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SUMMARY
We have presented a new methodology to model the scattered wavefield due to a heterogeneous
distribution of compliance along a single fracture and then to invert this compliance distribution or its
power spectral density (PSD) from the scattered seismic response. We illustrate the validity through
numerical examples using Gaussian PSD. First, we show that the perturbation theory offers very close
result to that obtained from exact relation (wdSDD approach), by considering only the first 3 orders of
perturbation. By solving the inverse scattering problem we can estimate the heterogeneous compliance
distribution quite accurately. Next, in order to estimate the PSD of the heterogeneous compliance
distribution, the normalized power of the stress field is used. We use the result from the wdSDD approach
to represent the observed data. We show the possibility of successful extraction of the correct PSD by
curve-fitting. The techniques presented here can lead to a conceptually new and accurate approach for
estimating heterogeneous compliance distribution and the corresponding spatial variation in roughness and
aperture along the fracture plane. This may, in turn, be related to the crucial fluid flow properties in the
fractured subsurface.
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 Introduction

The elastic compliance is a major determinant of the seismic response of a fracture. The long-wavelength

assumption and assigning a single value for the fracture compliance are usual. These lead to a total re-

sponse of multiple fractures (e.g., effective medium theory). However, the compliance along a single

fracture surface may be sensed by the seismic wave as heterogeneous and spatially varying. Pyrak-Nolte

and Nolte (1992) showed that the assumption of the spatially heterogeneous compliance distribution

along the fracture surface explains better the experimental data. Brown and Scholz (1985) showed that

the fracture compliance depends on the parameter representing the roughness of the fracture surface and

the normal stress applied to the fracture. Hudson et al. (1996) derived the normal and tangential compli-

ance from the scattered wavefield; the scattered wavefield is shown to be dependent on the distribution

of the contact area and the fluid-filled aperture of the fracture. Spatial variations and heterogeneity in

roughness, normal stress and aperture along the fracture surface are the key factors that control the frac-

ture compliance distribution. Furthermore, as suggested by Brown and Fang (2012), fracture surface

roughness can and does control the fluid flow. Therefore, estimating the spatial variations of compliance

distribution can be crucial in estimating the fluid flow properties. Figure 1(a) shows an example of a

simulated heterogeneous compliance distribution along x-axis for a single fracture. Such a variation is

presumably a result of the spatial variation of the microstructures.

In this research, we have concentrated on developing a methodology for reliable characterization of the

spatially varying fracture compliance using the scattered seismic wavefield. Extending further the work

of Nakagawa et al. (2004) and Leiderman et al. (2007), we employ the perturbation theory to obtain

the dominant information and the power spectral density (PSD) of the heterogeneous fracture compli-

ance. We illustrate this using numerical examples of the modeled scattering response and the estimated

compliance distribution and its PSD through fitting the power spectrum of the scattered wavefield.
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Figure 1 (a) Simulated heterogeneous normal compliance distribution (red line). Black and blue dotted
lines are estimated from the inverse scattering using wdSDD and the first-order perturbation theory,
respectively. (b) Orientation of the considered fracture plane. (c) Corresponding Gaussian PSD.

Method

(a) Wavenumber-domain seismic displacement-discontinuity method (wdSDD)

The linear-slip model of a fracture is expressed as [u](x,y) = Z(x,y)τττ(x,y), where [u] and τττ are the

displacement-discontinuity vector and the stress traction vector on the fracture plane, respectively. Here

we consider the fracture to be in the z−plane in Cartesian coordinates (Figure1b). The diagonal compli-

ance matrix Z is defined as Z(x,y) = diag(ηT (x,y),ηT (x,y),ηN(x,y)), where ηT and ηN are tangential

and normal compliances, respectively. We assume these compliances as functions of space (x,y) along

the fracture plane. Nakagawa et al. (2004) derived the plane-wave response of the heterogeneous com-
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 pliance distribution in the f − k domain. We assume a downgoing incident wave in the upper medium

and no upgoing wave in the lower medium (Figure1b). Consequently, we can construct the transmis-

sion/reflection problem. Solving the problem for the stress field yields the following relation at the

fracture surface:

Ĥ(τ̂ττ+− τ̂ττ inc) = iωẐ∗ τ̂ττ+, (1)

where the superscript ˆ indicates that the parameters are in the f − k domain. τ̂ττ inc and τ̂ττ+ are the inci-

dent stress vector and the downgoing stress vector in the lower medium, respectively. Ĥ is made of the

composition matrix: Ĥ = L+
1 (L

+
2 )

−1 −L−
1 (L

−
2 )

−1, where we assume the same medium parameter for

the upper and the lower medium. L±
1 and L±

2 are derived by eigenvalue decomposition of the first-order

differential operator of the wave equation (Wapenaar and Berkhout, 1989). Equation 1 includes convo-

lution "∗" of the Fourier-transformed compliance matrix Ẑ. With the known incident stress field (τ̂ττ inc)

and the compliance matrix, we can estimate the downgoing stress field (τ̂ττ+) by using the wavenumber-

discretized form of equation 1 (Nakagawa et al., 2004). Having estimated the stress field, we can then

interchange the particle velocity vector (v̂), the stress vector (τ̂ττ) and the upgoing/downgoing potential

vector (D̂±) by using the composition matrices. Note that the variables are evaluated on the fracture

plane. Therefore, we can calculate the reflection response (upgoing wavefied) at a desired position by

applying a phase-shift operator in order to propagate the potential wavefield: D̂−
obs = Ŵ−D̂−, where D̂−

obs
is the observed reflection response and Ŵ− is the phase-shift operator including the propagation velocity

of the medium and the distance of propagation (Δz) from the fracture plane (Wapenaar and Berkhout,

1989).

(b) Application of perturbation theory

We have derived the perturbed solution of equation 1 by assuming the form Z(x,y) = Z0 + εZ1(x,y),
where Z0 is a constant background compliance matrix, Z1(x,y) is the perturbation from the background

value. Z1(x,y) is scaled such that it has the same order as Z0. ε is the magnitude of perturbation. By

expanding the wavefield into a power-series of ε , we obtain the transmission/reflection response for

various orders of ε . When we solve them in terms of the upgoing stress field in the upper medium

(reflected wave), the zero-th order gives the response for constant compliance, while the n-th order

(n > 0) yields:

τ̂ττ−(n) =
(
Ĥ− iωZ0

)−1 Ŝ(n), (2)

where Ẑ1 is the Fourier-transformed perturbed compliance matrix. The source term Ŝ(n) is constructed

from the Ẑ1 and the stress field of the one-lower order as Ŝ(n) = iωẐ1∗ τ̂ττ(n−1). One can calculate the total

response as, e.g. τ̂ττ− = τ̂ττ−(0) + ετ̂ττ−(1) + ε2τ̂ττ−(2) · · ·. In order to construct finally the observed wavefield,

the calculated wavefields are phase-shifted, as discussed above.

(c) Inverse scattering solution to estimate the compliance distribution

Following Leiderman et al. (2007), we estimate the compliance distribution from seismic scattering

response. Given the incident stress field τ̂ττ inc, elastic medium parameters and the background compliance

Z0, we calculate the perturbed compliance distribution εZ1 from the upgoing stress field at the fracture

τ̂ττ−. Note that obtaining the stress field at the fracture requires a knowledge of the fracture position. The

forward problem (equation 1 or 2) can be reformulated as follows: Â(kx) = iωεẐ1(kx)∗ B̂(kx), where all

parameters, for the time being, are assumed to be 1-dimensional (kx domain). Through inverse Fourier

transformation, we calculate each component of εZ1(x) as:

εη1
T (x) =

A(x) · ex

iωB(x) · ex
,εη1

T (x) =
A(x) · ey

iωB(x) · ey
,εη1

N(x) =
A(x) · ez

iωB(x) · ez
, (3)

where εη1
T (x) and εη1

N(x) are, respectively, perturbed tangential and normal compliance distributions,

and ex, ey and ez are the unit vectors in x, y and z directions, respectively. Here we utilize the fact that

Z1(x) is a diagonal matrix. The functions Â and B̂ are defined according to the chosen forward approach,

i.e., wdSDD method (equation 1) or the first-order perturbation theory (equation 2 with n = 1).
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 (d) Fitting the power spectrum

When the compliance distribution is a random in space, it can be characterized by the power spectral

density (PSD). In the special case of plane wave incidence with wavenumber kinc, i.e., τ̂ττ inc = τ̂ττcδ (k−
kinc), we obtain a simple equation for the first-order solution using equation 2. Furthermore, calculating

the PSD of the upgoing stress field of the first-order solution using the explicit form of Ĥ given by

Nakagawa et al. (2004) yields the following linear function of PSD for the perturbed normal compliance

distribution:

lim
X→∞

E <
|ετ̂ττ−(1)|2

X
>= lim

X→∞
E <

ε2(τ̂ττ−(1))†τ̂ττ−(1)

X
>= f (k;ω,kinc,VS,VP,ρ , τ̂ττc,ν)PN(k), (4)

where E < · > is an ensemble averaging, † denotes Hermitian conjugation, X is total length of the

compliance distribution, PN(k) is the PSD of the perturbed normal compliance distribution (εη1
N) and

the function f (k) is defined by the medium parameters (VP,VS,ρ), incident stress, frequency, incident

wavenumber and the compliance ratio ν (assuming the simple relation between the compliances as

ηT = νηN). The PSD of the total upgoing stress field at the fracture up to the first-order (limX→∞ E <
|τ̂ττ−(0)+ετ̂ττ−(1)|2/X >) shows that the non-specular component is a function of PN(k) due to the presence

of τ̂ττ−(0). Therefore, one can estimate the PSD of the perturbed compliance distribution from the non-

specular components of the PSD of total upgoing stress field using the first-order perturbation theory.

Numerical examples

We illustrate the 1-D application of this new method using numerical examples. The heterogeneous com-

pliance distribution is modeled using a given background compliance (Z0 or η0
T and η0

N) and the PSD

for the perturbed compliance distribution (εZ1 or εη1
T and εη1

N), assuming a stationary random process.

We use the Gaussian PSD of the form PN(kx) = ε2
√

πlce−k2
x l2

c /4 (Figure1c) with the corresponding au-

tocorrelation function γN(x) = ε2e−x2/lc , where ε and lc are the standard deviation (deviation from the

background value) and the correlation length, respectively. We then create the model (red line in Fig-

ure1a) using the method in the Fourier domain (Pardo-Iguzquiza and Chica-Olmo, 1993) with lc = 4cm
and ε = 10% from the mean (η0

N = 1× 10−14m/Pa). Next, we calculate the reflection response using

wdSDD approach (equation 1) and compare the result with that using the perturbation theory (equation

2). The wavenumber domain is discretized by 601 wavenumbers in the range [−942,942]. We assume

VP = 6.3km/s,VS = 3.4km/s, f = 600kHz(lab f requency),ν = 1 and calculate the scattered response 1m

above the fracture plane. Figure 2(a) shows the modeled reflection response (P to P reflection) at dif-

ferent wavenumbers for normal incidence (kinc
x = 0). Note the non-zero amplitude for the non-specular

component, indicating scattering due to perturbation of the compliance distribution. Figure 2(b) shows

the amplitude in f − x domain obtained by inverse Fourier transformation of the result in Figure 2(a)

followed by substitution of x = 0. From Figures 2(a) and 2(b), it is clear that after third-order, the per-

turbation solution leads very close to the wdSDD solution. We estimate the compliance distribution

solving inverse scattering problem (equation 3), with the assumption that we can successfully estimate

the stress field at the fracture from the backscattered data. For this purpose, we need the observed vector

wavefield, medium parameters and the position of the fracture plane known. For our numerical test,

we consider data from wdSDD approach to be representing the observed data. The results of the esti-

mated compliance distribution from the exact relation (wdSDD equation) and that from the first-order

perturbation theory are compared in Figure 1(a). The result using the exact relation (black dotted line in

Figure 1a) obviously better estimates the compliance distribution than the first-order perturbation theory

(blue dotted line in Figure 1a). Because of the absence of higher order of scattered wave, the first-order

perturbation theory estimates lower magnitude of the variation . We use the equation 4 to estimate the

PSD of the perturbed compliance distribution. We fit the curve of the normalized power of the stress

field (d(kx) = |τ̂ττ−|2/X , Figure 2c) by minimizing the misfit function as E(ε , lc) =∑kx |d(kx)−dest(kx)|2,

where dest is calculated from equation 4 with varying ε and lc, and the summation is taken along the

non-specular wavenumber component. We used a grid-search algorithm to estimate the best fit curve.
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 Figure 2(c) and 2(d) show the fitted Gaussian PSD and the value of the energy function. The appropriate

values of ε and lc are obtained from this fitting (lc = 0.039±0.001 and ε = 0.095±0.005).

Conclusions

We have presented a new methodology to model the scattered wavefield due to a heterogeneous distri-

bution of compliance along a single fracture and then to invert this compliance distribution or its PSD

from the scattered seismic response. We illustrate the validity through numerical examples using Gaus-

sian PSD. First, we show that the perturbation theory offers very close result to that obtained from exact

relation (wdSDD approach), by considering only the first 3 orders of perturbation. By solving the in-

verse scattering problem we can estimate the heterogeneous compliance distribution quite accurately.

Next, in order to estimate the PSD of the heterogeneous compliance distribution, the normalized power

of the stress field is used. We use the result from the wdSDD approach to represent the observed data.

We show the possibility of successful extraction of the correct PSD by curve-fitting. The techniques

presented here can lead to a conceptually new and accurate approach for estimating heterogeneous com-

pliance distribution and the corresponding spatial variation in roughness and aperture along the fracture

plane. This may, in turn, be related to the crucial fluid flow properties in the fractured subsurface.
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Figure 2 (a) PP seismic scattering amplitude from the wdSDD approach and the perturbation theory.
(b) Amplitude in the space domain for different order of the perturbation theory. (c) Representative
observed data (normalized upgoing stress field) and the fitted curve. (d) Energy function from the grid-
search algorithm.
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