Robust Interior-Exterior Classification For 3D Models

Nikolaos Tzounakos

Mentor #1: Liangliang Nan Mentor #2: Hugo Ledoux

Contents

Motivation

- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Motivation

Motivation

• CityGML models

Technische Universität München

• Geology studies

Delft

Boeters et al. 2015

Sondermann, 2018

Nagel et al. 2009

Motivation

3D Models Contain Deficiencies

Contents

- Motivation
- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Research Question

Generalized problem: Interior-Exterior Classification for 3D Models

Reason: Fundamental problem!

Contents

- Motivation
- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Related Work

 Geometric / Thematic Process

Donkers et al., 2015

Direction Vectors

Nooruddin et al., 2000

Limitations

- Duplicate geometry
- Holes

Related Work

Winding Number

Limitations

Delft

- No reliable existing 3D Constrained Delaunay Triangulation
- Dependent on consistent orientation

 Computationally Demanding

Contents

- Motivation
- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Idea: Working on Planar Cross-Sections Transform the problem into 2D

Requirements:

- Robust and reliable
- Can handle arbitrarily complex cross-sections
- Can preserve finer details

Overview

ŤUDelft

Planar cross-sections

Overview

ŤUDelft

- Structure the crosssections into connected components
- Construct components made of multiple line-segments.
- Reduce/ Simplify future computations

 Divide the section into line-segment components

Close Holes: Triangulation

- Automatic
 Delaunay Triangulation
- Select shortest edges
- Keep selected edges

- Twin-Ray Voting
 - Ray Casting: Generate ray from each segment's centroid
 - Count intersections number of ray with elements of cross-section

Twin – ray : For each ray, another is generated in opposite direction.

Reason: Independent of orientation!

Twin-Ray Voting

Result: $\begin{cases} outer \ border, \ if \ numsects_a \ is \ even, \ and \ numsects_b \ is \ odd \\ not \ border, \ if \ both \ numsects \ odd \ or \ even \end{cases}$

Models can be non-manifold, though!

Extract Borders: Optimization

Maximize Border Vote Energy:

$$BE = \sum_{i=1}^{n_c} b_i \cdot x_i$$

Where:

- i: connected component
- nc: total component number
- x_i: binary value of *i* component's selection
- bi: border vote value of component *i*

ŤUDelft

Optimization Constraints

For each endpoint:

$$A_e = \sum_{i=1}^{n_{ac}} x_i = 0$$
 or 2

Where:

- Ae: Degree of adjacency of endpoint e
- we: Binary value defining endpoint e's final existence

ŤUDelft

Overview

Inside-Outside Classification

Contents

- Motivation
- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Results

Results

TUDelft

Robust to Plane Orientations

Results

Extract Border

Optimization Ensures Manifoldness!

Comparison

Jacobson et al., 2013

Comparison

Limitations

Future Work & Applications

Overview

Input

Planar Cross-sections

Interior – Exterior Classification

Applications

Future Work & Applications

Outer Surface Extraction

Future Work & Applications

3D Printing

Visualization

Model Editing

ŤUDelft

Contents

- Motivation
- Research Question
- Related Work
- Methodology
- Results
- Conclusions

Conclusions

- Valid novel methodology
 - 3D Classification through 2D analysis
 - Generally robust, regardless of plane orientation
- Coping with Model Deficiencies

Deficiency Type	Solution
Duplicate Geometry	Pre-Processing Mesh & Graph Reconstruction
Self-Intersections	
Inconsistent Orientation	Irrelevant to Pipeline!
Holes	Delaunay Triangulation

Thank You For your Attention!

