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Abstract

The rediscovered interest in space exploration has led to plans to establish outposts on the
Moon and beyond. The lunar bases currently planned are to be manned incrementally,
with robots performing most work. With new trends in robotics, the use of collaborating
swarms has become more abundant. To support lunar operation, a distinct area within
swarming, namely foraging, is proposed. Foraging systems have the primary objective of
recovering resources. From literature, no foraging framework was found that included system
maintenance in its mechanisms. This report aims to answer the question if this is possible
while maintaining the benefits of foraging.

The research considers the fundamental act of recharging as its required maintenance task.
To evaluate it dynamically, a rudimentary energetics model is included. For the framework
of foraging, the work of [1] is used as a baseline. The newly proposed system implements
an additional recharging region and role to perform recharging activities, both having major
implications for role selection and agent operation. Furthermore, to enable navigation based
on energy considerations, the experience communicated by mobile agents is amended to in-
clude the energy cost of a travelled path. In doing so, additional quality indicators of paths
are available making path optimization a more dynamic process resulting in finer population
behaviour. Finally, the decaying of beacons is updated and a fallback feature is introduced
to maximize agent utilization.

The newly developed foraging system is evaluated using data collected through simulation in
Webots. Simulation scenarios included obstacles with impenetrable boundaries and surfaces
with increased rolling friction to emulate cost-expensive regions. Qualitative analysis identi-
fied all features of the foraging system as expected, both in the exploration and exploitation
phase. Quantitative results proved that the system is able to function with the added require-
ments of recharging, perform path optimization with the additional path quality indicator,
and can do so in various types of scenarios. With this, the research statement that foraging
functionality is achievable with the practical considerations of robotics is confirmed to hold.
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Chapter 1

Motivation of Research-field

The previous decade saw eleven missions attempting to touch down on the Moon1. The past
four years alone saw nearly as many missions, with this increased rate expected to continue
in the coming years. This growth in mission count is a result of a rediscovered motivation
to venture into space and establish outposts in the process. Given the Moon’s proximity
and potential for science, its surface is a certain destination for endeavours. But what will
these undertakings look like? Can old mission architectures be employed to support future
missions?

1-1 Emerging Trends in Lunar Missions

This past year alone, five individual missions were launched to the Moon. Each attempt
had mixed levels of success touching down on the lunar surface. While missions of the likes
of Indian Space Research Organisation (ISRO)’s Chandrayaan-3 [20], China National Space
Administration (CNSA) Chang’e-5 [49], and Intuitive Machines’ IM-12 managed to reach
the surface of the Moon and perform some if not all of their objectives, other missions like
Roscosmos’ LUNA25 [34] or Astrobotic’s Peregrine mission [43] failed to either land safely or
reach the Moon’s vicinity at all. This illustrates how even 55 years after the first man set
foot on the Moon, these endeavours are difficult to execute.

An interesting aspect of several recent missions is the shift in mission architecture. Where the
likes of Chang’e-5 and IM-1 employed static vehicles, the missions of Chandrayaan-3, Chang’e-
4 [23], and Japan Aerospace Exploration Agency (JAXA)’s Smart Lander for Investigating
Moon (SLIM) [3] all employed one or multiple mobile rovers to explore the lunar surface.
Chandrayaan-3’s Pragyan rover managed to demonstrate roaming capabilities, and Chang’e-
4’s YUTU-2 (Figure 1-1) went beyond, taking measurements to this day [30]. But perhaps
SLIM demonstrated the added robustness of mobile agents the most. Having landed at a

1https://science.nasa.gov/moon/missions/
2https://www.intuitivemachines.com/im-1
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2 Motivation of Research-field

slanted angle, the lander’s functionality is limited by its decreased solar power. The two
lunar excursion vehicles LEV-1 and LEV-2 on the other hand have been able to complete
their primary tasks without being impacted by the lander’s fate. This robustness achieved
by having multiple vehicles is starting to gain traction in application.

Figure 1-1: CNSA’s YUTU-2 rover 3.

The trend of multiple vehicles being employed for excursions is in line with the proposed plans
of agencies wanting to establish outposts on the Moon. To support plans such as its Gateway
mission [4], National Aeronautics and Space Administration (NASA) conducted conceptual
research into what it takes to uphold a lunar outpost. Both Robotic Lunar Surface Operations
(RLSO) studies[44][7] concluded that the use of multiple collaborating robots is vital for
sustainability. Future missions such as NASA’s Cooperative Autonomous Distributed Robotic
Exploration (CADRE)4 already aim to demonstrate multi-agent functionality. With other
agencies including CNSA, ISRO, JAXA, and European Space Agency (ESA)[27] showing
interest in such outposts, the emergence of contributing technology is likely in the coming
years.

Another development of the 21st century is the involvement of privatized actors in space
operations. With the widened availability of space technology, companies of the likes of
SpaceX, Blue Origin, Dawn Aerospace, AstroForge, and iSpace have expressed desires to
contribute to launches and In-Situ Resource Utilization (ISRU). Such widespread interest is
likely to boost the rate of progression given the concurrent nature of the commercial world.

1-2 Robotic Exploration

The role of robotics in planetary exploration and outpost upkeep cannot be underestimated.
With the RLSO study identifying the need for such mechanisms as early as 1989, the impact
of technology maturity on future missions is significant.

3https://spaceflightnow.com/2020/01/06/china-publishes-change-4-data-one-year-after-first-
landing-on-far-side-of-the-moon/

4https://www.jpl.nasa.gov/missions/cadre
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1-3 Summary 3

Figure 1-2: NASA’s CADRE mission with rovers demonstrating multi-robot exploration 5.

The use of robotics depends on several factors. Mobility and tooling of similar vehicles have
been and are being demonstrated with lunar excursions. A field not extensively touched
upon is the intelligence of these vehicles. Equipping robots with extensive autonomy and
collaboration removes the necessity of humans acting as an intermediary and often leads to
optimized results. Achieving this will truly reshape lunar mission architecture.

The necessity of robotic application is underlined by both RLSO studies, and those in [18]
and [46]. As Section 2-1 will touch upon, the resources readily available on the Moon are
limited. Supporting human presence is a costly process, and highly inefficient during the early
stages of an outpost. Having robots use the limited resources to construct a base of operation
accelerates the process.

Developing highly intelligent robotic systems is key to enabling sustained lunar operations.
With current missions in the early phases of implementing such mechanisms, the maturity of
this field is considered limited. This hurdle needs to be addressed before future endeavours
of the likes proposed by agencies can be attempted.

1-3 Summary

All in all, trends observed in most recent lunar missions point towards a shift in mission ar-
chitecture towards the use of multiple mobile rovers. With current and past missions demon-
strating capabilities and upcoming missions addressing the notion of multi-agent systems, the
development of robotics on the Moon is solidified.

This trend is deemed a necessity given the plans of both agencies and private entities. To
ensure operations while not requiring extensive amounts of resources or oversight, robotic
intelligence is required. With current missions failing to implement such mechanisms, this
topic is identified to be a critical field of research.

5https://www.jpl.nasa.gov/videos/nasas-cadre-mini-rovers-to-explore-the-moon-as-a-team
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Chapter 2

Background

To achieve a well-rounded and robust intelligent robotic system, the challenges faced on the
lunar surface and possible approaches to implementing autonomy must be understood. With
that in mind, multiple literature resources are compiled in this section to provide the reader
with ample knowledge on the topics at hand. An extended summary of sources can be found
in the complete literature survey [6].

This section starts with Section 2-1 characterizing the lunar environment, surface, and re-
sources it holds, of interest for In-Situ Resource Utilization (ISRU). To manoeuvre the chal-
lenges this climate presents, the concept of swarming and its use of multiple collaborating
agents is introduced in Section 2-2. Section 2-3 dives into foraging, a distinct area within
swarming, along with its benefits, sources of inspiration from nature, and the mechanism of
stigmergy.

2-1 Lunar Environment

The Moon has a climate unlike that of Earth. To know what challenges any lunar rover is
designed for, understanding the distinct features and mechanisms within this environment is
crucial. This section outlines the most important characteristics.

The surface of the Moon consists of highly local and static terrain, with little mixing between
regions due to the lack of natural activity [13]. The first of two distinct regions found on
the Moon is the lunar highlands, marked with reddish hues in Figure 2-1. These regions are
characterized by their light colour due to high calcium levels and can be further split into
high-(>6[W%]) and low-Ti(<6[W%]) basalts for their titanium content. The second region is
the lunar mares, darker in colour and predominantly consisting of ancient basaltic lava flows.
With no atmosphere or significant core activity, the regions remain mostly separated. The
little mixing that does occur is attributed to particle migration caused by electrostatic and
thermal interactions, and to meteoroid-impacts dispersing surface and deep material.

Master of Science Thesis Z. T. Angyal



6 Background

Figure 2-1: Distribution of regolith compositions on the lunar nearside (left) and the farside
(right) based on Clementine multi-spectral imaging data. Blue: anorthositic highlands; yellow:
low-Ti basalts; red: high-Ti basalts. The large yellow/greenish area in the southern hemisphere
of the farside is the South Pole-Aitken Basin, where the colours mostly reflect the more Fe-rich
nature of the lower crust exposed by the basin rather than basaltic material [13].

Unlike its static regions, the lunar climate poses dynamic challenges. With lunar days and
nights lasting 15 [earth − days], extended periods of varying solar circumstances are experi-
enced. Temperatures can vary between 29-390 [K] [16] depending on latitude and solar cycle.
Furthermore, the lack of a protective atmosphere results in increased levels of radiation being
present, originating from the Sun and interstellar space [40][48]. This also causes secondary
reactions, with radiation interacting with surface material forming secondary particles. Al-
though it is widely understood that radiation is a predominant factor on the Moon, few
measurements have been taken in situ to characterize it.

The surface of the Moon is made up of several layers. The surface is covered by rocks and
fine-grained particles referred to as regolith [5]. The depth of this layer can vary between a
couple of centimetres up to meters. The composition of regolith as mentioned previously is
highly local, with meteoroid strikes, migrating particles, and radiation all affecting the present
materials. For lunar rovers, regolith poses a challenge given its highly abrasive features as
well as their potential to adhere electrostatically to surfaces, reducing solar array efficiencies
[11][18].

A prevalent surface feature of the Moon is craters caused by meteoroid strikes. These craters
are important as they not only expose the inner crust of the Moon, but also provide shielded
environments that retain elements of interest. Craters can form Permanently Shadowed Re-
gions PSR that never receive sunlight, causing their temperatures to be as low as 29[K]
[5][11]. These shielded environments allow particles to collect and be trapped, with high
scientific value [45].

Z. T. Angyal Master of Science Thesis



2-2 Swarm Robotics 7

2-1-1 Lunar Resources

The Moons composition holds a variety of resources. These have scientific importance, but
also potentially use for permanent outposts through ISRU.

Water and ice are considered the most important elements for both science and ISRU. While
water may be indicative of extraterrestrial lifeforms, it can also be used to make rocket fuel
for launches of the Moon [7][18]. Along with oxygen, it can also be used to sustain human
presence. Measurements of the Lunar Reconnaissance Orbiter (LRO) mission [45] indicate
ice deposits in craters such as the Shackleton and within regolith, rising in abundance with
increasing latitudes.

Other resources of interest in order of significance are solar wind implanted volatiles (the most
common being H,3 He,4 He, C, N, F, Cl), metals, and silicon. Although scarce (see Table 2-1),
solar wind implanted volatiles provide pure elements that can be utilised for manufacturing
to create materials as needed. Additionally, Helium-3 holds the potential to fuel nuclear
reactions when combined with deuterium, potentially useful for energy production. Metals
and silicon found on the Moon can be used for manufacturing structures and electronics. By
applying ISRU, the material having to be flown in to establish a lunar outpost is considerably
decreased, motivating resource collection.

Table 2-1: Average concentrations of solar wind implanted volatiles and average mass in lunar
regolith (assuming a bulk density of 1660 [kgm−3]) [13].

Volatile Concentration Average mass
per m3 of regolith

[µg/g] [g]
H 46±16 76
3He 0.0042 ± 0.0034 0.007
4He 14 ± 11.3 23
C 124 ± 45 206
N 81 ± 37 135
F 70 ± 47 116
Cl 30 ± 20 50

2-2 Swarm Robotics

Chapter 1 highlighted the occurring trend of using mobile rovers for lunar exploration. Al-
though the use of a mobile rover significantly expands the potential of lunar endeavours, it
introduces limitations and single points of failure. The use of several rovers further boosts
capabilities of missions, while also implementing distributed responsibilities and robustness.

Swarm robotics introduces the concept of multiple autonomous individuals collaborating to
solve a global objective. By working together, actors can distribute tasks, problem-solve
concurrently, and perhaps most importantly do so without being affected by malfunctions of
others [47]. By breaking down complex problems into particular tasks a simple robot can

Master of Science Thesis Z. T. Angyal



8 Background

solve, the performance requirements of an individual are lowered. By designing the operation
of an actor with collaboration in mind, Swarm Intelligence (SI) [25] is achieved. SI allows the
compound behaviour of a population to solve difficult tasks even with simple individuals. An
important distinction to be made is the difference between swarming and multi-agent systems.
Swarming operates in a decentralized manner, where agents only have access to information
shared rather than to all collected.

Using a swarm of individuals has several benefits. The three leading advantages include flex-
ibility, robustness, and self-organization [10]. Flexibility comes from the fact that multiple
agents can approach a problem concurrently, leading to solutions and more importantly op-
timal ones being found. This multiplicity also leads to robustness, where the failure of an
individual does result in the downfall of the population. Finally, as members collaborate in
a population based on the challenges of the scenario, they construct a custom framework for
functioning. This self-organization allows a system to adapt to its surroundings and achieve
its objective in an optimal manner and with full autonomy. Further advantages include scal-
ability with the system being able to operate irrespective of population size. This allows
the reach and scope of the system to be tailored without the need for redesign. Low-cost
is achieved as simpler agents can be used enabling mass-production, with energy-efficiency
a coupled result given that agents can be smaller in size and are only required to maintain
simple operations.

Swarming systems also have drawbacks. Without global knowledge, agents may tend to
local optima rather than global, hereby achieving sub-optimal results. Furthermore, without
absolute information-sharing, agents may rediscover areas others have already visited. The
simplicity of agents can only be applied with tasks that can be broken down into smaller
simpler tasks. Without the possibility of this and tasks requiring highly specific operations,
the use of similar individuals within a population becomes less possible hereby diminishing
some advantages of a swarmed approach.

2-2-1 Swarm Taxonomy

The use of swarms of individual robots is motivated by its significant benefits. These al-
low systems to solve specific tasks while adapting to their environment. However, swarm
intelligence is only achieved when the system design supports the combination of individuals’
behaviour.

Swarming systems, unlike their members, require extensive definitions. Defining the require-
ments of an individual’s behaviour is key to ensuring their combination adds up to desired
global mechanisms. In defining such systems, several aspects need to be defined[9][29]. Un-
derstanding a system’s environment is key to defining how the population and individuals
approach problems and the nature of its objective. The collaboration and strategy as ap-
plied within the group is decisive for the flow of information and approach to a solution.
Appendix A presents the taxonomy used to define swarms throughout this report.

A key factor for swarming is the size of the population. Although swarms are scalable,
their size is indicative of convergence to solutions but also operational requirements. The
structure of collaboration may dictate the utilization of individuals for supporting tasks, to
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which swarm size is imperative. The definition of environment and objectives affect the
information shared within the population, which in turn dictates the possible approaches to
collaboration. Furthermore, factors such as the connections of an individual, clustering, and
population policy all affect how the swarm moves through the search space [26].

2-3 Notion of Foraging

The goal of applying a swarm of robots on the Moon is to implement their robustness and
flexibility. These characteristics are especially useful when venturing into the harsh lunar
environment to retrieve resources. In nature, many species rely on similar collaboration
methods to achieve tasks beyond the capabilities of an individual. These mechanisms can be
mimicked to achieve similar performance.

Foraging is a distinct area within swarming [42]. Heavily inspired by examples of animals
collecting food as Section 2-3-1 will present, the primary objective is the manipulation of a
resource, be it retrieval, utilization, or destruction. By collaborating in a swarm, a group
of individuals can reliably and efficiently achieve its resource-oriented goal. This concept is
especially useful in unknown environments containing a specific target. With this in mind,
the applicability of foraging expands beyond physical domains.

The act of foraging is generally classified into two phases, namely

1. Exploration: exploring the environment to locate a certain target region

2. Exploitation: found targets are manipulated while constructing optimality through the
shared experience of the population

In the exploration phase, the objective of the swarm is to locate the sought-after target.
Members of the population engage in search algorithms where they collect information on
their environment and share it with others. By collaborating, individuals can perform more
directed searches. This phase may also include the establishment of a communication layer to
aid the availability of collected information. The exploration phase ends once the sought-after
region is located, or a good enough result is attained.

The exploitation phase is initiated once the system is done exploring. Agents start to perform
their primary objective of resource manipulation. In the process, they continue sharing their
findings with others: positive-outcome solutions are reinforced while unsuccessful decisions
are discouraged. In doing so, the population "learns" to solve the problem in a more optimal
manner.

2-3-1 Inspiration from Nature

The desired tendencies of foraging swarms can be achieved by a variety of architectures.
Depending on the taxonomy of swarming, some solutions may be more appropriate than
others. To inspire possible mechanisms, three foraging species as observed in nature are
presented.
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Birds and Fish

Bird-flocks and schools of fish were one of the earliest inspirations used to mimic foraging.
In nature, members of these groupings move in close proximity of one another in a directed
motion without colliding [15][24][39]. Each individual animal aims to find food for itself, while
maintaining the safety of a larger group. Taking both personal desires and input from others
into account, a more informed decision-making is achieved.

Take a flock of birds as an example. While flying between feeding, every bird looks for likely
sources of food in the fields below them. In doing so, they build personal experience on which
area has the highest potential. Searching the surroundings of this region makes sense, as
perhaps its neighbouring field has an even better return. Other birds do the same, compiling
personal information. Once the bird finds a good enough field, it feeds. Were the birds not
to take communicate, they would only have information on fields they themselves visited. By
sharing information, they can consider fields others are very interested in to search.

This knowledge sharing is exemplified in Equation (2-1). The bird chooses heading vector
vij between feeding based on three aspects. The first term indicates the bird’s willingness
to not make tiring turns, with ω representing an inertial resistance to change. The next
element implements the bird considering its personal experience of best location pij , with the
position-offset pij(k)−xij(k) steering towards it. Finally, gij describes the best location found
by others in the flock. Including this position in decision-making allows the bird fly to fields
outside its own discovered area containing even better potential. By combining both personal
and shared experiences, a more informed decision can be made, increasing the likelihood of
finding great feeding grounds.

vij(k + 1) = ωvij(k) + C1(pij(k) − xij(k)) + C2(gij(k) − xij(k)) (2-1)

Ants

Ants are a classic example of foraging, as they depict a clear form of collaboration. Although
an ant is small in size and capability, by working together ant colonies can cross kilometres
to retrieve food or materials. This makes ant species a rich source of inspiration.

Ants start in a static and established nest [35]. From here, they explore their unknown
environment in search of food. When an individual is successful in doing so, it returns with
what it can carry. In the process, it simultaneously deposits pheromones on the floor, marking
its path taken [14][17][22]. Other agents are attracted to this pheromone and now can follow it
to the resource. With these new ants also successfully reaching the target, they reinforce the
path in strength by depositing pheromones on their return. This method of leaving indicators
in one’s environment is an intricate mechanism further explained in Section 2-3-2. In their
approach, ants develop and optimize distinct paths between regions.

Ant-like foraging is considered highly robust to changing environments, with guidance infor-
mation locally available at every step. Changes in paths are therefore immediately commu-
nicated. In the event of a branch falling on the path, ants can find a path around it, with
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the new pheromone markers leading others around it. However, the functionality of these
pheromones relies on complex mechanisms as they need to implement recruitment of others
and time-based dynamics of fading. For further explanation, see Section 2-3-2.

Honeybees

Honeybees in nature can cross several kilometres to reach their target while operating entirely
on their own. Being highly efficient in their journey is key given the size of a single bee.
To achieve optimality, honeybees rely heavily on mechanisms such as Path Integration (PI)
[8][36].

Honeybees, similar to ants, also start at a static hive location. From here, they explore
their surroundings for resource-rich areas. While traveling outbound, bees keep track of their
heading and distance. Once at a target, they combine these segments to compute a direct
path back to the hive. Once at the hive, they communicate this heading to others using
body language, providing instructions on direction and distance. As Figure 2-2 depicts, the
heading is conveyed using the Sun’s location and distance using the length of the movement.
Others now can follow this vector to efficiently reach the targeted patch of flowers without
unnecessary deviations.

Figure 2-2: Representation of direction-sharing through waggle runs [8].

The power of bee-like foraging stems from PI. Individuals can follow headings with high pre-
cision as well as measure distance. Furthermore, for longer journeys or ones with obstacles,
bees split the vector into shorter more precise segments. Segmented vectors utilise inter-
mediate landmarks to re-calibrate their heading [28][12]. The downside of bee-like foraging
however is the requirement of precise positioning and that path-information is only available
at the hive. Any updates in path therefore take time to reach others, making the system less
change-tolerant.

2-3-2 Stigmergy

Having access to information in decentralized systems is an intricate process. Having up-to-
date guidance on paths is crucial for both the execution and optimization of processes. A
reliable and strong manner of doing so is similar to what ants do by laying pheromones: they
are encoding experience in their environment.
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Stigmergy is a mechanism achieving both indirect and mediated communication using one’s
environment [21]. By leaving indicators of success of an action, subsequent ones are triggered.
In simple terms, the success of an action is encoded in the environment to motivate others to
perform follow-up tasks. In the case of ants, this is implemented by ants leaving pheromones
for others to follow as illustrated inFigure 2-3. With the pheromone’s recruiting feature,
others are triggered to follow a specific path to the resource. Similarly, negative success is
also implemented, with depleted targets not leading to reinforcement of trails which in turn
fade. The intensity of pheromones is therefore an indication of success potential, with stronger
pheromone trails considered better.

Figure 2-3: Outline of the life of a foraging trail [35]. a) A worker randomly finds a resource in
its exploration phase. b) The worker retraces its path, laying a pheromone trail in the process c)
In the nest, other workers are recruited to follow the trail to the target d) As more workers use
the trail, more other workers are encouraged to follow the trail e) As the resource is depleted,
unsuccessful workers will not reinforce the trail f) The trail fades and new targets are looked for.

The first attribute of stigmergy is the possibility of conveying local knowledge indirectly,
without the need for both agents to be present within the communication range. This allows
for the second aspect of stigmergy, namely that local information is a compound result of
multiple inputs. Serving as a local memory of recent visits, the information stored can stem
from multiple individuals allowing for a more well-informed and optimized marker. As both
positive and negative knowledge is encoded in the indicator, the evolution of paths is also
enabled, implementing a factor of flexibility.

Mimicking Stigmergy

Each application of stigmergy as encountered in nature developed over the course of thousands
of years and fit for a single objective. Implementing these exact mechanisms in engineering
solutions is therefore not possible given the change in environment and tasks. However, by
repurposing their methodology, their utility can be reproduced.

Achieving effective stigmergy involves emulating multiple features. Markers should be im-
plantable in the environment to achieve local availability of past experience. Markers should
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also have a quality with dimension, conveying levels of success. This measure of poten-
tial should be dynamic to represent both positive and negative findings and allow paths to
fade. Furthermore, markers should be detectable to allow others to extract their information.
Achieving these mechanisms can be done in many ways, depending on the application and
coming at varying costs to the system.

The most rudimentary way of achieving local markers is by using the physical presence of
individuals as markers. [31] and [37] describe networks where individuals follow the outline of
interconnected branches of other members of the population. Depositing material indicators
such as alcohol [33] or other substances can also be used, resembling the laying of pheromones.
[41] proposes the use of more fundamental resources such as the heat trail left behind by an
individual traveling a path. Others propose the use of memory dumps laid in the environment
in the form of Radio Frequency Identification (RFID)-nodes [32], where the stored information
is updated by individuals passing by. While previous methods propose the use of finite
resources, [2][17][22] propose the use of members of the population as beacons in key locations.
Similar to RFID-nodes, a beacon’s information is updated by passers-by. However, beacon
agents can position themselves dynamically in key locations and can also rejoin the foraging
population when their path is deemed useless.

2-3-3 Selection of System Framework

Having presented the possibility of using swarming systems more specifically its foraging
subset, for lunar exploration and exploitation, it is deemed a viable option to explore. With
its advantages of robustness, flexibility, and self-organizing, it holds valuable potential. To
narrow down the aspects of a possible system a certain framework is selected.

Taking inspiration from foraging in nature, the main notions of the three animal-like foraging
can be weighed. Given the goal of supporting a static lunar outpost as described in Chap-
ter 1, a static base of operation is assumed. Both honeybee- and ant-like systems implement
such a region, whereas bird- and fish-like concepts do not. Furthermore, both former sys-
tems implement levels of information legacy. While bee-like systems do so only at the hive,
ant-like setups do so in the field as well. Furthermore, honeybees rely heavily on precise
monitoring of their location for PI-purposes, adding a straining requirement for operation.
Ant-like foraging, although with its benefits, requires precise stigmergy replication with pos-
sibly resource-costly mechanisms. With the latter deemed possible through intricate system
design, ant-like foraging will be considered from here on out.

The approach to replicating stigmergy can vary from simplistic approaches to more intricate
ones, each with its difficulties and costs. To select a method considered, Table 2-2 presents
a trade-off between previously mentioned types of solutions. Each method is evaluated for
five aspects. First, the cost of the implementation in terms of population utility is consid-
ered. Systems reducing the number of foraging members are considered undesired. Next, the
sustainability of the method is expressed, where methods using finite resources are deemed
short-term. Tunable dynamics of markers are considered beneficial, as these affect the col-
laboration achieved within the swarm. The detectability of markers is an important aspect
to ease the availability of information. Finally, the robustness of markers is considered, given
that loss of path-marking can have major implications for population integrity.
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The five concepts considered to reproduce foraging are as follows. Member-link systems
consider the use of members of the population as markers similar to that in [31]. Material
approach refers to a marker material being deposited on the path. The physical method
proposes the use of natural markers such as vehicle heat or walking trails left behind. Passive
beacons refer to memory storages deposited by individuals where the device is immobile. Fi-
nally, active beacons refer to beacons acting as a communication platform with the possibility
of disengaging this role when deemed futile.

Table 2-2: Trade-off of approaches to stigmergy reproduction.

Population
cost

Sustainability Marker
dynamics

Detectability Robustness

Member-link - - ++ - ++ +
Material ++ - - - .
Physical ++ ++ - - + -
Passive beacon ++ - ++ + -
Active beacon - ++ ++ + +

From Table 2-2, the approach of using active beacons is selected primarily for its sustainability
and tunable marker-dynamics. Although being individual-costly, individuals can rejoin the
population in an active role, restoring swarm size. Although member-links perform well in
sustainability for similar reasons and outperform all others in terms of detectability, the sheer
cost to population size disqualifies it. Materialistic markers fare poorly in sustainability as
the material used is finite, meaning it will run out unless sourced locally. Physical markers are
disqualified for the reason their dynamics cannot be tuned to fit the application. Although
passive beacons perform similarly to active beacons, their inability to self-maintain worsens
their robustness.

With this, a foraging system implementing active beaconing is selected for consideration. In
this foraging system, robots venture out into the environment in search of their target. At
key points, individuals assume a beacon role supporting the guidance of other foragers. The
internal logic of beacons can dictate marker-dynamics. Finally, individuals can return to the
foraging population once deemed unnecessary to uphold the path.

2-4 Summary

This chapter introduced both the environment faced when considering lunar exploration as
well as the concept of swarmed foraging to approach the problem of lunar exploitation. Having
been presented with possible implementations of foraging in application, an ant-like setup was
selected.

Section 2-1 discussed the environment as encountered on the Moon. The lunar surface consists
of highly localized and changing regions, where conditions can differ drastically. The surface
is characterized by layers, with the top regolith consisting of loose rocks and sand. Robots
need to be able to handle challenges posed by the abrasive surface, changing and extreme
temperatures, and radiation climate. Resources of interest primarily include ice and oxygen,
likely to be found in Permanently Shadowed Region (PSR)s.

Z. T. Angyal Master of Science Thesis



2-4 Summary 15

A viable option for supporting lunar outposts is the use of swarms of robots. By distributing
tasks within the population, these systems implement advantages in the form of robustness,
flexibility, and self-organization, among others. Given the resource-oriented necessities of
maintaining a lunar base, foraging is proposed for its resource-oriented approach.

To select the type of foraging used, three types inspired by nature were weighed. Of these
three, an ant-like approach was used with the benefits of stigmergy. To do so, weighing
multiple options, an approach using members of the population as landmarks was selected for
its sustainability and marker dynamics. Throughout this report, a system of this type will
be considered.
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Chapter 3

Problem Statement

Throughout the process of familiarizing with lunar missions and foraging systems as a possible
solution to challenges, several critical shortcomings were found. While foraging does present
features highly beneficial for lunar exploitation, it lacks maturity in application.

Section 3-1 identifies that theoretical proposals until this point failed to implement mecha-
nisms to sustain robotic operations. Section 3-2 then raises the question if foraging is achiev-
able when combined with system maintenance tasks. To provide the research involved in
answering this question, Section 3-3 provides basic definitions used throughout this report,
Section 3-4 formally defines the foraging problem, and Section 3-5 limits the scope with
predefined assumptions. Finally, Section 3-6 introduces the structure used.

3-1 Problem Formulation

A fundamental element of robotic systems in application is that operation costs energy. Activ-
ities such as the actuation of wheels, performing measurements, processing data for decision-
making, and as simple as communicating with others all use power. When considering mobile
agents, the amount of available onboard energy is limited to battery size. To enable sustained
operation beyond the capacity of a single battery, strategies are employed to maintain ample
energy levels at all times.

In volatile and harsh environments such as that of the Moon, maintaining charge levels be-
comes a challenge. With long-lasting dark periods and extremely low temperatures, energy
is a scarce resource. Replenishing energy levels may prove to be difficult given environmental
and time limitations. As a result, the lunar terrain underlines the need for power strategies
even further.

Throughout the preliminary literature survey, a handful of sources were found implementing
foraging in simulated environments. Although some voiced the importance of fundamental
system upkeep, none had specific mechanisms in place. Robots were either assumed to have
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access to infinite energy, travel without power expenditure, or be implemented on homoge-
neous and idealized environments. In doing so, while most proved the theoretical potential of
foraging strategies, all failed to provide a system fit for implementation. This is the unknown
this report aims to address.

3-2 Research Question

This research focuses on the applicability of foraging swarms with respect to fundamental
system requirements to maintain sustained operation. Specifically, this report focuses on the
energy needs of physical world systems. With energy being a core requirement for active
systems, its availability and harvesting are critical to any form of foraging.

With the previously discussed in mind, the following main research question is to be answered:

Can an applied energetic housekeeping strategy be developed for a beaconed ant-
inspired foraging algorithm with the intent of resource gathering on the lunar
surface?

As this is a compound question, it is broken down into several secondary questions:

• What global tendencies are required to enable system maintenance from an energetics
perspective?

• How should an individual’s operation logic be structured to include personal maintenance
operations while contributing to population objectives?

• How do optimality mechanisms within foraging affect population and individual opera-
tion with respect to energetics?

Answering these sub-questions will help determine if the problem of sustained foraging and
energetics as addressed by the research question is achievable and implementable. In doing
so, the applicability of foraging swarms in real-life usage can be proven and developed further.

3-3 Nomenclature

To provide the reader with a set of terms used throughout this report, consult the following
list of definitions:

• Energetics: a branch of mechanics that deals primarily with energy and its transforma-
tions1

• Agents: autonomous individuals partaking in a swarming system

• Beacon: an agent with an assumed beacon role fulfilling guidance network tasks

• Outbound: a motion with an objective to reaching the target region T

• Inbound: a motion with an objective to reaching the nest region N
1https://www.merriam-webster.com/dictionary/energetics
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• Origin: the region where an agent started its motion from

• Destination: the region the agent is attempting to reach

• Obstacle: a region within the environment with undesired characteristics or an impen-
etrable boundary

• Region of interest: a region within the search-space an agent may wish to visit

Furthermore, specific notations are used throughout this report.

• Sets are indicated with the calligraphic notation: A

• Scalars are indicated with regular letters: a ∈ R

• Foraging roles are indicated with a capital F and subscript defining the type: Fout

• Vectors are indicated with an overhead arrow: −→a

• The Euclidean norm of vectors is indicated as follows: ||−→a || is used

• The normalized form of a vector −→a is denoted as −→
â and is described as

−→
â := ⟨−→a ⟩ :=

−→a
||−→a ||

(3-1)

3-4 Formal Definition of the Foraging Problem

The basic foraging problem to be tackled is defined as the following:
Consider discrete time dynamics k ∈ N with sampling time τ ∈ R+ and system update time
T ∈ R+. An agent may self-trigger intermediate updates given its state. Equation (3-2)
describes the assumed discrete time progression.

t = k · τ (3-2)

Furthermore, a swarm consisting of N agents A = {1, 2, ..., N} is placed within a bounded
domain D ∈ R2.

Each agent a ∈ A has

• a role sa(k) ∈ [outbound, inbound, recharge, beacon]

• a position xa(k) ∈ D

• a heading θa(k) ∈ [−π, π}

• a velocity vector −→va(k) = v0 (cos θa(k), sin θa(k))T ∈ R2 with standard velocity v0

• a battery State-of-Charge (SOC) of SOCa(k) ∈ [0, .., 1]

• and resources onboard ra(k) ∈ [0, .., rmax.resource]

The dynamics of an agent with respect to movement are defined to be

xa(k + 1) = xa(k) + va(k)τ (3-3)

Within the domain D, four static sub-regions are defined, namely nest N , target T , recharging
region R, each with radius δN , δT , δR respectively. Region N has a resource-amount rN (k) ∈

Master of Science Thesis Z. T. Angyal



20 Problem Statement

[0, .., rresource,available] and T a resource-amount of rT (k) ∈ [0, .., rresource,available]. Region R
is defined as a region with constant solar irradiation IrrR,solar > ηsolar.

Furthermore, an additional region may be defined, namely that of an obstacle O. An obstacle
region is defined as a rectangle with width wO and length lO. An obstacle’s height is assumed
to be infinite for hard obstacles and infinitely small for soft obstacles. Soft obstacles have an
additional friction coefficient parameter ξO. For an example of the described domain D with
as described, consult Figure 3-1.

Figure 3-1: Example scenario with regions N , T , R and hard obstacle O on the R−T trajectory.

Finally, two additional sub-regions within domain D are defined. Each agent a is assumed to
be able to exchange information within its communication region Ca with radius δcomm. The
union of all regions Ca forms the guidance network region G :=

⋃
a∈A Ca within which mobile

agents can communicate with at least one beacon b.

For energetics considerations, additional dynamics are introduced. These correlations are
described in Section 5-1.

The objective of the swarm is to recover as many resource units from target T and return it
to nest N , whilst maintaining an agent SOC of SOCa(k) > 0 ∀a ∈ A. To do so, the agent
will have to explore the domain D in search for both T and R. As agents fulfilling the role of
a beacon are stationary and do not directly contribute to the retrieval of resources, the goal
statement of the foraging system as a whole is broadened to be:

Establish a (semi) optimal route along which retrieval of resources from T to N is possible,
whilst maintaining a (semi) optimal route to R from all positions encompassed by the guidance
network G.
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3-5 Problem Assumptions

This research is a study into foraging swarms in application. For this, as stated previously,
the system proposed in [1] is assumed as a baseline as presented in Chapter 4. The basic
notion and concepts are transferred and assumed to be known, even if not implemented.

Furthermore, fundamental assumptions are made on the system and environment considered.
This limits the scope of the study. The following is assumed to be known or to hold:

ASU.1 All agents have equal capabilities and dynamics, meaning a homogeneous system is
used

ASU.2 All agents have memory capable of storing both operational and navigational values
and parameters

ASU.3 All agents have computational power to perform scalar and vector (in R2) operations,
including summation and multiplication

ASU.4 All agents lack the computational power to precisely integrate path or determine
global location

ASU.5 All agents have communication capabilities for transferring a message consisting of
up to seven scalars, three vectors, and a string

ASU.6 All agents have communication capabilities for transferring messages in full without
error within a range of δcomm

ASU.7 All agents have omnidirectional communication capabilities

ASU.8 All agents lack the ability to determine signal strength or direction of communication
pathways

ASU.9 All agents have moving capabilities of holonomic type

ASU.10 All agents have a measure of global angular orientation

ASU.11 All agents have a measure of angular rotation of their wheels

ASU.12 All agents are equipped with a finite-capacity battery

ASU.13 All agent operations requiring energy are supplied from the onboard battery

ASU.14 All agents have solar panels and Battery Management System (BMS) capable of
recharging the onboard battery

ASU.15 All agents have a BMS capable of measuring battery SOC and power input from
solar panels

ASU.16 All agents have sensing abilities for nest N and target T regions

ASU.17 All agents have onboard resource storage compartments capable of retaining re-
sources while in operation

ASU.18 All agents have resource-handling abilities to load and unload the onboard resource
storage compartment
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3-6 Report Structure

This report presents the mechanisms and findings achieved while developing a foraging system
fit for applied resource retrieval and energy-level maintenance. This report consists of several
sections, each aimed at presenting specific elements of the system or results achieved by it.

This report started with Chapter 1, providing the incentive that triggered this research. Next,
Chapter 2 provided background information into the environment considered and foraging
concepts used throughout this report. Chapter 3 has now discussed the identified problem
of energetics in applied foraging systems, along with a formal definition and assumptions
bounding the scope of research. Subsequently, Chapter 4 introduces concepts and a baseline
system upon which the newly developed system relies. Chapter 5 then presents the proposed
system designed to tackle the problem of energy maintenance of a foraging system. Chapter 6
describes how the system is tested for performance and results are quantitatively evaluated.
From quantitative indicators, qualitative conclusions are made. Chapter 7 provides a conclu-
sive summary of the findings in this research, answers to the research questions, and proposes
recommendations for future work.
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Chapter 4

Foraging Baseline

Foraging systems utilise the benefits of swarm systems to achieve their resource-oriented
objectives. Global tendencies of the population can be achieved by careful design of individual
behaviour. As this research aims to study the applicability of foraging, a previously developed
theoretical system as found in [1] is used as a baseline. This chapter introduces this system
along with fundamental concepts.

Section 4-1 introduces concepts important for operation and notions encoded in logic. Next,
Section 4-2 presents the system of [1] in its operation and structure. This work will be
modified in Chapter 5 to expand the system’s applicability.

4-1 Concepts used in Foraging Logic

To understand how foraging systems function, several concepts are introduced. These describe
the utility of foraging as applied to the specific problem of resource-retrieval. The concepts of
roles, region of interaction, and collected experience will be used specifically or as motivation
for agent behaviour.

4-1-1 Roles

Every agent within the foraging population executes a set of tasks. These tasks are motivated
by either an agent’s personal maintenance or a global objective. Each role an agent can assume
dictates a behavioural policy. The role of an agent is selected based on its state and past
experience. The following three roles are considered fundamental in theoretical foraging.

• Outbound role Fout: outbound foraging agents Fout attempt to travel to the target region
T from their current location

• Inbound role Fin: inbound foraging agents Fin attempt to travel to the nest region N
from their current location
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• Beacon role B: beacon agents B perform guidance network tasks while remaining static.
Beacons receive input from foragers, compute guidance indicators, and relay these to
passing agents

Each role has a specific goal to achieve. Based on this, each role can have a different be-
havioural policy, affecting agent decision-making and actions even under the same circum-
stance.

From here on out, the role of an agent may be used to refer to the agent assuming said role.
This implies that xFout refers to the location of an agent with its current role Fout, or formally
defined as xFout := {xa ∈ D|a ∈ A, sa(k) = Fout}. Similarly, internal values are also denoted
by an agent’s role, where ωb denotes the internal weight-value of an agent with role b.

4-1-2 Region of Interaction

Agents within the foraging system have a communication region Ca within which they can
interact with other agents. Roles Fout and Fin are referred to as mobile roles as agents are
moving around in D. Agents assuming mobile roles can be collected as a set M := {a ∈
A|sa(k) ∈ {Fout, Fin}}. The role B on the other hand keeps agents static, with beacon agents
B := {a ∈ A|sa(k) = B}.

Mobile roles interact with a set of beacons Bm(k) within their Cm(k). These beacons provide
the mobile agent with guidance vectors to guide the agent towards its destination. Beacons
with whom the mobile agent m is in contact with is defined as the set Equation (4-1).

Bm(k) := {b ∈ B|xb(k) ∈ Cm(k)} (4-1)

Beacons on the other hand interact with passing mobile agents Mb(k) within their own
Cb(k). These mobile agents are reliant on the beacon for guidance, and can be collected as in
Equation (4-2).

Mb(k) := {m ∈ M|xm(k) ∈ Cb(k)} (4-2)

4-1-3 Collected Experience

As described in Chapter 2, one of the advantages of swarming systems is that they have a
level of self-organization. They can construct entire guidance networks for their application
by compounding agent experience. The concept of inherent experience is defined below.

Take the example of a system with one beacon, one mobile agent, and two nodes N1, N2 as
depicted in Figure 4-1. The mobile agent m initiates at node N1 and assumes a role sN1→N2

with intended destination N2. The agent’s role indicates that it is coming from N1, or in other
words that it "experienced" the node’s location. As the agent is moving away from node N1,
the direction of this node is encoded as the negative velocity of the agent. This "experience"
can be collected by beacons to develop guiding vectors. Upon m completing its role sN1→N2

and initiating role sN2→N1 at N2, the beacon provides −−→v sN1→N2
as guidance towards N1.
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The beacon simultaneously uses the available agent vector to update the guidance vector for
role sN1→N2 , being −−→v sN2→N1

.

Figure 4-1: Example scenario of collected experience.

As touched upon in Section 2-3-2, stigmergy also requires a dimension to indicate success po-
tential. As a requirement, this measure should allow agents to distinguish between successful
and unsuccessful paths, as well as allow for paths to fade over time if not reinforced.

A possible indicator of path potential can be a success boolean. If a path leads to a target,
a reward is attributed to all guidance vectors along the path. However, an absolute measure
of success is undesirable as this does not allow distinguishing between paths in terms of
optimality. Another possible value that can be used as path potential is the frequency a
path is travelled. Successful paths are travelled more often as they have a definite end-point,
namely the destination, whereas unsuccessful paths continue endlessly. The use of frequency
also has the benefit of inherent optimization: shorter paths are travelled more frequently,
meaning they are reinforced more compared to longer paths. Agents choosing paths with
higher potential automatically choose the more optimal path with respect to travel time. The
choice of success potential may vary for each application

4-2 Description of Baseline System

As stated previously, the foraging behaviour of a swarm can be achieved in various ways. To
study the possibility of developing a system fit for application, the system of [1] is taken as
an initial framework to develop. This section will present the core functionality of the system
along with the dynamics of agents on which Chapter 5 builds.

4-2-1 Roles

The objective of the baseline system is defined to construct a guidance network facilitating
agent travel between a nest and a target. To do so, the system employs agents in three
roles: beacon B, outbound foragers Fout, and inbound foragers Fin. Agents switch between
roles depending on their current role and environment. The switching is performed according
to Equation (4-3). This switching states that an agent becomes a beacon when it no longer
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receives guidance from a beacon. Agents assume the outbound role when they are inbound and
have successfully reached the nest. Similarly, agents become outbound when they successfully
reach the target in their outbound role.

sa(k + 1) =


B if Ba = ∅
Fout if sa(k) = Fin ∧ xa(k) ∈ N
Fin if sa(k) = Fout ∧ xa(k) ∈ T
sa(k) else

∀a ∈ A (4-3)

Additionally, [1] proposes the possibility of beacon decay. A beacon’s potential weight de-
creases with its paths not being used. Weights dropping below a decay-threshold ηw ∈ R+
indicates that the path is no longer of use and the agent best supports other tasks such as
foraging or exploration. Decayed beacons assume their role sa before becoming a beacon
(formally defined in Equation (4-4)) and perform a random search to rejoin the guidance
network. In doing so, unused beacons are released back into the population as mobile agents
improving agent utilization.

s−
a (k) = sa(k−) with k− := max(kswitch|kswitch ∈ N, kswitch < k, sa(k) ̸= sa(kswitch))

(4-4)

This addition in functionality resulted in the switching as seen in Equation (4-5) and visualized
in Figure 4-2. The added guards state that beacons whose weights fall below a "decayed"-
threshold and have no active agents within their communication region revert to their last
active role. Decayed beacons can only become new beacons if two time steps have passed
since.

sa(k+1) =



B if Ba = ∅ ∧ sa(k − 2) ∈ {Fout, Fin}
Fout if sa(k) = Fin ∧ xa(k) ∈ N ∨

sa(k) = B ∧ s−
a (k) = Fout ∧

∑
s ws

b(k) < ηw ∧ Mb(k) = ∅
Fin if sa(k) = Fout ∧ xa(k) ∈ T ∨

sa(k) = B ∧ s−
a (k) = Fin ∧

∑
s ws

b(k) < ηw ∧ Mb(k) = ∅
sa(k) else

∀a ∈ A

(4-5)
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Figure 4-2: Role switching with decay as per [1].

4-2-2 Knowledge Dynamics

The foraging system can construct a vector-field of guidance vectors using the collected expe-
rience as described in Section 4-1-3. For this, the baseline system uses two guidance weight-
vector pairings, one for each mobile role. In doing so, a complete guidance network is attained
for agent coordination.

Beacons store two guidance values for each role, similar to what is presented in Section 4-1-3.
Here, potential weight ωs

b(k) ∈ R+ combines both success boolean and frequency of path-
travel. Vector −→vb

s(k) ∈ R2 is derived from a combination of current and past agent velocity
vectors. Both values initialize to zero and change depending on mobile agent input. Beacons
transmit these guidance values in their vicinity to any passerby.

Mobile agents receive both path weights and vectors from their surrounding beacons Bm(k).
At every update time step, each agent computes a potential reward for its current state with
respect to its role’s destination. When an agent is at its role’s origin, it assumes a reward
value γs(k) ∈ R+ as described in Equation (4-6) with static reward value r ∈ R+. This can
be interpreted as the agent being rewarded for completing its previous role when starting a
new one.

γs(k) =


r if sa(k) = Fout ∧ xa(k) ∈ N
r if sa(k) = Fin ∧ xa(k) ∈ T
0 else

(4-6)

Furthermore, agents also describe their current potential given their guidance environment.
Being close to a beacon on the verge of a destination region indicates positive potential. As
such, the potential of a mobile agent also includes the maximum of its received guidance
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weights. The sum of the situational potential and possible reward as per Equation (4-7)
becomes the current state-potential the agent transmits to its surrounding beacons. Here,
λ ∈ [0, 1] represents a diffusion rate.

∆s
m(k) = γs(k) + λ max

b∈Bm(k)
(ωs

b(k)) (4-7)

Beacons receive two values from each agent, namely their state-potential and current velocity
vector. Beacons use the encoded experience of agents to update their guidance values. The
potential weight of a beacon is updated using Equation (4-8) where ρw ∈ R+ is the weight
evaporation rate. Changing the evaporation rate tunes the dynamics of the system, with an
increase resulting in faster learning of success but also quicker fading of paths.

ωs
b(k + 1) = (1 − ρw)ωs

b(k) + ρw

∑
m∈Ms

b
(k) ∆s

m(k)
|Ms

b(k)| (4-8)

Received potential rewards are averaged over the number of updates provided. This also
implies that values are only updated according to Equation (4-8) when at least one update
is received, |Ms

b(k)| ≥ 1. In other cases, the weight of a beacon only experiences decay as
described by the first half of Equation (4-8).

Similarly, the update of guiding vectors is performed using vector update weight ρv ∈ R+.
This value describes the willingness of a beacon to learn from the latest experience transmitted
by walking agents.

−→v s
b(k + 1) = (1 − ρv)−→v s

b(k) + ρv

∑
m∈Ms

b
(k) −−→v m(k)

|Ms
b(k)| (4-9)

Note the negative vector used to update the guidance vector. Consider again Section 4-1-3
explaining how experience is gathered through an agent’s past: moving towards a destination
node implies leaving a starting node. With this in mind, potential rewards and velocities of
outbound foragers describe their motion away from the nest, and vice versa.

4-2-3 Motion Dynamics

The motion of an agent is dictated by its state. Depending on its connections with beacons,
values received, its current and past role, or its vicinity to an obstacle, the movement of a
mobile agent may differ. The following scenarios describe each case.

Following an Established Path

When following an established path, mobile agents receive non-zero guidance weights and
vectors. A mobile receives a set of potential weights and guidance vectors from each of
its surrounding beacons b ∈ Bm(k). By taking the normalized weighted sum of all mobile
opposite-role sm(k) ∈ [Fout, Fin] values (Equation (4-10), Equation (4-11)), a guidance vector
is attained.

sm(k) :=
{

Fin if sm(k) = Fout

Fout if sm(k) = Fin

(4-10)
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−→
v̂f

s(k) :=
〈 ∑

b∈Bm(k)
ω

sm(k)
b (k)−→v sm(k)

b (k)
〉

(4-11)

At each update instance, a mobile agent decides between following the guidance vector −→
v̂ s

f (k)
and engaging in Brownian random search from its current position. This decision is made
stochastically, with an exploration probability ε ∈ (0, 1). When opting to perform a random-
search, the agent selects a heading offset θrandom ∈ [−π, π} at random and computes its new
heading accordingly. This decision is described in Equation (4-12).

Pr{−→v f (k + 1) = −→
v̂ s

f (k)} = 1 − ε

Pr{−→v f (k + 1) = v0
[
cos(θa(k) + θrandom), sin(θa(k) + θrandom)T

]
} = ε

(4-12)

Exploring

In the event a mobile agent enters a region where no established paths are available, it
receives zero values from all its neighbouring beacons. This indicates to the agent that further
exploration is required. This is achieved by always performing random searches, equivalent
to the case ε = 1 for Equation (4-12).

Reaching a Destination

Additionally, when an agent reaches its role’s destination, it performs a 180◦ rotation as
dictated by Equation (4-13). This is to ensure that the reverse-velocity of the agent points
towards the reached region.

−→v f (k + 1) = −−→v f (k) if sm(k + 1) ̸= sm(k) (4-13)

Beacon Decay

Beacons decay when the sum of their potential-weights drops below a threshold ηw and there
are no mobile agents to service Mb(k) = ∅. Upon decaying, the agent disengages from its
beacon role and assumes its previous non-beacon role, as per Equation (4-5). The agent
initializes in random-search until re-establishing a connection with the guidance network.

−→v f (k + 1) = v0
[
cos(θa(k) + θrandom), sin(θa(k) + θrandom)T

]
(4-14)

Object Avoidance

To ensure agent safety, a rudimentary obstacle avoidance algorithm is implemented. This
system uses infrared sensors to determine separation from surrounding objects. When an
offset violation is determined, the agent changes its heading with angle θavoidance ∈ [−π, π}
based on where the obstacle is perceived. This feature is based on the functionality of the
Elisa-3 robot.

−→v f (k + 1) = v0
[
cos(θa(k + 1) + θavoidance), sin(θa(k + 1) + θavoidance)T

]
(4-15)
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4-2-4 Summary of Baseline System

To summarize the previously described baseline system, this section presents pseudocode
illustrating steps within the framework. This representation of system logic is split between
mobile agents and beacons, as provided in Algorithm 1 and Algorithm 2.

Beacons perform their guidance network tasks using the logic as described in Algorithm 1.
In doing so, they gather and update their knowledge using mobile agent experience. At each
update, new values are computed, while between updates the beacon receives input.

Algorithm 1 Baseline Beacon Behaviour
1: while sa(k) = ”Beacon” do
2: Broadcast ωs

b(k), −→v s
b(k) for all roles

3: Listen for mobile agent input for T seconds
4: for each role s ∈[”Fout”, ”Fin”] do
5: Compute ωs

b(k + 1) as per Equation (4-8)
6: Compute −→v s

b(k + 1) as per Equation (4-9)
7: end for
8: Check possible beacon decay as per Equation (4-5)
9: end while

Mobile agents on the other hand provide past experience encoded in their velocity vector and
compute new guidance vectors to follow using Algorithm 2. While in motion, mobile agents
continuously monitor if they reach destination regions or for obstacles to evade.

Algorithm 2 Baseline Mobile Agent Behaviour
1: Initialize sa(0) = ”Fout”
2: while sa(k) ∈ [”Fout”, ”Fin”] do
3: Listen for ωs

b(k), −→v s
b(k) for opposite role sm(k)

4: Broadcast personal ∆s
m(k), −→v m(k)

5: Compute −→v m(k + 1) as per Equation (4-11) - (4-14)
6: Perform motion along −→v m(k + 1) for an interval T seconds
7: while InMotion do
8: if Obstacle then
9: Perform obstacle avoidance as per Equation (4-15)

10: end if
11: if xa(k) ∈ T and sa(k) = ”Fout” then
12: Extract resource
13: else if xa(k) ∈ N and sa(k) = ”Fin” then
14: Deposit resource
15: end if
16: Check possible role switch as per Equation (4-5)
17: end while
18: end while

Agents working together as described establish a guidance network enabling the exploration
of the domain D as well as the construction of paths between regions of interest.
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Chapter 5

Sustained Foraging

The preliminary system presented in Section 4-2 proved to be successful in establishing paths
between a nest region and a target region with agents travelling back and forth. Although
this indicates the potential of the foraging system, it is limited to theoretical application. The
set of amendments in this chapter defines both the energetic model and proposes mechanisms
to solve the problem of maintaining energy levels in agents.

Section 5-1 establishes the energy-balance used to estimate the evolution of the system ener-
getics. Section 5-2 then discusses what implications the inclusion of a recharging region R has
for the system mechanisms and introduces the new role of recharging R. Subsequently, Sec-
tion 5-3 up until Section 5-8 propose amendments to the baseline system to include energetic
maintenance as a fundamental task of the agents and the populations.

5-1 Energy Model

The first change with respect to the baseline system is the inclusion of a numerical estimation
of energy consumption. When in motion, computing, communicating, or performing any
active role, robots consume energy. They do so from their energy storage. Furthermore,
agents can replenish their energy reserves using solar power. As such, by balancing both
power consumption and power harvesting, energy levels can be estimated.

Consider the power consumption of an agent. Agents perform a variety of tasks depending on
their role and situation. Beacon agents continuously execute general computations, partake
in communication, and perform updates to guidance values. Mobile agents additionally move
around, monitor obstacles, scan for resources, and if at a resource node, perform resource
operations. The power consumed by an agent consists of the ongoing tasks, as described in
Equation (5-1).

Pout := Pmotion + Pavoidance + Pcomputation + Pcommunication + Pscan + Pexploit (5-1)
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For computation, a constant static power amount is assumed. Avoidance, scanning, and
exploitation are assumed to be a lump sum for sub-activities performed incrementally. Com-
munication is a sum of power amounts needed to maintain every active communication link.
The primary power expenditure is assumed to be the motion performed by the agent. For
actuation, the model in Equation (5-2) uses motor-parameters kV , kI dictating voltage Umotor

and current Imotor with respect to revolution speed ωm and torque T .

Pmotion := Umotor · Imotor :=
(

ωmotor

kV

)
·
(

Tmotor

kI

)
(5-2)

Agents can recharge using their onboard solar array. With an assumed array-size and array
efficiency, and taking the solar irradiance on the surface of the Moon, the power absorbed
is expressed in Equation (5-3). Note that the term Irrsolar takes the incidence angle into
account.

Pin := ηarray · Irrsolar · Aarray (5-3)

The sum of these two power terms is what is used to continuously estimate the state of the
battery. By computing the balance at each time step and integrating with respect to time,
the battery levels Ebattery ∈ [0, Ebattery,capacity] and State-of-Charge (SOC) SOCbattery ∈ [0, 1]
can be computed using Equation (5-4) and Equation (5-5).

Ebattery(k + 1) := Ebattery(k) + (Pin − Pout) · dt (5-4)

SOCbattery(k) = Ebattery(k)/Ebattery,capacity (5-5)

The described approach to energy-level estimation is implemented for each agent. In doing
so, estimates of energetic dynamics within the foraging population can be monitored.

5-2 Recharging Region R

Until now, the baseline system considered two regions of interest, nest N and target T .
Within this baseline, mobile agents are instructed to move endlessly between these two regions.
However, with the element of draining energy levels, an additional region and role is introduced
to allow the system to replenish energy levels.

A major amendment to the baseline with grand consequences is the introduction of recharg-
ing region R. This region is defined by a minimum level of solar irradiance as denoted by
Equation (5-6) and also stated in Section 3-4. When within this region, agents can harvest
solar power using their solar arrays and charge their batteries.

R := {xR ∈ D|Irrsolar(xR) > ηsolar} (5-6)

Region R is considered a fundamental region in that agents visit this region out of necessity
rather than to contribute to the foraging objective. Failing to reach the recharging region in
time degrades the population whereas failing to reach either of the other two regions merely
delays results.
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Adding a third region of interest also introduces a recharging role R. This role is defined in
similar fashion to Fout and Fin:

• Recharging role R: recharging agents R attempt to travel to the recharging region R
from their current location and perform recharging activities

The recharging role is triggered when an agent’s SOC falls below either the SOC required to
reach its destination or the recharging region. This logic ensures that an agent can always
recharge. A more detailed switching scheme is presented in Section 5-4. With this, the set of
mobile agents is expanded to M := {a ∈ A|sa(k) ∈ {Fout, Fin, R}}.

The addition of a third region of interest and a role has major implications for the structure
of coordination. Until now, the baseline had two active roles and two origins of path exclusive
to one another: if the agent was ”Fout”, it previously had to be ”Fin” and vice versa. See
Figure 5-1: target region T is only achievable using the red sequence coming from nest N
and N only from T . This exclusivity of role-origin is what is utilised in Equation (4-9) where
one role is directly used to update the counterpart’s guidance.

TargetBase

Figure 5-1: Guidance between two regions of interest with role-origin exclusivity.

The addition of a third active role and region removes the role-origin exclusivity. Agents
moving towards their destination can come from either one of the remaining two regions,
as illustrated in Figure 5-2. Considering agent experience only encodes the direction to its
last visited region, knowing the path’s origin is necessary for interpretation. As a result,
guidance updates are here on out performed using an agent’s last successfully completed
role sc(k) ∈ [”Fout”, ”Fin”, ”R”] (Equation (5-7)) instead of its current role. An agent who
successfully completed its previous role could only do so at the role’s destination region.
For example, an ”Fout” role is only successful when the individual reaches the target region,
meaning its experience will correspond to direction T .

sc(k) = sa(kcomplete) with kcomplete := max(k|k ∈ N,sa(k) = ”Fout” ∧ xa(k) ∈ T
∨ sa(k) = ”Fin” ∧ xa(k) ∈ N
∨ sa(k) = ”R” ∧ xa(k) ∈ R)

(5-7)

Finally, consider an agent starting at N , recharging at R, then walking to region T . The
experience of the agent beyond the recharging region no longer encodes the direction of N ,
only that of R. Using this experience to construct guidance to the nest would result in a single
sequential path stringing all three regions in order of visitation. By making the distinction
based on the last region visited, disjointed paths are enabled allowing individual optimization.
The downside is that beacons beyond the recharging region no longer receive experience on
the nest’s direction. This knowledge can only be attained from agents travelling directly from
the nest to the target. This local lack of guidance is addressed in Section 5-8.
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TargetBase

Charging region

Figure 5-2: Expanded number of regions of interest.

5-3 Guidance Values

The baseline system expresses path quality using rewards attributed to finding destination
regions, with indicators distributed between beacons through travel frequency. Agents select
paths based on whether they are successful, with quality as a second measure. With the
added functionality of battery SOC monitoring, both definitions must be expanded.

Agents have the fundamental task of ensuring they at all times have enough energy reserves
to reach the recharging region. This is to ensure the sustainability of the population. This
requirement implies that paths requiring more SOC than the agent has available are no longer
viable choices as they cannot be completed without the agent disengaging to recharge. This
indication of viability is achieved by including the path-required SOC in the agent’s experience
and beacon knowledge. Furthermore, similar to potential weights, required SOC-levels can
be used to weigh guidance vectors. With lower energy consumption deemed desirable, agents
prompted with multiple guidance vectors select paths requiring less energy. In doing so, the
system includes power costs in path optimization.

First, Equation (5-8) implements the change proposed by Section 5-2. Beacon values are
henceforth updated using sc rather than the agent’s current role s. Furthermore, guidance to
region R using role R is added.

{
ToN : { ωFout

b (k), −→v Fout
b (k) }

ToT : { ωFin
b (k), −→v Fin

b (k) }

}
→


ToN : { ωsc=Fin

b (k), −→v sc=Fin
b (k) }

ToT : { ωsc=Fout
b (k), −→v sc=Fout

b (k) }
ToR : { ωsc=R

b (k), −→v sc=R
b (k) }


(5-8)

To enable SOC-based decision-making, beacon values are appended with SOC-values (see
Equation (5-9)). Mobile agents now include their used SOC since leaving the role-origin as
part of their experience. Beacons construct the amount of SOC required to reach a destination.
Here, SOCsc=Fout

b (k) represents the SOC required to reach region T from the communication
region Cb. Be aware that these values implement an additional safety factor ϕSOC as seen
later in Equation (5-13). Agents with ample SOC continue on their path, whereas agents
with not enough energy can divert to the recharging region.
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ToN : { ωsc=Fin

b (k), −→v sc=Fin
b (k) }

ToT : { ωsc=Fout
b (k), −→v sc=Fout

b (k) }
ToR : { ωsc=R

b (k), −→v sc=R
b (k) }

 →


ToN : { ωsc=Fin

b (k), −→v sc=Fin
b (k), SOCsc=Fin

b (k) }
ToT : { ωsc=Fout

b (k), −→v sc=Fout
b (k), SOCsc=Fout

b (k) }
ToR : { ωsc=R

b (k), −→v sc=R
b (k), SOCsc=R

b (k) }


(5-9)

5-4 Roles and Role Selection

Agents within the baseline framework are employed in two mobile roles, each fulfilling the
objective of moving endlessly between the nest and the target. Unless the agent is required
to take on a facilitating role in the form of a beacon, role-selection is sequential. With the
addition of the fundamental task of recharging, the decision of which role to assume gains an
additional dimension, and with it added complexity. This section will describe the developed
role selection.

Consider the matter of recharging. For sustained operation, an agent needs to have enough
SOC to reach the recharging region at all times. The recharging role is to be assumed pre-
emptively, to ensure agent SOC never falls below these levels. Mechanisms are implemented
in role selection to allow agents to disengage from their current tasks of foraging and deviate
to the recharging region R. Furthermore, after having performed recharging operations,
agents resume their previous foraging tasks. The proposed tendencies are used to update
Equation (4-5) with added functionality, resulting in the updated role selection of Equation (5-
10) (line-numbers before the bracket are added for clarity).

sa(k + 1) =

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:



B if Ba = ∅ ∧ sa(k − 2) ∈ {Fout, Fin, R}
R if SOCa(k) < SOCs

b (k) ∨
SOCa(k) < SOCR

b (k) ∨
xa(k) ∈ N ∧ xa(∀kpast ≤ k) /∈ R

Fout if sa(k) = Fin ∧ xa(k) ∈ N ∨
sa(k) = B ∧ s−

a (k) = Fout ∧
∑

s ws
a(k) < ηw ∧ Mb(k) = ∅ ∨

sa(k) = R ∧ xa(k) ∈ R ∧ SOCa(k) = 1 ∧ sc
a(k) = Fin ∨

sa(k) = R ∧ xa(k) ∈ N ∧ SOCa(k) > SOCFout
b ∧ SOCa(k) > SOCR

b

Fin if sa(k) = Fout ∧ xa(k) ∈ T ∨
sa(k) = B ∧ s−

a (k) = Fin ∧
∑

s ws
a(k) < ηw ∧ Mb(k) = ∅ ∨

sa(k) = R ∧ xa(k) ∈ R ∧ SOCa(k) = 1 ∧ sc
a(k) = Fout ∨

sa(k) = R ∧ xa(k) ∈ T ∧ SOCa(k) > SOCFin
b ∧ SOCa(k) > SOCR

b

sa(k) = R ∧ xa(k) ∈ R ∧ SOCa(k) = 1 ∧ ||vR
b (k)|| = 0

sa(k) else
∀a ∈ A

(5-10)
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The following updates are applied:

• Line 2-3: An agent assumes the recharging role when it either does not have enough
SOC to safely reach its destination or the recharging region R

• Line 4: An agent assumes a recharging role if it is at the nest and has not visited a
recharging region before. Agents who found the target region before the recharging
region and have returned with resources are instructed to make sure the recharging
region is attainable

• Line 7: An agent becomes outbound if it reaches the recharging region R replenishes
its battery, and previously completed its inbound tasks

• Line 8: An agent becomes outbound if it accidentally reaches the nest region N and
has ample SOC to reach both the target and recharging region

• Line 11: An agent becomes inbound if it reaches the recharging region R, replenishes
its battery, and previously completed its outbound tasks

• Line 12: An agent becomes inbound if it accidentally reaches the target region T and
has ample SOC to reach both the nest and recharging region

• Line 13: Additionally, an agent becomes inbound when it successfully reaches the
recharging region, replenishes its batteries, and determines that no recharging path
has been constructed locally between the nest and the recharging region. This feature
ensures that a viable path between the two fundamental regions is available

Figure 5-3 provides a visualization of the proposed role-selection process. Considering Fig-
ure 4-2, the role-selection procedure has become significantly more complex.

5-5 Updated Knowledge Dynamics

The way in which received experience is handled within the system remains unchanged.
Using past experience of mobile agents, potential weights and guidance vectors are monitored.
However, the addition of energy consumption as an additional "experience" value as well as
the updated concept of experience gathering without exclusive roles changes the practical
methods of the beacons.

The first change applied is a result of the removal of role-origin exclusivity, as discussed
in Section 5-3. As the agent’s current role no longer describes its origin, it is replaced by
the last completed role, sc

m(k). This is used to update potential weights and vectors as per
Equation (5-11) and Equation (5-12).

ωs
b(k + 1) = (1 − ρw)ωs

b(k) + ρw

∑
m∈Msc

b
(k) ∆s

m(k)
|Msc

b (k)| (5-11)

−→v s
b(k + 1) = (1 − ρv)−→v s

b(k) + ρv

∑
m∈Msc

b
(k) −−→v m(k)

|Msc

b (k)| (5-12)
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Figure 5-3: Updated role switching of the proposed system.

Furthermore, as per Equation (5-9), an additional SOC parameter is included for each des-
tination. The value of SOCsc

b ∈ [0, 1] remains zero until a valid input is received, upon
which the value is initialized to that SOC. This is done to prevent over-confidence or conser-
vatism affecting role selection. Updates are performed similar to that of the potential weight
and guidance vector, with the introduction of a learning weight ρp ∈ R+. Additionally, a
safety-factor ϕSOC ∈ R+ is applied over the SOC value to ensure safety of operation.

SOCsc

b (k + 1) = (1 − ρp)SOCsc

b (k) + ρp

∑
m∈Msc

b
(k) SOCsc

m (k)
|Msc

b (k)| ϕSOC (5-13)

5-6 Updated Motion Dynamics

The motion dynamics of mobile agents remain unchanged with respect to the baseline. What
does change is how the guidance vector is computed based on beacon input.

An agent in the baseline system attempts to reach its destination by following paths high
in success potential. It promotes paths with higher potential weights hereby performing an
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optimization step. With the addition of energy considerations, the same methodology can
be applied to path-required SOC-amounts. Paths requiring less energy are preferred over
energy-expensive ones. Accordingly, Equation (4-11) is updated to Equation (5-14). Note
tunable weights ρf ∈ R and ρc ∈ R, allowing for tuning of optimization considerations.

−→
v̂ s

f (k) :=
〈 ∑

b∈Bm(k)
ρf ω

sm(k)
b (k) ρc

[
1 − SOC

sm(k)
b (k)

] −→v sm(k)
b (k)

〉
(5-14)

5-7 Decay

A feature included as an amendment in the baseline is the repurposing of unused beacons
using decay. Beacons deciding to decay engage in a random search to rejoin the network, a
strategy not guaranteeing immediate reconnection to the swarm. This strategy is replaced by
a more directed approach.

The proposed change relies on the knowledge that decayed beacons are at the outskirts of the
guidance network. Beacons furthest away from successful paths receive the least potential
weight and thus decay first. As a result, they always have the guidance network behind them.

In the newly proposed system, upon decaying, an agent performs a 180◦ turn and starts its
motion. In doing so, it attempts to reconnect with its last beacon passed. Having achieved
communication, the decayed agent moves along the network using the guidance of its last
completed role sc

m(k). This guides agents back toward the origin of their role, at the stem of
the guidance network for the current role branching. Having backtracked a certain distance,
the agent re-engages in its current role and with it in the attributed navigation. Should an
agent be unsuccessful in establishing a connection with the guidance network, it engages in a
random search similar to the baseline.

This mechanism of backtracking moves agents back toward their origin, where all paths for
their role start. Encountering a successful path to its destination is therefore more likely.
Furthermore, agents are able to get out of obstacle traps such as dead-ends. Finally, as
agents do not switch roles, they continue providing experience during backtracking, albeit
negative experience to help degrade unsuccessful paths.

The depth of backtracking depends on the number of unsuccessful attempts the agent has
made to reach its destination. The act starts with small backtracks, but increases in distance
with the number of unsuccessful attempts, nfailed attempts, as seen in Equation (5-15). This
allows for backtracking further towards the origin. Although the backtracking distance is
estimated using encoder readings, these are not required to be accurate and could be replaced
by counting the number of beacons contacted.

dbacktrack = nfailed attempts · 0.5 · δcomm (5-15)
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5-8 Fallback

With the addition of a third region of interest and loss of role-origin exclusivity, information
availability for all paths is no longer guaranteed at all beacons. As Section 5-2 pointed out,
intermediate destinations remove any experience of previous areas. Agents may not have
immediate local guidance to their destination.

To address this issue, a fallback mechanism is proposed. This feature kicks in when no direct
guidance is available to an agent’s destination, but a secondary intermediate destination can
be used for approach. Consider the following scenarios:

• Agents move from nest N , through recharging point R, to target T : in this case,
beacons between the recharging point and target only receive experience on where the
recharging point is, not where the nest is. Agents wanting to return from the target to
the nest now have no guidance

• Agents move from nest N to target T in a region where recharged agents never rejoin
the system: in this case, a path is established between nest and target without guidance
to the recharging point. Any agent willing to recharge now has no knowledge on its
direction

These two scenarios depict how the limited agent experience causes gaps in coordination.
However, what is known is that agents start off in the nest and intend to find the recharging
point first. Furthermore, role-switching ensures that a bi-directional path is established upon
finding the recharging region. As a result, reaching one of the regions will result in attaining
information on the other.

This feature is exploited for intermediate destinations. When an agent has no guidance
available to reach the nest, it assumes the recharging region as temporary destination up until
it regains guidance to its primary goal. The same mechanism holds for the recharging region,
with the nest proposed as intermediate destination. Fallback ensures guidance for returning
or recharging agents, even if indirect. The same cannot be applied for target regions as there
is no guarantee that either the recharging region or the nest region previously established a
direct path. Equation (5-16) depicts the selection of guidance vector for agents in roles ”Fin”
or ”R”.

−→
v̂ s

f (k) =


−→
v̂ s

f (k) if ||
−→
v̂ s

f (k)|| > 0
−→
v̂

[”Fin”,”R”]−s
f (k) if ||

−→
v̂ s

f (k)|| = 0 ∧ ||
−→
v̂

[”Fin”,”R”]−s
f (k)|| > 0

[0, 0] else
∀a ∈ A, sa(k) ∈ [”Fin”, ”R”]

(5-16)

Master of Science Thesis Z. T. Angyal



40 Sustained Foraging

5-9 Summary of Proposed System

Chapter 5 provides an extensive update to the baseline system of Section 4-2. The goal of
these changes are to include energetic maintenance tasks in system behaviour, both high-
and low-level. This consideration makes the system viable for real-life implementation. This
section provides an overview of the changes.

Adjustments can best be presented in chronological order of system operation:

1. Agents are initialized to look for a recharging point. The availability of power is the
primary objective for sustained operation

2. Agents who accidentally find target locations do construct and return on a path between
nest and target. However, they continue to look for a recharging point until initial
recharging is performed

3. Beacons are able to distinguish experience using an agent’s last completed role, enabling
the establishment of multiple independent paths

4. Mobile agents choose their destination region based on the availability of guidance and
SOC required. Agent SOC below the minimum required charge for the path triggers
the recharging role

5. Mobile agents rejoin the foraging process after having recharged. Their new role is
selected is based on their last successful role

6. Mobile agents include the SOC of a path in their construction of guidance. Mobile
agents promote power-optimal paths and reinforce these within the guidance system

7. Recently decayed agents backtrack through the guidance network to attempt to find a
successful path stemming more towards its origin. Should backtracking be unsuccessful,
agents fall back on random-search

8. Agents with destinations for which no local guidance is available fallback on intermediate
destinations to approach the original destination

Similar to Algorithm 1 and Algorithm 2, the behaviour of agents can be represented in
pseudo-code. First, consider the beacon behaviour.

Algorithm 3 demonstrates the changes to beacon logic. The guidance dictionary is expanded
to three destinations to include paths to R. The addition of SOC values to each destination
region is also updated. Finally, beacons now distinguish between received experience using
the provided last successful role sc for each agent.
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Algorithm 3 Beacon Behaviour
1: while sa(k) = ”B” do
2: Broadcast ωsc

b (k), −→v sc

b (k), SOCsc

b (k) for all roles
3: Listen for mobile agent input for T seconds
4: for each role sc ∈ [”Fout”, ”Fin”, ”R”] do
5: Compute ωsc

b (k + 1) as per Equation (5-11)
6: Compute −→v sc

b (k + 1) as per Equation (5-12)
7: Compute SOCsc

b (k + 1) as per Equation (5-13)
8: end for
9: Check possible beacon decay as per Equation (5-10)

10: end while

The update to mobile agents is more significant. Algorithm 4 depicts multiple changes pro-
posed throughout this chapter. First, line 2 shows the expansion of possible mobile roles
to include R. Line 5-7 implements the decaying method of returning to the network and
backtracking using the previous successful role. Finally, Line 18-19 implements recharging
activities when at R. Although the notion of unmentioned steps remain the same, their
execution uses the previously updated equations.

Algorithm 4 Mobile Agent Behaviour
1: Initialize sa(0) = ”R”
2: while sa(k) ∈ [”Fout”, ”Fin”, ”R”] do
3: Listen for ωs

b(k), −→v s
b(k), SOCs

b (k) for role sm(k)
4: Broadcast personal ∆s

m(k), −→v m(k)
5: if s−

a (k) = ”B” then
6: Follow −→v m(k + 1) = −−→v m(k) until connection with a beacon
7: Perform backtrack motion along −→v sc

m(k) for distance dbacktrack as per Equation (5-
15)

8: else
9: Compute −→v m(k + 1) as per Equation (5-14) and Equation (4-12) - (4-14)

10: Perform motion along −→v m(k + 1) for an interval T seconds
11: end if
12: while InMotion do
13: if Obstacle then
14: Perform obstacle avoidance as per Equation (4-15)
15: end if
16: if xa(k) ∈ T and sa(k) = ”Fout” then
17: Extract resource
18: else if xa(k) ∈ N and sa(k) = ”Fin” then
19: Deposit resource
20: else if AtDestination and sa(k) = ”R” then
21: Recharge
22: end if
23: Check possible role switch as per Equation (5-10)
24: end while
25: end while
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Chapter 6

Experimental Analysis

This research assesses the implementation of a foraging system in scenarios where system
maintenance is required. Evaluating how the system performs is therefore done in an environ-
ment simulating energy dynamics in robots. Section 6-1 presents the setup of the simulated
scenario used to attain simulated run performance. Results are described qualitatively in
Section 6-2. To evaluate the system on its robustness and performance achieved, Section 6-
3 performs a quantitative evaluation of the system together with a sensitivity analysis for
optimization and flexibility.

6-1 Simulated Application

This research studies the feasibility of using a nature-inspired foraging system in application.
To ensure that the system can maintain its operation with respect to energy requirements,
its performance is put to the test with scenarios implementing energy drainage.

6-1-1 Simulation Software

Simulations were performed using Webots software. Webots was selected for its low-level
resource requirements optimal for swarm simulations [19][38]. Logic was provided in a Python-
script run through Webots in individual process instances. Along with being optimal in
resource allocation, the disconnected nature of instances represents the disconnected nature
of swarming.

For reference of all objects discussed hereafter, consult the following GitHub repository.

6-1-2 Simulated Rover

The rover used for system simulation is heavily inspired by the Yutu-2 rover [23] and CADRE1

rovers. Although no extensive application study was performed on the vehicle, its capabilities
1https://www.jpl.nasa.gov/missions/cadre
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are considered simplistic and feasible in use.

The modelled robot (see Figure 6-1) is a compact, four-wheeled rover capable of traversing
the lunar environment. Steering is done using counter-steering wheels with in-place turning
possible. Systems onboard are encoded using either Webots elements or Python-code. The
energy subsystem consists of a light sensor to mimic a solar array with Battery Management
System (BMS) and a battery simulated in code. Communication is achieved using an om-
nidirectional emitter-receiver pair of infrared type on top of the vehicle with limited range.
Obstacle avoidance relies on seven infrared distance sensors placed at the front of the rover.
Finally, as resource manipulation remains abstract, an omnidirectional emitter-receiver pair
is used to communicate with the nest and the target region. Resource communication occurs
on a separate channel and the storage of resources is simulated in code.

Figure 6-1: Agent rover used in simulated scenarios.

6-1-3 Simulated Scenarios

Multiple test scenarios were designed to test system behaviour. Simulating system behaviour
gathers numerical data on its performance for both quantitative and qualitative evaluation.
Each scenario is intended to bring specific system tendencies to light.

The primary objective of the simulation is to evaluate the system’s ability to solve the foraging
problem as described in Section 3-4 while needing to fulfill energetic needs. Furthermore, the
effects of support mechanisms on the system’s optimality are also assessed. The latter should
reveal if agents continue improving pathways with the added factor of State-of-Charge (SOC)
required.

The agents were tested using three primary scenarios as presented in Figure 6-2. The general
setup includes a flat surface with walled boundaries. The three regions of interest, nest N ,
target T , and recharging region R, are placed on top of this field. In line with the resource-
handling of agents, region N and T are represented by omnidirectional emitter-receiver pairs.
Region R is achieved by placing a directional light above the playing field to illuminate a
region.
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The three scenarios differ in the type of obstacle present. Scenario 1 (Figure 6-2a) does not
include an obstacle. This is considered a benchmark where the system is expected to perform
optimally. Scenario 2 (Figure 6-2b) places a hard obstacle between two regions. An agent
cannot cross a hard obstacle and is therefore forced to walk around. This is a similar setup
to that used in [1]. Finally, scenario 3 (Figure 6-2c) includes a soft obstacle. Soft obstacles
refer to regions that can be traversed by agents but at higher energy costs. In Webots, this is
achieved by increasing the ground-friction value ξground within the obstacle boundaries using
ContactProperties. This imitates energy-expensive obstacles such as hills or loose regolith.

(a) "No obstacle" scenario with regions
N , T , R.

(b) Hard obstacle: scenario with N , T , R and
hard obstacle O between R − T .

(c) Soft obstacle: scenario with N , T , R and
soft obstacle O between R − T .

Figure 6-2: Simulated control scenarios with varying obstacle types.

The scenarios were designed with reproducibility in mind. Agents and objects are included
as .proto files to allow scripts to call and manipulate these. Agents are inserted individually
by the Supervisor-script at a predetermined spawn point when this location does not contain
other agents. Obstacles are included in the World-files of scenarios.
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6-1-4 Simulation Parameters

The system as described throughout Chapter 4 and Chapter 5 is sizeable and adjustable using
several system parameters. These values do not only influence the system’s behaviour, but
also allow for tailoring the swarm for its goal and environment. The fundamental scalability
advantage of swarming is achieved by adjusting these parameters.

The following parameter values are assumed to be used to achieve the results presented
throughout this section. Changes to these parameters are evaluated in Section 6-3.

Table 6-1: System parameters.

Na τ T ρw ρv ρp ρf ρc δcomm ηw ηsolar

[−] [s] [s] [−] [−] [−] [−] [−] [m] [−] [W/m2]
50 0.064 10 0.1 0.1 0.1 1.0 3.0 2.0 1E-4 900

ϕSOC v0 ε r λ ξground Ebattery,capacity

[−] [m/s] [−] [−] [−] [−] [Wh]
1.25 1.25 0.05 1 0.8 [0.0165, 0, 0] 10

6-2 System in Application

The next section qualitatively characterizes the acquired system performance. The main
goal is to identify certain mechanisms in action during both the exploration and exploitation
phase by looking at agents’ decisions and movement. Doing so helps verify that the system
is operating as intended in Chapter 5

Before specific scenes are discussed, consider Figure 6-3. This figure represents a freeze-
frame of a guidance network achieved during a simulation run in a "Soft Obstacle" scenario.
Observe the illustrated regions N , T , R and O in this figure. The first additional elements
present are agents in beacon role, marked by a node "B". Each beacon can have up to three
guidance vectors, conform to Section 5-3, each pointing along a constructed path. Mobile
agents are indicated by a dot, with their colour representing their role. Mobile agents show
their guidance vectors computed using an arrow. Mobile agents without guidance vectors are
performing random searches, as beacons do not provide guidance vectors for their roles.

6-2-1 Exploration Phase

The system starts of in the exploration phase. The objective of the exploration phase is to
find the regions of interest T and R. The target T is of significance for the primary objective
of foraging, namely resource collection. Recharging region R is required to support operation
with energy. The latter is therefore deemed priority, as population activity ends when all
agents deplete. Figure 6-4 presents the main milestones of the exploration phase.

Agents initialize at the nest, as seen in Figure 6-4a. Each individual starts in the recharging
role R to look for R, following Algorithm 4. As the agents leave the nest, the explored region
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Figure 6-3: Example of guidance-network state with agents traversing the area.

and guidance network expands. At this stage, the only guidance vectors present are the ones
pointing back to N .

In the depicted run, the target region T is discovered first. Two agents in Figure 6-4b are
seen in inbound roles with guidance vectors pointing towards N . These agents successfully
found the target region, recovered some resources, and are returning to N . While doing so,
they are providing experience on the direction of T from which beacons successfully construct
new guidance vectors.

The final milestone in the exploration phase is depicted in Figure 6-4c. An agent successfully
identifies a recharging region, recharges, and is seen on an inbound path at the bottom of
the screenshot while surrounding beacons construct guidance vectors to the region R. Notice
how the path to the target has evolved since the previous milestone.

The discovery of both additional regions concludes the exploration phase. From here on out,
the guidance network contains all information necessary to construct initial paths. Through
reinforcement in the exploitation phase, distinct paths to each region of interest are created
and optimized.
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(a) Agents initialize and leave nest at 50[s]. (b) An agent discovers target region T at
400[s].

(c) An agent discovers recharging region R at
650[s].

Figure 6-4: Three major milestones within the exploration phase of the system.

6-2-2 Exploitation Phase

With the exploration phase discovering regions of interest and introducing initial guidance
information completed, the exploitation phase can commence. The goal of this phase is to
extract as many resources from the target and return them to the nest. In the process,
the population develops paths given its tendency to choose more optimal paths with respect
to potential and energy requirements. Furthermore, it is required to perform fundamental
housekeeping tasks in the form of recharging batteries.

Agents continue to operate in the exploitation phase as described in Algorithm 4. Mobile
agents select their velocity vectors using guidance vectors provided by beacons with their
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respective potential weight ωb and energy required 1−SOC. Travelling along selected optimal
vectors, an agent’s experience on its origin region is deposited along this route. This results
in optimal paths being reinforced, increasing the likeliness of other agents choosing the same.
The guidance network in Figure 6-5 is the outcome of this iterative learning, with the mobile
agents travelling the converged routes.

Figure 6-5: Guidance network of the exploiting system in "Soft Obstacle" case with highlighted
agents.

In Figure 6-5, consider the three highlighted agents, AGENT27, AGENT33, and AGENT38.
Agent AGENT33 is an outbound agent in the top-left of the figure, currently moving towards
the target region. AGENT27 in the top-right on the other hand has just fulfilled its outbound
role by reaching its destination. Reaching the target, it retrieved resources and is now seen
leaving the area along inbound guidance vectors. Finally, AGENT38 assumes a charging role
and navigates the guidance network to the recharging region.

Path Optimization

Agents in the exploitation phase walk paths between regions incrementally and endlessly. As
stated previously, this selection of the best heading allows agents to deposit their experience
in the most optimal reverse direction. This mechanism combined with the reinforcement cycle
results in the network learning more suitable paths.

This choice of best heading is represented by Equation (5-14). Mobile agents combine received
beacon guidance vectors as a weighted sum with potential weight and SOC-cost as weights.
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Agents aim to maximize the potential of reaching a destination while minimizing the energy
required to get there. This optimization cost function can be expressed as Equation (6-1).

max
b∈Bm(k)

ρf ω
sm(k)
b (k) ρc

[
1 − SOC

sm(k)
b (k)

]
(6-1)

Beacons in turn learn from the optimal paths agents travel. With agent experience used to
update the respective guidance vectors in beacons, these improve with respect to Equation (6-
1). Note that this means that established paths can consist of non-direct SOC-cheap segments.

However, this optimality of paths does not always apply to agent trajectories. Agents update
their heading at update intervals using only the beacon information available at that time.
As their navigation is based solely on heading, an offset in agent location from intended paths
is likely. As a result, agents only loosely follow the paths that the guidance network dictates,
leading to sub-optimal performance.

Take the example of AGENT44, highlighted in Figure 6-6, in the same scenario as previously.
The agent can be seen cutting the corner of the soft obstacle, despite following the instructions
of beacons. Because the network was reinforced using agent heading irrespective of location,
agents passing below these beacons taught it a specific direction. Now that AGENT44 is more
north than expected, although following the correct heading, it is steered to cut the corner
of O and achieve sub-optimal results. By not being able to execute strict paths with the pre-
cision of location, only sub-optimal results can be guaranteed. Increasing domain resolution
by decreasing communication range may improve performance as it can map intermediate
headings more precisely, but this comes at the cost of mobile agent numbers.

Figure 6-6: AGENT44 cutting through soft-obstacle boundaries in "Soft Obstacle" case.
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6-3 Performance Analysis

The goal of this research is to establish the feasibility of a foraging system implementing
maintenance tasks. The previous section illustrated the functionality of the system in stages,
describing milestones observed in system evolution. This section builds on this, evaluating
multiple simulated runs in varying scenarios, and providing statistical proof of performance
certainty.

6-3-1 Sustained Foraging with Recharging

The primary objective of the proposed system is the retrieval of resources from a target region
T and returning it to a nest location N . The newly developed system of Chapter 5 was used
to take finite energy reserves into account from which agents drain power for operation. This
section ascertains if foraging is still attained with the additional system requirement.

To determine if the system is indeed still foraging while fulfilling the need for recharging,
multiple performance indicators are considered. These are compiled from simulated runs
performed in all three scenarios of Figure 6-2. To build statistical certainty that performance
is not incidental, 50 runs were performed for each scenario. Of those 50 runs, the 30 resulting in
the most resources recovered are selected. This is motivated by the assumption that simulation
runs with high amounts of returned resources experienced the most agent activity, making
system tendencies more apparent. To establish these performance trends, the considered
values are averaged for each time step of a run. The indicators are presented in Figure 6-7.

(a) Spread of total amount of returned re-
sources within the simulation time of 7200[s].

(b) Spread of total count of recharging in-
stances within the simulation time of 7200[s].
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(c) Accumulation of resource at the nest with
respect to time.

(d) Progression of agent utilization in mobile
roles.

(e) Progression of population SOC with re-
spect to time.

Figure 6-7: System performance under unobstructed and obstructed conditions.

Using the figures in Figure 6-7, the following conclusions can be drawn:

• The main conclusion of Figure 6-7a is that the system is able to forage in all three
scenarios. For each scenario, returns of over 600 units of resource imply at least 100
foraging trips between T and N . With a population size of 50 and beacon agents not
foraging, this implies multiple foraging trips per agent

• The system is capable of foraging in both unobstructed and obstructed scenarios. The
system is therefore flexible in solving different problems. This adaptability is further
explored in Section 6-3-3

• From Figure 6-7b indicates that unobstructed runs experience fewer recharging inter-
ruptions. This is explained by the fact that an unobstructed environment allows for
direct near-ideal paths to form between regions. These routes require less energy than
the deviations enforced by obstacles. The soft-obstacle scenario is found to recharge
the most, motivated by the fact that the soft obstacle significantly increases the power
consumption of moving agents, beyond that of longer routes over normal surfaces
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• Figure 6-7c further depicts the difference in application between obstructed and unob-
structed scenarios. The unobstructed returns more resources in the allotted time due
to a higher rate of return. Using the same reasoning as before, direct paths between
regions result in shorter travel time and thus higher frequency. Obstructed scenarios
also have to recharge more often due to the added energy consumption, thereby lowering
the travel frequency even further. The fact that the system can maintain a steady rate
in each scenario implies continued functionality even if at a lower rate

• The number of mobile agents at a specific time-instance as shown in Figure 6-7d serves
as an indication for agent utilization. The number of agents immobilized to become
beacons reaches its peak at around 1200[s], where the guidance network comprises of
most agents. Later on, agents become mobile again proving the ability of beacons to
decay. The presence of mobile agents together with the continued return of resources
implies sustained foraging while the guidance network remains operational

• Figure 6-7d depicts the number of mobile agents in the scenarios run. The guidance
network requires a number of beacons to spatially cover the domain. After setting
up at around 1200[s], the system is seen to reintroduce mobile agents as a result of
beacons decaying. This maximum amount of beacons (N -mobile agents) is considered
the minimum swarm size required to achieve the guidance network, with additional
agents helping foraging

• The sum of agent SOC in the population is summarized in Figure 6-7e. An equilibrium
is achieved around 1200[s], the approximate time the guidance network is at its peak
size. The downward trend from this point is a result of beacons discharging slowly. The
oscillations however are a result of mobile agents incrementally draining and recharging
their batteries. This proves that the system is actively maintaining system charge

All of these statements support the proposed system’s capability of performing resource for-
aging while simultaneously maintaining a level of SOC. The system is capable of returning
resources in both unobstructed and obstructed scenarios, confirming the inherent flexibility
of swarming systems. Furthermore, the system is able to recharge agents in the meantime,
with the number of charging activities dictated by the application. By being able to maintain
a steady rate of return whilst also upholding continuous availability of energy, the sustained
application of this system for foraging purposes is motivated.

6-3-2 Self-Organizing and Optimization

The second feature considered is the self-organization of the foraging system to achieve more
optimal performance. As stated previously, it is both desired and expected that the system
can identify and reinforce paths more optimal in terms of the cost function in Equation (6-1).

To assert and study this optimization tendency, the battery capacity of the agents is varied.
The battery capacity is selected for two reasons: first, consider Equation (5-14). This equation
describes the agent’s tendency to weigh potential weight and SOC-usage. Substituting the
definition of SOC (Equation (5-5)) into this, Equation (6-2) is attained.

−→
v̂ s

f (k) :=
〈 ∑

b∈Bm(k)
ρsω

sm(k)
b (k) ρe

1 −
(

Ebattery(k)
Ebattery,capacity

)sm(k)

b

(k)

 −→v sm(k)
b (k)

〉
(6-2)
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It can be concluded that changing the battery capacity results in an inverse effect on the
severity of SOC costs. A similar effect can be achieved by tuning ρf and ρc. This is omitted
in this study for the second reason the battery capacity is selected, namely to study the
effects of physical agent design. In application, rovers are limited in size and weight, hereby
restricting the battery size. Varying this parameter allows for the effects of physical agent
limitations to be deduced.

Given Equation (6-2), it is expected that the system makes more conservative choices with
decreasing battery capacity. The same energy cost will have a larger effect on a smaller
battery’s SOC, meaning the agent will choose to avoid SOC-costs more actively. This is
expected to lead to paths with lower energy expenses at the cost of longer travel distances
and times. Agents with larger batteries on the other hand can incur more energy usage to
follow paths with higher potential, likely resulting in shorter paths through soft obstacles.

The standard battery capacity of 10 [Wh] as per Table 6-1 is varied with -25% and +25%.
The soft-obstacle scenario is used as it allows the system to perform a dynamic trade-off be-
tween energy consumption and potential weight. Furthermore, the two previously introduced
scenarios are included. The unobstructed scenario serves as a lower bound of the attainable
path to assess how aggressively the increased system approaches this at the cost of energy.
The hard-obstacle scenario on the other hand is considered the attainable path completely
avoiding the soft obstacle. The dataset of Section 6-2 is used for its abundant foraging activity.

The figures in Figure 6-8 show four measures of the obstructed path R − T , namely the
average SOC-cost of the path, the average actual energy cost, the average distance travelled
along the path, and the average time needed to traverse it. The following can be deduced
from the figures in Figure 6-8:

• All SOC-costs in Figure 6-8a converge to similar values just below 0.3. This is in line
with Equation (6-2) given that the ratio between potential weight and SOC remains the
same. Achieving the same equilibrium is therefore expected. The unobstructed scenario
is found to be well below the value of others as no significant power obstacle is present

• When considering the actual energy spent to travel the path R−T however, the system
with the largest battery capacity is seen to spend the most energy, while the one with the
least battery also spends the least energy. This is in line with the previous conclusion
and the definition of SOC in Equation (5-5)

• Conversely, agents with the largest battery capacity are seen to travel the least amount
of distance and time. Their values approach that of the unobstructed ideal path. Given
the setup of the soft-obstacle scenario, this can only be achieved if the agents cross
the soft obstacle, incurring the additional energy costs for directness benefit. This is
therefore in line with the previous statement. Small capacity agents can be observed
following a route approaching the length and time of the hard-obstacle case. This is
expected to be a result of the system attempting to avoid the soft obstacle altogether,
minimizing energy usage

• Given that the velocity of each rover is predetermined, the time required to travel the
path as seen in Figure 6-8d follows Figure 6-8c
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(a) SOC cost between R − T . (b) Energy used between R − T .

(c) Distance travelled between R − T . (d) Time required to travel between R − T .

Figure 6-8: Run performance with varying battery capacity.

• Observe that the distance of the hard-obstacle scenario increases in distance and travel
time as it progresses. This is attributed to agents introducing an additional offset to the
obstacle. Paths from the exploration phase are developed from agents whose obstacle
avoidance was triggered, a time and energy-inefficient function. With agents converging
to a path with a larger offset, this mechanism is less often activated, leading to more
efficient paths in both optimization aspects

• A noteworthy observation is that the hard-obstacle and 10[Wh] case use similar energy
while travelling other distances. This is most likely a result of approximate following
of routes and corner cutting as described in Section 6-2-2. Where systems in the soft-
obstacle scenario can cut corners, hard-obstacle agents are led around their obstacle with
an enforced clearance. This leads to additional path distance and obstacle-avoidance
costs. The same holds for the small-battery case having less energy costs

Having made these observations, it can be concluded that the system actively takes part in
optimizing the main route communicated by the guidance network. Using Equation (6-2), the
system reinforces paths more fit for the system given its parameters. Furthermore, the path
is observed to evolve over time, indicative of iterations being performed. By changing the
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battery capacity, the equilibrium agents strive for was influenced, resulting in changed system
behaviour. By lowering the battery capacity, the weight of SOC-usage was increased, causing
the system to find more conservative routes around obstacles. Agents with ample battery
reserves and lowered SOC considerations allowed themselves more costly but direct paths.
The system is therefore concluded to be self-organizing with tunable tendencies. Similar
results can be achieved by changing the optimization weights in Equation (6-2).

The same behaviour can also be observed when looking at screenshots of established guid-
ance networks for varying battery capacity in Figure 6-9. Figure 6-9a shows the guidance
network of the decreased-capacity system steering agents around the obstacle with ample
clearance. Figure 6-9b depicts the system with more capacity allowing its agents to approach
the obstacle and cross its boundaries incidentally. Finally, agents of Figure 6-9c with ample
battery capacity develop a system with near-direct paths between all three regions, with few
surrounding beacons required.

(a) Established guidance network for a battery
capacity of 7.5 [Wh].

(b) Established guidance network for a battery
capacity of 10 [Wh].

(c) Established guidance network for a battery
capacity of 12.5 [Wh].

Figure 6-9: Guidance networks established with varying battery capacity.
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6-3-3 Adaptability to Environment

Finally, the effect of the obstacle in the search space is studied. This is done to assess the
flexibility of the system for different problems and environments.

The system was applied in four additional scenarios, each with a different location for the
obstacle. Whereas the hard obstacle as used up until now placed the region between target
T and recharging region R, the new scenarios place both soft and hard obstacles between
N − T and N − R. In doing so, multiple possible scenarios are tested analogous to either
one. These scenarios can be seen in Figure 6-10.

(a) Soft obstacle NR: scenario with N , T , R
and soft obstacle O between N − R.

(b) Soft obstacle NT: scenario with N , T , R
and soft obstacle O between N − T .

(c) Hard obstacle NR: scenario with N , T , R
and hard obstacle O between N − R.

(d) Hard obstacle NT: scenario with N , T , R
and hard obstacle O between N − T .

Figure 6-10: Additional scenario with varying obstacle location and resulting system performance.

Given the advantages of swarming systems, it is expected that the system will be able to
perform in all six scenarios. In each scenario, the system should achieve a functional guidance
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network and facilitate foraging. However, given that recharging activities can trigger at any
location, obstacles secluding R will have a major impact on the rate of return due to the
increased path lengths and travel time. Furthermore, soft obstacles are expected to form a
complete guidance network earlier, given that agents can travel through the region. Hard
obstacles closer to the initialization point limit the region within which agents can explore,
leading to more crowding and delayed system exploration.

Figure 6-11 depicts the results of all six hard- and soft-obstacle scenarios. As expected, all
six figures indicate that paths are established in beacons in the presence of all obstacle types
and locations. These paths can be used by agents in a similar fashion to previous cases.

(a) Progression of resource return for varying
soft obstacle locations.

(b) Progression of resource return for varying
hard obstacle locations.

(c) Progression of population SOC for varying
soft obstacle locations.

(d) Progression of population SOC for varying
hard obstacle locations.
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(e) Progression of agent utilization in mobile
roles for varying soft obstacle locations.

(f) Progression of agent utilization in mobile
roles for varying hard obstacle locations.

Figure 6-11: Additional scenario with varying obstacle location and resulting system performance.

From the figures in Figure 6-11, the following can be concluded:

• The first deduction that can be made is that the system succeeds in performing both
foraging and housekeeping tasks. While Figure 6-11a and Figure 6-11b show ongoing
foraging, Figure 6-11e and Figure 6-11f show active discharging and recharging, conform
to results in Section 6-2

• Scenarios with obstacles furthest away from the nest perform best in terms of return
rate. In both Figure 6-11a and Figure 6-11b, the initial scenarios outperform the rest.
This is most likely due to the initialization space agents get to explore. The lack of
crowding decreases the noise received at the start, resulting in more efficient pathways

• Obstacles placed between N −R perform worst in terms of resource return rate. This is
expected to be the result of the recharging region being more shielded, requiring mobile
agents along the foraging path to be more conservative in terms of SOC

• The number of agents required to achieve and sustain the guidance networks as seen in
Figure 6-11e and Figure 6-11f depicts the same behaviour as described in Section 6-2.
However, scenarios with N − T obstacles perform best. This is attributed to the fact
that as recharging activities are triggered more often, the early development of the path
N − R and R − T helps return agents to a mobile role. Increased swarm sizes would
result in increased rates of return and faster settling on an optimal guidance network
size as a result of increased rates of reinforcement

Having run the system in multiple scenarios, the main conclusion that can be made is that the
system is able to perform both foraging and maintenance tasks in varying scenarios. Although
some effect was expected, the difference in resource amounts returned between R−T obstacle
placement and the other two is significant. A probable explanation is over-conservatism with
the recharging region being hard to reach. Furthermore, N − R obstacles prove decreased
efficiency in maintaining population SOC, also attributed to the system having increased
difficulties reaching the recharging region R.

Master of Science Thesis Z. T. Angyal



60 Experimental Analysis

6-4 Summary

This chapter discussed how the system was implemented in a simulated environment, how
the system evolved in application, and if conclusive results could be attained to characterize
the system performance.

The foraging system in question was implemented through the use Python code and a sim-
ulated environment in Webots as presented in Section 6-1. Agents were modelled as four-
wheeled rovers, with a solar array and communication transceiver mounted on top. Further-
more, distance-sensors were used for obstacle-avoidance, and another transceiver acted as the
resource-retrieving mechanism. All other features were integrated in code. The test-scenarios
were set up manually and called from Python to ensure reproducibility.

The proposed system of Chapter 5 managed to depict the stages of foraging in Section 6-2 as
expected. With agents initializing and leaving the nest, a guidance network was constructed.
Using this to explore further, the regions T and R were detected. Once identified, the system
was able to use this knowledge to support exploitation activities as well as recharging. The
system was also observed to dynamically learn and optimize its guidance depending on system
tendencies.

Through quantitative analysis over multiple simulated runs, it was concluded in
Section 6-3-1 that the system does indeed perform as intended by theoretical architecture,
even with the added functionality of visiting the recharging region. Not only did the system
retrieve resources, it was seen to dynamically recharge its population. The self-organization
of the network was measured in Section 6-3-2, with changing agent parameters affecting the
type of path it promotes. Changing battery capacity alone had major impacts on the system
choosing for more aggressive or conservative paths with respect to SOC. Finally, Section 6-
3-3 confirmed that the system is able to operate in a variety of scenarios. Although the
effect of obstacle placement between N and R is more significant than expected, the systems
adaptiveness is discernable.

To conclude, it is both qualitatively and quantitatively proven that the system, as proposed by
this report, is able to fulfil its maintenance tasks while foraging for resources and illustrating
both flexibility and self-organization as can be expected from a foraging swarm.
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Chapter 7

Conclusions

7-1 Conclusions of Proposed System Implementation

This research aimed to answer the question if foraging is viable for application with energet-
ics considerations. Fundamental considerations for robot operation have gone unaddressed,
limiting the maturity of this technology in its use. With this gap in knowledge in mind, a
research question was formalized in Chapter 3. Having performed extensive system design
to achieve conclusive results, this chapter will present these findings and propose areas of
interest for future work.

This report selected energetics as the aspect to consider given it is a fundamental necessity
of active agents. By fulfilling this system requirement through recharging mechanisms, the
system’s foraging performance would be supported in application. Achieving this would
indicate the feasibility of implementation for means such as lunar resource exploitation. The
main research question of this research therefore became:

Can an applied energetic housekeeping strategy be developed for a beaconed ant-inspired for-
aging algorithm with the intent of resource gathering on the lunar surface?

To answer this question, the baseline system of Chapter 4 was amended with additional
functionality as presented in Chapter 5. These changes primarily addressed the possibility
of an additional non-exclusive role for recharging activities. This required a change in the
way information was gathered and handled in beacons. Furthermore, the agent’s state in
the form of State-of-Charge (SOC) now became an indicator for path quality. By providing
energy costs as an additional term in an agent’s experience, paths gained another quality
value. With the utilities of foraging, these values could be used to not only ensure agents
engage in recharging but also to reinforce routes beneficial in terms of energy costs. The
functionality of these mechanisms is backed up by findings in Chapter 6, where Section 6-3-1
provided proof that the system remains functional over time even with the added necessity
of recharging, Section 6-3-2 proved the population’s tendency to adopt optimal paths, and
Section 6-3-3 proving flexibility to environment in which the system is applied.

Master of Science Thesis Z. T. Angyal



62 Conclusions

Having implemented the proposed amendments, the sub-questions of the problem statement
can be answered.

• What global tendencies are required to enable system maintenance from an energetics
perspective?
A system should encapsulate personal maintenance tasks and provide agents the freedom
to execute these. Losing agents leads to population degradation. To allow agents to
disengage from their foraging tasks, additional roles are required. However, through
the expansion of the role set, the individual’s role selection becomes more complex.
Furthermore, to make well-informed decisions, the interaction between agents also needs
to be amended to allow ample knowledge throughput.

• How should an individual’s operation logic be structured to include personal maintenance
in relation to energetics while contributing to population objectives? The most signifi-
cant change to agent logic is the added role of maintenance and with it the expanded
role selection. The latter needs to be well-defined to allow for improved, pre-emptive
decision-making. The selection of a role is based on both the availability of information
in the guidance network and personal state. By promoting personal integrity through
the decision-making of an agent, the same tendency is observed in the global swarm,
making sure operation is guaranteed before performance is sought after.

• How do optimality mechanisms within foraging affect population and individual opera-
tion with respect to energetics?
Having access to additional path quality indicators allows agents to make more well-
informed decisions. In doing so, the requirements of an individual can be loosened.
As proven by Section 6-3-2, this also amounts to the entire system following suit, op-
timizing its overall operations and decreasing its required resources. With additional
optimization factors to tune, the behaviour of the population becomes more dynamic
and tunable for desired tendencies.

Finally, this research is concluded by answering the main research question. Through this
study, it was proven that foraging systems indeed have the potential to be used in application,
provided their system state and role-switching are configured with it in mind. By introducing
new roles for recharging, sustained functionality can be maintained. While achieving system
performance both for foraging and maintenance, the desired characteristics of self-organizing
and flexibility continue to emerge in application.

7-2 Recommendations for Future Work

The development of the system aimed to tackle the most significant problems encountered
when expanding the baseline foraging system to one fit for application. Although most issues
were addressed, some were deemed too detailed for a feasibility study. Furthermore, as
the results in Chapter 6 revealed, some inherent issues should be re-evaluated for system
improvement. These are stated below:

• Precise relative guidance: as seen in the exploitation phase of Section 6-2-2 and
Section 6-3, the system cannot follow paths closely. This is a result of the system’s
limited functionality of using global heading as guidance without location. To improve
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accuracy, relative positioning is proposed, where a beacon can use signal measurements
during communication to determine a mobile agent’s relative position and communicate
a precise waypoint. In doing so both accuracy and system performance are increased

• Optimizing swarm size: this study attempted to introduce energy maintenance func-
tionality. In doing so, it expanded the optimization function to that in Equation (6-1),
which now provides additional optimization possibilities. As Figure 6-7d, Figure 6-11e,
and Figure 6-11f indicate, the number of agents involved in the guidance network does
not always converge within considerable time. Fine-tuning the optimization process will
help trim the amount of beacons required and boost system performance

• Discharging beacons: the system in Chapter 5 assumes beacons discharge slowly,
reaching critical SOC well beyond the scope of simulated runs. However, from a prac-
tical and robustness perspective, implementing mechanisms to exchange roles between
beacons and mobile agents will not only allow beacons to maintain a required SOC but
will also showcase that beacons can be replaced in the event of a malfunction

• Improved decay: one of the most problematic features in the system is the method of
decaying. Although addressed, the possibility of intermediate beacons decaying exists.
This removes continuity in network branching and may leave agents stranded. Imple-
menting a more reliable decay strategy will result in increased robustness and agent
utilization

• Establishing search-space boundaries: all scenarios used to gather simulation data
had a boundary around its search-space. This was done for simulation-time purposes,
as agent dispersion would only delay the discovery of regions of interest. In practicality,
such boundaries can be formed around a known search space using border-agents fencing
others into a region to explore
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Figure A-1: Graphical representation of proposed taxonomy as per [50].
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List of Acronyms

ESA European Space Agency
NASA National Aeronautics and Space Administration
CNSA China National Space Administration
ISRO Indian Space Research Organisation
JAXA Japan Aerospace Exploration Agency
SLIM Smart Lander for Investigating Moon
CADRE Cooperative Autonomous Distributed Robotic Exploration
RLSO Robotic Lunar Surface Operations
PSR Permanently Shadowed Region
ISRU In-Situ Resource Utilization
SI Swarm Intelligence
LRO Lunar Reconnaissance Orbiter
PI Path Integration
BMS Battery Management System
SOC State-of-Charge
RFID Radio Frequency Identification
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List of Symbols

a Agent in the swarm
A Set of agents in swarm
Aarray [m2] Solar array surface area
B Beacon role
B Set of agents in beacon role
Bm Set of mobile agents in a beacon’s communication region
Ci Communication region of object i
dbacktrack [m] Backtrack distance
D Search space domain
δi [m] Radius of object i
Ebattery [Wh] Energy stored in battery
Ebattery,capacity [Wh] Battery capacity
ε [-] Probability of exploration
ηarray [-] Solar array efficiency
ηsolar [W/m2] Threshold of solar irradiance for recharging region R
ηw [-] Lower threshold indicating decay
∅ Empty set
Fin Inbound foraging role
Fout Outbound foraging role
G Region covered by the guidance network
γ [-] State-potential
Imotor [A] Motor current
Irri,solar [W/m2] Solar irradiance level striking object i
k Discrete time
k− Discrete time of last role switch
kswitch Discrete time of role switch
kv [RPM/V] Motor rpm-voltage constant
kI [Nm/A] Motor torque-current constant
li [m] Length of object i
λ [-] Diffusion rate of state-potential
M Set of agents in mobile role
Mb Set of beacons in a mobile agent’s communication region
N Number of agents in swarm
N Nest region
nfailed attempts [-] Number of failed attempts to reach the destination
O Obstacle region
ωs

b [-] Potential weight in a beacon b for guidance of role s
ωmotor [RPM] Motor rotation speed
Pavoidance [W] Power used for obstacle avoidance
Pcomputation [W] Power used for communication
Pexploit [W] Power used for exploitation operations
Pin [W] Power gained
Pmotion [W] Power used for motion
Pout [W] Power used
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Pscan [W] Power used for environment scanning
ϕSOC [-] Safety factor applied to path SOC
R Recharging role
R Recharging region
r [-] Reward for completing a role
ri [-] Resource content of object i
ρc [-] Optimization weight of path SOC SOCb

ρf [-] Optimization weight of potential weight ωb

ρv [-] Guidance vector evaporation rate
ρw [-] Potential weight evaporation rate
SOCa [-] State-of-Charge of agent a
SOCsc

b [-] SOC cost stored in beacon b for a path for completed role sc

sa Role of agent a
s−

a Agent a’s role prior to the current role
sc Last successfully completed role
sf Foraging agent f ’s opposite foraging role
T [s] Update interval
T Target region
Tmotor [Nm] Motor torque
t [s] Continuous time
τ [s] Sampling time
θa [rad] Heading of agent a
θrandom [rad] Random heading
θavoidance [rad] Heading adjustment from obstacle avoidance mechanism
Umotor [V] Motor voltage
v0 [m/s] Agent velocity
−→va [m/s] Velocity vector of agent a
−→vb

s [m/s] Guidance vector in a beacon b for guidance of role s
−→
v̂f

s(k) [m/s] Normalized guidance vector of foraging agent f
wi [m] Width of object i
xi [m] Location of object i in domain D
ξi [-] Friction coefficient of the surface object i
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