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Summary

As quantum systems increase in complexity, accurately reconstructing quantum states becomes a fun-
damental challenge. Quantum state tomography (QST) provides a framework for reconstructing quan-
tum states from experimental measurements. However, the computational resources required for QST
scale exponentially with the number of qubits as the Hilbert space dimension grows as N = 2n, where
n is the number of qubits and N the resulting probability amplitudes. This exponential growth renders
traditional approaches computationally prohibitive for systems beyond a few qubits. Recent advance-
ments in machine learning have introduced neural network-based approaches to QST, such as varia-
tional autoencoders (VAEs) and restricted Boltzmann machines (RBM). These methods leverage the
representational power of neural networks to approximate high-dimensional quantum states efficiently.
However, the energy-intensive nature of artificial neural networks (ANNs) poses scalability concerns,
particularly as quantum systems grow larger. Recent advancements in machine learning have intro-
duced neural network-based approaches to QST, such as VAE and RBM. These methods leverage the
representational power of neural networks to approximate high-dimensional quantum states efficiently.
Neuromorphic computing offers a biologically inspired paradigm for addressing the challenges of QST.
This event-driven architecture allows for asynchronous computation with significantly lower energy con-
sumption compared to traditional neural networks. The RBM trained on the BrainScales-2 (BS2) Neu-
romorphic platform exhibited low fidelity because of the limited neuron availability and the 6-bit weights
on the BS2. The novelty of this thesis is the idea that a variational autoencoder can be split on the
level encoder and decoder and let the encoder outside of the BS2 use a bigger model. This results in
the question of how a fully spiking variational autoencoder (FSVAE) can be effectively implemented on
neuromorphic hardware to achieve high fidelity and scalability for quantum state tomography. Firstly,
a quantum state is prepared using unitary operators, and S (also known as Shots) times are measured
to create a dataset to interconnect the Qubit information with the FSVAE. This dataset consists of a set
of one hot encoded vectors that represent the quantum state and are scaled by 4N. Lastly, the FSVAE
consists of an encoder that is built on the CPU and a decoder that is built on the BS2. The results came
from implementing these methods by training the FSVAE (encoder-decoder) on a CPU-CPU configu-
ration and a CPU-BS2 configuration. Two experiments were conducted to compare the performance
of BS2 in the configuration mentioned earlier. The CPU-CPU configuration could be trained for 3 to 7,
and the CPU-BS2 configuration could be trained for 2 to 5 qubits in the Greenberger–Horne–Zeilinger
(GHZ) state. The two configurations are compared, and the MSE loss did not converge on the CPU-
BS2 configuration as low as the CPU-CPU configuration. The discrepancy results from BS2 having
6-bit weights and the CPU 32-bit weights. Despite this difference, the fidelity of reconstructing by the
FSVAE of 4 qubits is improved by around 20% compared to the RBM architecture.
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1
Introduction

Qubits, the computational units of a quantum computer, determine not only quantum memory but also
its computational power. The number of qubits in quantum processors is growing, and companies
like Google and IBM are racing to have the most qubits. This growth heralds a new era of computa-
tional power, where quantum computers will tackle problems that classical machines can never hope
to solve in a reasonable time. Unlike classical bits, qubits leverage the principles of superposition and
entanglement, enabling exponentially larger state spaces and computational power [1, 2].

As quantum systems increase in complexity, accurately reconstructing quantum states becomes a
fundamental challenge. Quantum state tomography (QST) provides a framework for reconstructing
quantum states from experimental measurements [2, 3]. However, the computational resources re-
quired for QST scale exponentially with the number of qubits, as the Hilbert space dimension grows
as N = 2n, where n is the number of qubits. This exponential growth renders traditional approaches
computationally prohibitive for systems beyond a few qubits [4, 5].

1.1. Challenges in Quantum State Tomography
Traditional methods such as Maximum Likelihood Estimation (MLE) and Bayesian Estimation have
been successful for small systems, ensuring physical validity and incorporating prior knowledge into
quantum state reconstructions [3, 4]. However, these methods face several key challenges:

• Scalability: Classical methods struggle to handle the high-dimensional parameter space of large
quantum systems efficiently [2, 6].

• Noise Sensitivity: Noise in quantum devices often degrades the performance of traditional algo-
rithms, particularly in experimental settings [7, 8].

• Energy and Computational Cost: The resource demands of classical algorithms make them im-
practical for noisy intermediate-scale quantum (NISQ) devices [9].

Recent advancements in machine learning have introduced neural network-based approaches to QST,
such as variational autoencoders (VAEs) [10] and restricted Boltzmannmachines (RBM) [11, 12]. These
methods leverage the representational power of neural networks to approximate high-dimensional
quantum states efficiently. However, the energy-intensive nature of artificial neural networks (ANNs)
poses scalability concerns, particularly as quantum systems grow larger [13].

1.2. Neuromorphic Computing as a Solution
Neuromorphic computing offers a new computation paradigm inspired by biological systems and is
well-suited to address the challenges posed by QST. Spiking neural networks (SNNs), implemented on
neuromorphic hardware such as BrainScaleS-2 (BS2), mimic the event-driven dynamics of biological
neurons [14]. This event-driven architecture allows for asynchronous computation with significantly
lower energy consumption compared to traditional neural networks [15, 16].

1



1.3. Research Focus and Objectives 2

The hybrid analog-digital design of BS2 provides a unique platform for efficiently processing spiking
neuron computations, which align naturally with the probabilistic nature of quantum mechanics [7, 12].
Recent work demonstrates that spiking neuromorphic systems can represent quantum states with high
fidelity, offering a promising alternative to classical and ANN-based methods for QST [13].

1.3. Research Focus and Objectives
This thesis explores the integration of spiking neural networks with the BS2 neuromorphic platform to
develop a scalable, energy-efficient solution for quantum state tomography. The primary contribution
is a hybrid fully spiking variational autoencoder (FSVAE), where:

• The encoder, implemented on a classical CPU, processes quantum measurement data into a
latent spiking representation.

• The decoder, implemented on BS2, reconstructs quantum states from the latent space using
spiking neuron dynamics.

The research addresses the following question:

How can a spiking variational autoencoder be effectively implemented on neuromorphic
hardware to achieve high fidelity and scalability for quantum state tomography?

To address this, the following objectives are pursued:

• Develop a hybrid FSVAE framework that combines spiking neural networks with the BS2 platform
[17, 18].

• Achieve fidelity exceeding 80% for reconstructing 3- and 4-qubit quantum states, surpassing
benchmarks of RBM-based QST on BS2 [7].

• Optimize loss functions, latent space representations, and BS2 calibration to enhance robustness
and scalability [10, 13].

1.4. Structure of the Thesis
The thesis is structured as follows:

• Chapter 2: A detailed background and review of related work on spiking neural networks, varia-
tional autoencoders, and the BrainScaleS-2 platform.

• Chapter 3: Description of the proposed FSVAE architecture and the methods for dataset prepa-
ration, training, and evaluation.

• Chapter 4: Experimental results demonstrating the performance of the FSVAE on CPU and BS2
platforms.

• Chapter 5: Summary of findings, implications, and directions for future research.

By integrating quantum computing, neuromorphic hardware, and spiking neural networks, this thesis
aims to advance the field of quantum state tomography with a scalable and energy-efficient solution.

.



2
Background

This project is a ligature of multiple scientific principles that need some explanation in order to under-
stand why these concepts here meet. The main objective is to improve Quantum State Tomography
(QST) by leveraging the properties of Spiking Neural Networks (SNN) deployed on Neuromorphic hard-
ware and compare findings with existing results. This chapter explains the different scientific concepts
needed to set up the experiment later discussed in chapter 3.

2.1. Qubits
Qubits and quantum gates are the core computational blocks of a quantum computer and quantum
logic gates. Qubits always exist in a state of superposition of outcomes before being measured with
a particular quantum gate. The Bloch sphere in Fig. 2.1 is a visualization of the Hilbert space that
describes a quantum state with a size of N = 2. The Bloch sphere can represent any state of a qubit
|ψ⟩ with form:

|ψ⟩ = α|0⟩+ β|1⟩
where α, β ∈ C and |α|2 + |β|2 = 1 and where α, β are the probability amplitudes of the qubit being in
the state |0⟩ or |1⟩, respectively.

Figure 2.1: Bloch sphere

Quantum logic gates can be used to manipulate qubits in order to build quantum circuits. The expecta-
tion value is calculated in order to project a measurement on the Pauli matrices. The expectation value

3



2.2. Quantum State Tomography 4

of an operator M is defined as:
⟨M⟩ = ⟨ψ|M |ψ⟩

Where M ∈ CN∗N and ψ ∈ CN . Here are some of the gates that are used to create quantum states
later:

• CNOT Gate (Controlled NOT Gate): Acts on two
qubits, flips the target qubit if the control qubit is
|1⟩.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• Rotation Gates: The angle parameter (θ, ϕ, γ) de-
fines the degree of rotation.

Rx(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
,

Ry(ϕ) =

[
cos ϕ

2 − sin ϕ
2

sin ϕ
2 cos ϕ

2

]
,

Rz(γ) =

[
e−iγ/2 0

0 eiγ/2

]

• Pauli-X Gate (X): X =

[
0 1
1 0

]
Swaps |0⟩ and |1⟩.

• Pauli-Y Gate (Y ): Y =

[
0 −i
i 0

]
Swaps |0⟩ and |1⟩ with a phase fac-
tor.

• Pauli-Z Gate (Z): Z =

[
1 0
0 −1

]
Leaves |0⟩ unchanged and flips the
sign of |1⟩.

2.2. Quantum State Tomography
Quantum State Tomography (QST) is the process of reconstructing a quantum state by measuring the
same quantum state repeatedly until the reconstructed state is found. The QST experiment is repeated
until a marginal distribution is found that consists of a list of all possible outcomes of the experiment
and the number of times the experiment has resulted in that outcome. We take for example the bell
state |ϕ+⟩, which is one of the maximally entangled states for two qubits. The |ϕ+⟩ state is defined as:

∣∣ϕ+〉 = 1√
2
(|00⟩+ |11⟩) (2.1)

The Born rule tells us that the probabilities of the possible outcomes |00⟩ or |11⟩ in the computational
basis of |ϕ+⟩, are the probability amplitudes squared of the normalised coefficients belonging to those
particular outcomes [19].In this case the probability of finding the bell state in |00⟩ or |11⟩ is | 1√

2
|2 =

1
2 . To find this probability experimentally you would have to do repeated measurements until you find
a marginal distribution. Consider this analogy: take flipping a coin that has probability 50/50 landing
head/tail. Flipping the coin a thousand times will give you an approximation of the probability distribu-
tion P(x=t) = P(x=h) = 0.5 and the same can be said about the quantum state.

This example shows that it is very easy to see the probabilities of a quantum system that consists of
two qubits unfortunately that changes when generalising this example to N qubits. In Fig 2.2A is an
ideal 2 qubit bell state seen with 4 amplitudes that show probabilities of that all the combinations of
qubit states. Although the 4 qubit GHZ state in Fig. 2.2C is also relatively easy to decipher what the
original state is from the picture, this will be much harder when there are more qubits. The noise seen in
Fig. 2.2B and D makes it even harder for classic computational processes to like maximum-likelihood
estimation, Bayesian estimation and Matrix Product State (MPS) [3, 4, 20].

This reconstructed state is an approximation of the original state and the quality of the process is de-
fined by the fidelity. The fidelity of a quantum state is how similar one quantum state is to another
quantum state. The parameters and amount of measurements increases exponentially as the amount
of qubits (N) in a system increases linearly [1]. The exponential growth is a problem when we want to
use a classical computer to characterise these quantum states of interest.
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Figure 2.2: Density matrix 2 and 4 qubit GHZ state [21]

2.2.1. Quantum State Tomography Methods
Quantum state tomography (QST) is essential to building reliable quantum computers and is used to
determine the full quantum state of a system. However, as the Hilbert space grows, exact QST becomes
infeasible due to the exponentially increasing number of measurements and computations required.
Classical methods like maximum-likelihood estimation, Bayesian estimation, and Matrix Product State
(MPS) have been employed to tackle this challenge, though each faces limitations as system size
grows.

Maximum-Likelihood Estimation (MLE)
Maximum-Likelihood Estimation (MLE) is a widely used method for quantum state tomography that
reconstructs the quantum state by optimizing a likelihood function based on the measurement data [3].
This method ensures the reconstructed density matrix is both physical (positive semi-definite and nor-
malized) and consistent with experimental results. While MLE is effective for small systems, its com-
putational cost grows exponentially with the number of qubits, limiting its scalability to larger quantum
systems [2].

Measurement Data and Born’s Rule In QST, the quantum system is probed using a series of mea-
surements corresponding to a Positive Operator-Valued Measure (POVM) {Ma}, where each measure-
ment outcome a is associated with a positive semidefinite operator Ma. The probability of observing
the outcome a for a state ρ is given by Born’s rule [3]:

P (a|ρ) = Tr(ρMa). (2.2)

Here, Tr denotes the matrix trace. The measurement outcomes {ai}, collected over many trials, form
the dataset used to reconstruct ρ.

Likelihood Function The likelihood function indicates the probability of observing the entire dataset
based on specific parameters for a quantum state ρ. For N measurement outcomes {a1, a2, . . . , aN},
the likelihood function can be written as:

L(ρ) =

N∏
i=1

P (ai|ρ). (2.3)
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Taking the logarithm, the log-likelihood becomes:

L(ρ) =
N∑
i=1

lnP (ai|ρ). (2.4)

Optimization The goal of MLE is to find the density matrix ρ that maximizes the likelihood function
L(ρ), subject to the physical constraints:

1. ρ ⪰ 0 (positive semidefiniteness),
2. Tr(ρ) = 1 (trace normalization).

These constraints ensure that ρ is a valid quantum state. The optimization problem can be stated as:

ρMLE = argmax
ρ

L(ρ). (2.5)

Iterative Procedure Due to the complexity of the constraints, the optimization is typically performed
using iterative algorithms, such as:

• Expectation-Maximization (EM) algorithms, which iteratively refine ρ to increase the likelihood [4].
• Gradient-based methods, which compute updates for ρ while ensuring the constraints are satis-
fied.

Advantages of MLE MLE offers several advantages:

• It produces a physically valid density matrix even in the presence of noisy measurement data [4].
• It incorporates the statistical properties of the measurement outcomes to provide an optimal esti-
mate of ρ.

• The reconstruction scales efficiently for small quantum systems, though it becomes computation-
ally demanding for larger systems [2].

Bayesian Estimation
Bayesian estimation provides an alternative approach by incorporating prior knowledge of the quantum
state into the estimation process [4]. By updating prior beliefs based on experimental data, Bayesian
methods provide a probabilistic framework for quantum state reconstruction. This approach is par-
ticularly useful in noisy environments, as it can mitigate uncertainty and error. However, similar to
MLE, Bayesian estimation is computationally expensive for large systems due to the need for high-
dimensional integration [9].

Bayesian Framework In Bayesian estimation, the goal is to compute the posterior probability dis-
tribution of the density matrix ρ given the measurement data D. Using Bayes’ theorem, the posterior
distribution is expressed as:

P (ρ|D) =
P (D|ρ)P (ρ)

P (D)
, (2.6)

where:

• P (ρ|D): The posterior distribution, representing the probability of ρ given the data D.
• P (D|ρ): The likelihood function, capturing the probability of observing the data D for a given state
ρ.

• P (ρ): The prior distribution, encoding prior knowledge or assumptions about ρ.
• P (D): The marginal likelihood or evidence, ensuring normalization of the posterior.
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Likelihood Function The likelihood function P (D|ρ) is derived from the measurement outcomes and
Born’s rule:

P (D|ρ) =
N∏
i=1

P (ai|ρ), (2.7)

where P (ai|ρ) = Tr(ρMai) is the probability of observing outcome ai under the density matrix ρ and
the corresponding POVM elementMai [2].

Advantages of Bayesian Estimation Bayesian estimation provides several benefits:

• It quantifies the uncertainty in the reconstructed state, providing credibility intervals for ρ [4].
• Incorporating prior information allows Bayesian methods to handle noisy or incomplete data more
effectively.

• Priors can be tailored to specific problems or experimental setups, enabling domain-specific in-
ference [9].

Matrix Product State (MPS)
Matrix Product State (MPS) methods provide a structured and compact way to represent quantum
states in systems with limited entanglement. MPSmethods efficiently approximate states by factorizing
the quantum wave function into a chain of tensors [2]. This representation is especially beneficial for
systems that comply with area laws of entanglement or that display one-dimensional structures.

Advantages of MPS in QST MPS offers several advantages:

• It significantly reduces computational complexity for systems with low entanglement, scaling lin-
early with system size.

• Adjustable bond dimensions allow a trade-off between accuracy and computational efficiency [2].
• It aligns well with tensor network techniques, enabling efficient simulation of many-body quantum
systems.

Limitations of MPS Despite its strengths, MPS has limitations:

• Highly entangled states require large bond dimensions, reducing computational efficiency.
• MPS methods are best suited for 1D systems, with extensions like PEPS required for higher
dimensions [2].
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2.3. Artificial Neural Networks
Artificial Neural networks (ANN) are quite known amongst people since the rise of chat-gpt and other
deep generative models. At the hart of these models lies a networks of nodes called perceptrons.
The perceptron was invented by Warren McCulloch and Walter Pitts in 1943 [22]. This invention was
based on the biological neuron and was build in the Mark 1 Perceptron machine build in 1957 at the
Cornell Aeronautical Laboratory by Frank Rosenblatt. The Mark 1 had 400 photocells as input nodes,
512 perceptrons in the hidden layer, 8 perceptrons as output layer, weighed 5 tons and was the size
of a room(!). Frank Rosenblatt described the perceptron as a system which operates according to
probabilistic principles instead of deterministic principles and gains it reliability from the properties of
statistical measurements from large populations of elements. This description can be interpreted as
the foundation on which modern machine learning is based off [23].

2.3.1. (Multi-Layer) Perceptron
Mathematically, the perceptron can be seen as a linear function passed to an activation function. The
linear function takes some vector x as input and multiplies x with a weight w and sum all the outcomes,
accumulate the bias b:

ŷ = f

(
n∑

i=1

wixi + b

)
= f(x⊤w + b) (2.8)

where w ∈ Rn , x ∈ Rn, b ∈ R and n is the number of inputs in the perceptron as seen in Fig 2.3. The
activation function f(x)introduces a non linearity to solve problems that are not linear classifiable per
nature.

Figure 2.3: Perceptron [24]

Mltiple perceptrons are connected in parallel, what result in a layer, and after stacking the layers, the
multi layered perceptron (MLP) arises that is also known as a fully connected (FC) NN or model. The
function of the MLP network is defined by passing function in Eq. 2.8 in a chain so it becomes:

ŷ = f(x) = f (3)(f (2)(f (1)))) (2.9)

Where f (1) is called the first layer or input layer, f (2) is called the second layer or hidden layer and f (3)
is called the third layer or output layer. These layers can be added or remove according to the desires
of the developer to create the network that fits the nature of the data.

2.3.2. Forward-Pass and Backpropegation
Passing a value x to the first layer and through the chain of functions in Eq. (2.9) is called a forward
pass. The result from the forward pass is compared with the label of that value during training and the
difference is called the loss. For example, x is a picture of a cat and the label y is the string ”cat”. If
the forward pass of the model predicts the word ”dog” (ŷ) the loss would be bigger then 0 because
the prediction ”dog” is different then the label ”cat”. The loss is then used to change all the weights in
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Figure 2.4: Enter Caption

the system for some fraction to make the next prediction to have a lower loss. The process is called
backpropegation and computes essentially the chain rule of derivatives of the loss [25]:

dz

dx
=
dz

dy
· dy
dx
. (2.10)

If we take Eq. 2.8 and we take some model:

L =
1

2
(σ(wx+ b)− t)

2 (2.11)

where L = 1
2 (y − t)2, z = wx + b, y = σ(z) for some activation function σ. The function f(x) is

differentiated to w and b using the formula from 2.10 and use Leipniz notation, results in:

dL
dw

=
dL
dy

dy

dz

dz

dw
(2.12)

dL
db

=
dL
dy

dy

dz

dz

db
(2.13)

The methods of passing values through the network and backpropagation of the loss give the network
its learning power that is leveraged to learn quantum states.

2.3.3. Loss Functions in ANN
During training, the goal is to minimize the loss, which ensures that the model learns to perform bet-
ter on its task. Loss functions typically quantify differences between predicted and actual values or
distributions, providing feedback that guides the optimization process through backpropagation.

Types of Loss Functions
Different types of loss functions are tailored for specific tasks and applications. Some of the most
commonly used loss functions include:

Mean Squared Error (MSE) The Mean Squared Error (MSE) is widely used for regression tasks. It
measures the average squared difference between predicted values ŷi and actual values yi, ensuring
that larger errors are penalized more heavily:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2

This loss function is crucial for minimizing reconstruction errors in models such as autoencoders, where
the goal is to approximate input data.
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Kullback-Leibler (KL) Divergence KL divergence is a loss function used to compare two probability
distributions, P and Q. It measures how one probability distribution diverges from a reference distribu-
tion:

DKL(P∥Q) =
∑
i

P (i) ln

(
P (i)

Q(i)

)
KL divergence is particularly important in generative models like VAEs, where the objective is to ensure
that the learned latent space distribution aligns with a prior distribution, such as a Gaussian.

MaximumMean Discrepancy (MMD) The Maximum Mean Discrepancy (MMD) measures the differ-
ence between two distributions based on their samples. Using a kernel function, such as the Radial
Basis Function (RBF), MMD computes:

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y

′)]− 2Ex∼P,y∼Q[k(x, y)]

This loss function is especially useful in ensuring that two distributions are similar.

2.3.4. Recurrent Networks (RNN)
RNNs have a wide range of applications. In the context of this thesis, RNNs are utilized for quantum
state tomography, a process that involves reconstructing the properties of a quantum state based on se-
quential measurement data. A scalable recurrent machine learning procedure exists that identifies the
ground states of Hamiltonians relevant to condensed matter, cold atomic systems, and quantum simula-
tors. This method leverages Positive-Operator Valued Measures (POVMs) to describe the system, en-
abling the extraction of critical quantum properties such as fidelity and Kullback-Leibler (KL) divergence
to benchmark the model’s performance [26]. Unlike traditional methods such as Restricted Boltzmann
Machines (RBMs), which often require significant computational resources, this RNN approach offers
a more efficient training process, with a linear scaling in the number of sample measurements relative
to the system size. This efficiency makes RNNs particularly appealing for practical implementations of
QST in complex quantum systems. Furthermore, its adaptability across different quantum platforms,
including simulators and experimental setups, demonstrates its versatility and robustness in quantum
applications.

Others approach the many-body quantum state computing problem by utilizing attention-based models,
which have been shown to outperform traditional methods such as the maximum-likelihood estimation
(MLE) process used in IBM’s quantum computers [8]. These attention mechanisms allow the model
to focus on key features of the quantum system, improving its ability to reconstruct quantum states
with high fidelity. The attention-based framework excels in capturing long-range correlations within
many-body systems, making it particularly useful for understanding complex quantum interactions. Ad-
ditionally, the efficiency of these models in handling large datasets suggests that they could play a
pivotal role in advancing scalable quantum state tomography, especially as the number of qubits in
experimental systems continues to grow.

2.3.5. Convolutional Neural Networks (CNNs)
Convolutional Neural Network (CNN) methods have also been employed to reproduce quantum states
with higher fidelity compared to traditional Stokes reconstruction techniques [11]. By leveraging the
hierarchical structure of CNNs, these methods can capture intricate patterns in measurement data that
are often missed by classical techniques. This allows for a more accurate reconstruction of quantum
states, even in the presence of noise or incomplete data. Furthermore, CNN-based approaches are
inherently parallelizable, making them suitable for deployment on high-performance computing plat-
forms. The adaptability of CNNs to various types of quantum systems, ranging from photonic qubits to
superconducting circuits, underscores their potential as a versatile tool in quantum state estimation.

The problem with VAE
Later in chapter 3 we will create a dataset what we now will call X = {x(i)}Ni=1 consisting of N i.i.d
samples of discrete variable x that result from the quantum measurement dataset and an unobserved
random variable z. The process consists of two steps: (1) a value z(i) is generated from some prior
distribution pθ∗(z). The prior distribution is a distribution that is familiar like the Gaussian distribution;
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(2) a value x(i) is generated from some conditional distribution pθ∗(x|z) called the likelihood distribution.
Like the authors of [27], we introduce a recognition model qϕ(z|x) to approximate the intractable prob-
ability distribution of a quantum state or true posterior pθ(z|x). The recognition model qϕ(z|x) encodes
the datapoint x into a distribution over the possible values of the code z from which the datapoint could
have been generated. Likewise, given a code z, pθ(z|x) decodes a distribution over the possible values
of x. Later in chapter 3 the encoder and decoder will be the parts of the VAE that are made up from
two neural networks.

Loss function
The loss function of a VAE according to [27] is defined as:

L(θ, ϕ;x(i)) = −DKL

(
qϕ(z|x(i)) ∥ pθ(z)

)
+ Eqϕ(z|x(i))

[
log pθ(x

(i)|z)
]

(2.14)

Where the first RHS equation is the Kullback-Leibler (KL) divergence that compares two distributions
and calculate how close they are to each other. The network learns the probability distribution of the
quantum state using the KL divergence of the model:

DKL

(
qϕ(z|x(i)) ∥ pθ(z)

)
=
∑
x

qϕ(z|x(i)) ln

(
qϕ(z|x(i))

pθ(z)

)
(2.15)

where qϕ(z|x(i)) is the target distribution and pθ(z) is the model distribution from the network. The
second RHS term of Eq. 2.14 penalises the difference in the outcome in the approximated posterior
and the true posterior. In our case that would be the generated quantum state probabilities and the true
quantum state probabilities.

Reparametrisation trick
As explained, the VAE exists of an encoder with parameters ϕ and a decoder with parameters θ. This
model uses probability distributions in the loss function instead of continuous variables like a classic
MLP. The problem with this method is that backpropegation is now not possible due to the non tractable
differentiation of the expected value of the second RHS term in Eq. 2.14. A random variable is gener-
ated from the datapoint x (z ∼ qϕ(z|x)) and can be transformed using a differentiable transformation
gϕ(ϵ, x) with a noise variable ϵ taken from the distribution p(ϵ). Now the random variable z is made
deterministic and mostly in the form of a vector called the latent vector or latent space. The decision
to sample z from the Gaussian distribution: z ∼ qϕ(z|x) = N (µ.σ2) also means that we take the noise
variable ϵ from this distribution and that means the we define z = µ + σϵ. To decision to sample z
from the Gaussian distribution is dependant of the nature of the distribution of qϕ(z|x). The choice of
distribution is important regarding the inherent discreet nature of SNNs.
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2.3.6. Spiking Neural networks
Neuromorphic computing
Neuromorphic computing mimics the functionality of the human brain to learn and process information.
The brain can learn very fast and use multiple orders of magnitude lower energy then a von Neumann
CPU architecture would. [28, 29]. To keep using deep learning models in the future, a shift in the way
we use computers to learn and perform inference must change as the International Energy Agency
(IEA) claims that energy consumption of AI will use up to 6% of worldwide energy consumption [30].

Neurons
Neurons are nerve cells that use electrical and chemical signals to carry information around in the brain.
The neuron consist of a body, an axon and dendrites and synapses. Synapses are placed at the end
of an axon and use neurotransmitters to send information to the next neuron. The sensitivity of the
synapses can change and this can be seen as the weights of the neuron. The electrical properties of
the neuron’s cell membrane can be modelled to fit electrical components and in this way its possible
to translate a biological neuron to a neuron that can be build using existing CMOS technology. The
membrane consists of a lipid bilayer and insulates the inside of the cell from the outside what results in
the cell having a capacitance of around 1µF/cm2. Neurons uses this capacitance to create a gradient in
voltage by pumping three sodium ions out of the cell and two potassium ions into the cell. This sodium-
potassium pumps are chained along the membrane and a voltage potential across the cell membrane
is propagated by the pumps pumping in a sequential fashion. In in Fig. 2.5 that the resting potential of
the neuron’s membrane is around 70mV and as the sodium potassium pump is stimulated to pump, a
spike in membrane potential is seen and this stimulates the next pump etc.

Figure 2.5: Membrane potential spike caused by sodium potassium pump
[31]

Figure 2.6: Neuron anatomy [32]
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Electrical Neurons
We discussed in the previous section that the invention of the perceptron was modelled after the biolog-
ical neuron. This mathematical model follows a continuous linear function that is nicely differentiable
using the chain rule of calculus. The Spiking Neural Network is also modelled after the biological neu-
ron but now the perceptron we now call a neuron and instead of continuous functions we now make
use of discrete spike trains and membrane potentials. A famous model described in 1952 first by Alan
Hodgkin and Andrew Huxley is the Hodgkin-Huxley (HH) model [33]. The neuron was modelled as an
electrical circuit that represents the cell membrane as seen in Fig. 2.7. The HH model is seen as the
most biological accurate model and is very computational expensive to use in the case of SNN [34].

Figure 2.7: Electrical circuit representing the membrane [33]

Another popular model is the Leaky Integrate-and-Fire (LIF) neuron that is also modelled with an elec-
trical circuit as seen in Fig. 2.8 and is the one we will use because its for now a good balance between
biological realism and computational complexity.

Figure 2.8: Equivalent circuit of LIF neuron model [35]

We can use the Kirchoff Current Law (KCL) on the circuit in Fig. 2.8 to arrive to the mathematical
description of the membrane potential Vm of the LIF neuron [36]:

I(t)− Vm(t)

Rm
= Cm · V̇m(t) (2.16)

with I(t) being the input current, Rm the membrane resistance and Cm the membrane capacitance. A
spike in the form of a delta function δ(t) is propagated when a threshold Vth is breached and after the
membrane potential is reset to Vreset. After solving the differential equation of Vm(t) we get:
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V̇m(t) =
I(t)

Cm
− Vm(t)

RmCm
(2.17)

To use this equation in a SNN we need to discretise the equation by formulating a recursion as follows:

Vt+1 = Vt +
(
C−1

m · xt − Vt ·R−1
m C−1

m

)
·∆t (2.18)

With I(t) being xt and two extra equations are included to describe the moment that the threshold is
exceeded and the resetting after:

Ṽt+1 = Vt +
(
C−1

m · xt − Vt ·R−1
m C−1

m

)
·∆t (2.19)

yt+1 = Θ(Ṽt+1 − Vthresh), spiking (2.20)

Vt+1 = Vm ·Θ(−Ṽt+1 + Vthresh), resetting (2.21)

Where Θ(x) is the Heaviside step function. To help summarize the update rule of the LIF unit, some
parameters are renamed:

C−1
m ∆t = winput (2.22)

R−1
m C−1

m ·∆t = wleak (2.23)

The final update rule is then:

Vt = winput · xt + (1− wleak) · Vt−1 ·Θ(Vthresh − Vt−1), (2.24)

yt = Θ(Vt − Vthresh). (2.25)

In Fig. 2.9 is the forward pass visualised. The input spikes (x(t) are multiplied with the weights winput

and added to the membrane potential Vm. If the membrane potential exceeds the threshold Vt, the
output y is 1 else y is 0. If the uutput is zero the membrane potential decays with the leak weight.

Figure 2.9: Forward pass SNN [37]

Backpropagation in SNN’s starts just like the ANN with the differentiation of the loss with respect to the
weights seen in Eq. 2.13:
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dL

dw
=

∂L

∂yout
· ∂yout
∂y

· ∂y
∂x

· dx
dw

(2.26)

The term ∂y
∂x is the derivative of the LIF output with regard to the input. This derivative is zero when

there is no spike at that time stamp because the Heaviside function Θ is zero everywhere except at 0.
This results in the weights being 0 most of the time and so training is not possible with this configuration.
To combat the zeroing of the weights without modifying the forward pass, redefining the gradient is a
solution called the surrogate gradient approach. We have seen from Eq. 2.18 that a recurrency in the
LIF node is introduced and thus the new gradient has to be implemented for each time step.

∂yt
∂xt

=
∂yt
∂Vt

∂Vt
∂xt

= Θ′
1(Vt − Vthresh) · winput (2.27)

∂yt
∂xt−1

=
∂yt
∂Vt

∂Vt
∂Vt−1

∂Vt−1

∂xt−1
(2.28)

= Θ′
1(Vt − Vthresh) · (1− wleak) · [Θ2(Vthresh − Vt−1) + Vt−1 ·Θ′

2(Vthresh − Vt−1)] · winput (2.29)

∂yt
∂xt−n

= Θ′
1(Vt − Vthresh) · winput(1− wleak)

n
n∏

i=1

Θ2(Vthresh − Vt−i). (2.30)

The gradient of Θ1 ìs defined as 1 and the gradient of Θ2 as 0. This is needed because setting Θ1 to
0 sets the weights to 0 [37].

2.3.7. Hybrid Spiking Neural Network on neuromorphic platform
Variational Autoencoders have proven effective in learning the probability distributions of hard quantum
states, offering an alternative to traditional reconstruction techniques [6, 10]. For instance, in one
study, a hybrid Spiking Neural Network (SNN) was implemented partially on Intel’s Loihi Neuromorphic
chip and partially on a conventional computer, showcasing the potential of neuromorphic hardware for
quantum applications that require low power [38]. Although this hybrid approach faced limitations due to
the low (6-bit) precision of synaptic weight values, it demonstrated the feasibility of using neuromorphic
hardware for quantum tasks. These developments suggest that combining advanced machine learning
techniques with emerging hardware technologies could unlock new possibilities for efficient quantum
state tomography, enabling researchers to tackle increasingly complex quantum systems.

2.3.8. BrainScaleS-2
The University of Heidelberg, Germany was able to give access to the BrainScaleS-2 (BS2) accelerated
Neuromorphic system via the Ebrains platform. This opens the possibility to train, test and validate the
VAE on actual neuromorphic hardware that is build to simulate the way the brain processes information
and calculations. The BS2 is a network of neurons connected via plastic synapses that work partly
on a analog basis so neuron simulation directly correspond to the modelled biological processes and
partly on a digital controllable, configurable substrate based on well-understood CMOS technology
seen in 2.10A. The overall design goal of the BS2 was to enable large-scale accelerated emulation
of spiking neural networks. The intel Loihi is based on purely digital design but is not able support
plasticity programs with complex control and data dependencies. The BS2 system is able to perform
massive-parallel data acquisition of analog system observables like membrane voltage traces and is
able to evaluate efficiently programmable plasticity rules which makes the BS2 system unique. One
distinguishing feature is that the synaptic crossbar can process weighted spikes so for a SNN the analog
vector-matrix multiplication can be used for training and inference. [39].

System Architecture
The system architecture seen in Fig. 2.10C consist of four synaptic crossbar arrays each with 256 rows
and 128 columns making the system capable of simulating 512 neurons that associated to the columns
(128 * 4). The digital processors on the top and the bottom use single instruction multiple data (SIMD)
vector extensions to read and write the digital state of the synaptic crossbar row wise in parallel and
readout analog traces via a 512 channel column analog to digital converter (CADC). In Fig. 2.10D is
seen how the crossbar facilitates the recurrent connections of Eq. 2.18 needed to realise the electrical
model of the LIF neuron.
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Figure 2.10: Overview of the BrainScaleS-2 system [39]

(AdEx) LIF neuron on BrainScaleS-2
A spike from a neuron is a sudden change in potential over the membrane and it is modelled a a dirac
function as we saw in the previous chapters. The researchers and engineers behind the BS2 had
some difficulties to overcome when realising the behaviour of neurons in the CMOS technology. Firstly,
a biological threshold in neurons is not existing as a comparable integer value in terms of voltage but
rely on some non-linear term as well that cannot be captured by the LIF model that is linear. Secondly,
some neurons can exhibit non constant frequency oscillatory behaviour that drives the generation of
spikes and the LIF model does not incude this. The BS2 uses the adaptive exponential integrate-and-
fire model that covers both of these issues. The equation they use to model the is a rewritten form of
Eq.2.16:

C
dV (t)

dt
= −gleak(V (t)− Vleak) + I(t), (2.31)

where:

• V (t) is the membrane potential,
• gleak is the leak conductance,
• Vleak is the resting potential,
• I(t) is the input current.

Whenever V (t) crosses a threshold ϑ, a spike is emitted, and the membrane potential resets.

The spiking behavior is non-differentiable due to the Heaviside step function:

S(t) = Θ(V (t)− ϑ). (2.32)

To enable backpropagation, a smooth approximation is used for the derivative of S(t):

∂S(t)

∂V (t)
≈ g(V ) =

∂

∂V

[
1

1 + e−β(V−ϑ)

]
, (2.33)

where:

• β controls the steepness of the surrogate gradient,
• ϑ is the firing threshold.
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To account for device-specific variations, recorded values from the BrainScaleS-2 hardware are inte-
grated into the computation graph. The recorded membrane potential Vmeasured[t] is combined with the
modeled potential Ṽ [t] using an auxiliary function:

f(x, x̃) ≡ x, with ∂f

∂x
= 0,

∂f

∂x̃
= 1. (2.34)

This allows the gradients to flow through the modeled variables Ṽ [t] while using Vmeasured[t] for accurate
evaluation.

The forward pass computes the neuron dynamics:

Ṽ [t+ 1] = f(Vmeasured[t+ 1], Ṽ [t]e−∆t/τm + Ĩ[t]), (2.35)

Ĩ[t+ 1] = Ĩ[t]e−∆t/τs +
∑
j

WjSj [t], (2.36)

where:

• τm and τs are the time constants for membrane potential and synaptic current,
• Wj is the weight of the synapse from presynaptic neuron j,
• Sj [t] is the spike emitted by neuron j at time t.

The backward pass calculates gradients using surrogate derivatives:

∂S[t]

∂V [t]
≈ g(V ). (2.37)

The framework supports various loss functions, including:

• Spike-based loss:
Lspike =

∑
t

MSE(Starget[t], S[t]),

where Starget[t] is the desired spike train.
• Regularization for sparse spiking:

Lactivity = ρb ·
1

N

N∑
i=1

(∑
t

Si[t]

)2

.

• Voltage clipping to avoid saturation:

Lvoltage = ρv ·
∑
t

(V [t]− Vthreshold)
2.

The training dynamically adjusts weights and compensates for hardware mismatches:

∂L
∂W

=
∑
t

∂L
∂S[t]

∂S[t]

∂Ṽ [t]

∂Ṽ [t]

∂W
. (2.38)

Updated weights are written back to the hardware, completing the in-the-loop (ITL) training process.
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2.3.9. Spiking RBM
A restricted Boltzmann machine (RBM) has been used to successfully reconstruct quantum states on
a neuromorphic hardware chip named BrainScaleS-2 (BS2) from Heidelberg University [7]. The RBM
is composed of a hidden layer and a visible layer as seen in Fig. 2.11a that are initialized with some
weights that are adjusted according to the Kullbach-Leibner divergence. The input of the network is the
noise of the chip generated by neurons that produce Poisson distributed noise, and the output is the
value of the spiking neuron at the visible layer at time T as seen in Fig. 2.11c. The output of the neurons
is decoded to decide the POVM representation as shown in Fig. 2.11d, and reading the output neurons
each time step produces Monte Carlo-Markov Chain (MCMC) like sampling of the output neurons and
this results in a POVM probability matrix that can be used to calculate the density matrix shown in 2.11e.
A fidelity of > 0.99 of 2 qubits spins was achieved and for 3 and 4 qubits the fidelity was around 0.85
and 0.7. This is due to the hardware limitations of the BS2 that is limited to 512 neurons.

Figure 2.11: Reconstructing a quantum state from spiking RBM from [7].

2.3.10. Spiking Variational auto-encoder (SNNs)
Spiking Variational Autoencoders (SVAEs) and Efficient Spiking Variational Autoencoders (ESVAEs)
extend this concept by integrating spiking neural network architectures to mimic the temporal dynamics
of biological neurons [18]. These spiking models achieve comparable performance to their continuous
counterparts while providing a more biologically plausible framework for quantum state reconstruction.
Moreover, incorporating spike-timing-dependent sampling processes, such as Poisson distributions,
aligns well with the nature of quantum measurements, enhancing the interpretability of the results [40].
The computational efficiency of these models, combined with their ability to generalize across different
quantum platforms, highlights their significance in addressing the challenges of large-scale quantum
state tomography.



3
Proposed Method

The methods used in this thesis are explained in this chapter. Firstly, a quantum state is prepared
using unitary operators and measured S (Shots) times to create a dataset to interconnect the Qubit
information with the Spiking Variational Autoencoder (SVAE). This dataset will be processed further
according to machine learning standards. Lastly, the SVAE consists of an encoder that is build on the
CPU an a decoder that is build on the BrainScales-2 (BS2).

Figure 3.1: Architecture of the Variational Autoencoder

3.1. Creating the dataset
The dataset is build by saving quantum measurements and encode them in vectors so they are com-
patible with common used machine learning dataloaders. The qubits are measured using SICPOVM
and then one hot encoded to form the database.

3.1.1. SIC POVM
The preparation of quantum states to create the GHZ includes the Positive Operatation Value Measures
(POVM) rotations to get an Informational Complete (IC) dataset. Each Qubit is measured by projecting
the state on one of the 4 basis that form a Tetrahedron in the bloch sphere as depicted in Fig 3.2.

19
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Figure 3.2: Basis of the SIC-POVM in the Bloch sphere[41]

The four SIC-POVM states for a single qubit are:

|ψ0⟩ = |0⟩ (3.1)

|ψ1⟩ =
1√
3
|0⟩+

√
2

3
|1⟩ (3.2)

|ψ2⟩ =
1√
3
|0⟩+

√
2

3
ei

2π
3 |1⟩ (3.3)

|ψ3⟩ =
1√
3
|0⟩+

√
2

3
e−i 2π

3 |1⟩ (3.4)

The qubits can be measured in the computational basis by using unitary operations that rotate the
qubits with the same angle as the 4 POVM states. A quantum state can be defined in angle as:

|ψ⟩ = cos(2θ)|0⟩+ eiϕ sin(2θ)|1⟩ (3.5)

Where α = cos(2θ), β = eiϕ sin(2θ) and in this case is the azimuthal angle ϕ already separated in Eq.
3.1.1 and 3.1.1. The arrccosine can be applied on the probability amplitude of ket 0 to find θ:

θ = 2 ∗ arccos(α) (3.6)

3.1.2. Two-Qubit POVM Example
The two qubit POVM is compromised from single qubit POVMs, what is also true for n qubits systems.
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Single-Qubit POVMs
The single-qubit POVM elements M (a) are calculated form the vectors in 3.1.1. The full calculations
can be found in A.1:

M (0) =

[
1 0
0 0

]
, M (1) =

1

3

[
1

√
2√

2 2

]
,

M (2) =
1

3

[
1 −

√
2
2 − i

√
6
2

−
√
2
2 + i

√
6
2 2

]
, M (3) =

1

3

[
1 −

√
2
2 + i

√
6
2

−
√
2
2 − i

√
6
2 2

]
.

Two-Qubit POVMs
The two-qubit POVM elements are tensor products:

M (a1,a2) =M (a1) ⊗M (a2).

For example:

M (0,0) =M (0) ⊗M (0) =
1

16


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M (0,1) =M (0) ⊗M (1) =
1

16


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
Visualization of All POVM Elements
Combine allM (a1,a2) into a 16× 16 matrix, where each block corresponds toM (a1) ⊗M (a2).

POVM =


M (0,0) M (0,1) M (0,2) M (0,3)

M (1,0) M (1,1) M (1,2) M (1,3)

M (2,0) M (2,1) M (2,2) M (2,3)

M (3,0) M (3,1) M (3,2) M (3,3)

 .
EachM (a1,a2) block is a 4× 4 matrix. Highlighted here:

POVM =


M (0,0) M (0,1) M (0,2) M (0,3)

M (1,0) M (1,1) M (1,2) M (1,3)

M (2,0) M (2,1) M (2,2) M (2,3)

M (3,0) M (3,1) M (3,2) M (3,3)

 .

3.1.3. Input Vector Creation and One-Hot Encoding
The input vectors for the Spiking Variational Autoencoder (SVAE) are generated using a one-hot en-
coding scheme. This encoding supports the model’s spiking neural network structure by generating
binary inputs compatible with spiking dynamics.

Measurement Representation
The SVAE processes quantum measurement data from a Positive-Operator Valued Measure (POVM)
dataset. Each measurement result corresponds to a specific quantum state outcome, which is repre-
sented as a categorical label.

One-Hot Encoding Process
The one-hot encoding process converts categorical labels into binary vectors:

1. Suppose there are C possible measurement outcomes.
2. Each outcome is represented as an integer label l ∈ {0, 1, . . . , C − 1}.
3. The one-hot encoding creates a binary vector x ∈ RC such that:

xi =

{
1, if i = l

0, otherwise
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Example: One-Hot Encoding for a 4-State System
Consider a system with C = 4 possible outcomes labeled {0, 1, 2, 3}. The corresponding one-hot
encoded vectors are:

Label l = 0 =⇒ x = [1, 0, 0, 0]

Label l = 1 =⇒ x = [0, 1, 0, 0]

Label l = 2 =⇒ x = [0, 0, 1, 0]

Label l = 3 =⇒ x = [0, 0, 0, 1]

Dataset Creation
The dataset used for training the SVAE is constructed as follows:

• Each quantum measurement generates a label based on its outcome.
• These labels are converted into one-hot encoded vectors.
• The resulting binary vectors form the input dataset for the SVAE.

Importance for Spiking Neural Networks
The one-hot encoded vectors are particularly well-suited for spiking neural networks because:

• Each vector contains binary values (0 or 1), matching the spiking representation.
• The encoding ensures a clear, non-overlapping representation of quantum states.

Training Considerations
During training:

• The input one-hot encoded vectors are fed into the encoder as binary spike trains.
• The reconstruction target for the decoder is the same one-hot encoded vector, ensuring that the
model learns to map from the encoded latent space back to the original measurement represen-
tation.

3.1.4. encoder
The encoder of the Spiking Variational Autoencoder (SVAE) is designed using a fully connected spiking
neural network (SNN) with two layers of Leaky Integrate-and-Fire (LIF) neurons. The layers are from
the snntorch library that is build on top of the pytorch library [42]. It transforms the input data into a
spiking representation, suitable for further latent space processing. The encoder part of the model is
executed on a CPU.

Initialization
The encoder consists of two fully connected layers and corresponding LIF neurons:

• Fully Connected Layers:

– fc1: Projects the input from the input size dinput to the hidden size dhidden.
– fc2: Projects from the hidden size dhidden to the output size doutput.

• LIF Neurons:

– LIF neurons are used after each fully connected layer. They model spiking behavior with a
membrane potential governed by a decay factor β.
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Forward Pass
The forward pass of the encoder processes the input over multiple time steps T . The following steps
are performed at each time step t:

1. Initialize the membrane potentials mem1 and mem2 to zero.
2. For each time step t:

(a) Compute the current cur1 from the first fully connected layer:

cur1(t) = fc1(x)

(b) Pass the current through the first LIF neuron:

spk1(t),mem1(t) = LIF1(cur1(t),mem1(t− 1))

(c) Compute the next current using spk1:

cur2(t) = fc2(spk1(t))

(d) Pass this current through the second LIF neuron:

spk2(t),mem2(t) = LIF2(cur2(t),mem2(t− 1))

3. Record the spikes spk2(t) and membrane potentials mem2(t) for each time step.

Memory Optimization
To reduce memory usage, intermediate variables are deleted after each computation step, and memory
is cleared using garbage collection.

Output
The encoder outputs two tensors:

• Spike train tensor spk2: a sequence of binary spikes over time.
• Membrane potential tensor mem2: the recorded potentials at each time step.

3.1.5. Latent Space Construction
The latent space in the spiking variational autoencoder (SVAE) is designed using spiking neuron mod-
els, enabling a biologically plausible representation of encoded information. This section describes
how the latent space is constructed, including the reparameterization process and spiking representa-
tion. The latent space in the SVAE is constructed using spiking neuron dynamics, where the encoder’s
spiking output determines the latent representation through firing rate estimation. Reparameterization
using a Poisson sampling process enables spike-based encoding, allowing the decoder to reconstruct
the input while ensuring efficient and biologically plausible representation. [18]

Firing Rate Estimation
After the encoder processes the input, the spiking output from the encoder is used to estimate the firing
rate:

rp =
1

T

T∑
t=1

spk2(t)

where:

• rp is the firing rate vector representing the latent space.
• spk2(t) is the spike output from the encoder at time t.
• T is the total number of time steps.

Reparameterization Process
The latent representation is obtained using a reparameterizable sampling process. Two methods are
considered based on the type of sampling:
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Gaussian Reparameterization
For standard VAEs, the mean µ and variance σ2 are computed using:

z = µ+ ϵ · σ

where:

• z is the sampled latent vector.
• ϵ ∼ N (0, 1) is a random noise vector.
• µ and σ are the outputs from the encoder.

Poisson Spiking Reparameterization
In the spiking VAE, the latent space follows a Poisson spiking process:

z = H(rp − u)

where:

• rp is the estimated firing rate from the encoder.
• u ∼ U(0, 1) is a uniformly distributed random variable.
• H(·) is the Heaviside step function.

This sampling mechanism generates a binary spike train, enabling compatibility with spiking neural
network architectures.

Latent Variable Sampling
The latent vector z sampled using the spiking process is fed into the decoder to reconstruct the input.
This latent representation preserves important features through biologically inspired mechanisms.

Latent Space Regularization
The SVAE uses a Maximum Mean Discrepancy (MMD) loss to regularize the latent space, that will be
explained in the next section as it uses the same function as for the loss.

3.1.6. Loss Function
The loss function of the Spiking Variational Autoencoder (SVAE) combines two essential components:
MaximumMean Discrepancy (MMD) loss and Mean Squared Error (MSE) or Root Mean Squared Error
(RMSE) loss. These components ensure that the latent space is well-regularized and that the model
reconstructs the input effectively [17, 18, 40].

Maximum Mean Discrepancy (MMD) Loss
The MMD loss measures the distance between the distributions of the latent representations from the
encoder (posterior) and the prior distribution. It uses a kernel-based distance measure, typically a
Radial Basis Function (RBF) kernel, and is defined as follows:

MMD2(p(rp), q(rq)) = Erp,r′p
[k(rp, r

′
p)] + Erq,r′q

[k(rq, r
′
q)]− 2Erp,rq [k(rp, rq)]

Where:

• p(rp): The posterior distribution of the firing rates from the encoder.
• q(rq): The prior distribution of the firing rates.
• k(ri, rj): The kernel function, usually the RBF kernel:

k(ri, rj) = exp

(
−∥ri − rj∥2

2σ2

)

The MMD loss encourages the latent space to match the prior distribution, ensuring meaningful latent
representations.
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Reconstruction Loss: MSE or RMSE
The reconstruction loss ensures that the model’s output closely resembles the input. It measures the
reconstruction error using either Mean Squared Error (MSE) or Root Mean Squared Error (RMSE),
depending on the application.

Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

∥xi − x̂i∥2

Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

∥xi − x̂i∥2

Where:

• xi: The original input sample.
• x̂i: The reconstructed output from the decoder.
• n: The number of samples.

Combined Loss Function
The final loss function is a weighted combination of the reconstruction and MMD losses:

L = λMMD ·MMD2(p(rp), q(rq)) + λrec ·MSE(x, x̂)

Where:

• λMMD: Weight for the MMD loss.
• λrec: Weight for the reconstruction loss.

This combined loss function ensures that the latent space maintains a structured distribution while
minimizing reconstruction errors. It balances both terms to achieve optimal performance in generating
accurate reconstructions and meaningful latent representations.

3.1.7. Fidelity Calculation in the Quantum State Tomography Model
The fidelity calculation in the quantum state tomography model measures how accurately the recon-
structed quantum state matches the true quantum state. This comparison is crucial for evaluating the
performance of the spiking variational autoencoder (SVAE). Fidelity provides a value between 0 and 1,
where 1 indicates perfect reconstruction.

Definition of Fidelity
The fidelity F (ρ, σ) between two quantum states ρ and σ is defined as:

F (ρ, σ) =

(
Tr

[√√
ρσ

√
ρ

])2

Where:

• ρ: The reconstructed quantum state represented as a density matrix.
• σ: The true quantum state represented as a density matrix.

For two pure states |ψ⟩ and |ϕ⟩, the fidelity simplifies to:

F (|ψ⟩, |ϕ⟩) = |⟨ψ|ϕ⟩|2
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Probability-Based Fidelity
The model also uses probability-based fidelity when working with the predicted and true measurement
probabilities obtained from the POVM measurements. The fidelity is computed as the sum of the
geometric mean of corresponding probabilities:

F (Ptrue, Prec) =
∑
i

√
Ptrue,iPrec,i

Where:

• Ptrue: True probabilities obtained from the dataset.
• Prec: Reconstructed probabilities computed from the model output.

Density Matrix Fidelity
The model also reconstructs the quantum state using the estimated and true density matrices ρrec and
ρtrue. The process includes the following steps:

1. Density Matrix Square Root: √
ρ = U

√
DU †

Where D represents the eigenvalues from the spectral decomposition.
2. Product Matrix Calculation:

A =
√
ρtrue · ρrec ·

√
ρtrue

3. Fidelity Computation:
F (ρtrue, ρrec) =

(
Tr
[√

A
])2

Model Evaluation with Fidelity
During training and validation, the computed fidelity is logged and printed after each iteration. A fidelity
score close to 1 indicates high similarity between the reconstructed and true quantum states, reflecting
successful training of the SVAE. This metric provides direct insight into the model’s performance in
learning quantum states from its training dataset.

3.1.8. Density Matrix Reconstruction
The quantum state ρ is reconstructed using the measurement probabilities obtained from the infor-
mationally complete (IC) POVM. The process ensures that the quantum state can be fully recovered
based on the measured probability distribution. Below, we describe the mathematical details of the
reconstruction process as implemented in the code.

Measurement Probabilities and Born’s Rule
The probability of observing a specific measurement outcome a is given by Born’s rule:

P (a) = Tr[M (a)ρ]

Where:

• M (a): The POVM element corresponding to the measurement outcome a.
• ρ: The quantum state’s density matrix.

For a system with N qubits, the POVM elementM (a) is expressed as:

M (a) =M (a1) ⊗M (a2) ⊗ · · · ⊗M (aN )

Where ai indicates the measurement outcome for the i-th qubit.
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Overlap Matrix and Inversion
To reconstruct ρ, the overlap matrix Ta,a′ is used:

Ta,a′ = Tr[M (a)M (a′)]

This matrix encodes the relationships between the POVM elements and is invertible when the POVM
is informationally complete. The reconstruction equation for ρ is then:

ρ =
∑
a,a′

P (a)T−1
a,a′M

(a′)

Where:

• P (a): The measured probabilities for the outcome a.
• T−1

a,a′ : The inverse of the overlap matrix.

• M (a′): The POVM elements.

Reconstruction Implementation in Code
The implementation reconstructs the density matrix ρrec from the measured probabilities Prec:

ρrec =
∑
i

Prec(i)M
(i)

Similarly, the true density matrix ρtrue is reconstructed using the true probabilities Ptrue:

ρtrue =
∑
i

Ptrue(i)M
(i)

The code calculates the tensor product of single-qubit POVM matrices to construct the multi-qubit
POVM matrices M (a), which are precomputed and stored for efficiency. The reconstructed matrices
are normalized to ensure:

Tr(ρ) = 1

Integration in the Model
The reconstruction process integrates the measured probabilities into density matrices. This is per-
formed during both training and validation to compare the predicted quantum state ρrec with the ground
truth ρtrue. The comparison is used to compute fidelity, which evaluates the accuracy of the recon-
struction. By employing this method, the model leverages IC POVMs to reconstruct the quantum state
effectively, ensuring that the training process aligns with the underlying physical quantum system.



4
Results

In the methods chapter is described how a SVAE can be set up to be trained in order to learn a quantum
state. In this chapter the results are described that came from implementing these methods by training
the SVAE on:

1. a CPU with the snnTorch python library that is used to train both the encoder and decoder imple-
mented on a Intel Xeon E5-2620 v3 and a Nvidia GeForce RTX 2080 Ti [42].

2. a hybrid setup that trains the encoder on a CPU but the decoder on the BrainScales-2 (BS2)
mixed signal neuromorphic chip using the hxtorch library framework [43].

Both the snnTorch library and hxtorch library use the pytorch framework so integration was possible
and the codes could be held almost identical for both training rounds. The table Tab. 4.1 summarizes
the parameters that remain constant across all tests, along with their descriptions.

To compare the 2 different training algoritms, the parameters of the encoders and VAE structure are
equal but the parameters of the 2 decoders are different because the BS2 has more flexible param-
eter settings due to its analog plastic neurons that are measured with ADC’s so threshold voltages,
calibration settings, and time step measurement setting can be adjusted.

Parameter Value / Description
Shots 100, 000
Beta 0.819 (Hyperparameter for regularization)
Number of Steps 100 (Training steps per epoch)
Number of Epochs 5 (Total epochs for training)
Learning Rate 1× 10−3 (Initial)
Number of Workers 4 (For data loading)
Shuffle False (Data shuffling disabled)
Input Size 4 · n (Proportional to the number of qubits, n)
Hidden Size 20 · n (Proportional to the number of qubits, n)
Output (Latent) Size 2 · 2n (Proportional to the number of qubits, n)
Alpha 1 (Scaling factor for loss terms)
Model Recovery False (No recovery of previous models)

Table 4.1: Common parameters used for all tests.
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4.1. Spiking poisson on CPU
This section presents the training and validation process for quantum state tomography using a vari-
ational autoencoder (VAE) with a spiking Poisson-based encoding scheme implemented on a CPU.
Table 4.2 summarizes the key parameters, including the number of qubits, batch size for training, and
the number of validation samples. The model is trained over five epochs with a total of 5×105 samples
per epoch, resulting in 50×105 training samples for qubit configurations ranging from 3 to 7 qubits. The
corresponding training fidelity results are depicted in Figs. B.3a to B.7a, while the fidelity validation
trends are illustrated in Fig. 4.1.

Qubits Batch Size for Training Validation Samples
3 100 20,000
4 300 100,000
5 600 45 · 500 = 512, 000
6 600 46 · 500 = 2, 048, 000
7 600 47 · 500 = 8, 192, 000
8 1000 48 · 500 = 32, 768, 000

Table 4.2: Parameters for training and validation across different numbers of qubits.

The fidelity of the qubits demonstrates convergence after approximately 50 × 105 training samples.
However, a notable delay is observed in the training of 5-qubit states compared to other qubit configu-
rations, as shown in Fig. 4.1. This discrepancy can be attributed to the gradient descent optimization
process struggling to initially identify the optimal gradient direction. Consequently, fidelity improvement
for the 5-qubit case exhibits a slower onset but eventually aligns with the fidelity achieved by other qubit
configurations.

To further analyze the fidelity progression, Fig. 4.1 presents the validation fidelity trends for 3 to 7 qubits,
aligned by the total number of samples processed. The results indicate that despite the initial training
delay for 5-qubit states, the model ultimately reaches comparable fidelity levels after sufficient training
iterations.

Figure 4.1: 3 to 7 qubits evaluated fidelity
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Figure 4.2: Fidelity of inference with increasing sample sizes.

4.2. Spiking poisson on BS2
In this section the model was trained using a hybrid setup where the encoder remains the same but the
decoder is moved to the BS2 chip. Additional parameters are needed because of the analog synapses
of the BS2 that where not present in the simulated synapses on the CPU. In table 4.3 are the metrics
stated that are held the same during training and validation.

Parameter Value
Time Step (DT) 2.0× 10−6 s
Membrane Time Constant (τmem) 1.0× 10−6 s
Synaptic Time Constant (τsyn) 6.0× 10−6 s
Scaling Factor (α) 300.0
Hidden Trace Shift (trace_shift_hidden) .0e− 06/DT
Output Trace Shift (trace_shift_out) .0e− 06/DT
Hidden Weight Initialization Range (weight_init_hidden) (0.2, 0.6)
Output Weight Initialization Range (weight_init_output) (0.4, 0.6)
Weight Scaling Factor (weight_scale) 100.0
Trace Scaling Factor (trace_scale) 0.0147
Input Repetitions (input_repetitions) 1

Table 4.3: Metrics and Parameters of the SNN Model.
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Figure 4.3: Fidelity of validation on BS2

4.3. Comparison between CPU-CPU and CPU-BS2 Implementation
This section presents a comparative analysis of the training performance of a fully spiking variational
autoencoder (FSVAE) for quantum state tomography on two distinct computational platforms: a CPU-
only implementation and a hybrid CPU-BrainScaleS-2 (BS2) neuromorphic hardware implementation.
Fig. 4.4 illustrates the key performance metrics observed during training.

As depicted in Fig. 4.4a, the fidelity achieved during training is systematically lower for the CPU-BS2
implementation in comparison to the CPU-only implementation. This discrepancy suggests that the
neuromorphic hardware introduces additional constraints that impact the overall reconstruction accu-
racy. The total training loss, shown in Fig. 4.4b, further substantiates this observation, as the loss
reduction is significantly more pronounced in the CPU-only implementation. Conversely, the CPU-BS2
implementation exhibits a more gradual convergence, indicating potential limitations in its optimization
dynamics.

To gain further insights into this behaviour, we analyse the individual contributions of the Maximum
Mean Discrepancy (MMD) loss and the Mean Squared Error (MSE) loss, presented in Figs. 4.4c and
4.4d, respectively. Notably, while the MMD loss follows a similar downward trajectory for both imple-
mentations, a substantial deviation is observed in the MSE loss. Specifically, the CPU-BS2 implemen-
tation exhibits a persistently higher MSE loss throughout training, which accounts for its overall inferior
performance in terms of fidelity and total loss reduction.
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(a) Fidelity of training for 3 qubits comparison. (b) Training loss plot.

(c) MMD loss during training. (d) MSE loss during training.

Figure 4.4: Training metrics visualized. (a) Fidelity comparison of 3 qubits, (b) Training loss plot, (c) MMD loss during training,
and (d) MSE loss during training.

4.4. Comparison with State of the Art
Table 4.4 presents a comparison of different models, where the first two columns correspond to imple-
mentations on the BrainScaleS-2 (BS2) system and the remaining columns represent classical neural
network-based approaches. The results from the BS2 implementation in this work surpass those re-
ported in [7] for 3 and 4 qubits, despite using only 103 samples compared to the 106 samples used in
their work. This highlights the efficiency of the proposed method in achieving high fidelity with signifi-
cantly fewer samples. The

Among the models compared, the highest fidelity is achieved by the variational autoencoder (VAE)
implemented on a continuous artificial neural network, as reported by [26]. This suggests that while
spiking neuromorphic implementations are promising, classical deep learning architectures still provide
the best performance in terms of fidelity.

Qubits SVAE BS2 RBM BS2 SVAE CPU VAE CPU
2 0.89 0.99 0.99 0.99
3 0.89 0.85 0.99 0.99
4 0.84 0.69 0.97 0.98
5 0.16 N.A. 0.90 0.98
6 N.A. N.A. 0.82 0.98
7 N.A. N.A. 0.78 0.98
8 N.A. N.A. 0.50 0.98

Table 4.4: Fidelity comparison of different models. The first two columns represent implementations on the BrainScaleS-2
(BS2) system, while the last two correspond to classical neural network-based approaches. The highlighted values indicate the

3- and 4-qubit fidelities in BS2-based models.



5
Conclusion

This thesis explored the intersection of quantum state tomography and spiking neural networks (SNNs)
through the development of a fully spiking variational autoencoder (FSVAE). By employing the BrainScaleS-
2 (BS2) neuromorphic hardware as the decoder, this thesis aimed to harness the advantages of spiking
computation for efficient quantum state reconstruction and generative modelling.

5.1. Summary of Contributions
Key contributions of this work include:

• The integration of spiking neurons in both encoder and decoder to achieve a fully spiking VAE
architecture, demonstrating compatibility with neuromorphic platforms like BS2.

• The introduction of spiking latent space samplingmethodologies, adapting standard VAEmethods
for binary spiking frameworks.

• Experimental validation of the architecture for quantum state reconstruction, with performance
benchmarks on fidelity and efficiency.

5.2. Findings and Impact
The results demonstrate that spiking VAEs can represent entangled quantum states with competitive
fidelity, addressing challenges in energy-efficient quantum simulations. For instance, the fidelity of the
reconstructed 3 and 4-qubit Greenberger-Horne-Zeilinger (GHZ) states approached 0.85 and 0.82 re-
spectively on BS2 , improving the prior benchmarks on BS2 for restricted Boltzmann machines (RBMs).
This suggests the viability of spiking neuromorphic systems for encoding quantum correlations and gen-
erative tasks, with the potential for scaling to larger quantum systems.

5.3. Future Work
While this thesis establishes a foundational framework, several avenues remain open for further explo-
ration:

• Exploring the feasibility of CNN-based architectures in place of the VAE encoder and decoder.
• Investigating techniques to further reduce MSE loss in BrainScaleS-2.
• Optimization of the BS2’s calibration processes to reduce hardware-induced noise and enhance
fidelity for high-dimensional quantum states.

• Investigating the scalability of spiking VAEs to larger quantum systems and their application in
quantum many-body simulations.

• Exploring cross-disciplinary applications, such as reinforcement learning in quantum settings, to
evaluate the broader utility of spiking VAEs.
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Calculations

A.1. Calculations Measurement operators
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B
Other results

In this appendix all the other experiments done are described here.

B.1. Initial experiment
A SVAE is initially build using the original paper of the VAE but then with spiking layers. This was to
prove that it was possible to build a SVAE on the cpu that was able to learn the probabilities of a quantum
state. In Fig. B.1 is seen that a quantum computer or simulator runs an experiment S amount of shots
and saves the result of the experiments in a database. The database is build on top of the database
library of pytorch and can be used by the pytorch framework [44]. The encoder and decoder are build
using a three layer network consisting of two spiking layers and a simple output layer that sums the
spikes and calculates the spiking probabilities per output neuron. The model uses no optimisation yet
and the results are seen in B.2.

1 # Define hyperparameters
2 shots = 100_000 # amount of shots taken by the quantum simulator
3 beta = 0.819
4 num_steps = 200
5 num_epochs = 1
6 learning_rate = 1e-3
7 num_workers = 0
8 shuffle = False
9 split = [0.6, 0.2, 4**n *500]
10

11 # Reproduction of paper (qubits, training batch size, total samples, batch size samples)
12 parameters = [
13 (3, 100, 20_000, 20_000),
14 (4, 200, 100_000, 40_000),
15 (5, 500, 4**5 * 500,40_000), # 4^5 * 500
16 (6, 600, 4**6 * 500, 40_000), # 4^6 * 500
17 (7, 800, 4**7 * 500, 40_000), # 4^7 * 500
18 (8, 1000, 4**8 * 500,80_000) # 4^8 * 500
19 ]

Listing B.1: Settings

39
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Figure B.1: SVAE first build
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B.2. Results of the initial SVAE
This is the result of the initial experiment

Figure B.2: Experiment with 3 to 8 qubits and 10 ∗ 104 samples from the quantum simulator
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B.3. Training details per qubit
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Figure B.3: Fidelity analysis for 3 qubits: Training vs Validation.
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Figure B.4: Fidelity analysis for 4 qubits: Training vs Validation.
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Figure B.5: Fidelity analysis for 5 qubits: Training vs Validation.
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Figure B.6: Fidelity analysis for 6 qubits: Training vs Validation.
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Figure B.7: Fidelity analysis for 7 qubits: Training vs Validation.
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B.4. BS2 optimisations
B.4.1. Result of training 3 qubits

(a) Fidelity_train (b) Loss-train

(c) MMD Loss-train (d) MSE Loss-train

(e) Spike Count Encoder-train (f) Spike Count Latent z-train

Figure B.8: Plots from folder: training_metrics_2024-12-14
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B.4.2. Result of 3 qubits with increased hidden size
The hidden size was increased from 20 * n to 32 * n.

(a) Fidelity_train (b) Loss-train

(c) MMD Loss-train (d) MSE Loss-train

(e) Spike Count Encoder-train (f) Spike Count Latent z-train

Figure B.9: Plots from folder: training_metrics_2024-12-15
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B.4.3. Result of 3 qubits with increased latent size
The hidden size was increased from 2 * 2**N to 3 * 2**N This test was done on 16/12/2024

(a) Fidelity_train (b) Loss-train

(c) MMD Loss-train (d) MSE Loss-train

(e) Spike Count Encoder-train (f) Spike Count Latent z-train

Figure B.10: Plots from folder: training_metrics_2024-12-18
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