A validation of the model’s ability to capture the actual moments induced by an edge disturbance is
conducted. This validation can be found in Appendix I.3. It involves a thin shell to allow comparison
with an analytical solution.
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While the moment in the thick shell is not expected to precisely match the analytical solution, it is still
valuable to compare the numerical results with the analytical solution. Such a comparison helps verify
whether the shape and order of magnitude of the solutions correspond. However, this comparison is
only relevant for the case where the hemisphere thickness is equal to the cylinder tube thickness.

The illustration in Figure 6.5 provides an overview of the utilized model, featuring a hemisphere thick-
ness of 0.5t. Although various hemisphere thicknesses are examined, the models remain identical
in all other aspects. This 3D solid model employs a composed line to extract moments around the
Y-axis, corresponding to mxx as depicted in Figure 6.3. For further elaboration on the models, refer to
Appendix I.3.

The numerical output of the composed line is given in MNm. At each node along the composed line,
it accumulates the contributions from all nodes within a plane perpendicular to the composed line. To
convert the composed line output to MNm/m, each data point of the composed line needs to be divided
by the width of the mid-section of the slice model at that specific location. While the width remains
constant in the cylinder tube, it decreases with decreasing Z-coordinate in the hemisphere. The Diana
models’ outputs have not been adjusted for this slice width. Corrections for the slice width are applied
in the plots.

Figure 6.5: Diana slice model for determining influence of hemisphere thickness on moment induced by edge disturbance

The following paragraphs present and discuss the results, organized by hemispherical thickness. In
each instance, a polynomial curve is fitted through the data points for both the hemisphere and the cylin-
der tube results. These fitted polynomials serve as a basis for comparing the results across different
thicknesses.

Interpreting the results proves challenging due to the necessity to correct for slice width, rendering
the outputs complex. Moreover, inconsistencies and inaccuracies are observed in the hemisphere
results across all thicknesses, making it challenging to draw meaningful conclusions from the analyses.
However, in the cylinder tube, the results exhibit consistency. As the distance from the cylinder edge
increases, the moments appear to approach zero. This observation aligns with theoretical expectations,
as the influence of the edge disturbance diminishes further away from the cylinder edge.

The modeled hemisphere thicknesses correspond to a cylinder with Vinternal = 9000 m3 and L
2a = 12 at

d = 1000meters, leading to an internal radius of a = 4, 84meters and a wall thickness of tcylinder = 1, 62
meters. The parameters of the hemisphere thicknesses are listed in Table 6.1.

Thickness fraction 1 0, 6 0, 5 0, 4
Thickness [m] 1, 62 0, 972 0, 81 0, 648
Inner radius hemisphere [m] 4, 84 5, 164 5, 245 5, 326
Outer radius hemisphere [m] 6, 46 6, 136 6, 055 5, 974

Table 6.1: Modelled hemisphere thicknesses
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For detailed information on the Diana FEA models utilized in this section, refer to Appendix I.3.2.

Hemisphere thickness: th = tc
The moment observed in the cylinder tube closely aligns with the analytical solution. However, an
unexpected jump in the moment occurs at the transition from cylinder to hemisphere, contrary to the
anticipated zero moment. This discrepancy is puzzling and suggests unreliable results, given the ab-
sence of any additional load that could generate such a moment at the transition zone.

In the hemisphere, the fitted polynomial appears to be shifted upward compared to the analytical solu-
tion, which consistently remains lower. This discrepancy further indicates potential unreliability in the
hemisphere results.

The numerous outliers observed in Figure 6.6b (at x < 0) are attributed to spikes in the Diana results
within the hemisphere, as observed in Figure 6.6a.

(a) Diana output

(b) Diana output post-processed in python, adjusted for slice width

Figure 6.6: Moments due to edge disturbance for th = tc
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Hemisphere thickness: th = 0, 6tc
The Diana output, as depicted in Figure 6.7a, shows oscillations around the mid-surface in the hemi-
sphere, which gradually diminish further from the edge disturbance. However, when considering slice
width adjustments, substantial oscillations become apparent in the hemispherical region.

At the interface between the hemisphere and the cylinder tube, a noticeable jump in the moment-line
occurs. This jump can be attributed to the distributed normal force present in the uncovered portion of
the cylinder wall thickness, where the thinner hemisphere is no longer connected to the cylinder.

The results in the cylinder tube demonstrate consistency, gradually decaying away from the edge dis-
turbance, consistent with theoretical expectations.

Themaximummoment in the cylinder tube is located approximately 1meter from the cylinder edge.

Once more, numerous spikes are evident in the hemisphere region in Figure 6.7a, resulting in outliers
in Figure 6.7b. These outliers lead to inconsistency between the polynomial curve fit and the data in
the hemisphere region. Consequently, the results in this area are deemed unreliable.

(a) Diana output

(b) Diana output post-processed in python, adjusted for slice width

Figure 6.7: Moments due to edge disturbance for th = 0, 6tc
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Hemisphere thickness: th = 0, 5tc
The Diana output, as illustrated in Figure 6.8a, exhibits extremes at the interface between the hemi-
sphere and cylinder tube. Subsequently, it gradually decreases to zero further away from the edge
disturbance, consistent with theoretical expectations.

However, upon applying a correction for the slice width, the moment in the hemisphere does not seem
to decrease away from the transition zone, which is unexpected.

A jump in the moment-line occurs at the location of the edge disturbance. As previously mentioned,
this can be attributed to the presence of the distributed normal force perpendicular to the cross-section
of the cylinder tube, where the hemisphere and cylinder no longer connect.

Once again, the spikes in the hemispherical region in Figure 6.8a result in outliers in the data points in
Figure 6.8b, making the results in the hemispherical region unreliable and complex to interpret.

(a) Diana output

(b) Diana output post-processed in python, adjusted for slice width

Figure 6.8: Moments due to edge disturbance for th = 0, 5tc
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Hemisphere thickness: th = 0, 4tc
The output of the Diana model reveals bending moments at the cylinder edge where the edge distur-
bance is present, as depicted in Figure 6.9a. These bending moments gradually decay away from the
edge disturbance, with oscillations observed in the hemispherical part.

A jump in the moment line is observed at the transition, attributed to the presence of the distributed
normal force acting perpendicular to the cross-section of the cylinder tube, where the hemisphere and
cylinder no longer connect. Unlike in other models, this jump in the moment line does not cause the
moment to change from positive to negative.

The moment near the transition zone consistently exhibits a positive value, deviating from the patterns
observed in the other models. This suggests a threshold for the hemisphere thickness, falling within
the range of 0, 4tc < th < 0, 5tc, where the radial stiffness of the cylinder surpasses that of the hemi-
sphere.

Once again, the spikes in the hemispherical region in Figure 6.9a result in outliers in the data points in
Figure 6.9b, making the results in the hemispherical region unreliable and complex to interpret.

(a) Diana output

(b) Diana output post-processed in python, adjusted for slice width

Figure 6.9: Moments due to edge disturbance for th = 0, 4tc
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Combination of results
While acknowledging the inaccuracies and inconsistencies observed in the fitted polynomials within
the hemispherical region of the results, some tentative observations can still be made, albeit with cau-
tion.

Themoment present in the cylinder tube can be influenced by adjusting the thickness of the hemisphere.
Careful consideration is required as the chosen thickness can either increase or decrease the moment.
It seems that the moment cannot be reduced to zero under the conditions of constant distributed normal
force on a thick shell.

Figure 6.10: Fitted polynomials for moments in edge disturbance hemisphere and cylinder interface;
at d = 1000 m and fcd = 40 MPa;

Extracted from Figures 6.6b, 6.7b, 6.8b and 6.9b

The magnitude of the moments falls within the range of ±5 MNm/m. Considering this moment acts
around the circumference of the mid-surface, its total value acting on the entire cross-section can be
calculated by multiplying it by the length of the circumference. Subsequently, the additional stresses
arising from this moment can be determined by dividing by the section modulus W of a circular hollow
section.

For the given cylinder with an inner radius of a = 4, 84 meters and a wall thickness of tcylinder = 1, 62

meters, the radius of the mid-surface is thus a +
tcylinder

2 = 5, 65 meters. The normative hemisphere for
this bending moment is the thinnest one, where th = 0, 4tc.

W =
π
(
r42 − r41

)
4r2

=
π
(
5, 9744 − 5, 3264

)
4 · 5, 974

= 61, 66 m3

σmax = ±My

W
= ±Mxx · 2πrmidsurface

W
=

5 · 2π × 5, 65

61, 66
= ±2, 88 MPa

The resulting normative additional stress caused by the bending moment is ±2, 88 MPa, specifically in
the hemisphere with thickness tt = 0, 4tc. Comparing this to the anticipated effective design stresses
of 40 MPa, the contribution of the edge disturbance appears marginal.

Moreover, the abrupt transition from cylinder to hemisphere, where the hemisphere is thinner than the
cylinder, leads to a jump in the moment line. This is due to the distributed normal force acting on the
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cylinder cross-section. Smoothing the transition from cylinder to hemisphere by adding some material
may result in a reduction of the jump.

The expected value of the jump can be calculated and compared to the observed value of the jump. It
is equal to the free height above the hemisphere, multiplied by the distributed normal force p, and the
distance of the center of the resultant force to the mid-surface. This is illustrated in Figure 6.11. The
expected value of the jump in the moment line for the hemisphere with thickness th = 0, 4tc is equal to
2, 77 MNm/m.

Mjump = p
tc − th

2

(
tc − th

4
+

th
2

)
= 10, 06 · 1, 62− 0, 648

2

(
1, 62− 0, 648

4
+

0, 648

2

)
= 2, 77 MNm/m

Figure 6.11: Mechanical scheme of explanation for jump in moment line at cylinder edge

All expected values of the height of the jump in the moment line are higher than the values observed
in the data, except for the hemisphere equal in thickness to the cylinder edge. In that case, a jump in
the moment line is observed where no jump is expected.

Thickness fraction 1 0, 6 0, 5 0, 4
Thickness [m] 1, 62 0, 972 0, 81 0, 648

Section modulus [m3] 145, 0 90, 42 76, 19 61, 66

My,cylinder,max,Diana [MNm] −0, 94 −0, 34 −0, 75 1, 57
Mxx,cylinder,max [MNm/m] −1, 66 −0, 58 −1, 32 2, 77

My,hemisphere,max,Diana [MNm] 2, 34 0, 80 0, 32 2, 13
Mxx,hemisphere,max [MNm/m] 4, 26 1, 49 0, 57 3, 95

Expected value jump in moment line [MNm/m] 0 2, 11 2, 47 2, 77
Observed value jump in moment line [MNm/m] 1, 52 1, 72 1, 87 2, 16

Table 6.2: Maximum absolute moments for various hemisphere thicknesses

The presence of moments in both the hemisphere and cylinder tube implies the existence of shear
forces as well. The derivatives of the fitted polynomials from Figure 6.10, representing the shear forces
in the cross-section, have been plotted and are depicted in Figure 6.12.

In all cases, except for th = 0, 5tc, there appears to be a jump in the shear line. However, this jump is
more likely a consequence of inaccurate polynomial fitting rather than an actual discontinuity. In reality,
such a jump cannot exist, as there is no support or concentrated load present at the transition from the
hemisphere to the cylinder.
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As mentioned, the polynomial fits in the hemisphere are inaccurate, leading to inaccuracies in their
derivatives as well. Therefore, it is challenging to draw meaningful conclusions about that part of the
graph. In the cylinder tube, the shear forces appear to be lowest for the hemisphere thicknesses of
0, 5tc and 0, 6tc.

Near the truncation of the cylinder tube, the polynomial fits show some inaccuracies, as evident in
Figures 6.6b, 6.7b, 6.8b, and 6.9b. Despite the expectation of zero moment in that region, the shear
forces do not appear to be zero in Figure 6.12.

Figure 6.12: Shear forces caused by edge disturbance in hemisphere and cylinder interface;
at d = 1000 m and fcd = 40 MPa;

Derivatives of fitted polynomials from Figure 6.10

6.1.4. Redistribution of stress concentrations at cylinder-hemisphere transition
As anticipated in Figure 6.4, stress concentration zones are indeed evident at the internal angle where
the hemisphere intersects with the cylinder.

A hemispherical structure with a thickness equivalent to half of the cylinder’s thickness, represented by
th = 0, 5tc, is being analyzed through computational simulations using Diana FEA software. The simu-
lation involves exploring three variations in the transition from the cylinder to the hemisphere.

Firstly, an investigation into an abrupt transition is conducted, wherein no additional material is intro-
duced to facilitate a smoother connection between the two geometries. This configuration is referred
to as an abrupt transition.

Secondly, a triangular transition is explored, characterized by a gradual reduction in the cylinder’s
thickness at a 45-degree angle until it integrates with the hemisphere. This configuration, due to its
triangular shape, is termed a triangular transition.

Lastly, a smoother connection approach is scrutinized, involving a gradual reduction in the cylinder’s
thickness along the tangent of a circle until it smoothly merges with the hemisphere. This configuration
is referred to as a circular transition.

In all three designs, material is only added at the hemisphere without shaving off any material from the
cylinder wall. The thickness of the cylinder wall was determined based on its capacity to withstand the
distributed normal force, thus no material can be removed from there.

These three variations are selected to illustrate potential strategies for reducing stress concentrations.
It is important to note that while these configurations may mitigate stress concentrations to some extent,
achieving an optimal connection devoid of elevated stresses may require further refinement.



6.1. Cap refinement cylindrical design 76

As detailed in Section 6.2.4, the maximum tangential stress observed in the cylinder wall is −45, 8MPa.
Given that this value represents the design stress norm, it is imperative that the transition from the
cylinder to the hemisphere does not exacerbate the maximum tangential stress within the cylinder wall.
For definitions of radial, tangential and longitudinal stress, refer to Section 3.3.

Detailed information on the models that were used in this Section is found in Appendix I.3.3.

Abrupt transition
As anticipated, the abrupt transition leads to a stress concentration at the internal angle where the
cylinder and hemisphere intersect. In the cylinder, the longitudinal stress is approximately half of the
tangential stress observed in the hemisphere, as depicted in Figure 6.14. Transitioning from the cylinder
to the hemisphere confines the stress into a narrower path, evident from the trajectory of the principal
stress lines in this figure.

A significant tangential stress concentration of −79, 34 MPa is detected within the hemisphere, as de-
picted in Figure 6.15. Additionally, both tangential and radial stress concentrations in the cylinder
marginally surpass the normative design stress, as illustrated in Figure 6.16.

Figure 6.13: Abrupt hemisphere-cylinder connection; model

Figure 6.14: Abrupt hemisphere-cylinder connection; principal stresses in XZ-plane
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Figure 6.15: Abrupt hemisphere-cylinder connection; principal stresses in hemisphere

Figure 6.16: Abrupt hemisphere-cylinder connection; principal stresses in cylinder
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Triangular transition
Like the abrupt transition, the triangular transition from the cylinder to the hemisphere also channels the
stress into a narrower path, as evidenced by the trajectory of the principal stress lines in Figure 6.18.
There seems to be insufficient additional material to facilitate a smooth transition of the stresses.

Furthermore, a very high stress concentration is observed at the internal angle of the lower triangle
where it meets the hemisphere, as illustrated in Figure 6.19. This suggests that the sharp angle between
the triangle and the hemisphere still results in a singularity.

However, apart from this singularity, there are no extreme values of principal stress observed. The
normative design stress is not exceeded.

Figure 6.17: Triangular hemisphere-cylinder connection; model

Figure 6.18: Triangular hemisphere-cylinder connection; principal stresses in XZ-plane
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Figure 6.19: Triangular hemisphere-cylinder connection; principal stresses in hemisphere

Figure 6.20: Triangular hemisphere-cylinder connection; principal stresses in cylinder
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Circular transition
The circular transition notably facilitates a smooth transition of the longitudinal stress in the cylinder wall
to the heightened radial stress in the hemisphere. This can be observed in the direction of the principal
stresses, as depicted in Figure 6.22, closely aligning with the shape of the cross-section. It indicates
effective transfer of loads to normal stresses.

A slight increase in the principal stress level is observed at the point where the curvature of the internal
surface of the hemisphere undergoes a change. This alteration in curvature is most clearly visible in
Figure 6.21, while the elevated stress is best observed in Figure 6.23.

Furthermore, no other increases in stress levels are observed in the circular transition.

Figure 6.21: Circular hemisphere-cylinder connection; model

Figure 6.22: Circular hemisphere-cylinder connection; principal stresses in XZ-plane
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Figure 6.23: Circular hemisphere-cylinder connection; principal stresses in hemisphere

Figure 6.24: Circular hemisphere-cylinder connection; principal stresses in cylinder
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Conclusion on stress concentration reduction
A detailed examination of the three transition variations reveals that a smoother transition has the po-
tential to diminish or entirely eliminate stress concentrations at the junction between the cylinder and
hemisphere. Additionally, even minor fluctuations in surface curvature can lead to stress concentra-
tions.

However, achieving such a smooth connection in practice may present challenges. The quality of the
final product is inherently tied to the capability to create smooth formwork. Nonetheless, the analysis
above demonstrates that significant reductions in high stress concentrations are feasible.

6.1.5. Contribution of hemispherical cap to CIV-ratio
In addition to examining the distribution of internal forces, the analysis of the hemispherical cap design
extends to its impact on the CIV-ratio of the cylinder. Multiple proposed designs are evaluated, and for
the calculations, a baseline design with the same thickness as the cylinder is employed. As discussed
in Section 6.1.2, it is acknowledged that the wall thickness of the hemisphere is expected to be ap-
proximately half of the wall thickness of the cylinder. Consequently, these calculations lead to a slight
overestimation of the CIV-ratio.

Figure 6.25: CIV-ratio of reservoir and foundation for hemispherical cap design;
at d = 1000 m and fcd = 40 MPa

Figure 6.25 presents the CIV-ratios of the sphere and the cylinder with both flat and hemispherical
cap designs, including considerations for the foundations. The CIV-ratio for the sphere varies over
the internal volume, while the cylinder’s CIV-ratio varies over its slenderness. Detailed calculations
supporting the results presented in Figure 6.25 can be found in Appendix D.3.

The hemispherical cap design demonstrates improved material usage compared to the flat cap design.
As slenderness increases, this advantage diminishes. However, slenderness values exceeding 30 are
highly unrealistic due to the impractical length of the cylinder for construction. Consequently, there is a
tangible improvement in the CIV-ratio of the hemispherical cap design compared to its flat counterpart.
Nevertheless, the sphere still exhibits a lower CIV-ratio, making it more favorable in terms of material
usage.
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6.2. Verification of uniform compression assumption
The analyses in Chapter 4 rest on the assumption of uniform compressive stress in the reservoir wall,
as detailed in Section 3.3. This simplification is typically justified for very thin shells where the ratio
between span and thickness (at ) exceeds 4000 [36]. Interestingly, for both the sphere and the cylinder,
this a

t ratio is lower. The internal volume and slenderness do not seem to play a role in determining
this ratio, as illustrated in Figure 4.5. Factors influencing this ratio are the installation depth and the
concrete compressive design strength.

Parameter Symbol Value Unit

Installation depth d 1000 [m]
Concrete compressive design strength fcd 40 [N mm-2]
Hydrostatic pressure p −10, 06 MPa
Spherical span-thickness ratio a

t
6, 96 [-]

Cylindrical span-thickness ratio a

t
2, 98 [-]

Table 6.3: Span-thickness ratios of sphere and cylinder

As indicated in Table 6.3, the a
t ratio for the sphere is 6, 96, classifying it as a thick shell. Conversely, for

the cylinder, the ratio is 2, 98, suggesting that it structurally behaves differently from a shell [36].

6.2.1. Analytical verification of uniform stress assumption for sphere
To assess the uniform stress assumption, Equations 6.6 and 6.7 are applied for thick-walled spheres
[63, 64].

σrr,sphere = C1 −
C2

r3
(6.6)

σθθ,sphere = C1 +
C2

2r3
(6.7)

Here, the constants C1 and C2 are determined by applying boundary conditions for σrr,sphere at r = a
and r = a+ t, which originate from the pressure loads on the sphere.

r = a → σrr = pin = 0

r = a+ t → σrr = pout = −p

These boundary conditions lead to the solved expressions for tangential and radial stress for the thick-
walled sphere under hydrostatic pressure, as formulated in equations 6.8 and 6.9. Relevant parameters
for this context are illustrated in Figure 6.26a.

σrr,sphere =
p (a+ t)

3 (
r3 − a3

)(
(a+ t)

3 − a3
)
r3

(6.8)

σθθ,sphere =
p (a+ t)

3 (
2r3 + a3

)
2
(
(a+ t)

3 − a3
)
r3

(6.9)

Following the methodology outlined in Chapter 4, a spherical reservoir with an internal volume of
Vinternal = 9000 m3 has an internal radius of a = 12, 90 meters and a wall thickness of t = 1, 86 me-
ters. Utilizing these parameters in Equations 6.8 and 6.9 yields the radial and tangential stresses, as
depicted in Figure 6.26b. It is important to note that the wall thickness was determined based on a
maximum allowable tangential stress of 40 MPa.
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(a) Schematic
(b) Stress distribution for thick-walled sphere [MPa] at d = 1000 m

Figure 6.26: Thick-walled sphere with internal and external load

6.2.2. Analytical verification of uniform stress assumption for cylinder
To validate the assumption of uniform stress over the wall thickness, equations 6.10 and 6.11 for circular
discs and plates are employed [65]. These equations are applicable to the cylindrical reservoir, while
for the spherical reservoir, they do not hold.

σrr,cylinder =
a2 (a+ t)

2
(qin − qout) + r2

(
(a+ t)

2
qout − a2qin

)
r2
(
(a+ t)

2 − a2
) (6.10)

And:

σθθ,cylinder =
−a2 (a+ t)

2
(qin − qout) + r2

(
(a+ t)

2
qout − a2qin

)
r2
(
(a+ t)

2 − a2
) (6.11)

The parameters employed in Equations 6.10 and 6.11 are depicted in Figure 6.27a. Using a
t = 2, 98

and qin = 0, the equations can be further simplified as follows:

σrr,cylinder = 2, 28qout

(
1− a2

r2

)

σθθ,cylinder = 2, 28qout

(
1 +

a2

r2

)
By substituting a < r < a + t = 1, 336a, derived from the known a

t ratio, an expression for the mini-
mum and maximum radial and tangential stress in the wall is obtained, which is solely dependent on
qout:

0 ≤
σrr,cylinder

qout
≤ 1
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3, 552 ≤
σθθ,cylinder

qout
≤ 4, 552

Upon evaluating a unit strip of the cylinder, width = 1 meter, qout = p · 1 = −10, 06 N/m, the correspond-
ing stress-values are obtained, as illustrated in Figure 6.27b. It is crucial to emphasize that the wall
thickness was determined based on the maximum allowable tangential stress of 40 MPa.

(a) Schematic
(b) Stress distribution for cylinder [MPa] at d = 1000 m

Figure 6.27: Thick-walled tube with internal and external load, representing the cylinder cross-section

6.2.3. Numerical model of sphere and cylinder
The analytical solutions presented in Subsections 6.2.1 and 6.2.2 undergo numerical verification using
Diana FEA. Given the round shapes of both the sphere and cylinder, multiple symmetry axes are utilized
to reduce the number of elements in the numerical analysis. This approach facilitates the avoidance
of singularities, by eliminating the need for point supports. Additionally, a constant distributed force,
normal to the external surface of both shapes, is applied as the load in the numerical models, mimicking
the constant hydrostatic pressure assumed in the analytical calculations. Both models are illustrated
in Figure 6.28. Detailed model outputs are presented in Appendix I.1.

(a) 3D-Sphere octant model (b) 2D-Cylinder quarter model

Figure 6.28: Numerical verification of uniform compression assumption with Diana FEA
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The parameters used to create the models for the sphere and cylinder are detailed in Table 6.4. Given
the axisymmetric nature of both models, any cut that traverses the entire wall thickness can be utilized
to analyze the tangential stress in the wall.

Model parameter Sphere Cylinder

Internal volume V [m3] 9000 9000
Internal radius a [m] 12, 9 4, 92
Wall thickness t [m] 1, 86 1, 65
Distributed normal force [MPa] 10, 06 10, 06
Young’s Modulus [MPa] 39100 39100

Model dimension 3D 2D
Number of symmetry axes 3 2

Model fraction 1

8

1

4
Element type Structural solids Plane stress

CHX60 & CPY39 CQ16M & CT12M
CTE30 &CTP45 CQ16M & CT12M

Element size [mm] 155 50
Number of elements 30.169 1.452
Number of nodes 108.358 4.547
Number of dofs 650.148 9.094
Number of elements over wall thickness 6 17
Element thickness [mm] n.a. 1000
Type of analysis Linear Elastic Linear Elastic

Table 6.4: Diana FEA model parameters for verification of uniform stress assumption

6.2.4. Evaluation of uniform stress assumption
The analytically determined values of tangential stress across the wall thickness were calculated using
Equations 6.9 and 6.11 and are presented in Figures 6.26b and 6.27b. The numerical values of the
tangential stress were determined by Diana FEA, utilizing the models as described in Figure 6.28 and
Table 6.4.

The results of these analyses are depicted in Figure 6.29. The analytically determined tangential
stresses perfectly coincide with the numerical ones, confirming the accuracy of the analytical solu-
tions. This result is expected, given that, under the imposed conditions, the resulting elastic stresses
were previously proven [63, 64, 65].

Figure 6.29 illustrates that the assumption of uniform compressive stress over the wall thickness results
in a slight underestimation of the maximum tangential stress. For both the sphere and cylinder, the
maximum tangential stress occurs at the inner radius of the shape. Interestingly, the tangential stress
in the sphere wall is consistently higher than the design compressive stress. In contrast, the tangential
stress for the cylinder is higher than the design stress on the interior surface, reducing to a value lower
than the design stress on the exterior surface of the cylinder.

The maximum compressive stresses for the sphere and cylinder are exceeded by 13,41% and 14,47%
respectively.

σθθ,sphere,max − fcd
fcd

=
−45, 365− −40

−40
= 13, 41%

σθθ,cylinder,max − fcd
fcd

=
−45, 787− −40

−40
= 14, 47%

This observation suggests that the calculated CIV-ratios in Chapter 4 were overly optimistic. This aligns
with findings in the literature, where proposed spheres exhibit substantially thicker walls considering
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Figure 6.29: Uniform stress over wall thickness verification;
at d = 1000 m and fcd = 40 MPa

similar installation depths and concrete classes [5, 8, 10]. Nevertheless, despite this discrepancy,
the calculated CIV-ratios retain their value for comparative purposes among spherical, cylindrical, and
toroidal designs in assessing material usage.

6.3. Revised CIV-ratios
In Section 6.2, it was demonstrated that by applying the proposed wall thicknesses the maximum com-
pressive design stress in the walls of both the sphere and cylinder is exceeded.

6.3.1. Increased wall thickness by satisfying found pressure distribution
Substituting r = a and qout = p in Equations 6.9 and 6.11 an expression for the maximum stress in the
sphere and cylinder walls is obtained.

σθθ,sphere,max =
3p (a+ t)

3

2
(
(a+ t)

3 − a3
) (6.12)

σθθ,cylinder,max =
2p (a+ t)

2

(a+ t)
2 − a2

(6.13)

Through an iterative process of trial and error, the wall thicknesses were adjusted in the equations
mentioned above until a thickness was reached that met the criteria of σθθ,sphere,max = 40 MPa for
the sphere and σθθ,cylinder,max = 40 MPa for the cylinder. This process is outlined in Figure 6.30. The
maximum stress σθθ,max, which is present at the interior of the wall, is calculated following Equations
6.9 and 6.11.

Subsequently, the methodologies utilized earlier to estimate material usage for foundation construction,
as detailed in Section 4.2, are implemented. The foundation’s contribution is then incorporated into the
total CIV-ratio for both the sphere and cylinder configurations.

The outcomes of this procedure are depicted in Figure 6.31. To facilitate comparison, the CIV-ratios
obtained assuming a uniform pressure distribution in the walls are contrasted with the newly obtained
CIV-ratios, which consider a non-uniform pressure distribution in the walls.

When examining Figure 6.31, two notable observations emerge. Firstly, the CIV-ratios obtained through
a non-uniform pressure distribution consistently and significantly exceed those derived under the as-
sumption of uniform pressure distribution. This suggests that for the sphere, larger internal volumes
can lead to the weight of the design counteracting its buoyancy. Secondly, the increase in CIV-ratio



6.3. Revised CIV-ratios 88

Determine
dimensions
per shape

Try initial
thickness

(Re)calculate
maximum

stress (σθθ,max)

σmax − fcd >
10−20 MPa?

Final thickness
is determined

Recalculate
thickness
tn+1 =

1, 0001 · tn

no yes

Figure 6.30: Revised workflow for determining wall thickness

for the sphere remains relatively constant, fluctuating between 21, 69% and 21, 81%. Conversely, the
increment in CIV-ratio for the cylinder displays more variability, ranging between 10, 31% and 27, 06%,
with higher increments corresponding to higher slenderness values.

The fluctuating increments result in a less noticeable effect of slenderness on the CIV-ratio of the cylin-
der. Interestingly, the CIV-ratios for non-slender cylinders obtained under the assumption of uniform
pressure are closer to the results derived using the method of non-uniform pressure than the CIV-ratios
found for slender cylinders.

Figure 6.31: CIV-ratios for sphere and cylinder for uniform and non-uniform pressure distribution
at d = 1000 m and fcd = 40 MPa; Vinternal,cylinder = 9.000 m3
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As explained in Section 6.2.4, the surpassing of σmax is approximately equal for sphere and cylinder,
given an internal volume of 9.000 m3 and a slenderness of L

2a = 12. These parameters result in an
increase of CIV-ratio of 21, 71% and 21, 67% for sphere and cylinder, respectively.

6.3.2. Introduction of uncertainty in CIV-ratios
The newly established wall thicknesses and corresponding CIV-ratios are presented as the final values
on material usage. It is interesting to compare these findings with known values in the literature. How-
ever, such a comparison is only feasible for the sphere, as there are no literature examples available
for the cylinder. These values are summarized in Table 6.5.

Only one literature source, [10], provided sufficient data for comparison. Other papers, such as [9] and
[5], lacked information on concrete compressive strength or foundation design, rendering any mean-
ingful comparison unfeasible.

Origin of data Symbol Non-uniform
method

Literature [10] Unit

Installation depth d 1.000 1.000 m
Concrete com-
pressive design
strength

fcd 40 38 MPa

Internal volume Vinternal 9.000 8.992 m 3

Internal radius a 12,904 12,900 m
Wall thickness t 2,21 2,40 m
Pedestal thick-
ness

tpedestal 0,86 1,00 m

Foundation plate
thickness

tplate 1,47 1,6 m

Total volume of
concrete

Vconcrete 7.009 7.408 m 3

CIV-ratio - 0,78 0,82 m

Table 6.5: Comparison of established spherical design dimensions with literature

The CIV-ratio obtained using the non-uniform method for a sphere is 5,5% lower than the value re-
ported in literature [10], as evident from Table 6.5. This difference could be attributed to the lower
concrete compressive design strength used in the literature. However, to address this inconsistency,
an uncertainty bandwidth of 6% is added to the ultimate CIV-ratios of the sphere. The lower bounds
of the bandwidth correspond to the values obtained with the non-uniform pressure method, while the
upper bounds align with those reported in the literature.

For the cylinder, additional stresses in the cylinder wall are anticipated during both transport and instal-
lation, as detailed in Section 5.4. Suspending the cylinder from the water surface during these phases
introduces a bending moment, resulting in a maximum additional stress of ±1, 29MPa in the outermost
fiber of the cross-section of the cylinder. Additionally, as discussed in Section 6.1.3, a maximum addi-
tional stress of ±2, 88 MPa is expected at the transition between the cylinder and hemisphere. These
values are based on the wall thicknesses established using the uniform pressure method.

On the contrary, the necessary concrete volumes for the cylinder were calculated assuming a hemi-
sphere thickness equal to that of the cylinder tube. However, as detailed in Section 6.1, a hemisphere
with a thickness equal to half of the cylinder tube’s thickness might suffice and even offer more advan-
tages than maintaining equal thicknesses throughout. A cylinder with an internal volume of 9.000 m3

and a slenderness of L
2a = 12, a wall thickness of 2, 01 meters is established using the non-uniform

method. Utilizing a hemisphere with half the cylinder tube thickness, so that th = 0, 5tc, results in a
4,6% decrease of material usage compared to maintaining equal thicknesses.

To address the additional stresses in the cylinder, a 5% uncertainty bandwidth is added to the CIV-ratios
obtained with the non-uniform method. Additionally, to account for the thinner hemispherical design, a
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5% uncertainty bandwidth is subtracted from the CIV-ratios found with the non-uniform method.

The percentages have been integrated into the previously presented CIV ratios from Figure 6.31. A
central line has been added across the bandwidths to enhance clarity. The revised results are illustrated
in Figure 6.32. Specifically, for the cylinder, the design with a hemispherical cap is displayed in this
graph.

Figure 6.32: CIV-ratios for sphere and cylinder with hemispherical cap after introducing wall thickness uncertainty;
at d = 1000 m and fcd = 40 MPa; Vinternal,cylinder = 9.000 m3

Introducing uncertainty bandwidths brings a fresh perspective to the CIV ratios of spheres and cylin-
ders. The newfound uncertainty hints at the possibility of spheres relying solely on gravity, potentially
removing the need for additional ballast. Despite this revelation, other findings remain consistent. It is
still apparent that larger internal volumes tend to increase the CIV ratio for spheres, while the ratio for
cylinders decreases with greater slenderness. Moreover, spheres consistently exhibit lower and more
favorable CIV ratios compared to cylinders, on average.

A spherical design with an internal volume ranging from 9.000 to 12.000, necessitates 25, 9% − 28, 5%
less material compared to a cylindrical design with a slenderness of L

2a = 12, and 23, 5%− 26, 4% less
material than a cylindrical design with a slenderness of L

2a = 20.



7
Synthesis, Implications, and Future

Directions

This Chapter synthesizes the extensive array of results presented and discussed throughout this report,
aiming to offer readers a clear understanding and facilitate easy comparison through a concise sum-
mary presented in a tabular format. Following this summary, an in-depth discussion on the quality and
implications of the results ensues, leading to a conclusive analysis. Furthermore, recommendations
for future research directions are proposed to guide subsequent inquiries in the field.

7.1. Summary of results
In culmination, the findings presented in this thesis underscore the significance of considering the shape
of reservoirs in relation to material usage. Moreover, they provide valuable insights into optimizing the
construction process and enhancing cap design for cylindrical reservoirs.

As described extensively in Chapter 2, the potential for energy storage capacity grows with deeper
depths and larger internal volumes. However, constraints on installation depth, taking into account fac-
tors such as topography, hydrostatic pressure, and accessibility, highlight the importance of enhancing
storage capabilities by expanding the overall internal volume of the system.

Regarding the reservoirs
For all three shape variants—sphere, cylinder, and torus— the contribution of the reservoir to the
total CIV-ratio remains constant across a broad spectrum of internal volumes, as illustrated in Fig-
ure 4.4.

Increasing the slenderness of the cylinder and torus results in a lower CIV-ratio for the reservoir, which is
generally preferable. This reduction is most pronounced at lower slenderness levels, with the benefits
diminishing around a value of L

2a ≈ 30, as depicted in Figure 6.32. However, higher slenderness
values lead to significantly larger external dimensions of the reservoir, presenting challenges in terms
of constructability and transportability.

In terms of CIV-ratio, the spherical reservoir emerges as the most advantageous shape. Using the non-
uniform method, the reservoir of the sphere attains a CIV-ratio that is 40% lower than that of the most
slender variants of the cylinder. This discrepancy is particularly striking at lower slenderness values.
For example, at a slenderness value of 4, the sphere’s reservoir utilizes 50% less material compared
to the reservoir of the cylinder. Similar results, albeit obtained with the less accurate uniform method,
were observed for the torus.

The influence of slenderness on the CIV-ratio of the cylinder is solely attributable to the contribution of
the caps. This influence becomes less pronounced when a hemispherical cap is used instead of a flat
cap, as depicted in Figure 6.25. Conversely, for the torus, variations in slenderness affect the CIV-ratio
predominantly due to the reduced membrane forces associated with lower slenderness values.

91
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An optimal slenderness value falls within the range of 10 to 20 for the cylinder. Within this range, a
satisfactory CIV-ratio is achieved while keeping external dimensions manageable. However, for the
torus, such an ideal range was not pinpointed. Balancing acceptable CIV-ratios with realistic external
dimensions remains challenging. The substantial dimensions present constraints on feasible construc-
tion sites for the torus, contradicting the initial goal of avoiding such limitations. Consequently, further
consideration of the torus was discontinued.

When applying the uniform method, the spherical reservoir maintains buoyancy effortlessly throughout
the entire spectrum of realistic internal volumes, suggesting the necessity of additional ballast. However,
with the non-uniform method, the weight of the sphere surpasses its buoyancy from internal volumes
of approximately 5.000 m3 and higher, as depicted in Figure 6.32. In contrast, the reservoirs of the
cylinder and torus consistently outweigh the water they displace, even at the most extreme levels of
slenderness, independent of the method used for wall thickness determination.

The CIV-ratios obtained with the non-uniform pressure method slightly fell below those reported in
literature, prompting the introduction of an uncertainty bandwidth of 6%, as outlined in Section 6.3.
Conversely, the additional stresses arising from transport and installation loads, as well as potential
material savings in the hemispherical cap design, support an uncertainty bandwidth of 10% for the
cylinder.

Regarding the foundations
In order to adequately support the spherical reservoir, the inclusion of a pedestal and foundation plate
was considered. It became evident that this arrangement notably impacts the overall CIV-ratio of the
sphere. The foundation’s contribution to the CIV-ratio escalates with greater internal volumes, varying
between 0, 1 and 0, 2 for internal volumes ranging from 4.000 to 15.000 m3.

For the cylindrical and toroidal reservoirs, a straightforward design approach is adopted to ensure a
stable, flat surface on the ground. The required width of this base, determined by the maximum soil
bearing pressure, shows minor fluctuations with changing internal volumes. However, the variations in
its effect on the overall CIV-ratio for different internal volumes are insignificant. Its contribution to the
CIV-ratio of the cylinder and torus ranges from 0, 01 to 0, 02.

Regarding construction
According to findings in the literature, a hybrid construction approach named the RCAM (Reinforced
Concrete Additive Manufacturing) method, which combines 3D Concrete Printing (3DCP) with tradi-
tional casting, emerges as the most promising technique for building the sphere. The formwork is
constructed using 3DCP, followed by the casting process. However, the feasibility of implementing
3DCP on this scale remains a topic of debate due to its novelty. Another challenge with this method is
the constraint posed by the maximum inclination angle of the printer, set at 45 degrees, which requires
the use of considerably large prefabricated elements for the bottom and top of the sphere.

As outlined in Section 5.3, the horizontal jump-forming method emerges as the most viable construction
approach for the cylinder. This method entails a semi-continuous process, where the cylinder tube is
built incrementally using ring elements. The production cycle of a single ring element begins with the
extension of a launching girder, onto which inner formwork is affixed. Subsequently, the outer formwork
is positioned, allowing for the pouring of concrete.

Unlike the RCAM method, the proposed horizontal jump-forming technique has been successfully uti-
lized in tunnel construction, demonstrating its reliability. It is noteworthy that while the most suitable
construction method for the cylinder is not feasible for the sphere, the reverse is not the case. This
suggests that constructing the cylinder is less complex compared to the sphere.

Regarding cylinder cap design
As detailed in Section 6.1, a hemispherical cylinder cap offers several advantages over a flat one. By
distributing loads in the normal direction, it optimally utilizes the high compressive resistance properties
of concrete. Additionally, the hemispherical cap demonstrates superior material usage efficiency.

While it has not been demonstrated that additional stresses associated with bending moments intro-
duced by an edge disturbance in the transition from cylinder to hemisphere can be entirely eliminated,
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they can be mitigated or reduced. To achieve this, a hemisphere with a thickness between 40− 60% of
the cylinder thickness should be employed. This results in a maximum stress increase of approximately
±3 MPa at a depth of 1000 meters.

To alleviate stress concentrations linked to the transition from cylinder to hemisphere, a smooth connec-
tion should be established. Sharp angles in the transition zone should be avoided, making a circular
transition the most suitable option.

Regarding implementation aspects
Considering the internal volumes mentioned in the literature, the sphere boasts a draught exceeding
21meters, while the cylinder maintains a draught of 13meters or less, which decreases with increasing
slenderness. Given the dimensions of some of the world’s largest drydocks, it is apparent that floating
the sphere out of a dock would require pontoons with substantial volumes to provide buoyancy. This
poses a challenge due to the limited available space in the dry dock to accommodate such pontoons.
Conversely, this issue is less problematic for the cylinder, given its lower height. Additionally, its slen-
derness can be adjusted to meet the required draught. Consequently, for a fixed internal volume over
9.000 m3, it is improbable that the sphere can be constructed in and floated out of a dry dock, whereas
for a cylinder, it remains the preferred option.

With these considerations in mind, two options remain for the sphere. Firstly, aiming for a lower inter-
nal volume would decrease the draught of the structure. However, this approach demands a greater
number of units to maintain the same level of energy storage, thereby posing risks of increased main-
tenance, decreased efficiency, and higher capital expenditures. Alternatively, shifting the construction
location from a dry dock to a fjord eliminates constraints on the internal volume, allowing for greater
flexibility in design and construction. Nevertheless, 3DCP construction on water introduces novel chal-
lenges. Additionally, the availability of fjords worldwide is limited, thereby restricting the number of
topographically feasible installation locations.

While the sphere’s draught poses challenges during load-out from a dry dock, its transport is relatively
straightforward as it can be moved afloat using tug boats or a semi-submersible vessel. Conversely,
transporting the cylinder necessitates the use of two or more catamaran-like pontoons, with the cylinder
suspended from them. Throughout the transport, the cylinder remains submerged. The additional
bending moment related to the suspension of the cylinder does not introduce high stresses in the
cylinder.

The installation process for both the sphere and the cylinder entails similar aspects. In both cases, the
seabed must be prepared by creating a level surface and removing large boulders. Subsequently, the
sphere or cylinder will be lowered using steel cables and positioned onto the seabed.

The sphere requires two concrete connections, specifically between the body, its top, and its bottom.
In contrast, the cylinder necessitates a multitude of connections, the precise number contingent on
the length of the cylinder rings. Although it was only qualitatively examined, an increased number of
connections negatively impacts the watertightness of the reservoir, consequently reducing the system’s
efficiency.

Comparison of spherical and cylindrical reservoirs
An overview of the key findings from this thesis research is presented in Table 7.1. Hyperlinks to
relevant sections are provided where necessary. These sections explain in detail how these results
were obtained.

The selected internal volume, which determines the other dimensional parameters for the sphere and
cylinder as outlined in Table 7.1, is somewhat arbitrary. Currently, an internal volume of 9.000 m3 has
been utilized, as this value was sourced from literature [10].

As previously mentioned, the dimensions of the cylinder are also governed by its slenderness. In the
summary provided in Table 7.1, slenderness values of L

2a = 12 and L
2a = 20 have been adopted.

This choice strikes a balance, ensuring an acceptable CIV-ratio without overly elongating the structure.
However, it is worth noting that alternative slenderness values can also be considered based on specific
project requirements and constraints. Furthermore, a hemispherical cap is assumed.
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The dimensional parameters presented in Table 7.1 are determined following the methodology outlined
in Chapter 4, without accounting for uncertainty as introduced in Section 6.3.

Aspect Sphere Cylinder
Internal volume [m3] 9.000 9.000
Slenderness [-] n.a. 12 / 20
Internal radius [m] 12,9 4,84 / 4,11
Wall thickness [m] 2,21 2,06 / 1,74
External length [m] n.a. 129,8 / 176,0

Volume of concrete in reservoir
[m3]

5.450 9.700 / 9.450

Volume of concrete in support
structure [m3]

1.550 100 / 50

Total volume of concrete [m3]
(4.3)

7.000 9.800 / 9.500

Draught of structure [m] 26,7 (A.2) 13,8 / 11,7 (A.3)
Additional buoyancy required
for 10 meter draught [m3]

10.600 8.500 / 5.450

In standard shipping containers
[2,44×2,59×12,19] [m]

123 99 / 64

Components of reservoir Prefab bottom and top of
sphere, casted mid-section
(2.7.2)

Cylinder ring segments, hemi-
sphere caps

Components of support struc-
ture

Ring-shaped pedestal and cir-
cular foundation plate (2.8)

Base footing to provide flat con-
tact surface with seabed (3.2.2)

Most feasible construction
method

Hybrid 3DCP and casting
(2.7.2)

Horizontal jump-forming (5.3.2)

Complex construction tech-
niques involved

3D concrete printing Horizontal jump-process with
launching girder

Most feasible construction loca-
tion

Fjord (2.8.1) Dry dock (5.4.1)

Reference projects Not executed on intended scale Fehmarnbelt, Tunnel Stein-
haus by Doka (F.3)

Transport method Floating or on semi-
submersible vessel (2.8.2)

Submerged (5.4.1)

Material for transport Tug boats or semi-submersible
vessel

Tug boats and catamaran-like
pontoon

Requirements for installation Seabed preparation and de-
scend (2.8.3)

Idem dito

Points of attention Additional stresses due to
bending moment in cylinder
(5.4.1)

Stability of structure Verified in literature [10] Not verified; additional mea-
sures might be necessary
(5.4.3)

Vulnerable connections for wa-
tertightness

Prefab bottom/top - Castedmid-
section (2.8.4)

Ring segment - Ring segment
& Ring segment - Hemisphere
cap (5.3.3)

Connection type (respectively) Cold joint Cold joint & Wet joint/compres-
sion seal

Table 7.1: Summary of results
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7.2. Discussion
The results presented in this report encompass both quantitative and qualitative aspects. The quantita-
tive findings stem from calculations, inherently carrying a level of uncertainty attributed to the assump-
tions made during their computation.

This Section aims to provide a critical analysis and interpretation of the findings presented in this thesis,
elucidating their significance. It is divided into three parts: the starting points, the CIV-ratios, and the
construction and implementation aspects.

After evaluating the dimensions of the structures, it became apparent that the torus would be unfeasible
for implementation without restrictions on construction location. Consequently, it was ruled out as an
option. However, it cannot be definitively stated that the torus is never a viable option.

Starting points
Three reservoir shapes underwent examination. It was argued that for a submerged structure, the most
effective shape is round as it distributes compressive loads most efficiently. The rationale behind se-
lecting these shapes was discussed in Section 1.2. However, other shapes were not taken into account.
It is conceivable that there are shapes relying on different principles that could be suitable as reservoirs.
One example is a modular honeycomb design, where hexagonal cells are utilized to distribute pressure.
The cells would be cylindrical at the edges of the structure. Alternatively, a combination of shapes might
be used to further optimize the balance between material usage and construction feasibility.

The design initially favored individual pump/turbine systems for each reservoir, highlighting advantages
in system efficiency, resilience, and cost-effectiveness, as discussed in Section 2.3. The focus was on
minimizing the number of pumps to mitigate maintenance needs, while also noting the typically higher
efficiency of larger pump/turbines. Concerns were also raised about potential differential settlement
issues between reservoirs, discouraging the connection of multiple reservoirs to a single pump. Con-
sequently, it was concluded that each reservoir should have its own pump/turbine system. However, it
is important to note that these assertions were qualitative, lacking quantification regarding maintenance
requirements, the impact of pump/turbine size on efficiency, or the risk associated with differential set-
tlements.

When evaluating the loads on the reservoirs, only a uniform distributed normal force of 10, 06 MPa was
accounted for, representing the hydrostatic pressure at a depth of 1000 meters. However, in reality,
there exists a gradient in the hydrostatic load, decreasing linearly from the bottom to the top of the
structure. Additionally, gravitational, horizontal or dynamic loads were not taken into consideration.
These additional loads may impact the necessary wall thickness of the reservoirs. Their impact is
believed to be limited.

When evaluating the structural loads, no safety factors have been factored in, while a material safety
factor of 50% has been implemented. Incorporating appropriate load safety margins might present
drawbacks in terms of material consumption. Conversely, reducing the material safety factor could
lead to a favorable impact on material utilization.

Structural aspects
Upon assessing the required wall thickness for the reservoirs, an initial assumption was made that
compressive stress across the wall is uniformly distributed, a presumption validated extensively in Sec-
tion 6.3. Results indicated that the desired compressive stress levels were surpassed by 13, 4% for the
sphere and 14,5% for the cylinder. In light of these findings, the determined wall thicknesses outlined
in Chapter 4 were deemed inadequate for the intended installation depth of 1000 meters, considering
a design compressive strength of 40 MPa. Subsequently, a new calculation was performed based on
non-uniform compressive stress in the walls for the sphere and cylinder. However, no such calculation
was carried out for the torus, as it had already been disregarded as an option at this stage. Conse-
quently, the CIV-ratios presented for the torus were ultimately too low. Nevertheless, this does not alter
the conclusions reached.

In Section 5.4, additional loads due to transport and installation of the cylinder were determined. It was
found that these loads, mainly bending moments implied due to the cylinder’s own weight, do not result
in significant additional stresses in the structure. These calculations were made based on the earlier
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established wall thicknesses under the assumption of uniform compression. Since it was later found
that the compression in the wall is actually non-uniform, leading to thicker required walls, transport and
installation loads increase as well. However, due to the increased cross-section, the section modulus,
and thus the resistance to bending moments increased too. The additional stresses due to transport
and installation for the higher wall thicknesses, established with the non-uniform pressure method,
have not been reconsidered. Nonetheless, it is expected that the new cross-section would actually
decrease the additional stresses associated with bending moments from transport and installation. On
the other hand, the necessary cable cross-section increases solely because of the additional weight
of the structure. However, this is not deemed problematic since the number of cables can be readily
augmented.

Similarly, the increased wall thicknesses lead to heightened deviation from thin shell behavior in the
connection between the hemisphere and cylinder. It was demonstrated that adjusting the hemisphere
thickness can align tangential stresses between the cylinder and hemisphere. It is not anticipated that
an increase in wall thickness would diminish this possibility. Consequently, the anticipated additional
stresses at the connection between the cylinder and hemisphere are not regarded as significant, even
with thicker walls in place.

The foundation of the sphere was designed by adapting a foundation model presented in a technical
report from literature [10] to match the desired reservoir size, as detailed in Section 4.2.1. It was as-
sumed that the distributed load at the bottom of the pedestal, consisting of the weight of the reservoir
and the pedestal itself, should remain constant. This assumption guided the determination of the re-
quired thickness of the pedestal. Additionally, it was presumed that the foundation plate’s ability to
withstand bending moments is solely dependent on its thickness. Consequently, the necessary bend-
ing moment resistance was calculated, and subsequently, the thickness of the foundation plate was
determined. Particularly in determining the thickness of the foundation plate, this approach provides
estimated values. Consequently, the scaling of the foundation design from [10] may have resulted in
over- or underdimensioning. Nonetheless, it is improbable that this will significantly impact the final
analysis.

The foundation design for the cylinder and torus is based on a different methodology. Through an itera-
tive process, the investigation focused on determining the required foundation area to apply a pressure
of 200 kPa on the soil. This approach often resulted in narrow foundations, particularly noticeable for
structures with low slenderness values, raising questions about stability, especially in the case of the
cylinder. Since stability considerations were not addressed, it is conceivable that additional material
may be required, or the foundation design may need reassessment. However, it is not expected that
this will introduce severe design challenges.

The varied approaches to foundation design for the reservoirs introduce complexities when comparing
foundations across different shapes. While CIV-ratios can be compared, the disparate design method-
ologies raise questions about the accuracy of these values. That said, it is unlikely that these results
will necessitate a reevaluation of the conclusions.

Construction and implementation aspects
When exploring suitable constructionmethods for the sphere and cylinder, two approaches were consid-
ered. For the sphere, a review of existing proposed construction techniques was undertaken, revealing
the RCAM method as the most suitable. However, it is important to note that the literature reviewed
for these construction methods already provided a preliminary design and dimensions. Since these pa-
rameters are not yet known in this report, alternative construction methods may also be viable.

Regarding the cylinder, five potential construction techniques were initially identified, as presented in
Section 5.2. Each method underwent an evaluation based on complexity, construction time, and scal-
ability, although these assessments were qualitative. Subsequently, in a second evaluation round, the
two remaining construction methods were compared. Horizontal jump-forming was deemed prefer-
able over precast elements due to lower risks of leakages, although this was only qualitatively argued.
Hence, although horizontal jump-forming appears to be the most promising method, its suitability re-
quires a more detailed examination.

Considering that the assessment of the watertightness of the sphere was qualitative as well, it is difficult
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to reach a definitive conclusion regarding the ability of both the sphere and cylinder to prevent water
infiltration.

As outlined in Section 3.4, it is recommended that the pump’s inlet be positioned at the lowest point
of the reservoir. Leaving water in the reservoir leads to unused internal volume, thereby reducing
the system’s efficiency. For the sphere, identifying the lowest point and installing the pump/turbine
system there is relatively straightforward. However, for the cylinder, pinpointing the lowest point can be
challenging. Slight tilting of the cylinder along its length may aid in this regard, but such considerations
have not been factored in.

In the evaluation of load situations for transporting and installing the cylinder, as discussed in Sec-
tion 5.4, only static scenarios were considered, overlooking the inherently dynamic nature of these oper-
ations. To address this, a load safety factor of 3 was applied. While this provides significant assistance,
it may still not fully account for all dynamic loads, as further verification was not conducted.

7.3. Conclusion
In conclusion, this thesis emphasizes the suitability of a cylindrical reservoir for theMPHES system. The
obstacles linked to the spherical shape, such as the untested nature of employing 3D Concrete Printing
(3DCP) for construction on the intended scale and the substantial draught exceeding the capacity of
some of the world’s largest dry docks, can be effectively addressed by adopting a cylindrical design. The
proposed construction method for the cylinder enhances the feasibility of the MPHES project. While the
sphere exhibits a CIV-ratio that is 23% to 29% lower, the increased material usage associated with the
cylindrical design is considered acceptable. Conversely, the toroidal reservoir is deemed unfavorable,
as the heightened material usage does not translate to improved constructability.

In contrast to the spherical reservoir, constructing the cylindrical reservoir can leverage established
methods proven successful in tunnel construction. Additionally, the structure’s draught enables con-
struction in dry docks, presenting significant advantages such as global availability and a streamlined
dry construction process. Moreover, it has been demonstrated that the cylinder caps can be designed
to induce acceptable additional stresses. Furthermore, transportation and installation methods pose
no additional complications compared to those for the sphere.

As the required internal volume decreases, the advantages of the cylindrical design over the spherical
reservoir diminish. There comes a turning point where constructing the sphere in a dry dock becomes
feasible again, and the proposed construction method using 3D Concrete Printing becomes less com-
plex. Additionally, the size of the prefabricated bottom and top of the sphere becomes manageable
once again.

The examination indicates that the cylindrical design is a viable option, especially for larger internal
volumes, where the additional costs associated with increased material usage may be offset by the
enhanced constructability of the cylindrical design, making it more desirable than the spherical option.
Investors should therefore carefully consider the trade-off between higher material consumption and a
simpler construction process. Nonetheless, for lower internal volumes, it is evident that the sphere still
stands out as the optimal choice.

7.4. Recommendations
Based on the findings elucidated in this study, several recommendations emerge to address the iden-
tified gaps and enhance future practice.

Considering that the stability of the cylinder has not been previously evaluated, it is essential to under-
take such an assessment. The elongated shape and limited footing prompt concerns regarding the
cylinder’s ability to withstand horizontal forces caused by currents. Moreover, if an applicable case
study is accessible, it is crucial to analyze the soil conditions at the site.

Additionally, it is important to note that the designs presented did not account for the use of reinforce-
ment. While it is recognized that reinforcement may be required to ensure adequate resistance against
tensional stresses during various stages such as construction, transport, or installation, specific calcula-
tions regarding reinforcement were not included. It is recommended that in subsequent design phases,
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the incorporation of reinforcement into the design should be carefully considered and implemented as
necessary to ensure the structural integrity and durability of the reservoir.

The current investigation into the optimal reservoir shape primarily focuses on material usage and con-
struction feasibility. However, to attract investor interest, it is essential to examine the costs associated
with constructing, transporting, and installing both spherical and cylindrical reservoirs. This analysis
would facilitate a more informed comparison between the two shapes.

In addition to these smaller recommendations, several additional areas for future research have been
identified.

Given the conclusion favoring cylinders over spheres for higher internal volumes, and vice versa for
lower internal volumes, exploring the impact of smaller reservoirs on system performance becomes
intriguing. While this report cautiously suggests that smaller reservoirs are more prone to pump fail-
ure, demand increased maintenance, and exhibit reduced efficiency, further research in this area is
warranted to provide a deeper understanding of their effects.

Additionally, delving into the consequences of connecting multiple reservoirs to a single pump offers a
compelling area for investigation. This approach brings forth fresh challenges, including the manage-
ment of potential differential settlements and the selection of tubes capable of withstanding hydrostatic
pressure. However, the advantages are notable: maintaining smaller, constructible individual reser-
voirs while enjoying the efficiency of a single pump setup, thereby mitigating maintenance demands
and reducing the risk of pump failure.

In this report, an initial installation depth of 1000 meters served as the basis for the design. However,
given the scarcity of topographical spots with such depth near offshore wind farms, it becomes intriguing
to assess the viability of implementing the MPHES system at shallower depths. Shallower depths offer
the benefit of reduced hydrostatic pressure but pose the challenge of diminished energy storage capac-
ity per volume. Exploring the threshold depth value where shallower depths cease to be economically
feasible is of interest.

Considering a broader perspective, it is imperative to review the costs related to implementing and
maintaining the entire system, especially as the cylinder emerges as a feasible reservoir shape. To
achieve practical realization, the MPHES system should be comparable to other offshore energy stor-
age techniques.
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A
Draughts

A.1. Draught of sphere in state-of-the-art
This Section details the calculation of the draught of the spherical reservoir using parameters from
Table 2.1. The relevant parameters are as follows:

• rin = 13, 37 m
• t = 2, 72 m
• ρsw = 1025 kg m-3

• ρconcrete = 2400 kg m-3

The volume of the sphere is calculated using the formula:

Vsphere =
4

3
π (rin + t)

3

=
4

3
π (13, 37 + 2, 72)

3

= 17.448, 45 m3

The weight of the sphere is determined by:

Wsphere = Vconcrete · ρconcrete · g

=
4

3
πr3

(
(rin + t)

3 − r3in

)
ρconcrete · g

=
4

3
πr3

(
(13, 37 + 2, 72)

3 − 13, 373
)
2400 · 9, 81

= 175, 10 MN

Where Vconcrete is the volume of the concrete, and g is the acceleration due to gravity. The displaced
volume of water is then calculated as:

Vwater,displaced =
Wsphere

ρsw · g

=
175, 10 · 106

1025 · 9, 81
= 17.414, 22 m3

105



A.1. Draught of sphere in state-of-the-art 106

Figure A.1: Spherical cap volume [66]

The draught of the sphere is calculated by solving the spherical cap formula provided in Equation A.1,
where h represents the height of the cap. A graphical representation of this cap is shown in Figure A.1.
Here, the parameter R in Figure A.1 corresponds to rout, and Vsc denotes the volume of the upper
section of the sphere.

Vsc =
1

3
πh2 (3rout − h) (A.1)

The free height h follows a third-order polynomial, reduced with parameters a = −3rout, b = 0, and
c = 3Vsc

π :

0 = h3 − 3routh
2 +

3Vsc
π

= h3 + ah2 + bh+ c

=
(
h+

a

3

)3
+

(
b− 1

3
a2
)(

h+
a

3

)
+

2

27
a3 − 1

3
ab+ c

= x3 + px+ q

In this reduced form, the following applies:

x = h+
a

3
= h− rout

p = b− 1

3
a2 = −3r2out

q =
2

27
a3 − 1

3
ab+ c = −2r3out +

3Vsc
π

Applying Cardano’s formula, as presented in Equation A.2, to find the solution of the reduced form:

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27
(A.2)

Substituting Vsc = Vwater,displaced results in x = 15, 26 m. Consequently, the draught of the sphere can
be determined:
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dsphere = h

= x+ rout

= 15, 26 + 13, 37 + 2, 72

= 31, 35 m

This corresponds to 97.42% of its diameter, while the volume of displaced water is 99.80% of the total
volume. Similarly, applying the internal radius and thickness of the proposed sphere in [10], a draught
of 25.96 meters is obtained, accounting for 84.85% of the total diameter.

A.2. Draught of sphere in summary of results
The sphere, as detailed in Table 7.1, possesses parameters outlined in Table A.1. These parameters
were obtained following the methodology outlined in Appendix D. For the geometry of the structure,
please consult Section 3.2.1.

Parameter Value Unit

Internal volume 9.000 m3

Total volume of concrete 7.003 m3

Internal radius 12, 9 m
Wall thickness 2, 21 m
Pedestal thickness 0, 86 m
Pedestal height 7, 25 m
Foundation plate thickness 1, 47 m

Table A.1: Parameters of sphere as described in Section 7.1

Draught of sphere during transport
The total weight of the structure is equal to 164,9 MN.

Wtotal = ρconcretegVconcrete = 2.400 · 9, 81 · 7.003 = 164, 9 MN

The displaced water volume is calculated for different segments of the structure, including the foun-
dation plate, pedestal, and the portions of the sphere below and above the pedestal. Specifically,
the pedestal volume is computed under closed conditions, accounting for entrapped air between the
pedestal, foundation plate, and sphere. The volume of the sphere segment is calculated following
Equation A.1.

Vfoundation = π (a+ t)
2
tplate = π (12, 9 + 2, 21)

2 · 1, 47 = 1.054 m3

Vpedestal = π

(
a+

tpedestal
2

)2

hpedestal = π

(
12, 9 +

0, 86

2

)
· 7, 25 = 4.047 m3

Vsphere below pedestal =
1

3
πh2 (3rout − h) =

1

3
π · 7, 252 (3 · (12, 9 + 2, 21)− 7, 25) = 2.095 m3

Vsphere above pedestal =
4

3
πr3out − Vsphere below pedestal =

4

3
π · (12, 9 + 2, 21)− 2.095 = 12.340 m3

By summing the relevant volumes, the weight of the displaced water can be calculated.

Wdisplaced,water = ρswg (Vfoundation + Vpedestal + Vsphere above pedestal)

= 1.025 · 9, 81 · (1.054 + 4.047 + 12.340)

= 175, 4 MN
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Since the buoyancy of the structure exceeds its own weight, it will float. The height of the structure
above the water is 4, 97 meters, calculated as follows:

Vabove surface =
Wdisplaced,water −Wtotal

ρconcreteg
=

(175, 4− 164, 9) · 106

1.025 · 9, 81
= 1.044 m3

=
1

3
πh2 (3rout − h) =

1

3
π · 4, 972 (3 · (12, 9 + 2, 21)− 4, 97) = 1.044 m3

Therefore, the draught of the structure is 26, 71 meters.

draught = 2 (a+ t) + tplate − habove surface = 2 (12, 9 + 2, 21) + 1, 47− 4, 97 = 26, 71 m

Required extra buoyancy for 10 meter draught
To calculate the required additional buoyancy for a 10 meter draught of the sphere, as described in
Table A.1, the volume of the displaced water is calculated first.

hsphere below surface = 10− tplate = 10− 1, 47 = 8, 53

Vsphere below surface =
1

3
πh2 (3rout − h) =

1

3
π · 8, 532 (3 · (12, 9 + 2, 21)− 8, 53) = 2.803 m3

Vtotal below surface = Vfoundation + Vpedestal + Vsphere below surface − Vsphere below pedestal

= 1.054 + 4.047 + 2.095− 2.095

= 5.808 m3

The additional required buoyancy for this draught is 106,5 MN.

Fbuoyancy,required = Wtotal − Vsphere below surfaceρswg = 164, 9− 5.808 · 1.025 · 9, 81 · 10−6 = 106, 5 MN

This translates to 10.589 m3 or 123 standard shipping containers.

Vbuoyancy,required =
106, 5 · 106

ρswg
=

106, 5 · 106

1.025 · 9, 81
= 10.589 m3

ncontainers =
Vbuoyancy,required

12, 19 · 2, 44 · 2, 89
= 123, 19

A.3. Draught of cylinder in summary of results
The cylinder described in Table 7.1 exhibits parameters specified in Table A.2. For detailed information
regarding the structure’s geometry, please refer to Section 3.2.2.

Parameter Value Value Unit

Internal volume 9.000 9.000 m3

Total volume of concrete 9.811 9.528 m3

Internal radius 4, 84 4, 11 m
Wall thickness 2, 06 1, 74 m
External length 129, 8 176, 0 m

Table A.2: Parameters of cylinder as described in Section 7.1

The weight of the cylinder structure in water is 231, 0 MN.
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Wtotal = Vconcreteρconcreteg = 9.811 · 2.400 · 9, 81 = 231, 0 MN

The weight of the displaced water is 189, 8 MN, indicating that the structure does not float. Therefore,
its draught is equal to its height, which is 13, 8 meters.

Wdisplaced water = (Vconcrete + Vinternal) ρswg = (9.811 + 9.000) · 1.025 · 9, 81 = 189, 8 MN
hcylinder = 2 · (a+ t) = 2 · (4, 84 + 2, 06) = 13, 79 m

Required extra buoyancy for 10 meter draught
The height of the cylinder above the water surface is 3, 79 meters when a 10 meter draught is applied.
The area of the circle segment that is above the water surface can be calculated as follows:

First, the angle α between the center of the cross-section and the points where the cylinder touches
the surface is calculated:

α = 2 arccos
(
rout − habove water

rout

)
= 2 arccos

(
6, 89− 3, 79

6, 89

)
= 2, 21 rad.

Then, the area of the circle segment that is above the water surface can be calculated:

Acylinder above water =
1

2
r2out (α− sinα) = 1

2
· 6, 892 (2, 21− sin (2, 21)) = 33, 3 m2

The volume of the displaced water is 14.481 m3. In this calculation, the hemispheres are considered
flat, which has little influence on the results since the majority of the volume comes from the mid-tube
of the cylinder.

Vdisplaced water = Vconcrete + Vinternal −Acylinder above waterLexternal = 9.811 + 9.000− 33, 3 · 129, 8 = 14.481 m3

The extra buoyancy required is 85, 4 MN.

Fbuoyancy,required = Wtotal − Vdisplaced waterρswg = 189, 1− 14.481 · 1.025 · 9, 81 · 10−6 = 85, 4 MN

This translates to 8.490 m3 or 99 standard shipping containers.

Vbuoyancy,required =
85, 4 · 106

ρswg
=

85, 4 · 106

1.025 · 9, 81
= 8.490 m3

ncontainers =
Vbuoyancy,required

12, 19 · 2, 44 · 2, 89
= 98, 78

Similarly, a cylinder with a slenderness of L
2a = 20 and parameters as described in Table A.2, has a

draught of 11, 69 meters. For a draught of 10 meters, an additional buoyancy of 54, 9 MN or 5.463 m3 is
required.



B
Hochtief construction technique

This Appendix offers an elaborate description of the construction technique patented by HTS in [30].
An overview of the components in the drawings is presented by Table B.1.

Index Component Index Component
1 Spherical storage tank 14 Central support mast
2 Wind turbines 15 Spherical inner formwork
3 Cable connection to wind turbine 17 Inner toroidal rings
4 Pump 17 Scaffolding tower
5 Interior of storage tank 18 Bracing elements
6 Turbine 19 Outer formwork
7 Cable connection to grid 20 Outer toroidal rings
8 Ring support 21 Concrete
9 Pontoon 22 Pedestal
10 Lower outer base formwork 23 Portal crane
11 Wire mesh net 24 Curved crane towers
12 Base formwork membrane 25 Concrete pump
13 Underside formwork floor

Table B.1: Components in HTS construction technique

In the first phase a support ring in the form of a ring-shaped lattice girder is mounted on pontoons
floating on the water surface. The lower outer base formwork is connected to the support ring. This
outer base formwork comprises a wire mesh net and a base formwork membrane applied to its inside.
Furthermore, an underside formwork floor is connected to or placed on the wire mesh net, and a central
support mast is mounted on this formwork floor. See Figures B.1 and B.2.

In the second phase, the underside formwork floor with the connected wire mesh net and the base
formwork membrane is lowered below the water surface by flooding and/or ballasting. The wire mesh
net is tensioned and has taken its final shape. Construction of the spherical inner formwork has started
on the support mast. For this purpose, inner toroidal rings with different ring diameters are stacked on
top of each other. These rings are pressurized with compressed air and should provide lateral stability
to the formwork, with gluing and hook-and-loop fasteners serving as the primary connection methods
between the rings. The inner toroidal rings are attached to the inner formwork membrane using loop
bands. Additionally, in this second phase the construction of a scaffold tower on the support mast has
begun. See Figure B.3.

In the third phase, the construction of the inner formwork is continued with additional inner toroidal
rings, and the scaffold tower is built up further. The scaffold tower is connected to the inner formwork
via bracing elements. Additionally, the construction of the outer formwork has begun using outer toroidal
rings. Similar to the inner formwork, outer toroidal rings with different ring diameters are stacked on top
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of each other to achieve a spherical shape. Concrete has already been poured into the space between
the lower outer base formwork and the inner formwork. In the area of the underside formwork floor, a
pedestal is formed for the underwater storage tank, allowing it to securely stand on the seabed. See
Figure B.4.

In figure B.5, the fourth phase is depicted. In this phase, the construction of the spherical inner formwork
is almost completed, and the assembly of the outer formwork is continued by placing additional outer
toroidal rings. The outer base formwork and the outer formwork complement each other to form a
spherical outer formwork. Additionally, an inner formwork membrane is preferably applied to the outside
of the inner formwork, which is not shown in the figures. Furthermore, in the construction example, an
outer formwork membrane is applied segment by segment to the inside of the outer formwork as its
construction progresses.

The construction of the underwater storage tank is carried out using a portal crane. This portal crane
preferably has four curved crane towers in the embodiment shown, allowing it to be movable on the
support ring and capable of rotating about a central axis. Each crane tower is equipped with a concrete
supply device in the form of a concrete pump. As the construction of the outer formwork progresses,
concrete can be introduced into the space between the outer formwork and the inner formwork layer by
layer and preferably continuously through these concrete pumps. Due to the rotation of the portal crane,
the concrete is effectively distributed, resulting in an even distribution of pressure on the formworks. The
introduced concrete is compacted using internal vibrators or immersion vibrators (not shown). After the
concrete has cured, the formworks can be removed.

Figure B.1: HTS construction method: Phase 1, front view [30]
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Figure B.2: HTS construction method: Phase 1, top view [30]

Figure B.3: HTS construction method: Phase 2, front view [30]

Figure B.4: HTS construction method: Phase 3, front view [30]
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Figure B.5: HTS construction method: Phase 4, 3D view [30]



C
Membrane forces

In this appendix the membrane forces for a thin-walled sphere, cylinder and torus are presented. Table
C.1 serves as an overview of the results derived.

Shape Max. membrane force Multiplication factor

Sphere −1

2
pa 1

Cylinder −pa 2

Torus

b

a
= 2 −3

2
pa 3

b

a
= 3 −5

4
pa 2.5

b

a
= 4 −7

6
pa 2.33

b

a
= 6 −11

10
pa 2.2

Table C.1: Membrane forces overview for several thin-walled shapes

C.1. Spherical and cylindrical membrane forces
When considering a two-dimensional circle with an internal pressure equal to p (as shown in Figure C.1),
the circle can be extended into a three-dimensional structure, specifically as a cylinder or a sphere.
Cutting the three-dimensional structure in half results in the following for the cylinder:

2ncylinderlcylinder = 2palcylinder

ncylinder = pa (C.1)

Equation C.1 is known as Barlow’s formula. For the sphere, the following is obtained:

nsphere2πa = pπa2

nsphere =
pa

2
(C.2)

For a thin walled cylinder the normal force in the shell wall is twice as high as for a sphere.

114



C.2. Toroidal membrane forces 115

Figure C.1: Derivation of Barlow’s formula [36]

C.2. Toroidal membrane forces
A torus is considered, depicted in Figure C.2. Its geometry is determined by the inner minor radius a
and the major radius b. A curvilinear coordinate system is introduced with 0 < v < 2πa and 0 < u < 2πb.
The geometry of the torus has a non-uniform curvature over the cross-section. These parameters are
listed in Table C.2. The curvatures are defined in the local coordinate system, where the local x- and
y-axis follow the u- and v-axis. The right-hand rule then determines that the z-axis is always pointing
outwards.

Figure C.2: The geometry of a torus [36]

Parameter Symbol Function
Curvature kxx

−1
a+ b

sin(v/a)

Curvature kyy
−1
a

Curvature kxy 0
Lamé αx 1 + a

b sin(v/a)
Lamé αy 1

Table C.2: Geometrical torus parameters [36]

The Lamé parameters in Table C.2 are used to differentiate the orthogonal parameterisation of the
torus:

∂u

∂x
=

1

αx
,
∂v

∂y
=

1

αy
,
∂u

∂y
=

∂v

∂x
= 0

To obtain the normal forces in the shell wall of a torus under hydro static pressure, the membrane
equilibrium equations are applied:
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kxxnxx + 2kxy + kyynyy + pz = 0

∂nxx

∂x
+

∂nxy

∂y
+ ky (nxx − nyy) + 2kxnxy + px = 0

∂nyy

∂y
+

∂nxy

∂x
+ kx (nyy − nxx) + 2kynxy + py = 0

The external loads in these equations should reflect the hydro static pressure:

px = py = 0, pz = −p

The goal is to find the membrane forces nxx, nyy and nxy. From equilibrium it can already be found that
nxy = 0. Consider any cross-section that cuts the torus into two symmetrical shapes. Due to symmetry,
the shear stress nxy should have the same direction on both sides of the cut. Due to equilibrium, they
should be in opposite direction. This can only be accomplished if nxy = 0. Since there are infinitely
many cuts that result in two symmetrical shapes, this applies everywhere in the torus.

Now solving the membrane equilibrium equations for nxx and nyy:

nxx = −pa

sin( v
a )

2

2 + C1

a2p + 1
4

sin
(
v
a

) (C.3)

nyy = −pa

sin
(
v
a

)( sin( v
a )

2 + b
a

)
− C1

a2p − 1
4

sin
(
v
a

) (
sin
(
v
a

)
+ b

a

) (C.4)

When Expressions C.3 and C.4 are plotted for any value of C1, a singularity for both membrane forces
is present at v = kπa for k = 0, 1, 2... The singularity can be taken out of the expression by choosing
C1 = −pa2

4 . These results are plotted in Figure C.3. The attentive reader notices that b is not present
in the plots axes. It appears that, for C1 = −pa2

4 , b only influences the amplitude of nyy. nxx is constant
and not dependent on b. Substituting the value for C1

1:

nxx = −pa

2
(C.5)

nyy = −pa

sin( v
a )

2 + b
a

sin
(
v
a

)
+ b

a

(C.6)

As this result will be used to obtain the maximum normal stress in the cross-section, it is interesting to
investigate nyy further. It can be shown that nyy is extreme for v = π

2 a,
3π
2 a. Themaximum compression

in the cross-section is found at v = 3π
2 a. Its value is:

nyy,max = −pa
− 1

2 + b
a

−1 + b
a

(C.7)

The maximum can be plotted, see Figure C.4. Now the influence of b on the normal stress in y-direction
is found. This graph presents meaningful insights into the required parameters for normal stress mini-
mization.

The parameters nxx and nyy in this example correspond to nll and nθθ respectively, as defined in
Section 3.3.

1The value for C1 was found by Pierre Hoogenboom
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Figure C.3: Membrane forces in a torus under hydro static pressure p

Figure C.4: Maximum value for membrane force nyy in a torus under hydro static pressure p



D
Calculation of concrete volumes

This Appendix offers a systematic breakdown of the results discussed in Chapter 4. The primary ob-
jective of these calculations is to ascertain the ratio between the internal volume, which serves as
the space for energy storage, and the volume of concrete employed. These calculations have been
performed for various geometric shapes to ensure comparability of results.

The initial reference point for these calculations is the internal volume. When dealing with a sphere,
the internal volume alone dictates the shape and dimensions of the reservoir, as it involves only one
parameter, which is the radius (a). In contrast, for both cylinders and toroids, determining the shape and
dimensions based on the internal volume requires an additional parameter, namely the slenderness.
By starting with the prescribed internal volume and slenderness values for cylinders and toroids, the
ensuing shape and dimensions can be deduced.

For reference, Table 4.1 is reproduced below:

Shape Max. membrane force Volume Slenderness

Sphere −pa

2

4

3
πa3 −

Cylinder −pa πa2L
L

2a

Torus −pa
− 1

2 + b
a

−1 + b
a

2π2a2b
b

a

To maintain clarity, the parameters mentioned in Chapter 4 are reproduced below:

• g = 9, 81 m/s2

• ρsw = 1025 kg/m3

• ρconcrete = 2400 kg/m3

D.1. Determination of reservoir dimensions
This Section elucidates the calculations used to determine the CIV-ratio for the different shapes. As
mentioned earlier, the internal volume serves as the starting point.

For illustrative purposes, the following parameters were employed:

• Vinternal = 10.000 m3

• fcd = 40 MPa

Subsequently, the hydrostatic pressure (p) at a depth of 1000 meters is calculated as follows:
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p = ρswgd

= 1025 · 9, 81 · 1000
= 1, 01 · 107 N/m2

For the sake of consistency, this hydrostatic pressure is employed in each of the subsequent examples.
Initially, the thicknesses are estimated using the same methodology for each shape, after which an
iterative algorithm is employed to enhance the precision of these thickness estimations.

D.1.1. Initial thickness estimation of spherical design
To initiate the estimation process for the required thickness of a spherical reservoir, the sphere’s radius
is derived from the specified internal volume. As presented in subsection 3.2.1, a refers to the internal
radius of the sphere.

Vinternal =
4

3
πa3

a =
3

√
3Vinternal

4π

=
3

√
3 · 10.000

4π

= 13, 36 m

With the internal radius (a) now determined, the maximum membrane force can be calculated:

n = −pa

2

= −107 · 13.36
2

= −6, 719 · 107 N/m

The membrane force is expressed in units of Newton per meter [N/m]. Given the assumption that the
compressive stress remains constant throughout the thickness of the cross-section, an estimation of
the initial thickness can be made. Since the thickness is determined based on the compressive design
strength of concrete, the following expression is solely applicable to negative membrane forces.

t =
|n|
fcd

=

∣∣−6, 719 · 107
∣∣

40 · 106
= 1, 68 m

Applying this thickness leads to an increase of 1, 68/13, 36 = 12, 6% of the external radius of the cross-
section.

D.1.2. Initial thickness estimation of cylindrical design
To estimate the initial thickness for a cylinder, a similar approach is employed. In this case, slenderness
also plays a significant role, with a chosen configuration of L

2a = 10. As detailed in subsection 3.2.2,
both L and a refer to the internal surface of the cylinder.
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The volume of the cylinder is calculated as:

Vinternal = πa2L

= πa2 · 2a · L

2a

This calculation yields the internal radius:

a = 3

√
Vinternal

2π · L
2a

=
3

√
10.000

2π · 10
= 5, 42 m

Subsequently, the internal length of the cylinder can be determined:

L =
L

2a
· 2a

= 10 · 2 · 5, 42
= 108, 4 m

With these values established, the membrane force can be calculated:

n = −pa

= −1, 01 · 107 · 5, 42
= −5, 45 · 107 N/m

From this point, the thickness can be estimated, under the assumption that compressive stress remains
consistent across the thickness of the cross-section:

t =
|n|
fcd

=

∣∣−5, 45 · 107
∣∣

40 · 106
= 1, 36 m

Applying this thickness leads to an increase of 1, 36/5, 42 = 25, 1% of the external radius of the cross-
section.

D.1.3. Initial thickness estimation of toroidal design
In this section, the calculations are performed for the torus, utilizing the same slenderness factor, with
b
a = 10 as an example. It is important to note that the major radius b remains constant with varying thick-
ness. Therefore, there is no distinction between binternal and bexternal, referring simply to b. Conversely,
a refers to the internal surface of the torus, as defined in subsection 3.2.3

The volume of the torus is calculated as follows:
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Vinternal = 2π2a2b

= 2π2a3 · b
a

This calculation yields the internal radius:

ainternal = 3

√
Vinternal

2π2 · b
a

=
3

√
10.000

2π2 · 10
= 3, 70 m

For the major radius of the torus:

b =
b

a
· a

= 10 · 3, 70
= 37, 0 m

Consequently, the membrane force can be calculated.

n = −pa
− 1

2 + b
a

−1 + b
a

= −1, 01 · 107 · 3, 70 ·
− 1

2 + 10

−1 + 10

= −3, 93 · 107 N/m

From this point, the thickness can be estimated, under the assumption that compressive stress remains
consistent across the thickness of the cross-section:

t =
|n|
fcd

=

∣∣−3, 93 · 107
∣∣

40 · 106
= 0, 98 m

Applying this thickness leads to an increase of 0, 98/3, 71 = 26, 5% of the external radius of the cross-
section.

D.1.4. Iterative thickness determination
Through the application of the calculated thicknesses, a significant increase in the external radius is
observed for each shape: 12, 6% for the sphere, 25, 1% for the cylinder and 26, 5% for the torus. Con-
sequently, the maximum membrane force, which is determined by the radius of each shape, increases
too. The initial thickness estimation was based on the assumption that the compressive stress in the
cross-section is constant over the thickness and is equal to the design compressive strength. An in-
crease in the membrane force subsequently results in the maximum compressive stress exceeding the
design compressive strength.
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To illustrate this principle, the cylinder’s membrane force is used as an example:

n0 = −p · a
= −5, 45 · 107 N/m

t0 =
|n0|
fcd

= 1, 36 m

This establishes the foundation for the iterative scheme used to determine the thickness:

ni+1 = −p (a+ ti)

Check whether
∣∣∣ni+1

ti

∣∣∣− fcd > 0, 001 MPa. If so:

ti+1 =
|ni+1|
fcd

for i = 0, 1, 2..

For the cylinder this results in:

n1 = −p (a+ t0)

= −1, 01 · 107 (5, 42 + 1, 36)

= −6, 82 · 107N/m

∣∣∣∣n1

t0

∣∣∣∣− fcd =
6, 13 · 107

1, 36
· 10−6 − 40

= 10, 055 MPa > 0, 001

t1 =
|ni+1|
fcd

=

∣∣−6, 82 · 107
∣∣

40 · 106
= 1, 70 m

The first iteration results in a substantial increase in the required thickness. These iterations are con-
tinued until the tolerance is met, at which point the final thickness is determined:

|ni+1|
ti

− fcd < 0, 001

The graph in Figure D.1 illustrates the required number of iterations for each shape. Interestingly,
the number of iterations remains constant for the internal volume of each shape. Additionally, the
slenderness of the cylinder does not impact the required number of iterations to meet the tolerance,
whereas in the case of the torus, it does. This can be attributed to the parameters affecting themaximum
membrane force.
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The maximum membrane force of the torus increases not only with an increased minor radius but
also with a decreased slenderness. An increase in thickness leads to a larger minor radius a. This
aspect applies to both the sphere and cylinder as well. However, the maximum membrane force of
the torus is also influenced by its slenderness, defined as b

a . For an increased minor radius a, the
slenderness of the torus decreases. A lower slenderness results in a higher maximum membrane
force, necessitating an even greater thickness. Consequently, more iterations are required to meet the
tolerance, especially when the torus is less slender. This geometrical second-order effect does not
apply to the cylinder, as its maximum membrane force is solely determined by the radius and is not
dependent on its slenderness.

This observation aligns with the earlier comments made in Section 4.1.1, where it was noted that the
nonlinearity in the CIV-ratio of the cylinder with varying slenderness was exclusively attributed to the
inclusion of the caps.

Figure D.1: Number of iterations required to determine thickness, for V = 10.000 m3, depth = 1000 m

D.1.5. Calculation of volumes of concrete
Once the thickness of the shell is determined, the volumes of concrete required to construct the reser-
voir can be calculated. This is achieved by calculating the external volume and subtracting the internal
volume:

For a sphere:

Vconcrete,sphere =
4

3
π (a+ t)

3 − Vinternal

For a cylinder, where the caps are modeled as circular plates with a thickness of twice the shell thick-
ness:

Vconcrete,cylinder = π (a+ t)
2
(2t+ L+ 2t)− Vinternal

And for a torus:

Vconcrete,torus = 2π2 (a+ t)
2
b− Vinternal

The CIV-ratio that ensures neutral buoyancy was determined as follows, where subscript c represents
concrete and i denotes internal:
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ρcVc = ρsw (Vc + Vi)

Vc

Vi
=

ρsw
ρc − ρsw
1025

2400− 1025

= 0, 75 [-]

D.1.6. Iterations of calculations for graph production
The calculations described between Subsections D.1.1 and subsection D.1.4 were executed following
the outlined procedures. These calculations were repeatedly performed using Python to generate the
results presented in the graphs from Section 4.1.

In Figures 4.2 and 4.4 the required volume of concrete was simply calculated with a specific internal
volume as input. The calculations were then executed for various cylinder and torus slenderness val-
ues.

In Figure 4.6 the internal volume was set at 10.000 m3, and the slenderness of the cylinder and torus
reservoir was varied within the range 4 ≤ L

2a = b
a ≤ 50. The required volume of concrete was than

calculated and divided by the internal volume, to obtain the CIV-ratio.

In Figure 4.7 the internal volumewas also set at 10.000m3. For a concrete design compressive strength
fcd= 40 MPa, the required volume of concrete was calculated for each shape, with various cylinder and
torus configurations. In the context of this explanation, this is referred to as the base volume. It is
important to note that each shape and configuration has its own base volume. Subsequently, the con-
crete strength was gradually varied, from −25% to +25% with respect to fcd. At intervals, spaced 0,2
MPa apart, the required volume of concrete was calculated. For each shape and configuration, the
variation in required volume of concrete (in %) with respect to the base volume was determined. Ulti-
mately, for each concrete strength variation, the concrete volume variation was calculated, as depicted
in Figure 4.7.

D.2. Determination of foundation dimensions
This section presents the calculations performed to derive preliminary results for the contribution of
foundations to the CIV-ratios for each shape. It begins by discussing the foundational design principles
for spheres, followed by the determination of the required concrete volume. The section then moves
on to the foundation design for cylinders, including the calculation of concrete volume requirements.
The same methodology is subsequently applied to toroidal foundations.

D.2.1. Sphere
The foundation design for a spherical reservoir consists of a pedestal and a circular slab. The design,
as outlined in [10], serves as the basis for scaling the foundation dimensions to accommodate various
internal volumes. The following parameters apply, derived from Figure D.2:

• asphere = 12, 9 m
• apedestal = 12, 5 m
• aplate = 15 m
• tshell = 2, 4 m
• tpedestal = 1 m
• tplate = 1, 6 m

• Apedestal = π

((
apedestal +

tpedestal
2

)2
−
(
apedestal − tpedestal

2

)2)
= π

(
132 − 122

)
= 78, 5 m2



D.2. Determination of foundation dimensions 125

Figure D.2: Sphere foundation design in [10]

• hpedestal =
√
(asphere + tshell)

2 − a2pedestal =
√
15, 32 − 12, 52 = 8, 82 m

With these parameters in place, the normal compressive stress in the bottom of the pedestal can be
calculated. The thickness of the pedestal is determined based on this maximum normal stress at the
pedestal’s bottom. It is dependent on both the volume of concrete in the reservoir and the pedestal. The
highest stress value is achieved at 100% reservoir filling, which is employed in the calculations.

The entire weight of the sphere is borne by the pedestal, and the design is such that the midpoint of the
sphere does not make contact with the foundation slab, as indicated in [10]. The weight of the sphere
can be calculated as follows:

Fv = (Vconcrete,reservoir + Vconcrete,pedestal) (ρconcrete − ρsw) g

=

(
4

3
π
(
15, 33 − 12, 93

)
+ 78, 5 · 8, 82

)
(2400− 1025) 9, 81

= 90, 42 MN

The pedestal’s bottom’s normal stress, denoted as σpedestal,bottom, is calculated as follows:

σpedestal,bottom =
Fv

Apedestal

=
90, 42

78, 5

= 1, 15 MPa

It is important to note that these calculations do not account for the tapered foot in the pedestal. The
value of 1,15 MPa representing the normal stress at the pedestal’s bottom is later used to scale the
foundation design for spherical reservoirs with different internal volumes.

Moving on to the analysis of the foundation plate, the line load of the pedestal on the foundation plate
results in a negative bending moment in the plate, as shown in Figure D.3. The plate’s thickness is
determined based on the magnitude of this moment, as outlined in [10]. The model can be simplified
as depicted in Figure D.4. The magnitude of the line-load under the center of the pedestal is calculated
as follows:



D.2. Determination of foundation dimensions 126

Figure D.3: Negative bending moment in circular foundation plate

Figure D.4: Schematization of negative bending moment in circular foundation plate

Fline-load =
Fv

Lpedestal

=
Fv

2πapedestal

=
90, 42

2π · 12, 5
= 1, 15 MN/m

The resistant pressure in the soil under the plate foundation is calculated as follows:

qsoil =
Fline-load

aplate

=
1, 15

15
= 76, 75 kPa

The moment at the center of the plate, arising from the line load and soil stress (across a 1-meter wide
strip), is calculated as:

Mplate = Fline-load · 12, 5− qsoil ·
1

2
· 152

= 1, 15 · 12, 5− 0, 0768 · 1
2
· 152

= 5, 76 MNm

The foundation plate, as depicted in Figure D.2, has a thickness of 1,6 m. Thus, a negative bending
moment of 5,76 MN necessitates a thickness of 1,6 m.
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The bending moment resistance design value per meter, considering the calculated moment and plate
thickness, is:

Mplate,design =
Mplate

tplate

=
5, 76

1, 6

= 3, 60 MNm/m

These computed values of σpedestal = 1,15 MPa and Mplate,design = 3,60 MNm/m will be utilized to scale
the foundation dimensions for a spherical reservoir with varying internal volumes.

Scaling foundation for varying internal volumes
This section outlines the process of adapting the foundation dimensions for a spherical reservoir with
different internal volumes using the previously established parameters. For illustrative purposes, an
internal volume of 10.000 m3 is used.

• Vinternal = 10.000 m3

• a = 13, 37 m
• t = 1, 92 m

The internal volume is utilized to determine the reservoir radius and the requisite shell thickness, fol-
lowing the methodology described in section 4.1 and section D.1. The weight of the sphere is then
calculated as follows:

Fweight,reservoir = Vconcrete,reservoir (ρconcrete − ρsw) g

=
4

3
π
(
(13, 37 + 1, 92)

3 − 13, 373
)
(2400− 1025) 9, 81

= 66, 94 MN

The adapted foundation design can be observed in Figure D.5, which closely mirrors the design pre-
sented in [10]. Figure D.5a is a reproduction of Figure 3.1.

The height of the pedestal can be determined using Pythagoras:

hpedestal = a+ t−
√

(a+ t)
2 − a2

= 13, 37 + 1, 92−
√

(13, 37 + 1, 92)
2 − 13, 372

= 7, 87 m

The required value of Apedestal is now calculated as:

Apedestalσdesign = Fweight,reservoir + Fweight,pedestal

= Fweight,reservoir +Apedestalhpedestal (ρconcrete − ρsw) g

Solving for Apedestal:
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(a) overview (b) Detail pedestal

Figure D.5: Cross-section of sphere

Apedestal =
Fweight,reservoir

σdesign − hpedestal (ρconcrete − ρsw) g

=
66, 94

1, 15− 7, 87 (2400− 1025) 9, 81 · 10−6

= 64, 05 m2

The total weight of the reservoir and pedestal is now determined:

Fv = Fweight,reservoir + Fweight,pedestal

= Fweight,reservoir +Apedestalhpedestal (ρconcreteρsw) g

= 66, 94 + 64, 05 · 7, 87 (2400− 1025) 9, 81 · 10−6

= 73, 73 MN

The volume of the pedestal is approximated as a ring with a flat top. While the top isn’t entirely flat, the
effect on the pedestal’s volume is considered negligible and is therefore disregarded.

Now, the thickness of the pedestal can be calculated as:

Apedestal = π

((
a+

t

2

)2

−
(
a− t

2

)2
)

= 2πat
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tpedestal =
Apedestal

2πa

=
64, 05

2π · 13, 37
= 0, 76 m

The foundation plate thickness must also be determined. For this, the magnitude of the line-load under
the pedestal and the soil stress should be calculated.

Fline-load =
Fv

Lpedestal

=
Fv

2πapedestal

=
73, 73

2π · 13, 37
= 0, 878 MN/m

The resistant pressure in the soil under the plate foundation is calculated as:

qsoil =
Fline-load

aplate

=
1, 15

13, 37 + 1, 92

= 57, 44 kPa

The moment at the middle of the plate due to the line load and soil stress, across a 1-meter wide strip,
is computed as:

Mplate = Fline-load · a− qsoil ·
1

2
· (a+ t)

2

= 0, 878 · 13, 37− 0, 05744 · 1
2
· (13, 37 + 1, 92)

2

= 5, 02 MNm

Since it was established that the plate should be 1 meter thick to resist a bending moment of 3,60
MNm/m, the required thickness of the plate becomes:

tplate =
Mplate

Mplate,design

=
5, 02

3, 60

= 1, 40 m

The volume of concrete required for constructing the foundation can now be computed:
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Vconcrete,foundation = Vpedestal + Vplate

= Apedestalhpedestal + π (a+ t)
2
tplate

= 64, 05 · 7, 87 + π (13, 37 + 1, 92)
2 · 1, 40

= 1.529 m3

D.2.2. Cylinder foundation width
The design approach for a cylinder foundation initiates with an initial assessment of its width, which
is expressed as a fraction of the overall width of the cross-section. This width serves as the basis
for creating a foundational block, supporting the cylinder structure. The area of the base in the cross-
section is calculated and multiplied with the length of the cylinder, to obtain the volume of the foundation.
To assist in visualizing this process, a cross-sectional representation of the cylinder foundation is pre-
sented in Figure D.6, with particular areas highlighted to aid in comprehending the cross-sectional area
calculations.

Figure D.6: Cylinder foundation side view

For illustrative purposes, an internal volume of 10.000 m3 is considered, with a slenderness value of
10. Following the methodology detailed in Section 4.1 and Appendix D.1, the following cross-sectional
parameters are derived:

• a = 5, 42 m
• Lexternal = 115, 66 m
• t = 1, 82 m

The width of the foundation is selected as 90% of the total width of the cross-section, denoted as q = 0.9.
It is worth noting that this exaggerated width was chosen for clarity in the plot.
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Calculating the cross-sectional area of the foundation block, as shown in the light grey shading in
Figure D.6, requires subtracting the green arch area from the rectangular foundation area. The green
arch area can be found by subtracting the red triangular area from a segment of the total circular
area.

The calculations begin by finding the values of θ1 and θ2:

θ1 − π = arccos
( 1

2 · widthfoundation
1
2 · widthtotal

)
= arccos

( 1
2q · 2 (a+ t)
1
2 · 2 (a+ t)

)
= arccos (q) = arccos (0, 9) = 0, 451 rad.

θ1 = 0, 451 + π = 3, 59 rad.

θ2 = 2π − 0, 451 = 5, 83 rad.

With these angles defined, the area of the circle-segment and the triangle can be computed:

Acircle-segment = Atriangle +Aarch

= π (a+ t)
2 θ2 − θ1

2π

= π (5, 42 + 1, 82)
2 5, 83− 3, 59

2π

= 58, 68 m2

Atriangle =
1

2
wtrianglehtriangle

=
1

2
(q · 2 (a+ t)) · − (a+ t) sin θ1

=
1

2
(0, 9 · 2 (5, 42 + 1, 82)) · − (5, 42 + 1, 82) sin (3, 59)

= 20, 56 m2

As previously mentioned, the area of the green arch in Figure D.6 is calculated by subtracting the area
of the triangle from the area of the circle segment:

Aarch = Atriangle −Acircle-segment

= 58, 68− 20, 56

= 38, 12 m2

Now, the cross-sectional area of the foundation can be determined:

Afoundation,cross-section = hbasewbase −Atriangle

= (a+ t (1 + sin θ1)) · (q · 2 (a+ t))−Atriangle

= ((5, 42 + 1, 82) (1 + sin (3, 59))) · (0, 9 · 2 (5, 42 + 1, 82))− 32, 07

= 15, 09 m2
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Following this, the volume of concrete in the foundation can be calculated:

Vfoundation = Afoundation,cross-sectionLexternal

= 15, 09 · 115, 66
= 1745, 20 m3

Additionally, the area of the footprint of the foundation is determined as follows:

Afoundation = wbaseLexternal

= q · 2 (a+ t)Lexternal

= 0, 9 · 2 (5, 42 + 1, 82) · 115, 66
= 1507, 13 m2

D.2.3. Torus foundation width
Similar to the cylinder foundation, the design process for the torus foundation commences with an
initial estimation of its width, expressed as a percentage of the total width of the cross-section. The
foundational base is conceived as a robust, solid block that provides essential support to the torus
structure. A cross-sectional representation is presented in Figure D.7. The precise volume of this
foundation base is a critical parameter, as it forms the basis for calculating the stress exerted by the
structure on the underlying soil and it contributes to the CIV-ratio.

Figure D.7: Torus foundation side view, cross-section AA of Figure D.8

The volume of the torus foundation base is established through numerical methods. This base is dis-
cretized into n sections, each characterized by a certain height h and width w, as depicted in Figure D.7.
Subsequently, these sections are rotated about the global center of the torus, as illustrated in Figure D.8.
This rotational process transforms each section into a ring, whose volume can be readily computed. Al-
though, in practical calculations, a value of n = 100 is employed for precision, the process is here
illustrated with n = 7 for simplicity.
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For the sake of a numerical example, an internal volume of 10.000 m3 is assumed, with a slenderness
value of 10. Based on the methodology described in Section 4.1 and Appendix D.1, this leads to the
following cross-sectional parameters:

• a = 3, 70 m
• b = 37, 00 m
• t = 1, 38 m

The width of the foundation is chosen as 90% of the total width of the cross-section.

To proceed, the various angles involved need to be determined:

θ0 − π = arccos
( 1

2 · widthfoundation
1
2 · widthtotal

)
= arccos

( 1
2q · 2 (a+ t)
1
2 · 2 (a+ t)

)
= arccos (q)
= arccos (0, 9)
= 0, 451 rad.

Where q is the width percentage of the foundation and 0 < q ≤ 1. Subsequently, θ0 can be de-
termined as 3,59 rad., which is equal to 0,451+π. Once θ0 is known, the remaining angles can be
calculated:

θn = 2π − arccos (q)
= 5, 83 rad.

= θ0 +

n∑
i=1

ϕi

ϕi for i = 1, 2 . . . n =
θn − θ0

n

=
5, 83− 0, 451

7
= 0, 320 rad.

By introducing ϕ0 = 0, θi is calculated as follows:

θi for i = 0, 1 . . . n = θ0 +

i∑
i=0

ϕi

= [3, 59 3, 91 4, 23 4, 55 4, 87 5, 19 5, 51 5, 83] [rad.]

Subsequently, the local x-coordinates and the widths can be determined. The widths are not actu-
ally used in further calculations, since the volumes are determined based on the local x-coordinates.
However, the calculation of the values of the widths are mentioned for clarity.

xlocal,i for i = 0, 1 . . . n = (a+ t) cos θi
= [−4, 57 − 3, 64 − 2, 34 − 0, 81 0, 81 2, 34 3, 64 4, 57] [m]



D.2. Determination of foundation dimensions 134

wi =
xi−1 + xi

2
for i = 1, 2 . . . n

= [0, 93 1, 30 1, 54 1, 62 1, 54 1, 30 0, 93] [m]

The heights are calculated similarly:

zlocal,i = (a+ t) sin θi for i = 0, 1 . . . n

= [−2, 21 − 3, 54 − 4, 50 − 5, 01 − 5, 01 − 4, 50 − 3, 54 − 2, 21] [m]

hi = a+ t+
zi−1 + zi

2
for i = 1, 2 . . . n

= [2, 20 1, 01 0, 32 0, 06 0, 32 1, 01 2, 20] [m]

As previously mentioned, the rectangles in Figure D.7 are rotated around the global center of the torus
to create rings, as depicted in Figure D.8. The volume of each ring is calculated as follows:

Vring,i = hi

(
π (b+ xlocal,i)

2 − π (b+ xlocal,i−1)
2
)

= [422, 44 293, 01 109, 12 24, 39 118, 84 344, 59 527, 91] [m3]

Figure D.8: Torus foundation top view; Quadrant plot
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Subsequently, the total volume of the foundation is determined as the sum of the volumes of the
rings:

Vfoundation, total =

n∑
i=1

Vring,i = 1840, 3
[
m3]

To determine the footprint of the foundation, the horizontal cross-sectional area is considered, which is
defined as:

Afoundation = π
(
(b+ q (a+ t))

2 − (b− q (a+ t))
2
)

= π
(
(37, 0 + 0, 9 (3, 70 + 1, 37))

2 − (37, 0− 0, 9 (3, 70 + 1, 37))
2
)

= 2125, 18
[
m2]

Finally, the CIV-ratio of the foundation is calculated. This can later be added up to the CIV-ratio of the
reservoir and be compared to the other shapes.

Vconcrete, foundation
Vinternal

=
1840, 3

10.000
= 0, 184 [−]

D.2.4. Iterative foundation width determination for cylinder and torus
Sections D.2.2 and D.2.3 provide the methodology for computing the dimensions of foundations for a
torus and a cylinder. These parameters play a pivotal role in assessing the pressure exerted by these
structures on the underlying soil. As detailed in Subsection 4.2.2, the maximum allowable bearing
capacity of the soil is 200 kPa. In this Section, the optimal foundation width that adheres to this threshold
is determined, using an illustrative example.

The initial stress imposed on the soil is contingent upon the key parameters presented in Table D.1.
These parameters are derived following the method described in Section 4.1, utilizing a slenderness
value of L

2a = b
a = 10 and a concrete strength of fcd = 40 MPa. The computations for the foundation’s

volume and the area are based on the methodologies presented in Appendices D.2.2 and D.2.3. It is
worth noting that the values for the torus slightly deviate from those presented in Section D.2.3. This
discrepancy arises due to the utilization of n = 100 in the calculations, as opposed to the example
employing n = 7.

Description Symbol Cylinder Torus Unit

Internal volume Vinternal 10.000 10.000 m3

Volume of concrete in reservoir Vconcrete,reservoir 9.042 8.836 m3

Initial foundation width q 0,9 0,9 -
Volume of concrete in foundation Vconcrete,foundation 1.745 1.727 m3

Area footprint of foundation Afoundation 1.507 2.125 m2

Table D.1: Relevant parameters for soil stress assessment in cylinder and torus foundation

To assess the stress imposed by the foundation on the underlying soil, it is imperative to compute the
weight of the structure. Given that a 100% filling level of the reservoir is normative, this value will be
used in the calculations. For the sake of clarity, the calculation focuses on the cylinder example alone,
as the methodology for determining soil stress in the case of the torus is analogous.

The resultant vertical force acting on the soil is determined as follows:
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Fv = Vconcrete,total (ρconcrete − ρsw) g

= (Vconcrete,reservoir + Vconcrete,foundation) (ρconcrete − ρsw) g

= (9.042 + 1.745) (2400− 1025) 9, 81

= 145, 5 MN

Subsequently, the stress exerted on the soil is calculated as follows:

σsoil =
Fv

Afoundation

=
145, 5

1.507
= 96, 5 kPa

Since this stress value is significantly lower than the designated maximum allowable bearing capacity,
the foundation width can be reduced to optimize material usage. To achieve this, an iterative process
is employed, in which the foundation width is decreased by 0,05% when the effective stress in the soil
is lower than the design stress. Conversely, the width is increased by 0,05% when the effective stress
exceeds the design stress. This iterative process continues until the effective stress is within a 0,5 kPa
margin of the design stress.

For further clarity, Figure 4.10 is reproduced.

Assume initial
foundation width

Determine
volume of con-
crete and area
of foundation

Calculate total
vertical pressure
(σf,eff) on soil

|σf,eff − σf,d| >
0, 5 kPa?

Increase foun-
dation width
with 0,05%
of total width

Decrease
foundation width

with 0,05%
of total width

Final founda-
tion width is
determined

Yes; σf,eff < σf,d Yes; σf,d < σf,eff

no

Figure D.9: Algorithm for determining foundation width for cylinder and torus

It is acknowledged that a more sophisticated algorithm could have been employed for increasing or de-
creasing the foundation width. Nevertheless, this ’brute-force’ method yielded sufficiently rapid results,
with the speed of calculations contingent on the initial foundation width estimate. It is worth noting that
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a more substantial increment in width adjustment percentage could compromise the precision of the
results.

The number of iterations necessary to arrive at the foundation width that guarantees a soil stress within
the tolerance of the design stress is presented in Figure D.10. The V-shaped patterns observed in
some of the lines are a consequence of the initial foundation width estimate being positioned at a critical
threshold, where the effective stress fluctuates between being too low and too high due to variations in
the internal volume.

Figure D.10: Number of iterations in cylinder and torus foundation design

D.3. CIV-ratio for cylinder with hemisphere cap
This section details the determination of the cylinder’s CIV-ratio with a hemisphere cap, contrasting the
flat cap design presented in Section 3.2.2. In these calculations, the hemisphere has a thickness equal
to the determined wall thickness of the cylinder tube, resulting in a slight overestimation of the required
concrete volumes. The actual required wall thickness of the hemisphere is slightly lower than assumed
in these calculations, as explained in Section 6.1.

Similar to the procedure in Appendix D.1, the required internal diameter is determined as a function of
the internal volume V and the slenderness L

2a :

V =
4

3
πa3 + πa2L

=
4

3
πa3 + πa22a

L

2a

=

(
4

3
+ 2

L

2a

)
πa3

Rewriting gives:

a = 3

√
V(

4
3 + 2 L

2a

)
π

The required wall thickness is then determined using the same approach outlined in Appendices D.1.2
and D.1.4. Once the required wall thickness is determined, the calculation of the required volume of
concrete is as follows:
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Vconcrete = π (a+ t)
2 · L

2a
· 2a+

4

3
π (a+ t)

3 − V

Subsequently, these values are employed to estimate the required size of the foundation, following the
procedure outlined in Appendix D.2.

D.4. Python code
This Section contains the Python code that executes the calculations described in Appendices D.1 and
D.2 and with which the plots in Chapter 4 were generated.

1

2 # coding: utf-8
3

4 # In[1]:
5

6

7 import numpy as np
8 import matplotlib.pyplot as plt
9 get_ipython().run_line_magic('matplotlib', 'inline')
10 import matplotlib.ticker as mtick
11 from matplotlib.ticker import FuncFormatter
12 from matplotlib.patches import Arc, RegularPolygon, Rectangle, Circle
13 import math
14 from matplotlib.path import Path
15 import pandas as pd
16

17 # Define constants
18 g = 9.81 # gravitational constant in m/s^2
19 d = 1000 # depth in m
20 rho_seawater = 1025 # weight of seawater in kg/m^3
21 rho_concrete = 2400 # weight of concrete in kN/m^3
22 p = rho_seawater * g * d # hydrostatic pressure in N/m^2
23 fcd = 60 / 1.5 # max compressive strength in N/mm^2
24 buoyancy_ratio = rho_seawater / (rho_concrete - rho_seawater) # Ratio of concrete-to-internal

-volume to overcome buoyant force
25 sigma_max_foundation = 200 # max bearing capacity of soil under foundation [kN/m^2]
26 initial_width_percentage = 30 # Percentage of total width used as initial guess for width of

cylinder and torus foundation
27

28 # Define a list of linestyles and markers for better readability
29 linestyles = ['-', '--', '-.', '-', ':', (0, (3, 1, 1, 1)), (0, (5, 2))]
30 markers = ['o', 's', '^', 'D', 'v', 'p', 'X']
31

32

33 # In[2]:
34

35

36 # Function to find membrane force for each shape
37 def get_thickness(shape,d,a,b,sigma_max):
38 p = rho_seawater * g * d
39 tolerance = 10**-3
40 count = 0
41 if shape == 'sphere':
42 n_initial = a * p / 2
43 t_initial = n_initial / (sigma_max * 10**6)
44 t = t_initial
45 n_new = (a + t_initial) * p / 2
46 while n_new / t - sigma_max * 10**6 > tolerance:
47 t = n_new / (sigma_max * 10**6)
48 n_new = (a + t) * p / 2
49 count +=1
50 if shape == 'cylinder':
51 n_initial = a * p
52 t_initial = n_initial / (sigma_max * 10**6)
53 t = t_initial
54 n_new = (a + t_initial) * p
55 while n_new / t - sigma_max * 10**6 > tolerance:
56 t = n_new / (sigma_max * 10**6)
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57 n_new = (a + t) * p
58 count +=1
59 if shape == 'torus':
60 n_initial = p * a * (-0.5 + b / a) / (-1 + b / a)
61 t_initial = n_initial / (sigma_max * 10**6)
62 t = t_initial
63 ba_new = b / (a + t_initial)
64 n_new = p * (a + t) * (-0.5 + ba_new) / (-1 + ba_new)
65 while n_new / t - sigma_max * 10**6 > tolerance:
66 t = n_new / (sigma_max * 10**6)
67 ba_new = b / (a + t)
68 n_new = p * (a + t) * (-0.5 + ba_new) / (-1 + ba_new)
69 count += 1
70 return t, count, t_initial
71

72 def get_thickness_non_uniform(shape,d,a,sigma_max):
73 p = rho_seawater * g * d
74 tolerance = 10**-20
75 count = 0
76 t = 0.5
77 if shape == 'sphere':
78 n = 3 * p * (a + t) ** 3 / (2 * ((a + t)**3 - a**3))
79 while n - sigma_max * 10**6 > tolerance:
80 t = t * 1.0001
81 n = 3 * p * (a + t) ** 3 / (2 * ((a + t)**3 - a**3))
82 count +=1
83 if shape == 'cylinder':
84 n = 2 * p * (a + t) ** 2 / ((a + t)**2 - a**2)
85 while n - sigma_max * 10**6 > tolerance:
86 t = t * 1.0001
87 n = 2 * p * (a + t) ** 2 / ((a + t)**2 - a**2)
88 count +=1
89 return t, count
90

91 # Function to calculate the volume of concrete for a sphere
92 def sphere(V, sigma_max, d=1000, method_t = 'uniform'):
93 a = ((3 * V) / (4 * np.pi)) ** (1/3)
94 if method_t == 'uniform':
95 t, count, t_initial = get_thickness('sphere',d,a,0,sigma_max)
96 V_initial = 4 / 3 * np.pi * (a + t_initial) ** 3 - V
97 volume_of_concrete = 4 / 3 * np.pi * (a + t) ** 3 - V
98 elif method_t == 'non-uniform':
99 t, count = get_thickness_non_uniform('sphere',d,a,sigma_max)
100 V_initial = 'No initial value is known'
101 volume_of_concrete = 4 / 3 * np.pi * (a + t) ** 3 - V
102 geometry = [a, t]
103 return volume_of_concrete, count, V_initial, geometry
104

105 # Function to calculate the volume of concrete for a cylinder
106 def cylinder(V, slenderness, sigma_max, d=1000, method_s = 'flat', method_t = 'uniform'):
107 a = (V / (2 * np.pi * slenderness)) ** (1 / 3)
108 if method_t == 'uniform':
109 t, count, t_initial = get_thickness('cylinder',d,a,0,sigma_max)
110 if method_s == 'flat':
111 Length_ext = slenderness * 2 * a + 4 * t
112 Length_ext_initial = slenderness * 2 * a + 4 * t_initial
113 V_initial = np.pi * (a + t_initial) ** 2 * Length_ext_initial - V
114 volume_of_concrete = np.pi * (a + t) ** 2 * Length_ext - V
115 elif method_s == 'hemisphere':
116 a = (V / ((4 / 3 + 2 * slenderness) * np.pi)) ** (1/3)
117 Length_int = slenderness * 2 * a
118 Length_ext = Length_int + 2 * (a + t)
119 V_initial = np.pi * (a + t_initial) ** 2 * Length_int + 4 / 3 * np.pi * (a +

t_initial) ** 3 - V
120 volume_of_concrete = np.pi * (a + t) ** 2 * Length_int + 4 / 3 * np.pi * (a + t)

** 3 - V
121 elif method_t == 'non-uniform':
122 t, count = get_thickness_non_uniform('cylinder',d,a,sigma_max)
123 V_initial = 'No initial value is known'
124 if method_s == 'flat':
125 Length_ext = slenderness * 2 * a + 4 * t
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126 volume_of_concrete = np.pi * (a + t) ** 2 * Length_ext - V
127 elif method_s == 'hemisphere':
128 a = (V / ((4 / 3 + 2 * slenderness) * np.pi)) ** (1/3)
129 Length_int = slenderness * 2 * a
130 Length_ext = Length_int + 2 * (a + t)
131 volume_of_concrete = np.pi * (a + t) ** 2 * Length_int + 4 / 3 * np.pi * (a + t)

** 3 - V
132 geometry = [a, Length_ext, t]
133 return volume_of_concrete, count, V_initial, geometry
134

135 # Function to calculate the volume of concrete for a torus
136 def torus(V, slenderness, sigma_max, d=1000):
137 b_int = (V * slenderness ** 2 / (2 * np.pi ** 2)) ** (1 / 3)
138 a_int = b_int / slenderness
139 t, count, t_initial = get_thickness('torus', d, a_int, b_int, sigma_max)
140 V_initial = 2 * np.pi ** 2 * (a_int + t_initial) ** 2 * b_int - V
141 volume_of_concrete = 2 * np.pi ** 2 * (a_int + t) ** 2 * b_int - V
142 geometry = [a_int, b_int, t]
143 return volume_of_concrete, count, V_initial, geometry
144

145

146 # In[3]:
147

148

149 # Defining foundation functions
150

151 def sphere_foundation(a,t):
152 sigma_design_pedestal = 1.15126559484811 #[MPa]
153 M_design_plate = 3.59770498390034 * 10**6 #[MNM/m]
154

155 h_pedestal = a + t - np.sqrt((a + t)**2 - a**2)
156 F_reservoir = 4 / 3 * np.pi * ((a + t)**3 - a**3) * (rho_concrete - rho_seawater) * g
157 A_pedestal = F_reservoir *10**(-6) / (sigma_design_pedestal - h_pedestal * (rho_concrete

- rho_seawater) * g * 10**(-6))
158 t_pedestal = A_pedestal / (2*np.pi*a)
159 V_pedestal = A_pedestal * h_pedestal
160 A_foundation = np.pi * (a + t)**2
161

162 F_reservoir_plus_pedestal = F_reservoir + V_pedestal * (rho_concrete - rho_seawater) * g
163 F_lineload = F_reservoir_plus_pedestal / (2 * np.pi * a)
164 q_soil = F_lineload / (a + t)
165 M_plate = F_lineload * a - q_soil * 0.5 * (a + t) ** 2
166 t_plate = M_plate / M_design_plate
167

168 V_foundation = A_pedestal * h_pedestal + np.pi * (a+t)**2 * t_plate
169 sigma_soil = (F_reservoir + V_foundation * (rho_concrete - rho_seawater) * g) / (

A_foundation * 10**6) #[MPa]
170

171 return V_foundation, sigma_soil, [t_pedestal, t_plate], h_pedestal
172

173 def cylinder_foundation_VA(a,t,Length,width):
174 q = width / (2 * (a + t))
175

176 theta_1 = np.arccos(q) + np.pi
177 theta_2 = 2 * np.pi - np.arccos(q)
178

179 w_base = q * 2 * (a + t)
180 h_triangle = - (a + t) * np.sin(theta_1)
181 h_base = a + t - h_triangle
182

183 A_circle_segment = np.pi * (a + t) ** 2 * (theta_2 - theta_1) / (2 * np.pi)
184 A_triangle = 0.5 * w_base * h_triangle
185 A_arch = A_circle_segment - A_triangle
186 A_foundation_rectangle = w_base * h_base
187 A_foundation_cross_section = A_foundation_rectangle - A_arch
188

189 V_foundation = A_foundation_cross_section * Length
190 A_foundation_footprint = Length * width
191 return V_foundation, A_foundation_footprint
192

193 def torus_foundation_VA(a,b,t,width,steps=100):
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194 q = width / (2 * (a + t))
195 theta_0 = np.arccos(q) + np.pi
196 theta_n = 2 * np.pi - np.arccos(q)
197 phis = np.linspace(theta_0, theta_n, steps)
198

199 inner_diameters = b + (a + t) * np.cos(phis[:-1])
200 outer_diameters = b + (a + t) * np.cos(phis[1:])
201 mid_heights = ((a + t) * np.sin(phis[:-1]) + (a + t) + (a + t) * np.sin(phis[1:]) + (a +

t)) / 2
202

203 V_rings = np.pi * (outer_diameters**2 - inner_diameters**2) * mid_heights
204 A_foundation_footprint = np.pi * ((b + width / 2) ** 2 - (b - width / 2) ** 2)
205 return np.sum(V_rings), A_foundation_footprint
206

207

208 # In[4]:
209

210

211 # Setting up functions to determine desired width for torus and cylinder
212

213 def get_cylinder_foundation(V, slenderness, sigma_max_foundation , width_percentage,
stepsize_percentage = 0.05, method_s = 'flat', method_t = '
uniform'):

214 reservoir_results = cylinder(V, slenderness, fcd, method_s = method_s, method_t =
method_t)

215

216 weight_reservoir = reservoir_results[0] * g * (rho_concrete - rho_seawater) * 10 ** -3 #
Weight of the reservoir in kN

217 a_cylinder, h_cylinder, t_cylinder = reservoir_results[3][:3]
218

219 count = 0
220 initial_width = width_percentage / 100 * 2 * (a_cylinder + t_cylinder)
221 foundation_results = cylinder_foundation_VA(a_cylinder, t_cylinder, h_cylinder,

initial_width)
222 total_weight = weight_reservoir + foundation_results[0] * g * (rho_concrete -

rho_seawater) * 10 ** -3
223

224 while np.abs(total_weight / foundation_results[1] - sigma_max_foundation) > 0.5:
225 count += 1
226 if total_weight / foundation_results[1] - sigma_max_foundation > 0:
227 width_percentage = width_percentage + stepsize_percentage
228 if total_weight / foundation_results[1] - sigma_max_foundation < 0:
229 width_percentage = width_percentage - stepsize_percentage
230 width = width_percentage / 100 * 2 * (a_cylinder + t_cylinder)
231 foundation_results = cylinder_foundation_VA(a_cylinder, t_cylinder, h_cylinder, width

)
232 total_weight = weight_reservoir + foundation_results[0] * g * (rho_concrete -

rho_seawater) * 10**-3
233

234 return foundation_results[0], width_percentage, count
235

236 def get_torus_foundation(V, slenderness, sigma_max_foundation , width_percentage,
stepsize_percentage = 0.05):

237 reservoir_results = torus(V, slenderness, fcd)
238 weight_reservoir = reservoir_results[0] * g * (rho_concrete - rho_seawater) * 10 ** -3 #

Weight of the reservoir in kN
239 minor_radius, major_radius, t_torus = reservoir_results[3][:3]
240

241 count = 0
242 initial_width = width_percentage / 100 * 2 * (minor_radius + t_torus)
243 foundation_results = torus_foundation_VA(minor_radius, major_radius, t_torus,

initial_width)
244 total_weight = weight_reservoir + foundation_results[0] * g * (rho_concrete -

rho_seawater) * 10 ** -3
245

246 while np.abs(total_weight / foundation_results[1] - sigma_max_foundation) > 0.5:
247 count += 1
248 if total_weight / foundation_results[1] - sigma_max_foundation > 0:
249 width_percentage = width_percentage + stepsize_percentage
250 if total_weight / foundation_results[1] - sigma_max_foundation < 0:
251 width_percentage = width_percentage - stepsize_percentage
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252 width = width_percentage / 100 * 2 * (minor_radius + t_torus)
253 foundation_results = torus_foundation_VA(minor_radius, major_radius, t_torus, width)
254 total_weight = weight_reservoir + foundation_results[0] * g * (rho_concrete -

rho_seawater) * 10**-3
255

256 return foundation_results[0], width_percentage, count
257

258

259 # In[5]:
260

261

262 def bandwidth_indication(patches, start, end, distance, bar_length, text, fig_width,
fig_height, xrange, yrange, color='black', linewidth = 0.5,
x_offset=0, y_offset=0, fontsize=13):

263 # Calculate the slope of the line
264 slope = (end[1] - start[1]) / (end[0] - start[0])
265

266 # Calculate the angle of the line
267 angle = np.arctan(slope)
268

269 # Calculate the offset in x and y for the parallel lines
270 dx = distance * np.sin(angle) * (xrange / yrange)**2 * (fig_height / fig_width) ** 2
271 dy = distance * np.cos(angle)
272

273 # Calculate the offset in x and y for the bars
274 dx_bar_start = (distance + bar_length / 2) * np.sin(angle) * (xrange / yrange)**2 * (

fig_height / fig_width) ** 2
275 dx_bar_end = (distance - bar_length / 2) * np.sin(angle) * (xrange / yrange)**2 * (

fig_height / fig_width) ** 2
276 dy_bar_start = (distance + bar_length / 2) * np.cos(angle)
277 dy_bar_end = (distance - bar_length / 2) * np.cos(angle)
278

279 # Plot parallel line
280 ax.plot([start[0] + dx, end[0] + dx], [start[1] - dy, end[1] - dy], color=color,

linewidth=linewidth)
281

282 # Plot bars on end of parallel line
283 ax.plot([start[0] + dx_bar_start, start[0] + dx_bar_end], [start[1] -

dy_bar_start, start[1] - dy_bar_end], color=color, linewidth=linewidth)
284 ax.plot([end[0] + dx_bar_start, end[0] + dx_bar_end], [end[1] - dy_bar_start,

end[1] - dy_bar_end], color=color, linewidth=linewidth)
285

286 # Plot text
287 ax.text((start[0] + end[0])/2 + dx + x_offset, (start[1] + end[1])/2 - dy + y_offset,

text, ha='center', va='center', rotation = np.degrees(angle) * (xrange /
yrange)**2 * (fig_width / fig_height)**2 + 180, fontsize=fontsize, color=color)

288

289

290 # In[6]:
291

292

293 # Generate data for initial and iterative CIV-ratios reservoir
294 slenderness = [4, 8, 12]
295 volumes = np.arange(1, 16) * 10**3
296 buoyancy = [V * buoyancy_ratio for V in volumes]
297

298 sphere_results_iterative = [sphere(v, fcd)[0] for v in volumes]
299 sphere_results_initial = [sphere(v, fcd)[2] for v in volumes]
300 cylinder_results_iterative = [[cylinder(v, s, fcd)[0] for s in slenderness] for v in volumes]
301 cylinder_results_initial = [[cylinder(v, s, fcd)[2] for s in slenderness] for v in volumes]
302 torus_results_iterative = [[torus(v, s, fcd)[0] for s in slenderness] for v in volumes]
303 torus_results_initial = [[torus(v, s, fcd)[2] for s in slenderness] for v in volumes]
304

305

306 # In[7]:
307

308

309 # Plot data for initial CIV-ratios reservoir
310

311 fig, ax = plt.subplots(figsize=(12, 7))
312
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313 # Plot 1: Left subplot
314 ax.plot(volumes, sphere_results_initial , label="Sphere", color='green', marker=markers[0],

linestyle=linestyles[0], linewidth=1)
315

316 for i, s in enumerate(slenderness):
317 linestyle = linestyles[i % len(linestyles)]
318 marker = markers[(i + 1) % len(markers)] # Use a different marker
319 ax.plot(volumes, [res[i] for res in cylinder_results_initial], label=rf'Cylinder $\frac{{

L}}{{2a}}={s}$',
320 linestyle=linestyle, marker=marker, color='blue', linewidth=1)
321

322 for i, s in enumerate(slenderness):
323 linestyle = linestyles[i % len(linestyles)]
324 marker = markers[(i + 1+len(slenderness)) % len(markers)] # Use a different marker
325 ax.plot(volumes, [res[i] for res in torus_results_initial], label=rf'Torus $\frac{{b}}{{a

}}={s}$',
326 linestyle=linestyle, marker=marker, color='red', linewidth=1)
327

328 ax.plot(volumes, buoyancy, color='black', label='Neutral buoyancy', linewidth=2)
329

330 # Setting colors of axes
331 ax.tick_params(axis='x', labelsize=14)
332 ax.tick_params(axis='y', labelsize=14)
333

334 ax.set_xlabel('Internal volume $[m^3]$', fontsize=15)
335 ax.set_ylabel(r'Volume of Concrete $[m^3]$', fontsize=15)
336 ax.legend(fontsize=15)
337 ax.grid(True)
338

339 # Show the subplots
340 plt.show()
341

342

343 # In[8]:
344

345

346 # Plot data for iterative CIV-ratios reservoir
347

348 fig, ax = plt.subplots(figsize=(12, 7))
349

350 # Plot the sphere data
351 ax.plot(volumes, sphere_results_iterative , label="Sphere", color='green', marker=markers[0],

linestyle=linestyles[0], linewidth=1)
352

353 # Plot the cylinder data
354 for i, s in enumerate(slenderness):
355 linestyle = linestyles[i % len(linestyles)]
356 marker = markers[(i + 1) % len(markers)] # Use a different marker
357 ax.plot(volumes, [res[i] for res in cylinder_results_iterative], label=rf'Cylinder $\frac

{{L}}{{2a}}={s}$',
358 linestyle=linestyle, marker=marker, color='blue', linewidth=1)
359

360 # Plot the torus data
361 for i, s in enumerate(slenderness):
362 linestyle = linestyles[i % len(linestyles)]
363 marker = markers[(i + 1+len(slenderness)) % len(markers)] # Use a different marker
364 ax.plot(volumes, [res[i] for res in torus_results_iterative], label=rf'Torus $\frac{{b

}}{{a}}={s}$',
365 linestyle=linestyle, marker=marker, color='red', linewidth=1)
366

367 # Plot the buoyancy
368 ax.plot(volumes, buoyancy, color='black', label='Neutral buoyancy', linewidth=2)
369

370 # Setting colors of axes
371 ax.tick_params(axis='x', labelsize=14)
372 ax.tick_params(axis='y', labelsize=14)
373

374 ax.set_xlabel('Internal volume $[m^3]$', fontsize=15)
375 ax.set_ylabel(r'Volume of Concrete $[m^3]$', fontsize=15)
376 ax.legend(fontsize=15)
377 ax.grid(True)
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378

379 # Show the subplots
380 plt.show()
381

382

383 # In[9]:
384

385

386 # Generate data for wall thickness and internal diameter plot
387

388 volumes = np.arange(1000,16001,5000)
389 slenderness = np.arange(4, 20.5, 2)
390

391 columns_sphere = ['V', 'fcd', 'a', 't']
392 columns_CT = ['V', 'fcd', 'slenderness', 'a', 't']
393 sphere_df = pd.DataFrame(columns=columns_sphere)
394 cylinder_df = pd.DataFrame(columns=columns_CT)
395 torus_df = pd.DataFrame(columns=columns_CT)
396

397 for V in volumes:
398 geometry_sphere = sphere(V, fcd)[3]
399 sphere_df = sphere_df.append({'V': V, 'fcd': fcd, 'a': geometry_sphere[0], 't':

geometry_sphere[1]}, ignore_index=True)
400 for s in slenderness:
401 geometry_cylinder = cylinder(V,s,fcd)[3]
402 cylinder_df = cylinder_df.append({'V': V, 'fcd': fcd, 'slenderness':s,
403 'a': geometry_cylinder[0], 't': geometry_cylinder

[2]}, ignore_index=True)
404

405 geometry_torus = torus(V,s,fcd)[3]
406 torus_df = torus_df.append({'V': V, 'fcd': fcd, 'slenderness':s,
407 'a': geometry_torus[0], 't': geometry_torus[2]},

ignore_index=True)
408

409

410 # In[10]:
411

412

413 # Plotting wall thickness and internal diameter
414 fig_width, fig_height = 14, 7
415 xrange, yrange = 17, 3
416

417 fig, ax = plt.subplots(figsize=(fig_width, fig_height))
418 distances = [0.05, 0.05, 0.15, .25]
419

420 patches = []
421

422 # Plot 'Sphere' first
423 scatter_sphere = ax.scatter(sphere_df['a'], sphere_df['t'], label=rf'Sphere', color='green',

marker='o', s=100)
424

425 lines, labels = [], []
426

427 for i, V in enumerate(volumes):
428 ax.text(sphere_df['a'].iloc[i], sphere_df['t'].iloc[i]-0.15, 'V=' + str(V), fontsize=13,

ha='center', color='green')
429

430 subset_cylinder = cylinder_df[cylinder_df['V'] == V]
431 line_cylinder, = ax.plot(subset_cylinder['a'], subset_cylinder['t'], color='blue', label=

'', linestyle='dotted')
432

433 end_cylinder = [subset_cylinder['a'].iloc[0], subset_cylinder['t'].iloc[0]]
434 start_cylinder = [subset_cylinder['a'].iloc[-1], subset_cylinder['t'].iloc[-1]]
435 bandwidth_indication(patches, start_cylinder, end_cylinder, distances[i], 0.05, 'V=' +

str(V),
436 fig_width, fig_height, xrange, yrange, y_offset = -0.02, x_offset =

0.2, color='blue')
437

438 subset_torus = torus_df[torus_df['V'] == V]
439 line_torus, = ax.plot(subset_torus['a'], subset_torus['t'], color='red', label='',

linestyle = '--')
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440 ax.text(subset_torus['a'].iloc[0] - 0.3, subset_torus['t'].iloc[0] - 0.1, 'V=' + str(V),
ha='right', va='top', color='red',fontsize=13)

441

442 lines.extend([line_cylinder, line_torus])
443 labels.extend(['', ''])
444

445 for patch in patches:
446 ax.add_patch(patch)
447

448 ax.plot([], [], color='blue', label=r'Cylinder $4 \leq \frac{L}{2a} \leq 20$')
449 ax.plot([], [], color='red', label=r'Torus $4 \leq \frac{b}{a} \leq 20$')
450

451 ax.set_xlabel('Internal radius $a$ [m]', fontsize=15)
452 ax.set_ylabel('Wall thickness $t$ [m]', fontsize=15)
453 ax.tick_params(axis='both', which='major', labelsize=15)
454

455 ax.set_xlim(0, 0 + xrange)
456 ax.set_ylim(0, 0 + yrange)
457 ax.grid(True)
458

459 # Create a custom legend with the desired order, excluding the second blue line
460 legend = ax.legend([scatter_sphere, lines[0], lines[1], lines[3]],
461 ['Sphere', r'Cylinder $4 \leq \frac{L}{2a} \leq 20$', r'Torus $4 \leq \

frac{b}{a} \leq 20$'],
462 loc='lower right', fontsize=15)
463

464 # Set the legend labels to be displayed correctly
465 for text in legend.get_texts():
466 if text.get_text() == ' ':
467 text.set_text('')
468

469 plt.show()
470

471

472 # In[11]:
473

474

475 # Generate data for optimalization cylinder and torus slenderness
476 def ratio_iterations(shape, v, ratio_values):
477 results = []
478 if shape == 'cylinder':
479 results.append([cylinder(v, i, fcd)[0] / v for i in ratio_values])
480 results.append([cylinder(v, i, fcd)[1] for i in ratio_values])
481 if shape == 'torus':
482 results.append([torus(v, i, fcd)[0] / v for i in ratio_values])
483 results.append([torus(v, i, fcd)[1] for i in ratio_values])
484 return results
485 ratios = np.arange(4, 50.5, 0.5)
486 volume = 10 * 10 ** 3
487

488 # Generating results
489 cylinder_results = ratio_iterations('cylinder', volume, ratios)
490 torus_results = ratio_iterations('torus', volume, ratios)
491 sphere_result = sphere(volume, fcd)
492

493

494 # In[12]:
495

496

497 # Plotting CIV-data for optimalization cylinder and torus slenderness
498 fig, ax = plt.subplots(figsize=(12, 7))
499

500 ax.plot(ratios, cylinder_results[0], label=f"Cylinder", color='blue', linestyle=':',
linewidth=2)

501 ax.plot(ratios, torus_results[0], label=f"Torus", color='red', linestyle='--', linewidth=2)
502 ax.axhline(sphere_result[0]/volume, xmin=0.04, xmax=0.953, label='Sphere', color='green',

linestyle='-.', linewidth=2)
503 ax.axhline(buoyancy_ratio, xmin=0.04, xmax=0.953, label='Neutral buoyancy', color='black',

linewidth=2)
504

505 ax.set_ylim(0, torus_results[0][0]*1.035)
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506 ax.legend(loc='upper right', fontsize=15)
507 ax.grid(True)
508

509 ax.tick_params(axis='both', which='major', labelsize=15)
510 ax.set_yticks(np.arange(0, torus_results[0][0]*1.05, 0.1))
511 ax.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15)
512 ax.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$ and Torus ratio $\left(\frac{b}{a

}\right)$', fontsize=15)
513

514 plt.show()
515

516

517 # In[13]:
518

519

520 # Plotting number__of_iterations -data for optimalization cylinder and torus slenderness
521 fig, ax = plt.subplots(figsize=(12, 7))
522

523 ax.plot(ratios, cylinder_results[1], label=f"Cylinder", color='blue', linestyle=':',
linewidth=2)

524 ax.plot(ratios, torus_results[1], label=f"Torus", color='red', linestyle='--', linewidth=2)
525 ax.axhline(sphere_result[1], xmin=0.04, xmax=0.953, label='Sphere',
526 color='green', linestyle='-', linewidth=2)
527

528 ax.legend(loc='upper right', fontsize = 15)
529 ax.grid(True)
530 ax.tick_params(axis='both', which='major', labelsize=15)
531

532 ax.set_ylim(0,torus_results[1][0]*1.05)
533 ax.set_ylabel(r'Number of iterations', fontsize=15)
534 ax.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$ and Torus ratio $\left(\frac{b}{a

}\right)$', fontsize=15)
535 plt.show()
536

537

538 # In[14]:
539

540

541 # Generate data for concrete strength sensitivity analysis
542 slenderness = [4, 8, 12]
543 p_min = 25
544 p_plus = 25
545

546 stepsize = 0.2
547 sigma_max = np.arange(fcd * (1-p_min/100), fcd * (1+ p_plus/100) + stepsize / 2 , stepsize)
548 V = 10000
549

550 sphere_CV_ratios = [] # Initialize an empty list for sphere ratios
551 cylinder_CV_ratios = [[] for _ in range(len(slenderness))] # Initialize empty lists for

cylinder ratios
552 torus_CV_ratios = [[] for _ in range(len(slenderness))] # Initialize empty lists for torus

ratios
553

554 for sigma in sigma_max:
555 sphere_ratio = sphere(V, sigma)[0] / V
556 sphere_CV_ratios.append(sphere_ratio) # Append sphere_ratio to sphere_CV_ratios
557 for i, s in enumerate(slenderness):
558 cylinder_ratio = cylinder(V, s, sigma)[0] / V
559 torus_ratio = torus(V, s, sigma)[0] / V
560 cylinder_CV_ratios[i].append(cylinder_ratio) # Append cylinder_ratio to the

corresponding list in cylinder_CV_ratios
561 torus_CV_ratios[i].append(torus_ratio) # Append torus_ratio to the corresponding

list in torus_CV_ratios
562

563 # Calculate percentage values for the x-axis
564 percentage_sigma_max = ((sigma_max - fcd) / fcd) * 100
565

566 # Calculate mid-values
567 mid_value_sphere = sphere_CV_ratios[int(p_min*2)]
568 mid_values_cylinder = [cylinder_CV_ratios[i][int(p_min*2)] for i in range(len(slenderness))]
569 mid_values_torus = [torus_CV_ratios[i][int(p_min*2)] for i in range(len(slenderness))]
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570

571 # Normalize sphere values
572 sphere_percentages = [(x - mid_value_sphere) / mid_value_sphere for x in sphere_CV_ratios]
573

574 # Normalize cylinder values
575 cylinder_percentages = []
576 for i, line_data in enumerate(cylinder_CV_ratios):
577 mid_value_cylinder = mid_values_cylinder[i]
578 normalized_data = [(x - mid_value_cylinder) / mid_value_cylinder for x in line_data]
579 cylinder_percentages.append(normalized_data)
580

581 # Normalize torus values
582 torus_percentages = []
583 for i, line_data in enumerate(torus_CV_ratios):
584 mid_value_torus = mid_values_torus[i]
585 normalized_data = [(x - mid_value_torus) / mid_value_torus for x in line_data]
586 torus_percentages.append(normalized_data)
587

588

589 # In[15]:
590

591

592 # Plot the sensitivity analysis for concrete strength
593 fig, ax = plt.subplots(figsize=(12, 7))
594

595 # Create a function to format y-axis as percentages
596 def percent_formatter(x, pos):
597 return f'{x * 100:.0f}%'
598

599 # Plot sphere data with a unique marker
600 plt.plot(percentage_sigma_max, sphere_percentages, label="Sphere", color='green',
601 marker=markers[0], linestyle=linestyles[0], linewidth=1, markevery=15)
602

603 # Plot cylinder data with distinct linestyles and markers
604 for i, s in enumerate(slenderness):
605 linestyle = linestyles[i % len(linestyles)]
606 marker = markers[(i + 1) % len(markers)]
607 color = 'blue'
608 plt.plot(percentage_sigma_max , cylinder_percentages[i], label=rf'Cylinder $\frac{{L}}{{2a

}}={s}$',
609 linestyle=linestyle, marker=marker, color=color, linewidth=1, markevery=15)
610

611 # Plot torus data with distinct linestyles and markers
612 for i, s in enumerate(slenderness):
613 linestyle = linestyles[i % len(linestyles)]
614 marker = markers[(i + 1+len(slenderness)) % len(markers)]
615 color = 'red'
616 plt.plot(percentage_sigma_max , torus_percentages[i], label=rf'Torus $\frac{{b}}{{a}}={s}$

',
617 linestyle=linestyle, marker=marker, color=color, linewidth=1, markevery=15)
618

619 ax.set_xlabel(r'Concrete strength variation [%] at base $f_{cd} = 40 \; MPa$', fontsize=15)
620 ax.set_ylabel('Variation in volume of concrete [%]', fontsize=15)
621 #plt.title('Normalized CV-ratios vs. Percentage Change in Sigma Max')
622 ax.legend(fontsize=15)
623 ax.tick_params(axis='both', which='major', labelsize=15)
624

625 # Set custom x-ticks with '+' signs for positive values, leaving out '+' at 0%
626 xticks = [f'{tick:+}%' if tick != 0 else '0%' for tick in np.arange(-p_min, p_plus + 10, 10)]
627

628 # Plot the graph
629 plt.gca().yaxis.set_major_formatter(mtick.FuncFormatter(percent_formatter))
630 plt.xticks(np.arange(-p_min, p_plus + 10, 10), xticks)
631 plt.grid(True)
632 plt.show()
633

634

635 # In[16]:
636

637

638 # Plot for CIV-ratio sphere foundation
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639 volumes = np.arange(1, 16) * 10**3
640

641 geos = [sphere(v, fcd)[3][:2] for v in volumes]
642 sphere_foundation_volume = [sphere_foundation(geos[i][0],geos[i][1])[0] for i in range(len(

geos))]
643 sphere_foundation_CIV = [sphere_foundation_volume[i] / volumes[i] for i in range(len(volumes)

)]
644

645 fig, ax = plt.subplots(figsize=(10,6))
646 ax.plot(volumes, sphere_foundation_CIV , color='green', marker='o')
647 ax.grid(True)
648 ax.tick_params(axis='both', which='major', labelsize=15)
649

650 ax.set_xlabel(r'Internal volume $\left[m^3\right]$', fontsize=15)
651 ax.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15);
652

653

654 # In[17]:
655

656

657 # Plot for CIV-ratios and widths cylinder and torus foundation
658

659 # Create a 1x2 subplot with two rows
660 fig, axs = plt.subplots(2, 1, figsize=(10, 12), sharex=True)
661

662 # First subplot (top)
663 axs[0].set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15)
664 axs[0].grid(True)
665

666 # Second subplot (bottom)
667 axs[1].set_xlabel('Internal volume $[m^3]$', fontsize=15)
668 axs[1].set_ylabel('Base width as percentage of total width', fontsize=15)
669 axs[1].grid(True)
670 axs[1].yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'{x:.0f}%'))
671

672 w, h = 450, 3 # Some trial and error parameters for square indication blocks
673 patches = []
674

675 for i, s in enumerate(slenderness):
676 results_cylinder = [get_cylinder_foundation(V, s, sigma_max_foundation ,

initial_width_percentage) for V in volumes]
677 CIV_cylinder = [results_cylinder[i][0] / volumes[i] for i in range(len(volumes))]
678 width_cylinder = [w[1] for w in results_cylinder]
679

680 linestyle = linestyles[i % len(linestyles)]
681 marker = markers[(i + 1) % len(markers)]
682 color = 'blue'
683 axs[0].plot(volumes, CIV_cylinder, label=rf'Cylinder $\frac{{L}}{{2a}}={s}$', linestyle=

linestyle, marker=marker, color=color)
684 axs[1].plot(volumes, width_cylinder, label=rf'Cylinder $\frac{{L}}{{2a}}={s}$', linestyle

=linestyle, marker=marker, color=color)
685 if s == 12:
686 block = Rectangle((volumes[0]-w/2,width_cylinder[0]-h/2), w, h, color='cornflowerblue

', alpha=0.5)
687 patches.append(block)
688 if s == 4:
689 block = Rectangle((volumes[-1]-w/2,width_cylinder[-1]-h/2), w, h, color='

cornflowerblue', alpha=0.5)
690 patches.append(block)
691

692 for i, s in enumerate(slenderness):
693 results_torus = [get_torus_foundation(V, s, sigma_max_foundation ,

initial_width_percentage) for V in volumes]
694 CIV_torus = [results_torus[i][0] / volumes[i] for i in range(len(volumes))]
695 width_torus = [w[1] for w in results_torus]
696

697 linestyle = linestyles[i % len(linestyles)]
698 marker = markers[(i + 1 + len(slenderness)) % len(markers)]
699 color = 'red'
700 axs[0].plot(volumes, CIV_torus, label=rf'Torus $\frac{{b}}{{a}}={s}$', linestyle=

linestyle, marker=marker, color=color)
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701 axs[1].plot(volumes, width_torus, label=rf'Torus $\frac{{b}}{{a}}={s}$', linestyle=
linestyle, marker=marker, color=color)

702 if s == 12:
703 block = Rectangle((volumes[0]-w/2,width_torus[0]-h/2), w, h, color='indianred', alpha

=0.5)
704 patches.append(block)
705 if s == 4:
706 block = Rectangle((volumes[-1]-w/2,width_torus[-1]-h/2), w, h, color='indianred',

alpha=0.5)
707 patches.append(block)
708

709 for patch in patches:
710 axs[1].add_patch(patch)
711

712 # Add legends to both subplots
713 axs[0].legend(fontsize=15)
714 axs[1].legend(fontsize=15)
715

716 axs[1].set_ylim(10,69)
717 axs[1].set_xlim(500,15500)
718

719 axs[1].tick_params(axis='both', which='major', labelsize=15)
720 axs[0].tick_params(axis='both', which='major', labelsize=15)
721

722 plt.tight_layout()
723 plt.show()
724

725

726 # In[18]:
727

728

729 # Plot for CIV-ratios of reservoir and foundation combined
730

731 sphere_CIV = []
732 cylinder_CIV = []
733 torus_CIV = []
734 cylinder_CIV_hemisphere = []
735

736 for i in range(len(volumes)):
737 sphere_reservoir_results = sphere(volumes[i], fcd)
738 sphere_foundation_volume = sphere_foundation(sphere_reservoir_results[3][0] ,

sphere_reservoir_results[3][1])[0]
739 sphere_CIV.append((sphere_reservoir_results[0] + sphere_foundation_volume) / volumes[i])
740

741 slenderness = np.arange(4, 50.5, 0.5)
742 volume = 10 * 10 ** 3
743

744 for s in slenderness:
745 cylinder_reservoir_volume = cylinder(volume, s, fcd)[0]
746 cylinder_foundation_volume = get_cylinder_foundation(volume, s, sigma_max_foundation ,

initial_width_percentage)[0]
747 cylinder_CIV.append((cylinder_reservoir_volume + cylinder_foundation_volume) / volume)
748

749 torus_reservoir_volume = torus(volume, s, fcd)[0]
750 torus_foundation_volume = get_torus_foundation(volume, s, sigma_max_foundation ,

initial_width_percentage)[0]
751 torus_CIV.append((torus_reservoir_volume + torus_foundation_volume) / volume)
752

753 cylinder_reservoir_volume_hemisphere = cylinder(volume, s, fcd, method_s = 'hemisphere')
[0]

754 cylinder_foundation_volume_hemisphere = get_cylinder_foundation(volume, s,
sigma_max_foundation , initial_width_percentage ,

method_s = '
hemisphere')[0]

755 cylinder_CIV_hemisphere.append((cylinder_reservoir_volume_hemisphere +
cylinder_foundation_volume_hemisphere) / volume)

756

757 # Plotting CIV-ratios vs. internal volume/configuration
758 fig, ax1 = plt.subplots(figsize=(12, 7))
759 ax1.grid(True)
760 ax2 = ax1.twiny()
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761

762 # Plot the data
763 ax1.plot(volumes, sphere_CIV, label="Sphere", color='green', marker=markers[0], linestyle='-.

', linewidth=1)
764 ax2.plot(slenderness, cylinder_CIV, label='Cylinder', color='blue', linestyle=':', linewidth

=2)
765 ax2.plot(slenderness, torus_CIV, label='Torus', color='blue', linestyle='--', linewidth=2)
766 plt.axhline(buoyancy_ratio, xmin=0.04, xmax=0.953, label='Neutral buoyancy', color='black',

linewidth=2)
767

768 # Combine the legends
769 lines, labels = ax1.get_legend_handles_labels()
770 lines2, labels2 = ax2.get_legend_handles_labels()
771 lines.extend(lines2)
772 labels.extend(labels2)
773 ax1.legend(lines, labels, loc='upper right', fontsize=15)
774

775 # Setting ticks
776 ax1.tick_params(axis='x', colors='green', labelsize=15)
777 ax2.tick_params(axis='x', colors='blue', labelsize=15)
778

779

780 # Setting labels
781 ax1.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15);
782 ax1.set_xlabel(r'Internal volume $\left[m^3\right]$', fontsize=15, color='green')
783 ax2.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$ and Torus ratio $\left(\frac{b}{a

}\right)$', fontsize=15, color='blue')
784 ax1.set_ylim(0,1.25);
785

786

787 # In[19]:
788

789

790 # Plotting CIV-ratios vs. internal volume/configuration
791 fig, ax1 = plt.subplots(figsize=(12, 7))
792 ax1.grid(True)
793 ax2 = ax1.twiny()
794

795 # Plot the data
796 ax1.plot(volumes, sphere_CIV, label="Sphere", color='green', marker=markers[0], linestyle='-.

', linewidth=1)
797 ax2.plot(slenderness, cylinder_CIV, label='Cylinder flat', color='blue', linestyle=':',

linewidth=2)
798 ax2.plot(slenderness, cylinder_CIV_hemisphere , label='Cylinder hemisphere', color='blue',

linestyle='--', linewidth=2)
799 plt.axhline(buoyancy_ratio, xmin=0.04, xmax=0.953, label='Neutral buoyancy', color='black',

linewidth=2)
800

801 # Combine the legends
802 lines, labels = ax1.get_legend_handles_labels()
803 lines2, labels2 = ax2.get_legend_handles_labels()
804 lines.extend(lines2)
805 labels.extend(labels2)
806 ax1.legend(lines, labels, loc='upper right', fontsize=15)
807

808 # Setting ticks
809 ax1.tick_params(axis='x', colors='green', labelsize=15)
810 ax2.tick_params(axis='x', colors='blue', labelsize=15)
811

812 # Setting labels
813 ax1.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15,

color='black');
814 ax1.set_xlabel(r'Internal volume $\left[m^3\right]$', fontsize=15, color='green')
815 ax2.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$', fontsize=15, color='blue')
816 ax1.set_ylim(0,1.25);
817

818

819 # In[20]:
820

821

822 # Cylinder dimensions
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823 slenderness = [12, 16, 20]
824 fig, ax = plt.subplots(figsize=(12,7))
825 volumes = np.arange(1, 17) * 10**3
826

827 for i, s in enumerate (slenderness):
828 external_diameters = []
829 Ls_cylinder = []
830 for V in volumes:
831 a_cylinder, L_cylinder, t_cylinder = cylinder(V, s, fcd)[3][:3]
832 external_diameters.append(2 * (a_cylinder + t_cylinder))
833 Ls_cylinder.append(L_cylinder)
834 ax.plot(Ls_cylinder,external_diameters, label=rf'$\frac{{L}}{{2a}}={s}$',

color='black', marker='o', markevery=3, linestyle=linestyles[i])
835 for j in range(int((len(volumes)+2)/3)):
836 ax.text(Ls_cylinder[3*j] + 7, external_diameters[3*j], volumes[3*j], ha='center', va=

'center', fontsize=12)
837

838 ax.set_xlabel('External length [m]', fontsize=15)
839 ax.set_ylabel('External diameter [m]', fontsize=15)
840 ax.grid(True)
841

842 # Adding the internal volume in the legend of the plot
843 ax.plot([], [], label=r'$V_{internal} \;\; [m^3]$', color='black', marker='', linestyle='',

markersize=5)
844 ax.text(53,13.2,'1000', fontsize=14, zorder=10)
845 ax.legend(fontsize=16, loc='upper left')
846

847 ax.tick_params(axis='both', which='major', labelsize=15)
848

849 ax.set_xlim(50,220)
850 ax.set_ylim(4,18)
851 plt.show()
852

853

854 # In[21]:
855

856

857 # Torus dimensions
858 fig, ax = plt.subplots(figsize=(12,7))
859

860 for i, s in enumerate (slenderness):
861 minor_diameters = []
862 major_diameters = []
863 for V in volumes:
864 a_torus, b_torus, t_torus = torus(V, s, fcd)[3][:3]
865 minor_diameters.append(2 * (a_torus + t_torus))
866 major_diameters.append(2 * (a_torus + b_torus + t_torus))
867 ax.plot(major_diameters, minor_diameters, label=rf'$\frac{{b}}{{a}}={s}$',

color='black', marker='o', markevery=3, linestyle=linestyles[i])
868 for j in range(int((len(volumes)+2)/3)):
869 ax.text(major_diameters[3*j] + 5,minor_diameters[3*j], volumes[3*j], ha='center', va=

'center', fontsize=12)
870

871 ax.set_xlabel('Major external diameter [m]', fontsize=15)
872 ax.set_ylabel('Minor external diameter [m]', fontsize=15)
873 ax.grid(True)
874

875 # Adding the internal volume in the legend of the plot
876 ax.plot([], [], label=r'$V_{internal} \;\; [m^3]$', color='black', marker='', linestyle='',

markersize=5)
877 ax.text(43,9.05,'1000', fontsize=14, zorder=10)
878

879 ax.legend(fontsize=16, loc= 'upper left')
880 ax.set_ylim(3,12)
881 ax.set_xlim(40,155)
882

883 ax.tick_params(axis='both', which='major', labelsize=15)
884

885 plt.show()
886

887
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888 # In[22]:
889

890

891 volumes = list(np.linspace(1,15,15) * 10**3)
892 slenderness = list(np.arange(4, 50.5, 0.5))
893

894 sphere_CIV_NU = []
895 cylinder_CIV_NU = []
896

897 for V in volumes:
898 sphere_reservoir_results = sphere(V, fcd, method_t = 'non-uniform')
899 a_sphere = sphere_reservoir_results[3][0]
900 t_sphere = sphere_reservoir_results[3][1]
901 V_sphere_reservoir = sphere_reservoir_results[0]
902 V_sphere_foundation = sphere_foundation(a_sphere, t_sphere)[0]
903 sphere_CIV_total = (V_sphere_reservoir + V_sphere_foundation) / V
904 sphere_CIV_NU.append(sphere_CIV_total)
905

906 for s in slenderness:
907 cylinder_reservoir_results = cylinder(9000, s, fcd, method_s = 'hemisphere', method_t = '

non-uniform')
908 a_cylinder = cylinder_reservoir_results[3][0]
909 t_cylinder = cylinder_reservoir_results[3][1]
910 V_cylinder_reservoir = cylinder_reservoir_results[0]
911 V_cylinder_foundation = get_cylinder_foundation(9000, s, sigma_max_foundation , 30)[0]
912 cylinder_CIV_total = (V_cylinder_reservoir + V_cylinder_foundation) / 9000
913 cylinder_CIV_NU.append(cylinder_CIV_total)
914

915 sphere_CIV_high = [CIV * 1.06 for CIV in sphere_CIV_NU]
916 cylinder_CIV_high = [CIV * 1.05 for CIV in cylinder_CIV_NU]
917 cylinder_CIV_low = [CIV * 0.95 for CIV in cylinder_CIV_NU]
918

919 sphere_average = [(sphere_CIV_NU[i] + sphere_CIV_high[i])/2 for i in range(len(sphere_CIV_NU)
)]

920 sphere_CIVs_uncertain = sphere_CIV_NU + sphere_CIV_high[::-1]
921 sphere_Vs = volumes + volumes[::-1]
922

923 cylinder_CIVs_uncertain = cylinder_CIV_low + cylinder_CIV_high[::-1]
924 cylinders_ss = slenderness + slenderness[::-1]
925

926

927 # In[23]:
928

929

930 figure, ax1 = plt.subplots(figsize=(12,7))
931 ax1.grid(True)
932 ax2 = ax1.twiny()
933

934 ax1.axhline(buoyancy_ratio, xmin=0.04, xmax=0.953, label='Neutral buoyancy', color='black',
linewidth=2)

935 ax1.plot(volumes, sphere_CIV, linestyle=linestyles[1], label='Sphere uniform', color='green',
linewidth=2)

936 ax1.plot(volumes, sphere_CIV_NU, linestyle=linestyles[2], label='Sphere non-uniform', color='
green', linewidth=2)

937 ax2.plot(slenderness, cylinder_CIV, label='Cylinder uniform', color='blue', linestyle=
linestyles[4], linewidth=2)

938 ax2.plot(slenderness, cylinder_CIV_NU, label='Cylinder non-uniform', color='blue', linestyle=
linestyles[5], linewidth=2)

939

940 # Setting colors of axes
941 ax1.tick_params(axis='x', colors='green', labelsize=15)
942 ax2.tick_params(axis='x', colors='blue', labelsize=15)
943 ax1.tick_params(axis='y', labelsize=15)
944

945 # Combine the legends
946 lines, labels = ax1.get_legend_handles_labels()
947 lines2, labels2 = ax2.get_legend_handles_labels()
948 lines.extend(lines2)
949 labels.extend(labels2)
950 ax1.legend(lines, labels, loc='upper right', fontsize=15)
951
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952 # Setting labels
953 ax1.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15);
954 ax1.set_xlabel(r'Internal volume $\left[m^3\right]$', fontsize=15, color='green')
955 ax2.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$', fontsize=15, color='blue')
956 ax1.set_ylim(0,1.6);
957

958

959 # In[24]:
960

961

962 # Plotting uncertainty CIV-ratios vs. internal volume/configuration
963 fig, ax1 = plt.subplots(figsize=(12, 8))
964 ax1.grid(True)
965 ax2 = ax1.twiny()
966

967 # Plot the data
968 ax1.axhline(buoyancy_ratio, xmin=0.04, xmax=0.953, label='Neutral buoyancy', color='black',

linewidth=2)
969 ax1.fill(sphere_Vs, sphere_CIVs_uncertain , color='green', alpha=0.3)
970 ax1.plot(volumes,sphere_average, label='Sphere', linestyle='--', color='green')
971 ax2.fill(cylinders_ss, cylinder_CIVs_uncertain , color='blue', alpha=0.3)
972 ax2.plot(slenderness, cylinder_CIV_NU, label='Cylinder', linestyle='-.', color='blue')
973

974 # Setting colors of axes
975 ax1.tick_params(axis='x', colors='green', labelsize=15)
976 ax2.tick_params(axis='x', colors='blue', labelsize=15)
977 ax1.tick_params(axis='y', labelsize=15)
978

979 # Combine the legends
980 lines, labels = ax1.get_legend_handles_labels()
981 lines2, labels2 = ax2.get_legend_handles_labels()
982 lines.extend(lines2)
983 labels.extend(labels2)
984 ax1.legend(lines, labels, loc='upper right', fontsize=15)
985

986 # Setting labels
987 ax1.set_ylabel(r'CIV-ratio $\left(\frac{V_{concrete}}{V_{internal}}\right)$', fontsize=15);
988 ax1.set_xlabel(r'Internal volume $\left[m^3\right]$', fontsize=15, color='green')
989 ax2.set_xlabel(r'Cylinder ratio $\left(\frac{L}{2a}\right)$', fontsize=15, color='blue')
990 ax1.set_ylim(0,1.6);



E
Interview Bernhard Ernst, Deputy

Head of Energy Storage at Fraunhofer
IEE

This Section presents the valuable insights gathered in an interview with the Deputy Head of Energy
Storage at Fraunhofer Institute for Energy Economics and Energy System Technology, Bernhard Ernst.
Mr. Ernst is currently overseeing the StEnSea project, an abbreviation for Storing Energy at Sea. The
Fraunhofer Institute is a prominent developer of the MPHES concept.

The interview was conducted online via a video connection on the 27th of September, 2023. The
content is presented in a question-and-answer format, summarizing Mr. Ernst’s responses.

Why is your pump integrated in the system in the current design?
The integration of the pump into the system serves the purpose of simplifying installation and main-
tenance procedures. This design choice allows for the pump to be easily accessed by lifting it out
vertically, ensuring convenient maintenance. Importantly, this integration minimally impacts the sys-
tem’s volume due to the pump’s compact dimensions. The design specifications require the pump to
be slender with a small diameter, and the envisioned pump for this design measures only 0.5 meters in
diameter. Additionally, a small pump opening is essential to prevent excessive structural interference
and the potential for increased local stresses.

What distances do you consider for grid connection?
For grid connection, we consider any location where an offshore wind or solar farm is already estab-
lished, making it suitable for MPHES. In these locations, existing cables connect the farms to the grid.
We can utilize these same cables for the transfer of both stored energy and energy generated by the
farm. Importantly, the capacity of the cable is not a limiting factor, and it might even be used with lower
capacity since it serves the dual purpose of transferring stored energy and harvested energy from the
farm.

What are the main concerns in constructing multiple smaller reservoirs with respect to one big
reservoir, provided that the total internal volume is equal?
One major challenge arises from the need to interconnect all smaller reservoirs, resulting in heightened
demands for cables and installation efforts. Although the overall energy storage capacity remains con-
sistent, the requirement for intricate networks of pipes or tubes to connect a single pump to multiple
reservoirs, particularly in high hydrostatic pressure conditions, presents a substantial engineering chal-
lenge. Alternatively, using a single pump for each reservoir is an option, but this approach may escalate
capital expenditures, and the efficiency of larger pumps typically surpasses that of smaller ones.

It is worth noting that pumps can be installed adjacent to the sphere without strict location requirements.
Nevertheless, as previously mentioned, the design and implementation of the associated pipes or tubes
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could present difficulties. Additionally, ensuring that the pump’s inflow is located at the bottom of each
reservoir is a crucial consideration for optimal functionality.

Considering these factors collectively, a larger reservoir holds advantages over multiple smaller reser-
voirs with equivalent internal volumes.

One could argue that in the construction of an MPHES system that much CO2 is emitted, that
the storage in its lifetime never compensates this. Was any such calculation performed?
The amount of energy that travels through a sphere in one year, if generated by a coal plant, generates
the same amount of CO2 as constructing the spheres does, only considering CO2 emitted by concrete
construction. This is no conclusive reasoning, since MPHES does not generate any electricity and
one might as well compare it to other forms of energy generation. On the other hand, at the intended
moment for MPHES to become commercially available, which is not earlier than eight years from now,
the amount of CO2 emitted by concrete construction might be significantly lower than it is now. It is
necessary to have someone investigate this. I would like to make this into a graduation project.

Why is Hochtief not considering their patented technique from 2014 anymore?
HTS probably stepped off their patented construction method since the introduction of 3DCP around
2018.

What do you think of other storage technologies with respect to MPHES? At this stage, we do not
believe it is appropriate to make direct comparisons between MPHES and other storage technologies.
Our first priority is to establish a proof of concept and ensure that we can effectively manage the logistics
associated with MPHES. Once we have achieved this and gathered sufficient data, we can then assess
MPHES in relation to the feasibility and performance of other existing storage technologies.

Separate comments on pump efficiency This last section contains some separate comments on
pump efficiency, that were not directly the answer to a specific question. Another field test is planned
off the coast of California at a 1:3 scale, set to take place in 2025. During this upcoming test in the
Pacific Ocean, an efficiency of 60% is anticipated. It is important to clarify that, at this stage, the primary
focus is not on optimizing the efficiency of the pumps. Instead, the key priorities lie in constructing the
sphere and managing the logistical aspects of the project, including immersion and installation.

An essential point to consider is that a pump optimized for water pumping might not necessarily be
optimized for electricity generation through the associated turbine, and vice versa. Therefore, a pump/-
turbine system can typically be optimized for one specific function. To achieve maximum efficiency, it
may be beneficial to utilize separate devices – one for pumping water out of the reservoir and another
for generating electricity as water flows into the reservoir.

It is also important to acknowledge that lower efficiencies observed in earlier tests were often a result
of using off-the-shelf pumps, which were not specifically designed to be as efficient as possible for the
unique requirements of MPHES.

Pump efficiency tends to increase with a higher discharge of water. Hydropower plants, with turbines
boasting significant power ratings, can achieve roundtrip efficiencies of up to 85%. In contrast, MPHES
aims for a 5 MW power rating, which may result in efficiencies ranging between 75-80%.



F
General concrete construction

techniques

This appendix provides a comprehensive overview of diverse concrete construction techniques, serving
as a foundational framework for the proposed methodologies outlined in Chapter 5. The selection of
these techniques is intentionally inclusive, spanning a broad range of approaches rather than being
restricted solely to their immediate relevance to the specified structures. The intention is to facilitate
a thoughtful selection of construction methods, enabling the presentation of potential techniques in
Chapter 5.

Each section is organized to explicate the principles of a technique, outline its variations, and elucidate
common applications. Subsequently, a brief assessment is carried out to evaluate its relevance in the
specific context of constructing a cylinder or torus.

F.1. Conventional casting using formwork
The utilization of formwork in the construction of concrete structures has a rich history, involving the
creation of a casing where concrete is poured to attain the desired shape.

In the following Section, drawing insights from [67], formwork techniques are categorized into three
main types: traditional formwork, flexible formwork, and recyclable formwork. A comparative analysis
of these techniques is detailed in Table F.1.

Traditional formwork systems utilize wooden or metal framing into which concrete is poured. These
time-tested techniques are well-established due to their historical prevalence. Traditional formwork
is particularly effective for producing thick concrete elements, as the formwork contains the concrete
during setting.

Flexible formwork encompasses fabric or digitally fabricated structures designed to facilitate conve-
nient adjustments during concrete pouring. Examples include pneumatically supported formwork and
stay-in-place knitted formwork. These methods are well-suited for constructing relatively thin concrete
shells. Digitally fabricated formwork involves CNC milling of materials like expanded polystyrene (sty-
rofoam) or 3D-printing plastic to create intricate molds, enabling the construction of complex concrete
shapes.

Recyclable formwork involves the use of sand or ice formwork placed on a horizontal surface. Concrete
is then poured onto the shaped sand or ice, offering a cost-effective solution with limitless geometric
possibilities.

This array of formwork techniques offers a range of options tailored to specific project requirements.
In the context of construction of the cylindrical or toroidal reservoir, traditional formwork emerges as
the most practical choice. While flexible and recyclable formwork excel in projects with highly intricate
geometries, the motivation for this thesis revolves around determining if the torus and cylinder can be
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more easily constructed than the sphere. Consequently, opting for formwork that allows for complex
geometries would run contradict that motivation. Furthermore, the advantage of traditional formwork
lies in its ability to accommodate the construction of larger volumes of concrete, a crucial factor in this
project.

Formwork
type

Labour
cost

Material
cost

Speed of
construction

Geometry Surface
quality

Recycling
and reuse
of formwork

Wooden
formwork

High Medium Low Mostly for regular
shapes (specific set-
ting is required for
complex shape)

Medium Yes (limited
to shape)

Metal
formwork

Medium
(reduced
by reuses)

High Low Mostly for orthogo-
nal shapes

High Yes (limited
to similar
shapes)

Fabric
formwork

Medium
(reduced
by knitting)

Low High Flexible (defined by
support)

High Limited (pol-
luted after
casting)

CNC-
milled
Styro-
foam

Low Medium Medium Unlimited High (with
coating)

Yes (limited
to same
shape)

3D
printed
plastic

Low High Medium
(confined by
scale)

Non-standard
shapes are possible
(limited to scale)

Low (sur-
face may
be dam-
aged
during de-
moulding)

No

Mesh
mould

Medium Medium High Regular shapes Medium No

Sand
formwork

Low (with
3D print-
ing)

Very
low

Dependent
on fabrica-
tion method

Unlimited High (with
release
agents)

Yes

Ice form-
work

Low (with
CNC
milling)

Very
low

Dependent
on fabrica-
tion method

Unlimited High Yes

Table F.1: Comparison of various formwork systems [67]

F.2. Slip-forming
Slip-forming is a construction technique employed in the creation of continuous concrete structures,
where the material is continuously poured onto a moving formwork. This method proves particularly
valuable in crafting monolithic structures that are too extensive for traditional formwork. The application
of slip-forming varies based on the direction of slippage.

Vertically, slip-forming is commonly used for constructing the cores of high-rise structures or silos [68].
In this process, a formwork is lifted by hydraulic jacks, and as each layer of concrete is poured, the
formwork is incrementally raised along the climbing rod protruding from the concrete [69]. This ver-
tical slip-forming is suitable for the construction of relatively long, vertical structures, as illustrated in
Figure F.1.
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Figure F.1: Schematic diagram of a typical slip-form system [70]

Horizontal slip-forming, on the other hand, finds applications in structures without a span, such as
canal linings, concrete pipes, highway pavements, and tunnel inverts [71]. An innovative application
of horizontal slip-forming has been explored in the context of tunnel regeneration [48]. The technique
combines horizontal slip-forming with 3DCP to achieve precise shaping. In a full-scale test (shown
in Figure F.2), a tunnel lining with an inner radius of 2,25 meters and a thickness of 0,4 meters was
produced. The material possesses self-sustaining properties immediately after casting, enabling im-
mediate slip-forming. However, this necessitates the use of self-compacting, fast-setting concrete,
requiring careful planning to prevent premature setting in the mixer or pump.

Figure F.2: Novel horizontal slip-form technique for regenerating existing tunnel [48]

While vertical slip-forming holds potential for the construction of cylindrical reservoir components, its
application to toroidal elements is more intricate due to the eccentricity of the cross-section with respect
to the base. Overcoming this challenge might involve rotating the base, introducing complexities to the
process.

The creation of spans in horizontal slip-forming is an unexplored area. Although it has been demon-
strated as possible, uncertainties remain regarding the achievable wall thickness and length of spans.
Additionally, the curvature at the bottom of the cylinder or torus presents challenges. The absence of
a solid base raises questions about the suitability of horizontally slip-forming these structures.
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F.3. Jump-forming
Similar to slip-forming, jump-forming employs movable formwork for continuous construction. However,
the key distinction lies in the level of continuity. While slip-forming is a semi-continuous process, jump-
forming introduces a discontinuous element. Concrete is poured in distinct levels, and as it partially
strengthens, the jump-form ascends for the next level, introducing a joint between two jumps [72].

This construction technique offers a significant advantage over slip-forming, particularly for the con-
struction of extensive horizontal structures. A noteworthy example is the 2.4 km tunnel built by the
Austrian construction company DOKA in 2003 using horizontal jump-forming. The tunnel comprised
100 sections, each 24 meters in length, with a construction rate of approximately one section per week
[46, 47].

(a) Continuance of launching girder and construction of outer
formwork and reinforcement (b) Construction of inner formwork

(c) Concrete pouring (d) Overview

Figure F.3: Construction of Steinhaus tunnel [47]

The technique finds application in the ongoing construction of the Femern Belt tunnel, where tunnel
elements, each 217 meters long, consist of 9 segments, each approximately 24 meters in length
[73].

This horizontal jump-forming approach appears particularly suitable for the construction of a cylinder,
given its similarity to tunnel structures. However, its applicability to the construction of a torus is more
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nuanced. The curvature of the launching girder may pose challenges, and the rotational capacity might
limit the ability to achieve a small radius of curvature for the cross-section. Consequently, this method
may be better suited for torus designs with a significant major radius.

F.4. Shotcrete
Shotcrete is a cement-based mixture pneumatically projected at high velocity onto a receiving surface.
The process involves pumping the mixture through a hose to a nozzle, from where it is sprayed onto
the target surface. This technique is commonly employed in concrete repair, especially in areas where
access to the working space is challenging, and the use of formwork for traditional casting is impractical
[74], as illustrated in Figure F.4.

Two main shotcrete techniques exist: dry-mix and wet-mix. In the dry-mix method, cement and ag-
gregate are mixed in a hopper, pressurized, and introduced into a high-velocity air stream, conveyed
through hoses to the spraying nozzle. Water is added at the nozzle to hydrate the cement. In the wet-
mix shotcrete, water is added to the mixture before reaching the nozzle, and compressed air propels
the concrete onto the receiving surface. Generally, the wet-mix process produces less dust, waste,
and rebound [74].

Shotcrete application reduces the need for formwork construction, as only a receiving surface in the
desired shape needs to be prepared. This stands in contrast to conventional casting, which requires
double-sided formwork to create an enclosing space. Additionally, shotcrete is self-compacting, elimi-
nating the need for vibration at the construction site, leading to cost savings and reduced construction
disturbance [75].

Figure F.4: Shotcrete application in the repair of a concrete face [75]

Shotcrete is typically applied in layers with a thickness of up to 150mm [74]. Achieving greater thickness
involves adding multiple layers, but the time lag between applying two layers must be short to prevent
issues such as preloading due to shrinkage in the present layer while the newly added layer is stress-
free [76]. Moreover, shotcrete layer thickness can vary significantly, with deviations of more than 50%
being common, influenced by the skill level of the shotcrete operator [77].

In the context of this project, shotcrete may not be a cost-effective solution. Despite the time saved
by using single-sided formwork, concerns arise due to the required wall thickness. The necessity of
applying multiple layers increases the likelihood of achieving low uniformity in the final wall thickness.
Additionally, the time-sensitive nature of adding layers for proper bonding may pose challenges.
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F.5. 3D Concrete Printing
Three-dimensional concrete printing (3DCP) involves the layer-by-layer deposition of continuous con-
crete filament. Cement, mixed with water, is pumped into a hose by a mixer-pump. The hose is
connected to the printer head at the end of a motion-controlled robot’s vertical arm. Under pump pres-
sure, the concrete is directed toward the printer head, allowing precise printing at the desired location,
speed, and angle [78]. Typical 3DCP production parameters include a layer thickness of 20 mm, layer
width of 100 mm, and a print rate ranging from 5-8 L/min [29].

The primary advantage of 3DCP lies in its ability to achieve complex geometries, thanks to the maneu-
verability of the printer head, enabling the creation of intricate curvatures and shapes. However, the
stacking of layers is constrained by an overhang angle (see Figure F.5), typically limited to 45°[51].

Figure F.5: Maximum overhang angle (β) [79]

The nozzle-based application limits the use of coarse aggregates in the concrete mixture. While some
research groups and companies make progress in developing printable concrete with coarse aggre-
gates, 3DCP mixtures generally remain in the scale of mortar [80]. Consequently, 3DCP mixtures of-
ten contain more cement, leading to increased CO2 emissions when compared to conventional casted
mixtures.

In the envisioned construction of the cylinder or torus, two approaches are possible with 3DCP. One
involves constructing the entire structure using 3DCP, while the other entails printing the formwork
followed by pouring concrete. The former is impractical due to the substantial volume of concrete
required, leading to extended construction times. The latter approach, printing the formwork, is more
feasible as it involves printing lower volumes of concrete. However, the necessity of complex formwork
construction raises questions, as the primary goal of choosing the cylinder and torus shapes for the
reservoir was to simplify construction methods.
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Relevant construction locations

This appendix provides essential background information on potential construction locations, offering
valuable insights for the design process. It explores various features and characteristics of construction
locations to aid in the decision-making process.

G.1. Land-based factory
In the context of this research, with a factory is meant a land-based concrete production facility, where
concrete structures or elements are produced. Such a place includes a concrete batching plant, where
the concrete itself is produced. The construction of concrete structures can be performed inside a
factory hall or in a tent, which ensures a controlled environment.

Considering the ambitious scale of the MPHES project, the construction of a dedicated concrete factory
tailored for MPHES system assembly is a viable option. Concrete batching plants, integral to such
facilities, can be established worldwide, leveraging the widespread availability of concrete ingredients—
sand, aggregate, cement, and water.

Even if construction is not executed on land, a concrete batching plant remains essential to supply
concrete. These plants often boast production capacities of up to 200 m3 per hour [81]. For projects
requiring higher production rates, multiple plants can be combined, as exemplified by the construction
of the Shanghai Tower, which achieved a total capacity of 1250 m3 per hour [41].

G.2. Dry dock
A dry dock is a basin or vessel engineered to facilitate the floating, emptying, and subsequent flooding
of a ship or load for maintenance or transportation purposes. Dry docks exist in two forms: land-based
dry docks (graving docks) and floating dry docks. In land-based docks, ships navigate to the dry dock,
while in floating dry docks, the reverse is true. Notably, floating dry docks generally incur higher rental
costs than their land-based counterparts. They often allow for a greater draught of ships [82].

Traditionally crafted for ship construction and maintenance, certain instances showcase the intentional
construction of dry docks for concrete structure production. For example, bouwdok Barendrecht, es-
tablished in 1966, was purpose-built for the production of tunnel elements. The dock boasts a depth of
10 meters and spans an area of 10 hectares [83].

Dry dock depths are typically customized to suit the draught requirements of the ships they serve. Since
vessels usually enter dry docks without cargo, excessive depth is often considered unnecessary. The
depth of dry docks is a critical factor, as highlighted in Table G.1, which compiles some of the world’s
significant dry docks organized by depth. While this table does not encompass all the world’s deepest
dry docks, it does provide a country-wise list of the deepest docks. The intention is to underscore
that dry docks with substantial depth are found in numerous countries. Notably, Southeast Asia hosts
the majority of the world’s deepest dry docks, but those with a depth of at least 12 meters are dis-
tributed across all continents [82]. Dry docks with depths below 12 meters are more widely available
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worldwide.

Name of shipyard Country City Dimensions [m] Reference
(L x W x D)

Daewoo-Mangalia Heavy Industries Romania Mangalia 320 x 48 x 18 [84]
Soreni France Le Havre 319 x 38 x 17,5 [85]
Sungdong Shipbuilding & Marine Engineering South Korea Tongyeong 545 x 126 x 16 [86]
Sasebo Heavy Industries Japan Sasebo 400 x 57 x 15,6 [87]
Cosco Shipyard Group China Zhoushan 410 x 68 x 14,3 [82]
PT Pal Indonesia Indonesia Soerabaja 250 x 26 x 14 [88]
Malaysia Marine & Heavy Engineering Malaysia Johor 385 x 80 x 14 [89]
CSBC Corporation Taiwan Kaohsiung 950 x 92 x 14 [82]
National Ports Authority of South Africa South Africa Cape Town 370 x 45,1 x 13,7 [90]
Thales Australia Australia Sydney 346 x 41,6 x 13 [82]
Aker Philadelphia Shipyards USA Philadelphia 333 x 45,7 x 12,2 [82]

Table G.1: List of the worlds largest land-based dry docks

G.3. Fjord
A fjord is a distinctive geographical feature—a long, narrow, and deep inlet of the sea, typically bor-
dered by steep cliffs or mountains. Fjords exhibit considerable water depth, ranging from 100 to 500
meters [91], with some exceeding 1000 meters [92]. This substantial depth facilitates the construction
of structures with significant draughts. Additionally, fjords often offer calm water conditions, providing
a reasonable environment for smooth construction processes [93].

Fjords are commonly found along the coasts of Norway, Iceland, and Canada. While the majority is
situated in the northern hemisphere, fjords are also present in the southern hemisphere, particularly
near the poles, as they are formed by glacial erosion [94]. Figure G.1 presents a global map showcasing
the distribution of fjords.

Figure G.1: Map of fjords [94]

A notable example of an extraordinary construction project in a fjord is the Troll A platform. This 369-
meter-tall concrete structure, with a draught of 303 meters, was constructed in a Norwegian fjord [93].
Subsequently, the platform was towed to its final location, as illustrated in Figure G.2. Upon reaching
the destination, the legs were gradually flooded, allowing the structure to descend to the seabed.
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Figure G.2: Towing of Troll A platform to its final location [93]

G.4. Open sea
In this context, open sea construction refers to the assembly of structural elements directly in the open
sea, where the entire process takes place afloat. This involves utilizing offshore construction vessels
to carry out various construction operations, including stabilization and making the element connec-
tions.

Complete construction directly in the open sea is considered impractical due to the challenges associ-
ated with concrete pouring, which would either have to be done in the water, leading to difficulties in
maintaining the desired shape, or in a dry environment at open sea. Construction in a dry environment
at open sea is essentially akin to construction in a floating dry dock, which incurs higher rental costs
without offering significant advantages over land-based dry docks.

Similar to construction in a fjord, open sea construction allows for a significantly deep draught of the
structure. However, unlike operations in the calm waters of a fjord, construction and installation in
the open sea pose greater challenges. At the intended installation depth of the MPHES system, ad-
verse weather conditions are anticipated. The presence of waves can considerably disrupt the smooth
execution of any operation in open sea conditions.

Connecting structural elements in open sea requires stable conditions to prevent excessive movement
during execution. This intricate task involves the use of specialized vessels that come with high rental
costs. While open sea construction allows for a significantly deeper draught, the additional costs and
complexities associated with element connection make it an impractical and less favorable construc-
tion method. As a result, the challenges outweigh the benefits, leading to the exclusion of open sea
construction as a suitable approach for the MPHES system.
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Concrete connection methods

In this Appendix an overview is presented of various concrete connection methods.

Dry joints
Dry joints, utilized in different types of superstructures such as pretensioned segmental concrete bridges
and composite bridges without prestressing tendons, involve no additional material. In this joint, two
concrete elements are slid into each other, capable of transferring shear forces but lacking watertight-
ness [95].

Rubber joints
Specializing in watertight seals between concrete elements, Trelleborg, a Swedish company, has de-
veloped rubber products for this purpose. Notably, their products, like Gina gaskets and omega seals,
were used in the construction of the Hong Kong-Macau tunnel, a project with a depth of 44 meters [52,
96].

Figure H.1: Compression seal [55]

The compression seal, depicted in Figure H.1, comprises a concrete protrusion running along the entire
cross-section and a corresponding recessed groove on the connecting cross-section. Positioned be-

165



166

tween them is a rubber band, serving to establish a watertight connection. To achieve watertightness,
the contact pressure must exceed 250

σcontact > 2.5phydraulic

Considering a water depth of 1000 meters, resulting in a hydraulic pressure of 10 MPa, a contact
pressure of 25 MPa is required. Rubber can accommodate such contact pressures, but to meet these
requirements, a high shore compound rubber becomes imperative. Notably, it is important to recognize
that contact pressure decreases over time due to relaxation, underscoring the necessity for an initially
higher contact pressure [55].

Given the intended installation depth of MPHES, a compression seal emerges as the sole viable rubber
connection ensuring watertightness. At such depths, the hydraulic load cannot be adequately resisted
by alternatives like an omega seal [55].

Wet joints
Wet joints involve pouring concrete at the interface between two elements, usually with reinforcement
protruding from both elements. Fresh concrete seals off the exposed reinforcement, creating two cold
joints—one on each side of the poured concrete. A visual representation of a wet joint is shown in
Figure H.2 [95].

Figure H.2: Wet joint [95]

Cold joints
A cold joint is a planned and necessary temporary cessation of a concrete pour in a concrete structure. A
cold joint occurs when a concrete pour is interrupted, both horizontally and vertically, and fresh concrete
mix is poured against the hardened concrete. It is no longer possible for the freshly compacted concrete
mix to blend with the previously poured mix [54]. Unlike other joint types, cold joints create a new
element directly adjacent to the existing one.

Methods like reinforcement couplers and continuity strips are employed to continue reinforcement
through a cold joint, as displayed in Figure H.3. For better bonding, rough surfaces on concrete el-
ements are achieved through methods such as pressure washing.

(a) Reinforcement coupler [97] (b) Continuity strip

Figure H.3: Reinforcement continuities for cold joints [98]
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In instances where watertightness is a prerequisite, additional measures, such as the incorporation of
joint bands illustrated in Figure H.4a, can be implemented. Within tunnel construction, the application
of waterstops, allowing for deformation, is common practice at the junction of two connecting elements.
These products effectively extend the leakage path of water along the connection. For instance, the
W9U profile showcased in Figure H.4b has proven successful at depths of up to 50 meters. However,
the suitability of these profiles in deeper depths remains uncertain. It’s noteworthy that the most suscep-
tible point in the watertight connection is the bond between concrete and the profile, which comprises
steel and rubber components [55].

(a)Water band [54] (b) Trelleborg waterstop W9U [99]

Figure H.4: Water leekage prevention measures
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Diana models

This Appendix offers in-depth insights into the numerical models developed in Diana FEA. In the main
report, the focus is often on presenting results to maintain clarity, while a more detailed model descrip-
tion is provided here.

I.1. Verification of uniform stress assumption
This Section presents the details of the models as presented in Section 6.2.3. A reproduction of Ta-
ble 6.4 is provided below:

Model parameter Sphere Cylinder

Internal volume V [m3] 9000 9000
Internal radius a [m] 12, 9 4, 92
Wall thickness t [m] 1, 86 1, 65
Distributed normal force [MPa] 10, 06 10, 06
Young’s Modulus [MPa] 39100 39100

Model dimension 3D 2D
Number of symmetry axes 3 2

Model fraction 1

8

1

4
Element type Structural solids Plane stress

CHX60 & CPY39 CQ16M & CT12M
CTE30 &CTP45

Element size [mm] 155 50
Number of elements 30.169 1.452
Number of nodes 108.358 4.547
Number of dofs 325.074 9.094
Number of elements over wall thickness 6 17
Element thickness [mm] n.a. 1000
Type of analysis Linear Elastic Linear Elastic

Table I.1: Diana FEA model parameters for verification of uniform stress assumption

I.1.1. Sphere model
The model is illustrated in Figure I.1. It is symmetric in the global X-, Y- and Z-axis. The elements of
which the output is used in Figure 6.29, are highlighted in Figure I.2. The choice for these elements
was arbitrary, as all elements that form a line through the wall thickness give the same results.
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Figure I.1: Octant sphere 3D model

Figure I.2: Octant sphere mesh



I.1. Verification of uniform stress assumption 170

Figure I.3: Octant sphere global deformation

Figure I.4: Octant sphere principal stresses
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Figure I.5: Octant sphere principal stresses; range −38 to −48 MPa

Figure I.6: Octant sphere principal stresses; zoomed in
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I.1.2. Cylinder model
The model is illustrated in Figure I.7. It is symmetric in the global X- and Y-axis. The elements of which
the output is used in Figure 6.29, are highlighted in Figure I.8. The choice for these elements was
arbitrary, as all elements that form a line through the wall thickness give the same results.

Figure I.7: Quarter cylinder 2D model

Figure I.8: Quarter cylinder mesh
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Figure I.9: Quarter cylinder global deformation

Figure I.10: Quarter cylinder principal stresses
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Figure I.11: Quarter cylinder principal stresses; range −30 to −50 MPa

Figure I.12: Quarter cylinder principal stresses; zoomed in
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I.2. Reduced models of cylindrical design
In this Section, the rationale behind the reduction of the models used in Section 6.1 is elucidated. It is
crucial to note that the primary goal of these models is to capture the impact of the cap design on the
internal stresses in the structure. Modeling only a portion of the actual structure leads to a reduction
in the number of elements, allowing for a finer mesh and, consequently, more accurate results. The
reduction of the cylinder model occurs in two steps: first, the length of the cylinder tube is decreased,
and then an axisymmetric slice is modeled to represent the full cross-section.

I.2.1. Validation of reduction of cylinder tube length
Consider a cylindrical tube subjected to a constant distributed normal force. As explained in Section 6.2,
such a tube has tangential and radial stresses that can be determined analytically. Now, envision the
same tube, equipped with a flat cap on both ends, and still subjected to the same constant distributed
normal force. The presence of the cap induces a disturbance in the internal stresses in the tube, referred
to as an edge disturbance. The distance over which this edge disturbance has an effect is termed the
influence length. For a cylinder, this length can be estimated using the formula provided in Equation
I.1 [36]. In this equation, a represents the internal radius of the cylinder, and t is its thickness.

li,cylinder ≈ 2, 4
√
at (I.1)

To assess the impact of the edge disturbance on the stresses in the cross-section, three models are
examined. All models represent an octant of the cylinder, demonstrating symmetry along three axes.
The foundation is disregarded, rendering this model a free-floating cylinder situated at a depth of 1000
meters. To mimic the hydrostatic load, a constant distributed normal force is applied, neglecting the
gradient of the hydrostatic pressure. The first model features a modeled tube length equal to half of the
internal length of the cylinder. The second model has a modeled tube length twice its influence length,
and the third model has a modeled tube length of a single influence length. This analysis is conducted
for both the flat cap design and the base hemispherical cap design. The graphical representations of
the models are shown in Figures I.13 and I.14. Further details regarding the models are provided in
Table I.2.

By definition, the influence of the edge disturbance on the internal stresses in the cylinder tube should
become negligible after a single influence length. Conversely, a tube truncated at the influence length,
with a constrained displacement perpendicular to the face of the cross-section of the truncation, should
have no significant impact on the behavior in the edge disturbance. Therefore, such a reduced-length
model can be employed to accurately capture the behavior of the structure in the edge disturbance.

To validate this hypothesis, the longitudinal, tangential, and radial stresses in the truncated cross-
section are examined. These correspond to σxx, σyy, and σzz in the highlighted nodes, as indicated
in Figures I.15 and I.16. The results of the linear elastic analyses in the edge nodes were plotted
and compared with analytical solutions. The analytical solutions for σθθ and σrr were derived using
Equations 6.10 and 6.11 presented in Section 6.2. The analytical solution for the longitudinal stress is
defined as follows, assuming uniform stress over the wall thickness. It is essential to note that this is
an approximation and not an exact solution.

σLL =
(a+ t)

2
p

(a+ t)
2 − a2

(I.2)

As the 1
8 th models exhibit complete identity with the full models, no loss of accuracy occurs through this

reduction. Consequently, the longitudinal, tangential, and radial stresses in these models, indicated by
blue triangular markers in Figure I.17, are considered true representations. A valid truncation of the tube
can be confirmed when the values of σLL, σθθ, and σrr in the reduced-length models are approximately
equal to those in the 1

8 th models. In such instances, the tube truncation is deemed valid, implying no
impact on the structure’s behavior in the edge disturbance.

The results of both analytical and numerical analyses are presented in Figure I.17. The analytical
values are added as an extra verification.
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For the model with a flat cap, the numerically determined stresses in the cross-section closely align
with the analytical description and the 1

8 th model, when the modeled tube length is equal to twice
the influence length. However, when the modeled tube length is reduced to a single influence length,
the longitudinal and tangential stresses become inaccurate, as depicted in Subfigures I.17a and I.17c.
Therefore, the flat cap model can only be accurately reduced in length to twice the influence length to
capture the behavior of the structure at the edge disturbance.

The hemispherical cap model closely follows the analytical stress description and the 1
8 th model in all

directions across both modeled reduced tube lengths. Consequently, accurately capturing the struc-
ture’s behavior at the edge disturbance for the hemispherical cap model is feasible with a modelled
tube length reduced to a single influence length.

Cap design Flat Hemisphere

Internal volume V [m3] 9000 9000
Internal radius a [m] 4, 92 4, 84
Wall thickness t [m] 1, 65 1, 62
Cap thickness tcap [m] 3, 30 0, 81
Tube length [m] 118, 1 116, 2
External length [m] 124, 68 127, 46
Influence length [m] 6, 84 6, 72
Distributed force [MPa] 10, 06 10, 06
Young’s Modulus [MPa] 39100 39100
Poissons ratio 0, 2 0, 2

Element type
Structural solids Structural solids
CHX60 & CPY39 CHX60 & CPY39
CTE30 &CTP45 CTE30 &CTP45

Element size [mm] 800 & 200 800 & 200
Number of elements over wall thickness 2 & 8 2 & 8

Model fraction 1

8

1

8
Model dimension 3D 3D
Type of analysis Linear Elastic Linear Elastic

Modelled length [m] 59, 04 58, 08
Number of elements 7.565 7.981
Number of nodes 32.333 31.151
Number of dofs 96.999 96.453

Modelled length [m] 13, 68 13, 44
Number of elements 11.948 11.035
Number of nodes 48.541 42.624
Number of dofs 145.623 127.872

Modelled length [m] 6, 84 6, 72
Number of elements 7.576 8.419
Number of nodes 30.518 35.212
Number of dofs 91.554 105.636

Table I.2: Cylinder flat cap and hemisphere model parameters
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(a) Lmodelled = 1
2Ltube

(b) Lmodelled = 2Linfluence (c) Lmodelled = Linfluence

Figure I.13: Length-reduced flat cap models for analyzing influence length

(a) Lmodelled = 1
2Ltube

(b) Lmodelled = 2Linfluence (c) Lmodelled = Linfluence

Figure I.14: Length-reduced hemisphere cap models for analyzing influence length
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(a) Lmodelled = 1
2Ltube

(b) Lmodelled = 2Linfluence (c) Lmodelled = Linfluence

Figure I.15: Meshes of length-reduced flat cap models with nodes used for data collection highlighted

(a) Lmodelled = 1
2Ltube

(b) Lmodelled = 2Linfluence (c) Lmodelled = Linfluence

Figure I.16: Meshes of length-reduced hemisphere cap models with nodes used for data collection highlighted
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(a) Longitudinal stress for flat cap models (b) Longitudinal stress for hemispherical cap models

(c) Tangential stress for flat cap models (d) Tangential stress for hemispherical cap models

(e) Radial stress for flat cap models (f) Radial stress for hemispherical cap models

Figure I.17: Stresses in the cross-section of length-reduced flat and hemispherical cap models
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I.2.2. Validation of axisymmetrical reduction
Given the complete axisymmetry of the cylinder, its structural behavior can be effectively represented
by a slice of the cross-section. To further minimize the model’s size, a slice of the cross-section is
implemented in a 3D solid model. The slice is defined as the fraction of the structure that is in between
the ZX-axis and a 5.71°rotated plane of which the tangent is equal to 1

10 . This results in a slice which is
approximately 1

64 th of the original cross-section.
1 Alongside the imposed symmetry in the YZ-plane and

the reduced length, this model is more than 128 times smaller than the full model. A visual depiction
of the cross-section is presented in Figure I.18.

To validate whether the sliced model accurately represents the full model, similar checks to those de-
scribed in Appendix I.2.1 are performed. The models outlined in Table I.3 and Figures I.19 and I.20
are established for this purpose. Comparable to the verification of the length reductions, the stresses
in the cylinder’s tube are assessed and compared to the 1

8 th model. This verification is exclusively con-
ducted for the hemispherical cap model, as the flat cap model has not undergone an equally intensive
examination.

Modelled length of tube 2Linf Linf

Value [m] 13, 44 6, 72

Element type
Structural solids Structural solids
CHX60 & CPY39 CHX60 & CPY39
CTE30 &CTP45 CTE30 &CTP45

Element size [mm] 200 & 80 200 & 80
Number of elements over wall thickness 4, 8, 10 & 20 4, 8, 10 & 20

Model fraction <
1

128
<

1

128
Model dimension 3D 3D
Type of analysis Linear Elastic Linear Elastic
Number of elements 12.616 11.912
Number of nodes 52.856 48.867
Number of dofs 158.568 146.601

Table I.3: Cylinder hemisphere cap 1
64

th slice model parameters

The slice model is subjected to constrained deformations perpendicular to the ZX-plane and the slightly
tilted ZX-plane, as illustrated in Figure I.18 and Subfigures I.19a and I.20a. A challenge arises at the
edge with the lowest Z-coordinate of the slice, where the planes intersect. In this location, the nodes,
when subject to constraints from both planes, possess degrees of freedom that are not orthogonal.
Diana FEA lacks a solution for this fundamental problem. To address this issue, a section with a height
of 10 mm is introduced. This section is solely constrained on the face on the negative side of the
XZ-plane. The unconstrained face on the positive side of the XZ-plane may induce a singularity in the
solution. It is essential to investigate whether this singularity has any impact on the results.

The slice model permits a highly refined mesh, incorporating up to 20 elements across the wall thick-
ness, as shown in Figure I.21. The highlighted elements are utilized for data collection on the stresses
in the cylinder tube. In this region, σxx, σyy, and σzz correspond to σLL, σθθ, and σrr, respectively.
This data was utilized to generate the plots in Figure I.22. The slice models closely replicate the 1

8 th
model, with the model featuring double the influence length exhibiting slightly better performance. Con-
sequently, this model is employed to verify the behavior in the transition zone of various hemispherical
cap design variations.

As depicted in Figure I.23, the principal stresses in the singularity of the cylinder slice, as explained in
Figure I.18, rapidly revert to non-extreme values. The impact of the singularity on the rest of the model
is negligible.

1While an axisymmetric model would have been more elegant, this realization occurred late in the process, leaving insufficient
time for its implementation.
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Figure I.18: Incompatible support conditions in edge of sliced model

(a) Front view

(b) Overview

(c) Top view

Figure I.19: 1
64
th slice of hemisphere model with Ltube = Linfluence
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(a) Front view

(b) Overview

(c) Top view

Figure I.20: 1
64
th slice of hemisphere model with Ltube = 2Linfluence

(a) Ltube = Linfluence (b) Ltube = Linfluence

Figure I.21: Slice model mesh



I.2. Reduced models of cylindrical design 183

(a) Longitudinal stress for flat cap models (b) Tangential stress for slice models

(c) Radial stress for slice models

Figure I.22: Stresses in the cross-section of slice models
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Figure I.23: Principal stresses at the singularity of the slice
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I.3. Edge disturbance models
The model, as detailed and validated in Appendix I.2.2, is reoriented back to the XZ-plane. This ad-
justment aligns the centerline of the slice with the XZ-plane, resulting in a cross-section for the cylinder
slice identical to that depicted in Figure I.24. Due to the inherent axisymmetry, this rotation does not
impact the model’s behavior, although this aspect is not further discussed.

(a) Full section (b) Zoomed in

Figure I.24: Schematic representation of cross-section used for edge-disturbance

I.3.1. Validation of edge disturbance with thin shell
The bending moment induced by the edge disturbance can be calculated analytically using Equations
6.1 and 6.2. For clarity, these equations are reproduced below. However, it is important to note that
these equations are specifically designed for thin shells. Given that the cylinder and hemispherical cap
in this context are characterized as thick to very thick shells, as explained in Section 6.1, the results
obtained from numerical analysis concerning edge disturbance cannot be validated. Consequently, the
validation is conducted using a thin shell, while the rest of the model remains consistent.

mxx =
pl2i
8π2

sin πxc

li
exp −πxc

li

mϕϕ =
pl2i
8π2

sin πxs

li
exp −πxs

li

The validation process involves two models, each with parameters listed in Table I.4. A composed
line is introduced, positioned in the mid-surface. Given that the composed line is 1D, it considers all
nodes concerning a straight surface, although the actual surface is curved. This concept is illustrated
in Figure I.24b. An assessment is conducted to determine the significance of this simplification.

To ensure accurate results with the composed line, it is crucial that the mesh elements around it share
the same x-coordinate. Any deviation in the x-coordinate can disrupt the summation process of node
contributions to the bending moment. Consequently, considerable effort is invested in creating a mesh
where all elements around the composed line are solid cubes, consistently distributed over the x-axis.
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The mesh is finer at the transition zone between the cylinder and the hemisphere. Visual representa-
tions of the models are presented in Figure I.25, while the mesh details are observed in Figure I.26.
These figures represent screenshots of the 1:20 model, and since the 1:40 model is identical in appear-
ance with a narrower cross-section, its screenshots are omitted.

The composed line consists of two sections: a straight section in the cylinder edge and a curved section
in the hemisphere. In the model’s coordinate system, the moments around the Y-axis represent mxx

and mϕϕ in the equations for edge-disturbance-induced moments. The output of the composed line is
in Nm, while analytically, a moment per unit length [Nm/m] is calculated. To compare the two, the model
outputs are divided by the width of the slice at the location of the node on the composed line.

In the cylinder tube, this width is equal to a+t/2
10 , as indicated in Figure I.24b. In the hemisphere, the

width gradually decreases towards the singularity of the arc. As the z-coordinate of the mid-surface
decreases from a to 0 over the cylinder edge to the end of the hemisphere, the width of the slice in the
hemisphere is calculated as follows:

widthslice,mid-surface =
a+ t

2

10

z

a
for 0 < z < a

In the 1:40 model, the denominator for calculating the width of the slice at the mid-surface is 20 instead
of 10.

The results of the models are shown in Figure I.27. Two notable observations are made. Firstly, the
models appear to align with the shape of the analytical solution, as depicted in Figure 6.3. However,
there is considerable noise, resulting in local peaks. Additionally, the unexpected negative bending
moment in the hemisphere in the 1:40 model is noteworthy. Secondly, the moments in the 1:20 model
are generally higher than in the 1:40 model, which aligns with expectations given the narrower width
of the 1:40 model. It is important to note that the results in Figure I.27 are not adjusted for the width of
the slice at the mid-surface.

The modified values have been visualized using Python, as depicted in Figure I.28. In the upper figure,
inconsistent data, such as spikes, has been cleaned up, while in the lower figure, it is still included.
Despite the noise, the model closely corresponds to the analytically determined moments, particularly
within a distance of two influence lengths from the edge. Hence, it is deemed an accurate representation
of the full model.



I.3. Edge disturbance models 187

Inclination angel 1:20 1:40

Internal radius a [m] 5 5
Wall thickness t [m] 0, 05 0, 05
Tube length [m] 20 20
Influence length [m] 1, 21 1, 21
Distributed force [MPa] 10, 06 10, 06
Young’s Modulus [MPa] 39.100 39.100
Poissons ratio 0, 2 0, 2

Element type
Structural solids Structural solids
CHX60 & CPY39 CHX60 & CPY39
CTE30 &CTP45 CTE30 &CTP45

Edge divisions 100 & 200 100 & 200
Number of elements over wall thickness 4 4
Model dimension 3D 3D
Type of analysis Linear Elastic Linear Elastic

Composed line
Element type CL3CM CL3CM
Element length [mm] 40 40

Number of elements 8.443 5.287
Number of nodes 40.214 25.384
Number of dofs 120.642 76.152

Table I.4: Thin shell model parameters

(a) Front view

(b) Overview

(c) Front view zoomed in; red dot is composed line

Figure I.25: Thin shell model for validation
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(a) Front view; slightly rotated

(b) Cylinder-hemisphere connection

(c) Top view, slightly rotated; red line is composed line

Figure I.26: Mesh of thin shell model for validation

(a) Composed line output for 1:20 model

(b) Composed line output for 1:40 model

Figure I.27: Output of thin shell model for validation
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(a) Composed line output, adjusted for slice width; cleaned data

(b) Composed line output, adjusted for slice width; including noise data

Figure I.28: Output of thin shell model for validation, adjusted for slice width

I.3.2. Models with various hemisphere thicknesses
This Section outlines the specifications of the models employed to investigate the impact of hemisphere
thickness on the moment induced by the edge disturbance, as discussed in Section 6.1.3. The proper-
ties of the models are listed in Table I.5.
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Hemisphere
thickness fraction

1 0,6 0,5 0,4

Internal radius a
[m]

4,84 4,84 4,84 4,84

Wall thickness t
[m]

1,62 1,62 1,62 1,62

Tube length [m] 13,44 13,44 13,44 13,44
Wall thickness t
[m]

1,62 0,972 0,81 0,648

Distributed force
[MPa]

10,06 10,06 10,06 10,06

Young’s Modulus
[MPa]

39.100 39.100 39.100 39.100

Poisson’s ratio 0,2 0,2 0,2 0,2

Element type
Structural solids Structural solids Structural solids Structural solids
CHX60 & CPY39 CHX60 & CPY39 CHX60 & CPY39 CHX60 & CPY39
CTE30 & CTP45 CTE30 & CTP45 CTE30 & CTP45 CTE30 & CTP45

Edge divisions 100 100 100 100
Number of ele-
ments over wall
thickness

4 4 & 6 2 & 4 2 & 4

Model dimension 3D 3D 3D 3D
Type of analysis Linear Elastic Linear Elastic Linear Elastic Linear Elastic

Composed line
Element type CL3CM CL3CM CL3CM CL3CM
Element length
[mm]

27 27 27 27

Number of ele-
ments

3.819 3.013 4.624 5.287

Number of nodes 18.410 14.728 20.785 25.384
Number of dofs 55.230 44.184 62.355 76.152

Table I.5: Moments caused by edge disturbance model parameters
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(a) Overview

(b) Mesh

Figure I.29: Hemisphere thickness model; th = tc
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(a) Overview

(b) Mesh

Figure I.30: Hemisphere thickness model; th = 0, 6tc
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(a) Overview

(b) Mesh

Figure I.31: Hemisphere thickness model; th = 0, 5tc
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(a) Overview

(b) Mesh

Figure I.32: Hemisphere thickness model; th = 0, 4tc



I.3. Edge disturbance models 195

I.3.3. Models for redistribution of stress concentration at cylinder-hemisphere
transition

This section delineates the specifications of the models utilized in Section 6.1.4 to explore the impact of
the transition design between the cylinder and hemisphere on stress concentrations within the transition
zone. The parameters of the models are detailed in Table I.6, while an overview of the models and their
meshes is presented in Figures I.33, I.34 and I.35 below.

Transition Abrupt Triangular Circular

Internal radius a [m] 4, 84 4, 84 4, 84
Wall thickness t [m] 1, 62 1, 62 1, 62
Tube length [m] 13, 44 13, 44 13, 44
Hemisphere thickness [m] 0, 81 0, 81 0, 81
Distributed force [MPa] 10, 06 10, 06 10, 06
Young’s Modulus [MPa] 39.100 39.100 39.100
Poissons ratio 0, 2 0, 2 0, 2

Element type
Structural solids Structural solids Structural solids
CHX60 & CPY39 CHX60 & CPY39 CHX60 & CPY39
CTE30 &CTP45 CTE30 &CTP45 CTE30 &CTP45

Element size [mm] 50 & 200 & 400 20 & 80 & 400 400 & 200 & 80
Number of elements over wall thickness 4 & 12 & 16 2 & 4 & 20 4 & 20
Model dimension 3D 3D 3D
Type of analysis Linear Elastic Linear Elastic Linear Elastic

Number of elements 12.072 15.955 6.378
Number of nodes 53.186 52.421 25.081
Number of dofs 159.558 157.263 75.243

Table I.6: Cylinder-hemisphere transition model parameters
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(a) Overview

(b) Mesh

Figure I.33: Abrupt transition model; th = 0, 5tc
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(a) Overview

(b) Mesh

Figure I.34: Triangular transition model; th = 0, 5tc
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(a) Overview

(b) Mesh

Figure I.35: Circular transition model; th = 0, 5tc
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