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1
INTRODUCTION

In biology, phylogenetics is the study of the evolutionary history and relationship of a set
of species or taxa. There are three main types of evolutionary events: speciation, retic-
ulation and extinction. Firstly, speciation is the event of a single species evolving into
two or more distinct species. Secondly, reticulation is the event of two or more distinct
species forming a new species distinct from the originals. Reticulation events can be
broken down into recombination, hybridisation and lateral gene transfer. Thirdly, ex-
tinction is the event of a species going extinct. In Figures 1.1a, 1.1b and 1.1c, examples
of these events can be seen. Through these events, it is possible that a single species
branches and grafts into many distinct species creating a "family tree" of species. The
representation of such a family tree in a diagram is also called a phylogeny.
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b

a
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(a) Speciation

a

c

b

(b) Reticulation

c

b

(c) Extinction

Figure 1.1: The three types of evolutionary events.

For a set of species without any reticulation events, a rooted phylogenetic tree can

1
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be used as the phylogeny. A rooted phylogenetic tree is a rooted tree in which the leaves
are labelled by, for example, a set of species. (Semple and Steel 2003). An example can
be seen in Figure 1.2. An important question concerning these trees is how to construct
them. A fundamental result in phylogenetics shows that every rooted phylogenetic tree
is encoded by its triplets, see for example Dress et al. (2012). A triplet T ′ of a rooted
phylogenetic tree T is a rooted phylogenetic tree on three species that can be deduced
from T . This triplet T ′ is deduced by removing all other species and removing any arcs
that lead nowhere iteratively. This process is described in more detail in Section 3.1. In
Figure 1.3, two triplets of the tree in Figure 1.2 can be seen. This fundamental result
shows that the evolutionary relationship of a set of species X without any reticulation
events can be deduced from the evolutionary relationship of every subset of size three
of X . Moreover, it is possible to reconstruct a phylogenetic tree from its set of triplets,
as is shown by the algorithms introduced by Aho et al. (1981), Ranwez et al. (2007) and
Scornavacca et al. (2008).

b
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h

e
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d

Figure 1.2: A phylogenetic tree.

b

a

h

a

c

d

Figure 1.3: Two triplets of the tree on the left.

A shortcoming of phylogenetic trees is that they are not able to describe the afore-
mentioned reticulation events. To tackle this, a generalized version of rooted phyloge-
netic trees which are able to represent these events was introduced: rooted phylogenetic
networks. A rooted phylogenetic network is a rooted acyclic digraph in which the leaves
are labelled by a set of species (Huson, Rupp, et al. 2010; Morrison 2011). An example
can be seen in Figure 1.4.

Similarly to the aforementioned fundamental result, Huber and Moulton (2013) con-
jectured that every recoverable rooted phylogenetic network is encoded by its trinets.
Here, as expected, a trinet is a rooted phylogenetic network on three species. A formal
definition can be found in Figure 3.1. Two trinets of the network in Figure 1.4 can be seen
in Figure 1.5. In fact, they proved that level-1 rooted phylogenetic networks are encoded
by their trinets. Here ‘recoverable’ is a mild restriction and level-1 limits the complexity
of the network; both are defined in more detail in Section 3.1. Using this result, an algo-
rithm has been introduced by Huber and Moulton (2013) which recreates a recoverable
level-1 phylogenetic network from its set of trinets. TriLoNet introduced the TriLoNet
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algorithm, which is a similar algorithm and is also able to work with noisy data. An algo-
rithm that constructs a rooted level-1 phylogenetic network from a noisy set of triplets
was introduced by Huber, van Iersel, et al. (2011).

f

g
d

e

b
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c

Figure 1.4: A phylogenetic network.
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d

e

Figure 1.5: Two trinets of the network on the left.

Later, van Iersel and Moulton (2014) proved that recoverable rooted level-2 phyloge-
netic networks (a category of rooted phylogenetic networks allowing for more complex
scenarios) are also encoded by their trinets. Various algorithms have been introduced
for constructing rooted phylogenetic networks (Huson and Scornavacca 2012; Lot et al.
2009; Poormohammadi et al. 2014; Than et al. 2008). However, these algorithm do not
reconstruct a level-2 network from its set of trinets. This thesis introduces TriL2Net
(Trinet Level-2 Network Algorithm), which constructs a recoverable rooted level-2 phy-
logenetic network from a set of recoverable rooted level-2 trinets. In particular, given
the set of trinets T that such a network N exhibits, it construct N . This means that the
algorithm’s output is correct if the input is too. Furthermore, in case the input set is dis-
torted by either deleting or altering a certain percentage of its trinets, the output network
will still be reasonably consistent with the input. For example, if 15% of the trinets are
replaced with random other (level-2) trinets, then the trinet consistency scores in our
experiment is 70% on average. Moreover, for two sets of generated from biological data,
TriL2Net is able to construct networks which are at least as consistent with the input as
the networks produced by TriLoNet.

Lastly, the algorithm’s complexity is polynomial in the number of trinets t and num-
ber of species n: its runtime is at most O(n ·t+n5). A trinet set on 25 species, for example,
is solved in under two minutes using an i7 CPU.

The algorithm utilizes a bottom up approach similar to that of TriLoNet and
Neighbour-Joining (Saitou and Nei 1987). However, it differs from TriLoNet in the
way it deals with contradicting trinets. Moreover, the heuristics used are different. The
steps of the approach are illustrated using a phylogeny of sunflowers in Chapter 2. There-
after, in Chapter 3, the necessary concepts are formalized. This includes different clas-
sifications and properties of rooted phylogenetic networks, such as stable ancestors and
cut-arcs. In Chapter 4 several lemmas are introduced, which lead to a characterization
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of the cut-arc sets of recoverable rooted level-2 phylogenetic networks. Next, in Chap-
ter 5 the different steps of the algorithm are described in detail using pseudocode. For
each step, the time-complexity is computed. Moreover, it is shown that if the input is
deduced from a recoverable rooted level-2 phylogenetic network N , then the algorithm
reconstructs N . Additionally, it is explained which measures are taken to minimize the
effect of noise in the input. In Chapter 6, the algorithm is tested on both sampled and
biological data. The results of these tests are compared to the results of Oldman et al.
(2016). Finally, in Chapter 7 the results are summarized and recommendations for fur-
ther research are given.

The source code of the algorithm and instructions on how to use it can be found at
https://github.com/KSjors/TriL2Net.

https://github.com/KSjors/TriL2Net


2
EXAMPLE

In order to illustrate the different steps of the algorithm, a phylogeny of a set of He-
lianthus, or sunflowers, is taken as an example (Timme et al. 2007).1 This phylogeny
is a recoverable rooted level-2 network and can be seen in Figure 2.1.

H. angustifolius

H. simulans

H. floridanus

H. anomalus H. pumilus
H. cusikii

H. gracilentus

H. praecox

H. debilis

H. niveus
H. petioaris

H. deserticola

H. paradoxis
H. annuus

H. argophyllusH. bolanderi

Figure 2.1: A phylogeny of Helianthus.

1Only the species in group 2 in the network are used, as this results in a concise and interesting network.
Furthermore, the species H. laevigatus, H. schweinitzii, H. hirsutus, H. eggertii, and H. californicus have been
removed as their evolutionary relation is unclear.

5
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The input of the algorithm are all the networks on three types of sunflowers. These
are called the networks exhibited trinets. Three examples of these trinets can be seen in
Figure 2.2 below.

H. niveus
H. simulans

H. floridanus

H. anomalus

H. deserticola

H. argophyllus

H. angustifolius

H. praecox

H. deserticola

Figure 2.2: Three trinets of the Helianthus phylogeny.

Denote the network from Figure 2.1 using N , the set of sunflowers using X and the
set of of trinets using T . Then, the algorithm reconstructs N from T using a bottom
up approach. Step one of this approach consists of identifying groups of species which
form a sub-network at the bottom of N . Note this must be done not from N but from T .
In Figure 2.3 these sub-networks are illustrated using the red lines.
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H. angustifolius

H. simulans

H. floridanus

H. anomalus H. pumilus
H. cusikii

H. gracilentus

H. praecox

H. debilis

H. niveus
H. petioaris

H. deserticola

H. paradoxis
H. annuus

H. argophyllusH. bolanderi

G2

G3

G1

G4

Figure 2.3: The sub-networks at the bottom of the Helianthus phylogeny.

The species attached to these sub-networks are called the minimal cut-arcs sets of
N . For example, the minimal cut-arc set corresponding to G1 is:

{H . ang usti f ol i us, H . F lor i d anus, H . si mul ans}.

Next, for each of these cut-arc sets, the algorithm finds all the trinets which have infor-
mation on this set. This is called the restricted trinet set. From the information in this
restricted trinet set, the algorithm then computes what the sub-network of this cut-arc
set must look like. It does this by iterating through the set and counting certain proper-
ties of the trinets. After this has been done for every cut-arc set, these sets are collapsed
into leaves. The result of collapsing these sets can be seen in Figure 2.4.
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H. angustifolius

H. simulans

H. floridanus

H. anomalus H. pumilus
H. cusikii

H. gracilentus

H. praecox

H. debilis

H. niveus
H. petioaris

H. deserticola

H. paradoxis
H. annuus

H. argophyllusH. bolanderi

G2

G3

G1

G4

Figure 2.4: The Helianthus phylogeny after collapsing the minimal cut-arc sets G1, G2, G3 and G4.

As the original network N is unknown, this collapsing must be performed on the
trinets in T instead. This creates a collapsed trinet set. The three trinets from Figure
2.2, for example, will become the trinets in Figure 2.5. Note that some of the trinets
can collapse into binets or singletons, phylogenetic networks on two leaves and one leaf
respectively. Such trinets will be discarded.

H. niveus
H. simulans

H. floridanus

G1

H. anomalus

H. deserticola

H. argophyllus

G4

H. angustifolius

H. praecox

H. deserticolaG1

G3

G4

Figure 2.5: The collapsed version of the trinets of Figure 2.2.

New minimal cut-arc sets can be derived from this collapsed trinet set, for which
the sub-networks must be computed. These cut-arc sets can again be collapsed into
leaves creating a further collapsed version of the already collapsed trinet set. These
steps are repeated until every trinet is collapsed into a binet or singleton. The last found
sub-network then contains leaves which actually represent a set of leaves; such as the
leaves G1 in the figures above. Such a leaf is then replaced with the sub-network it cor-
responds to. This sub-network may again contain leaves which corresponds to other
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sub-networks. The algorithm then repeats this process of replacing leaves with the cor-
responding sub-network until all no more of such leaves exist and all the leaves represent
a single species in X .

This process can roughly be divided into the following steps:

• collapsing:

– find the minimal cut-arc sets from T ;

– find the corresponding sub-network from T for each cut-arc set;

¦ find the number of reticulations in the sub-network;
¦ find the underlying structure of the sub-network;
¦ determine on which side each leaf is located;
¦ determine the order of the leaves on each side.

– collapse the minimal cut-arc sets in each trinet in T creating a new trinet set;

• expanding:

– in each sub-network, find leaves which correspond to other sub-networks;

– replace these leaves with these sub-networks.

These steps are explained in further detail in Chapter 5.





3
PRELIMINARIES

In order to derive the properties of a network, the evolutionary concepts need to be for-
malized. These are concepts such as lineage, children and ancestors. These concepts will
be illustrated using the phylogenetic network in Figure 3.1. This is (part of) the renamed
phylogeny of sunflowers from Chapter 2.
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Figure 3.1: Example recoverable strictly level-2 phylogenetic network.
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3.1. PHYLOGENETIC NETWORK
Formally, a rooted phylogenetic network is defined as follows.

Definition 3.1.1 (Rooted Phylogenetic Network). For a set of species X , a rooted
phylogenetic network N = (V ,E) on X is a rooted acyclic digraph with (finite) node
set V and arc set E in which the leaves are bijectively labelled by X and each node
v has either:

• deg+(v) = 0 and deg−(v) ≥ 2 (the unique root node);

• deg+(v) = 1 and deg−(v) ≥ 2 (tree node);

• deg+(v) ≥ 2 and deg−(v) = 1 (reticulation node);

• deg+(v) = 1 and deg−(v) = 0 (leaf node),

where deg+(v) is the in-degree and deg−(v) the out-degree of v . Furthermore, du-
plicate arcs are not allowed in E .

The non-leaf nodes of N are also called the internal nodes of N . If the parent of
a leaf is root node, tree node, or reticulation node, then the leaf is also called a root
leaf, tree leaf or reticulation leaf respectively.

The degree of the network is the maximum of the sum of the in- and out-degrees
of each node. A binary network has degree 3 for example, which is also the mini-
mum degree of a network.

If N has no reticulation nodes, it is also called a rooted phylogenetic tree.
Furthermore, two rooted phylogenetic networks N = (V ,E) on X and N ′ = (V ′,E ′)

on X ′ are called isomorphic if there exists a bijection φ : V 7→ V ′ such that (v, w) ∈
E ⇐⇒ (φ(v),φ(w) ∈ E ′. They are called equal if additionally φ(x) = x for all x ∈ X .

Lastly, a rooted phylogenetic network on m leaves is also called an m-net. When
m = 2 or when m = 3 then the network is also called a binet or trinet respectively.

In the example network:

• the unique root node is 0;

• the leaf nodes are {a,b,c,d ,e, f , g ,h, i , j ,k, l ,m};

• the tree nodes are {1,2,3,4,6,7,8,10,11,12,13,14,15};

• and the reticulation nodes are {10,14};

• the degree is 3, hence the network is binary.

From now on, it will be assumed that all phylogenetic trees and networks are rooted and
binary, unless stated otherwise.

Important evolutionary concepts are lineage, ancestors and children. Their math-
ematical counterparts are called paths, higher nodes and lower nodes respectively and
are defined below.
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Definition 3.1.2 (Paths). Let N = (V ,E) be a phylogenetic network, and let u, v ∈V
be two nodes. Then a path from u to v in N of length n ≥ 1 is a sequence of unique
nodes pi ∈V , i ∈ {1, . . . ,n} such that:

p1 = u,

pn = v,(
(pi , pi+1) ∈ E

)∨ (
(pi+1, pi ) ∈ E

) ∀i ∈ {1, . . . ,n −1}.

A path is called directed if the last condition can be replaced with:

(pi , pi+1) ∈ E ∀i ∈ {1, . . . ,n −1},

and a backwards path if the last condition can be replaced with:

(pi+1, pi ) ∈ E ∀i ∈ {1, . . . ,n −1}.

If such paths exists, it is said that
←→
P (u, v) ∈ N ,

−→
P (u, v) ∈ N and

←−
P (u, v) ∈ N respec-

tively. Furthermore,
←→
P N (u, v),

−→
P N (u, v) and

←−
P N (u, v) are used to denote the set of

all paths, dipaths, and backwards paths from u to v in N respectively.

Using these paths, it can be defined what higher and lower nodes are.

Definition 3.1.3 (Partial ordering). Let N = (V ,E) be a phylogenetic network on X

and let u, v ∈ V be two nodes. Then u is said to be strictly below v if
−→
P (v,u) ∈ N .

Similarly, u is said to be strictly above v if
−→
P (u, v) ∈ N . This is denoted with u < v

and v > u respectively. This is also called the reachability relation, and is in fact a
partial ordering of the nodes in V .

From this, a partial ordering of the arcs can be induced. Let e, f ∈ E be arcs and
denote e = (e1,e2) and f = ( f1, f2). Then:

e > f if e1 ≥ f2,

e ≥ f if e = f or e > f ,

e < f if e2 ≤ f1,

e ≤ f if e = f or e < f .

Similarly, a partial ordering between arcs and nodes can be induced. Let v ∈ V
and e ∈ E . Again denote e = (e1,e2). Then:

v > e if v > e2,

v ≥ e if v ≥ e2,

v < e if v < e1,

v ≤ e if b ≤ e1.
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Lastly, a partial ordering between the leaves can be induced. Let x, y ∈ X be two
leaves and let v, w ∈V be their respective parents. Then:

x ≺ y if v < w,

x Â y if v > w.

In the example network:

• there is a directed path from node 5 to leaf i , but not from node 1 to node 10;

• node h is strictly below node 7;

• arc (0,1) is neither below nor above edge (4,11);

• and node 9 is below, but not strictly below, arc (8,9).

An important type of ancestor is a stable ancestor. A stable ancestor of a species or
set of species is an ancestor from which all genetic data, except mutations, can be traced
back too.

Definition 3.1.4 (Stable Ancestors). Let N = (V ,E) be a phylogenetic network and
let v ∈V be a node. Then a stable ancestor of v is a node s ∈V such that s is on every
directed path from the root ρ to v . The lowest stable ancestor of s is the lowest of
all stable ancestors of v . The stable ancestors and lowest stable ancestor of s are
denoted with S A(s) and LS A(s) respectively.

A stable ancestors of a set S ⊆V nodes is a node s ∈V that is a stable ancestor of
all nodes in S. The lowest stable ancestor of S it the lowest of all stable ancestors of
S. The stable ancestors and lowest stable ancestor of S are denoted with S A(S) and
LS A(S) respectively.

Note that there always exists a stable ancestor, as the root is on every path from
the root to a node. Also note that the lowest stable ancestor is unique.

In the example network:

• the lowest stable ancestors of leaf {i } are the nodes 14, 12, 11 and 0;

• the lowest stable ancestor of leaves {b,c, g } in the example network is the node 0;

• and the lowest stable ancestor of nodes {b, i } is node 11.

Often a set of species is grouped in genera. These groups are often below the cut-arcs
of the phylogenetic network and are called the network’s cut-arc sets. These notions are
defined below.
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Definition 3.1.5 (Cut-arcs). Let N = (V ,E) be a phylogenetic network and letρ be its
root. An arc e = (e1,e2) ∈ E is called a cut-arc of N if for every node v below e2 every
path from ρ to v passes through e. A cut-arc is called a trivial cut-arc if its head is
a leaf, that is, e2 ∈ X . Furthermore, a non-trivial cut-arc is called a minimal cut-arc
if there does not exist any non-trivial cut-arc below it. Lastly, if a phylogenetic net-
work contains only trivial cut-arcs it is called a biconnected phylogenetic network.

Definition 3.1.6 (Cut-arc sets). Let N = (V ,E) be a phylogenetic network on X and
let e = (e1,e2) be a cut-arc. Then the set of all species S ⊂ X below e is called a
cut-arc set. If |S| = 1 then S is called a trivial cut-arc set. If S is non-trivial and
does not contain any other non-trivial cut-arc set, it is called a minimal cut-arc set.
Furthermore, the set of all species X is also a cut-arc set. Therefore, in case N is
biconnected, X is a minimal cut-arc set.

In the example network:

• the non-trivial cut-arcs in the example are edges (0,1), (1,2), (2,3), (0,4), (5,6) and
(8,9);

• the three minimal cut-arcs are edges (2,3), (5,6) and (8,9);

• minimal cut-arc (2,3) has corresponding minimal cut-arc set {e, f };

• cut-arc (1,2) has corresponding cut-arc set {b,c,d};

Observation 3.1.7. As the minimum size of such a set is two, a trinet can only have one
minimal cut-arc set.

Similar to how cut-arc sets are sets of leaves below a cut-arc, biconnected compo-
nents are sets of nodes ‘between’ cut-arcs.

Definition 3.1.8 (Biconnected components). Let N be a phylogenetic network. Then
the nodes that are connecte to each other after removing all the cut-arcs and leaves
from N are called the biconnected components. A biconnected component is called
trivial if it consists of a single node. A biconnected component is below an arc if all
of its nodes are below it. The leaf set of a biconnected component is the set of all the
leaves whose parents are in that component. In this case it is said that these leaves
are attached to the biconnected component.

If a biconnected component contains the root ρ of N , then it is also called the
root biconnected component. If a biconnected component has no outgoing non-
trivial cut-arcs it is called a leaf biconnected component.

Often biconnected is left out when no confusion is possible.

Two special types of biconnected components are the one adding almost no infor-
mation, and the one adding no information about the evolutionary relation. These com-
ponents are called redundant and strongly redundant components respectively.
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Definition 3.1.9 (Redundant components). Let N be a phylogenetic network and
let C be one of its non-trivial biconnected components. Then C is called redundant
if it has only one outgoing arc. Furthermore, it is called strongly redundant if it also
has no ingoing arcs. N is called recoverable if it contains no strongly redundant
components.

In the example network:

• the only non-trivial biconnected component of the network is
{4,5,7,8,10,11,12,13,14,15};

• leaves {g , j ,k, l ,m} are attached to this component;

• this component is not redundant nor strongly redundant;

• this component contains two reticulations.

Observation 3.1.10. For a phylogenetic network without redundant components, a cut-
arc is trivial respectively minimal if and only if the corresponding cut-arc set is trivial
respectively minimal.

The number of reticulations contained in a biconnected component describes how
tree-like it is and is also called the level of the component.

Definition 3.1.11 (Level). Let N be a phylogenetic network and let C be one of its
non-trivial biconnected components. Then C is said to be level-k if contains no
more than k reticulation nodes, and it said to be strictly level-k if it has exactly k
reticulation nodes. Furthermore, N is said to be level-k if all of its biconnected
components are of level-k, and it said to be strictly level-k if it is level-k and at least
one of its biconnected components is strictly level-k.

Clearly, the example network is strictly level-2 as all of its non-trivial biconnected
components are strictly level-2. Examples of a strict level-0 and a strict level-1 phyloge-
netic networks can be seen in Figure 1.2 and Figure 1.4 respectively.

Each of the biconnected components of a phylogenetic network has a certain under-
lying structure. This structure is called the generator of the component. The definition
of a generator is slightly different to that of a phylogenetic network.

Definition 3.1.12 (Generator). A generator G = (V ,E) is a biconnected rooted acyclic
digraph with (finite) node set V and edge set E in which each node has either:

• deg+(v) = 0 and deg−(v) ≥ 2 (the unique root node);

• deg+(v) = 1 and deg−(v) ≥ 2 (tree node);

• deg+(v) ≥ 2 and deg−(v) ≤ 2 (reticulation node).

The degree of the generator is the maximum of the sum of the in- and out-
degrees of each node. A binary generator has degree 3 for example, which is also
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the minimum degree of a generator. Furthermore, the number of reticulations of a
generator is also called its level. A level-k generator is denoted using G k . If there
are multiple such generators, an identifier is appended: e.g. G 2a , G 2b , G 2c and G 2d

denote the four different level-2 generators.
The edges and out-degree 0 reticulation nodes are also called its edge sides and

reticulations sides respectively. The set of all sides of a generator G denoted with
GS , and the set of edge sides and the set reticulation sides are denoted with GE and
GR respectively. A single side is referred to with s.

Two generators G = (V ,E) and G ′ = (V ′,E ′) are called isomorphic if there ex-
ists an isomorphism φ : V → V ′ such that (v, w) ∈ E ⇐⇒ (φ(v),φ(w)) ∈ E ′ for all
v, w ∈ V . Moreover, they are called equal in case that φ(v) = v for all reticulation
sides. Furthermore, if G and G ′ are equal, then it is said that the sides (v, w) and
(φ(v),φ(w)) are in the same set of symmetric sides. Such a set is denoted using I .

A set of symmetric sides I is crucial if at least one leaf must be attached to one
of the sides it contains in order for G to become a phylogenetic network. The set
of all crucial sides is denoted with GC . Similarly GC E and GC R denote the sets of all
crucial edge sides and crucial reticulation sides respectively.

The differences between a generator and a phylogenetic network are that a generator
does not contain any leaves, is always biconnected, can have duplicate edges, and that
it has exactly the same amount of reticulations as its level. All the generators from up-to
level 2 can be seen in Figure 3.2 (van Iersel and Moulton 2014).

0 1

(a) Generator G 1

0

2

1

3

(b) Generator G 2a

0

1

2

3

4

(c) Generator G 2b

0

1

2

3

4

(d) Generator G 2c

0

1

2

3

(e) Generator G 2d

Figure 3.2: All level-1 and level-2 generators
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In order to clarify the definition of the different types of sides of a generator, some of
the sides of these generators are pointed out. For example, generator G 2d has six sides in
total: five edge sides and one reticulation side. The sides (1,3) and (1,3) are equal, hence
this generator contains five sets of symmetric sides: {(0,1)}, {(0,2)}, {(1,3), (1,3)}, {(3,2)}
and {2}. Note that for generator G 2c the reticulation sides 3 and 4 are not in the same set
of symmetric sides. This is due to the fact the labelling of the reticulation sides needs to
be preserved. For this generator, the non-singleton symmetric side sets are {(0,1), (1,2)},
{(1,3), (2,3)} and {(1,4), (2,4)}.

The example network contains one component which is based on a generator other
than generator G 0: the nodes 4, 10, 11, 12, 14 and 15 together form generator G 2b .

3.2. EXHIBITED NETWORKS, TREES AND CLUSTERS
Now it remains to be defined what an exhibited network is. An exhibited network can
be seen as the evolutionary history on a set of species derived from a the evolutionary
history of a larger set of species. The removal of information regarding one of the species
not in this subset is called termination.

Definition 3.2.1 (Termination event). Let N = (V ,E) be a phylogenetic network on
X of degree d . Then a termination event reduces the number of species by one by
terminating a leaf x ∈ X . That is, the following steps are executed:

1. remove x from X and V ,

2. let p be the parent of x,

3. remove the edge (p, x) from E ,

4. if p was the root node and now has a single outgoing arc

(a) let c be the child of p,

(b) remove edge (p,c) from E ,

(c) remove p from V .

5. if p was a tree node and now has a single outgoing arc:

(a) let g and c be the parent and the child of p respectively,

(b) remove edges (g , p) and (p,c) from E ,

(c) remove p from V ,

(d) if (g ,c) is not an edge in E , add the edge (g ,c) to E ,

(e) if (g ,c) is an edge in E , follow steps (4), (5) and (6) from this list for p ∈
{g ,c}.

6. if p was a reticulation node and now has no outgoing arcs:

(a) let {gi }t
i=1 with 1 < t < d be the parents of p,

(b) remove the edges {(gi , p)}t
i=1 from E ,
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(c) remove p from V ,

(d) for each node gi follow steps (4), (5) and (6) from this list with p = gi .

7. remove all (strongly) redundant components C from N by removing all nodes
and arcs in C from N and adding an arc between the node above C and the
node below C , if both exist.

A network N ′ on X ′ is exhibited by a network N on X , if it is the network N with every
leaf in X \ X ′ terminated.

Definition 3.2.2 (Exhibited networks). Let N and N ′ be two phylogenetic networks
on X and X ′ ⊆ X respectively. Then N ′ is an exhibited network of N if there exists a
sequence of termination events that transform N into N ′.

In Figure 3.3 two of the exhibited trinets of the example network can be seen.

h

a

b b

j

k

Figure 3.3: Two exhibited trinets of the example network.

If the reticulation nodes of a phylogenetic network N are suppressed, the network
becomes a tree. Here suppressing a reticulation node r is the removal of all but one of its
incoming arcs.

Definition 3.2.3 (Reticulation suppression event). Let N = (V ,E) be a phylogenetic
network on X of degree d . Then a reticulation suppression event reduces the num-
ber of reticulations by one by suppressing a reticulation node r ∈ V . That is, the
following steps are executed:

1. let {pi }t
i=1 with 1 < t < d be the parents of r ,

2. for each parent pi of r create a network Ni by performing the following:

(a) remove all arcs (p j ,r ) for j 6= i from N ,

(b) for each node p j , j 6= i perform steps (4), (5), (6) and (7) from Definition
3.2.1
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Definition 3.2.4 (Exhibited tree). Let N and T be a phylogenetic network and a
phylogenetic tree on X respectively. Then T is an exhibited tree of N if there exists a
sequence of termination and reticulation suppression events that transform N into
T .

Note that suppressing a reticulation node in a phylogenetic network N on X gen-
erates at most d − 1 phylogenetic networks, where d is the degree of N . Hence, if N
contains k reticulation nodes, then there exist at most (d − 1)k exhibited trees of N on
X . This is an upper limit due to the fact that suppressing one reticulation node can lead
to the termination of others. Two trees exhibited by the example network can be seen in
Figure 3.4.
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(a) To get this tree, reticulation node 10 is suppressed by
removing arc (8,10). Which arc entering reticulation

node 14 is removed does not matter.

c

l

e

j

h

i

(b) To get this tree, reticulation node 10 is suppressed by
removing arc (12,10). Which arc entering reticulation

node 14 is removed does not matter.

Figure 3.4: Two exhibited trees of the example network.

A special type of exhibited tree is the exhibited cluster. An exhibited cluster T of a
network N = (V ,E) is the tree created from N by suppressing all reticulations nodes and
then removing all arcs and leaves not below a certain node v ∈V from N .

Definition 3.2.5 (Exhibited cluster). Let N = (V ,E) and T be a phylogenetic network
on X and a phylogenetic tree on X ⊆′ respectively. Then T is an exhibited cluster of
N if it is an exhibited tree and X ′ consists of all leaves below a certain node v ∈V .

A phylogenetic tree N containing n nodes and leaves exhibits exactly n clusters. A
phylogenetic network N on X of degree d containing n nodes and leaves and k reticula-
tions can exhibit at most (d −1)k ·n clusters: n for each of the at most (d −1)k trees on X
it exhibits. Two clusters of the example network can be seen in Figure 3.5.
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(a) To get this tree, reticulation node 10 is suppressed by
removing arc (8,10). Which arc entering reticulation

node 14 is removed does not matter.

c

l
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i

(b) To get this tree, reticulation node 10 is suppressed by
removing arc (12,10). Which arc entering reticulation

node 14 is removed does not matter.

Figure 3.5: Two exhibited clusters of the example network

These exhibited networks, trees and clusters can be aggregated in a set.

Definition 3.2.6 (Network sets, tree sets and cluster sets). A set of unique networks
including a multiplicity per network is called a network set and is denoted using N .
If all networks in the set have the same amount of species m, then this set is called
an m-net set. If a network N is added to a network set N and N already contains
a network N ′ equal to N , then the multiplicity of N ′ is increased by one. The size
of a network set is the number of distinct networks it contains and is denoted us-
ing si ze(N ). The volume of a network N is the sum of all the multiplicities of the
networks it contains and is denoted using vol ume(N ).

If a network set contains two distinct networks on the same set of species, then
it is said that these networks contradict each other.

If m = 3, a network set it is also called a trinet set and is denoted with T . If
m = 2 it is called a binet set and is denoted with B. The set of m-nets exhibited
by a network is called an induced m-net set or the m-net set induced by N , and is
denoted with Nm(N ). In case m = 2 or m = 3 then this is denoted using B(N ) and
T (N ) respectively.

Furthermore, the set of species N describes is denoted with NX :

NX = ⋃
N∈N

NX ,

where NX is the set of species of network N .
A set of m species in also called an m-set. The number of m-sets of NX that are

represented by a network in N is called the coverage of N and is denoted using
cover ag e(N ).

Tree sets and cluster sets are defined in a similar way.

There are several methods to iterate over such sets. These methods are different in
the way they approach the multiplicity of the contained networks.
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Definition 3.2.7 (Network set iterating methods). Let N be an m-net set on n
leaves. Denote all the m-sets of NX using M1, . . . M(n

m

) and denote the networks

N ∈ N that have NX = Si using N 2
i , . . . . Denote their corresponding multiplicities

using m1
i ,m2

i , . . . . Then a network set iterator iterates over all sets Si and yields some

of the networks N j
i together with a weight w j

i .
The first iterator is the maximum multiplicity iterator, which yields for each

m-set Mi the network N j
i which has the highest multiplicity. If there are two or

more networks with the highest multiplicity, one of them is picked at random. The
weights yielded with these networks are always one.

The second iterator is the weighted average iterator, which yields all networks

N j
i . The weight of a network is its multiplicity divided by the sum of the multiplici-

ties of all networks on Mi , that is:

w j
i = m j

i∑
h mh

i

.

The third and last iterator is called the weighted sum iterator. This iterator sim-

ply yields all networks N j
i together with weights w j

i = m j
i .

Note that these iterators and methods yield the same networks and weights for in-
duced network sets, but do not necessarily yield the same for induced tree and cluster
sets. Furthermore, in TriLoNet the weighted sum iterator is used (Oldman et al. 2016).

3.3. COLLAPSED NETWORKS
Another method for deducing one phylogenetic from another is by collapsing a set of
leaves to a single leaf.

Definition 3.3.1 (Collapsed phylogenetic network). Let N be a phylogenetic net-
work on X , let S ⊆ X be a set of leaves and let l be a species not in X . Then collaps-
ing the set S in N to l results in the a network Ns for each leaf s ∈ S. That is, Ns is the
phylogenetic network on X ′ = (X \ S)∪ {l } created from N by terminating all leaves
in S except s, and renaming s to l . These networks Ns are also called collapsed net-
works. Note that these collapsed networks do not have to be unique. Moreover, if S
is a cut-arc set of N , then all the collapsed networks are the same.

Collapsed versions of the Helianthus phylogeny of Figure 2.1 and its trinets in Figure
2.2 can be found in Figures 2.4 and 2.5 respectively.

3.4. THE AUXILIARY GRAPH
For the bottom up approach, the algorithm needs to determine the minimal cut-arc sets
for the resulting phylogenetic network from the set of trinets. This is done using an aux-
iliary graph.
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Definition 3.4.1 (Auxiliary graph). Let T be a set of trinets on a set of species X .
Then the auxiliary graphΩ(T ) has vertex set TX and (directed) edge set consisting
of those (x, y) ∈ (TX ×TX ) such that every trinet T ∈ T with {x, y} ⊂ TX has y in in
its minimal cut-arc set.

Sometimes it is easier to look at the contrapositive of the definition of the edges: if a
trinet T ∈T on {x, y, z} has minimal cut-arc set {x, y}, then (x, z) ∉Ω and (y, z) ∉Ω.

Below we define minimal sink sets of the auxiliary graph. In Section 4.4, this property
will be shown to correspond to the minimal cut-arc sets of a phylogenetic network.

Definition 3.4.2 (Sink-set). Let Ω = Ω(T ) be an auxiliary graph and let S ⊆ TX .
Then S is a sink-set if it has no outgoing arcs inΩ. The set of all species TX is called
the complete sink-set. Furthermore, S is a minimal sink-set if it consists of at least
two vertices and does not contain any other sink-sets.

In Figure 3.6, the auxiliary graph of the trinet set induced by the example network
from Section 3.1 can be seen. Note that the minimal sink-sets of the auxiliary graph
indeed correspond to the minimal cut-arc sets.
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Figure 3.6: The auxiliary graph of the trinet set induced by the example network.





4
THEORY

Finding the minimal cut-arc sets of a phylogenetic network through its trinets is the most
mathematically complex part of the problem. This complexity arises from the fact that
the information deduced from a single trinet only excludes the possibility of certain cut-
arc sets in the complete network. For example, assume that T is a trinet on species x, y
and z with minimal cut-arc set {x, y}. Then the only fact that can be deduced is that
there exists no minimal cut-arc set containing both x and z or both y and z. If no trinet
is found that excludes the possibility that x and z are in the same minimal cut-arc set,
then they must be in the minimal cut-arc set together.

The auxiliary graph from Definition 3.4.1 is defined to capture all this information.
The final theorems in this chapter show that its minimal sink-sets indeed characterize
the minimal cut-arc sets of a phylogenetic network. The first of these theorems (Theo-
rem 4.4.2) holds for level-2 phylogenetic networks only. This is due to the condition in
Lemma 4.2.3. It is conjectured that this lemma also holds for networks of any level, and
thus that Theorem 4.4.2 also holds for any level.

To prove these theorems, it is first analysed what happens to the cut-arc sets of a net-
work when some of its leaves are terminated. This is because terminating leaves creates
trinets, and these trinets induce the auxiliary graph.

25
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4.1. STRUCTURE OF PHYLOGENETIC NETWORKS
It is important to know what happens to structure of a phylogenetic network when some
of its leaves are terminated. Here, structure refers to the partial ordering of the nodes,
lowest stable ancestors of nodes and the networks cut-arc sets.

First a rather intuitive result: the partial ordering of the nodes of a phylogenetic net-
work is preserved when one of its leaf is terminated.

Lemma 4.1.1. Let N = (V ,E) be a phylogenetic network and let N ′ = (V ′,E ′) be the phylo-
genetic network on X ′ = X \ {x} created by terminating a leaf x ∈ X in N . Then u ≤N ′ v if
and only if u ≤N v for any u, v ∈V ′.

Proof. Let u, v ∈V ′ and assume that u ≤N ′ v . It will be shown that u ≤N v . By definition,
there exists a directed path P ′ from u to v in N ′. Clearly, if only arcs are removed during
the termination process, then P ′ is also a path in N . However, there is one step in this
process in arcs are added to the network: step 5(d) adds the arc (g ,c) to E ′. If P ′ contains
an arc (g ,c) that was was added during termination, then just before the adding of the
arcs two other arcs (g , p) and (p,c) were removed. Hence replacing (g ,c) with the arcs
(g , p) and (p,c) creates a longer path from u to v in N . Hence, there exists a (possibly
longer) path P from u to v in N . So u ≤N v .

Next, let u, v ∈V ′ and assume that u ≤N v in N . It will now be shown that u ≤N ′ v . By
definition, there exists a directed path P from u to v in N . Clearly, if only arcs are added
during the termination process, then P is also a path in N ′. However, there are three steps
in this process which remove arcs from the network: steps 4(b), 5(b) and 6(b)i. Steps 4(b)
and 6(b) are not of interest, as they remove edges between nodes of which at least one is
not in V ′. Step 5(b) removes the arc (g , p) and (g ,c) from E . If either of these arcs are in
P , then so must the other. Now in case these arcs are removed during termination, this
part of the path is replaced with a direct edge from g to c, creating a shorter path P ′ from
u to v in N ′. Hence u ≤N ′ v .

Note that the partial ordering of the network induces the lowest stable ancestor of a
set of leaves. Therefore, if this lowest stable ancestor is not removed during termination,
it should stay the lowest stable ancestor of this set. The following lemma shows that this
is indeed the case for the lowest stable ancestor of a set of two leaves.

Lemma 4.1.2. Let N = (V ,E) be a phylogenetic network on X and let N ′ = (V ′,E ′) be the
phylogenetic network on X ′ = X \ {x} created by terminating a leaf x ∈ X in N . Further-
more, let S ⊆ X contain two leaves and let l and l ′ denote the lowest stable ancestor of S in
N and N ′ respectively. If x ∉ S then l = l ′.

Proof. Assume that x ∉ S and denote S = {s1, s2}. Note that V ′ ⊆ V and thus that l ′ ∈ V .
From Lemma 4.1.1, l ′ ≤N ′ s1 and l ′ ≤N ′ s2 it follows that l ′ ≤N s1 and l ′ ≤N s2. Therefore,
it holds that l ′ ≤N l . If l ′ = l then the statement holds. For the purpose of contradiction
assume that l ′ <N l . By Lemma 4.1.1, it then follows that l ′ <N ′ l . But then l must be
removed during the termination event as otherwise l would have to be the lowest stable
ancestor of S in N ′. There are three cases in which l might be removed: if l is the root
node, a tree node or a reticulation node in N .

If l is a root node then it is not possible that l ′ <N l .
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If l is a tree node, then denote its two children with c1 and c2. Now l is only removed
when all leaves below c1 or c2 are terminated. Without loss of generality, it can be as-
sumed that the leaves below c1 are terminated. Hence the leaves in S must be below c2.
Then l <N c2, c2 ≤N s1 and c2 ≤N s2. A contradiction with the fact that l is the lowest
stable ancestor of S in N .

If l is a reticulation node then s1 and s2 are both below the single outgoing arc of l in
N . Denote this arc with (l ,c). Then l <N c, c ≤N s1 and c ≤N s2. A contradiction with the
fact that l is the lowest stable ancestor of S in N .

So none of these cases are possible. Hence it holds that l = l ′.

These last two lemmas show that the structure of phylogenetic networks can be re-
moved but not altered when leaves are terminated. In the following lemma, these results
are combined and translated to another structural property of these networks: its cut-arc
sets.

Lemma 4.1.3. Let N = (V ,E) be a phylogenetic network on X , let T = T (N ) be its trinet
set and letΩ=Ω(T ) be its auxiliary graph. Furthermore, let x, y, z ∈ X and assume that x
and y are part of the same cut-arc set of which z is not a part of. Then the minimal cut-arc
set of T ∈T on {x, y, z} is {x, y}.

Proof. Assume that there exists a cut-arc e = (e1,e2) such that x ≤N e and y ≤N e but not
z ≤N e. It follows that the lowest stable ancestor l of {x, y} is below or equal to e2 in N . It
also follows that z is not below l in N .

Now let T = (VT ,ET ) be the trinet on {x, y, z} of N created through termination se-
quence {εi }. From Lemma 4.1.2 it follows that l ∈ VT , and from Lemma 4.1.1 it follows
that x and y are also below l in T and that z is not below l in T . Therefore, l must be the
head of a cut-arc. Now the cut-arc set corresponding to l is minimal and contains x and
y but not z.

4.2. BICONNECTED PHYLOGENETIC NETWORKS
Using the knowledge of how the structural properties of a phylogenetic network change
when leaves are terminated, it can now be analysed how non-trivial cut-arcs arise in bi-
connected phylogenetic network during such termination events. The following lemma
shows that a biconnected network can only become non-biconnected if a reticulation
leaf is terminated.

Lemma 4.2.1. Let N = (V ,E) be a biconnected phylogenetic network on X with |X | ≥ 2.
Let N ′ be the network created from N by terminating a leaf x ∈ X . If N ′ is not biconnected,
then x is reticulation leaf.

Proof. Let N = (V ,E) be a biconnected phylogenetic network on X . Also let N ′ = (E ′,V ′)
be the network created from N by terminating x. Now assume that N ′ is not bicon-
nected. By definition, N ′ contains a non-trivial cut-arc e = (e1,e2) ∈ E ′. Note that e1,e2 ∈
V but not necessarily e ∈ E . By definition, for every node v below e2, every path from the
root ρ′ of N ′ to v must pass through e. It follows that e2 can not be a reticulation node in
N ′. Therefore, e2 can not be a reticulation node in N either.
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Now let v be a node below e2 in N ′, then it follows from Lemma 4.1.1 that v is also
below e2 in N . Now it is possible to let v be a reticulation node in N , as otherwise e2

would be the head of a non-trivial cut-arc in N . Next, let P and Q denote two distinct
directed paths from the root ρ of N to v . Without loss of generality, it can be assumed
that path P does not pass through e2.

Now note that terminating any tree nodes will only shorten path P . For example,
terminating a tree node Pi from the path will result in the nodes Pi−1 and Pi+1 to be
connected. Moreover, this shortened path P still does not pass through e2. Furthermore,
note that the only moment a reticulation node is terminated is when its out-degree be-
comes zero, which happens only when a leaf node or a reticulation node below it is ter-
minated. Hence, if x is not a reticulation leaf, no reticulation nodes will be terminated
and the path P will still be a (possibly shorter) path in N ′ that still does not pass through
e2. It follows that e is not a cut-arc in N ′: a contradiction. Therefore, x must be a reticu-
lation leaf.

The next lemma shows that for every tree leaf x there exists a reticulation leaf xr

such that these two leaves will still be attached to the same component after any leaf
other than x and xr is terminated. Furthermore, this even holds if any number of leaves
other than x and xr are terminated. In particular, if all leaves but x, xr and a third leaf
y are terminated, then the network becomes a trinet. It follows that x and xr must be
contained in the minimal cut-arc set of this trinet.

Lemma 4.2.2. Let N = (V ,E) be a biconnected phylogenetic network on X with |X | ≥ 4.
Denote the set of reticulation leaves of N with R. Let x ∈ X \ R be a tree leaf. Then there
exists a reticulation leaf xr ∈ R such that all exhibited trinets on X ′ = {x, xr , y} of N with
y ∈ X \ {x, xr } have x, xr in its minimal cut-arc set.

Proof. It will be shown that letting xr be a reticulation leaf below the parent of x fulfils
this condition. Denote with p the parent of x. Then there exists a reticulation node below
p. Let vr ∈ V be such a reticulation node, but without any reticulations below it. Since
there are no reticulations below it and N does not contain any non-trivial cut-arcs, the
arc leaving vr must be a trivial cut-arc. Hence the single child of vr is a leaf. Denote this
leaf with xr .

Now it will be shown that every exhibited trinet on X ′ = {x, xr , y} of N with y ∈ X \
{xr, xr } has x and xr in its minimal cut-arc set. To this end, fix y ∈ X \ {x, xr } and let T
be the trinet on X = {x, xr .y} created through termination sequence {εi }n

i=1. Denote with
Ni the resulting network of applying the termination event εi to network Ni−1, where
N0 = N and Nn = T .

It will be shown through induction that there exist two edge-disjoint directed paths
in Ni from the root ρi of Ni to vr , exactly one of which passes through the parent p
of x. This clearly holds for N0 as N is biconnected and vr is a reticulation node. Now
assume that for a fixed 1 ≤ k < n there exist two edge-disjoint directed paths in Nk from
the root ρk of Nk to vr , exactly one of which passes through p. Now applying εk to Nk

will terminate a leaf other than x and xr . This event will not remove p, as p is above both
x and xr , nor will it remove vr as it is above xr . Therefore, each of the two previous paths
may be shortened when one of the tree nodes it passes through is removed, but they
will remain distinct as p is on exactly one of them. So indeed the induction hypothesis
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holds. Therefore, T contains two edge-disjoint directed paths from its root to vr , exactly
on which passes through p.

From this, it follows that x and xr are attached to the same biconnected component
in T . Now let S be the minimal cut-arc set of T . As |S| ≥ 2 it follows that either x or xr in
S. As x and xr are attached to the same component, it follows that then also xr or x in S
respectively. So indeed {x, xr } ⊆ S.

The reticulation leaf xr in the proof above is also called a limit leaf of x. Note that
a leaf can have multiple limit leaves. Using these lemmas, it will now be shown that
the auxiliary graph of a biconnected level-2 phylogenetic network has only one minimal
sink-set: the complete sink-set. Using Lemma 4.2.2 it will be shown in Lemma 4.2.3 that
every tree leaf is connected to its limit leaf in the auxiliary graph and vice versa. Using
Lemma 4.2.1 it will be shown, also in Lemma 4.2.3, that if there are two reticulation leaves
these are connected to each-other too.

Lemma 4.2.3. Let N = (V ,E) be a biconnected level-2 phylogenetic network on X with
|X | ≥ 2. Furthermore, let T = T (N ) be its trinet set and let Ω = Ω(T ) be its auxil-
iary graph. Then for every two leaves x1, x2 ∈ X there exists a sequence of leaves x1 =
y1, y2, . . . ym = xm such that (yi , yi+1) and (yi+1, yi ) ∈Ω for all i ∈ (1,2, . . . (m −1)).

Proof. As N is biconnected it contains at most one non-trivial biconnected component:
the root component.

If the root component has no reticulations, then the only way for N to be biconnected
is if |X | = {x1, x2}. But then T =; and thus for x1, x2 there exists no trinet such that x1 or
x2 is not in its minimal cut-arc set. Therefore (x1, x2) and (x2, x1) ∈Ω.

Now assume that the root component has one or two reticulations. It will first be
shown that for every tree leaf t there exists a reticulation leaf r such that (t ,r ) and (r, t ) ∈
Ω. To this end, fix a tree leaf t and let r be a reticulation leaf as in Lemma 4.2.2. Now let
X ′ = {t ,r, z} where z ∈ X \{t ,r } arbitrary and let T ∈T be the trinet with leaf set X ′. Then,
according to this lemma, the minimal sink-set of T contains r and t . As this holds for
every z, by definition (t ,r ) and (r, t ) ∈Ω.

The proof is finished in case there is only one reticulation leaf, as every tree leaf is
connected to this reticulation leaf.

Now assume that the root component has two reticulation leaves: r1 and r2. It re-
mains to be shown that (r1,r2) and (r2,r1) in Ω. To this end, let X ′ = {r1,r2, z} where
z ∈ X \ {r1,r2} arbitrary. Now let T ∈ T be the trinet with leaf set X ′. Then T is created
from N by terminating only tree leaves. From Theorem 4.2.1 it follows that T is bicon-
nected. Therefore, by definition, X ′ is the only minimal cut-arc set of T . As this holds for
every z, it follows that both (r1,r2) and (r2,r1) ∈Ω. Hence, the statement holds.

Applying the above lemma to every leaf of a biconnected phylogenetic network gives
the following corollary.

Corollary 4.2.4. Let N = (V ,E) be a biconnected level-2 phylogenetic network on X with
|X | ≥ 2. Furthermore, let T = T (N ) be its trinet set and let Ω = Ω(T ) be its auxiliary
graph. Then X is a minimal sink-set inΩ.
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Note that the limitation to level-2 phylogenetic networks comes from the last part
of the proof of the previous lemma. We conjecture that this part can be generalized to
hold for any level. In particular, by showing that there exists a directed graph on the
reticulation leaves such that each two adjacent reticulation leaves are connected to each-
other in the auxiliary graph.

Conjecture 4.2.5. Let N = (V ,E) be a biconnected phylogenetic network on X with |X | ≥
2 with n ≥ 2 reticulation leaves. Furthermore, let T = T (N ) be its trinet set and let
Ω = Ω(T ) be its auxiliary graph. Then for every two reticulation nodes r, s there exits
a sequence of m ≤ n reticulation leaves r = r1,r2, . . . ,rm = s such that (ri ,ri+1) ∈ Ω and
(ri+1,ri ) ∈Ω for i = i , . . . ,m −1.

4.3. COLLAPSED NETWORKS
In order to extend Corollary 4.2.4 to any level-2 phylogenetic network, it needs to be
analysed how the exhibited trinet set T of a network N translates to the exhibited trinet
set T ′ of the network N ′ in which a cut-arc set has been collapsed. The following lemma
shows that the T ′ can be deduced from T .

Lemma 4.3.1. Let N be a recoverable phylogenetic network on X , let T = T (N ) be its
trinet set and let S be a minimal cut-arc set of N . Furthermore, let N c be the network
created from N by collapsing S to l and let T (N c ) be its trinet set. Lastly, let T c denote
the union of all collapsed version of the trinets in in T containing three leaves. Then
T c =T (N c ).

Proof. Denote the cut-arc corresponding to the S with e.
Let T c be a trinet in T c . It will be shown that T c ∈ T (N c ). If l ∉ T c

X , then clearly
T c ∈ T . Furthermore, only nodes and edges below cut-arc e are removed from N to
create N c . As T c does not contain leaves that are below e in N , it follows that T c ∈T (N c ).
If l ∈ T c

X , let T ∈ T denote the trinet from which T c has been derived. It holds that T
contains precisely one leaf s in S. As this is the only leaf that T contains that is below e,
it follows that the trinet created from T by replacing s with l is exhibited by N c . Hence
T c ∈T (N c ).

It remains to be shown that T (N c ) ⊆ T c . To this end, let T c be a trinet in T (N c ).
It will be shown that T ∈ T c . If l ∉ T c

X , then clearly T c ∈ T . As T has no leaves that are
in S, it follows that T is added to T c . Hence T c ∈ T c . If l ∈ T c

X , then there exists a leaf
s ∈ S such that the trinet T created from T c by replacing l with s is exhibited by N . As l is
the only leaf in T c that is below cut-arc e in N , it follows that l is replaced by y to create
T " which is added to T c . Due to the recoverability of N it holds that T " = T . Hence it
follows that T ∈T c .

It follows that T (N c ) =T c .

It can be shown analogously that this also holds for binet sets.

Corollary 4.3.2. Let N be a recoverable phylogenetic network on X , let B = B(N ) be its
binet set and let S be a minimal cut-arc set of N . Furthermore, let N c be the network
created from N by collapsing S to l and let B(N c ) be its binet set. Lastly, let Bc denote
the union of all collapsed version of the binets in in T containing two leaves. Then Bc =
B(N c ).
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4.4. CUT-ARC SETS AND SINK-SETS
Section 4.2 shows how the non-trivial cut-arc sets of biconnected phylogenetic network
convert to the minimal cut-arc sets the networks exhibited trinets. As the auxiliary graph
is derived from these minimal cut-arc sets, it should now be possible to prove how these
non-trivial cut-arc sets convert to sink-sets in the auxiliary graph.

Lemma 4.4.1. Let N = (V ,E) be a phylogenetic network on X , let T = T (N ) be its trinet
set and let Ω=Ω(T ) be its auxiliary graph. If S ⊆ X is a non-trivial cut-arc set of N then
S is a sink-set inΩ.

Proof. Assume that S ⊆ X is a non-trivial cut-arc set of N . To show that S is a sink-set in
Ω it needs to be shown that there are no edges (s, t ) inΩ such that s ∈ S and t ∉ S.

To this end, fix s ∈ S and t ∉ S arbitrarily. It must be shown that (s, t ) ∉Ω. By defini-
tion, this means that it must be shown that there exists a leaf z ∈ X \ {s, t } such that the
minimal cut-arc set of the trinet T ∈T with leaf set {s, t , z} does not contain t . It will be
shown that any z ∈ S \ {s} suffices.

Fix z ∈ S \ {s} arbitrarily, let X ′ = {s, t , z} and let T be the trinet on X ′ of N . Note that
such a z exists as S is a non-trivial cut-arc set. From Lemma 4.1.3 it follows that t ∉ S.
From this, it follows that (s, t ) ∉Ω for any t ∉ S. Therefore, S is a sink-set inΩ.

The following theorem shows that the minimal sink-sets of an auxiliary graph are
minimal cut-arc sets in the corresponding phylogenetic network. This is done using in-
duction on the number of non-trivial biconnected components of the network.

Theorem 4.4.2. Let N be a level-2 phylogenetic network on X and let T = T (N ) be its
trinet set and letΩ=Ω(T ) be its auxiliary graph. If S ⊆ X is a minimal sink-set inΩ, then
S is a minimal cut-arc set of N .

Proof. Assume that S ⊆ X is a minimal sink-set inΩ. It will first be proven that S is a non-
trivial cut-arc set via induction on the number of non-trivial biconnected components n
of N .

Let n = 1, then N is biconnected. By definition, X is a minimal cut-arc set. From
Corollary 4.2.4 it follows that X is also a minimal sink-set. So the induction basis holds.

Now assume the hypothesis holds for n ≤ k. It will be shown that it also holds for
n = k + 1. To this end, suppose that N has k + 1 non-trivial biconnected components
denoted with B1, . . .Bk+1.

Firstly, assume that there exists a leaf biconnected component L of N to which no
leaves of S are attached. Denote the leaves attached to L with XL . Now let N c denote the
network obtained after collapsing XL to l in N . Moreover, denote its trinet set with T c

and its auxiliary graph withΩc . Now it holds that this network N c satisfies the properties
of the induction hypothesis, and thus every minimal sink-set of Ωc is a non-trivial cut-
arc set of N c .

First assume that S ∩XL =;, it will now be shown that S is a minimal sink-set inΩc .
To this end, let s ∈ S and t ∉ S. As S is a sink-set inΩ it follows that (s, t ) ∉Ω. Hence there
exists a trinet T ∈ T on {s, t , x} with x ∈ X for which t is not in its minimal cut-arc set.
It will be shown that such a trinet also exists in Ωc . If x ∈ XL , take the trinet T c ∈ T c on
{s, t , l }. Now T c is the same as T , except that x is named l in T c . If x ∉ XL simply take the
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trinet T c ∈T c on {s, t , x}, which is the same trinet as T . Thus in both cases t is not in the
minimal cut-arc set of T . Therefore, (s, t ) ∉Ωc and thus S is a sink-set inΩc .

Next, it will be shown that S is also a minimal sink-set in Ωc . This will be done by
showing that (s1, s2) ∈Ωc if (s1, s2) ∈Ω for all s1, s2 ∈ S. If this holds, then the edges be-
tween leaves in S in Ωc are also in Ω. For the purpose of contradiction, fix s1, s2 ∈ S and
assume that (s1, s2) ∈Ω but (s1, s2) ∉Ωc . By definition, there must exist a trinet T c ∈ T c

containing s1 and s2 such that s2 is not in this trinet’s minimal cut-arc set. Denote the
third leaf of this trinet with x. If x = l , take the trinet T ∈ T c on {s, t , z} with z any leaf
in XL . Now T is the same as T c except that x is named z in T . If x 6= l simply take the
trinet T ∈T on {s, t , x}, which is the same as T c . So in both cases s2 is not in the minimal
cut-arc set of T . Therefore (s1, s2) ∉ S: a contradiction. So (s1, s2) ∈Ωc . Thus indeed, S is
also a minimal sink-set inΩc .

Secondly, assume that there exists at least one leaf biconnected component to which
a leaf of S is attached. Denote this biconnected component with L and the leaves that
are attached to it with XL . Then XL is a minimal cut-arc set in N and by Theorem 4.4.1 a
sink-set inΩ. It will be shown that XL is a minimal sink-set inΩ. From this it will follow
that S = XL and thus that S is a minimal cut-arc set in N .

Let N r be the exhibited network on XL . Also denote its trinet set with T r and its
auxiliary graph withΩr . Now N r is as in Lemma 4.2.3, hence for every node x ∈ XL there
exists a node y ∈ XL such that (x, y) and (y, x) ∈Ωr . Now let T ∈T be a trinet on {x, y, z},
where z ∈ X arbitrary. If z ∈ XL then clearly T ∈T r and, by definition of Ωr , both x and
y are in the minimal cut-arc set of T . If z ∉ XL , then x and y are in a cut-arc set that z
is not in. From Lemma 4.1.3 it follows that {x, y} is the minimal cut-arc set of T . Again,
both x and y are in the minimal cut-arc set of T . As this holds for all trinets on x and y
it follows that (x, y) and (y, x) ∈Ω. SoΩ contains at least the same edges in XL asΩr . As
XL is a minimal-sink set in Ωr and a sink-set in Ω, it follows that it must be a minimal
sink-set inΩ.

To sum up, XL and S are minimal sink-sets inΩ and XL∩S 6= ;. It follows that S = XL .
As XL is a minimal cut-arc set, it follows that so is S.

Finally, it remains to show that S is a minimal cut-arc set in N . For the purpose of
contradiction, assume that S is not minimal and hence strictly contains a non-trivial
cut-arc set S′. From Theorem 4.4.1 it follows that S′ is a sink-set in Ω. Hence S′ ⊂ S: a
contradiction.

So indeed, S is a minimal cut-arc set in N .

The next theorem shows that the converse is also true, which follows directly from
the inclusive properties of cut-arc sets and sink-sets.

Theorem 4.4.3 (Minimal cut-arc set implies minimal sink-set). Let N be a level-2 phylo-
genetic network, let T =T (N ) be its set of trinets and letΩ=Ω(T ) be its auxiliary graph.
If S ⊆ X is a minimal cut-arc set in N , then S is a minimal sink-set inΩ.

Proof. Let S be a minimal cut-arc set in N . Then from Lemma 4.4.1 it follows that S is
a sink-set in Ω. It will now be shown that S is a minimal sink-set. For the purpose of
contradiction, assume that S is not minimal, and thus strictly contains a sink-set in Ω
and hence also a minimal sink-set S′. By Theorem 4.4.2, S′ is in fact a minimal cut-arc
set. Since S′ ⊆ S, this contradicts the assumption that X is a minimal cut-arc set.



4.4. CUT-ARC SETS AND SINK-SETS

4

33

By combining Theorems 4.4.2 and 4.4.3 we obtain the following corollary.

Corollary 4.4.4. Let N be a level-2 phylogenetic network, let T =T (N ) be its set of trinets
and let Ω=Ω(T ) be its auxiliary graph. Then S ⊆ X is a minimal cut-arc set in N if and
only if S is a minimal sink-set inΩ.

Note that Huber, Moulton, and Wu (2019) have proven a similar theorem for 2-terminal
rooted phylogenetic networks through hierarchies of SN-sets, closed sets and minimal
closed sets. 2-terminal rooted phylogenetic networks are defined as rooted phylogenetic
networks containing at most two reticulation leaves per biconnected component. Closed
sets are defined as sets of leaves S for which the leaves below the lowest stable ancestor
of S are exactly the leaves in S.
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TriL2Net takes in a set of trinets T1 on a set of species X1 with |X1| ≥ 3. It then computes
a level-2 recoverable phylogenetic network N1 from this trinet set. It does this using two
main functions: collapse and expand.

Given T 1, collapse identifies a non-singleton subset Y1 of X1 that will be a minimal
cut-arc set in the output phylogenetic network N1. Next, it restricts T1 to the leaves in
Y1 to create the restricted trinet set T r

1 . From this set T r
1 , it constructs a biconnected

level-2 phylogenetic network M1 on Y1. Then, it creates a new trinet-set T2 on species
X2 from T1 by collapsing the leaves in Y1 to a single leaf c2. Here, X2 = (X \ Y1)∪ {c1}.
If |X2| ≥ 3, then collapse constructs a biconnected level-2 phylogenetic network M2

on a non-singleton subset of Y2 from T2 and continues like this until |Xi | = 1 for some
iteration i .

The expand function takes this last phylogenetic network Mi and denotes it with Ni .
Next, it creates the expansion Ni−1 of Ni by replacing the leaf ci in this phylogenetic net-
work with the phylogenetic network Mi−1. It continues like this until the phylogenetic
network N1 is created, which is the output of the algorithm.

Note that each phylogenetic network Ni is the result of running Tril2Net on the
trinet set Ti .

The expand function is relatively straightforward, but the collapse function con-
sists of three complex steps: finding the minimal cut-arc set, constructing a biconnected
level-2 phylogenetic network for each minimal cut-arc set, and collapsing the trinet set.
These steps will be explained in more detail below. In these steps, variables with a hat
above them denote the output of a part of the algorithm. Similarly, if there is a desired
output of the algorithm, it is denoted with a variable with a line above it.

35
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For example, generators are denoted with G . If the algorithm decides that the output
phylogenetic network should be based on a specific generator, this is denoted with Ĝ .
Furthermore, if the input of the algorithm is induced by a network, then the generator
of that phylogenetic network the desired output and is denoted with G . Clearly if G is
known then the goal is to have Ĝ = G . Furthermore, statistics derived from the trinet
set are denoted using subscripted p’s q ’s and r ’s. For example, the portion of trinets that
have k reticulations is denoted with pk .

Lastly, the subscripts denoting the iteration are left out in the following section as
they are unnecessary. That is, let T will denote the trinet set on species X of a certain
iteration j and the first step consists of finding a minimal cut-arc sets Y ⊆ X of the output
phylogenetic network N̂ .

5.1. FINDING THE MINIMAL CUT-ARC SETS
The minimal cut-arc sets are assumed to be the minimal sink-sets in the auxiliary graph
Ω=Ω(T ). If T is an induced trinet set, then it follows from Corollary 4.2.4 thatΩmust
at least one non-trivial sink-set. However, if T is not induced, it can happen that Ω
contains no arcs, resulting in each leaf being a trivial sink-set. A way to tackle this is
using the augmented auxiliary graph from Oldman et al. (2016).

Definition 5.1.1 (Augmented auxiliary graph). Let T be a trinet set on a set of
species X . Then the i th augmentation of the auxiliary graph Ω(T ) is the graph
Ωi (T ) with vertex set TX and (directed) edge set consisting of those (x, y) ∈ (X ×X )
such that at most i trinets T ∈ T with {x, y} ⊂ TX do not have y in their minimal
cut-arc set.

The goal of this augmented graph is to find sets of species which best resembles min-
imal cut-arc sets. This can be done in two ways. The first method, conform Oldman et
al. (2016), lets î1 be the minimal value of i for whichΩi (T ) contains at least one arc and
finds the strongly connected components of Ωî1

(T ). Then, if there exist strongly con-
nected components that are also minimal sink-sets it returns one of minimal size. If no
such a component exists, it takes a node p in Ωi (T ) which is the parent of at least one,
but a minimal number, of other nodes ci . It then returns the union of p and its children
ci .

The second method lets î2 be the minimal value of i for which Ωi (T ) contains at
least one strongly connected component that is also a minimal sink-set. It then returns
the smallest of such sets.

To aid in these processes, the weighted auxiliary graphΩ and the condensed graph
Ω∗

w are introduced.
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Definition 5.1.2 (Weighted auxiliary graph). Let T be a trinet set on a set of species
X . Then the weighted auxiliary graph is the complete arc-weighted digraphΩwith
vertex set TX and arc weights:

ω((x, y)) = the number of trinets T ∈T with {x, y} ⊂ TX

that do no have y in their minimal cut-arc set.

Definition 5.1.3 (Condensed graph). LetΩw be an augmented auxiliary graph of a
trinet set T on a set of species X and let Si , i = 1,2, . . . , be the strongly connected
components of Ωw . Then the condensed graph is the digraph Ω∗

w with vertex set
{S1,S2, . . . }. This graph contains an arc (Si ,S j ) if and only if there exists nodes v ∈ Si

and w ∈ S j such that (v, w) is an arc inΩw .

Note that these graphs are the same for all network set iterating methods if and only
if the trinet set is induced. Moreover, in case T contains multiple trinets on the same
leaf set and the weighted average method is used, it is possible that the weights of the
weighted auxiliary graph are not integer.

The pseudo-code for these two methods can be seen in Algorithm 1 and Algorithm 2
respectively. The following two lemmas show that both algorithms are correct if T is
induced by a recoverable level-2 phylogenetic network N : that is, they both return one
of the minimal cut-arc sets of N .

Lemma 5.1.4. Let T be a non-empty trinet set on n leaves containing t trinets. Then
Algorithm 1 computes a minimal sink-sets of Ωî1

in O(t +n2).

Furthermore, in case T is induced by a recoverable level-2 phylogenetic network N ,
then the set it returns is a minimal cut-arc set of N .

Proof. First, ω can be computed in O(t ) by iterating over all t trinets in T . Finding
î1 can be done by iterating over all arcs in Ω. Note that î1 exists as Ωn is a complete
graph. Next, Ωî1

can be computed by, again, iterating over all arcs in Ω. The strongly
connected components of Ωî1

and hence the condensed graph Ω∗
î1

can be computed

using Tarjan’s algorithm in O(n2) (Tarjan 1972). Note that there are at most n strongly
connected components. Dividing the set of nodes u of Ω∗

î1
in leaves and internal nodes

can be done by iterating over the at most n nodes. Checking if there is a non-singleton
set πu and finding such a set of minimal size can be done by iterating over the at most n
nodes too. Hence lines 1-10 have time-complexity O(t +n2). Next, note that π′

u can be
constructed using breadth first search in O(n2). Finding a minimum size π′

u can be done
in O(n). Hence the full algorithm has time-complexity O(t +n2).

Next, it must be shown that the algorithm returns a minimal sink-set ofΩî1
. Clearly,

a strongly connected component with out-degree zero containing at least two elements
is a minimal sink-set. It follows that if the algorithm terminates in line 9, then it returns a
minimal sink-set πu ofΩî1

. If, on the other hand, it terminates in line 15, then it returns
the set π′

u containing all its descendant. Hence, it returns a sink-set. This sink-set must
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be minimal, as otherwise there exists a sink-set π′
v such that π′

v ⊂ π′
u , a contradiction

with the fact that |π′
u | ≤ |π′

v |.
Lastly, assume that T is induced by a recoverable level-2 phylogenetic network N

and let Ci be the minimal cut-arc sets of N . By Corollary 4.2.4, it follows that the Ci

are also minimal sink-sets in Ω. Hence Ω0 contains an arc and î1 = 0. It follows that
Algorithm 1 return a minimal sink-set ofΩ0, which is a minimal cut-arc set of N .

Algorithm 1: minimal cut-arc sets using î1

Input:
- Trinet set T

Output:
- Set of minimal sink-sets MSS

1 ω← weighted auxiliary graph of T

2 î1 ← minimum of weights of the arcs inω

3 Ωî1
← î th augmentation ofΩ

4 Ω∗
î1
← condensed graph ofΩî1

5 πu ← set of nodes contained in strongly connected component u ∈Ω∗
î1

6 A ← set of leaves ofΩ∗
î1

7 B ← set of internal nodes ofΩ∗
î1

8 if there exists u ∈ A such that |πu | ≥ 2 then
9 return πu such that |πu | ≥ 2 and |πu | ≤ |πv | for all v ∈ A

10 end
11 else
12 for each u in B do
13 π′

u ← union of πu and πv for all descendents v of u
14 end
15 return π′

u such that |π′
u | ≥ 2 and |π′

u | ≤ |π′
v | for all v ∈ B

16 end

Lemma 5.1.5. Let T be a non-empty trinet set on n leaves containing t trinets. Then
Algorithm 2 computes a minimal sink-set of Ωî2

in O(t +n4).

Furthermore, in case T is induced by a recoverable level-2 phylogenetic network N ,
then the minimal-sink set it returns is a minimal cut-arc set of N .

Proof. First, ω can be computed in O(t ) by iterating over all trinets in T . Sorting the
weights can be done using quick-sort with time-complexity O(n2) (Musser 1997). As ω
contains n(n −1) arcs there are at most n(n −1) weights and hence the for-loop in lines
3-10 is run at most n(n − 1) times. Computing the w th augmentation of Ω(T ) can be
done by iterating over all n(n−1) arcs. Finding the strongly connected components and
hence the condensed graph Ω∗

w of Ωw can be done using Tarjan’s algorithm in O(n2)
(Tarjan 1972). Finding the leaves can be done by iterating over the at most n nodes of
Ω∗

w . Checking if there is a non-singleton set πu and finding such a set of minimal size
can be done by iterating over the at most n nodes, too. Hence the algorithm has time-
complexity O(t +n4).
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Next, it must be shown that the algorithm returns a minimal sink-set ofΩî2
. Clearly, if

the algorithm terminates in line 9, then it returns a strongly connected component ofΩw

containing at least two elements that has no outgoing arcs. Such a set is a minimal-sink
set of Ωw . As the weights are iterated over in ascending order, it follows that if î2 exists
then the algorithm returns a minimal sink-set of Ωî2

. Now note that for the maximum
weight wmax of an arc inω thatΩwmax is a full graph. Hence TX is a minimal sink-set in
Ωwmax . Therefore, î2 ≤ wmax .

Lastly, assume that T is induced by a recoverable level-2 phylogenetic network N
and let Ci be the minimal cut-arc sets of N . By Corollary 4.2.4, it follows that the Ci are
also minimal sink-sets inΩ0. As a minimal sink-set is a strongly connected component,
it follows that î2 = 0. It follows that Algorithm 2 returns a minimal sink-set of Ω0, which
is a minimal cut-arc sets of N .

Algorithm 2: minimal cut-arc sets using î2

Input:
- Trinet set T

Output:
- Set of minimal sink-sets C

1 ω← weighted auxiliary graph of T

2 W ← ascending lists of weights of the arcs inω
3 for w in W do
4 Ωw ← w th augmentation ofΩ(T )
5 Ω∗

w ← condensed graph ofΩw

6 πu ← set of nodes contained in strongly connected component u ∈Ω∗
w

7 A ← set of leaves ofΩ∗
î1

8 if there exists u ∈ A such that |πu | ≥ 2 then
9 return πu such that |πu | ≥ 2 and |πu | ≤ |πv | for all v ∈ A

10 end
11 end
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5.2. CONSTRUCTING A BICONNECTED LEVEL-2 NETWORK
Let Y ⊆ X denote one of the cut-arc sets found in the previous section. The next step is
to compute a biconnected level-2 phylogenetic network M̂ on Y from the input trinet
T . Clearly, not all trinets in T contain information on Y . Hence, a new set T r is con-
structed from T by discarding all trinets T that do not have all leaves in Y . This proce-
dure is called restricting T to Y .

In case T is induced by a phylogenetic network N , then, by Lemma 5.1.4 or Lemma
5.1.5, Y is a minimal cut-arc set of N . The next lemma shows that T r is induced by M if
M is the restriction of N to Y .

Lemma 5.2.1. Let T be a trinet set containing at most t trinets. Then the restriction T r

of T to Y ⊆ X can be computed with time-complexity O(t ).
Furthermore, let N be a recoverable phylogenetic network on X , let Y be a minimal

cut-arc set of N and let M be the restriction of N to Y . If T is induced by N then it holds

that T r =T
(
M

)
.

Proof. The restriction T r of T to Y can be computed by iterating over all t trinets T in
T and checking for each T if TX ⊆ Y . As TX contains at most three leaves, this check can
be done with constant time-complexity. It follows that the time-complexity of restricting
is O(t ).

Now for the second part, let N be a recoverable phylogenetic network on X , let Y be
a minimal cut-arc set of N and let M be the restriction of N to Y .

First, let T r ∈T r be a trinet. It will be shown that T r ∈T (M). To this end, let T ∈T

denote a trinet from which T r has been derived. As T contains three leaves, it follows
that T r

X ⊆ Y . Hence T r is exhibited by M . It follows that T r ∈T (M).

Secondly, let T r ∈ T (M) be a trinet. It will be shown that T r ∈ T r . Clearly T r
X ⊆ Y .

Hence T r is exhibited by N . As T r only contains leaves in Y , none of its leaves will be
terminated during the restriction. Hence T r ∈T r .

It follows that T r =T (M).

Now M̂ is constructed from T r in several steps. Firstly, it is determined what the
strict level k̂ of M̂ will be. Secondly, a generator Ĝ of this level is chosen that M̂ will
be based on. Thirdly, the leaves in Y are partitioned into groups η̂I that correspond to
sets of symmetric sides I of Ĝ . These groups are then partitioned further into groups θ̂s

that correspond to the sides s of I . Next, each of these groups is ordered, resulting in an
ordered list of leaves σ̂s for each side s. Lastly, if Ĝ is generator G 2c of Figure 3.2, then an
ordering ψI of the sides s in I for each set of symmetric sides must be determined. For
each of these steps it is shown what the worst-case time-complexity is. Furthermore, in
case T r is induced by a network M , then it is shown that M̂ = M .

In the remainder of this section the superscripts r are left out for readability. This is
possible, as this section is only concerned with restricted trinet sets.



5.2. CONSTRUCTING A BICONNECTED LEVEL-2 NETWORK

5

41

5.2.1. NUMBER OF RETICULATIONS

First, the number of reticulations k̂ of the biconnected level-2 phylogenetic network M̂
must be chosen. To this end, let:

pk , (5.1)

be the fraction of trinets in T which are strictly level-k. Note that here T is the trinet
set restricted to Y , as the superscript r have been dropped. Furthermore, let thk (m) be
thresholds for each value of k. These thresholds may depend on the number of elements
m of Y . Now k̂ is chosen to be the highest value of k for which the fraction pk breaches
the corresponding threshold thk (m). More precisely:

k̂ = max{k ∈ 0,1,2 : pk ≥ thk (m)}. (5.2)

This threshold is a heuristic for limiting the effect of noise in the data set. The threshold
values of the algorithm are:

th0(m) = 0,

th1(m) =

0.5 ·
(m−1

2

)(m
3

) , m = 2

0, m ≥ 3

, (5.3)

th2(m) = 0.5 ·min

{(m−1
2

)(m
3

) ,
m −2(m

3

) }
.

These are chosen such that the level for m ≥ 3 is at least one. It will now be shown that
this method of computing the level k̂ of N̂ is correct.

Lemma 5.2.2. Let T be a non-empty trinet set on m leaves containing t trinets. Then k̂
from Equation (5.2) with threshold defined in Equation (5.3) can be computed with time-
complexity O(t ).

Furthermore, if T is induced by a biconnected level-2 network M, then k̂ = k.

Proof. Clearly, all values pk (T ) can be computed with time-complexity O(t ) by iterat-
ing over the all t trinets. Furthermore, all thk (m) can be computed in constant time.
Therefore, k̂ can be computed with time-complexity O(t ).

Next, assume that T is induced by a biconnected level-2 network M . It will be shown
that k̂ equals the number of reticulations k of M . Then T contains the following fraction
of trinets:

k 0 1 2
|g C R | 0 1 1 2

pk (s) 1

(m−1
2

)(m
3

) (m−1
2

)(m
3

) m −2(m
3

)
Here g C R is the set of all crucial reticulation sides of generator g . For example, if M

is a network with two reticulations and one crucial reticulation side, then the portion of
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trinets in T that is level two is:

m −1(m
3

) .

The formulas in this table follow directly from the fact that an exhibited trinet T of a bi-
connected phylogenetic network N only has the same amount of reticulations if it con-
tains all reticulation leaves of N . Hence it clearly holds that:

pk ≥ thk (m),

for k = k. Therefore, the threshold thk (m) is breached. Furthermore, a trinet in T can

not contain more reticulations than k. Therefore, no threshold thk (m) with k ≥ k is
breached. It follows that thk (m) is the highest threshold that is breached. Hence k̂ =
k.

5.2.2. GENERATOR

Secondly, a generator Ĝ of level k̂ must be chosen for M̂ . Let

pG , (5.4)

be the fraction of trinets in T that have generator G . Then the generator Ĝ of M̂ is
chosen to be any of the generators which have the highest percentage of all level k̂ gen-
erators. That is:

Ĝ ∈ arg max
G∈G k

{pG }. (5.5)

It will now be shown that this method of computing Ĝ is correct.

Lemma 5.2.3. Let T be a non-empty trinet set on m leaves containing t trinets and let
k̂ ∈ {0,1,2} be an integer. Then Ĝ from (5.5) can be computed in O(t ).

Furthermore, if T is induced by a biconnected strictly level-k̂ phylogenetic network M
on m species, then Ĝ =G .

Proof. Clearly, all values pG can be computed with time-complexity O(t ) by iterating
over all t trinets. Therefore, Ĝ can be computed with time-complexity O(t ).

Next, assume that T is induced by a biconnected strictly level-k̂ phylogenetic net-
work M on m species. It will be shown that Ĝ is the generator of M . To this end, let G be
the generator of M . Then T contains precisely:(

s −|GC R |
3−|GC R |

)
,

trinets of level-k̂. Here GC R is the set of all crucial reticulation sides of G . Additionally,
all of these trinets must have generator G . Hence the only pG which is strictly positive is
p

G
. It follows that Ĝ =G .
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5.2.3. GROUP OF LEAVES PER SET OF SYMMETRIC SIDES

For each set of symmetric sides I of this generator Ĝ , it must be determined which leaves
are attached to it. To this end, let:

px,I , (5.6)

be the portion of trinets in T that have leaf x ∈ Y on one of the sides in the set of sym-
metric sides I of generator Ĝ . Now remember that there are different types of sides: all
sides ĜS ; optional sides ĜO ; crucial sides ĜC ; crucial reticulation sides ĜC R ; and crucial
edge sides ĜC E . The crucial reticulation sides must be assigned exactly one leaf each
and the crucial edge sides must be assigned at least one leaf each. The optional sides do
not impose any constraints on the partitioning of the leaves. This can be summarized as
follows: ∑

x∈s
γx,I = 1, ∀I ∈ ĜC R ,∑

x∈s
γx,I ≥ 1, ∀I ∈ ĜC E , (5.7)∑

I∈ĝS

γx,I = 1, ∀x ∈ Y ,

γx,I ∈ {0,1}, ∀x ∈ Y ,∀I ∈ ĜC .

Here γx,I indicates whether leaf s is attached to a side in the set of symmetric sides I .
To find a feasible solution

(
γx,I

)
, an algorithm using a greedy approach is introduced. It

is greedy in the sense that it sets γx,I = 1 if px,I is maximal. The next lemma introduces
such a

Lemma 5.2.4. Let T be a non-empty trinet set on m leaves containing t trinets, let k̂ ∈
{0,1,2} be an integer and let Ĝ be a generator of level k̂. Then a feasible solution

(
γ̂x,I

)
to

Equation (5.7) can be computed in O(t +m2) time.
Furthermore, assume T is induced by a biconnected strictly level-k network M on

generator G such that k̂ = k and Ĝ = G . Furthermore, let (γx,I ) indicate whether leaf x is
placed on a side in the set of symmetric sides I . Then it holds that

(
γ̂x,I

)= (
γx,I

)= px,I .

Proof. Let T be a trinet set, let k̂ ∈ {0,1,2} be an integer and let Ĝ be a generator of level
k̂. Now a feasible solution to Equation (5.7) will be constructed in a greedy manner.

For every set C of Y containing |ĜC | leaves and bijection φ : C → ĝC define a solution(
γx,I

)
such that:

γx,I =
{

1 φ(x) = I

0 else
, ∀x ∈ Y .

Next, choose a set Ĉ and bijection φ̂ such that the corresponding solution
(
γ̂x,I

)
max-

imises: ∑
I∈ĝC

∑
x∈Ĉ

px,I · γ̂x,I . (5.8)
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This solution satisfies the first two and the last constraints of Equation (5.7), and the
third only for every x ∈ Ĉ . In order to satisfy the third constraint for the leaves x ∈ Y \ Ĉ ,
redefine:

γ̂x,I = 1,

for any:

I ∈ arg max
I∉ĝC R

{px,I }.

Now clearly all constraints of Equation (5.7) are satisfied. Therefore,
(
γ̂x,I

)
satisfies Equa-

tion (5.7).
Now let T be induced by a biconnected strictly level-k network M with generator g

on m species. It will be shown that
(
γ̂x,I

)
defines leaf x to be on a side in I if and only if

leaf x is on a side in I in network M . To this end, let
(
γx,I

)
denote the set of symmetric

sides I which contains the side s to which leaf x is attached in M . It holds that:

px,I =
{

1 γx,I = 1

0 else
. (5.9)

So px,I = γx,I . As
(
γ̂x,I

)
is chosen to maximise Equation (5.8), it follows that:

γ̂x,I =
{

1 px,I = 1

0 else
∀x ∈ Ĉ . (5.10)

So γ̂x,I = px,I for all x ∈ Ĉ . It follows from the way that
(
γ̂x,I

)
is redefined that:

γ̂x,I =
{

1 px,I = 1

0 else
∀x ∈ Y \ Ĉ . (5.11)

Hence γ̂x,I = px,I for all x. Combining Equations (5.9), (5.10) and (5.11) gives:(
γ̂x,I

)= (
γx,I

)= px,I .

Lastly, it will be shown that time-complexity of finding this solution is O(t ). To this
end, note first that the values px,I can be computed with time-complexity O(t ) by iterat-
ing over all t trinets. Next, note that there are:

P (m, |ĝC |) = m!

(m −|ĝC |)!
,

combinations of sets C and bijections φ. Also note that |ĜC | ≤ 2 for k̂ ≤ 2. Hence there
are at most m2 combinations. Furthermore, calculating the value of Equation (5.8) has
time-complexity O(|ĜC |2), which is independent of m and can thus be seen as constant.
Therefore, choosing the best combination can be done in O(m2). Next, redefining the
solution for the leaves x ∈ Y \ C consists of finding the maximum of a set containing
at most |GS | elements. As |ĜS | ≤ 8 for k̂ ≤ 2, it follows that this redefining has time-
complexity O(m).

Therefore, finding this feasible solution has time-complexity O(t +m2).
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This solution
(
γ̂x,I

)
is rewritten as a set of leaves for each set of symmetric sides I

in Ĝ :

η̂I = {x : γ̂x,I = 1}, ∀I ∈ ĜS .

5.2.4. GROUP OF LEAVES PER SIDE
Each of these sets of leaves η̂I must be split in to groups θs , for each side s in the set of
symmetric sides I . To this end, let:

px,y , (5.12)

be the number of biconnected level-1 and level-2 trinets such that:

• x nor y is a reticulation leaf;

• the reticulation leaves are as specified by η̂I ;

• x ≺ y .

A trinet has x ≺ y if it contains both x and y and the parent of x is strictly above the
parent of y . Now:

qx,y =
{

px,y +py,x x 6= y

1 x = y
, (5.13)

is a measure for how likely x and y are one the same side of Ĝ . From this, the amount
of leaves that are likely to be on the same side as x and on the same of side as y can be
computed: ∑

z∈η̂I

min{qx,z , qy,z }.

Subtracting the amount of leaves that are likely to be on a the same side as x but not on
the same side as y gives the following measure:

rx,y =
{

3 ·∑z∈η̂I min{qx,z , qy,z }−∑
z∈η̂I qx,z −∑

z∈η̂I qy,z x 6= y

−∞ x = y
. (5.14)

Using this measure, the leaves in η̂I are added to a group θs iteratively. This process can
be seen in Algorithm 3. The next lemma shows that this algorithm is correct.
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Lemma 5.2.5. Let T be a non-empty trinet set on m leaves containing t trinets, let Ĝ be
a generator and let η̂I be sets of leaves for every I in ĜI . Then Algorithm 3 returns sets of
leaves θ̂s such that η̂I =⋃

s∈I θ̂s for each I ∈ ĜS . It does this with time-complexity O(t+m2).
Furthermore, if T is induced by a biconnected network M on generator Ĝ such that

Ĝ =G and η̂I = ηI , then θ̂s
∼= θs .

Proof. First the time-complexity will be derived. To this end, let mI denote the number
of leaves in η̂I .

Clearly, all values qx,y can be computed with time-complexity O(t ) by iterating over
all t trinets. From qx,y all values of rx,y can be derived by iterating over all m2 pairs of
nodes. The set C in line 3 contains precisely mI number of singletons. In each of the
iterations of the while-loop in lines 4-11 this number is decreased by one. Hence, this
while-loop is run at most mI −1 times. Finding two leaves that maximise rx,y requires
iterating over all |C |2 pairs of clusters. As there are |C |−2 new values of rz,w , these can be
calculated in O(|C |). It follows that the while-loop in lines 4-11 has the following time-
complexity: ∑

h=mI ,(mI −1),...,1
O(h2) =O(m3

I ).

The for-loop from lines 1-14 is run once for each set of symmetric sides in ĝS . It
follows that this for-loop has time-complexity:

O

( ∑
I∈ĝS

m3
I

)
.

As the mI add up to m it follows that this can be simplified to O(m3). Combined, this
results in an overall time-complexity of O(t +m3).

Now it will be shown that the algorithm is correct. Clearly, the algorithm returns sets
of leaves θ̂s such that η̂I = ⋃

s∈I θ̂s for each I ∈ ĜS . Next, assume that T is induced by a
biconnected network M such that Ĝ =G and η̂I = ηI , and let θs denote the set of leaves
that is attached to side s in M .

First, note for x, y ∈ ηI it holds that:

{x, y} ⊆ θs ⇐⇒ qx,y > 1.

As {x, y} ⊆ θs is a transitive relation, that is:

{x, y} ⊆ θs ∧ {y, z} ⊆ θs =⇒ {x, z} ⊆ θs ,

it follows that:

{x, y} ⊆ θs ⇐⇒ rx,y = 3|θs | > 0,

{x, y} 6⊆ θs ⇐⇒ rx,y < 0.

Hence, the first iteration picks two leaves x and y that are in the same set θs . Now let
X denote the set of leaves that a leaf x represent. So in this case Z = {x, y} and Z ⊆ θs .



5.2. CONSTRUCTING A BICONNECTED LEVEL-2 NETWORK

5

47

Moreover, the new defined values rz,w are the weighted average of the values rx,w and
ry,w .

Next, from the transitivity of {x, y} ⊆ θs it follows that:

rz,w = rx,w = ry,w .

Hence, in any of the following iterations, if there exists a positive value of r , two leaves
x and y are picked such that both X ⊂ θs and Y ⊂ θs . It follows that Z = X ∪Y ⊆ θs . If
no such positive value of rx,y exists, then there are no leaves x and y such that the sets X

and Y they represent are in the same set θs . Therefore, for each x it must hold that there
exists a side s such that X = θs . It follows that C contains an equal or smaller number
of elements than there are sets s in I . Hence the while-loop in lines 4-11 terminates and
the sets X that the elements x ∈C represent are assigned to a set θ̂s arbitrarily. It follows
that θ̂s

∼= θs .

Algorithm 3: dividing leaves in a set of symmetric sides over sides

Input:
- Trinet set T ,
- generator ĝ ,
- Set of leaves ηI for every I ∈ ĝS ,
Output:
- Group θ̂s for every side s in I for every I ∈ ĜS

1 for each set of symmetric sides I in ĜS do
2 rx,y ← as in Equation (5.14) for the leaves in ηI

3 C ← set containing the singletons {x} for every leaf in ηI

4 while there exists a strictly positive element rx,y or C contains more elements
then there are sides in I do

5 let x, y be two leaves which maximise rx,y

6 define a new leaf z which represents x and y
7 remove x and y from C and add z
8 let Lx and Ly denote the amount of leaves that x and y represent

9 rz,w ← Lx · rx,w +Ly · ry,w

Lx +Ly
, rw,z ← rz,w for each other leaf w

10 undefine rx,w , rw,x , ry,w and rw,y for each other leaf w
11 end

12 assign the sets of leaves the singletons represent to different sides θ̂s for s ∈ I ,
if no set is assigned to a side s, it remains empty

13 end

14 return θ̂s
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5.2.5. ORDERED GROUP OF LEAVES PER SIDE

Now it is known which leaves are attached to each side s of Ĝ , the next step is to or-
der each of these groups θ̂s . Denote these orderings with σ̂s . This ordering is based
on px,y from Equation (5.12). This can be seen as the problem of finding a ranking in
a graph-theoretical tournament. There are several methods to find a ranking in such a
tournament. The default ordering method of TriL2Net uses the difference of normal-
ized values of px,y , that is:

p̃x,y =
px,y −py,x

qx,y
, (5.15)

where qx,y is as in Equation (5.13). Now a leaf x ∈ θ̂s that maximises:∑
y∈θ̂s

p̃x,y ,

is chosen to be ‘highest’ leaf. That is, the leaf which is attached highest to side s and
hence is the first leaf of the ordered set σ̂s . Now the next leaf is chosen to be a leaf x that
maximises: ∑

y∈θ̂s \(σ̂s )

p̃x,y , (5.16)

is appended to σ̂s iteratively.
Note that TriLoNet orders the leaves concurrently with assigning the leaves to the

different sides in a symmetric side set. That is, TriLoNet picks a leaf x which maximises
the value of: ∑

y∈θ̂s

px,y ,

and assigns it to a side s ∈ I based on the amount of descendants x and the leaves y ∈ θs

share. The ordering of the leaves on the sides follows directly from the order the leaves
are assigned to each side. Hence, it is possible for two leaves x1, x2 that are placed on
side s ∈ I that the following holds: ∑

y∈θ̂s

px1,y >
∑

y∈θ̂s

px2,y ,

∑
y∈s

px1,y <
∑
y∈s

px2,y .

This means that x1 will be placed above x2 on side s by TriLoNet. The method that
TriL2Net uses, on the other hand, will place x2 above x1. The TriLoNet method pro-
duces the correct result in case the input trinet set is induced (Oldman et al. 2016), as
does the TriL2Net method. The latter is shown in the following lemma.
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Lemma 5.2.6. Let T be a non-empty trinet set on m leaves containing t trinets, let ĝ be a
generator and let θ̂s be a set of leaves for each side s of ĝ . Then σ̂s can be computed with
time-complexity O(t +m2).

Furthermore, if T is induced by a biconnected network M on generator Ĝ such that
Ĝ =G and θ̂s

∼= θs , then σ̂s
∼=σs .

Proof. First the time-complexity will be derived: px,y can be computed by iterating over
all t trinets in T and hence has time-complexity O(t ). qx,y and p̃x,y can be computed by
iterating over all pairs of leaves x, y . As there are m(m −1) such pairs, it follows that this
computation can be done with time-complexity O(m2). Next, computing each Equa-
tion (5.16) for a leaf x requires iterating over all leaves in θ̂s in the worst case. Denoting
the number of elements in θ̂s with ms , it follows that these values can be calculated in
O(m2

s ). Moreover, finding the maximum of these values can be done in O(ms ). Note that
calculating these values and finding the maximum needs to be done for every one of the
ns leaves. Hence, this method of ordering has time-complexity O(m3

s ). As this needs to
be done for every side s, and as:∑

s∈i
ms = mI ,

∑
I∈ĝ

mI = m,

it follows that this amounts to a time-complexity of O(m3) for ordering all sides of Ĝ .
Secondly, assume that T is induced by a biconnected network M on generator Ĝ

such that Ĝ = G and θ̂s
∼= θs . It will be shown that σ̂s

∼= σs . To this end, let φ be the
homomorphism between the sides s of Ĝ such that:

θ̂s = θφ(s) , ∀s.

It will be shown that:

σ̂s =σφ(s) , ∀s.

To this end, fix s. Then by the assumption that T is induced, it follows for all x, y ∈ θ̂φ(s)

that p̃x,y = 1 if and only if x comes before y in σs . By construction of σ̂φ(s), it follows that
x comes before y in σ̂φ(s) if and only if x comes before y in σs . It follows that σ̂s =σφ(s) .
As this holds for all s, it holds that σ̂s

∼=σs .

Other methods for ordering the leaves are mentioned in the discussion.

5.2.6. ALIGNMENT OF THE SIDES

For generator G 2c , an extra step needs to be performed as this generator contains an-
other symmetry. To this end, name the sides in Figure 3.2 as follows:

ĝE = {I1, I2, I3}

= {{s1, s2}, {s3, s4}, {s5, s6}}.

Furthermore, these sides can be split in two groups: the ones adjacent to node 1 and the
ones adjacent to node 2. This can be seen as the left (L) and the right (R) group:

L = {s1, s3, s5}, R = {s2, s4, s6}.
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If Ĝ is this generator, then having σ̂s
∼= σs is not sufficient. This is due to the fact that

swapping edge sides s1 and s2 of this generator, for example, will result in a different
network M̂ . Therefore, the corresponding homomorphism φ must be determined.

To this end, define a measure for how likely it is that two sides s ∈ I and s′ ∈ I ′ are
aligned. That is, for two sets of symmetric sides I 6= I ′ of Ĝ let:

us,s′ =
∑

x∈σ̂s

∑
y∈σ̂s′

(
qx,y

)−|σ̂s ||σ̂s′ |. (5.17)

Here qx,y is from Equation (5.13). Now let Li be one of the two sides from each set of
symmetric sides Ii and let Ri be the other of the two sides. This must be done such that:

u = (
uL1,L2 +uL2,L3 +uL3,L1

)+ (
uR1,R2 +uR2,R3 +uR3,R1

)
, (5.18)

is maximized. Now let φ̂ be such that:

φ̂(L1) = s1, φ̂(R1) = s2,

φ̂(L2) = s3, φ̂(R2) = s4, (5.19)

φ̂(L3) = s5, φ̂(R3) = s6.

The next lemma shows that this methods is correct.

Lemma 5.2.7. Let T be a non-empty trinet set on m leaves containing at most t trinets,
let ĝ be generator 2.3 and let θ̂s be a list of ordered leaves per side s of Ĝ . Then φ̂ from
Equation (5.19) can be computed with time-complexity O(t ).

Furthermore, if T is induced by a biconnected network M such that Ĝ =G and σ̂φ(s) =
σs , then φ̂ is such that:

σ̂φ̂(s) =σs , ∀s or σ̂ψ◦φ̂(s) =σs , ∀s, (5.20)

where:

ψ(s1) = s2, ψ(s2) = s1,

ψ(s3) = s4, ψ(s4) = s3,

ψ(s5) = s6, ψ(s6) = s5.

Proof. First it is shown that the time-complexity of computing φ̂ is O(t ). Clearly, the
values us,s′ can be computed with time-complexity O(t ) by iterating over all t trinets.
Next, three sides sI1 , sI2 , sI3 must be chosen for which Equation (5.18) is maximised. This
can be done by computing the sum for each of the 23 possibilities. It follows that φ̂ can
be computed with time-complexity O(t ).

Now assume that T is induced by a biconnected recoverable network M on genera-
tor G such that Ĝ =G and σ̂φ(s) =σs .

As T is induced by a network with generator G 2c , it holds that:

us,s′ =
∑

x∈σ̂s

∑
y∈σ̂s′

(
qx,y

)−|σ̂s ||σ̂s′ |

= ∑
x∈σ

φ(s)

∑
y∈σ

φ(s′)

(
qx,y

)−|σφ(s)||σφ(s′)|.
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Furthermore, if φ(s),φ(s′) ∈ L or φ(s),φ(s′) ∈ R, then:

us,s′ =
∑

x∈σ
φ(s)

∑
y∈σ

φ(s′)

(
qx,y

)−|σφ(s)||σφ(s′)|

= |σφ(s)||σφ(s′)|
= |σ̂s ||σ̂s′ |.

This follows from the fact that each trinet T on {x, y, z} with:

x ∈σφ(s), y ∈σφ(s′), z ∈ g C R ,

has x ≺ y or y ≺ x. As this are all trinets that have x ≺ y or y ≺ x, it follows that there are:

|GC R ||σφ(s)||σφ(s′)| = 2|σφ(s)||σφ(s′)|,
such trinets in total.

Similarly, if φ(s) ∈ L and φ(s′) ∈ R (or vice versa) such that φ(s) and φ(s′) are not in
the same set of symmetric sides I , then:

us,s′ =−|σ̂s ||σ̂s′ |.

Now remember that mI denotes the number of elements in θ̂I . In case mIi = 0 for
at least two i ∈ {1,2,3}, it holds that any φ̂ satisfies Equation (5.20). In case mIi 6= 0 for
at least two i ∈ {1,2,3}, it can be assumed without loss of generality that mI1 > 0 and
mI2 > 0 due to the symmetry of the problem. Now let L1, L2, R1 and R2 be such that u is
maximised. Now note that:

uφ(s1),φ(s3) +uφ(s2),φ(s4) > uφ(s1),φ(s4) +uφ(s2),φ(s3).

The reason that this is a strict inequality is that mI1 > 0 and mI2 > 0. Hence L1 =φ(s1),L2 =
φ(s3) and R1 = φ(s2),R2 = φ(s4) (or vice versa). Without loss of generality, it can be as-
sumed that L1 = φ(s1),L2 = φ(s3) and R1 = φ(s2),R2 = φ(s4). By definition of φ̂ it holds
that:

φ̂(φ(s1)) = s1, φ̂(φ(s2)) = s2, φ̂(φ(s3)) = s3, φ̂(φ(s4)) = s4.

As φ
−1 =φ, it holds that φ̂(s) =φ(s) for s ∈ {s1, s2, s3, s4} and hence:

σ̂φ̂(s) = σ̂φ(s) =σs , ∀s ∈ {s1, s2, s3, s4}.

If mI3 = 0, then for any choice for L3 and R3 it holds that:

σ̂φ̂(s) = σ̂φ(s) =σs , ∀s ∈ {s5, s6}.

If mI3 > 0, then it follows that the following strict inequalities hold:

uφ(s1),φ(s5) +uφ(s2),φ(s6) > uφ(s1),φ(s6) +uφ(s2),φ(s5),

uφ(s3),φ(s5) +uφ(s4),φ(s6) > uφ(s3),φ(s6) +uφ(s4),φ(s5).
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As φ̂(s) =φ(s) for s ∈ {s1, s2, s3, s4}, it holds that:

uφ̂(s1),φ(s5) +uφ̂(s2),φ(s6) > uφ̂(s1),φ(s6) +uφ̂(s2),φ(s5),

uφ̂(s3),φ(s5) +uφ̂(s4),φ(s6) > uφ̂(s3),φ(s6) +uφ̂(s4),φ(s5).

It follows that L3 = φ(s5) and R3 = φ(s6) must hold in order for u to be maximised. By
definition of φ̂, it holds that:

φ̂(φ(s5)) = s5, φ̂(φ(s6)) = s6.

Hence:

σ̂φ̂(s) = σ̂φ(s) =σs , ∀s ∈ {s5, s6}.

Therefore, in any case:

σ̂φ̂(s) = σ̂φ(s) =σs , ∀s ∈ {s1, s2, s3, s4, s5, s6},

and thus Equation (5.20) holds.
In case it was assumed that L1 =φ(s2), it would have followed that:

σ̂ψ◦φ̂(s) = σ̂φ(s) =σs , ∀s ∈ {s1, s2, s3, s4, s5, s6}.

5.2.7. COMBINING THE STEPS TO CONSTRUCT A BICONNECTED NETWORK
Performing all the steps in this section creates a biconnected level-2 phylogenetic net-
work M̂ from a trinet set T . The following theorem shows what the time-complexity is
and that this process is correct. That is, if the trinet set T is induced by a biconnected
level-2 phylogenetic network M , then these steps recreate M .

Theorem 5.2.8. Let T a non-empty trinet set on m leaves containing t trinets. Then a
biconnected rooted level-2 phylogenetic network M̂ on m leaves can be constructed with
time-complexity O(t +m2).

Furthermore, in case T and B are induced by a biconnected level-2 phylogenetic net-
work M, then M̂ = M.

Proof. Using the methods in Lemmas 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6 and 5.2.7 a genera-
tor Ĝ of strict level k̂ together with ordered lists σ̂s for each side s of Ĝ are computed
with time-complexity O(t +m2). Furthermore, if Ĝ = G 2c , then a homomorphism φ̂ is
computed with time-complexity O(t ). Together, Ĝ , σ̂s and φ̂ define a biconnected re-
coverable network M̂ up to an isomorphism. Hence, the network M̂ is computed with
time-complexity O(t +m2).

Now assume that T is induced by a biconnected recoverable level-2 phylogenetic
network M with generator G of strict level k together with ordered lists σs for each side
s of G . Then it follows from the same lemmas that:

Ĝ =G ,

ˆγx,I = γx,I , ∀I ∈ Ĝ ,

σ̂s
∼=σs , ∀s.
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Furthermore, if Ĝ =G 2c , then the homomorphism φ̂ is such that:

σ̂φ̂(s) =σs , ∀s or σ̂ψ◦φ̂(s) =σs , ∀s, (5.21)

where:

ψ(s1) = s2, ψ(s2) = s1,

ψ(s3) = s4, ψ(s4) = s3,

ψ(s5) = s6, ψ(s6) = s5.

It follows that there exists an isomorphism between the nodes of M̂ and M that preserves
the naming of the leaves. Hence M̂ and M are equal.

5.3. COLLAPSING THE TRINET AND BINET SET
After a biconnected network M̂ has been constructed for a minimal sink set Y ofΩî (T )
using the restricted trinet set T r , the set Y must be collapsed to a leaf l in every trinet
T to create the new trinet set T c . This procedure is detailed in Algorithm 4. The time-
complexity is analysed in the following lemma. That this procedure is correct follows
from Lemma 4.3.1.

Lemma 5.3.1. Let T be a non-empty trinet set on X with |X | = n containing t trinets.
Furthermore, let Y ⊆ X be any leaf set, then Algorithm 4 has time-complexity O(t 2).

Proof. The for-loop in lines 3-14 is run t times. Clearly, the sets K and L in lines 4 and
5 can be computed in constant time as T contains at most three leaves. As a trinet has
exactly three leaves it follows that checking if a trinet is equal to another trinet has con-
stant time-complexity. As |T c | ≤ |T | it follows that looking for an equal trinet in T c has
time-complexity O(t ). Hence lines 7 and 12 have time-complexity O(t ). Therefore, the
time-complexity of collapsing is O(t 2).
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Algorithm 4: collapsing

Input:
- Trinet set T ,
- set of leaves Y ,
Output:
- Trinet set T c ,
- leaf l ,

1 T c ← empty set
2 l ← leaf representing Y
3 for trinet T in T do
4 K ← leaves of T
5 L ← K ∩Y
6 if L is empty then
7 add T to T c

8 end
9 if |L| = 1 then

10 x ← leaf in L
11 replace x with l
12 add N c to T c

13 end
14 end
15 return T c and l
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5.4. CONSTRUCTING A RECOVERABLE LEVEL-2 NETWORK
Given a trinet set T on species X , it is now known how to determine a minimal cut-arc
set Y ⊆ X , how to compute a biconnected level-2 phylogenetic network M̂ on species Y
from the restricted trinet set T r and how to collapse Y in T to create a new trinet set T c .
This can be done iteratively until every leaf in X has been described by a biconnected
level-2 network. These biconnected level-2 networks can now be combined to create the
output network N̂ in the expand function. The whole process is detailed in Algorithm 5.
The lines 1-18 are the collapse part of the algorithm and the lines 19-25 are the expand
part. The following theorem shows what the algorithm’s time-complexity is and that it
reproduces the network N if the input trinet set T induced by N .

Theorem 5.4.1. Let T be non-empty set of recoverable level-2 trinets on species X with
n leaves containing t trinets. Then Algorithm 5 constructs a level-2 network N̂ on X with
time-complexity O(n · t 2 +n5).

Furthermore, in case T is induced by a recoverable level-2 phylogenetic network N ,
then N̂ = N .

Proof. First it will be shown that the Algorithm 5 is correct and that the time-complexity
is O(n · t 2 +n5).

By definition, a minimal sink-set ofΩî (T ) contains at least two elements. Hence:

|X | < |(X \ Y )∪ {c}|,

and thus the while-loop in lines 4-12 runs at most n times.
Next, as the trinet sets Ti and T r

i are collapsed and restricted trinet sets respectively,
it holds that:

|Ti | ≤ |T |, |T r
i | ≤ |T |.

Hence each trinet set Ti and T r
i contains at most t trinets. Furthermore, each minimal

sink-set Yi is a subset of Xi . Hence each minimal sink-set Yi contain at most n leaves.
Hence, it follows from Lemma 5.1.4 and Lemma 5.1.5 that a minimal sink-set Yi ex-

ists and can be computed in O(t +n4). Furthermore, from Lemma 5.2.1 it follows that
the restrictions T r

i of Ti can be computed with time-complexity O(t ). Moreover, by
Theorem 5.2.8, it holds that the biconnected network Mi can be computed with time-
complexity O(t +n2). By Lemma 5.3.1, it hold that the collapsed trinet set Ti+1 of Ti can
be computed with time-complexity O(t 2). As Xi and Yi both contain at most n leaves,
it follows that computing Xi+1 has time-complexity O(n2). Hence, lines 4-12 have time-
complexity O(n · t 2 +n5).

Computing B in line 14 requires iterating through the at most t trinets in Ti−1. Cre-
ating the induced binet set for each of these trinets has constant time. Taking the union
of all these binet sets consists of iterating through all their binets and checking if it is
already present in the resulting binet set. As each trinet exhibits three binets, it follows
that there are at most 3t binets. Hence, B can be computed with time-complexity O(t 2).
Removing all binets which do not have all leaves in Xi can be done by iterating through
the at most 3t binets and hence has time-complexity O(t ). Finding the binet with the



5

56 5. ALGORITHM

highest multiplicity again requires iterating through the at most 3t binets. Hence, lines
13-18 have time-complexity O(t 2).

Next, from Observation 2.4 of Janssen et al. (2018) it follows that all binary bicon-
nected level-2 networks with n leaves contain 2n +4 nodes and 2n +5 edges. It follows
that replacing a leaf with a network has time-complexity O(n). Lastly, it holds that the
while-loop in lines 21-24 runs at most n times. Hence this loop has time-complexity
O(n2).

Combined, this gives a time-complexity of O(n · t 2 +n4).
Now it must be shown that li−1 is in fact a leaf of network Ni . To this end, let R be the

highest index for which Mi exists. Then it holds that lR−1 ∈ MR . Furthermore, it follows
from:

li ∈ Xi+1, Xi+1 = (Xi \ Yi )∪ {li }, Yi ⊂ Xi ,

for all i ∈ {1, . . .R} that:

{li , . . . , lR−2} ⊆
(

R−1⋃
j=i+1

Y j

)
, ∀i ∈ {1, . . .R −2}.

As NR = MR , it follows that lR−1 is a leaf of NR . Now let NR−1 be the network created from
NR by replacing this leaf lR−1 with the network MR−1. It now holds that NR−1 is a network
on (YR ∪YR−1) \ {rR−1}. Hence rR−2 is a leaf of NR−1. Continuing this line of reasoning, it
follows that ri−1 is in fact a leaf of network Mi . Therefore, the algorithm completes.

It follows that Algorithm 5 is correct.
Secondly, assume that T1 and B1 are induced by a recoverable level-2 phylogenetic

network N 1. It will be shown that the output of the algorithm is equal to N 1.
By Lemma 5.1.4 or Lemma 5.1.5, it holds that Y1 of line 5 is a minimal cut-arc set of

N 1. Let M 1 denote the restriction of N 1 to Y1. It follows from 5.2.1 that T r
1 is induced

by M 1. It follows from 5.2.8 that M1 = M 1. Next, let N2 be the network created from N 1

by collapsing Y1 to l1. By Lemma 4.3.1 and Corollary 4.3.2, it holds that T2 and B2 are
induced by N 2.

Continue this line of reasoning until all Mi ’s have been computed and let R denote
the last index for which Mi is defined. Moreover, let M i denote the component of N i

restricted to Yi . Furthermore, let N i+1 be the network created from N i by collapsing Yi

to li . It now holds for each i with 1 ≤ i ≤ R that Yi is a minimal cut-arc set of N i , that T r
i

and Br
i are induced by M i , that Mi = M i , and that Ti and Bi are induced by N i .

It will now be shown that Ni = N i for all i ∈ {1, . . .R}. First note that NR = MR = M R .
Next, note that the networks M R and N R must be equal. So NR = N R . Furthermore,
it holds that N R is the network created from the network N R−1 by collapsing YR−1 to
lR−1. Note that this is the same as replacing the component M R−1 in N R−1 with the leaf
lR−1. Hence, N R−1 can be created by replacing leaf lR−1 in N R with the network M R−1.
As NR = N R and MR−1 = M R−1, it follows that NR−1 = N R−1. Continuing this line of
reasoning, it follows that N1 = N 1, as promised.
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Algorithm 5: Fit Network

Input:
- Set of species X ,
- Trinet set T on X ,
Output:
- Network N̂ on X .

1 X1 ← X
2 T1 ← T

3 i ← 1
4 while Xi contains more than three elements do
5 Yi ← minimal sink-set ofΩî (Ti )
6 T r

i ← Ti restricted to Yi

7 Mi ← biconnected network on Yi derived from T r
i

8 Ti+1 ← Y1 collapsed in Ti

9 li ← leaf that represents the leaves in Yi after collapsing
10 Xi+1 ← (Xi \ Yi )∪ {li }
11 i ← i +1
12 end
13 if Xi contains two elements then
14 B ← union of all binet sets induced by trinets in Ti−1

15 B′ ← all binets which have all leaves in Xi

16 Mi ← binet in B with highest multiplicity
17 i ← i +1
18 end
19 i ← i −1
20 Ni ← Mi

21 while i ≥ 2 do
22 Ni−1 ← network created from Ni by replacing ci−1 with Mi−1

23 i ← i −1
24 end
25 N̂ ← N1

26 return N̂

5.5. IDENTIFYING TRINETS AND BINETS
Most steps of the algorithm require some properties of the networks in T . These are
properties such as a networks cut-arcs sets and generator. To optimize computing these
properties, all recoverable level-2 trinets are constructed and their properties are de-
rived. This list of networks and their properties are saved in a reference data set. Then,
for each trinet in the input, a trinet in the reference data is found such that they are
isomorphic. Furthermore, an isomorphism between them is constructed such that the
properties of the reference trinet can be translated to the input trinet.

Constructing all trinets and binets is done by first constructing all recoverable bicon-
nected level-2 trinets and binets from the generators in Figure 3.2. Next, the other re-
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coverable level-2 trinets are constructed by combining two (possibly equal) biconnected
level-2 binets. That is, take two such binets and replace a leaf in one of these binets with
the other binet. Note that there are no other recoverable level-2 binets, as a recoverable
binet must be biconnected.

Given two networks, it is possible to check if they are isomorphic using Algorithm 6.
Note that this algorithm can be optimized by only looking for one isomorphism, or using
properties such as the networks cut-arc sets if they are available.

Lemma 5.5.1. Let N = (V ,E) and M = (W,F ) be phylogenetic networks with the same
amount of nodes, leaves, and arcs. Then Algorithm 6 returns a list of all the isomorphism
between N and M.

Proof. First some notation for differentiating between different recursion steps is intro-
duced. If R is a recursion step, then the recursive calls made during R are denoted with
Ri . Similarly, the inputs and output of a recursive call Ri are denoted with vi , wi , Li and
Λi .

First, the notion of a ‘sub-bijection’ is introduced. A bijection Ψ : V ′ → W ′ is a sub-
bijection of a bijectionΦ : V →W if:

V ′ ⊆V , W ′ ⊆W, (5.22)

Ψ(x) =Φ(x) ∀x ∈V ′.

It is also said that Ψ can be extended Φ. Furthermore, if Ψ′ : V " → W " is also a sub-
bijection ofΦ, and V " ⊇V ′, thenΨ′ is called an extension ofΨ respecting Φ. Additionally,
if V ′ is a proper subset of V ", then Ψ is called a proper sub-bijection of Φ. Lastly, if Φ is
an isomorphism, thanΨ is also called a sub-isomorphism.

Now for the original statement, assume that N and M are isomorphic and let Φ be
one of the isomorphism from N to M . It will be shown that the outputΛ of the initial call
R containsΦ.

It will be shown that if a recursive call R has a sub-isomorphism Ψ of Φ such that
Ψ(v) = w in its input list L then:

if v is not a leaf: there exists a recursive call Ri1 that has an extensionΨi1 ofΨ respecting
Φ in its input list Li

if v is a leaf: the listΛ that R returns equals L.

To this end, assume that for a recursive call R there exists a sub-isomorphism Ψ of Φ
such that Ψ(v) = w . Clearly the condition in line 1 of the algorithm is false as L is not
empty. Next, it follows from Ψ(v) = w and the fact that Ψ is a sub-isomorphism that v
and w have the same in and out-degrees. Therefore, if v is a leaf it follows that w is also a
leaf and thus that the recursive call R returns L. If v is not a leaf the condition in line 9 is
false. Additionally, by assumptionΨ can be extended to an isomorphism between N and
M . From this, it follows that there exists a bijection β in B which is not in contradiction
withΦ norΨ. Now let b =β in line 14 and let φ=Ψ in line 15. Then the condition in line
16 is false. Furthermore, φ′ in line 24 is an extension of Ψ respecting Φ. Therefore, it is
possible to letΨi1 =φ′. It now follows that in the first iteration of the loop in lines 22-25
that Lcur r ent = [Ψi1 ]: creating a recursive call Ri1 in line 24 with Li1 = [Ψi1 ] as requested.
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As Ri1 satisfies the same condition as R, the sub-isomorphism Ψ recurses through
the nodes below v in a depth-first way whilst being extended on the way.

Now note that the initial list of bijections L contains a single bijection φ which is a
sub-isomorphism for any Φ = Φ j . Therefore, this initial sub-isomorphism φ recurses

through all the nodes v below v = ρ. Moreover, as in each recursive call φ(v) = w , it
follows that φ is extended until it becomes equal to Φ. So indeed, Φ is contained in the
output Λ of the initial call R. As this holds for any Φ =Φ j , it follows that Λ contains all
isomorphismsΦ j .

Finally, it must be shown that Λ contains only isomorphisms. To this end, let Φ be
any returned bijection. It must be shown that Φ is in fact an isomorphism, that is: (x, y)
is an arc in N if and only if (Φ(x),Φ(y)) is an arc in M . Note that by the symmetry of the
algorithm that it is sufficient to show that (Φ(x),Φ(y)) is an arc in M if (x, y) is an arc in
N .

To this end, assume that (x, y) is an arc in N . Note that there must exists a sequence
of recursive calls Ri and a corresponding sequence of sub-bijections Ψi through which
Φ is created. Now let Rix be the recursive call in which the input node v is x and denote
the input node w with z. Then the sub-bijection Ψ′

ix
, the first extension of Ψix , must

contain a bijection between the children of x and z. As y is a child of x, it follows that
φ(y) is a child of z. Now it follows from z = φ(x) that φ(y) is a child of φ(x). So indeed,
(φ(x),φ(y)) is an arc in M .
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Algorithm 6: find_isomorphisms

Input:
- Recoverable level-2 phylogenetic network N = (V ,E) with root ρ,
- Recoverable level-2 phylogenetic network M = (W,F ) with root κ,
- node v in V (initially ρ),
- node w in W (initially κ),
- list L of bijections ψ : V ′ →W ′ where V ′ ⊆V and W ′ ⊆W (initially [{ρ 7→ κ}]),
Output:
- (possibly empty) listΛ of bijections φ : V →W .

1 if L is emtpy then
2 return L
3 end
4 if v is a leaf and w is a leaf then
5 return L
6 end
7 c ← direct children of v
8 d ← direct children of w
9 if c and d do not contain the same amount of elements then

10 return empty list
11 end
12 Lr esul t ← empty list
13 B ← all bijections between c and d
14 for bijection b in B do
15 for bijection ψ in L do
16 if b in in contradiction with ψ then
17 go to next iteration
18 end
19 ψ′ ← copy of ψ
20 update ψ′ with the bijection b
21 Lcur r ent ← [ψ′]
22 for x in c do
23 y ← image of x in b
24 Lcur r ent ← compare_networks(N , M , x, y , Lcur r ent )
25 end
26 add Lcur r ent to Lr esul t

27 end
28 end
29 return Lr esul t
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EXPERIMENTS

It has been shown that the Tril2Net algorithm produces the desired output network
in case the input trinet set is induced by a recoverable level-2 phylogenetic network.
However, the latter will usually not be the case in practice. Hence, it is of interest to
analyse what happens to the output network when noise is introduced in the input trinet
set.

In this chapter, different types of noise that can exist in a network set are introduced.
This makes it possible to categorize different input trinet sets based on the levels and
types of noise they contain. Thereafter, several ways that networks and network sets
can be compared to each other are defined. Next, it is explained how problem instances
are sampled and how they are analysed. Finally, different categories of trinet sets are
sampled and put into the TriL2Net algorithm and the output is analysed.

6.1. NETWORK SET METRICS
The input trinet set might contain some contradicting or incorrect trinets, or even miss
some completely. To quantify this, some metrics about the quality of network sets in
general are defined below:

Definition 6.1.1 (Network set metrics). Let N be a set of networks on n species.
Then:

• N has redundancy if there exist two networks N1, N2 ∈N such that they de-
scribe the same n-set. The redundancy of N is defined as:

r edund anc y(N ) = vol ume(N )− cover ag e(N )

cover ag e(N )
.

Remember that volume is the sum of all the multiplicities of the networks in
N and that coverage is the amount n-sets described by N . Furthermore, N
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is called non-redundant if its redundancy is zero.

• N is called dense if for every n-set X in NX there exists at least one network
N ∈N such that NX = X . The density of a network set N is defined as:

densi t y(N ) = cover ag e(N )(|NX |
n

) .

Hence N is dense if its density is one.

• N has a depth-0 inconsistency if there exist two networks N1, N2 ∈ N such
they describe the same n-set but are not equal. The depth-0 inconsistency of
N is defined as:

i nconsi stenc y0(N ) = si ze(N )− cover ag e(N )

cover ag e(N )
.

• N has a depth-d inconsistency if there exists two networks N1, N2 ∈ N such
that there is a depth-0 inconsistency in the union of the (n −d)-network sets
Nn−d (N1) and Nn−d (N2): the network sets containing all exhibited networks
with (n−d) leaves of N1 and N2 respectively. This inconsistency is defined as:

i nconsi stenc yd (N ) = si ze(N (d))− cover ag e(N (d)
X )

cover ag e(N (d)
X )

,

where N (d) is the union of all (n −d)-network sets induced by each N ∈N :

N (d) = ⋃
N∈N

Nn−d (N ).

• N is called consistent if i nconsi stenc yd (N ) = 0 for 0 ≤ d ≤ n −2.

• N is called concise if it is non-redundant, dense and consistent.

Note that induced network sets are always concise.

6.2. CONSISTENCY METRICS
The objective of the algorithm is to assist phylogenists by creating a larger level-2 phy-
logenetic network from multiple smaller ones. That is, given a set of networks N the
algorithm should return a phylogenetic network N̂ that is consistent with many of the
networks in N .

There are several ways to measure this consistency. As the set of exhibited trinets of
a recoverable level-2 phylogenetic network is unique (van Iersel and Moulton 2014), it
makes sense to look at the trinet consistency score (Oldman et al. 2016):

|N ∩T (N̂ )|
|N | , N = ⋃

Ni∈N

T (Ni ).
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As the algorithm is based on the trinets, we do not only consider this trinet consis-
tency score but also the triplet consistency score (Huber, van Iersel, et al. 2011):

|Ṅ ∩ Ṫ (N̂ )|
|Ṅ | , Ṅ = ⋃

Ni∈N

Ṫ (Ni ).

Remember that Ṫ represents the set of exhibited triplets of Ni . Another interesting met-
ric is the cluster consistency score:

|N̈ ∩N̈ (N̂ )|
|N̈ | , N̈ = ⋃

Ni∈N

N̈ (Ni ).

Here N̈ (Ni ) represents the set of exhibited clusters of Ni . Furthermore, the cut-arc set
consistency score is of interest:

|C A∩C A(N̂ )|
|C A| , C A = ⋃

Ni∈N

C A(Ni ),

where C A(N ) is the set of non-trivial cut-arc sets of a phylogenetic network N .
Note that the trinet consistency score is the same for every iterating method. This is

not the case, however, for the triplet and the cluster consistency scores.

6.3. SAMPLING METHODS
The algorithm is tested on input which TriLoNet was tested on and is tested on newly
sampled input. This section details how this newly sampled input is generated.

6.3.1. NETWORK SAMPLING
To generate a trinet set, first a recoverable level-k phylogenetic network must be gener-
ated. This is done as follows. First an ordered set Σ of l biconnected level-k phylogenetic
networks is generated. Each of these networks is created by taking a level-k generator
and adding m leaves to each of its edge sides and two leaves to each of its reticulation
sides. Next, let N = N1 and iteratively replace a random leaf x of N with the network
Ni , i = 2, . . . , l . Now the number of leaves of N is reduced to n by randomly terminating
leaves.

Note that in case reticulation leaves are terminated the number of reticulations is
reduced as well. Therefore, if a large percentage of the leaves is terminated it can happen
that the sampled network is of a lower level. Moreover, a large percentage of leaves is
terminated if l and m are high compared to n. Lastly, if m is high, the probability that a
reticulation leaf is terminated is smaller than if m is low. In the remainder of this chapter,
level-1 networks are sampled using m = 4 and l = d 3

14 ne. For level-2, the networks are
sampled using m = 2 and l = d 3

22 ne.

6.3.2. TRINET SET SAMPLING
Using this sampled level-1 or level-2 phylogenetic network N , an induced trinet set
T = T (N ) can be computed. In order to induce noise in this set, two distortion filters
are introduced.
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The first filter is the uniform replacement filter, which replaces a trinet T ∈ T with
another trinet (on the same species) at random. The probability that a trinet is replaced
is denoted with Qu . This is the method that Oldman et al. (2016) used to test the TriLoNet
algorithm. In case that the sampled network is generated using level-k generators, the
trinets may only be replaced with level-k trinets.

The second filter is the tail move filter. Here, a tail move is as in Janssen et al. (2018):
moving the tail of an arc to a second arc. An example of a tail move can be seen in Figure
6.1. Note that a tail move preserves the number of reticulations a trinet contains, but can
alter its level. This is done in such a way that the trinet’s level is at most 2, both for trinet
sets induced by a network sampled from level-1 and level-2 generators. The probability
that a tail move is performed on a trinet is denoted using Qtm . The arc that is moved
and the arc that it is moved to are chosen at random, but in such a way that the trinet is
altered into a different trinet with level at most two. This filter is chosen because a tail
move changes a trinet relatively little.

0

1

3

2
a

b

4

5 c

(a) The original trinet

0

3

6

1

2

a

b

5 c

(b) The trinet obtained by moving the tail of arc (4,5) to
the arc (0, 1).

Figure 6.1: An example of a tail-move.

It follows that the input trinet set is generated from a recoverable level-2 phylogenetic
network N using two parameters: Qu and Qtm . Note that both filters are only used once.
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6.4. EXPERIMENT STRUCTURE

In this section, the experiment structure is outlined. First, a level-1 or level-2 network N
is sampled. From this network, a distorted trinet set is generated using the filters Qu and
Qtm . This network combined with the distorted trinet set can be seen as a problem in-
stance. The way TriL2Net solves this instance depends on the settings of the algorithm.
These settings define which way of network set iterating should be used for different
parts of the algorithm. For example, it defines which method is used when computing
pk of Equation (5.1), the fraction of trinet in a trinet set which are strictly level-k. This
iteration method can be different for the computation ofΩ, pk , pg , px,I and px,y .

Hence, the inputs of an experiment are the network sampling parameters, the trinet
set sampling parameters and the five iteration methods. The outputs of this experiment
are the generated network N , the distorted trinet set T and the output network N̂ .

Next, the consistency scores can be computed from N and N̂ . Note that N consists
of only N .

In the coming sections, the relations between the runtime and consistency scores
to the redundancy, density and inconsistencies of the input trinet set are analysed for
phylogenetic networks with different properties.
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6.5. DETERMINING THE BEST SOLVER SETTINGS
First, it is determined what the impact of different solver settings are on the consistency
scores. As the first part of the algorithm determines the cut-arc sets of the algorithm, the
impact of different settings on the cut-arc sets consistency is analysed first. Thereafter,
the impact of the other settings on the the trinet consistency score is analysed.

6.5.1. OPTIMIZING FOR CUT-ARC CONSISTENCY
The settings that change the way TriL2Net determines the cut-arc sets are the iterator
method used when computing the weighted auxiliary graphΩ and the method used that
determines a set from this graph: Algorithm 1 or Algorithm 2. In the figures below, it can
be seen what the average cut-arc consistency is for different settings, levels and different
values of Qu and Qtm .

(a) Networks sampled using level-1 generators,
Qtm =Qu = 0.05.

(b) Networks sampled using level-1 generators,
Qtm =Qu = 0.15.

(c) Networks sampled using level-2 generators,
Qtm =Qu = 0.05.

(d) Networks sampled using level-2 generators,
Qtm =Qu = 0.15.

Figure 6.2: The average cut-arc set consistency score for six different solver settings. For the blue bars
Algorithm 2 is used to compute the minimal cut-arc sets. For the orange bars Algorithm 1 is used instead. The
average is taken over nine networks N with n ∈ {20,25,30}. The trinet sets are then induced by the network N

and passed through the noise filters with parameters Qtm and Qu as defined in the caption. Note that the
same trinet sets have been used for different bars in the same graph.

The blue bars are the iterators (specified on the x-axis) that use Algorithm 2 to derive
the minimal cut-arc set. The orange bars use Algorithm 1 instead. The input networks
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were sampled using level-1 generators for the top two graphs and using level-2 gener-
ators for the bottom two graphs. The noise levels Qtm and Qu are 0.05 for the left two
graphs and 0.15 for the right two graphs.

It can be seen that the maximum multiplicity iterator and Algorithm 2 perform better
for all combinations of the level of the network and the noise percentage. However, for
the maximum multiplicity iterator, Algorithm 1 performs better. It follows that using the
maximum multiplicity iterator in combination with Algorithm 1 gives the best result.
Hence, in the rest of this chapter these settings are used. Note that it is possible that
the other methods work better for higher levels of noise, as it is then less likely that the
maximum multiplicity method yields the original data.

Moreover, it can be seen that the cut-arc set consistency decreases when the noise is
increased, as would be expected. Furthermore, the cut-arc set consistency is also lower
for level-2 than for level-1, especially for higher levels of noise tested. This could be
due to a different number and size of the cut-arc sets present in the generated level-
1 compared to the level-2 networks. Another potential cause could be, that for level-2
networks, the uniform filter can replace a trinet with a trinet from a larger set of trinets.
Lastly, it is possible that tail-moves have more impact on the cut-arc sets of level-2 trinets
than on the cut-arc sets of level-1 trinets.

6.5.2. OPTIMIZING THE OTHERS SETTINGS FOR TRINET CONSISTENCY
Next, the other settings of the algorithm are optimized for trinet consistency. Here, three
alternatives are juxtaposed. Each alternative uses one of the three iteration methods for
the computation of each of the values pk , pg , px,I and px,y . The result can be seen in
Figure 6.3.

The blue, orange and green bars represent the maximum multiplicity, weighted av-
erage and the weighted sum iterator respectively. The trinet sets of the upper two graphs
are generated using level-1 generators, the sets of the bottom two graphs using level-2
generators. For the left two graphs uniform noise was used to distort the trinet set, for
the right two graphs this was tail move noise.
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(a) Networks sampled using level-1 generators, Qtm = 0. (b) Networks sampled using level-1 generators, Qu = 0.

(c) Networks sampled using level-2 generators, Qtm = 0. (d) Networks sampled using level-2 generators, Qu = 0.

Figure 6.3: The average trinet consistency score for three different solver settings and four different noise
levels. The blue bars, orange bars and green bars represent that the maximum multiplicity, weighted average
and the weighted sum iterators have been used to compute pk , pg , px,I and px,y respectively. The average is

taken over 18 networks with n ∈ {15,20,25}. For level-1, the networks are sampled using m = 4 and l = d 3
14 ne.

For level-2, the networks are sampled using m = 2 and l = d 3
14 ne. The trinet sets are then induced by N and

passed through the noise filters with parameters Qu and Qtm as defined on the x-axis. Note that different
trinet sets have been used for the different bars in the same graph.

Note that the consistency scores should not increase if the noise is increased, but
that this does happen for the weighted sum and the maximum multiplicity iterator. By
looking Figure 6.4, which contains the standard deviation of the data sets in Figure 6.4,
it can be concluded that this is the result of too small sample sizes.
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(a) Networks sampled using level-1 generators, Qu = 0. (b) Networks sampled using level-1 generators, Qtm = 0.

(c) Networks sampled using level-2 generators, Qu = 0. (d) Networks sampled using level-2 generators, Qtm = 0.

Figure 6.4: The respective standard deviation of the data sets of Figure 6.3

Nonetheless, it can be seen that the average trinet consistency score remains close to
1 for uniform noise levels of < 10% for level-1, and for tail move levels of < 10% for level-1
and level-2. Moreover, if the high value of the average trinet set consistency for Qu = 20%
and the weighted sum iterator is attributed to the small sample size, it can be concluded
that the maximum multiplicity and the weighted average iterator perform best. Again,
note that this result does not need to translate to higher values of noise. Lastly, it can be
seen that the average trinet consistency scores are slightly lower for the level-2 networks.
This might be the result of the small data set. If not, one of the possible causes might
be that there are more level-2 networks, hence any two random level-2 networks are less
likely to be alike.

In the remainder of the experiments of this chapter, the weighted average iterator
will be used to compute pk , pg , px,I and px,y .

6.5.3. PERFORMANCE AND COMPARISON STUDY
Using these optimal settings found in the previous subsections, we will now analyse the
performance of TriL2Net. In Figure 6.5, the average trinet, triplet and cluster consis-
tency scores are plotted against the level of noise. Furthermore, a polynomial in the
form of:

1−a1x −a2x2 −a3x3 −a4x4,
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with ai ≥ 0 is fitted for each score. In the upper figure, the noise is generated using the
uniform noise filter. In the lower figure this is done using tail moves. The blue, orange
and green line denote the trinet, triplet and cluster consistency respectively. Note that
the maximum noise percentage in Figure 6.5a is much higher than in Figure 6.5b. We
chose to increase this range, as the scores were still close to 1 for tail move levels of up to
20%.

(a) Networks sampled using level-2 generators, Qtm = 0.

(b) Networks sampled using level-2 generators, Qu = 0.

Figure 6.5: The average consistency scores of TriL2Net for different levels and types of noise. The averages
are taken over 18 level-2 networks N with n ∈ {15,20,25}. The trinet sets are induced by N and passed through

the noise filters with parameters Qu and Qtm as defined on the x-axis.
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It can be seen that the average triplet consistency is stable and remains above 85%
for all plotted noise levels. The average trinet consistency score remains above 85% for
uniform noise levels up to 10% and for tail move noise levels up to around 30%. The clus-
ter consistency score declines rapidly for both uniform and tail move noise. This might
be explained by the fact that a small increase in the number of biconnected components
or reticulation leaves has a large effect on the exhibited clusters of a network. Lastly, it
can be seen that the algorithm performs better for noise induced by tail moves than for
noise induced by the uniform filter. This is due to the fact that a tail-move is a less radical
change than replacing a trinet with a random other trinet. The difference in the impact
of these filters is analysed in more depth in Section 6.7.

Figure 6.6: The performance of the TriLoNet and the Lev1athan algorithm on level-1 phylogenetic
networks. The averages are taken over 100 level-1 networks with 20 ≤ n ≤ 100 for each percentage of uniform

noise. The solid line represents TriLoNet and the dashed line represents Lev1athan. The lines with triangles
are the triplet consistency scores, the lines with squares the trinet consistency scores. More information on

those the sampled networks can be found in Oldman et al. (2016).

In Figure 6.6, the average trinet and triplet consistency scores of TriLoNet and Lev1athan
are plotted against the percentage of uniform noise (Oldman et al. 2016). The networks
used to create this graph are all level-1 and are sampled in a similar, but not equivalent,
fashion as is done in this paper. The uniform noise filter that is used is exactly the same.
The lines with triangles denote the triplet consistency score, and the lines with squares
denote the trinet consistency score. The dashed lines are Lev1athan’s and the solid lines
are TriLoNet’s.

Lev1athan works with triplets (Huber, van Iersel, et al. 2011), whereas TriLoNet
works with level-1 trinets. This can be recognized by the fact that Lev1athan’s triplet
score is higher but its trinet score is lower than TriLoNets’s. As the trinets exhibited by
a level-1 phylogenetic network N encode the network N , Oldman et al. (2016) conclude
that the networks produced by TriLoNet are topologically more similar to the input net-
works.

When comparing the scores of TriL2Net to the ones of TriLoNet, it can be seen
that Tril2Net performs better for the triplet consistency score and about the same for
the trinet consistency score. There are two possible explanations for this. The scores in
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Figure 6.6 are computed using a large sample of different size level-1 phylogenetic net-
works, whereas the scores in Figure 6.5 are computed using a smaller sample of small
size level-2 phylogenetic networks. Hence, on the one hand, it might be that it is more
difficult to achieve high consistency scores for larger networks. On the other hand, it
might be more difficult to achieve a high consistency score for level-1 networks than for
level-2 networks. Whether either of these two is the case is unknown. We expect that it
is indeed possible that larger networks are more difficult to reconstruct. However, we do
not expect that level-2 networks are easier to reconstruct then level-1 networks, as their
topology is more complex. Both possibilities need further investigation.

The average runtime of the algorithm for non-redundant dense level-2 trinet sets on
n leaves can be seen in Figure 6.7. The theoretical upper bound for worst-case runtime
follows from Theorem 5: O(n · t 2+n5). As t =O(n3) for non-redundant dense trinet sets,
it follows that the average runtime should be O(n7). After fitting polynomials of different
orders, it was found that the following fifth order polynomial fits the points well:

1.54n +1.64 ·10−2n4 +6.70 ·10−6n5.

The fact that this is lower than the theoretical runtime can be attributed to the crude
bounds used in the lemmas concerning the restricting and collapsing of the trinet sets:
Lemma 5.2.1 and Lemma 5.3.1 respectively. As in practise there are very little contradict-
ing trinets, this restricting and collapsing is much faster than the given bound O(t 2) =
O(n6). If the term n · t 2 is neglected, the worst-case runtime of the algorithm becomes
O(n5). Note that one of these n’s comes from the maximum number of biconnected
components a phylogenetic network can have. As this number is much lower for the
sampled level-2 phylogenetic networks, it makes sense that the coefficient of the fifth
degree is small compared to the coefficient of the fourth degree.
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Figure 6.7: The average runtime of the TriL2Net algorithm. The averages are taken over four level-2
phylogenetic networks per n ∈ {15,20,25,30,35,40}. The fitted curve is approximately

1.54n +1.64 ·10−2n4 +6.70 ·10−6n5.

6.6. BIOLOGICAL DATA
In this section, we apply TriL2Net to biological data, using the optimal settings found
in Subsection 6.5.1. Unfortunately, no algorithm that computes level-2 trinets from se-
quence data exists yet, and designing such an algorithm is non-trivial. Therefore, the
two level-1 trinet sets used to illustrate TriLoNet are used instead. These sets concern
six Giardia subtypes and 25 HBV subtypes respectively.1 The depth-1 inconsistency of
both these sets is analysed and a tail move filter value that corresponds with this incon-
sistency is deduced from Figure 6.10b. The tail move filter is chosen as we believe that
the noise this filter induces is more consistent with the noise in the biological data. Next,
both sets are solved for using Tril2Net and the results are compared to TriLoNet’s re-
sults.

6.6.1. GIARDIA
The Giardia trinet set TGi ar di a on six subtypes generated using TriLoNet consists of
20 trinets all on different leaf sets. Hence this set is dense, non-redundant and depth-0
consistent. It does, however, have a depth-1 inconsistency of 60.0%. The network de-
rived by TriLoNet can be seen in Figure 6.8a (Oldman et al. 2016). The trinet and triplet
consistencies of this network are 55.0% and 80.0% respectively.

The two networks derived by Tril2Net can be seen in Figures 6.8b and 6.8b. It de-
rives two networks due to the fact that some choices are made at random in case of ties.

1The sequence data for these can be found in the zip-file on https://www.uea.ac.uk/computing/TriLoNet, the
files used here are Cooper and Bollyky respectively. This zip-file also contains the algorithm used to create
the trinets. More details on the data and the algorithm used to construct these sets can be found in Oldman
et al. (2016)

https://www.uea.ac.uk/computing/TriLoNet
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Figure 6.8b is the same as the one TriLoNet produces. Figure 6.8c is slightly different:
the subtypes JH and 55 are switched. This switch does not change the trinet consis-
tency, in fact both networks cover the same trinets that are in TGi ar di a . The switch does
lower the triplet consistencies slightly to 77.5%. Note that the tail-move distance con-
form (Janssen et al. 2018) is one. This difference comes from the fact that these two algo-
rithms order the leaves in a slightly different way and the fact that the trinet set TGi ar di a

is inconsistent in the ordering of the leaves JH and 55: an equal number place JH above
55 as the other way around.

WB

303_305

335 JH 55

246

(a) The network derived by TriLoNet. This network has a 55.0% trinet and a 80.0% triplet consistency score.

WB

303_305

335 JH 55

246

(b) The first of the two networks derived by TriL2Net. This network has a 55.0% trinet and a 80.0% triplet consistency score.

WB

303_305

335 55 JH

246

(c) The second of the two networks derived by TriL2Net. This network has a 55.0% trinet and a 77.5% triplet consistency
score.

Figure 6.8: The networks derived by TriLoNet and TriL2Net for the Giardia trinet set TGi ar di a .
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6.6.2. HBV
The HBV trinet set THBV on 25 subtypes generated using TriLoNet consists of 2300
trinets all on different leaf sets. Hence this set is dense, non-redundant and depth-0
consistent. It does, however, have a depth-1 inconsistency of 91.0%. The network de-
rived by TriLoNet can be seen in Figure 6.9a (Oldman et al. 2016). The trinet and triplet
consistencies of this network are 15.5% and 70.0% respectively. In Figure 6.9b, the net-
work generated by TriL2Net can be seen. Note that TriL2Net always creates the same
network for this data set. This network’s trinet and triplet consistency score are slightly
higher: 17.0% and 72.1% respectively.

Both algorithms find the same cut-arc sets and reticulation leaves. However, TriL2Net
has placed the following subtypes differently:

• HUMPRECX is placed on a different side, above HBVADW2 instead of below HVHEPB;

• HPBADW1 is placed on a different side, above HPBADWZCG instead of between
HPBHBVAA and HPBMUT;

• HBVADR4 is placed on a different side, between HEHBVAYR and HPBADRA in-
stead of alone on the other side.

These differences can be attributed to the fact that TriL2Net uses a different way to
assign the leaves to different sides.

HBVADW4A

HPBETNC

HPBADRC HPBCG HPBADRA

HEHBVAYR

HPBADR1CG
HBVADRM

HPBCGADR

HBVADR4

HPBMUT
HPBADW1

HBVAYWMCG HPBHBVAA XXHEPAV

XXHEPA

HBVDNA

HPBADW2

HPBADWZCG HVHEPB

HUMPRECX

HBVADW

HBVADW2

HPBADW3

HPBADWZ

(a) The network derived by TriLoNet. This network has a 15.5% trinet and a 70.0% triplet consistency score.

HPBADW2

HPBADWZ

HPBADW3

HPBADWZCG

HPBADW1
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HBVADW

HUMPRECX

HBVADW2
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HPBMUT HBVAYWMCG HPBHBVAA

XXHEPAV

XXHEPA
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HPBADR1CG
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HPBADRA

HBVADR4

HEHBVAYR

(b) The network derived by TriL2Net. This network has a 17.0% trinet and a 72.1% triplet consistency score.

Figure 6.9: The networks derived by TriLoNet and TriL2Net for the HBV trinet set THBV . Larger versions of
these figure can be found in Appendix A
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6.7. IMPACT OF DISTORTION FILTERS ON THE DEPTH-1 INCON-
SISTENCY

The previous section shows that both TriLoNet and TriL2Net have difficulty creating a
network N with a high trinet consistency score for trinet sets generated from biological
data. These generated trinet sets are dense, non-redundant and depth-0 consistent but
do have a high depth-1 inconsistency. This section investigates which values of Qtm and
Qu create trinet sets with similar depth-1 inconsistency levels.

(a) Networks sampled using level-1 generators, Qtm = 0 (b) Networks sampled using level-1 generators, Qu = 0

(c) Networks sampled using level-2 generators, Qtm = 0 (d) Networks sampled using level-2 generators, Qu = 0

Figure 6.10: The average depth-1 inconsistency for different networks sizes and noise types. The blue bars,
orange bars and green bars represent networks containing 15, 20 and 25 leaves respectively. The average is
taken over five networks. For level-1, the networks are sampled using m = 4 and l = d 3

14 ne. For level-2, the

networks are sampled using m = 2 and l = d 3
14 ne. The trinet sets are then induced by N and passed through

the noise filters with parameters Qtm and Qu as defined on the x-axis.

The figures above show the depth-1 inconsistency for distorted trinet sets sampled
using different generators and noise levels. The sets in the upper two graphs are sampled
using level-1 generators and the sets in the lower two using level-2 generators. The sets in
the left two graphs are distorted using a uniform filter and the sets in the right two graphs
using a tail move filter. The blue bars, orange bars and green bars represent networks
containing 15, 20 and 25 leaves respectively. Note that the bottom left graph has a larger
y-range.

It can be seen that, as expected, the depth-1 inconsistency increases as the noise
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increases. Moreover, trinet sets on more species also have a higher depth-1 inconsis-
tency for the same level of noise. Moreover, the uniform filter generates more depth-1
inconsistency than the tail move filter does. This is expected, as a tail-move results in a
trinet more consistent with the original than a random trinet. Hence the binets are also
relatively consistent with the originals. The depth-1 inconsistency is also larger for the
level-2 networks. This is probably due the fact that there are more possible level-2 binets
and trinets. Therefore, it makes sense that TriL2Net has lower consistency scores than
TriLoNet for the same noise levels, as was found in Section 6.5.3.

Next, these results are translated to the biological data sets of the previous section.
The HBV trinet set contains 25 species and has a depth-1 inconsistency of 91%. This
coincides with either a uniform noise level of 10% or a tail move level of 30%. The average
trinet consistency scores for these levels of noise follow from Figure 6.5: around 85%
and 88% for uniform noise and tail move noise respectively. This is much higher than
the trinet consistencies found for the biological data sets. It could be that these two
biological data sets are outliers. However, it is more likely that this depth-1 inconsistency
on its own is not a reliable measure for the amount of noise in a trinet set.





7
CONCLUSION AND FURTHER

RESEARCH DIRECTIONS

We have presented an algorithm that constructs a level-2 phylogenetic network on n
species from a set of recoverable level-2 trinets T . The theoretical worst case runtime of
this algorithm is O(n|T |2 +n5), but its average runtime for non-redundant dense trinet
sets reduces to O(n5). Moreover, we have proven that, in case the set of trinets is induced
by a recoverable level-2 network, this algorithm in fact reconstructs this network. To be
able to do this, we have proven that the minimal cut-arc sets of such level-2 networks are
precisely the minimal sink-sets of their respective auxiliary graphs. Moreover, we have
conjectured that this result can be extended to level-k. We think this can be proven by
finding a directed graph on the reticulation leaves such that a trinet containing two ad-
jacent reticulation leaves is biconnected. Similar results have been proven using hierar-
chies by Huber, Moulton, and Wu (2019) for 2-terminal phylogenetic networks: networks
containing at most two reticulation leaves per biconnected component.

Moreover, it was analysed which heuristics work best in various scenarios. It was
found that the best way to determine the minimal cut-arc sets is to use the maximum
multiplicity iterating method to compute the weighted auxiliary graph. Similarly, Al-
gorithm 1 must be used to find a minimal sink-set in one of the augmented auxiliary
graphs. Note that this algorithm is the same as the one used in TriLoNet, but that the
used iterating method is different. Furthermore, it was found that it is best to use the
weighted average iterating method when calculating the other properties of the network.
Note that these results follow from preliminary experiments on trinet sets on roughly 20
species. Hence, further experiments on more and on larger networks must be performed
to substantiate and extend these results.

When comparing the consistency scores of TriL2Net for level-2 networks to the
consistency scores of TriLoNet for level-1 networks, we found that TriL2Net performs
slightly better. This difference is most notable in the trinet consistency score. This dif-
ference might be attributed to the different ways the data is sampled. The number and
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size of the biconnected components might be of importance, for example. To better es-
tablish the difference in performance of these two algorithms, both algorithms should
be run on the same data sets. Furthermore, it would be interesting to analyse the impact
of the number, size and type of the biconnected components on the performance, too.

Two biological datasets have been studied using both TriLoNet and TriL2Net. These
datasets concern Giardia subtypes and HBV subtypes. We found that both algorithms
create a phylogenetic network on the Giardia dataset whose exhibited trinets are 55%
consistent with the input. TriL2Net can produce different networks for the same data
set in different runs, which is the case for this dataset. One of the two networks it cre-
ates is the same as TriLoNet’s. The other network has switched the order of two leaves,
decreasing the consistency with the triplets induced by the input trinets slightly. That
these two leaves can be swapped can be explained by looking at the input trinet set: the
amount of trinets that describe each of these options is the same.

The phylogenetic networks created by TriLoNet and TriL2Net from the other trinet
set, the one concerning HBV subtypes, are slightly different. Both algorithms deduce the
same cut-arc sets and reticulation leaves. However, in three of the biconnected compo-
nents, TriL2Net places a taxon on another side of the component the TriLoNet does.
This difference is in favour of TriL2Net, whose network is 17% consistent with the input
trinets; slightly higher than the 15.5% achieved by TriLoNet. We concluded that this is
a consequence of the difference in heuristics used. Whether TriL2Net always performs
better on level-1 trinet sets must be investigated.

We found these trinet consistencies of 55% and 17% are rather low. Therefore, we
analysed the depth-1 inconsistency of the biological data sets. This depth-1 inconsis-
tency is a measure for the amount of contradicting binets induced by the input trinet
set. We found that this inconsistency is 60% for the Giardia data set and 91% for the HVB
data set. Next, we analysed how trinet sets with similar depth-1 inconsistencies can be
generated. The result of this analysis shows that replacing a trinet with a random other
trinet increases this inconsistency a lot, much more than performing a tail move on this
trinet. Moreover, we found that the depth-1 inconsistency of the HBV trinet set can be
replicated by either replacing 15% of a trinet set’s trinets with random other trinets, or
performing a tail move on 30% of the trinet set’s trinets. However, the average trinet
consistency scores for sampled data with these levels of noise are significantly higher.
For example, the average trinet consistency score of the sampled data experiments is
around 70% for a uniform noise level of 15%. Therefore, we conclude that this depth-1
inconsistency on its own is not a reliable measure for the amount of noise contained in
a trinet set. To obtain better predictors for this noise, and hence predictors for the trinet
set consistency of the output, more research needs to be performed.

As currently no algorithm exists that creates level-2 trinets from biological data, it has
not been possible to test the algorithm on level-2 trinet sets derived from biological data.
Unfortunately, constructing such an algorithm is non-trivial. There are, however, other
ways this algorithm can be tested on level-2 trinets based on biological data. For exam-
ple, if there are multiple level-2 phylogenetic networks, each on a set of species such that
these sets overlap, it is possible to construct a level-2 phylogenetic network on the union
of all these sets of species. This can be done by applying the algorithm to the union of
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the trinet sets induced by each of the original networks. The union of these trinet sets
will probably contain many duplicate and contradicting trinets. Moreover, there will be
many sets of three species for which it does not contain any trinet. In order to deal with
these ‘holes’ the current heuristics might need to be adjusted.

The algorithm is currently restricted to binary level-2 phylogenetic trinets and net-
works. Possible generalizations can be an increase in degree or level. Another way would
be to not limit the number of reticulation nodes per biconnected component, but the
number of reticulation leaves per biconnected component. Such networks are called k-
terminal networks (Huber, Moulton, and Wu 2019). Such generalizations will give rise to
several complications.

First of all, it is currently unknown if the phylogenetic networks in these larger classes
are encoded by their trinets. Therefore, it is possible that different networks induce the
same trinet set. It could also be that networks are not encoded by their trinets, but by
their induced n-net set for n > 3. In this case a similar approach remains possible. For
the class of binary level-2 phylogenetic networks, it has been proven that the phyloge-
netic networks in this class are encoded by their trinets (van Iersel and Moulton 2014).
In this proof, every binary level-1 and level-2 generator is considered. In order to extend
this proof to binary level-k networks using the same method, every binary level-k gen-
erator must be considered. As there are at least 2k−1 such generators (Gambette et al.
2009), this is quite cumbersome.

Another result that is needed is whether the minimal sink-sets of the auxiliary graph
of a trinet set are precisely the minimal cut-arc sets of the networks in these larger classes.
In this thesis, it has been shown that this is the case for binary level-2 phylogenetic net-
works (see Corollary 4.2.4). Moreover, we have conjectured that this in fact the case for
any binary phylogenetic network. Similarly, Huber, Moulton, and Wu (2019) have shown
that this is also the case for, not necessarily binary, 2-terminal phylogenetic networks.

The next complication is the amount of trinets that exist in these larger classes. As
there are only 210 level-2 trinets, finding the generator of a level-2 trinet using an ex-
haustive search is very quick. However, as k increases, the number of level-k generators,
and therefore the number of level-k trinets, rises exponentially. Hence, this approach
is not ideal when generalizing to higher levels. For k-terminal networks, the amount of
generators is already infinite for k = 1. This can be seen by repeating the pattern of gen-
erator G 2a from Figure 3.2. Thus, when generalizing to k-terminal networks, such an
exhaustive approach is impossible.

Another difficulty with the amount of generators is determining their symmetries.
This is currently done by hand and hard-coded in the algorithm, which is easily done for
a few generators. Finding these symmetries for arbitrary generators should, by defini-
tion, be possible through the generators’ isomorphisms. However, for a generator con-
taining n nodes there exist at most n! possible isomorphisms. Furthermore, for binary
networks a polynomial-time algorithm exists that checks whether two such networks are
isomorphic, but whether one exists for arbitrary degree networks is unknown.

Moreover, it is possible that the networks in these larger classes encompass genera-
tors that the trinets in that class do not. This is the case, for example, for level−k net-
works with k ≥ 3 and for k-terminal networks with k ≥ 1. In such cases, simply picking
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the generator that occurs most in a certain set of trinets does not work. For level-k, there
are various options to tackle this. First of all, it might be possible to derive higher level
generators from a set of lower level generators. A method for this might be deduced from
Gambette et al. (2009), which gives an algorithm for constructing the set of all level−k+1
generators from the set of all level−k generators. Secondly, it is possible to use networks
containing k leaves instead of trinets. This option might be more easily implemented,
but as k increases the number of k-nets increases rapidly too. Lastly, Murakami et al.
(2019) have introduced an algorithm that constructs a level-k tree-child network N (a
subclass of level-k networks) from its reticulate-edge-deleted subnetworks, which are
subnetworks obtained by deleting a single reticulation edge. This deletion of reticula-
tion edges reduces the level of a network. Hence, it might be possible to first deduce
sets of level-2 trinets from the original level-k trinet set. Then, use TriL2Net to con-
struct a level-2 network on each of these level-2 trinet sets. Finally, use the algorithm of
Murakami et al. (2019) to combine these level-2 networks in a level-k network.



BIBLIOGRAPHY

Aho, A. V., Sagiv, Y., Szymanski, T. G., & Ullman, J. D. (1981). Inferring a tree from lowest
common ancestors with an application to the optimization of relational expres-
sions. SIAM J Comput, 10(3), 405–421.

Dress, A., Huber, K. T., Koolen, J., Moulton, V., & Spillner, A. (2012). Basic phylogenetic
combinatorics. Cambridge: Cambridge University Press.

Gambette, P., Berry, V., & Paul, C. (2009). The structure of level-k phylogenetic networks.
Combinatorial Pattern Matching, 289–300.

Huber, K. T., & Moulton, V. (2013). Encoding and constructing 1-nested phylogenetic net-
works with trinets. Algorithmica, 66(3), 714–738.

Huber, K. T., Moulton, V., & Wu, T. (2019). Hierarchies from lowest stable ancestors in
nonbinary phylogenetic networks. Journal of Classification, 36(2), 200–231.

Huber, K. T., van Iersel, L., Kelk, S., & Suchecki, R. (2011). A practical algorithm for re-
constructing level-1 phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioin-
form., 8(3), 635–649.

Huson, D. H., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks, concepts, algo-
rithms and applications. Cambridge University Press.

Huson, D. H., & Scornavacca, C. (2012). Dendroscope 3: An interactive tool for rooted
phylogenetic trees and networks. Syst Biol, 61(6), 1061–1067.

Janssen, R., Jones, M., Erdõs, P. L., van Iersel, L., & Scornavacca, C. (2018). Exploring the
tiers of rooted phylogenetic network space using tail moves. Bulletin of Mathemat-
ical Biology, 80(8), 2177–2208.

Kole, S. (2020). Tril2net. https://github.com/KSjors/TriL2Net. GitHub.
Lot, M., Spillner, A., Huber, K. T., & Moulton, V. (2009). Padre: A package for analyzing

and displaying reticulate evolution. Bioinformatics, 25(9), 1199–1200.
Morrison, D. A. (2011). Introduction to phylogenetic networks. RJR Productions.
Murakami, Y., van Iersel, L., Janssen, R., Jones, M., & Moulton, V. (2019). Reconstructing

tree-child networks from reticulate-edge-deleted subnetworks. Bulletin of Mathe-
matical Biology, 81(10), 3823–3863.

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software: Practice
and Experience, 27(8), 983–993.

Oldman, J., Taoyang, T. W., van Iersel, L., & Moulton, V. (2016). TriLoNet: Piecing Together
Small Networks to Reconstruct Reticulate Evolutionary Histories. Molecular Biol-
ogy and Evolution, 33(8), 2151–2162.

Pomerol, J. C., & Barba-Romero, S. (2000). Multicriterion decision in management: Prin-
ciples and practive. Springer.

Poormohammadi, H., Eslahchi, C., & Tusserkani, R. (2014). Tripnet: A method for con-
structing rooted phylogenetic networks from rooted triplets. PLoS One, 9(9).

83



84 BIBLIOGRAPHY

Ranwez, V., Berry, V., Criscuolo, A., Fabre, P. H., Guillemot, S., Scornavacca, C., & Douzery,
E. J. P. (2007). PhySIC: A veto supertree method with desirable properties. Syst Biol,
56(5), 798–817.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Mol Biol Evol, 4(4), 406–425.

Scornavacca, C., Berry, V., Lefort, V., Douzery, E. J. P., & Ranwez, V. (2008). PhySIC_IST:
Cleaning source trees to infer informative supertrees. BMC Bioinformatics, 9(1),
413.

Semple, C., & Steel, M. (2003). Phylogenetics. Oxford University Press.
Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM J on Comput, 1(2),

146–150.
Than, C., Ruths, D., & Nakhleh, L. (2008). Phylonet: A software package for analyzing and

reconstructing reticulate evolutionary relationships. BMC Bioinformatics, 9.
Timme, R. E., Simpson, B. B., & Linder, C. R. (2007). High-resolution phylogeny for he-

lianthus (asteraceae) using the 18s-26s ribosomal dna external transcribed spacer.
American journal of botany, 94(11), 1837–1852.

van Iersel, L., & Moulton, V. (2014). Trinets encode tree-child and level-2 phylogenetic
networks. Journal of Computational Biology, 68(7), 1707–1729.



A
HBV NETWORKS

85



A

86 A. HBV NETWORKS

H
B
V
A
D
W
4A

H
P
B
E
T
N
C

H
P
B
A
D
R
C

H
P
B
C
G

H
P
B
A
D
R
A

H
E
H
B
V
A
Y
R

H
P
B
A
D
R
1C
G

H
B
V
A
D
R
M

H
P
B
C
G
A
D
R

H
B
V
A
D
R
4

H
P
B
M
U
T

H
P
B
A
D
W
1

H
B
V
A
Y
W
M
C
G

H
P
B
H
B
V
A
A

X
X
H
E
P
A
V

X
X
H
E
P
A

H
B
V
D
N
A

H
P
B
A
D
W
2

H
P
B
A
D
W
Z
C
G

H
V
H
E
P
B

H
U
M
P
R
E
C
X

H
B
V
A
D
W

H
B
V
A
D
W
2

H
P
B
A
D
W
3

H
P
B
A
D
W
Z

F
igu

re
A

.1:A
larger

versio
n

o
fFigu

re
6.9a:th

e
p

h
ylo

gen
etic

n
etw

o
rk

d
erived

b
y

TriLoNet
fo

r
th

e
H

B
V

trin
etset.



A

87

H
B
V
A
D
W
4A

H
P
B
E
T
N
C

H
P
B
A
D
R
C

H
P
B
C
G

H
P
B
A
D
R
A

H
E
H
B
V
A
Y
R

H
P
B
A
D
R
1C
G

H
B
V
A
D
R
M

H
P
B
C
G
A
D
R

H
B
V
A
D
R
4

H
P
B
M
U
T

H
P
B
A
D
W
1

H
B
V
A
Y
W
M
C
G

H
P
B
H
B
V
A
A

X
X
H
E
P
A
V

X
X
H
E
P
A

H
B
V
D
N
A

H
P
B
A
D
W
2

H
P
B
A
D
W
Z
C
G

H
V
H
E
P
B

H
U
M
P
R
E
C
X

H
B
V
A
D
W

H
B
V
A
D
W
2

H
P
B
A
D
W
3

H
P
B
A
D
W
Z

F
ig

u
re

A
.2

:A
la

rg
er

ve
rs

io
n

o
fF

ig
u

re
6.

9b
:t

h
e

p
h

yl
o

ge
n

et
ic

n
et

w
o

rk
d

er
iv

ed
b

y
Tr

iL
2N

et
fo

r
th

e
H

B
V

tr
in

et
se

t.


	Preface
	Introduction
	Example
	Preliminaries
	Phylogenetic network
	Exhibited networks, trees and clusters
	Collapsed networks
	The auxiliary graph

	Theory
	Structure of phylogenetic networks
	Biconnected phylogenetic networks
	Collapsed networks
	Cut-arc sets and sink-sets

	Algorithm
	Finding the minimal cut-arc sets
	Constructing a biconnected level-2 network
	Number of reticulations
	Generator
	Group of leaves per set of symmetric sides
	Group of leaves per side
	Ordered group of leaves per side
	Alignment of the sides
	Combining the steps to construct a biconnected network

	Collapsing the trinet and binet set
	Constructing a recoverable level-2 network
	Identifying trinets and binets

	Experiments
	Network set metrics
	Consistency metrics
	Sampling methods
	Network sampling
	Trinet set sampling

	Experiment structure
	Determining the best solver settings
	Optimizing for cut-arc consistency
	Optimizing the others settings for trinet consistency
	Performance and comparison study

	Biological Data
	Giardia
	HBV

	Impact of distortion filters on the depth-1 inconsistency

	Conclusion and further research directions
	Bibliography
	HBV Networks

