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Numerical experiment on data assimilation for geothermal doublets using
production data and electromagnetic observations

Christiaan Oudshoorn1, Dieter Werthmüller1, Evert Slob1, and Denis Voskov1

ABSTRACT

The data assimilation process for geothermal reservoirs often
relies on well data, which primarily offer insights into the imme-
diate vicinity of the borehole. However, integrating geophysical
methods can provide valuable information beyond well proxim-
ity, possibly enhancing reservoir predictions. Current methods of
monitoring geothermal reservoirs struggle to maintain a good sig-
nal-to-noise ratio for deep reservoirs. Diffusive electromagnetic
(EM) methods can be sensitive to the decreasing conductivity
from heat extraction in geothermal reservoirs and offer promising
additional value. To test their potential effectiveness, numerical
examples are simulated. A scheme to incorporate diffusive EM
observations into a data assimilation process for geothermal
reservoirs is presented and implemented in this study. First, an
ensemble of prior models representing the reservoir uncertainty

is used to determine the moments of the resulting temperature
field using a forward geothermal simulation. Subsequently, a
conductivity model is calculated from the temperature field using
an empirical relationship. The expected electric field response
can then be simulated using an EM forward model. EM sources
are placed on the surface around the expected cold plume loca-
tion. The receiver is placed at reservoir depth. To assimilate the
data, the ensemble smoother with multiple data assimilation
method is used. The findings demonstrate that the incorporation
of EM data provides valuable information regarding the temper-
ature field. This improves the accuracy of the temperature forecast
of the entire reservoir when combined with the localized data
from the production well and, therefore, helps to resolve the
complex migration of the cold front. These results highlight
the monitoring potential of EM observations for geothermal res-
ervoirs.

INTRODUCTION

Geothermal energy holds immense potential as a clean, renew-
able, and sustainable energy source (Hackstein and Madlener,
2021). Realizing the full benefits of this resource requires a pro-
found comprehension of subsurface reservoirs containing geother-
mal energy, and numerical simulation stands as a powerful approach
to achieving this understanding (Tian et al., 2024).
The calibration of physical reservoir models to match actual field

measurements is fundamental to this endeavor. This process, commonly
referred to as “history matching” or “data assimilation,” aims to adjust
the reservoir model to replicate the observed field measurements
(Huseby et al., 2013; Wu et al., 2021). However, assimilation schemes
rely solely on well data, such as temperature and borehole pressure, and
suffer from limited information content, offering insights predominantly
within the immediate vicinity of the boreholes (Zhang et al., 2020).

Geophysical measurements can address this limitation by
providing valuable supplementary information concerning dynamic
changes in the reservoir beyond the direct well proximity. In shal-
low geothermal applications, substantial progress has already been
made in leveraging such measurements (Hermans et al., 2014). Spe-
cifically, time-lapse electrical resistivity tomography (ERT) has
been effectively used in surface and borehole setups for shallow
geothermal monitoring (Arato et al., 2015; Hermans et al., 2015;
Lesparre et al., 2019). In addition, Ikard and Revil (2014) demon-
strate the utility of self-potential measurements from a heat pulse to
map the preferential flow paths in an experimental sandbox setup.
However, applying these methods to deep geothermal reservoirs

at depths of several kilometers is challenging. Although advances in

deep ERT have been made, a low signal-to-noise ratio (S/N) limits

its effectiveness (Balasco et al., 2022).
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A promising alternative is the use of diffusive electromagnetic
(EM) methods. In particular, magnetotellurics has shown potential
for deep geothermal monitoring but allows for little control of the
S/N, which limits its effectiveness in monitoring small temperature
changes (Abdelfettah et al., 2018; Bretaudeau et al., 2021). Con-
trolled-source diffusive EM methods may offer a sensitivity for
subtle temperature changes that would allow for the monitoring of
temperature changes in deep geothermal reservoirs (Eltayieb
et al., 2023).
Tian et al. (2024) rely on proxy EM observations sampled around

the entire reservoir for geothermal data assimilation. However, to
measure the subtle temperature changes, the EM receivers have
to be placed at reservoir depth. Due to the high cost associated with
drilling wells, this severely limits the locations at which observation
wells can be placed. To our knowledge, there is no existing literature
exploring the potential impact of simulated diffusive EM measure-
ments, which also account for the limited receiver locations within
the geothermal data assimilation context.
The objective of this paper is to assess the feasibility of diffusive

EM in the context of deep geothermal applications. We achieve this
by integrating diffusive EM measurements into a data assimilation
framework alongside the well data, aiming to enhance reservoir
characterization. First, the method for creating a model ensemble
is described, which is a collection of models that together describe
the reservoir uncertainty. Thereafter, descriptions of the reservoir,
rock physics, and EM forward models are given. Next, the method
of data assimilation is described. Then, the moments of the model
ensemble are given, and the EM survey setup is described. Finally,
this model ensemble is incorporated into a data assimilation scheme
incorporating diffusive EM observations to predict reservoir perfor-
mance, and the results are evaluated and discussed.

THEORY

Ensemble generation

The initial phase of the workflow involves the generation of
an ensemble to capture the uncertainty associated with reservoir
parameters. In this paper, the focus is on the Delft sandstone
member, which has considerable geothermal energy potential
(Donselaar et al., 2015).
The ensemble is designed to reflect the characteristics of the Delft

reservoir, which has a normally distributed porosity with a mean of
0.20 and a standard deviation of 0.09. Each member of the ensemble
is comprised of a grid of 140 × 140 blocks, wherein each grid block
measures 20 m × 20 m with a thickness of 100 m. This size was
chosen to ensure that the temperature plume does not reach the
model boundary within the simulation time. To create the ensemble
members, a sequential Gaussian simulation is used. A total of 25
random grid blocks are assigned a random value from the aforemen-
tioned probability distribution for each realization. Values between
these blocks are then estimated sequentially in a random order using
a correlation defined by a spherical variogram:

c ·Sph

�
hd
ar

�
¼
(
c ·

h
1.5hd

ar
−0.5

�
hd
ar

�
3
i
; if h≤ a

c; if h>a
; (1)

where hd is the lag distance representing the distance between
points, ar is the range in m beyond which there is no correlation,

and c is the sill (Deutsch and Journel, 1992). The sill represents the
global maximum semivariance. In this paper, a range of 1000 m and
a sill of one are used. The geostatistical package GeoStatPy for
Python is used to facilitate this process (Pyrcz et al., 2021).
An empirical relationship is used to calculate the corresponding

permeability, specifically

log10ðμhÞ ¼ ð−3.523 × 10−7Þ · ðϕ × 100Þ5
þ ð4.278 × 10−5Þ · ðϕ × 100Þ4
− ð1.723 × 10−3Þ · ðϕ × 100Þ3
þ ð1.896 × 10−2Þ · ðϕ × 100Þ2
þ 0.333 · ðϕ × 100Þ − 3.222; (2)

where μh is the hydraulic permeability in mD and ϕ is the porosity
(Willems et al., 2020). Finally, the porosity was limited to be within
0.01 and 0.40 using truncation. This is done to ensure that the
porosity values do not exceed the porosities seen in sandstone or
cause simulation problems within the reservoir forward model.
The injection well grid block, located on index ix ¼ 40 and
iy ¼ 70, and the production well grid block, located on ix ¼ 100

and iy ¼ 70, are limited to having a permeability between 800
and 1000 mD.

Reservoir simulation

This paper uses the reservoir simulation approach based on the
work by Khait and Voskov (2018) and Wang et al. (2020) and
uses the Delft Advanced Research Terra Simulator (DARTS). This
approach focuses on a two-phase thermal simulation with water,
considering its governing equations and nonlinear formulations. How-
ever, this paper considers a low enthalpy system, and for this reason,
the governing equations are adapted to account for a single phase.
The mass conservation equation of this system is described by

∂
∂t
ðϕρÞ − ∇ · ðρudÞ þ ρ ~q ¼ 0; (3)

and the energy conservation equation of this system is described by

∂
∂t
½ϕρUþð1−ϕÞUr� −∇ · ðhρudÞþ∇ · ðκ∇TÞþhρ ~q¼ 0;

(4)

where t represents the time in s, ρ represents the fluid density in
kmol=m3, represents the fluid source rate per unit volume in
m3=s, U indicates the specific fluid internal energy in kJ/kmol,
Ur indicates the rock internal energy in kJ=m3, h denotes the fluid
enthalpy in kJ/kmol, κ represents the thermal conduction in W/m/K,
and T represents the temperature in K.
Furthermore, the fluid Darcy velocity ud in m/s, considering the

gravity effects, can be defined as

ud ¼ K
1

μ
ð∇P − γ∇DÞ; (5)

where K represents the permeability tensor of the media in mD, μ
represents the fluid viscosity in Pa·s, P denotes the pressure in bars,
γ represents the specific weight in N=m3, and D signifies the depth
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in m. The rock compressibility can be incorporated into the porosity
using ϕ ¼ ϕ0ð1þ crðP − PrefÞÞ, where ϕ0 represents the initial
porosity, cr represents the compressibility of the porous media in
1/bars, and Pref is the reference pressure in bars.
In a geothermal system wherein the only component is water,

pressure and enthalpy are considered as the primary variables
in DARTS. To linearize the nonlinear system of equations, the
Newton-Raphson method is adopted. The resulting system is
expressed as

JðωkÞðωkþ1 − ωkÞ þ rðωkÞ ¼ 0; (6)

where JðωkÞ is the Jacobian matrix and rðωkÞ is the residual, with k
defining the iteration. The state variables of enthalpy and pressure are
encapsulated and represented by ω. An initial time step of 10−3 days
is used, with a maximum time step of 365 days, with the time step
increasing by eight times as long as the solution is converging for the
duration of the reservoir simulation.
To improve the computational process and flexibility of the

nonlinear formulation, the operator-based linearization technique is
used, as proposed by Khait and Voskov (2017). In this approach, the
discretized mass and energy conservation equations are transformed
into an operator form, separating the space- and state-dependent
properties. The state-dependent operators are then parameterized
in the space of nonlinear variables adaptively using a limited number
of supporting points. This improves the speed and robustness of
highly nonlinear reservoir simulation.

Rock-physics model

To model the EM response from the rock properties and dynamic
changes, a rock-physics relationship is required, linking the reser-
voir parameters to conductivity. As hot water is extracted from the
geothermal reservoir and cold water is injected, the temperature
within the reservoir decreases. Over time, this forms a cold plume
that progresses from the injection well to the production well.
Multiple studies have been conducted on measuring the change

in conductivity as the temperature of a brine-saturated rock sample
changes with varying degrees of complexity. Ucok et al. (1980) de-
scribe an empirical relationship linking the temperature and ions
within the brine with conductivity, and Sen and Goode (1992) de-
rive an empirical relationship that incorporates the inclusion of clay
minerals.
For simplicity, however, the approach by Dresser Industries (1982)

is used, which links salt concentration and temperature to electrical
conductivity. Differences in the estimated conductivities among the
previously mentioned methods are generally small, with the excep-
tion that the inclusion of clay minerals leads to a reduction in the
change in conductivity with varying temperatures. In addition, the
surface conductivity of clay is temperature dependent (Hayley
et al., 2007). However, this surface conductivity contribution would
be small for a reservoir filled with brine, as described in this paper.
Assuming that the main electrical conductive feature in the res-

ervoir rock is the pore fluid, Archie’s formula is used to determine
the conductivity of the rock:

σ ¼ σwϕ
msnw; (7)

where σ is the formation conductivity in S/m and σw is the brine
conductivity in S. The saturation sw is set to one as only one fluid

is considered. Moreover, m and n are Archie’s parameters and de-
pend on the rock’s compaction and saturation (Archie, 1942).
The brine conductivity σw can be determined by the empirical

relationship:

σw ¼
��

0.0123þ 3647.5

C0.955
w

�
82

1.8T þ 39

�
−1
; (8)

where Cw is the salt concentration in ppm (Dresser Industries,
1982). The salt concentration is assumed to remain constant at
100,000 ppm and the temperature is retrieved from the reservoir
simulation to determine the conductivity at each grid cell.
If core sections are available, the relationship between tempera-

ture and conductivity also can be experimentally determined
(Hermans et al., 2014). This would allow for a model that better
matches the conductivity change of a reservoir with changing tem-
perature.

EM modeling

This paper uses the emg3d 3D EM modeler, which is a Python
package specifically suited for diffusion EM modeling and vali-
dated using other EM codes (Werthmüller et al., 2019, 2021).
The response from the EM method is governed by Maxwell’s equa-
tions (Stratton, 2015). In the presence of a current source Js and
under the diffusive field approximation, Maxwell’s equations can
be given as

∂tBðx; tÞþ∇×Eðx; tÞ¼ 0; ∇×Hðx; tÞ−Jcðx; tÞ¼ Jsðx; tÞ;
(9)

where Js is in A, Eðx; tÞ is the electrical field in V/m, and Hðx; tÞ is
the magnetic field in A/m (Werthmüller et al., 2019).
The conduction current is defined such that it obeys Ohm’s

law as

Jc ¼ σðxÞEðx; tÞ; (10)

and the magnetic induction is defined as

Bðx; tÞ ¼ μ0Hðx; tÞ; (11)

where μ0 is the vacuum magnetic permeability in H/m.
In this paper, the relative permeability μr is set to one. Eliminat-

ing the magnetic field from equation 9 yields the second-order
parabolic system of equations given as

σ∂tEþ ∇ × μ−10 ∇ × E ¼ −∂tJs: (12)

Using the Fourier transform, the electrical field Eðx; tÞ can be
brought into the frequency domain, yielding

iωσÊþ ∇ × μ−10 ð∇ × ÊÞ ¼ −iωĴs: (13)

Finally, a perfectly electrically conducting boundary can be used
such that n × E ¼ 0 and n · H ¼ 0, where n is the outward normal
vector on the boundary of the computational domain.
The current source Js is a 1 m long 1 A electric dipole, and the

conductivity model σðxÞ is retrieved from the reservoir model. The
electric field E is the only unknown that has to be solved

Assimilation of production and EM data M229
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(Werthmüller et al., 2019). Finally, a sampling operator Sð·Þ that
samples the electric field E at receiver locations to obtain the
observed data dobs is given by

dobs ¼ jSðxs; xrÞj; (14)

where xs represents the source locations and xr represents the receiver
locations. The modulus is taken to obtain the amplitude of the electric
field E and to avoid complex numbers in the measured data.
The EM forward model requires a 3D grid, whereas the conduc-

tivity model has two dimensions. For compatibility, the conductivity
model is extrapolated into a 3D grid. Buffer cells are added surround-
ing the original 2D model and given a conductivity of 1 S/m. The
number of buffer cells in each direction is calculated based on the
frequency and the aforementioned buffer cell conductivity. This en-
sures that the conductivity model is at least one wavelength from the
boundary to avoid boundary effects due to boundary conditions.

Data assimilation scheme

The ensemble smoother with multiple data assimilation (ES-
MDA) method (Emerick and Reynolds, 2013) is used in this paper
to improve model predictions by incorporating observed data. ES-
MDA uses an ensemble of models to capture inherent uncertainty,
advancing them in time using model equations, reflecting the range
of potential outcomes due to uncertainty in the initial conditions and
model parameters. This approach focuses on parameter estimation
leveraging the stability of reservoir simulation models in relation to
rock reservoir fields.
To update the model, the ES-MDA method considers several fac-

tors. These include the discrepancy between the predicted and mea-
sured data, the cross-covariance between the model parameters and
the predicted data, the autocovariance of the predicted data, and the
covariance matrix of the observed measurement orders.
This process constitutes the ensemble smoother component of

ES-MDA. However, this approach can be seen as equivalent to a
single Gauss-Newton iteration. To potentially achieve better conver-
gence, ES-MDA incorporates multiple data assimilation by inflat-
ing the covariance matrix associated with measurement errors. By
performing several smaller iterations instead of one large correction,
the method aims to refine the parameter estimation further, ulti-
mately improving the convergence of the assimilation process.
The ES-MDA analysis equation is given by

ma
j ¼ mf

j þ Cf
MDðCf

DD þ αiCDÞ−1ðduc;j − dfj Þ; (15)

for j ¼ 1; 2; : : : ; Ne, where Ne is the number of ensemble realiza-
tions. Moreover, CMD represents the cross-covariance matrix of the
model parameters m and the predicted data d, CDD is the Nd × Nd

autocovariance matrix of the predicted data with Nd representing
the number of observed data, and CD is the Nd × Nd covariance
matrix of measurement errors. Here, αi is the magnitude of pertur-
bation applied to the observations. The superscripts a and f are the
analysis and forecast, respectively. In this paper, porosity is taken as
the model parameter, and temperature and pressure at the produc-
tion well and vertical electric field amplitude at the receiver are
taken as the observed data. The vertical electric field amplitude
measurements, in particular, are also scaled by a constant to bring
them closer to the magnitude of the other production well mea-
surements.

Finally, duc is defined as

duc ¼ dobs þ
ffiffiffiffi
αi

p
C1=2

D Zd; (16)

where dobs is the observed data and Zd is an Nd × Ne matrix
composed of random samples drawn from a normal Gaussian
distribution. It has to satisfy the condition that

PNa
i¼1ð1=αiÞ ¼ 1,

but it is otherwise a user-set parameter.
The ES-MDA algorithm can be summarized as follows:

1) Determine the number of data assimilations Na and the
coefficients αi for i ¼ 1; : : : ; Na.

2) For each data assimilation iteration i ¼ 1 to Na:

• Run the entire ensemble from time 0.
• Perturb the observations with equation 16.
• Update the ensemble using equation 15.

RESULTS

Ensemble moments and EM survey

To measure the subtle changes in temperature associated with
geothermal extraction within the reservoir, the receivers have to
be placed at reservoir depth (Eltayieb et al., 2023). Placing receivers
in boreholes at the desired depth is a costly solution. Therefore,
careful consideration must be given to receiver placement to maxi-
mize the benefits from each observation well. Because transmitting
current to reservoir depth is difficult, the sources are positioned on
the surface. Moreover, the receivers should have a 300 m distance
from any well with a steel casing to avoid interference with the EM
signal (Eltayieb et al., 2023). The casing should be made of highly
resistive material with no magnetization to avoid a significant im-
pact on the measurements.
A prior ensemble consisting of 100 realizations is used. One ad-

ditional ensemble member is used as the reference model. To sim-
ulate the conductivity field before and after injection, each ensemble
member was simulated for 25 years using the reservoir forward
model with an initial temperature of 348.15 K and an injection
temperature of 308.15 K, thermal conductivity of 2.1 W/m/K,
and an injection rate of 0.0579 m3=s. The injection well is placed
at x ¼ 800 and y ¼ 1400 m, and the production well is positioned
at x ¼ 2000 and y ¼ 1400 m.
Figure 1a and 1b shows the resulting conductivity field of the refer-

ence model before and after the simulation. Figure 1c and 1d shows
the conductivity and temperature difference. Here, it is seen that as
the cold front infiltrates the reservoir, it leaves an imprint in the con-
ductivity field of approximately 0–1 S/m. Because the pore fluid is
the primary conductor, the decrease in conductivity also reflects the
porosity.
The corresponding vertical electric field amplitudes are shown in

Figure 2a and 2b, respectively. The ratio of the two electrical fields
is shown in Figure 2c to highlight better the impact of conductivity
changes on the vertical electric field amplitude. The decreased con-
ductivity leads to a modified vertical electric field amplitude be-
cause the electric field E is allowed to penetrate deeper into the
reservoir due to reduced current loss in highly conductive zones.
Figure 3a and 3b shows the mean of the temperature field and

the corresponding mean vertical electric field amplitude of the
entire ensemble before and after the simulation, respectively.
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Figure 3c and 3d shows the standard deviation of the temperature
field and the corresponding standard deviation of the vertical elec-
tric field amplitude, respectively. Because the ensemble was gen-
erated using a Gaussian assumption, the mean and standard
deviation of the temperature field and vertical electrical field en-
semble also show a Gaussian pattern. In contrast, the reference
model shows a more complex flow of the cold front to the pro-
duction well.
The EM survey is positioned around the area with a changed

vertical electric field amplitude caused by the
cold front. Nine source locations were used at
the following x- and y-coordinates: (250, 400),
(250, 1400), (250, 2400), (850, 400), (850,
1400), (850, 2400), (1450, 400), (1450, 1400),
and (1450, 2400). All source locations were
placed on the surface at z = 0 m.
The observation well was placed at x = 1400 m

and y = 1400 m. Because a 2D model was used,
only one receiver was placed at z = −2050 m.
From Figures 3b and 3d, it can be seen that this
receiver location has a mean change of approx-
imately 10% due to the cold plume and a stan-
dard deviation of approximately 12% after a
25 year period. It is important to place the obser-
vation well and EM receiver in a location with a
large amount of deviation. Larger measurements
relative to the noise level increase the magnitude
of the model update within the data assimilation.
A schematic representation of the survey is
shown in Figure 4.
To further improve the impact of the observa-

tion well on uncertainty reduction, the observation
well could be equipped with a wider array of geo-
physical sensing equipment. In this case, a Baye-
sian optimal experimental design could be applied
to determine the optimal location of the observa-
tion well and sources for multiple geophysical
methods at once (Thibaut et al., 2022).

Data assimilation of diffusive EM data

The data assimilation training spanned 25 years
with a five year measurement interval, which
was chosen due to computational considerations
and measurement consistency. After the training
period, the simulations had a prediction period
of 25 years. Temperature and pressure measure-
ments were sampled at the production well during
the training period. The vertical electrical field
amplitude at the receiver was sampled at the same
five year intervals, scaled by multiplying it by
1014. This scaling is applied to give the EM
observations the same order of magnitude as the
well observations. The change over time of all
the observations is also used, calculated by
taking the change in observations divided by
the change in time between consecutive sampling
times.
Reference production well observations were

given a uniform noise of 3% based on the origi-

nal observations, which are typically found in the literature (Wu
et al., 2021). For temperature, this percentage is applied to degrees
Celsius rather than Kelvin. Due to the depth of the EM receiver, the
measurements are unlikely to be significantly affected by anthropo-
genic noise. Moreover, due to the relatively short distance between
the source and the receiver, the measurements can be kept above the
noise floor. To still account for other noise sources, such as survey
repeatability errors, the EM measurements were given a uniform
noise of 1% based on the EM measurements (Eltayieb et al., 2023).

Figure 2. Vertical electric field amplitude of both conductivity fields of Figure 1, with
the source placed at x ¼ 1400 and y ¼ 1400. (a) The vertical electric field amplitude in
V/m at year 0, (b) the electric field amplitude in V/m at year 25, and (c) the ratio between
the vertical electric field amplitude before and after 25 years.

Figure 1. Changes in the conductivity field and temperature field over time. (a) The
conductivity field at year 0 in S/m, (b) the conductivity field at year 25 in S/m,
(c) the difference between both conductivity fields in S/m, and (d) the temperature field
at year 25 in K. The temperature field also has the injection well to the left marked with
purple and the production well to the right marked with red.
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The data assimilation process is comprised of six steps, with
the αi values being 1/0.02, 1/0.03, 1/0.1, 1/0.15, 1/0.3, and
1/0.4. This causes each subsequent data assimilation iteration
to have a smaller covariance matrix, allowing for increasingly
larger corrections.
Three different scenarios were tested: one wherein only produc-

tion well observations were used, one wherein the production well
and EM observations were used, and one wherein only the EM
observations were used. The respective temperature results at the
production well are shown in Figure 5a–5c.
The integration of the EM observations has significantly re-

duced the uncertainty of the temperature at the production well.
However, the accuracy has decreased. The result using only well
observations barely converged when compared with the prior
ensemble. This is likely due to the noise level in the well data
being close to the change in the temperature at the production well
during the training period. To demonstrate the effect of more im-
pactful well measurements, two additional simulations were per-
formed using a production well noise level of 0.1%, which allows
for the observations to be below the noise level. The results for
scenarios using only production well observations and production
well and EM observations are shown in Figure 5d and 5e.
Figure 5d shows a significant reduction in uncertainty, better
alignment with observations, and increased accuracy. In contrast,
Figure 5e is less accurate and shows a smaller reduction in uncer-
tainty. This is likely due to the larger number of EM observations
compared with well measurements, causing ES-MDA to prioritize
the EM observations. Nevertheless, an improvement is observed
compared with the prior ensemble and the results shown in Fig-
ure 5b. Finally, ES-MDA has not fully converged to the expected
noise level within the training period. This is likely due to the low
number of observations during the training period, making it dif-
ficult for ES-MDA to converge.
The mean of the posterior temperature field for all three scenarios

is shown in Figure 6a–6c, and the standard deviation is shown in

Figure 6d–6f. The difference between the posterior mean and the
reference temperature field is shown in Figure 6g–6i. The root mean
square of the difference between the mean and the reference temper-
ature field for the three cases is 3.62, 2.10, and 2.49.
Likewise, the same figures using 0.1% production well noise are

shown in Figure 7a and 7d for the mean temperature field, Figure 7b
and 7e for the standard deviation, and Figure 7c and 7f for the differ-
ence between the posterior mean and the reference temperature
field. The root mean square of the difference between the mean
and the reference temperature field was 3.55 for the case when using
only well observations and 1.88 when the well and EM observations
were used.
The temperature plume prediction is significantly improved

by the inclusion of EM observations. Moreover, the standard
deviation is also significantly reduced. Using well and EM
observations gives additional improvements to the mean and
standard deviation when compared with the scenario using only

Figure 3. (a) Mean temperature field in K and
(b) vertical electric field amplitude in V/m of
the entire ensemble. (c) The standard deviation
of the temperature field in K and (d) vertical elec-
tric field amplitude in V/m of the entire ensemble.
The source was placed at x ¼ 1400 and y ¼ 1400,
and the plots were taken at year 25.

Figure 4. Schematic representation of the survey setup. Indicated
are the geothermal doublet, observation well with the EM receiver,
and multiple surface EM sources.
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EM observations. Most importantly, the moments of the temper-
ature plume when EM observations are used resemble the cold
plume migration of the reference model. In addition, the plots us-
ing 0.1% production well noise demonstrate the limited effect of
production well observations on the entire temperature field. De-
spite the significant decrease in noise, the temperature field re-
mains similar, with only the plots using the production well
and EM observations showing some marginal differences.
Results for the mean of the porosity field for all three scenarios

are shown in Figure 8a–8c, and the standard deviation is shown in
Figure 8d–8f. Finally, the absolute difference between the mean and
reference porosity field is shown in Figure 8g–8i. The root mean
square of the difference between the mean and reference porosity
field for the three cases is 0.07, 0.08, and 0.08. Due to the porosity
field plots for the 0.1% scenarios being largely the same, they have
been omitted for brevity.
The mean of the porosity field is more heterogeneous with the in-

clusion of EM observations. Moreover, a region of low porosity is
formed in the center and bottom-left quadrant of the porosity field.
This region also has a relatively low standard deviation. This forces
the cold front to migrate in a way similar to the reference model.
Notably, EM observations do not significantly improve the difference
between the mean and reference porosity field when compared with
the situation wherein only well observations are used. However, they
do cause the porosity field to have features that cause the temperature
field to migrate in a way similar to the reference model. The porosity
field moments using only the observation well measurements closely
match the moments used to create the ensemble.

The results indicate that EM observations are able to resolve
complex cold plume behavior accurately. Moreover, they are better
able to reduce uncertainty within the reservoir when compared with
relying on production well observations alone. The inclusion of
well and EM observations further reduces the uncertainty even
more. These results indicate that EM observations could be useful
in reservoirs where the cold flume migration shows great variability.
This could be especially useful in complex reservoirs such as fluvial
systems.

DISCUSSION

The integration of EM observations into the data assimilation
process significantly reduced the uncertainty and increased the ac-
curacy of the temperature predictions of the reservoir. Moreover,
they also decrease the uncertainty at the production well. These re-
sults indicate that EM observations can provide valuable supple-
mentary data, improving the accuracy of the temperature field
predictions in geothermal reservoirs. The integration of these obser-
vations helped to capture the cold plume migration better, highlight-
ing their sensitivity to temperature-induced conductivity changes
even at the simulated depth of 2 km. The simulations with lower
noise levels in well data demonstrated that more precise well
measurements could further enhance the assimilation process,
though the abundance of EM data requires careful balancing to
avoid prioritization issues. Finally, EM observations seem to mainly
improve the accuracy of the temperature predictions of the entire
reservoir rather than the localized improvements at the well seen

Figure 5. Data assimilation results using either the production well observations, well and EM observations, or only EM observations. Results
for (a) temperature at the production well using only well observations, (b) using well and EM observations, and (c) using only EM obser-
vations. Results (d) using 0.1% for the well data noise data using only the well observations and (e) the well and EM observations are also
shown. The green segment of the production well temperature plot represents the data assimilation training time, and the white area represents
the prediction time. The gray lines represent the prior ensemble, and the blue lines represent the ensemble after data assimilation. The black line
represents the reference model observation, and the dotted yellow line represents the ensemble mean.
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from including observation well data. The enhancement of temper-
ature field predictions is particularly important in complex geologic
settings where traditional well data may be insufficient. The im-
proved resolution of cold plume behavior and reduced uncertainty
can lead to more efficient and effective geothermal energy extrac-
tion and management.
The largest limitation of the study is the use of Gaussian 2D

models, which do not account for vertical heterogeneity or varia-
tions in temperature and conductivity that could influence the re-
sults. ES-MDA has become the state of the art for data assimilation
for history matching in recent years (Toma and Sebacher, 2022).
However, the requirement for Gaussian ensemble members in the
ES-MDA method restricts the complexity and realism of the res-
ervoir models (Emerick and Reynolds, 2013). The study also did
not fully explore the impact of the overburden’s conductivity,
which could affect the data assimilation process as well. Various
methods exist to improve the complexity and accuracy of the
models used. Truncated Gaussian can be used to increase the com-
plexity of the models further while maintaining Gaussianity
(Astrakova and Oliver, 2014). Moreover, deep-learning methods
such as generative adversarial networks can be used to reparame-

terize non-Gaussian models into a low-dimensional space, which
allows ES-MDA to perform model updates (Bao et al., 2020).
Relaxing the Gaussian requirement would allow for alternative
methods to generate the ensemble, such as multipoint geostatis-
tics, which would enable more complex and realistic models, such
as channelized reservoirs (Mariethoz and Caers, 2014). Finally,
alternative methods for data assimilation exist in the literature,
such as adjoint-based data assimilation or gradual deformation,
which are able to function on non-Gaussian models (Benoit
et al., 2021; Tian et al., 2024).
The results in this paper demonstrate the potential of diffusive

EM to monitor deep geothermal reservoirs. This allows for it to
be a potential alternative to ERT or magnetotellurics, which have
been used to monitor geothermal reservoirs in the past but struggle
to monitor deeper geothermal reservoirs. Future studies should ex-
plore the use of more realistic 3D models to capture vertical hetero-
geneity. Moreover, research is required to determine better
strategies for data assimilation to allow for more realistic geologies
for geothermal reservoirs. Finally, the inclusion of other geophysi-
cal methods could be experimented with to enhance the predictions
of geothermal reservoirs further.

Figure 6. Data assimilation results using the production well observations, the well and EM observations, or only the EM observations. (a–c)
Mean temperature field, (d–f) standard deviation of the temperature field of the entire ensemble, and (g–i) difference between the mean of the
ensemble and the reference model. All plots are taken at year 50.
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Figure 7. Data assimilation results using either the production well observations or the well and EM observations using 0.1% production well
noise. (a and d) Mean temperature field, (b and e) the standard deviation of the temperature field of the entire ensemble, and (c and f) the
difference between the mean of the ensemble and reference model. All plots are taken at year 50.

Figure 8. Data assimilation results using the production well observations, well and EM observations, or only EM observations.
(a–c) Mean porosity field, (d–f) standard deviation of the porosity field of the entire ensemble, and (g–i) absolute difference between
the mean of the ensemble and reference model. All plots are taken at year 50.
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CONCLUSION

We have demonstrated the effect of integrating EM observation
data into a data assimilation scheme for geothermal reservoir fore-
casting of the temperature distribution in a numerical example.
The numerical experiment results have demonstrated that the
change in conductivity caused by the cold water plume is substan-
tially sufficient to be effectively quantified using diffusive EM
measurements in a borehole with several electric current source
locations on the ground surface. Moreover, by incorporating
the temporal evolution of the vertical electric field amplitude into
the data assimilation scheme, we have observed improvements in
the accuracy of the temperature forecasts. Specifically, the incor-
poration of EM data allows for better mapping of the spatial
temperature distribution, which, when combined with the more
localized information from the production well observations, sig-
nificantly reduces the uncertainty in the reservoir. Consequently,
this method holds the potential to provide more precise constraints
on the lifetime predictions of geothermal doublets and monitoring
of geothermal reservoirs. To further explore the viability of using
EM observations and applicability for real-life data, more research
in determining a suitable data assimilation strategy and represen-
tative ensemble is required.
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