
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Optimal Multiple
Importance
Resampling
Optimal Spatial Reuse for Monte Carlo Light
Transport Simulation

William Narchi

Optimal Multiple
Importance
Resampling

Optimal Spatial Reuse for Monte Carlo Light
Transport Simulation

by

William Narchi

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday July 5, 2024 at 10:00 AM.

Student number: 5046122
Project duration: December 4, 2023 – July 5, 2024
Thesis committee: Prof. dr. ir. E. Eisemann, TU Delft, Thesis Advisor

Prof. dr. ir. G. Migut, TU Delft
Ir. M. Molenaar, TU Delft, Daily Co-Supervisor

Cover: Recreation of the Veach multiple importance sampling test scene
by Yining Karl Li

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Ray tracing has experienced increasing adoption in various spaces of computer graphics. The ReSTIR
(Reservoir-based Spatiotemporal Importance Resampling) family of techniques has enabled sev-
eral orders of magnitude speedups in light transport simulation algorithms which rely on ray tracing [3,
26, 24, 25].

We introduce an extension to WRS (Weighted Reservoir Sampling) [5, 10], a key component of Re-
STIR, to reduce the occurrence of duplicate samples in multi-sample reservoirs. Further, we show how
samples from multiple reservoirs can be combined in an MIS-style estimator as opposed to resampling
from them. Lastly, we combine these two components to compute optimal weights for this estimator in
a similar vein to OMIS (Optimal Multiple Importance Sampling) [22].

Our direct lighting proof of concept implementation demonstrates the efficacy of our WRS extension,
lowering the variance of ReSTIR, particularly with difficult lighting arrangements. Further, our MIS-
style estimator shows a significant improvement compared to ReSTIR. In problem domains where
resampling produces a function value for integration, such as path tracing, this comes at no additional
cost. Lastly however, optimal weights do not appear to be beneficial for our approach.

i

Preface

To say that working on this thesis was a challenge would be an understatement. The process of conduct-
ing the background research necessary to understand the fundamentals was arduous, yet immensely
enjoyable. The inventiveness required to produce a piece of scientific work was significantly more chal-
lenging. One feels like an intellectual pendulum, swinging between the polarizing extremes of invigorat-
ing brainstorming and despair-inducing trances wherein one stares at the same paper, dumbfounded,
for days on end. As tumultuous as the experience has been at times, it has also been immensely edu-
cational. I am more knowledgeable about not just computer graphics, but my own natural proclivities.

The first of several rounds of thanks goes tomy supervisors: Professor Elmar Eisemann and (soon to be
Dr.) Mathijs Molenaar. Mathijs I would like to especially thank for being responsive and offering practical
advice in areas where I needed it most. To Elmar, I would like to express my sincere gratitude for your
heartwarming support and faith in my abilities. From giving me an impromptu motivational speech when
I lost faith in my original topic to the brainstorming discussions and off-topic conversations we had, your
assurance has been a large part of the fuel behind my fire. When teaching students about perspective
transformations and shadowmaps, remember that any one of themmight be much like myself: capable,
passionate, but lacking in assurance and support. You and colleagues in the Computer Graphics and
Visualisation group can be the support they need to achieve greatness; you need only listen to their
grievances and extend the olive branch they need.

My next round goes to my family. To my father, thank you for your continued belief in my decisions and
your encouragement to expand my horizons in life, both professional and personal. To my mother, a
sentence in a preface cannot do justice to the example you have set and the pillar you have provided
upon which to construct the person I am; I would not be were it not for you. To my siblings, let this
be a testament that you can accomplish great things if you set your mind to them; learn from my
accomplishments, but more importantly my struggles, and strive to be better, as I know you can be. To
my late grandfather, thank you for instilling in me a fascination with computers; it is the unshakeable
force that drives me to do great work.

Enumerating my friends and instances of their support would necessitate a literary work of its own. In
lieu, I would like to thank all of you for your care and support. To those who provided me invaluable
brainstorming, a relief when the struggles of life needed to be escaped, and a cradle to nurse my
grievances and woes. To those I have known for only a few months and to those whom have been my
companions for years or even a decade. One does not stand on their own, but on the pillars of their
community.

Lastly, I dedicate an ode to the unsung heroes of this university, academia, and our society at large:
educators and teachers. Though academia is a thankless field to begin with, the sub-domain of edu-
cation is especially onerous. Science is only as capable as its scientists, who are only as capable as
their educators.

Sincere thanks are owed to the authors of “A Gentle Introduction to ReSTIR: Path Reuse in Real-time”.
Their work was detrimental in my understanding of resampling and thus to the realisation of this thesis.
I am especially proud of the background section of this thesis for its potential as an educational tool
and in many ways it should be seen as a companion to the authors’ work for any prospective learners
of ReSTIR and GRIS theory.

ii

iii

TU Delft is home to many other such unsung heroes. Of particular note and whom I would like to
thank personally are Stefan Hugtenburg, Taico Aerts, Professor Gosia Migut, and Professor Jan van
Gemert. Your imprints have and will continue to shape generations of engineers and scientists. Do not
underestimate the impact you have on students’ lives and always remember that you are truly the best
of us. You inspire me to practice the most human of all acts: helping others.

William Narchi
Delft, June 2024

Contents

Abstract i

Preface ii

1 Introduction 1

2 Background and Related Work 2
2.1 Monte Carlo Integration . 2

2.1.1 Mathematical Background . 2
2.1.2 Application in Rendering . 2

2.2 Importance Sampling . 4
2.2.1 Theory . 4
2.2.2 Practical Example . 6

2.3 Multiple Importance Sampling . 7
2.3.1 Theory . 7
2.3.2 Practical Example . 8

2.4 Optimal Multiple Importance Sampling . 11
2.4.1 Motivation . 11
2.4.2 Approach . 13

2.5 Resampled Importance Sampling . 15
2.5.1 Theory . 15
2.5.2 Practical Example . 18

2.6 ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 20
2.6.1 Motivation and Overview . 20
2.6.2 Weighted Reservoir Sampling . 20
2.6.3 Spatiotemporal Reuse . 21
2.6.4 ReSTIR for Direct Illumination . 22
2.6.5 Sample Confidence . 24

2.7 GRIS: Generalised Resampled Importance Sampling 26
2.7.1 Motivation and Overview . 26
2.7.2 Reuse Across Domains . 26

3 Method 31
3.1 Overview . 31
3.2 Neighbour Selection . 31
3.3 Multiple Sample Generation . 32

3.3.1 The Duplicate Samples Problem . 32
3.3.2 Dividing Candidates Into Subsets . 32

3.4 Estimator and Optimal Weights . 33
3.4.1 Combining Samples . 33
3.4.2 Arbitrary Unbiased Contribution Weights . 34
3.4.3 Evaluating Estimators . 34

4 Implementation 35
4.1 Overview . 35
4.2 Ray Tracer Specifics . 35
4.3 Parameters . 35

5 Results and Discussion 38
5.1 Preliminaries . 38

5.1.1 Testing Environment . 38

iv

Contents v

5.1.2 Primary Test Scene . 38
5.1.3 Additional Test Scenes . 39
5.1.4 Chosen Parameters . 40
5.1.5 Error Metric . 40
5.1.6 False Colour Insets . 40

5.2 Similarity Heuristics . 41
5.3 Canonical Candidate Count . 42
5.4 Reservoir Size and Neighbour Count . 43
5.5 Convergence Behaviour . 46
5.6 Runtime Analysis . 47
5.7 R-MIS Weights . 48
5.8 WRS With Subset Division . 49

6 Conclusion 50
6.1 Future Work . 50

6.1.1 Ablation Study With Subset Division WRS . 50
6.1.2 Accumulating Unbiased Contribution Weight Estimates 50
6.1.3 Neighbour Selection . 50
6.1.4 Application to Scenarios With Non-Trivial Spatial Resampling 51

References 52

A ReSTIR+ Reservoir Combinations 54

B Source Code 56

C Full Images 57
C.1 Similarity Heuristics . 57

C.1.1 Final Renders . 57
C.1.2 Alpha Vectors . 58

C.2 Canonical Candidate Count . 59
C.2.1 Final Renders . 59
C.2.2 Alpha Vectors . 60

C.3 MAPE Heatmaps . 61
C.3.1 1 Iteration . 62
C.3.2 5 Iterations . 67

1
Introduction

Light transport simulation is a cornerstone in the field of computer graphics. In order to create an ac-
curate rendering of a three-dimensional scene, the paths which light follows starting from light sources
and ending at the camera from which the scene is observed need to be modelled.

MC (Monte Carlo) integration is the current industrial and scientific standard for performing light trans-
port simulation [37]. Individual random light paths are simulated and their results combined to produce
a coherent image [30]. However, MC integration techniques are prone to variance - which manifests
itself as noise in the produced images - due to the complexity of the integration domain. In any given
scene, an innumerable quantity of light paths, with varying degrees of contribution to the final image,
can be modelled.

A substantial proportion of light transportation research focuses on reducing this variance. Avenues of
research include techniques for modelling light propagation such as BDPT (Bi-directional Path Trac-
ing) [31, 16, 23, 14] and MC-MC (Markov Chain Monte Carlo) techniques [38, 34, 15, 9]; intelligent
sample generation techniques [13, 18, 7]; and denoising images obtained with limited sample counts
[33, 44].

A foundational technique underlyingmany of these techniques isMIS (Multiple Importance Sampling),
which allows for combining random samples arising from different sampling techniques [37]. MIS ne-
cessitates the computation of weights which are usually assumed to be non-negative, though removing
this assumption and allowing for negative weights has been shown to yield possible improvements [22].

Asides from being prone to variance, MC integration techniques are usually incredibly time-consuming
and thus have often been only widely adopted for offline rendering up until recently [6, 12]. With the
advent of readily available GPUs (Graphics Processing Units) with specialised ray intersection test
acceleration hardware [28, 41], much research has spawned within the domain of real-time rendering
where resources are heavily constrained and sample counts are low; as few as a single sample per
pixel. The ReSTIR (Reservoir-based Spatiotemporal Importance Resampling) family of techniques
is one such set of approaches that tremendously reduces computation times by reusing samples across
neighbouring pixels and previous frames, effectively amortizing the cost of MC integration spatially and
temporally [3, 26, 24, 25, 43]. ReSTIR-based techniques build on the concept of RIS (Resampled
Importance Sampling), which allows for the combination of samples (potentially generated via mul-
tiple techniques as with MIS) selected from a pool of candidates, guided by a target function which
determines the selection probability of each candidate [35].

Our work aims to explore the applicability of optimal MIS weights as presented by [22] to the combi-
nation of samples generated via RIS. This is used to spatially combine samples from different pixels
in a similar vein to ReSTIR, though geared towards offline rendering. We use similarity heuristics to
determine a constant set of neighbours to resample per pixel. We provide a simple extension to WRS
(Weighted Reservoir Sampling) to prevent the generation of duplicate samples. Lastly, we define
arbitrary unbiased contribution weights in lieu of intractable RIS probability density functions.

1

2
Background and Related Work

2.1. Monte Carlo Integration
2.1.1. Mathematical Background
Monte Carlo integration is a method for evaluating integrals, usually used for integrals which do not
have a (known) closed form solution. Given an integral of the form Equation (2.1), it can be numerically
approximated using an estimator of the form Equation (2.2).

F =

∫
Ω

f(x) dx (2.1)

F ≈ ⟨F ⟩ = |Ω| 1
N

N∑
i=1

f(Xi) (2.2)

N independent random samples Xi
1 are uniformly generated across the domain of integration Ω, av-

eraged, and scaled by the size of the integration domain to obtain an estimate of the integral. The
expected value of this estimator is the integral itself, i.e. E[⟨F ⟩] = F .

Two important properties of estimators are their bias and variance. Bias is the degree to which the
expected value of the estimator differs from the integral to be estimated; the estimator shown in Equa-
tion (2.2) is unbiased. Variance is the expected difference between a particular evaluation2 of the
estimator and its expected value. With a basic estimator as in Equation (2.2), variance can only be
reduced by increasing the number of samples N .

2.1.2. Application in Rendering
In light transport simulation, we attempt to solve the rendering equation. This equation describes
the relationship between outgoing light from a point on a surface as viewed from a particular angle
(radiance) and the incoming light from all directions in the unit hemisphere centered on that point and
oriented along the surface’s normal (irradiance). Figure 2.1 visualises this.

1Capital letters are used to denote random variables, as opposed to traditional variables as in Equation (2.1).
2This is often referred to as a ‘realisation’ of the estimator in the literature.

2

2.1. Monte Carlo Integration 3

Figure 2.1: The rendering equation’s integration hemisphere. Ω represents all possible light-carrying paths whose contribution
we wish to evaluate. The arrows represent (uniformly distributed) directions that lead to discrete light samples. [21]

Direct Illumination
The first formulation of interest addresses direct illumination, which occurs as a result of light being
emitted from a light source and reflecting off of a surface directly towards a viewer. Assuming a light
path consisting of the sequence of vertices x̄ = [x0, x1, x2], where x0 lies on a camera sensor (i.e. a
pixel on the screen through which the scene is viewed), x1 lies on a surface in the scene, and x2 lies on a
light source.3 A possible formulation of this variant of the rendering equation is given by Equation (2.3).

L(x1 → x0) =

∫
A
fs(x2 → x1 → x0)G(x1 ↔ x2)V (x1 ↔ x2)Le(x2 → x1) dx2 (2.3)

The practical meanings of the presented terms are as follows:

• L(x1 → x0): The outgoing light (radiance) from vertex x1 to vertex x0.
•
∫
A ... dx2: In this formulation, A is the set of all emissive surfaces (i.e. surfaces which emit light)
in the scene. This term corresponds to integrating over all the points in the scene which emit
light.

• fs(x2 → x1 → x0): Evaluation of the BSDF (Bidirectional Scattering Distribution Function) of
the surface on which x1 lies given this particular light path (see Section 2.3.2 for more details). A
BSDF describes how incident light is reflected for a particular material. In essence, this defines the
quantity and color of light reflected along the direction [x1, x0] given a particular incident quantity
and color of light along the direction [x2, x1].

• G(x1 ↔ x2): A catch-all term describing geometric properties of the path [x1, x2]. In practice, this
is usually the reciprocal of the squared distance between the points x1 and x2, in accordance with
the inverse-square law.

• V (x1 ↔ x2): Visibility between the vertices x1 and x2, i.e. if there are any surfaces between the
two vertices causing an obstruction in the path.

• Le(x2 → x1): The amount of light emitted (radiance) by the emissive surface on which x2 lies in
the direction [x2, x1].

Global Illumination
The second formulation of interest addresses global illumination, which occurs as a result of light be-
ing emitted from a light source and reflecting off of several surfaces in sequence before being finally
reflected towards a viewer. We assume light paths consisting of D vertices where x0 lies on a camera
sensor and all other vertices xj lie on a surface in the scene. A possible formulation of this variant of
the rendering equation is given by Equation (2.4).

L(x1 → x0) =

∞∑
D=2

∫
BD−1

D−1∏
j=1

fs(xj+1 → xj → xj−1)G(xj ↔ xj+1)V (xj ↔ xj+1)

Le(xD → xD−1) dx2...dxD

(2.4)

3Path vertices should not be confused with mesh vertices. Path vertices can be any point on any surface in the scene. Mesh
vertices denote the vertices which make up a three-dimensional model.

2.2. Importance Sampling 4

The practical meanings of the presented terms which differ from those outlined earlier are as follows:

•
∑∞

D=2: Summation of the contribution from all possible paths with lengths in the range [2,∞).
•
∫
BD−1 ... dx2...dxD: Integration over the product space of all the surfaces in the scene. B is the
set of all surfaces in the scene. Effectively, this accounts for the fact that light can bounce off of
any point in the scene towards any other point.

•
(∏D−1

j=1 ...
)
: This accounts for visibility, geometric properties, and BSDF evaluations at vertices

along the path. In effect, how light is attenuated as it travels along the path and interacts with the
surfaces at its constituent vertices.

Closed form solutions for the presented integrals are not known, and hence they are evaluated in
practice via Monte Carlo integration. Discrete samples are taken consisting of light-carrying paths
formed by vertices located in the scene. The paths are formed by tracing rays in the scene, evaluating
the integral’s terms at each point, and combining the resultant paths with Equation (2.2).

2.2. Importance Sampling
2.2.1. Theory
Motivation
It is often useful to draw samples from a distribution that better matches the function whose integral we
wish to evaluate, as opposed to uniformly sampling the integration domain. This approach is known as
importance sampling.

To visualise the benefit of this approach, consider Figure 2.2a. We would like to use MC integration to
compute the integral of the green function ‘Integrand function’. Ideally, we would like a higher concen-
tration of samples around the central ‘hump’ of the function where its value is high, and fewer samples
at the left and right ‘tails’ where its value is low. This would allow us to better represent the high value
portions of the function which contribute most significantly to the integrand.

Uniformly drawing samples (according to the blue ‘Uniform distribution’) does not accomplish this. How-
ever, if our samples are instead drawn from the red ‘Sampling distribution’, we end up with a higher
concentration of samples around the integrand function’s central hump as can be seen in Figure 2.2b.
The more closely a distribution matches the shape of the function to be integrated, the lower the vari-
ance of an estimator which uses this distribution to draw samples.

Figure 2.2c demonstrates this reduction in variance for the presented scenario. It illustrates how the
MSE (Mean Squared Error) of the MC integral estimate varies with increasing sample counts for each
distribution. MSE is a measure of the difference between ground truth and predicted values.

We compute MSE between the estimated MC integral ⟨F ⟩ and the ground truth integral value F 4 as
(⟨F ⟩−F)2. It can be seen that the estimates based on the (red) ‘Sampling distribution’ have consistently
lower MSE values than the estimates based on the (blue) ‘Uniform distribution’ for the same number of
samples.

4In this example, the ground truth value F can be computed because the integrand function is a Gaussian distribution whose
integral can be calculated in closed form. In light transport simulation, this ground truth is usually an estimate computed using
an extremely large number of samples.

2.2. Importance Sampling 5

(a) A problem scenario where it is beneficial to apply importance
sampling. It can be seen that the ‘Sampling distribution’ better matches
the shape of the ‘Integrand function’ whose integral we would like to

evaluate via MC integration.

(b) Comparison of drawing 16 samples from each of the two available
distributions. Samples drawn from the ‘Sampling distribution’ are more
concentrated around the central ‘hump’ of the distribution whereas
samples drawn from the ‘Uniform distribution’ cover the integration

domain more evenly.

(c) Comparison of MC integral estimates based on the presented distributions. The estimates based on the ‘Sampling distribution’ converge more
quickly to the true integral value than those based on the ‘Uniform distribution’. Note that the axes are logarithmic.

Figure 2.2: Motivating example for the benefit of importance sampling.

Estimator Specifics
An estimator that makes use of importance sampling has the form given by Equation (2.5)5, where
N is the total number of distributions being sampled from, ni is the number of samples drawn from
distribution i, and pi(Xij) is the probability of drawing the sample Xij from the probability distribution
pi (i.e. the distribution’s PDF (Probability Density Function)).

Each sample’s contribution is weighted by its probability, such that samples with a higher probability
of being generated are assigned a lower weight. This allows the estimator to remain unbiased [4].
Intuitively, this weighting prevents portions where the sampling density is high from over-contributing
to the MC integral, biasing it towards the values that the integrand function assumes in regions of high
sampling density.

⟨F ⟩ = 1

N

N∑
i=1

1

ni

ni∑
j=1

f(Xij)

pi(Xij)
(2.5)

Supports
An important condition for guaranteeing the unbiasedness of Equation (2.5) is that the support of the
distributions used to generate samples must cover the support of the function to be integrated. The
support of a function f is the parts where the function is non-zero. The support of a random variable

5This reduces to the basic estimator of the form Equation (2.2) if only a single sampling distribution that is uniform across the
domain of integration is used. All samples thus have the same probability of being drawn ∀i(pi(Xi) =

1
|Ω|) and N = 1.

2.2. Importance Sampling 6

X is the values it can take; for a continuous random variable, these are the values it can take with a
positive probability. Thus, if X has PDF p, then supp(X) = supp(p).

To illustrate, consider Figure 2.3a. We would like to evaluate the MC integral of the green ‘Integrand
function’ f using samples drawn from the blue ‘Sampling distribution’ p. However, there are regions
where f is non-zero and p is zero; these regions will not be represented in our estimator as no samples
that cover them will ever be generated as can be seen in Figure 2.3b. Thus, the portion of the integrand
covered by those regions will never be captured and our estimator will be biased.

(a) The integrand function and the distribution used to draw samples. (b) 16 samples drawn from the distribution.

Figure 2.3: Example of a sampling distribution that does not cover the full support of the integrand function. Drawing samples
from only this distribution does not allow us to cover the full domain of the integrand function that we need to integrate over.

2.2.2. Practical Example
To illustrate how importance sampling can be practically used for light transport simulation, consider
the scene depicted in Figure 2.4. Our scene contains a single yellow area light source and we wish to
evaluate the direct illumination integral (Equation (2.3)) using MC integration.

Assuming we evaluate three samples, if we were to uniformly distribute the samples as in Figure 2.4a,
two of our three samples would be useless as they do not lead to a light source. However, we can
choose instead to importance sample in directions which only lead to light sources, yielding three useful
samples as in Figure 2.4b. Effectively, we are importance sampling according to the L(x1 → x0) term
of the integral.

This choice of sampling distribution is sound, as only directions which lead to light sources can con-
tribute to direct illumination. As such, the support of the integrand function is covered by the support of
the sampling distribution.

(a) Uniform sampling of all directions. (b) Importance sampling directions leading to light sources.

Figure 2.4: Comparison of uniform sampling and importance sampling for direct illumination.

2.3. Multiple Importance Sampling 7

2.3. Multiple Importance Sampling
2.3.1. Theory
Motivation
For integrands of more complex functions, a single distribution often does not capture the ranges of
interest in its domain. As such, sampling from multiple distributions that fit different portions of the
domain may be desirable.

Further, basic importance sampling assigns the same weight to each sample, namely 1
N ·

1
ni

(see Equa-
tion (2.5)). This may not be desirable if the distributions being sampled from are particularly good at
covering certain portions of the domain, but not others. If any one distribution does not match the inte-
grand function well, the variance resulting from this mismatch is not mitigated. In effect, the variances
of the distributions being sampled are added together if equal weights are assigned to samples as we
effectively compute the average of separate estimators based on each of the distributions we draw
samples from [43].

Lastly, if the support of any of the distributions used does not cover the full domain of the integrand
function, the estimator will be biased. Portions not covered by the support of all distributions will be
under-represented in the MC integral compared to the regions that are, leading to bias.

Visual Example
To illustrate, consider the situation in Figure 2.5a where we would like to evaluate the integral of the
blue ‘Integrand function’ using MC integration. We have access to two sampling distributions α and
β for generating samples. For the majority of the portion of the domain covered by α, we would like
to prioritise samples generated by it (i.e. assign them a higher weight) as the distribution matches the
shape of the integrand function quite well. Outside of α’s domain however, samples from β should
be prioritised as they allow us to cover the portions of the domain not covered by α. Not doing so
would lead to bias as those regions would be under-represented as noted earlier. This is illustrated in
Figure 2.5b where it can be seen that samples from α more effectively capture the high value central
‘hump’ of the integrand function, but only samples from β cover the two low value ‘tails’ of the integrand
function.

(a) The integrand function and the two distributions used for drawing
samples.

(b) 8 samples drawn from each distribution for a total of 16 samples.

Figure 2.5: Example of an integrand function whose domain is covered to different degrees of quality by two sampling
functions. Distribution α is effective at covering the central ‘hump’, whereas distribution β equally covers the entire domain.

Estimator Specifics
First presented by Veach et al. [37], MIS (Multiple Importance Sampling) allows us to accomplish
this by assigning each sample a weight, resulting in an estimator of the form Equation (2.6)6 where
mi(Xi) is the weight assigned to sample Xi.

In order for this estimator to remain unbiased, two conditions must be satisfied [37]:7

6This reduces to the importance sampling estimator of the form Equation (2.5) if all samples are assigned an equal weight 1
N
.

7Note the usage of lowercase x. This designates a concrete value that has been generated as opposed to a random variable.

2.3. Multiple Importance Sampling 8

•
∑N

i=1 mi(x) = 1 whenever f(x) ̸= 0
The sum of utilised weights must be equal to one for all samples that generate a non-zero f(x)
(i.e. all samples within the support of f).

• mi(x) = 0 whenever pi(x) = 0
If the probability of generating a particular value x from distribution pi is 0 (i.e. x is not in the
support of pi), the weight assigned to this value must also be zero.

Combining these conditions allows for the MIS estimator to be unbiased if the union of the supports of
the distributions covers the support of the integrand function, i.e. supp(f) ⊆ ∪Mi=1supp(pi) where M is
the number of distributions being utilised.

⟨F ⟩ =
N∑
i=1

ni∑
j=1

mi(Xij)f(Xij)

nipi(Xij)
(2.6)

Choosing Weights
A fundamental component in the success of an MIS estimator is the choice of weighting function. Com-
mon choices include:8

• Balance heuristic: mi(x) =
pi(x)∑N

j=1 pj(x)

The most common choice in relevant applications and literature [43, 4]. It is the most optimal
choice in terms of reducing variance provided that weights are not allowed to be negative (see
Section 2.4) [22].

• Power heuristic: mi(x) =
pi(x)

β∑N
j=1 pj(x)β

A generalisation of the balance heuristic that can be more effective in scenarios where the sam-
pling distributions quite closely match (portions of) the integrand function, i.e. have low variance.
The relevant terms are raised to a power β, effectively ‘sharpening’ the weights. A value of β = 2
is commonly used [37].

• Cutoff heuristic: mi(x) =

{
0 if pi(x) < αpmax

pi(x)∑N
j=1{pj(x)|pj(x)≥αpmax}

otherwise
Where α ∈ [0, 1] and pmax = maxk pk. This effectively discards samples whose weights are
sufficiently small, resulting in a similar sharpening effect as with the power heuristic, with more
emphasis on reducing contribution from low weight samples.

• Maximum heuristic: mi(x) =

{
1 if pi(x) = pmax

0 otherwise
Where pmax = maxk pk as with the cutoff heuristic. The maximum heuristic effectively partitions
the integration domain into separate regions that are covered by samples from only a single
distribution each. It does not work as well as the other strategies in practice as, intuitively, too
many samples are thrown away [37].

2.3.2. Practical Example
Bidirectional Scattering Distribution Functions
ABSDF (Bidirectional Scattering Distribution Function) describes how amaterial reflects and trans-
mits incident light [30]. A BSDF combines the effects of a BRDF (Bidirectional Reflectance Distribu-
tion Function), which describes how a material reflects light, and a BTDF (Bidirectional Transmit-
tance Distribution Function), which describes how a material transmits light through itself. We will
focus on BRDFs in this section as they are the relevant component for our example.

BRDFs provide a mathematical description of how the energy of a single beam of light is distributed
in all possible directions in the hemisphere around a surface point. Essentially, it describes how much
light is reflected and in which directions it is reflected. Figure 2.6 shows the three general ‘classes’
of materials commonly referred to in light transport literature. n is the normal to the surface point x

8A visual comparison of the presented weights for a simple 1D integration problem can be found in Figure 2.12.

2.3. Multiple Importance Sampling 9

and v is a unit vector pointing towards a light source. rv is a unit vector pointing in the direction of
v’s reflection with respect to x and n. The blue ‘lobes’ represent the quantity of light being reflected in
different directions.

A ‘Diffuse’ surface reflects incident light uniformly in all directions, as shown by its lobe having a semi-
circular shape. A ‘Specular’ surface reflects incident light only towards the direction of the reflection
vector rv. A ‘Glossy’ surface lies in between; a significant portion of incident light is reflected in the
direction of the reflection vector rv, though some light is reflected in other directions to varying extents.

Figure 2.6: Three classes of BRDFs. They vary in the shape of the lobe indicating the directions where incident light is likely to
be reflected. [20]

An important attribute of BRDFs is that they are symmetrical. That is, if the v and rv vectors are
reversed, the lobe is mirrored across the surface’s normal. This is visualised in Figure 2.7.

(a) Original directions (b) Reversed directions

Figure 2.7: Visual demonstration of the symmetric property of BRDFs. [20]

BRDF Sampling
We return to our direct illumination example from Section 2.2.2, but with a slight twist: the surface being
examined is specular in nature. More specifically, it has the BRDF lobe depicted in Figure 2.8.

Figure 2.8: BRDF lobe of the surface being examined.

If we attempt to apply our prior approach of importance sampling directions leading to light sources, we

2.3. Multiple Importance Sampling 10

end up with the scenario depicted in Figure 2.9a. This would result in two of our three samples being
wasted as the possible directions in which they could be reflected would not lead to our observer.

However, we can instead sample according to the surface’s BRDF by leveraging the fact that BRDFs
are symmetric and treating the direction leading to our observer as the v vector as defined earlier. This
gives us a range of directions whose reflected energies have a non-zero probability of ending up at the
observer, greatly increasing the chances of our samples contributing useful lighting information.

(a) Importance sampling directions leading to light sources. Each
sample is depicted along with the lobe showing the distribution of

directions where its energy is reflected.

(b) Importance sampling directions according to the surface’s BRDF.

Figure 2.9: Comparison of light sampling and BRDF sampling for direct illumination. An observer (teal eye) is also depicted.

Combining BRDF and Light Sampling
In the vast majority of scenes, we can rarely decide a priori which one of a given number of sampling
techniques is optimal for particular scenarios. Consider once again the problem of estimating the direct
illumination integral given access to a BSDF sampler and a light sampler.

Figure 2.10 depicts a scene with four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny rectangular
plates, each one tilted so that we see the reflected light sources. The plates’ BRDFs having varying
levels of glossiness, which controls how sharp or fuzzy the reflections are. [37]

(a) Importance sampling directions according to the surface’s BRDF. (b) Importance sampling directions leading to light sources.

Figure 2.10: Comparison of light sampling and BRDF sampling for direct illumination in a 3D scene. The glossiness of the
plates increases from the bottom to the top. [37]

Individually, each sampling technique is able to adequately cover only a portion of the integration do-

2.4. Optimal Multiple Importance Sampling 11

main. BRDF sampling performs well for glossy surfaces, whereas light sampling performs well for
diffuse surfaces. Each sampling technique effectively samples according to a particular term of the
integral, fs(x2 → x1 → x0) for the BRDF sampler and Le(x2 → x1) for the light sampler. We do not
know a priori which term of the integral dominates across different portions of the integration domain.
To address this, we can combine results from both sampling techniques using MIS, producing results
that combine the strengths of both sampling techniques as can be seen in Figure 2.11.

Figure 2.11: Combining samples produced by the BRDF and light samplers using MIS. [37]

2.4. Optimal Multiple Importance Sampling
The original formulation of MIS assumed weighting functions that did not produce negative weights,
leading to the intuitive interpretation of MIS weights as a convex combination of sampling techniques.
However, the conditions detailed in Section 2.3.1 do not necessarily forbid negative weights, allowing
for an affine combination of sampling techniques as shown by Kondapaneni et al. [22].

2.4.1. Motivation
Visual Example
To demonstrate the potential benefits of negative weights, consider the 1D integration problems de-
picted in Figure 2.12. We wish to evaluate the integral of f via MC integration using an MIS estimator
and we have access to three sampling distributions p1, p2, and p3. One sample is taken from each
technique.

In addition to the weighting schemes detailed in Section 2.3.1, we also consider a ‘best-technique’
scheme which assigns a weight of 1 to the distribution that best fits f (i.e. has the lowest variance
relative to f) and a weight of 0 to all other distributions.9 Lastly, we consider optimal weights with
unconstrained (potentially negative) signs as produced by the technique of [22].

In the first row, the distribution p2 very closely matches the shape of f . The balance heuristic (b)
generally prioritises p2, though it assigns larger weights to p1 and p3 relative to the tightly-fitting p2
in portions of the integration domain, leading to higher variance in those portions. The power and
cutoff heuristics (c-d) somewhat mitigate this due to their sharper weights being a better fit for this low
variance scenario. The maximum heuristic (e) performs worse than the balance heuristic. The best-
technique heuristic (f) produces significantly better results due to its selection of the tightly fitting p2 as
the only distribution of choice. Optimal weights (g) perform best due to the greater flexibility afforded
by affine combinations; permitting negative weights allows for f to be more accurately modelled as a
linear combination of the sampling distributions.

9Such a heuristic would be impossible to apply in practice as we almost never know the shape of the integrand function in
advance.

2.4. Optimal Multiple Importance Sampling 12

In the second row, none of the distributions closely resemble the shape of f . The balance, power,
cutoff, maximum, and best-technique heuristics (b-f) all perform similarly. This highlights a fundamental
issue at the heart of these techniques: they represent attempts to determine which distribution best
resembles f across different portions of the integration domain; this yields subpar results when none of
the distributions are a good fit. Optimal weights (g) instead try to approximate f as a linear combination
of the distributions, allowing for a much tighter fit.

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

4

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

1

1 2 3 4

4
8

1 2 3 4

1

1 2 3 4

1

Var: 0.123 (1.3x ↓) Var: 0.0442 (3.6x ↓) Var: 0.0176 (9x ↓)

Var: 1.33 (1x ↓) Var: 1.26 (1.05x ↓) Var: 0.307 (4.3x ↓)

Var: 0.158 (baseline)

Var: 1.33 (baseline)

Var: 0.209 (1.3x ↑)Var: 0.157 (1x ↓)

Var: 1.35 (1.02x ↑)Var: 1.36 (1.02x ↑)

a) integrand and
sampling techniques

b) balance heuristic
weights

c) power heuristic
weights

d) cutoff heuristic
weights (α = 0.1)

e) maximum heuristic
weights

f) best-technique
heuristic weights

g) optimal weights
(unconstrained sign)

p₁

p₂ p₃
f

p₁ p₂

p₃
f

w₁ w₂
w₃ w₁ w₂ w₃ w₁ w₂ w₃ w₁ w₂ w₃

w₁ w₂w₃

w₁

w₂

w₃

w₁w₂

w₃

w₁ w₂

w₃

w₁ w₂

w₃w₁ w₂w₃ w₁ w₂w₃
w₁ w₂

w₃

Figure 2.12: Comparison of various MIS weighting schemes for a 1D integration problem. The first column (a) shows the
integrand function and the three available sampling techniques; the remaining columns (b-g) show the weights produced by

each scheme. The top and bottom rows differ only in the shape of the p2 distribution. [22]

MIS Estimator Variance Bounds
In the original derivation of the MIS estimator, an upper bound on its variance was explored [37]. Recall
that an MIS estimator has the following form, where wi(Xi) is the weight assigned to sample Xi.10

⟨F ⟩ =
N∑
i=1

ni∑
j=1

wi(Xij)f(Xij)

nipi(Xij)

The variance of this estimator is given by Equation (2.7) [37]. To simplify notation, the inner product of
two functions over a domain D is defined as ⟨a, b⟩ =

∫
D
a(x)b(x) dx.

V [⟨F ⟩] =
N∑
i=1

∫
D

wi(x)f(x)

nipi(x)
dx︸ ︷︷ ︸

first term

−
N∑
i=1

1

ni
⟨wi, f⟩2︸ ︷︷ ︸

second term

(2.7)

The balance heuristic is the result of minimising the first term. The derived variance bound for an MIS
estimator utilising the balance heuristic was constructed as the difference of the upper and lower
bounds of the second term. The lower bound derivation does not make any specific assumptions, but
in the upper bound derivation (Equation (2.8)), the second inequality ⋆ only holds if ⟨wi, f⟩ ≥ 0. That is,
only when the weights wi(x) are non-negative.11 This suggests that the upper bound on the variance
of the balance heuristic is in fact larger than suggested by the original proof from [37], motivating the
benefits to be potentially reaped through the application of optimal weights with unconstrained signs.
[22]

N∑
i=1

1

ni
⟨wi, f⟩2 ≤

1

mini ni

N∑
i=1

⟨wi, f⟩2
⋆

≤ 1

mini ni

(
N∑
i=1

⟨wi, f⟩

)2

(2.8)

10Note the change in notation frommi(Xij) to wi(Xij). This is done in order to maintain consistency with the notation of [22].
11In the context of rendering, the integrand function f is generally never negative as light is logically either present f > 0 or

not f = 0. However, some approaches reformulate the rendering equation to allow for negative values [8].

2.4. Optimal Multiple Importance Sampling 13

2.4.2. Approach
Formal Definitions
Optimal weights can be formulated as the solution to the problem of minimising the variance of the
MIS estimator (Equation (2.7)) in terms of the weights wi while maintaining the conditions outlined in
Section 2.3.1. To this end, we define a number of terms. Readers interested in the derivations leading
to the terms defined in this section are advised to read Appendix B of [22].

Let f be a function to integrate within domain D, {p1, ..., pN} a set of N sampling distributions whose
union covers D, and ni the number of samples drawn from pi.

• Technique matrix A: A symmetric N ×N matrix with elements given by

aik =

〈
pi,

pk∑N
j=1 njpj

〉
(2.9)

• Contribution vector b: A column vector of length N defined as (b1, ..., bN)⊺. Its elements repre-
sent contributions to the final integral F =

∫
D
f(x) dx as the dot product (n1, ..., nN) · b is equal

to F . Its elements are given by

bi =

〈
f,

pi∑N
j=1 njpj

〉
(2.10)

Finally, we can define the column vector α = (α1, ..., αN)⊺ as the solution to the system of linear
equations

Aα = b (2.11)

The optimal weights, denoted as w◦i , are then given by

w◦i (x) = αi
pi(x)

f(x)
+

nipi(x)∑N
j=1 njpj(x)

(
1−

∑N
j=1 αjpj(x)

f(x)

)
(2.12)

Practical Computation
The elements ofA and b generally do not have a closed form solution and so they are estimated using
MIS with the balance heuristic via the following estimators

⟨A⟩ =
N∑
i=1

ni∑
j=1

WijW
⊺
ij ⟨b⟩ =

N∑
i=1

ni∑
j=1

f(Xij)SijWij (2.13)

Where Sij is a scaling factor and Wij is the column vector of the PDF of all sampling techniques
evaluated at Xij and scaled by Sij . They are defined as follows

Sij =
1∑N

k=1 nkpk(Xij)
Wij = Sij(p1(Xij), ..., pN (Xij))

⊺ (2.14)

Finally, the estimator ⟨α⟩ is computed via least squares minimization. This is because the estimated
system ⟨A⟩⟨α⟩ = ⟨b⟩ may be (close to) singular, hence making a direct solution infeasible. A conse-
quence of this is that while the ⟨A⟩ and ⟨b⟩ estimators are unbiased, ⟨α⟩ is generally biased. This bias
in ⟨α⟩ introduces variance in the final estimator ⟨F ⟩.

Optimal MIS Estimator
Combining these findings into a practical estimator yields the OMIS (Optimal Multiple Importance
Sampling) estimators depicted in Algorithm 1 and Algorithm 2. Differences between the two estimators
are highlighted in red.

2.4. Optimal Multiple Importance Sampling 14

Algorithm 1 OMIS Progressive Estimator
1: ⟨A⟩ ← 0N×N ; ⟨b⟩ ← 0N×1; ⟨α⟩ ← 0N×1; result← 0
2: for iterations← 0 to maxIterations− 1 do
3: for i← 1 to N do
4: {Xij}ni

j=1 ← draw ni samples from distribution pi
5: end for
6: if (iteration ≥ 1) and iteration mod U = 0 then
7: ⟨α⟩ ← solve linear system ⟨A⟩⟨α⟩ = ⟨b⟩
8: end if
9: estimate← evaluate ⟨F ⟩ using ⟨α⟩ ▷ Equation (2.6) and Equation (2.12)

10: result← result+ estimate
11: ⟨A⟩ ← ⟨A⟩+

∑N
i=1

∑ni

j=1 WijW
⊺
ij ▷ Equation (2.13)

12: ⟨b⟩ ← ⟨b⟩+
∑N

i=1

∑ni

j=1 f(Xij)SijWij ▷ Equation (2.13)
13: end for
14:
15: return result/maxIterations

Algorithm 2 OMIS Direct Estimator
1: ⟨A⟩ ← 0N×N ; ⟨b⟩ ← 0N×1

2: for iterations← 0 to maxIterations− 1 do
3: for i← 1 to N do
4: {Xij}ni

j=1 ← draw ni samples from distribution pi
5: end for
6:
7:
8:
9:

10:
11: ⟨A⟩ ← ⟨A⟩+

∑N
i=1

∑ni

j=1 WijW
⊺
ij ▷ Equation (2.13)

12: ⟨b⟩ ← ⟨b⟩+
∑N

i=1

∑ni

j=1 f(Xij)SijWij ▷ Equation (2.13)
13: end for
14: ⟨α⟩ ← solve linear system ⟨A⟩⟨α⟩ = ⟨b⟩
15: return

∑N
i=1⟨αi⟩

The Progressive estimator repeatedly evaluates ⟨F ⟩ using weights based on the most up-to-date ⟨α⟩
estimate and averages the results of these evaluations. The ⟨α⟩ estimate can be updated every U
iterations rather than every single iteration as the linear system solution computation which updates it is
relatively expensive. Thus, the Progressive estimator effectively averages the results of ever-improving
estimates ⟨F ⟩ of the integral F .

The Direct estimator instead exploits the definition of the αi elements composing α. By definition [22]

αi =

∫
D

f(x)w◦i (x) dx (2.15)

As the weights sum up to 1 due to the MIS constraints (Section 2.3.1), the integral F can thus be
expressed as the sum of the αi terms∫

D

f(x) dx =

∫
D

f(x)

N∑
i=1

w◦i (x) dx =

N∑
i=1

αi (2.16)

However, this estimator will be generally biased as a result of the fact that the estimate ⟨α⟩ is generally
biased. In practice, the Direct estimator converges significantly quicker compared to the Progressive
estimator. Lastly, the authors of [22] note that this bias was not significant in their experiments. Thus,
this bias appears to not be empirically significant.

2.5. Resampled Importance Sampling 15

2.5. Resampled Importance Sampling
2.5.1. Theory
Motivation
For many MC integration problems, it can be difficult to engineer a sampling distribution that matches
the shape of the integrand function f , especially if f is the product of several individual terms. We
may have access to distributions that can effectively capture each of the individual terms, but not their
combined product.

Initially presented by Talbot et al. [35], RIS (Resampled Importance Sampling) accomplishes this by
allowing us to weigh samples produced from a number of sampling-tractable distributions (i.e. distri-
butions that we can actually draw samples from) according to a target function q̂. In practice, q̂ is an
ordinary function which we cannot draw samples from and can be unnormalised. Samples are then
stochastically selected based on their weight, such that samples with a higher weight have a higher
probability of being selected.

Visual Example
To illustrate how RIS functions, we return to our example from Figure 2.2a but with an additional con-
straint: we can no longer draw samples from the green ‘Sampling distribution’. However, we can
evaluate the value of this function given a sample x.

Figure 2.13 sets the scenario of our example once again. We begin by drawing 128 samples from
the blue ‘Sampling distribution’, then we assign these samples weights based on their corresponding
‘Target function’ values and stochastically pick an increasing number of samples through RIS. The
results of this process are shown in Figure 2.14. It can be seen that the distribution of the samples
produced by RIS approaches the target function as the number of samples increases. Candidates
which have a target function value of 0 are not present in the selected samples and samples are more
concentrated around the central ‘hump’ of the target function.

(a) Distribution used to draw samples and target function used to assign
weights for stochastic selection.

(b) 128 initial candidate samples drawn from the sampling distribution.

Figure 2.13: Motivating example for the benefit of RIS. We draw samples from the blue ‘Sampling distribution’ and then
stochastically pick a subset using weights based on the green ‘Target function’.

2.5. Resampled Importance Sampling 16

(a) 1 sample (b) 2 samples

(c) 4 samples (d) 8 samples

Figure 2.14: Samples drawn based on RIS. They are roughly distributed according to the target function, i.e. there is a larger
concentration of samples around the central ‘hump’ of the target function. Orange dotted lines connect each sample to the

x-axis to showcase portions of the domain where samples are concentrated.

RIS Estimator
An estimator that makes use of RIS has the form given by Equation (2.17). In order for the estimator to
remain unbiased, the support of the target function q̂ and the union of the supports of the distributions
used to generate candidate samples must both cover the support of the integrand function.

⟨F ⟩ = 1

N

N∑
i=1

f(Xi)

q̂(Xi)
·

M∑
j=1

1

M
· q̂(Xj)

pi(Xj)
(2.17)

Often in RIS-related work, the terms in Equation (2.17) are separately denoted as in Equation (2.18).
The name and significance of each term is as follows:

• Resampling weight wj

The resampling weight of each candidate sample.
• Sum of weights wsum

Sum of the resampling weights assigned to the generated candidates.
• UCW (Unbiased Contribution Weight) WXi

This replaces the 1
p(X) weighting term as used in a standard importance sampling estimator (Equa-

tion (2.5)). Unlike 1
p(X) however, WXi

is not a deterministic function of Xi, but rather an estimate
whose expected value is 1

p(X) , i.e. E[WXi
] = 1

p(Xi)
.

wj =
1

M
· q̂(Xj)

pj(Xj)
wsum =

M∑
j=1

wj WXi
=

1

q̂(Xi)
wsum (2.18)

2.5. Resampled Importance Sampling 17

The full sequence of steps for utilising an RIS estimator is as follows:

1. Generate M candidate samples from the available probability distributions pj .
2. Compute a resampling weight wj for each candidate.
3. Select N samples with replacement12 from the candidates with probabilities proportional to the

resampling weights wj .
4. Compute an unbiased contribution weight WXi

for each selected sample.
5. Evaluate the estimator using Equation (2.17).

Multiple Sampling Distributions with MIS
In a similar vein to Section 2.3, we may have access to several distributions for generating candidates.
We would like to mix samples from these distributions such that they are appropriately weighed based
on the portions of the integration domain that they cover.

To accomplish this, we simply modify the resampling weights from Equation (2.17) and Equation (2.18)
into the form in Equation (2.19), where mj(Xj) is an MIS weight.13

wj = mj(Xj)
q̂(Xj)

pj(Xj)
(2.19)

We can utilise any of the weighting functions described earlier in Section 2.3.1. If we have access to
the underlying distributions from which the candidates were generated (i.e. the pj ’s), we can use the
exact same formulations of any of the presented weighting functions.

However, theremight arise a scenario where we do not have access to the underlying distributions, such
as when samples are generated from repeated applications of RIS. In such cases, we often instead
have access to the target functions q̂i that were used to guide the selection of the samples. We can
use those target functions as proxies for the PDFs of the distributions of those samples. Effectively, we
substitute target functions q̂i where PDFs pi are needed in MIS weighting functions if we do not have
access to underlying distributions.

Stratified RIS Estimator
A key fault of the RIS estimator is the stipulation that selected samples are drawn with replacement
from the pool of candidate samples. This often results in duplicate samples, particularly in scenarios
where there is a relatively small number of high weight samples. This can drastically reduce potential
benefits from increasing sample count (for both candidates and final selected samples).

To address this shortcoming, an unbiased RIS estimator can be constructed which operates on indepen-
dent subsets which together form the full pool of candidates. This estimator is given by Equation (2.20).

⟨F ⟩ =
N∑
i=1

f(Yi)

q̂(Yi)
·

ni∑
j=1

wij (2.20)

The full sequence of steps for utilising this variant of the RIS estimator is as follows:

1. Generate M candidate samples from the available probability distributions pij .
2. Compute a resampling weight wij for each candidate.14

3. Divide the proposals into N subsets of size ni, where
∑N

i=1 ni = M

12“With replacement” indicates that selecting a sample does not prevent it from being selected again. This is opposed to
selectingwithout replacement where a sample can only be selected once; after a sample is selected, the probabilities of selecting
other samples are adjusted to account for the absence of the selected values. This ensures that the sum of probabilities of the
remaining samples adds up to 1. Constructing an unbiased RIS estimator that makes use of selection without replacement is an
open question [35].

13This form collapses to the more basic resampling weight if equal weights 1
M

are used for all samples.
14Following on the generalised form given in Equation (2.19), this term includes an MIS weight. This weight should be relative

to all candidate samples, not just the ones allocated to a particular subset.

2.5. Resampled Importance Sampling 18

4. SelectN samples, one from each subset, with probabilities proportional to the resampling weights
wij .

5. Compute an unbiased contribution weight WXij
for each selected sample.

6. Evaluate the estimator using Equation (2.20).

The most important difference to note is that the scope of the wsum term from Equation (2.18) has now
changed. Instead of being the sum of the weights of all candidate samples, this sum is now per subset.

2.5.2. Practical Example
To illustrate the potential benefits of RIS, we build upon the direct illumination example from Sec-
tion 2.3.2. The scene is depicted in Figure 2.15a. There are two key differences compared to our
prior example:

• The lighting arrangement is significantly more complex. We have four lights, A through D, which
are at different distances from the surface point. Further, they have different emissivities (bright-
nesses) as indicated by the saturation of their colour; more saturated lights are brighter.

• The BRDF lobe is still primarily specular, though its arc is larger.

We can attempt variations of prior approaches and importance sample directions according to different
individual terms of the direct illumination integral.

Importance sampling according to the distance to light sources, such that directions leading to closer
lights are more likely to be sampled (effectively sampling according to the G(x1 ↔ x2) term) would lead
to the scenario depicted in Figure 2.15b. Most of our samples would be skewed towards light source
A as it is the closest. However, due to the specular BRDF of the surface, the range of directions where
light coming from A can be reflected would not lead to our observer. Thus, this sampling strategy is
suboptimal.

Next, we attempt importance sampling according to the emissivity (brightness) of light sources, such
that directions leading to brighter lights are more likely to be sampled (effectively sampling according to
the Le(x2 → x1) term). This would lead to the scenario depicted in Figure 2.15c. Most of our samples
would be skewed towards light source B as it is the brightest. Once again, due to the specular BRDF
of the surface, the range of directions where light coming from B can be reflected would not lead to our
observer. This sampling strategy is also suboptimal.

For our last valiant effort, we attempt importance sampling according to the BRDF of the surface (as
in Section 2.3.2) such that directions that would result in light being reflected towards our observer are
more likely to be sampled (effectively sampling according to the fs(x2 → x1 → x0) term). This would
lead to the scenario depicted in Figure 2.15d. Most of our samples would be skewed towards light
sourceC, whereas a few would end up at light sourceD or no light source at all. This is an improvement
over our prior two attempts, but still suboptimal. Light source C is the furthest light source and is also
quite dim, so it would likely not produce high value samples. Further, some of our samples do not end
up at a light source at all. Ideally, we would like most of our samples to originate from light source D
due to it being relatively close, reasonably bright, and in the range of the surface’s BRDF lobe.

Our problem lies in the fact that the integrand function is a product of multiple terms. There usually exist
techniques for importance sampling according to each of the individual terms, but not according to their
product. RIS allows us to bypass this limitation. We can generate a number of candidate samples from
any one of our sampling techniques (or multiple of them using MIS) and weigh them according to a
target function which incorporates the product of these terms, such as15

q̂(X2) = fs(X2 → x1 → x0)G(x1 ↔ X2)Le(X2 → x1) (2.21)

15Recall that light-carrying paths in the direct illumination problem are of the form x̄ = [x0, x1, x2]. x0 and x1 are given, as
they are the observer position and surface position respectively. Thus, we are trying to determine the ideal sample(s) for only
x2, hence why it is denoted with an uppercase X2 to indicate that it is a random variable and not a known value.

2.5. Resampled Importance Sampling 19

This would produce the desired outcome, as samples which would result in no light being reflected to
the observer as a result of the surface’s BRDF would have a weight of 0 due to the fs(X2 → x1 → x0)
term. Further, the presence of the G(x1 ↔ X2) and Le(X2 → x1) terms means that samples from light
sources that are closer and brighter, and thus more likely to have a larger contribution, are more likely
to be selected.

Note the absence of the visibility term V (x1 ↔ X2) compared to the original direct illumination integrand
function from Section 2.1.2. We omit this term as evaluating it would require tracing an expensive
shadow ray to figure out if the light sample is occluded by objects in the scene. This means that our
target function is not entirely optimal for the integral we are trying to estimate. However, this omission
makes our application of RIS significantly more efficient. This approximation often yields good results
in practice [3].

(a) The scene being examined. The surface’s BRDF lobe, an observer,
and four lights are depicted.

(b) Importance sampling according to the distance to light sources
would skew samples towards A.

(c) Importance sampling according to the emissivity (brightness) of light
sources would skew samples towards B.

(d) Importance sampling according to the BRDF of the surface would
skew samples towards C. Note that in this example, the dotted lines

represent the possible directions where light samples can be generated.

Figure 2.15: Comparison of various sampling techniques for direct illumination. Each technique on its own generates
suboptimal samples. The dotted lines extend the bounds of relevant BRDF lobes to clarify all possible directions where light

can be reflected given the light samples in each example.

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 20

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance
Resampling

2.6.1. Motivation and Overview
RIS provides a framework for generating samples that are distributed according to arbitrary target
functions. This allows us to obtain samples whose distributions are better suited to the integration
problem at hand, even if we are unable to directly generate samples from a distribution with the desired
shape.

However, the number of samples needed to achieve a distribution that fits the target function can be
tremendous. Even the simple problem presented in Figure 2.13 and Figure 2.14 requires a large num-
ber of candidates and final samples to achieve reasonable results. Generating candidates, performing
weight computations, carrying out sample selection, and evaluating an estimator with the final samples
can be computationally demanding.

To remedy this, the ReSTIR (Reservoir-based Spatiotemporal Importance Resampling) family of
techniques builds upon RIS to amortize the costs of these computations spatially and temporally. This
is accomplished by reusing chosen samples from neighbouring pixels and previous frames through
repeated application of RIS. This effectively allows for a single pixel to select a set of final samples that
represents an enormous set of initial candidates, resulting in potentially extremely high quality samples
that capture high contribution segments of the integration domain.

2.6.2. Weighted Reservoir Sampling
Motivation and Overview
A major component of RIS is the generation of candidates, evaluation of resampling weights, and
selection of a subset of samples from these candidates. The RIS procedure laid out in Section 2.5.1
requires that all M candidates and their weights are generated and stored upfront. This can lead to
high storage costs, especially when such a process would have to be carried out repeatedly. This is
often the case in rendering, as this process would be carried out for every pixel on a screen in parallel.

WRS (Weighted Reservoir Sampling) is a family of techniques that allow forN samples to be selected
from a stream of M weighted candidates [5]. It does not require candidates to be stored; they are
processed one-by-one as they arrive. Variants of WRS exist for selecting samples both with and without
replacement, though we are only interested in the variants geared towards sampling with replacement
to ensure unbiasedness when used with RIS [10].

Algorithm and Correctness
WRS maintains a reservoir of samples that are stochastically replaced when a new candidate arrives.
It guarantees that each sample’s probability of being selected is given by Equation (2.22), where wi is
the weight of candidate i. This leads to a data structure and update rule that correspond to Algorithm 3.
Only the selected samples and a running sum of weights need to be stored.

Pi =
wi∑M
j=1 wj

(2.22)

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 21

Algorithm 3 Weighted Reservoir Sampling
1: class Reservoir
2: Y ← ∅ ▷ Set of N output samples
3: wsum ← 0 ▷ Sum of weights
4: function update(xi, wi) ▷ New candidate and its weight
5: wsum ← wsum + wi

6: for j ← 1 to N do
7: if rand() < (wi/wsum) then16

8: Yj ← xi

9: end if
10: end for
11: end function
12: end class

Assume that m candidates have thus far been processed. When a new candidate xm+1 arrives, it
can replace one of the stored samples with probability given by Equation (2.23). The probability of a
previously selected sample xi remaining in the reservoir is then given by Equation (2.24), maintaining
the selection probability given by Equation (2.22)

wm+1∑m+1
j=1 wj

(2.23)

wi∑m
j=1 wj︸ ︷︷ ︸

Initial
choice

·

(
1− wm+1∑m+1

j=1 wj

)
︸ ︷︷ ︸
New candidate not
selected

=
wi∑m+1

j=1 wj

(2.24)

2.6.3. Spatiotemporal Reuse
In the vast majority of rendering applications, neighbouring pixels are often trying to evaluate similar
integrals. The points in the scene for which they estimate lighting integrals can lie on nearby objects,
or even the same object. The points are also often surrounded by similar objects and are similarly
spaced relative to light sources. As such, samples from one pixel are often quite good candidates for
their spatial neighbours.

Similar correlations may exist temporally. In most rendering scenarios, scenes often do not change
much from one frame to the next. In successive frames of an animated movie or real-time videogame,
the positions of the camera, objects, and lights are relatively similar. As such, samples from the corre-
sponding pixel in a previous frame are often good candidates for the current pixel. These correspon-
dences are usually established via motion vectors, which describe the motion of the camera and objects
in the scene. These motion vectors can then be used to figure out which pixel in the previous frame
was observing the point that the current pixel is evaluating lighting for.

16rand() returns a uniformly distributed number between 0 and 1 inclusive (i.e. in the range [0, 1]).

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 22

This leads to the following typical workflow for ReSTIR-based algorithms, visualised in Figure 2.16:

1. Initial candidate generation: A number of candidates M is generated and a subset of N sam-
ples is drawn from them using RIS. This subset is approximately distributed according to the target
function q̂ used at this pixel. Samples generated in this step are often referred to as canonical
samples.

2. Temporal reuse: The samples chosen by the corresponding pixel in the previous frame are
resampled using RIS. Repeated application of ReSTIR with temporal reuse results in a contin-
uously improving distribution of samples as good sample choices are propagated through time.
Additionally, these choices can spread to other pixels in combination with spatial reuse.

3. Spatial reuse: A number of spatial neighbours k are identified in a small neighbourhood around
the pixel. Samples from those pixels are used as candidates for further rounds of RIS. Several
rounds of spatial reuse can be carried out.

Figure 2.16: Typical workflow of ReSTIR-based algorithms [3].
(Left) The original conception of RIS by Talbot et al. selects a subset of samples from a set of candidates [35]. (Middle) RIS can
be used to combine candidates from spatial neighbours. After an initial RIS round is done at each individual pixel, each pixel’s

chosen samples are used as candidates for further rounds of RIS. (Right) This methodology can be applied temporally,
allowing for samples from prior frames to be used as candidates.

2.6.4. ReSTIR for Direct Illumination
Overview
To showcase the potential benefits of ReSTIR and illustrate its usage, we return to our direct illumination
example from Section 2.3.2. This is the problem scenario addressed in the first paper within the ReSTIR
family, presented by Bitterli et al. [3], which introduced the core ReSTIR methodology. Similarly to
Section 2.5.2, we apply RIS to generate candidates and then select final samples, but we also reuse
candidates spatiotemporally. Our example will use the following parameters:

• Initial candidates M : 32
• Final candidate(s) N : 4
• Number of spatial resampling rounds n: 2
• Number of spatial neighbours sampled per round k: 5

In the RIS example, we needed to consider only a single target function q̂. This is because we only
needed to consider a single pixel. Consider once again the representation of a light-carrying path
in the direct illumination problem x̄ = [x0, x1, x2]. For different pixels, the points x0 and x1 differ as
demonstrated in Figure 2.17. Thus, each pixel i has its own target function q̂i. Note the omission of the
visibility term compared to the original direct illumination integrand function, similarly to Section 2.5.2.

q̂i(X2) = fs(X2 → xi1 → xi0)G(xi1 ↔ X2)Le(X2 → xi1) (2.25)

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 23

Figure 2.17: A simple scene containing one camera, one object, and one light. It can be seen that different pixels have
different initial path segments [x0, x1]. [17]

Chaining RIS Passes
Recall from Section 2.5.1 that in order to carry out RIS at pixel j, we must compute a resampling weight

wi = mi(Xi)
q̂j(Xi)

pi(Xi)

This weight requires evaluating the PDF of the distribution that generated each sample. However, if
we chain RIS as in ReSTIR, the distribution of samples generated by prior passes cannot be directly
evaluated, as they are a result of the RIS process. However, recall that each sample that RIS outputs
is associated with an unbiased contribution weight WXi

whose expectation is equal to the reciprocal of
the sample’s PDF, i.e. E[WXi

] = 1
p(Xi)

. We can use this unbiased contribution weight in our chained
RIS passes. Thus, our resampling weights under ReSTIR are of the form17

wi = mi(Xi)q̂j(Xi)WXi
(2.26)

For the MIS weights mi, we can use any scheme that satisfies the requirements from Section 2.3.1.18
However, as we do not have access to the source PDFs when combining samples from multiple pixels,
we cannot utilise the PDFs in our weights as with standard MIS. We do have access to target functions
q̂i, which we can use as a proxy for the PDFs, as these target functions are proportional to the PDFs.

For this example, we will use a variant of the balance heuristic, often referred to as the generalised
balance heuristic. Assuming that we are selecting samples at pixel i and are resampling from D total
pixels, this heuristic is of the form

mi(x) =
niq̂i(x)∑D

j=1 nj q̂j(x)
(2.27)

Where ni is the number of samples that pixel i provides. Since each pixel stores a fixed number of
samples N (which is 4 in this example), the generalised balance heuristic can be simplified to the form

mi(x) =
q̂i(x)∑D
j=1 q̂j(x)

(2.28)

17If the actual PDF is known, such as during the initial sample generation step, we simply use the actual reciprocal of the PDF
1

pi(Xi)
as usual.

18MIS weights in ReSTIR are an involved topic. Their mishandling can lead to bias and there are several approaches with
different caveats.

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 24

Effective Candidate Count
We now consider how the effective candidate count evolves after each step of ReSTIR. ‘Effective candi-
date count’ denotes howmany candidates were considered in order to generate the final set of samples.
This gives an indication of the quality of the final samples, as these samples have survived a resampling
process where they were deemed the highest quality subset out of the considered candidates.

We assume that this is the second iteration of ReSTIR, and hence only one previous frame was ren-
dered. We reverse the order of the spatial and temporal resampling steps to provide a more logical
flow for how the effective candidate count progresses19

1. Initial candidate generation: M = 32 candidates are generated
Effective candidate count ci = M = 32

2. Spatial reuse: n = 2 rounds of reuse are carried out and k = 5 neighbours are resampled in a
30 pixel radius in each step
Effective candidate count cs = ci + (M · n · k) = 32 + (32 · 2 · 5) = 352

3. Temporal reuse: A single temporal predecessor, which has already carried out the previous two
steps, is resampled
Effective candidate count ct = cs + cs = 352 + 352 = 704

Lastly, if additional prior frames were rendered, the effective candidate count would grow even higher
as a result of the temporal reuse step propagating the effective candidate count of each pixel forward
in time.

2.6.5. Sample Confidence
Trusting High Confidence Samples
The process presented in the previous section has a key inefficiency: effective sample count is not
represented in the resampling process. Put simply, we would like samples that were produced as a
result of resampling many candidates to have a larger weight in the resampling process, as we are
more confident in these samples’ values due to the fact that they survived where many others did not.

To accomplish this, we can augment our MIS weights with confidence weights. We simply replace ev-
ery instance of q̂i(x) with ciq̂i(x), where ci is the confidence weight of pixel i. Applied to the generalised
balance heuristic, this yields

mi(x) =
ciq̂i(x)∑D

j=1 cj q̂j(x)
(2.29)

Practical Computation
To accurately determine confidence weights, we would have to carefully keep track of the number of
unique candidates considered at each resampling step, and so determine the effective sample count.
It is possible for duplicate candidates to be considered. Consider Figure 2.18, which visualises sample
weights in a pixel grid during two successive frames:

A A high weight sample is generated at the center pixel.
B This sample is resampled by some of the pixel’s spatial neighbours and stored. The sample’s

survival of this step increases its confidence weight.
C In the next frame, temporal resampling causes the sample to be retained. The sample’s survival

of this step further increases its confidence weight.
D Spatial resampling at the next frame causes the bright red pixels to resample the sample which

they have already stored, resulting in duplicate candidates.
19This reversal is only for the purposes of this example. In practice, the temporal step is carried out first, followed by the spatial

step.

2.6. ReSTIR: Reservoir-based Spatiotemporal Importance Resampling 25

Figure 2.18: High weight samples can propagate, resulting in duplicate candidates. Golden arrows indicate spatial resampling.
Teal arrows indicate temporal resampling. Higher saturation indicates higher sample weight.

In practice, the number of samples encountered by a reservoir is often used as a proxy for the effective
sample count. Each sample generated in the initial candidate generation step is given a confidence
of 1. Samples sourced from other pixels have a confidence weight equal to the number of samples
encountered by their reservoir. This results in a slightly modified reservoir data structure and update
rule, given by Algorithm 4. Differences to the original data structure are highlighted in red. Note that
this confidence weight only represents an upper bound, as the actual confidence weight might be lower
due to duplicate samples.

Algorithm 4 Weighted Reservoir Sampling w/ Confidence Weights
1: class Reservoir
2: Y ← ∅ ▷ Set of N output samples
3: wsum ← 0 ▷ Sum of weights
4: c← 0 ▷ Confidence weight of output samples
5: function update(xi, wi, ci) ▷ New candidate, its weight, and its confidence value
6: wsum ← wsum + wi

7: c← c+ ci
8: for j ← 1 to N do
9: if rand() < (wi/wsum) then

10: Yj ← xi

11: end if
12: end for
13: end function
14: end class

Preventing Impoverishment
Figure 2.18 showcases another important potential pitfall in ReSTIR algorithms: sample impoverish-
ment. This occurs as a result of high weight samples propagating and exponentially increasing their
confidence weight. This prevents newly generated samples from being properly considered, as they
have relatively much lower weight compared to these propagated samples.20

To combat this, confidence weights are often capped when performing temporal reuse. This cap is
usually a multiple of the confidence weight of the reservoir carrying out the temporal reuse step, with
20 being a popular value. In ReSTIR literature, confidence weights are often denoted with the variable
name M and capping their values is referred to as M -capping.

20Follow-up work has attempted to amend this more systematically using MC-MC mutations. [32]

2.7. GRIS: Generalised Resampled Importance Sampling 26

2.7. GRIS: Generalised Resampled Importance Sampling
2.7.1. Motivation and Overview
The original conception of ReSTIR [3] adapted RIS to spatiotemporal reuse, and thus chaining RIS
passes, in a relatively straightforward manner. However, the original conception of RIS was designed to
work with fully independent candidates, which is often not the case with ReSTIR as duplicate candidates
can arise (see Section 2.6.5). Moreover, traditional RIS assumes that all samples are in the same
domain, such as points on light sources. If we wish to reuse samples across domains, such as reusing
(parts of) paths through a scene, RIS cannot accommodate this.

GRIS (Generalised Resampled Importance Sampling) is an evolution of RIS, introduced by Lin et al.,
that generalises sample reuse [25]. It formalises the concept of shift mappings to enable sample reuse
across domains, establishes conditions necessary to guarantee convergence, and provides bounds on
variance.

2.7.2. Reuse Across Domains
Practical Example
Consider the global illumination integral from Section 2.1.2. We would like to evaluate this integral via
MC integration and reuse samples via ReSTIR. Recall that a light-carrying path consisting of D + 1
vertices in the global illumination problem is of the form x̄ = [x0, x1, ..., xD], where vertex x0 lies on a
camera sensor, vertex x1 lies on an object in the scene, vertices [x2, ..., xD−1] also lie on objects in the
scene, and xD lies on a light source. Light is emitted from the light sources, reflects off of objects in
the scene, then finally reaches the observer.

Figure 2.19 depicts an example scene with two observers and a single light source. With global illumina-
tion, our samples consist of full paths as opposed to points on light sources are with direct illumination.
It should be immediately clear that paths originating from one observer cannot be directly used in an-
other observer. Their respective x0 vertices will almost always be different, as observers are almost
always in different positions. This is also often the case for x1.

Figure 2.19: Illustration of the global illumination problem. Depicted are two observers (pixels), each evaluating a single
sample consisting of a light-carrying path.

More formally, the domain of integration (the space of all possible samples) of two observers in the
global illumination problem is not the same. Paths which originate from one observer cannot possibly
originate from another. Fully reusing samples is not possible. However, at each vertex along a path,
a light value is computed. At each vertex, we know how much light is arriving at that vertex. This
information can be reused.

2.7. GRIS: Generalised Resampled Importance Sampling 27

Shift Mappings
Shift mappings formally define how samples can be transformed from one domain to another. A sample
is said to be ‘shifted’ from one domain to another. The term originates from gradient-domain rendering
where shift mappings are used to determine horizontal and vertical pixel gradient estimates, which are
then used with the initial path samples to construct the final image [19].

Given a source pixel i (a pixel whose path we want to shift), a target pixel j (a pixel we want to shift the
path to), and a sample path X originating from pixel j, a sample Y originating from a shift mapping is
formally defined as

Y = Ti→j(X) (2.30)

A shift mapping must be a bijective function from a subset of the source domain to all possible outputs
of the function. More simply, it must have the following properties: [43]

• It is deterministic.
• A path from the source domain can map to at most one path from the target domain.
• No two paths from the source domain can map to a single path in the target domain. There must
exist an inverse shift.

• The inverse shift must map back to the original path.
• Not all paths in the source domain need to be shiftable. A shift can fail on certain paths from the
source domain, hence why shift mappings are bijective on only a subset of the source domain.

An example of a shift mapping known as the reconnection shift is depicted in Figure 2.20. This shift
mapping simply connects paths at the third vertex. More formally, given a path x̄i = [xi0 , xi1 , xi2 , ..., xiD]
in the source domain i and a path x̄j = [xj0 , xj1 , xj2 , ..., xjD] in the target domain j, the shifted path is
defined as21

ȳ = Ti→j(x̄i) = [xj0 , xj1 , xi2 , ..., xiD] (2.31)

Figure 2.20: A potential shift mapping that allows for (partially) reusing samples across paths. This particular shift mapping is
known as the reconnection shift.

21Vertices denoted in grey are fixed. They are already known as they are the positions of the observer and the point being
observed.

2.7. GRIS: Generalised Resampled Importance Sampling 28

This shift is not ideal if the third vertex on the source path lies on a glossy or specular surface. This is
because the path segment [xi1 , xi2] in the original path is likely to carry a lot of light information, but the
shifted path segment [xj1 , xi2]may not due to this direction being in a low output portion of the surface’s
BRDF lobe (see Section 2.3.2).

Luckily, a number of shift mappings exist in the relevant literature, such as the random replay shift and
the half-vector shift, which address different concerns such as specular surfaces. Readers are advised
to refer to section 3 of [19] and sections 6.3-6.6 of [43] for more information.

Jacobian Determinants
Consider the scenario depicted in Figure 2.21. It can be seen that the inputs are evenly distributed
in the range [1..5]. The outputs however, are not evenly distributed in the range [1..25]. The relative
distance between any two values changes when a non-trivial function is applied; it is scaled by a factor.

Figure 2.21: Mapping evenly spaced values in the range [1..5] with the function f(x) = x2. It can be seen that the distribution
of the inputs (orange) is not the same as the distribution of the outputs (green).

This factor is the determinant of the Jacobian matrix (often referred to as just the ‘Jacobian’) of the
function. Shift mappings, being functions, change the distribution of their inputs. As such, they need
to be taken into account when resampling as they change the distribution of samples. Shift mappings
in the literature almost always have a known geometric formula for their Jacobian determinant.

Given an input X and a shift mapping T , the determinant of the shift mapping’s Jacobian for this input
is denoted as |T ′(X)|. If Y = T (X) andX has PDF value given by pX(X), the PDF value of Y is given
by

pY (Y) =
pX(X)

|T ′(X)|
(2.32)

Analogously, given an unbiased contribution weight WX (whose expected value is E[WX] = 1
pX(X)) for

input X, the unbiased contribution weight of Y is given by

WY = WX |T ′(X)| (2.33)

2.7. GRIS: Generalised Resampled Importance Sampling 29

Using GRIS
Putting the information we have gathered thus far together, we have the following procedure for con-
ducting a round of resampling with GRIS: [43]

1. Take M inputs (X1, ..., XM), each from its own domain Ωi.
2. Map the samples into the target domain Ω as Yi = Ti(Xi).
3. Evaluate MIS weights mi(Yi) for all Yi.
4. Evaluate resampling weights wi = mi(Yi)q̂(Yi)WXi |T ′i (Xi)|︸ ︷︷ ︸

WYi

for all i.

5. Choose j samples Yj randomly from the Yi proportionally to wi.

6. Evaluate an unbiased contribution weight for each selected sample WYj = 1
q̂(Yj)

∑M
i=1 wi.

MIS Weights
Recall that MIS weights in ReSTIR usually make use of target functions q̂i as proxies for PDFs at
different pixels. Further, it is assumed that all samples for which target functions are evaluated origi-
nate from the same domain. An example is the simplified version of the generalised balance heuristic
(Equation (2.28)). Given that we resample from D pixels in total, it is of the form:

mi(x) =
q̂i(x)∑D
j=1 q̂j(x)

In GRIS however, each sample Yi = Ti(Xi) originates from a source domain Ωi and is mapped to the
target domain Ω of the pixel conducting resampling. We are now faced with three problems:

1. In order to evaluate target functions q̂i at other pixels, we must shift our newly obtained samples
into the domains of those pixels.22

2. The target functions act as proxies for the PDFs in the source domains Ωi; we require proxies in
the target domain Ω.

3. Shift mappings can fail. We may not be able to successfully shift a sample from the target domain
Ω to a source domain Ωi.

For each pixel that we are resampling from, we define a shift mapping Ti that maps samples from that
pixel to the target pixel conducting resampling. This shift mapping can be inverted, allowing us to map
samples from the target pixel to the source pixel as Z = T−1i (Y).23 We can now evaluate the target
function at the source domain Ωi as q̂i(Z). This resolves the first problem and gives us a proxy for the
PDF at the source domain Ωi, namely q̂i(Z).

Building on this by using Equation (2.32), we can now obtain a proxy for the PDF at the target domain
Ω as

q̂i(Z)

|T ′i (Z)|
(2.34)

Evaluating this form would require us to shift Z from the source domain Ωi back to the target domain
Ω in order to compute |T ′i (Z)|. However, we already know that this would give us our original sample
Y as Ti(Z) = Ti(T

−1
i (Y)) = Y . As such, we can instead leverage the inverse function theorem and

multiply by the Jacobian of the inverse shift [43]. This resolves the second problem and gives us a
proxy for the PDF at the target domain Ω of the form

q̂i(Z)
∣∣∣T−1′i (Y)

∣∣∣ (2.35)

22It is important to stress that the sample being shifted here is Yi, the sample belonging to the domain of the pixel conducting
the resampling. We do not shift the original sample Xi.

23The stipulation that there must be an inverse shift associated with every valid shift mapping (Section 2.7.2) permits this.

2.7. GRIS: Generalised Resampled Importance Sampling 30

Lastly, we can resolve our third problem by simply setting our proxy PDF to 0 if the inverse shift mapping
fails. Combining these findings, we coin our proxy PDF as “q̂ from i” and define it as: [25]

q̂←i(Y) =

{
q̂i(Z)

∣∣∣T−1′i (Y)
∣∣∣ if shift is successful

0 otherwise
(2.36)

This grants us a generalised balance heuristic between different domains of the form

mi(x) =
q̂←i(x)∑D
j=1 q̂←j(x)

(2.37)

We can also include the confidence weights from Section 2.6.5, yielding the form

mi(x) =
ciq̂←i(x)∑D

j=1 cj q̂←j(x)
(2.38)

3
Method

3.1. Overview
The presented work outlines a method for combining samples across pixels using RIS in a similar vein
to ReSTIR. However, rather than resampling from spatial neighbours, we use their final samples as-is
in an MIS-style estimator.

Our method consists of the following sequence of steps, carried out for each pixel:

1. Select a fixed set of neighbours to resample from via similarity heuristics based on primary ray
information.

2. Generate a number of canonical samples using RIS.
3. Combine canonical samples with resampled samples from neighbours, update optimal weight

estimates, and evaluate the estimator, similarly to [22].

3.2. Neighbour Selection
In order to estimate optimal weights for combining samples across neighbours, the choice of neighbours
to resample from should remain fixed. This allows us to build up these estimates over the course of
several iterations of our approach.

Ideally, we wish to select neighbours with a higher likelihood of providing useful samples. More formally,
these would be neighbours with a similar distribution of samples, i.e. ones whose target functions q̂i
produce similar results to the current pixel’s target function q̂ given the same set of samples.

To accomplish this, we use the following heuristics to classify neighbours in a small window around the
current pixel as being either similar or dissimilar in a similar vein to [3] and similarly to edge-stopping
functions for bilateral filters [11, 29]. These heuristics are based on the primary ray (i.e. the ray from
the pixel to the point in the scene being observed) and corresponding standard hit information provided
by ray tracers.

• Geometry ID: Valid neighbours must be observing the same object in the scene. A neighbour is
considered dissimilar if the ID of the geometry it is observing is different.

• Depth: Pixels with large disparities in depth (i.e. how far away they are from the camera) are
likely to have different lighting distributions. A neighbour is considered dissimilar if the difference
between its depth and the depth of the current pixel is larger than a user-defined percentage of
the current pixel’s depth.

• Surface normals: Pixels with large disparities in surface normals are not likely to benefit from
the same light samples. A neighbour is considered dissimilar if the angle between its normal and
the normal of the current pixel is larger than a user-defined value.

31

3.3. Multiple Sample Generation 32

We use a square window with a user-adjustable length to define the neighbourhood in which neigh-
bours should be considered. Each neighbour is classified as either similar or dissimilar and then the
desired number of resampling neighbours is picked at random from the set of similar neighbours. If an
insufficient number of similar neighbours cannot be found, the deficit is made up for using dissimilar
neighbours.

3.3. Multiple Sample Generation
3.3.1. The Duplicate Samples Problem
In ReSTIR and ReSTIR-derived approaches, a problem arises when reservoirs are set up to store
several samples. They often end up storing duplicate samples. Figure 2.18 demonstrates an exemplary
scenario. This problem is especially pronounced in (partially) shadowed regions where a small number
of high value samples end up dominating due to there being few lights in the scene that can contribute
to these regions.

Figure 3.1: Demonstration of duplicate sample prevalence in direct illumination with a four sample reservoir. (Left) Amusement
Park scene rendered with ReSTIR for direct illumination. (Right) A heatmap visualising duplicate samples. Black means no

duplicates; white means all four light samples are identical. [42]

This problem arises in two scenarios:

• Initial candidate generation: The application of WRS in ReSTIR as detailed in Algorithm 3
processes each sample N times, where N is the number of desired output samples. As such, a
single sample can potentially pass the check on line 7 several times, resulting in its duplication.

• Spatiotemporal resampling: This is caused by different pixels generating identical candidates
and being unfortunate enough to select the same candidates for their final samples.

3.3.2. Dividing Candidates Into Subsets
Selecting duplicate samples from our initial candidates would prove detrimental to our approach, as
we rely on significantly higher sample counts than are used in most (real-time) applications of ReSTIR.
This is needed in order to compute good estimates for optimal weights.

To address this, we effectively divide our candidates into subsets which are each processed by a sin-
gle ‘sub-reservoir’. Each ‘sub-reservoir’ represents an independent sample, sum of weights, and con-
fidence weight. This is largely based on the stratified version of the RIS estimator as proposed by [35]
(Section 4.5 Stratified Resampled Importance Sampling).

Upon receiving a new candidate, this candidate is processed by the sub-reservoir with the smallest sum
of weights. This minimises the maximum variance of the unbiased contribution weight of each reservoir.
Further, this ensures that high weight candidates are not forced to compete with one another for the
same sub-reservoir, increasing the likelihood that multiple high weight (i.e. potentially high quality)
candidates will be selected during the initial sampling step. This leads to the reservoir data structure

3.4. Estimator and Optimal Weights 33

and corresponding update function in Algorithm 5. Note that this increases storage costs compared to
standard WRS due to the additional sum of weights and confidence weight terms that must be stored
for each sub-reservoir.

Algorithm 5 Weighted Reservoir Sampling w/ Subset Division and Confidence Weights
1: class Reservoir
2: Y ← ∅ ▷ Set of N output samples
3: wsum ← 0 ▷ Sum of weights for each sub-reservoir
4: c← 0 ▷ Confidence weight of each output sample
5: function update(xi, wi, ci) ▷ New candidate, its weight, and its confidence value
6: j ← argminwsum

7: wsumj ← wsumj + wi

8: cj ← cj + ci
9: if rand() < (wi/wsumj

) then
10: Yj ← xi

11: end if
12: end function
13: end class

3.4. Estimator and Optimal Weights
3.4.1. Combining Samples
Neighbours and Shift Mappings as Distributions
When combining samples from neighbouring pixels under GRIS, we need to apply a shift mapping to
map samples to the domain of integration of the target pixel. Different shift mappings can produce
different target samples from the same set of source samples. Thus, each (pixel, shift mapping) pair
represents a different sampling distribution for the purpose of sample combination.

To illustrate, we return to the scenario depicted in Figure 2.19. Applying the reconnection shift shift
mapping results in the target sample depicted in Figure 2.20. We now also assume that all surfaces
except those of the white box and the ceiling are glossy, i.e. the white box’s sides and the ceiling are
the only diffuse surfaces in the scene.

A different shift mapping known as the hybrid shift postpones reconnection until two consecutive diffuse
vertices are encountered along each path; paths are then connected to each other via the second
diffuse vertex [25]. Applying this shift mapping to our scene with this additional assumption results in
the sample depicted in Figure 3.2.

Figure 3.2: Shifting path samples using the hybrid shift shift mapping. This particular shift mapping postpones reconnection
until two consecutive diffuse vertices are encountered along each path.

3.4. Estimator and Optimal Weights 34

R-MIS Estimator
To combine samples generated from multiple pixels, we present the R-MIS (Resampled Multiple Im-
portance Sampling) estimator of the form Equation (3.1). N is the total number of (pixel, shift mapping)
pairs. ni corresponds to the number of samples drawn from each (pixel, shift mapping) pair. All other
terms correspond to the definitions presented in Sections 2.4.1 and 2.7.2.

⟨F ⟩RM =

N∑
i=1

ni∑
j=1

wi(Yij)f(Yij)WYij

ni
(3.1)

3.4.2. Arbitrary Unbiased Contribution Weights
Estimating optimal weights as outlined in Section 2.4.2 requires evaluating the PDF of distributions from
which samples are drawn given arbitrary samples. This cannot be done in a straightforward fashion
however, as our samples are generated via RIS and thus have an intractable distribution (which is
proportional to the target function) and thus no PDF that we can evaluate.

In line with GRIS/RIS theory, we use the reciprocal of the unbiased contribution weight as an unbiased
estimate of this intractable PDF. To compute this weight for arbitrary samples, we emulate replacing the
sample associated with a particular unbiased contribution weight with the sample we wish to evaluate
this weight for.

We assume that all pixels generate the same number of final samples (and thus have the same number
of sub-reservoirs) and generate the same number of initial candidates M . Additionally, we also store
the resampling weights of the final samples chosen by the sub-reservoirs wfinal. Given a sample
Yij = T (Xij) produced by shift mapping the jth sample produced by pixel i, we evaluate the reciprocal
of the arbitrary unbiased contribution weight at pixel k as1

Wk(Yij) =

{
q̂k(Yij)

wsumj
−wfinalj

+wYij
if shift is successful

0 otherwise
(3.2)

We define the mock2 resampling weight wYij
of the shifted sample Yij as

wYij =
1

M
· q̂k(Yij) ·

1

pij(Xij)
· |T ′(Xij)| (3.3)

pij(Xij) is the evaluation of the PDF from which Xij was generated in the source domain.

3.4.3. Evaluating Estimators
The final form of the proposed R-MIS estimator using optimal weights largely follows the structure
presented in Section 2.4.2. A (biased) direct or progressive estimator can be employed. The key
difference is that the scaling factor Sij and column vector Wij , which are used to estimate the optimal
weights, are now defined as

Sij =
1∑N

k=1 nkWk(Yij)
Wij = Sij(W1(Yij), ...,WN (Yij))

⊺ (3.4)

1Though the presented form may seem confusing, it is simply a straightforward reciprocal of the unbiased contribution weight
presented in Section 2.5.1 where wsum is altered as described.

2The term ‘mock’ is used to denote the fact that this resampling weight did not originate organically through the RIS resampling
procedure.

4
Implementation

4.1. Overview
To assess the practical applicability of the presented technique, we implement it in a custom C++ ray
tracer built with Intel’s Embree CPU ray tracing framework [40]. We apply this technique to direct
illumination. In this context, samples are discrete points on light sources. Note that this does not fully
implement the presented theory, as the samples generated by different pixels all lie in the same domain
and hence no shift mapping is required when resampling across pixels.

Three distinct ray-tracing ‘modes’ are provided:

• R-OMIS: The estimator detailed in Section 3.4 using optimal weights.
• R-MIS: The estimator detailed in Section 3.4 using non-optimal (e.g. generalised balance heuris-
tic) weights.

• ReSTIR+: An estimator based on the approach detailed in [3], augmented with our subset division
WRS.

4.2. Ray Tracer Specifics
The ray tracer makes use of a Phong material model with diffuse and specular components and a
quadratic falloff for the geometry component of the rendering equation. For generating initial light sam-
ple candidates, uniform sampling of all lights in the scene is carried out with unshadowed contribution
(i.e. Equation (2.21)) as the target function. Lights are represented as distinct entities and can be
either points, line segments, quadrilaterals, or circular disks. Line segments, quadrilaterals, and disks
are sampled uniformly across their length/surface area.

4.3. Parameters
The parameters that can be adjusted in the implementation can be seen in Figure 4.1. The ‘Features’
and ‘Parameters’ blocks contain options which can affect either all modes (Common), or specific modes.
The functionality of these parameters is as follows:

• Neighbour Selection Heuristics

– Same Geometry: Toggle indicating if neighbours need to be observing the same geometry
to be considered similar.

– Max depth difference fraction: Maximum fractional difference between depths, beyond
which pixels are considered dissimilar.

– Max normal angle difference: Maximum difference between angles of primary hit normals
in degrees, beyond which pixels are considered dissimilar.

• Features

35

4.3. Parameters 36

– Initial Samples - Visibility check: If toggled, a shadow ray is traced for the chosen sample
arising from the initial candidate generation step. The unbiased contribution weight of the
sample is set to 0 if the sample is occluded

– Save alphas visualisation: If toggled, the values of the α vectors (see Section 2.4.2) are
saved as an image for each color channel and for each pixel.

– Use unbiased combination: If toggled, unbiased combination of reservoirs is performed
for the spatial resampling step. Otherwise, biased combination is used. See Appendix A for
exact algorithmic details.

– Spatial reuse: Carry out the spatial reuse step.
– Spatial reuse - Visibility check: If toggled and unbiased combination is used, the target

function used for spatial reservoir resampling includes a visibility term and thus a shadow
ray is traced for each neighbour.

– Temporal reuse: Carry out the temporal reuse step
• Parameters

– Ray tracing mode: Select between the three provided ‘modes’.
– Samples per reservoir: Number of final samples to store for each reservoir.
– Canonical sample count: Number of initial candidates to generate.
– Neighbours to sample: Number of neighbouring pixels to resample from.
– Spatial resample radius: Pixels in a square centered around the canonical pixel are con-

sidered candidates for spatial resampling. The side length of the square is two times this
value.

– Max iterations: Number of iterations used for the estimators.
– Neighbour selection strategy

* Random: Neighbours are chosen randomly.

* Similar: Neighbours are selected if they are considered similar according to the pixel
similarity heuristics.

* Dissimilar: Neighbours are selected if they are considered dissimilar according to the
pixel similarity heuristics.

* EqualSimilarDissimilar: An equal number of similar and dissimilar neighbours is cho-
sen.

– MIS Weights: The MIS weights used for the non-optimal R-MIS estimator.

* Equal: Equal weights are assigned to all pixels.

* Balance: Generalised balance heuristic weights are used (see Equation (2.28)). The
target function used is unshadowed contribution (i.e. the visibility term of the integrand
function is omitted).

– Progressive estimator: If toggled, the progressive variant of the R-OMIS estimator is used.
Otherwise, the direct variant is used. See Section 2.4.2.

– Progressive update modulo: This is the U variable (Algorithm 1) which controls the fre-
quency with which the α estimates (and thus the optimal weights estimates) are updated.

– Spatial resampling passes: Number of spatial resampling rounds carried out during the
ReSTIR+ spatial resampling step.

– Temporal M clamp: Value of the M -cap. When performing temporal resampling with Re-
STIR+, the temporal predecessor’s confidenceweight is capped to amultiple of the canonical
pixel’s confidence weight. This controls the value of the multiple.

4.3. Parameters 37

Figure 4.1: Adjustable parameters in the provided implementation.

5
Results and Discussion

5.1. Preliminaries
5.1.1. Testing Environment
All presented results have been rendered with the described renderer using an Intel i7-9750H CPU and
16GiB of RAM at a resolution of 1280× 720.

5.1.2. Primary Test Scene
In order to facilitate rapid evaluation and provide a controlled environment that can accentuate aspects
of the presented technique, a custom test scene is used for the qualitative results. This test scene is
based on the eponymous Cornell Box and is affectionately dubbed the ‘Cornell Nightclub’. The scene
is effectively a larger Cornell Box with several more boxes in the scene. A render of this scene can be
seen in Figure 5.1.

Figure 5.1: A reference render of the Cornell Nightclub test scene.

Where the test scene differs most is in the lighting arrangement as shown in Figure 5.2. The original
Cornell Box features a single area light at the top of the box, whereas the Cornell Nightclub features 512
uniformly arranged rectangular area lights. The back wall contains 256 such lights and each one has
as color (0.4, 0.4, 0.4); the right wall contains the other 256 and each one has as color (0.65, 0.65, 0.65).

38

5.1. Preliminaries 39

(a) Back wall containing dark grey lights. (b) Right wall containing light grey lights.

Figure 5.2: Rasterized view of the Cornell Nightclub scene showcasing lighting arrangement.

5.1.3. Additional Test Scenes
To facilitate quantitative analysis under different conditions, three additional scenes are used for produc-
ing results. They are adaptations of scenes from Blend Swap, a website where users of the Blender 3D
animation andmodelling software can share resources. The utilised versions includemild modifications
by [2]. These scenes are:

• Modern Hall: A hall and staircase illuminated by a planar light at the far end of the hall, several
large disc lights on the roof, and smaller planar lights to the right of the staircase. Courtesy of
Blend Swap user NewSee2l035.

• The Breakfast Room: A dining table illuminated by two overhead circular lamps. Courtesy of
Blend Swap user Wig42.

• The Modern Living Room: A living room illuminated by a single overhead disc light that is
diagonally opposite to the couch. Courtesy of Blend Swap user Wig42.

(a) Modern Hall (b) The Breakfast Room

(c) The Modern Living Room1

Figure 5.3: Reference renders of the scenes used for quantitative analysis.

1The back wall of the shelves contains blotchy black artifacts due to geometry overlap with the back wall of the room itself.
The placements and sizes of these blotches are consistent and so do not preclude the scene’s usability for analysis.

5.1. Preliminaries 40

5.1.4. Chosen Parameters
Unless otherwise specified, the relevant parameters used during testing are as follows:

• Neighbour Selection Heuristics

– Same Geometry: True
– Max depth difference fraction: 0.1
– Max normal angle difference: 25°

• Parameters

– Samples per reservoir: 4
– Canonical sample count: 64
– Neighbours to sample: 3
– Spatial resample radius: 10
– Max iterations: 5
– Neighbour selection strategy: Similar
– Progressive estimator: False (i.e. the direct estimator is used)

5.1.5. Error Metric
The metric used to measure error in this section (relative to a reference render of the scene) is MAPE
(Mean Average Percentage Error). This error is computed for an entire image via Equation (5.1),
where n denotes the total number of pixels. As the estimated value ⟨I⟩ and the ground truth value I
both consist of RGB vectors, we compute the MAPE using the L2 norm of the vectors. We denote the
L2 norm of vector A as A2.

E =
1

n

n∑
i=1

∣∣∣∣Ii2 − ⟨I⟩i2Ii2

∣∣∣∣ (5.1)

5.1.6. False Colour Insets
Throughout this section, false colour insets will be used to visualise the α vectors produced by the
rendering process (see Section 2.4.2). Each pixel associates a value in the range [−1, 1] with itself and
each of the neighbours it resamples from. This value correlates with the average weight associated with
each pixel from which samples are generated and thus allows us to visualise the sign and magnitude
of the computed weights. Lastly, in practice, an integral is estimated for each of the three red, green,
and blue colour channels. Thus, each colour channel is associated with a separate α vector and hence
a separate visualisation.

Figure 5.4 shows an example of such an inset. The colour bar on the right indicates the colour associ-
ated with different values. Positive values are depicted in orange, while negative values are depicted
in blue.

5.2. Similarity Heuristics 41

Figure 5.4: Example of a false colour inset for the green channel.

5.2. Similarity Heuristics
Figure 5.5 compares the results of using different strategies for selecting neighbours for resampling.
The heuristics specified earlier are used to select either similar neighbours, dissimilar neighbours, or an
equal number of both. The last strategy randomly selects neighbours in the user-specified neighbour-
hood. Most notably, preferring dissimilar pixels creates visible bands around geometric discontinuities,
likely as a result of the mismatch between the shapes of target functions between dissimilar pixels.
The ‘Similar’ strategy shows the smallest amount of banding, followed by random selection, the ‘Equal’
strategy, and then the ‘Dissimilar’ strategy. This demonstrates the importance of selecting similar neigh-
bours for our approach, as they are more likely to provide useful samples that do not add variance to
the estimator.

Figure 5.5: Comparison of similarity heuristic selection techniques.

The aforementioned bands are reflected in the generated α vectors and thus the subsequent weights,
as can be seen in Figure 5.6, which shows these values for the canonical pixel and one of its neigh-
bours. The prevalence of these bands can be further seen in Figure 5.7, which showcases the regions
inspected in the zoomed in snippets from Figure 5.5. Optimal weight estimates appear to discourage
samples from dissimilar pixels by assigning them intensely negative weights.

5.3. Canonical Candidate Count 42

(a) Canonical (b) Neighbour

Figure 5.6: Comparison of α vectors generated under different selection techniques for the red channel.

Figure 5.7: Zoomed in views of the α vectors generated under different selection techniques for the red channel.

5.3. Canonical Candidate Count
Figure 5.8 shows the effect of increasing the number of candidates used for the initial candidate gen-
eration step. In addition to yielding higher quality samples, increasing the candidate count reduces
the variance of the UCW [25]. This results in arbitrary UCWs with lower variance, which reduces the
variance of the ⟨A⟩ and ⟨b⟩ estimators, yielding estimated optimal weights with lower variance.

Figure 5.8: Comparison of varying numbers of initial light candidates.

5.4. Reservoir Size and Neighbour Count 43

Figure 5.9 showcases a reduction in the variance of the α vector estimates and thus the aforementioned
subsequent reduction in the variance of the optimal weight estimates. The false colour insets become
generally less grainy and regions with smoothly varying weights of a particular sign (positive or negative)
begin to manifest. This is not the case across the entire image however, as evidenced by the back-
left wall and right side of the box in the first zoomed in view (of one of the boxes in the middle of the
nightclub).

Figure 5.9: Effect of increasing the number of initial light candidates on α vector estimates for the red colour channel of the
canonical pixel. The zoomed in views highlight two exemplary areas for both the canonical pixel and one of its resampling

neighbours.

5.4. Reservoir Size and Neighbour Count
In addition to their typical role in ReSTIR-style approaches, the number of samples stored per reservoir
and the number of neighbours being resampled from play an additional role in our approach. Increasing
the number of samples from each neighbour allows us to derive more accurate estimates for the α
vectors and subsequent optimal weights, but increases the size of the linear system that must be
solved. Additional neighbours provide more (potentially high quality) samples, but also increase the
size of the linear system.

Figures 5.10 to 5.13 show how MAPE varies with differing reservoir sizes and resampling neighbour
counts for the tested scenes. We show this variation with different numbers of candidates for the
initial candidate generation step. MAPE generally decreases with increasing reservoir sizes, provided
that the number of candidates grows in relative proportion to reservoir size. With a low number of
candidates, we do not acquire samples that are well distributed according to the target function and
(more importantly) our UCWs are high variance, leading to high variance in our optimal weight estimates.
This leads to the counter-intuitive effect of larger reservoirs producing worse results with a low number
of initial candidates. Given sufficient initial candidates, increasing reservoir size produces better results.

Increasing the number of neighbours reduces MAPE in instances where reservoir size is not large and
the number of initial candidates is relatively small, allowing for pixels to make up for their lack of well-
distributed samples by borrowing from neighbours. As canonical candidate count increases, the benefit
of borrowing from neighbours gradually decreases, eventually yielding worse results. This is likely due
to the simplicity of most of the tested scenes resulting in pixels being able to produce sufficiently high
quality samples given enough candidates. Samples from neighbours are thus not as high quality as
those produced by the pixel itself in those instances.

These observations suggest that a balancing act exists between reservoir size and neighbour count
in relation to candidate count. In scenarios where it is expensive to produce several initial candidates,
increasing neighbour counts both improves final quality and amortizes sample generation costs. Ge-
ometric complexity and the abundance of smoothly varying geometric features appears to dictate this
balancing act. This is demonstrated by the results from ‘The Modern Living Room’ in Figure 5.13,
which violate the trend seen in the other scenes. Additional neighbours and larger reservoirs lead
to universally better results, likely owing to the greater geometric variety of the scene. This result
is counter-intuitive, as greater geometric variety should lead to worse neighbour samples due to the
resulting dissimilarity in target functions.

5.4. Reservoir Size and Neighbour Count 44

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 256 canonical candidates

Figure 5.10: Cornell Nightclub

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 256 canonical candidates

Figure 5.11: Modern Hall

5.4. Reservoir Size and Neighbour Count 45

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 256 canonical candidates

Figure 5.12: The Breakfast Room

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 256 canonical candidates

Figure 5.13: The Modern Living Room

5.5. Convergence Behaviour 46

5.5. Convergence Behaviour
Figure 5.14 shows how MAPE scales with increasing iterations for all tested scenes. The tested con-
figurations are as follows:

• ReSTIR: A baseline implementation of the original ReSTIR methods presented in [3]. We carry
out 3 rounds of spatial resampling, do not conduct temporal resampling, and average the results
of several iterations as in the offline version of the estimator from [25]. We do not conduct a
visibility check for spatial resampling (i.e. the target function used for spatial resampling does not
include a visibility term). We test versions with both biased and unbiased reservoir combinations
(algorithms 4 and 6 from [3]).

• ReSTIR+: Our variation of ReSTIR incorporating WRS with subset division. Similarly to ReSTIR,
we test versions with both biased and unbiased reservoir combinations (see Appendix A for details
on the reservoir combination algorithms).

• R-MIS: The presented R-MIS estimator with equal and balance heuristic MIS weights.
• R-OMIS: The presented R-OMIS estimator. We test both the Direct and Progressive versions.
For the progressive estimator, values of 1, 2, and 4 are used for the U parameter controlling the
frequency with which the α vector estimates are updated.

(a) Cornell Nightclub (b) Modern Hall

(c) The Breakfast Room (d) The Modern Living Room

Figure 5.14: Decrease in error (MAPE) over iterations for the tested scenes.

The first observation of interest is that ReSTIR+ generally outperforms ReSTIR in both of their biased
and unbiased variations, showcasing the benefits afforded by lower sample duplication probabilities
from subset division. The only exception is in ‘The Modern Living Room’ where unbiased baseline
ReSTIR outperforms unbiased ReSTIR+. This is likely due to the resulting UCWs being of a higher
variance with ReSTIR+, as fewer samples contribute to the UCW of each final sample as a result
of storing separate wsum terms for each sub-reservoir. This variance is further exacerbated by the
unbiased combination as it effectively ‘invalidates’ the contribution of some samples to the UCW of the
final samples compared to the biased combination.

Furthermore, R-MIS generally outperforms all ReSTIR variants. This comes as no surprise, as each
R-MIS iteration shades significantly more samples compared to ReSTIR. This increases quality at the
cost of additional shadow rays in our direct illumination scenario. Strangely, using equal weights yields
better results than using generalised balance heuristic weights. This might be due to the generalised

5.6. Runtime Analysis 47

balance heuristic weights exacerbating error due to their omission of the visibility term. Experimentation
with additional heuristics such as pairwise weights [1] and ratio weights [27] may yield better results.
Additionally, in applications where the integrand function is used as the target function (such as path
tracing), these results may differ drastically.

Lastly, the Progressive versions of R-OMIS are the worst performing by a significant margin. The
Direct version performs comparably to the ReSTIR variants in scenes having low geometric complexity
(and thus greater similarity between target PDFs of neighbouring pixels). In ‘The Breakfast Room’, it
outperforms the ReSTIR variants as well as R-MIS with balance heuristic weights. In ‘The Modern
Living Room’, it closely matches R-MIS with equal weights as of the fifth iteration. This suggests
that optimal weights are largely not beneficial unless the scene has sufficient geometric and lighting
complexity which would lead to the similarity heuristics not being able to identify good neighbours to
resample from.

5.6. Runtime Analysis
Figure 5.15 showcases runtimes for a single iteration of the configurations tested in Section 5.5, broken
down by their respective steps. For ‘R-OMIS Progressive’, we include the time needed to update the
α vector estimates. Configurations which share a step and execute it in the same manner are grouped
together. The significance of each step is as follows:

• Primary Rays: Ray-tracing step which determines the primary hitpoint and its properties.
• Resampling Indices: Determination of the similarity of neighbours in the resampling neighbour-
hood as described in Section 3.2.

• Candidate Generation: Generation of samples from an initial set of candidates. This is the first
step of the process described in Section 2.6.3.

• Spatial Resampling: Resampling reservoirs from neighbour pixels. This is the third step of the
process described in Section 2.6.3.

• Shading: For ReSTIR-derived approaches, this simply denotes shading the final samples that
have survived initial candidate generation and spatial resampling. For R-MIS this denotes com-
puting MIS weights for and shading all gathered samples. For R-OMIS this denotes the work
defined per iteration for the estimators from Algorithms 1 and 2.

• IterationCombination: For ‘R-OMISDirect’, this denotes solving for theα vectors and computing
their sum as described in lines 14 and 15 of Algorithm 2. For all other configurations, this denotes
simply averaging the output of the various iterations.

• Total: Total execution time for the configuration. Note that summing the other columns will not
produce the exact number presented here due to the grouping of steps shared by different con-
figurations.

• Total - Iteration Work: Total execution time for the steps carried out each iteration (i.e. total
execution time minus the steps carried out before or after the estimators’ iterations).

We observe that subset division WRS leads to a faster candidate generation step as evidenced by
baseline ReSTIR being slower in this respect compared to the other configurations. This is likely due
to not having to generate a random number for each sub-reservoir, as is the case with baseline WRS.
The overhead of determining the sub-reservoir with the smallest wsum does not appear to be significant.
However, spatial resampling with subset division WRS is significantly more expensive.

The R-MIS estimators appear to be generally faster than the ReSTIR-derived estimators. However,
this is a highly deceptive result. The scenes used for our testing are relatively geometrically simple,
with triangle counts ranging from 83 for the ‘Cornell Nightclub’ to 134,701 for ‘The Breakfast Room’.
Consequently, the cost of tracing rays (and thus the visibility term of the integrand function) is quite low
relative to the other terms of the integrand. This is evident from the runtimes for the ‘Primary Rays’
step across all scenes. In larger scenes with more complex geometry, tracing rays will be significantly
more expensive.

5.7. R-MIS Weights 48

More complex MIS weighting schemes are predictably more expensive, as evidenced by the R-OMIS
estimators and ‘R-MIS - Balance’ being significantly more costly than ‘R-MIS - Equal’. This further
motivates the benefits to be gained by experimenting with alternative MIS weighting schemes.

Primary Rays Resampling Indices Candidate Generation Spatial Resampling Shading Iteration Combination Total Total - Iteration Work
ReSTIR - Biased

79

N/A
3267 2970

122

6

6532 6447
ReSTIR - Unbiased 4094 7818 7733
ReSTIR+ - Biased

2724

3819 7553 7468
ReSTIR+ - Unbiased 5090 8835 8750
R-MIS - Equal

1559 N/A

744 5393 3749
R-MIS - Balance 2192 6817 5173
R-OMIS - Progressive 3580 9103 7459
R-OMIS - Direct 2786 984 9240 6618

(a) Cornell Nightclub

Primary Rays Resampling Indices Candidate Generation Spatial Resampling Shading Iteration Combination Total Total - Iteration Work
ReSTIR - Biased

91

N/A
3963 3326

151

7

7721 7623
ReSTIR - Unbiased 4831 9240 9142
ReSTIR+ - Biased

3609

4391 8897 8799
ReSTIR+ - Unbiased 5722 10114 10016
R-MIS - Equal

1565 N/A

877 6439 4776
R-MIS - Balance 2701 8443 6780
R-OMIS - Progressive 4236 10994 9331
R-OMIS - Direct 3263 1038 10637 7943

(b) Modern Hall

Primary Rays Resampling Indices Candidate Generation Spatial Resampling Shading Iteration Combination Total Total - Iteration Work
ReSTIR - Biased

116

N/A
4022 3181

149

6

7736 7614
ReSTIR - Unbiased 4491 8916 8794
ReSTIR+ - Biased

3559

4413 8927 8805
ReSTIR+ - Unbiased 5390 10081 9959
R-MIS - Equal

1616 N/A

918 6611 4873
R-MIS - Balance 2579 8260 6522
R-OMIS - Progressive 5155 11654 9916
R-OMIS - Direct 3086 2117 11630 7781

(c) The Breakfast Room

Primary Rays Resampling Indices Candidate Generation Spatial Resampling Shading Iteration Combination Total Total - Iteration Work
ReSTIR - Biased

92

N/A
4185 3181

162

8

7875 7775
ReSTIR - Unbiased 4491 9264 9164
ReSTIR+ - Biased

3846

4413 9578 9478
ReSTIR+ - Unbiased 5390 10595 10495
R-MIS - Equal

1536 N/A

926 6934 5298
R-MIS - Balance 2829 8861 7225
R-OMIS - Progressive 6354 13008 11372
R-OMIS - Direct 3348 3175 13288 8485

(d) The Modern Living Room

Figure 5.15: Runtimes for the presented estimators for a single iteration, broken down by their respective steps, for each
scene. The columns in bold are the steps carried out each iteration; other columns denote steps that are carried out only once

per evaluation of the estimator or aggregate times. All times are in milliseconds.

5.7. R-MIS Weights
Figure 5.16 demonstrates the effects of different weighting schemes for the R-MIS estimator. We com-
pare to equal weights as a baseline. Balance heuristic weights generally produce worse results, with
the exception of regions with extreme geometric dissimilarities between pixels, such as around the
rim of the jug in ‘The Breakfast Room’. These extreme cases take advantage of the balance heuris-
tic weights’ ability to combat dissimilarities between pixels’ target functions and discourage obviously
suboptimal samples, but such cases are sparse in the tested scenes.

Optimal weights fare the best with geometric dissimilarities, particularly when they vary smoothly such
as along the jug, teapot, and teacups in ‘The Breakfast Room’. However, optimal weights do not
fare as well compared to equal weights when neighbours are similar in geometric properties as well
as relative lighting distributions, such as on the stairs of the staircase in ‘Modern Hall’. Additionally,
regions exposed to intense light, such as the back corner in ‘Modern Hall’, pose a significant challenge
to optimal weights, which are outperformed by equal and balance heuristic weights.

This suggests that optimal weights can offer greater flexibility in scenes with greater geometric variety
and more intricate lighting arrangements, as they provide a mechanism for learning the usefulness of
samples generated from different neighbours. This is especially the case if the similarity heuristics are
not capable of fully capturing these differences. If a scene does not require such flexibility however,
using optimal weights is (ironically) suboptimal.

5.8. WRS With Subset Division 49

(a) Modern Hall

(b) The Breakfast Room

Figure 5.16: MAPE heatmaps showcasing error on a per-pixel basis for the R-MIS estimator with equal weights, balance
heuristic weights, and the Direct variant of the R-OMIS estimator, labelled ‘Optimal’.

5.8. WRS With Subset Division
Figure 5.17 demonstrates the effects of WRS with subset division in isolation by comparing the Re-
STIR+ estimator to baseline ReSTIR. ReSTIR+ appears to be more capable of finding good samples
in challenging conditions, such as partially shadowed regions and regions of smooth geometric variety.
This can be seen in the zoomed in view of the jug’s shadow and handle, where ReSTIR+ demonstrates
less error compared to baseline ReSTIR for both the biased and unbiased variants.

However, ReSTIR+ is more prone to bright artifacts, commonly referred to as ‘fireflies’. These are
particularly evident around geometric discontinuities where neighbours are likely to have differently
shaped target functions and manifest as isolated spots of high error in the heatmap. This can be seen
in the zoomed in view of the rim of the chair and the edge of the table, particularly for the unbiased
variants. These results are likely due to variance in the UCW estimates.

Figure 5.17: Render of ‘The Breakfast Room’ produced by the unbiased variant of ReSTIR+ alongside MAPE heatmaps
showcasing error on a per-pixel basis for the biased and unbiased variants of ReSTIR and ReSTIR+ (detailed in Section 5.5).

Note that the corresponding renders use a single iteration of each estimator.

6
Conclusion

We have presented a framework for combining samples from multiple distributions (and generated in
potentially different domains) via RIS in an MIS-style estimator. We have extended the optimal MIS
weight scheme to this estimator by defining a method for constructing arbitrary unbiased contribution
weights for samples not generated via the original RIS procedure which yielded the base unbiased
contribution weight. We have shown the importance of selecting neighbours with similarly shaped
target functions for the ideal function of the presented estimator. Lastly, we demonstrated a method for
extending WRS to handle generating multiple samples with no risk of duplicate samples.

6.1. Future Work
6.1.1. Ablation Study With Subset Division WRS
Subset division WRS appears to be a generally effective augmentation to WRS as evidenced by our
ReSTIR+ implementation producing better results compared to baseline ReSTIR. However, it is asso-
ciated with increased storage costs and increased runtime costs for spatial resampling (in our imple-
mentation).

A thorough investigation of the behaviour of subset division WRS would enrich the current scope of
ReSTIR literature. Its costs vary differently compared to baseline WRS, relative to parameters such
as the number of final samples, the number of initial candidates, and the extent of spatiotemporal
resampling. Further, it may help with alleviating the correlation artifacts common in ReSTIR-based
approaches. Lastly, other heuristics for selecting the sub-reservoir to be used for processing input
samples may prove superior.

6.1.2. Accumulating Unbiased Contribution Weight Estimates
In typical resampling usage scenarios, unbiased contribution weights are computed based on a single
round of candidate generation. As the presented approach is tailored towards offline rendering and so
involves generating candidates based on the same target function across iterations, it may be possible
to accumulate unbiased contribution weight estimates across iterations. This would greatly reduce
variance as a result of these estimates. Initial experimentation did not prove successful, suggesting
that the involved maths is not straightforward.

6.1.3. Neighbour Selection
Selecting neighbours with target functions whose shapes are similar is crucial for the success of the
presented method. While the presented similarity heuristics produce satisfactory results, additional
heuristics such as similarity of BRDFs may produce better results.

Further, more advanced techniques that attempt to directly approximate the distribution of lighting
around particular points can be used to derive distributions that can be compared for similarity. A
pre-processing step involving approaches similar to path guiding [39] or estimation of PDFs as von
Mises–Fisher distributions [36] can be used to inform the choice of resampling neighbours.

50

6.1. Future Work 51

6.1.4. Application to Scenarios With Non-Trivial Spatial Resampling
The presented implementation applies the proposed method in the context of direct lighting using target
functions that omit the visibility term. As such, evaluating the actual integrand function involves tracing
an additional visibility ray after resampling has taken place.

In scenarios where the spatial resampling step itself produces a value for the integrand function, such
as global illumination [26] and arbitrary light-carrying paths [25, 24], the presented method should be
significantly more efficient. In such scenarios, a spatially resampled sample is usually significantly
cheaper than a canonical sample. Further, such scenarios usually involve the usage of shift mappings
to reuse samples across domains and would constitute a full implementation of the presented theory.

References

[1] Benedikt Bitterli. “Correlations and reuse for fast and accurate physically based light transport”.
PhD thesis. Dartmouth College, 2021.

[2] Benedikt Bitterli. Rendering resources. https://benedikt-bitterli.me/resources/. 2016.
[3] Benedikt Bitterli et al. “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic

direct lighting”. In: ACM Transactions on Graphics (TOG) 39.4 (2020), pp. 148–1.
[4] Jiayin Cao. Monte Carlo Integral with Multiple Importance Sampling. Aug. 2015. url: https://

agraphicsguynotes.com/posts/monte_carlo_integral_with_multiple_importance_sampli
ng/.

[5] Min-Te Chao. “A general purpose unequal probability sampling plan”. In: Biometrika 69.3 (1982),
pp. 653–656.

[6] Per H Christensen, Wojciech Jarosz, et al. “The path to path-traced movies”. In: Foundations and
Trends® in Computer Graphics and Vision 10.2 (2016), pp. 103–175.

[7] Ege Ciklabakkal et al. “Single-pass stratified importance resampling”. In: Computer Graphics
Forum. Vol. 41. 4. Wiley Online Library. 2022, pp. 41–49.

[8] Carsten Dachsbacher et al. “Implicit visibility and antiradiance for interactive global illumination”.
In: ACM Transactions on Graphics (TOG) 26.3 (2007), 61–es.

[9] Addis Dittebrandt et al. “Markov Chain Mixture Models for Real-Time Direct Illumination”. In:Com-
puter Graphics Forum. Vol. 42. 4. Wiley Online Library. 2023, e14881.

[10] Pavlos S Efraimidis. “Weighted random sampling over data streams”. In: Algorithms, Probabil-
ity, Networks, and Games: Scientific Papers and Essays Dedicated to Paul G. Spirakis on the
Occasion of His 60th Birthday (2015), pp. 183–195.

[11] Elmar Eisemann and Frédo Durand. “Flash photography enhancement via intrinsic relighting”. In:
ACM transactions on graphics (TOG) 23.3 (2004), pp. 673–678.

[12] Luca Fascione et al. “Path tracing in production”. In: ACM SIGGRAPH 2018 Courses. 2018,
pp. 1–79.

[13] Iliyan Georgiev and Philipp Slusallek. “Simple and Robust Iterative Importance Sampling of Vir-
tual Point Lights.” In: Eurographics (Short Papers). 2010, pp. 57–60.

[14] Iliyan Georgiev et al. “Light transport simulation with vertex connection and merging.” In: ACM
Trans. Graph. 31.6 (2012), pp. 192–1.

[15] Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. “Multiplexed metropolis light
transport”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), pp. 1–10.

[16] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. “A path space extension for
robust light transport simulation”. In: ACM Transactions on Graphics (TOG) 31.6 (2012), pp. 1–
10.

[17] Eric Haines and Tomas Akenine-Möller, eds. Ray Tracing Gems. http://raytracinggems.com.
Apress, 2019.

[18] Eric Heitz et al. “A low-discrepancy sampler that distributes Monte Carlo errors as a blue noise
in screen space”. In: ACM SIGGRAPH 2019 Talks. 2019, pp. 1–2.

[19] Binh-Son Hua et al. “A Survey on Gradient-Domain Rendering”. In: Computer Graphics Forum.
Vol. 38. 2. Wiley Online Library. 2019, pp. 455–472.

[20] Bernhard Kerbl and Adam Celarek. Materials I.
[21] Bernhard Kerbl and Adam Celarek. Monte Carlo Integration I.

52

https://agraphicsguynotes.com/posts/monte_carlo_integral_with_multiple_importance_sampling/
https://agraphicsguynotes.com/posts/monte_carlo_integral_with_multiple_importance_sampling/
https://agraphicsguynotes.com/posts/monte_carlo_integral_with_multiple_importance_sampling/
http://raytracinggems.com

References 53

[22] Ivo Kondapaneni et al. “Optimal multiple importance sampling”. In: ACM Transactions on Graph-
ics (TOG) 38.4 (2019), pp. 1–14.

[23] Jaroslav Křivánek et al. “Unifying points, beams, and paths in volumetric light transport simula-
tion”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), pp. 1–13.

[24] Daqi Lin, Chris Wyman, and Cem Yuksel. “Fast volume rendering with spatiotemporal reservoir
resampling”. In: ACM Transactions on Graphics 40.6 (Dec. 2021), pp. 1–18. doi: 10.1145/3478
513.3480499.

[25] Daqi Lin et al. “Generalized resampled importance sampling: foundations of ReSTIR”. In: ACM
Transactions on Graphics (TOG) 41.4 (2022), pp. 1–23.

[26] Yaobin Ouyang et al. “ReSTIR GI: Path resampling for real-time path tracing”. In: Computer
Graphics Forum. Vol. 40. 8. Wiley Online Library. 2021, pp. 17–29.

[27] Xingyue Pan et al. “Enhancing Spatiotemporal Resampling with a Novel MIS Weight”. In: Com-
puter Graphics Forum. Vol. 43. 2. Wiley Online Library. 2024, e15049.

[28] Steven G Parker et al. “Optix: a general purpose ray tracing engine”. In: Acm transactions on
graphics (tog) 29.4 (2010), pp. 1–13.

[29] Georg Petschnigg et al. “Digital photography with flash and no-flash image pairs”. In: ACM trans-
actions on graphics (TOG) 23.3 (2004), pp. 664–672.

[30] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016. isbn:
0128006455.

[31] Stefan Popov et al. “Probabilistic connections for bidirectional path tracing”. In: Computer Graph-
ics Forum. Vol. 34. 4. Wiley Online Library. 2015, pp. 75–86.

[32] Rohan Sawhney et al. “Decorrelating restir samplers via mcmc mutations”. In: ACM Transactions
on Graphics 43.1 (2024), pp. 1–15.

[33] Christoph Schied et al. “Spatiotemporal variance-guided filtering: real-time reconstruction for
path-traced global illumination”. In: Proceedings of High Performance Graphics. 2017, pp. 1–
12.

[34] Martin Šik et al. “Robust light transport simulation via metropolised bidirectional estimators”. In:
ACM Trans. Graph 35.6 (2016), p. 245.

[35] Justin F Talbot. Importance resampling for global illumination. Brigham Young University, 2005.
[36] Yusuke Tokuyoshi. “Efficient Spatial Resampling Using the PDF Similarity”. In: Proceedings of

the ACM on Computer Graphics and Interactive Techniques 6.1 (2023), pp. 1–19.
[37] Eric Veach. Robust Monte Carlo methods for light transport simulation. Stanford University, 1998.
[38] Eric Veach and Leonidas J Guibas. “Metropolis light transport”. In: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques. 1997, pp. 65–76.
[39] Jiří Vorba et al. “On-line learning of parametric mixture models for light transport simulation”. In:

ACM Transactions on Graphics (TOG) 33.4 (2014), pp. 1–11.
[40] IngoWald et al. “Embree: a kernel framework for efficient CPU ray tracing”. In: ACM Transactions

on Graphics (TOG) 33.4 (2014), pp. 1–8.
[41] Chris Wyman and Adam Marrs. “Introduction to directx raytracing”. In: Ray Tracing Gems: High-

Quality and Real-Time Rendering with DXR and Other APIs (2019), pp. 21–47.
[42] Chris Wyman and Alexey Panteleev. “Rearchitecting spatiotemporal resampling for production”.

In: Proceedings of the Conference on High-Performance Graphics. 2021, pp. 23–41.
[43] ChrisWyman et al. “A gentle introduction to ReSTIR path reuse in real-time”. In:ACMSIGGRAPH

2023 Courses. 2023, pp. 1–38.
[44] Dmitry Zhdan. Fast denoising with self stabilizing recurrent blurs. 2020.

https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1145/3478513.3480499

A
ReSTIR+ Reservoir Combinations

The following are the algorithms for combining multiple reservoirs in a similar vein to [3] using WRS with
subset division. They are analoguous to ‘Algorithm 4: Combining the streams of multiple reservoirs’
and ‘Algorithm 6: Unbiased combination of multiple reservoirs’ respectively. We use the reservoir data
structure from Algorithm 5 and use r.Wi to denote the UCW associated with sample i in reservoir r.
We denote the number of output samples as N .

Algorithm 6 Biased Reservoir Combination - ReSTIR+
1: function combineReservoirsBiased(q̂, r1, r2, ..., rk) ▷ Target function of the canonical pixel and

the k reservoirs to combine
2: Reservoir s
3: for each r ∈ {r1, r2, ..., rk} do ▷ Process each reservoir
4: for i← 1 to N do ▷ Process each sample contained in the reservoir
5: s.update(r.Yi, q̂(r.Yi) · r.Wi · r.ci, r.ci)
6: end for
7: end for

8: for i← 1 to N do
9: s.Wi ← 1

q̂(s.Yi)
· 1
s.ci
· s.wsumi

10: end for
11: return s
12: end function

54

55

Algorithm 7 Unbiased Reservoir Combination - ReSTIR+
1: function combineReservoirsUnbiased(q̂, r1, r2, ..., rk, q̂1, q̂2, ..., q̂k) ▷ Target function of the

canonical pixel, the k reservoirs to combine, and the k target functions associated with each of the
input reservoirs

2: Reservoir s
3: for each r ∈ {r1, r2, ..., rk} do ▷ Process each reservoir
4: for i← 1 to N do ▷ Process each sample contained in the reservoir
5: s.update(r.Yi, q̂(r.Yi) · r.Wi · r.ci, r.ci)
6: end for
7: end for

8: Z ← 0N ▷ Adjusted confidence weights for each of the sub-reservoirs
9: for i← to k do ▷ Loop over all reservoirs and their associated target functions

10: for j ← 1 to N do ▷ Loop over all sub-reservoirs
11: if q̂i(s.Yj) > 0 then
12: Zj ← Zj + ri.cj
13: end if
14: end for
15: end for

16: for i← 1 to N do
17: s.Wi ← 1

q̂(s.Yi)
· 1
Zi
· s.wsumi

18: end for
19: return s
20: end function

B
Source Code

The source code and scene data used to generate the presented results can be found at the following
URLs:

• R-OMIS Implementation: Implementation of the presented estimators and their associated tech-
niques, namely ReSTIR+, R-MIS, and R-OMIS.
https://github.com/MrMagnifico/romis

• Baseline ReSTIR Implementation: Implementation of ReSTIR as described in [3] with no algo-
rithmic alterations.
https://github.com/MrMagnifico/cpp-restir

• Visualisations: Python code used to construct many of the presented diagrams, graphs, and
visualisations.
https://github.com/MrMagnifico/romis-visuals

56

https://github.com/MrMagnifico/romis
https://github.com/MrMagnifico/cpp-restir
https://github.com/MrMagnifico/romis-visuals

C
Full Images

This appendix contains the full images used to composite the striped comparisons and MAPE heatmap
comparisons in chapter 5.

C.1. Similarity Heuristics
C.1.1. Final Renders

(a) Similar (b) Dissimilar

(c) Equal (d) Random

Figure C.1: Similarity Heuristics - Final Renders

57

C.1. Similarity Heuristics 58

C.1.2. Alpha Vectors
Canonical

(a) Similar (b) Dissimilar

(c) Equal (d) Random

Figure C.2: Similarity Heuristics - Canonical Alpha Vectors

Neighbour

(a) Similar (b) Dissimilar

(c) Equal (d) Random

Figure C.3: Similarity Heuristics - Neighbour Alpha Vectors

C.2. Canonical Candidate Count 59

C.2. Canonical Candidate Count
C.2.1. Final Renders

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 128 canonical candidates

(e) 256 canonical candidates

Figure C.4: Canonical Candidate Count - Final Renders

C.2. Canonical Candidate Count 60

C.2.2. Alpha Vectors
Canonical

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 128 canonical candidates

(e) 256 canonical candidates

Figure C.5: Canonical Candidate Count - Canonical Alpha Vectors

C.3. MAPE Heatmaps 61

Neighbour

(a) 16 canonical candidates (b) 32 canonical candidates

(c) 64 canonical candidates (d) 128 canonical candidates

(e) 256 canonical candidates

Figure C.6: Canonical Candidate Count - Neighbour Alpha Vectors

C.3. MAPE Heatmaps
Heatmaps corresponding to renders of all tested scenes (see Section 5.1.2 and Section 5.1.3) are
provided for both a single iteration and 5 iterations. The presented configurations correspond to those
detailed in Section 5.5.

C.3. MAPE Heatmaps 62

C.3.1. 1 Iteration

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.7: Cornell Nightclub

C.3. MAPE Heatmaps 63

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.8: Modern Hall

C.3. MAPE Heatmaps 64

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.9: The Breakfast Room

C.3. MAPE Heatmaps 65

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.10: The Modern Living Room

C.3. MAPE Heatmaps 66

C.3. MAPE Heatmaps 67

C.3.2. 5 Iterations

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.11: Cornell Nightclub

C.3. MAPE Heatmaps 68

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.12: Modern Hall

C.3. MAPE Heatmaps 69

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.13: The Breakfast Room

C.3. MAPE Heatmaps 70

(a) ReSTIR - Biased (b) ReSTIR - Unbiased

(c) ReSTIR+ - Biased (d) ReSTIR+ - Unbiased

(e) RMIS - Equal (f) RMIS - Balance

(g) ROMIS - Direct (h) ROMIS - U1

(i) ROMIS - U2 (j) ROMIS - U4

Figure C.14: The Modern Living Room

	Abstract
	Preface
	Introduction
	Background and Related Work
	Monte Carlo Integration
	Mathematical Background
	Application in Rendering

	Importance Sampling
	Theory
	Practical Example

	Multiple Importance Sampling
	Theory
	Practical Example

	Optimal Multiple Importance Sampling
	Motivation
	Approach

	Resampled Importance Sampling
	Theory
	Practical Example

	ReSTIR: Reservoir-based Spatiotemporal Importance Resampling
	Motivation and Overview
	Weighted Reservoir Sampling
	Spatiotemporal Reuse
	ReSTIR for Direct Illumination
	Sample Confidence

	GRIS: Generalised Resampled Importance Sampling
	Motivation and Overview
	Reuse Across Domains

	Method
	Overview
	Neighbour Selection
	Multiple Sample Generation
	The Duplicate Samples Problem
	Dividing Candidates Into Subsets

	Estimator and Optimal Weights
	Combining Samples
	Arbitrary Unbiased Contribution Weights
	Evaluating Estimators

	Implementation
	Overview
	Ray Tracer Specifics
	Parameters

	Results and Discussion
	Preliminaries
	Testing Environment
	Primary Test Scene
	Additional Test Scenes
	Chosen Parameters
	Error Metric
	False Colour Insets

	Similarity Heuristics
	Canonical Candidate Count
	Reservoir Size and Neighbour Count
	Convergence Behaviour
	Runtime Analysis
	R-MIS Weights
	WRS With Subset Division

	Conclusion
	Future Work
	Ablation Study With Subset Division WRS
	Accumulating Unbiased Contribution Weight Estimates
	Neighbour Selection
	Application to Scenarios With Non-Trivial Spatial Resampling

	References
	ReSTIR+ Reservoir Combinations
	Source Code
	Full Images
	Similarity Heuristics
	Final Renders
	Alpha Vectors

	Canonical Candidate Count
	Final Renders
	Alpha Vectors

	MAPE Heatmaps
	1 Iteration
	5 Iterations

