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Abstract
Powerful new machine learning models in biomedicine are
being developed constantly, further hastened by the ad-
vent of transformer-based architectures. These advanced
systems can be used for various applications, from diag-
nostics to assessing drug effectiveness. Many of these are
fundamentally cell classification problems. Models like
Geneformer [1] use gene expression data to learn how to
distinguish between these cell classes. This information
is usually obtained through single-cell RNA sequencing.
However, the alternative source, bulk RNA sequencing,
offers some advantages that make exploring the feasibil-
ity of using it to train Geneformer enticing, such as its
greater availability and lower cost.

In this paper, pseudo-bulk datasets are created from
single-cell data by aggregation of gene expressions. A
method to generate synthetic single-cell-like data from a
bulk dataset is used to create new datasets. Some re-
main purely synthetic, while others are mixed with real
single-cell data. Geneformer is fine-tuned on all gener-
ated datasets separately, and its performance in a cell
classification problem is measured. It is shown that the
more a dataset resembles real single-cell data, the better
the model’s performance. Using bulk data to fine-tune
Geneformer is proven to be infeasible. The synthetic data
fails to effectively fine-tune the model and is proven to
not have a meaningful impact when added to a single-
cell dataset. It is concluded that the generated synthetic
data is of too low quality and that alternative generation
methods should be explored.

1 Introduction
Using machine learning models in biomedicine is often a
major challenge to researchers, but has attracted signifi-
cant attention due to its potential to aid in a large variety
of tasks, from patient diagnosis to drug discovery [2, 3].
In recent years, models utilizing the transformer archi-
tecture [4] have been developed and used successfully in
various biomedical applications, such as diagnostics [5].
Many of the tasks these models can be used for include
the fundamental problem of cell classification. For exam-
ple, the effectiveness of a novel drug can be assessed by
verifying whether the cells to which it was applied have
been classified as "sensitive" or "resistant" [6].

Geneformer [1] is a recently published model based on
the transformer architecture that can be used effectively
in predicting cell labels. It comprises 6 transformer layers
for pre-training on a large, general dataset, and one addi-
tional layer for prediction. Problem-specific data is used
only to fine-tune the pre-trained model, meaning Gene-
former does not need to be fully re-trained for each task,
unlike earlier models [7, 8]. The pre-trained dataset and
data used to fine-tune the model consist of gene expres-
sion values provided per cell. In cell classification prob-
lems, Geneformer learns to distinguish between classes

based on the differences in their gene expressions. The
data used to fine-tune Geneformer thus greatly influences
its effectiveness. Given the model’s wide potential appli-
cability, it is important to explore its limitations, particu-
larly concerning how the characteristics of the fine-tuning
dataset influence its prediction performance.

Gene expression data is obtained through RNA se-
quencing (RNA-seq,) during which the abundance of re-
spective RNA molecules is measured in a cell or tissue.
Based on this information, relative expression values can
be assigned to the corresponding genes [9]. Two major
methods of gathering this data are single-cell RNA-seq
(scRNA-seq) and bulk RNA-seq. In the former, gene ex-
pression information is obtained for each cell individually,
while the latter provides it for groups of cells. Figure 1
illustrates the difference between these approaches. The
method used to obtain gene expression data thus signif-
icantly impacts its characteristics and applicability. For
example, as data from bulk RNA-seq is available only
for groups and not individual cells, it is unlikely that it
could be used to effectively fine-tune Geneformer for cell
classification, a task requiring the separation of cells.

Figure 1: An illustrative explanation of the differ-
ence between the gene expression data obtained through
scRNA-seq and bulk RNA-seq. In the former, cells are
treated individually, and expressions are provided for each
one separately. In the latter, the expressions are pro-
vided for a group of cells together, obscuring their het-
erogeneity. This figure has been designed using images
from Flaticon.com.

While it is probable that Geneformer fine-tuned on
bulk data would not perform acceptably in cell classifi-
cation problems, there are reasons why the feasibility of
using it for this task instead of or together with single-
cell data should be explored. Bulk data is generally avail-
able for a larger variety of problems and acquiring it is
less labor-intensive and cheaper than single-cell data [10].
Measuring the impact of using it to fine-tune Geneformer
on the model’s prediction performance could shed light
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on the characteristics that fine-tuning datasets need for
Geneformer to perform well. This information would be
valuable for the model’s future applications, especially if
fine-tuning on some bulk datasets was shown not to im-
pact the prediction performance negatively to a signifi-
cant degree. Furthermore, methods to extract useful, not
immediately available information from bulk data exist,
for example, bulk deconvolution, which can reveal the
abundance of different cell types within a bulk sample
[11]. While the outcomes of bulk deconvolution are not
directly useful for this research, their existence indicates
that bulk data has the potential to be processed to yield
a dataset more suitable for fine-tuning Geneformer.

This research aims to first, explore the usability of
bulk datasets for fine-tuning Geneformer for cell classi-
fication and second, to verify the feasibility of process-
ing such datasets to yield data that the model can more
effectively be fine-tuned on. Of additional interest to
the former goal is whether the "bulkiness" of the data,
defined as the average number of cells per data point
in the dataset, influences its usability. As the bulkiness
decreases, the dataset resembles a single-cell one more.
This leads to the hypothesis that the bulkier the data,
the worse Geneformer will perform in cell classification,
and that it will be possible to determine approximately
at what point said data becomes prohibitively ineffective.
To test this hypothesis, "pseudo-bulk" datasets are gen-
erated from a single-cell dataset by aggregating cells into
groups of varying sizes. This yields several datasets of
varying bulkiness. Geneformer is then fine-tuned on each
individually and its prediction performance in cell clas-
sification is measured. The results of these experiments
should yield enough evidence to either confirm or refute
the hypothesis. In addition, this information ought to
provide substantial insight into Geneformer’s limitations,
particularly regarding the quantity and quality of fine-
tuning data. To address the second aim of this research, a
simple probabilistic method to generate synthetic single-
cell data from a bulk dataset is implemented. It is used
in two separate experiments: firstly, Geneformer is fine-
tuned on it alone, and secondly, the synthetic dataset is
added to a pure single-cell one and Geneformer is fine-
tuned on both. Analyzing the model’s performance in
predicting cell labels in a pure single-cell dataset should
verify whether synthesizing data from bulk datasets can
feasibly improve Geneformer’s performance.

2 Methodology

2.1 Data and pre-processing
All data used in this research is taken from the Sci-
plex2 dataset [12]. Sciplex2 contains gene expression in-
formation from over 20,000 cells exposed to four differ-
ent drugs: BMS-345541 (label: BMS), Nutlin-3a (label:
Nutlin), suberoylanilide hydroxamic acid (label: SAHA),
and Dexamethasone (label: Dex) at eight doses. One of

these doses is 0.0; these cells are labeled "Untreated" and
constitute a fifth class for the label prediction problem.
Thus, the name of the drug used to treat a given cell or
a lack thereof, is used as the class label that Geneformer
is tasked with predicting.

The Sciplex2 dataset is pre-processed to remove cer-
tain cells and limit the number of genes in consideration.
Firstly, all cells that do not have a provided drug label or
dose are removed. Secondly, cells with fewer than 500 or
more than 12,000 total gene expression counts are filtered
out. Lastly, cells where more than half of all recorded ex-
pressions were of mitochondrial genes are also removed.
The resulting dataset is saved.

From the pre-processed dataset, a representative 10%
of cells are set aside as a benchmark/test dataset. The
rest becomes the training dataset and is used for aggre-
gation and synthetic generation. The test dataset is con-
stant and used for all evaluations.

2.2 Aggregation of single-cell into pseudo-
bulk data

Pseudo-bulk data is generated from the training single-
cell dataset by grouping cells and aggregating each group
into one data point. The average number of cells per
group is determined by the aggregation factor k, while
the actual sizes are randomized. The aggregation is per-
formed for k = {2, 5, 10, 25, 100}, yielding datasets
of increasing bulkiness. Three aggregation strategies are
explored separately: summing gene expressions, averag-
ing them with full knowledge of how many cells are in
a group, and averaging approximately through using k
instead of the real group size. Figure 2 illustrates the
difference between the sum and average approaches. In
all three cases, the grouping is done over cells within a
class and dose. The member cells are chosen randomly
within that subset of the data. Importantly, this ap-
proach does not provide any benefits in real applications
and is taken to give more insights about Geneformer and
supply more information relevant to the research.

Real group sizes: The number of cells taken into
a group is generated by taking a random value from a
Gaussian distribution centered at 0.0 with a standard
deviation of 0.25. The resulting value is interpreted as
a percentage change in group size from the base k. The
new group size is capped from the bottom at a single cell,
and from the top at 2k - 1 cells. The randomization of
group sizes is performed to simulate real bulk data, where
the exact number of cells within a sample is known only
approximately.

Aggregation with summing: Gene expression data
collected through bulk sequencing is comparable to a sum
of the gene expressions of the individual cells. As such,
aggregating single-cell data by summing the gene expres-
sions yields pseudo-bulk data that resembles real bulk
data.

Aggregation with approximate averaging: While
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Figure 2: The main difference between the aggrega-
tion approaches. In the top half, aggregation is per-
formed by summing the expressions, yielding a large
"cell" with expressions from all component cells. The bot-
tom half shows averaging aggregation, giving a normal-
sized "cell". This figure has been designed using images
from Flaticon.com.

summing gene expressions creates realistic pseudo-bulk
data, the aggregated dataset will have gene expression
values significantly higher than the single-cell dataset,
which may negatively influence the model’s prediction
performance. An alternative approach is to average the
gene expressions within a group. As noted before, the
precise number of cells comprising a bulk data point is
unknown. To simulate that, the aggregation factor is
used instead of the group size when averaging, resulting
in only approximate averages.

Aggregation with exact averaging: The final ex-
plored aggregation method also utilizes averaging of the
gene expressions but assumes that the number of cells per
group is known precisely. Thus, the resulting averages
are exact. Given that this information is not realistically
available, this approach is intended to be a hypothetical
best-case scenario for averaging.

2.3 Generating synthetic single-cell data
from a bulk dataset

The bulk dataset is used as a basis for the synthetic
data generator. It is first created by aggregating (with
a known average) the entire single-cell training set into
a single data point per label per dose, meaning seven
points for each of the four drugs, and one for the un-
treated cells. Each of these is used as the means for
the generator. From pure single-cell data, the covariance
matrices are calculated per label and dose, and the max
expression values for each gene are saved. The resulting
covariance matrices are extremely large (10001x10001),
so only the variances of the gene expressions are kept.

This certainly impaired the quality of generated synthetic
data but made generating many more data points within
a reasonable time possible. A synthetic cell is gener-
ated by sampling each gene expression from a Gaussian
centered on the bulk point’s value, and with the corre-
sponding variance. If the sampled value is smaller than
zero or larger than the saved max value, it is resampled.
This process is repeated several times for each bulk data
point. Figure 3 provides an overview of this procedure.

Figure 3: An overview of the synthetic data generation
process. Bulk RNA-seq data is used directly as a base for
the synthetic cells, while single-cell data provides statis-
tical metrics for the generator. The process is repeated a
desired number of times. This figure has been designed
using images from Flaticon.com.

2.4 Experimental setup and procedure
All experiments follow a similar structure. Firstly, the
pure single-cell dataset is prepared by either aggregat-
ing into pseudo-bulk or generating synthetic data. One
in nine (11.1%) data points are marked as the valida-
tion set, while the rest are marked as the training set.
The test set put aside during pre-processing is used to
test the model’s performance. Geneformer is fine-tuned
on the training data, with the validation set being used
for the model’s built-in k-fold cross-validation. The fine-
tuning shifts Geneformer’s attention toward genes that
more effectively differentiate the cell classes, which in-
creases the prediction performance. A confusion matrix
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is generated, and the overall accuracy and F1 score are
computed. Figure 4 outlines this approach.

Figure 4: A simple scheme of the experimental setup.
Original single-cell data is pre-processed and split into a
test/benchmark set and training set, which can be further
processed. The latter is used to fine-tune Geneformer,
while the former evaluates its performance. This figure
has been designed using images from Flaticon.com.

3 Results
Geneformer is fine-tuned on a number of generated datasets
and its prediction performance is measured on a single-
cell test set. The fine-tuning datasets are created through
either the process of aggregating single-cell data into
pseudo-bulk data points, or generating synthetic single-
cell-like data. Some generated synthetic datasets are also
combined with the single-cell training set and used for
fine-tuning together.

3.1 Pseudo-bulk data generated by ag-
gregating single-cell information

Figures 5 and 6 show the accuracies and F1-scores, re-
spectively, of the evaluation of Geneformer for the full
five-label cell classification problem. The model was fine-
tuned on datasets generated through the three aggrega-
tion methods: summing, exact averaging, and approxi-
mate averaging for different aggregation factor values.

A clear relationship between the performance met-
rics and the bulkiness of the fine-tuning dataset can be
observed; the bulkier the data, the worse Geneformer

performs. This holds for all three aggregation methods.
This provides strong evidence in support of the hypoth-
esis. As both the accuracy and F1-score drop below 0.7
already for a k=5, it appears likely that bulk data in
general is not suitable for fine-tuning Geneformer for cell
classification. Similar results for all aggregation factors
have been obtained in different runs with varied hyper-
parameter configurations.

Another piece of evidence against the feasibility of
effectively using bulk data to fine-tune Geneformer is
the validation metrics recorded during the model’s fine-
tuning. Especially for the two most bulky datasets, the
validation accuracies and F1-scores often exceeded 0.9.
A follow-up experiment was conducted in which the val-
idation set was boosted with some single-cell data. This
was intended to verify whether the model could be made
to perform better, even if the training set remained fully
pseudo-bulk. The resulting performance metrics did not
diverge significantly from the baseline, supporting the
hypothesis.

For all used aggregation factors, all three differently-
aggregated pseudo-bulk datasets tended to yield very
similar performance metrics. Exceptions included the ap-
proximate average data set for k=10, which performed
noticeably better than the others in terms of both the ac-
curacy and F1-score. This is likely to have been caused
by the inherent randomness of the fine-tuning process
and does not provide evidence in support of this par-
ticular aggregation approach over the alternatives. The
results do prove that there is no meaningful difference
in terms of the type of pseudo-bulk data used, which in-
dicates that Geneformer is resilient against variations in
overall magnitude of the gene expressions between the
training and test sets.

3.2 Synthetic single-cell data generated
from a bulk dataset

The primary experiments conducted with synthetic single-
cell data were first using a purely synthetic fine-tuning
dataset, and second, adding some synthetic data points
to real single-cell data to verify whether such padding
could affect Geneformer’s performance in cell classifica-
tion.

Figure 7 shows the confusion matrix of Geneformer
fine-tuned with a purely synthetic, two-label dataset (SAHA
and Untreated.) Both of the accuracies exceed 0.8, show-
ing that the synthetic data can feasibly be used to effec-
tively fine-tune Geneformer. Further experiments with
a full five-label dataset, however, resulted in an average
accuracy and F1-score of no more than 0.45 each, pro-
viding strong evidence against the general usability of
the generated synthetic data. Overall, it appears that
synthesizing all of the fine-tuning data has some poten-
tial for simpler cell classification problems, but further
work on the generation method is needed to expand its
applicability to more complex problems.
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Figure 5: The measured average accuracy of Gene-
former over all five labels. "Sum accuracy" refers to
the accuracy of the model fine-tuned on data aggregated
by summing. "Avg accuracy" refers to the accuracy
when fine-tuned on known-average aggregated data, while
"Uavg accuracy" refers to the unknown-average aggre-
gated case.

The final experiment was conducted by adding 700
synthetic data points for the BMS (100 per dose) and
Untreated classes. The model was fine-tuned on the com-
bined dataset and each class’s accuracy was compared to
the baseline outcomes of fine-tuning Geneformer on pure
single-cell data. Table 1 shows these accuracies for four
synthetically-augmented datasets and the pure single-cell
one (top row.) While Dex and SAHA appear to have not
been meaningfully affected in any run of the experiment,
more noticeable variance is observed in the accuracies of
BMS, Untreated, and, interestingly, Nutlin. The addi-
tion of synthetic data points tended to slightly increase
the accuracy of BMS, while Untreated’s was worse than
the baseline in all cases. Nutlin’s accuracy varied the
most, from dropping to 0.68 to growing to 0.81. These re-
sults show that using synthetic data together with single-
cell does not reliably or meaningfully improve the model’s
performance for any class. This could be caused by the
low quality of the synthetic data, or influenced by the sig-
nificant overlap between much of the Nutlin, BMS, and
Untreated classes.

4 Discussion
The experimental outcomes strongly support the hypoth-
esis that using bulky data to fine-tune Geneformer is not
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Figure 6: The measured F1-score of Geneformer over
all five labels. "Sum F1-score" refers to the summing
aggregated fine-tuning data, "Avg F1-score" refers to the
known-average aggregated data, while "Uavg F1-score"
refers to the unknown-average aggregated data.

Untreated Nutlin Dex BMS SAHA

0.68 0.73 0.94 0.70 0.92
0.62 0.68 0.93 0.66 0.88
0.64 0.72 0.94 0.73 0.90
0.57 0.81 0.92 0.73 0.93
0.61 0.79 0.94 0.76 0.91

Table 1: Table showing the accuracies of Geneformer’s
prediction for each cell class for five datasets. The first
row contains the metrics obtained by fine-tuning Gene-
former on single-cell data, while the other four are sep-
arate synthetically-padded datasets. Notably, the model’s
overall performance is never meaningfully better than the
baseline.

feasible. Further, it is shown that while synthetic data
generation has some potential in small, simple problems,
like a two-label cell classification, it fails to generate data
that can effectively fine-tune Geneformer for more com-
plex tasks. Additional topics that require analysis are
the limitations of the chosen approach to the topic, the
used data, and the model’s own restrictions.

Bulky dataset fine-tuning: Across all experiments
where Geneformer was fine-tuned on aggregated pseudo-
bulk data, a significant negative impact of the dataset’s
bulkiness on the model’s prediction performance was ob-
served. Given the extensive evidence, as well as the con-
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Figure 7: The confusion matrix between SAHA and Un-
treated of Geneformer fine-tuned on synthetic single-cell
data only.

text of the chosen problem being cell label prediction, the
hypothesis that bulky RNA-seq data is generally not a
feasible choice of fine-tuning dataset for Geneformer can
be conclusively confirmed.

Synthetic data generation: The generated syn-
thetic data has shown minor promise in very simple ap-
plications, like a two-label classification problem, but
did not deliver acceptable results in more complex tasks.
Furthermore, adding such data to a single-cell dataset in
an attempt to improve Geneformer’s performance failed
to affect it in a meaningful or consistent manner. One
reason for these results could be the low quality of the
synthetic data due to the chosen generation method. To
conclusively determine whether the approach of synthe-
sizing single-cell data from a bulk dataset is a dead-end,
more advanced generation methods should be attempted.
A good first future attempt could be to utilize the entire
covariance matrices of the gene expression data, and not
just the variances. The choice to only keep the latter
made it feasible to generate a sufficient number of data
points, but necessarily broke the inter-gene expression
relationships. This has probably significantly impaired
Geneformer’s ability to successfully use this data, as it
relies on these co-dependencies for making predictions.

This avenue of research does not appear to be mean-
ingfully explored in literature. A paper introducing a
method to generate synthetic single-cell data from bulk
has been published very recently [13] and is currently
pending review. Attempting to replicate the approach of
the authors would be another interesting future research
topic.

Chosen approach to the topic: The question of
the feasibility of using bulk data to fine-tune Geneformer
has been explored from the perspective of either using it
directly as input, or as a source for synthetic data. How-
ever, a number of possible alternative approaches exist,

which could have yielded different conclusions. For ex-
ample, bulk data has been successfully used to improve
the quality of single-cell data by filling in the gaps in gene
expressions recorded in the latter [14]. This method of
foregoing the direct use of bulk data to instead utilize
it to augment the single-cell dataset would have signifi-
cantly changed the outcomes of this research. Overall, it
needs to be acknowledged that only the feasibility of us-
ing bulk data directly to fine-tune Geneformer has been
explored and refuted.

Choice of problem: Choosing cell classification prob-
lems specifically naturally influenced the usability of bulk
data for fine-tuning Geneformer. For this type of cell-
level task, cell-level training data is logically needed; that
is, scRNA-seq data, not bulk RNA-seq. However, there
exist alternative problems for which the opposite is true.
For example, if the tissue class were to be predicted,
single-cell data would likely prove less useful for fine-
tuning that bulk.

Limitations of the source data: Only one single-
cell dataset, Sciplex2 [12], has been used over the course
of this research. To provide more support to the pre-
sented conclusions, the experiments should be repeated
on other single-cell datasets, for example [15, 16]. Fur-
thermore, not real-life bulk data was utilized over the
course of this research; all was generated by aggregating
Sciplex2 single-cell data. A bulk dataset like the Cancer
Cell Line Encyclopedia [17] could be a potential source
for such data.

The model’s problems: While Geneformer is an
advanced model, it is affected by a few problems that
influence how it can be used experimentally. For exam-
ple, there appears to be a bug in the source code that
results in a crash whenever fewer than 10 data points are
provided for a particular class. The model has built-in
k-fold cross-validation functionality, which is, however,
restricted to either one or five folds. In addition to that
another bug seems to be present, which causes an er-
ror whenever the five-fold setting is chosen. This means
that the only possible choice is a single fold, significantly
limiting cross-validation’s usability. Lastly, the hyper-
parameters used during fine-tuning, such as the learn-
ing rate, can be automatically optimized by Geneformer.
While conducting the experiments, however, a single op-
timization stage took several hours to complete, making
it infeasible to do at the necessary scale. Altogether,
the limitations of Geneformer did not make it impossi-
ble to answer the research questions but did negatively
influence what evidence could be gathered from the ex-
periments.

5 Conclusions and Future Work
In conclusion, the experimental results strongly support
the hypothesis that fine-tuning Geneformer on bulk data
negatively impacts its performance in cell label predic-
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tion problems. It is further shown that the bulkier the
fine-tuning dataset, the worse the model’s performance.
With as few as five cells within a group, a significant drop
in all performance metrics is identifiable. This shows that
Geneformer is unlikely to be effective in cell classification
if fine-tuned on a bulky dataset. The experiments fur-
ther confirm that generating synthetic data is a feasible
method of creating datasets that are effective in fine-
tuning Geneformer for two-label problems. The model
did not perform well in more complex tasks, such as in-
cluding five labels. It is likely that the synthetic data
generation method is too simplistic to create accurate
approximations of real single-cell data. Furthermore, the
addition of synthetic data to certain underrepresented
classes did not result in a meaningful change in Gene-
former’s performance, suggesting that padding a pure
single-cell dataset with synthetic data is not an effective
way of boosting Geneformer’s prediction capability.

There are several topics of particular interest for fu-
ture research concerning using bulk data for fine-tuning
Geneformer. Firstly, the experiments should be repeated
on more datasets, especially more expansive ones. Sec-
ondly, a different approach to utilizing bulk for the fine-
tuning process should be explored, for example by us-
ing it to improve the quality of existing single-cell data.
Lastly, synthetic data generation should be explored fur-
ther, in particular if a more sophisticated approach is
implemented. A good starting point would be utilizing
the full covariance matrices of the genes instead of only
their variances.

6 Responsible Research
The three primary ethical considerations regarding this
paper are the data sensitivity, the environmental and so-
cietal impact of the research and its outcomes, and the
reproducibility of the study.

Data sensitivity: Geneformer is a tool intended for
use in biomedicine, thus using real-world, human-sourced
data to train on. When working with such models it
is important to be aware of how sensitive this type of
data is. Its source must be ethical and trustworthy, es-
pecially given that this data might inform the model’s
decision-making in situations such as patient treatment,
or developing new drugs against cancer. In this paper,
another potential issue is the generation of pseudo-bulk
and synthetic single-cell data. Fortunately, the base data
was sourced from the Sciplex2 database, ensuring its cor-
rectness and ethical procurement. The methods used in
this paper also did not generate data to be used in re-
ality, but rather to explore the model’s limitations and
the potential use of bulk data for fine-tuning. Because of
this, as long as all the data has a proper source, and the
employed data processing methods are well-understood,
it is unlikely that any negative impacts may stem from
how sensitive data was handled in this research.

Environmental and societal impact: With the
recent proliferation of powerful AI systems, new light has
been shed on how energy-expensive training these mod-
els is. This causes concerns of both environmental and
societal nature. Firstly, most of the energy generated to-
day still comes from fossil fuels, meaning that training
powerful AI directly contributes to worsening the impact
of climate change and pollution. Secondly, energy prices
are increasing alongside the demand, which likely affects
people living in poverty disproportionately. Geneformer
shares its architecture with many of these models, and
like them requires a lot of energy to be trained. During
this research, dozens of hours of GPU time were used.
While its impact is most likely minimal, it has to be ac-
knowledged.

Research reproducibility: The ability of peers to
reproduce scientific research is crucial, particularly in
fields as sensitive as biomedicine. To ensure that, the
author has provided detailed descriptions of all steps
taken during data processing, the generation of aggre-
gated datasets, and synthetic information from bulk data.
The dataset from which all original data was sourced,
Sciplex2, is publicly available online, as is the paper that
introduced it [12]. Likewise, Geneformer can be down-
loaded via Huggingface 1. The model’s creators provided
several examples of how to use it, which were used as
templates for the experiments in this paper. Taken to-
gether with the experimental setup presented in previous
sections, this should provide sufficient information to as-
certain that the results can be reproduced.
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