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Abstract
A fundamental task of intelligent and autonomous robots is to infer from observations the
state of the world. This inference is generally achieved by employing a filter, which consists of
a model and filtering law. Learning this model and filtering law from observations is another
fundamental part of robotics, and is generally referred to as system identification.

Neuroscientist K.J. Friston has developed a relatively novel theory on biologically plausible
human brain inference called the Free-Energy Principle. One of the theories within the
Free-Energy Principle, namely that Dynamic Expectation Maximization (DEM), has been
suggested as a novel method for filtering and system identification. This method is expected to
outperform standard Expectation Maximization (EM) in terms of hidden state and parameter
estimation in settings where noise is correlated. However, in order for this neuroscientific
theory to be properly used for robot inference, two problems must first be solved.

The first of these problems is the fact that the theory is defined in the continuous-time domain,
whereas data available for system identification is always discrete. In this thesis I will suggest
three discrete-time interpretations for DEM-based system identification under the presence
of coloured noise. The major difference between the three methods is the information that is
embedded in the generalized signals: predictions, derivatives and past data.

The second problem is that the filtering method corresponding to the Free-Energy Principle
depends on data which is not available: the derivative signals of measured in- and outputs.
In this thesis I will describe two fundamentally different solutions to this feasibility issue:
a numerical differentiator and a stable filter. Both of these solutions are shown to find an
estimate for the unavailable data, but the former is shown to significantly outperform the
latter.

The theory described in this thesis will be put in practice parallel to the research, by imple-
menting it into a python toolbox for system identification. This toolbox can be used as a
basis for further research and be approved along with it, until at some point it is ready to be
used for real applications.

Using the toolbox, the DEM-based identification and filtering methods are tested though
various numerical simulations and the results are compared with the EM method. Results
show that with the implemented settings none of the suggested discrete-time filtering methods
outperforms the conventional Kalman filter. The main cause of this inferior performance is
shown to be instability in the filtering method. I make some suggestions for overcoming
this problem. As a result of the inferior performance, the joint-performance of the suggested
DEM-based parameter- and state- estimation methods also proves to be inferior in terms of
parameter estimation accuracy.
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ii Abstract

However, results show that the theoretical parameter optima of the Free-Energy as determined
from known hidden states are in fact close on the real parameters, and furthermore show to be
invariant to noise correlation. This suggests that should the instability issue as some point be
solved and a better means to approximate the theoretical optimum be found, the DEM-based
methods might in fact outperform EM both in terms of hidden-state and parameter accuracy
in settings with correlated noise.
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Chapter 1

Introducton

In this introductory I will explain the motivation behind this research. Furthermore, I will state
the sub-questions and the main question that this thesis addresses. The chapter is concluded
with the outline of the document.

1-1 Context and motivation

We live in a world that is in an ongoing search for more intelligent and autonomous robots,
at the purpose of outsourcing ever more work to robots such that we, the humans, can focus
on the more important things in life, or just for the sake of pushing the limits of science and
engineering.

At some point in the far future we will have created robots that are fully autonomous, let’s
call it the holy grail of robotics. The most obvious condition for considering a robot to be
truly autonomous is that it must be able to perform tasks without any human intervention.
This will include advanced control strategies that are robust, fault-tolerant, safe and energy-
efficient, and so on. However, it will also include the robots ability to observe, interpret and
understand itself and its surroundings.

In other words, the robot will, apart from a controller, need to include a filter. This filter will
be based on a model, i.e. a belief on how the world produces observed data, and a filtering
law, i.e. a mechanism which separates noise from information. This immediately raises the
question on how the robot obtained this model and filtering law, which brings me to the last
principle that any agent adhering to my definition of truly autonomous must include: model
learning, or system identification, as it is more commonly referred to.

This thesis is on the latter two of the strategies. More specifically, it covers filtering and
system identification in robotics in environments where the noise the world generates is not
completely random, i.e. where subsequent noise samples are correlated. It has been shown
that such types of noise are ubiquitous to many real-world processes, yet filtering and system-
identification methods which can handle such noise are not.
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2 Introducton

Therefore, an important step towards the holy grail of robotics is a method for filtering and
identification under the presence of coloured noise. In this thesis I will build on earlier work
by world-renowned neuroscientist K.J. Friston: the theory of Dynamic Expectation Maxi-
mization (DEM). Ultimately I formulate a DEM-based filtering and identification method
which should outperform the conventional method of Expectation Maximization (EM) in
cases where systems are perturbed with correlated noise.

Parallel to performing this research, I will implement both EM and DEM to a python toolbox
for system identification in robotics (SIR). The toolbox serves the dual purpose of providing
results for this thesis and building the first foundations of a universal toolbox for system
identification under the presence of any kind of noise and on any kind of system.
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1-2 Research questions 3

1-2 Research questions

Before arriving at such a method, It is important to have a thorough understanding on what
the conventional EM method is, how it works and more importantly when it does not work, i.e.
what are its limitations. Furthermore, a thorough understanding on the subject of random
noise is needed, and more importantly what correlated random noise is, such that we can
understand what causes the limitations.

Question 1: Why is expectation maximization (EM) the state-of-the art method?

Question 2: What are the theoretical principles which define EM?

Question 3: What causes the limitations of EM?

When this knowledge has been established, the novel method can be considered. First, by
considering the neuroscientific theory, and then on how it can be translated into an applicable
system identification method.

Question 4: What are the theoretical principles which define dynamic expectation
maximization (DEM)?
Question 5: How can DEM be translated into a method for filtering and system
identification?

This translation will provide some feasibility issues which will then need to be solved. Fur-
thermore, these performance of these solutions must be validated.

Question 6: What feasibility problems arise when translating DEM to a filtering
and system identification method?
Question 7: How can these problems be solved?
Question 8: Do the proposed solutions to the feasibility problems perform accu-
rately?

Lastly the proposed method must be tested for filtering and identification performance under
the presence of coloured noise, and compared with the state-of-the-art method

Question 9: Does DEM outperform EM w.r.t. filtering under the presence corre-
lated noise
Question 10: Does DEM outperform EM w.r.t. identification under the presence
correlated noise

Only after answering each and every one of these research questions, can we tend to the main
question:

Main question Do the DEM-based methods for filtering and system identification
as suggested in this thesis outperform EM for systems perturbed with correlated
noise?
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4 Introducton

1-3 Outline

Chapter 2 will concern the general concept of correlated random noise, providing a thorough
theoretical foundation for understanding the limitations of the method discussed in chapter
3.

In chapter 3 I will discuss the conventional method for system identification: EM. More
specifically, I will explain what theoretical principles drive the method, how it is defined
mathematically and what it’s limitations are, providing an answer to the research questions
1 and 2. Combining these answers with the knowledge from chapter 2 provides an answer to
research question 3.

Chapter 4 will cover the subject of DEM as proposed by K.J. Friston and a systematic
translation of the theory towards a DEM-based discrete-time system-identification method,
which answers the research questions 4 and 5.

The method proposed in chapter 4 still includes a feasibility problem. In chapter 5 I will
propose methods for solving this problems, thus answering research questions 6 and 7. Fur-
thermore, I will numerically evaluate the performance of these solutions, such that research
question 8 is answered.

In chapter 6 I will evaluate the performance of the DEM-based methods by comparing it with
EM, with respect to both filtering and identification performance. At the end of this chapter
I will have answered research questions 9 and 10.

Finally, chapter 7 will circle back to the main question, providing the conclusion of this thesis.
Furthermore, it will provide a short summary of the main findings of this thesis, an overview
of the research contributions of this thesis and recommendations for further research.
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Chapter 2

Noise

In this chapter I will describe the general concept of noise and the different types of noise that
are commonly assumed for filter design. Though fundamental to the problems of filtering and
system identification, and specifically how the dynamic expectation maximization algorithm
might outperform the expectation maximization algorithm, the chapter will not directly answer
any of the research questions. It will, however, provide the necessary theoretical foundation
of the answers that will be provided in subsequent chapters

2-1 Random noise signals
On a highest level of abstraction, any input signal which can not be directly controlled can
formally be considered as noise. These noise signals can have any number of characteristics,
which are determined by the way the noises are generated, but in most common scenarios the
exact signal is unknown and includes some level of randomness.

White noise The most commonly assumed type of random noise is that where each subse-
quent sample is an independent random pick from a certain probability distribution. As a
consequence, each sample is completely independent from the previous one, i.e. each sample
is uncorrelated with previous samples. This specific property is generally referred to as White
noise [1], which is proven to have a flat frequency spectrum and an impulse-autocorrelation
function Figure 2-1.

Figure 2-1: A White noise signal, its autocorrelation and PSD. The figure clearly depicts the
flat frequency power spectrum and the impulse function autocorrelation of a White noise signal.
∆t = 10−3 s. T = 10 s. Source: github.com/lznidarsic/sir/
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6 Noise

Distributions The most commonly assumed probability distribution for random noise is the
Gaussian or Normal distribution, which has two sufficient statistics: the mean and the (co-
)variance. The reason that this distribution is so commonly assumed, is mainly because it
has been empirically shown that many real world process noise eventually converges towards
something close to a Gaussian distribution. Since all other theory discussed in this thesis
will be referring to signals drawn from a Gaussian distribution, I will not cover the topic of
distributions explicitly.

2-2 Correlated noise signals

Though there are many real world noise processes for which White noise has been shown to
be a good explanation, there are at least as many noises processes for which it is too simple of
an explanation and thus inaccurate. These processes, which generally include some internal
dynamics, are signals in which samples are not fully independent of one another, i.e. they
are partly determined by the samples preceding them1. In other words, signals in which the
samples are correlated through time.2

2-2-1 Coloured noise

A category of correlated noise signals that is common to the fields of signal processing and has
been proven to be a good explanation for many real world process noises, is that of coloured
noise [2–4]. The subcategorization of coloured noise is based on the slope of the spectral power
spectral density (PSD) of the noise signal realizations and includes five colours3, including
White, as can be observed in Tab. 2-1.

Table 2-1: the colours of noise

Colour Slope
Red −20 dB/dec
Pink −10 dB/dec
White 0 dB/dec
Violet 10 dB/dec
Blue 20 dB/dec

Only considering the PSD of these correlated noise categories provides very little insight
into how such signals might appear, let alone how they can be generated. However, general
linear systems theory states that the transformation between a slope of 0dB/dec and a slope
of −20dB/dec on any signal can be in fact be achieved by causal integration of the original
signal [5]. In other words: causally integrating a White noise signal yields a Red noise signal4.

1Or even those succeeding them, in which case the correlation is non-causal. It should be evident that such
scenarios do not exist outside of simulation

2In Neuroscientific and Reinforcement Learning literature this kind of signals are said to not have the
’Markov Property’, which is in fact equivalent

3The reason these noise types are categorized as colours, is because of how such noise signals would appear
if they were signals of light. E.g. Violet noise emphasises high-frequencies, and the highest frequency of visible
light appears violet

4Which is why Red noise is often referred to a Brown or Brownian noise, after Brownian or random walk
motion [1]
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2-2 Correlated noise signals 7

A similar argument can be made for Violet noise, which is generated by differentiation of a
White noise signal. Figure 2-3 and Figure 2-2 show the spectral and correlation data, the latter
of which approximate the functions for numerical integration and differentiation respectively.

Figure 2-2: A Red noise signal, its autocorrelation and PSD. The figure clearly depicts the
-20 dB/dec power spectrum of the Red noise signal. The autocorrelation function approximates
−|τ |, but cannot be accurately estimated due to the estimation method relying on the wide-
sense stationarity5 property, which Red noise lacks. ∆t = 10−3 s. T = 10 s. Source:
github.com/lznidarsic/sir/

Figure 2-3: A Violet noise signal, its autocorrelation and PSD. The figure clearly depicts the 20
dB/dec power spectrum of the Violet noise signal. The autocorrelation function approximates a
finite-order central-difference filter, but the exact shape will depend on the method that was used
for signal differentiation: in this case the noise was generated by frequency-domain operation,
and therefore the shape is party driven by the Fast-Fourier transform algorithm . ∆t = 10−3 s.
T = 10 s. Source: github.com/lznidarsic/sir/

Even though linear systems theory provides very intuitive explanations for Red and Violet
noise, it also immediately reveals that that such definitions cannot be stated for Pink and
Blue noises, as there are no linear operations which yield relative slopes of ±10dB/dec in the
spectral power domain6.

Therefore, the easiest method of generating Blue and Pink noise therefore, is by operating
the White noise signal in the frequency domain directly, rather then in the time-domain. In

6The operations are in fact non-linear
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8 Noise

other words, Blue noise can be generated by first applying a fast Fourier transform (FFT)
on a White noise signal, then scaling the amplitude of each data point with the square root
of its frequency, and finally applying an inverse fast Fourier transform. Pink noise can be
generated by a similar procedure, with only difference being that the amplitude of each data
point must be scaled with the inverse of the root of their frequency. Realizations of Pink and
Blue noise, which have been generated by using the procedure as described, can be observed
in Figure 2-4 and Figure 2-5. From the figures it becomes clear that the auto-correlation of
Pink noise follows the shape of a negative root in both directions.

Figure 2-4: A Pink noise signal, its autocorrelation and PSD. The figure clearly depicts the
-10 dB/dec power spectrum of the Pink noise signal. The autocorrelation function approxi-
mates −

√
|τ |, but cannot be accurately estimated due to the estimation method relying on

the wide-sense stationarity7 property, which Pink noise lacks ∆t = 10−3 s. T = 10 s. Source:
github.com/lznidarsic/sir/

Figure 2-5: A Blue noise signal, its autocorrelation and PSD. The figure clearly depicts the
10 dB/dec power spectrum of the Violet noise signal. The autocorrelation function approximates
a non-linear finite-order central-difference filter. Intuitively, the non-linear difference function
should be a square-root, but definitive proof for this statement lacks. ∆t = 10−3 s. T = 10 s.
https://github.com/lznidarsic/sir/blob/master/demo_noise.py
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2-2 Correlated noise signals 9

2-2-2 Convolved noise

As described in the previous section, a portion of real-world noise can be explained by corre-
lated noise that is simply dominated by high or low frequencies and in- or decreases linearly
in the frequency domain. There are, however many other cases where the linear frequency
response does not provide a sufficiently accurate explanation for the process noise. In such
cases the noise can be modelled by White noise that has been convoluted by a linear or non-
linear Kernel function. Mathematically, discrete-time convolution on a White noise signal
brings:

y[k] =
∞∑

τ=−∞
ρ[k − τ ]x[τ ]∆t (2-1)

with x a White noise signal, ρ(k) the Kernel function and y the convoluted signal8. Even
though the possibilities for the choice of these Kernel functions is endless, there are two that
are most commonly discussed in the context of robotics and neuroscience: the Gaussian and
Block kernel functions. I will discuss only these explicitly and will consider the other functions
outside the scope of this thesis.

Gaussian-convolved noise Most commonly referred to in literature on the Free-Energy prin-
ciple, which will be the main subject of thesis 4, is noise that has been convolved with a
Gaussian kernel. The main reason for the broad adoption of such noise is the infinite differ-
entiability of the Kernel function and consequently the noise signal itself. Mathematically,
the discrete-time Gaussian Kernel function gives:

ρ[k] = 1
∆tσ

√
2π

e− 1
2

k2
σ2 (2-2)

With σ the standard deviation of the Gaussian in number of sampling-time steps9. Note that
the ∆t term, which is a result of the discretization of the definition of the standard deviation,
disappears when substituting Eq. (2-2) into Eq. (2-1). Figure 2-6 shows a realization of a
Gaussian-convolved White noise signal. Note that the autocorrelation function is a Gaus-
sian10, and the frequency response, although less visible on a log-log scale, is once more a
Gaussian.

8Note that in any practical application only a finite number of samples is available. Therefore the −∞ and
∞ are generally replaced with 0 and N respectively. Not however, how this is not equivalent to making the
convolution causal, y[k1] still depends on future samples of x[k1 > k]

9In literature often referred to as Kernel width, although this is strictly incorrect as a Gaussian is infinitely
wide and thus had no formal width.

10Though with a different width than the correlation filter
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10 Noise

Figure 2-6: A Gaussian-convolved noise signal, its autocorrelation and PSD. The figure clearly de-
picts the Gaussian autocorrelation function of the Gaussian-convolved noise signal. Less clear due
to the logarithmic axes, yet still present is the Gaussian-shaped power spectrum of the Gaussian-
convolved noise signal. σ = 10∆t. ∆t = 10−3 s. T = 10 s. Source: github.com/lznidarsic/sir/

Block-convolved noise Also often referred to as windowed averaging an common in litera-
ture on the Free-Energy principle as a signal smoother, is White noise that has been convolved
with a Block-function kernel. Mathematically, the Block function can be constructed by ad-
dition of two step signals:

ρ[k] = 1
σ

(
us

[
k − σ

2
]

− us
[
k + σ

2
])

(2-3)

where

us[k] =
{

1 ∀k ≥ 0
0 ∀k < 0 (2-4)

with σ denoting the Kernel width.

Figure 2-7 shows a realization of a Block-convolved White noise signal. Note that the auto-
correlation function is by approximation a triangle11 function and the frequency response is
a sinc12 function.

11R[k] = ur[k − σ
2 ] − 2ur[k] + ur[k + σ

2 ] where ur[k] = k∆t ∀k ≥ 0, ur[k] = 0 ∀k < 0
12sinc(x) = sin(πx)

πx
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2-2 Correlated noise signals 11

Figure 2-7: A Block-convolved noise signal, its autocorrelation and PSD. The figure depicts the
sinc-function shaped power spectrum of the Block-convolved noise signal. The autocorrelation
function approximates −

√
|τ | up until the width of the kernel, and 0 outside the kernel. σ = 10∆t.

∆t = 10−3 s. T = 10 s. Source: github.com/lznidarsic/sir/

Coloured noise as convolved noise A final remark regarding convolved noise is that all
coloured noise categories are in fact forms of convolved noise. Recall that Red noise as
described in 2-2-1 is in fact integrated White noise. Integration itself can be represented as
convolution with a step signal in negative time:

ρ[k] = 1 − us[k] = us[−k] (2-5)
Similarly, recall Violet noise which is in fact differentiated White noise. Numerical differ-
entiation can be can be represented as convolution with a non-causal 2nd order difference
filter:

ρ[k] = 1
2∆t(ui[k + 1] − 2ui[k] + ui[k − 1]) (2-6)

where ui[k] denotes the unit impulse function

ui[k] =
{

1 ∀k = 0
0 ∀k ̸= 0 (2-7)
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Chapter 3

Expectation Maximization

In this chapter I explain why expectation maximization (EM) can be considered the state-of-
the-art method for system identification in robotics. Furthermore, I describe the equations
which define both the filter and the system identification method that determine EM, and the
major limitation that the method suffers from. Ultimately, this chapter provides answers to
research questions 1-3

3-1 State of the Art

The main goal of this chapter is to present the state of the art of system identification for
robotics, such that it can later be compared with the novel approach proposed in the next
chapter. However, before nosediving into the mathematical definitions and relations that
define the expectation maximization algorithm, it is important to state why I am in fact
considering this specific algorithm as the state of the art. There are in fact three major
reasons why in the context of this thesis I consider EM the state of the art.
The first reason being its similarity to the novel method of dynamic expectation maximization
(DEM), which is the main subject of this thesis. As will become clear in this and the next
chapter, both methods are based on many of the same principles. Even stronger, in some of
his literature [12], Friston describes DEM as an extension of EM.
The second reason being how widely EM is adopted. Initially, EM was described as a statis-
tical principle by Dempster1 et al. in [6]. However, soon after it was translated to a directly
applicable algorithm for system identification by Shumway et al.in [7] it was recognized widely
recognized and had been applied many times since.
The third reason being the fact that both EM and DEM can both be applied on- and off-line
using the same equations. This latter point is very important to avoid conflict in parameter
optima, and the reason that the dual application is important at all is to allow for robots to
deal with changing parameters due to wear or temperature fluctuations, which are ubiquitous.
A more detailed argument for these statements can be found in appendix A-3

1Which is the definition of EM that Friston refers to in his literature

Master of Science Thesis Laurens Žnidaršič



14 Expectation Maximization

3-2 Filtering

EM is a method for system identification which combines the state estimation of a Kalman
filter (KF) with Likelihood Maximization to infer the parameters. In this section I will explain
how the KF works, and why it is such a powerful method.

Optimal Filtering The main goal of any filtering method can either be to infer the hidden
state, or to reject the noise on the measured output data. One fundamental principle of
filtering is that these two goals are in fact mutually inclusive. For output noise rejection one
needs an output estimate, which can only be constructed from the hidden state. Conversely,
the hidden state estimate must be updated with the measured data, for which the filter needs
an output estimate.

This becomes immediately clear when considering how such a filter is constructed. Consider
a stable discrete-time LTI SS system:

x[k + 1] = f(x[k], u[k]) = Adx[k] + Bdu[k] + w[k]
y[k] = h(x[k], u[k]) = Cdx[k] + Ddu[k] + z[k] (3-1)

With w ⌢ N (0, Q) and z ⌢ N (0, R) both assumed White noise. Assuming that the
parameters determining the system, i.e. the SS matrix entries, as well as those defining the
noise, i.e. the covariance matrix entries are known, allows the construction of a simple filter
of the form:

x̂[k] = Adx̂[k − 1] + Bdu[k − 1]
ŷ[k] = Cdx̂[k] + Ddu[k]

x̂′[k] = x̂[k] + K(y − ŷ[k]) (3-2)
with the SS matrices denoting a model that is in fact an exact copy of the system. x̂ and x̂
denote the predicted hidden state and output, whereas ŷ′ and ŷ′ denote the updated hidden
state and output respectively.

From Eq. (3-2) it becomes clear that the filtering behaviour is completely determined by the
updating gain matrix K. Setting it very high will have the states follow the outputs exactly,
but since the output was subject to noise, this will not yield the best estimate for the hidden
state. Conversely, setting K low will yield a more smooth state estimate but might drive it
away from the actual hidden state because of the accumulation of state noise.

This leads to the conclusion that there must be some K that is the optimal balance between
rejecting the output noise whilst pulling the hidden state towards the measured data. This
optimality can be defined by considering hidden state estimation as minimization of the
distance between the unknown hidden state and the updated estimated hidden state, thus
minimizing their mean squared error (MSE):

MSE = 1
N

N∑
k=0

||x[k] − x̂[k]||2 (3-3)

From the realization that this statement is in fact equivalent to minimization of the trace of
the covariance on the state error, it would makes sense to include information on the state-
and output error covariances into the definition of this gain. Intuitively, increased covariance
in the output error will decrease the gain and thus emphasize the predicted data. Conversely,
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3-3 Maximum Likelihood parameter estimation 15

increased covariance in the state error will increase the gain and thus emphasize the predicted
data. Therefore, the best choice would be to choose the gain as K as:

K = PC⊤
d S−1 (3-4)

with P and S the state- and output error covariances. Intuitively onw might think that P
and S can be in fact be set to Q and R respectively, as the residual errors in the real system
would be the noise, and would their covariance would be equal tothat of the noise. However,
this will only be the case when the filter is somehow able to perfectly infer the hidden states
for all time-steps, which can cannot be guaranteed2 due to the non-invariant accumulation of
state and output noise.

Kalman Filtering Therefore, an optimal filter which truly minimizes the criterion as de-
fined in Eq. (3-3) must include some mechanism for estimating the state- and output error
covariance which are dependent of but not equivalent to the noise covariances. A filter which
includes such a mechanism, is the widely adopted Kalman filter [8]. It has been proven that
for a LTI SS system, the optimal estimates of the state error covariance P and the output
error covariance S are in fact the solution to the discrete-time algebraic Ricatti equation
(DARE):

P = APA⊤ + (A⊤PC⊤)(R + CPC⊤)−1(CPA) + Q (3-5)

which can be solved recursively by iterating until convergence:

P̂ = AdP′A⊤
d + Q

Ŝ = CdP̂C⊤
d + R

K̂ = PC⊤
d Ŝ−1

P′ = (I − KCd)P̂ (3-6)

Note how solving the DARE provides, aside from the covariance estimates, the optimal
Kalman gain. For linear time invariant systems, the DARE can be solved off-line prior to
the filtering task. For non-linear, time-varying or on-line parameter estimation applications,
Eq. (3-6) wil need to be run in parallel to the filter for continuous updating of the covariance
estimates and gain, as it depends on Ad and Cd.

3-3 Maximum Likelihood parameter estimation

In the previous section I discussed how for cases where a system is known and noise assumed
to be White and of known distribution parameters, a hidden state can be optimally estimated
as minimization of the euclidean distance between the actual and estimated hidden state data.

In this section I will complete the explanation of EM by showing how it combined the filtering
properties of the KF with Likelihood Maximization to infer the system parameters for cases
where they are not known.

2In fact, it is almost never the case
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16 Expectation Maximization

3-3-1 Likelihood

From a statistical mathematics point of view, uncorrelated data can be explained as a prob-
ability distribution around some mean, or expectation. Formally, the actual probability dis-
tribution can be time variant, non-linear and unknown. Truly inferring this probability dis-
tribution will therefore yield the necessity to run a very large number of simulations3.

The probability distribution inference problem can be greatly reduced by assuming a fixed
distribution function with known parameters4 In fact, EM adopts the Laplace assumption [9],
which states that this probability distribution can be assumed as a Gaussian. After this
simplification, the problem of model parameter estimation reduces to finding those parameters
that are the most likely explanation of both the observed and hidden data. This statement is is
analogous to finding those parameters which maximally decrease the width of the probability
distribution which describes the residual of the error between the estimated and actual data.

Furthermore, assuming that all residual errors are in fact independent of one another, which
is generally referred to as the mean-field approximation [9], allows for definition of the joint
probability distribution as the product of all the independent probability distributions. This
finally brings for the joint density maximum-likelihood (ML):

ML =
N∏

k=0

1
||P||

√
2π

e− 1
2 ε⊤

x [k]P−1εx[k]
N∏

k=0

1
||S||

√
2π

e− 1
2 ε⊤

y [k]S−1εy [k] (3-7)

with

εx[k] := x[k] − x̂[k]
εy[k] := y[k] − ŷ[k] (3-8)

Note how εx[k] depends on the hidden state x[k]which is inherently unavailable. How EM
overcomes this issue will become clear in the next section.

Furthermore, note how the expression of the ML is rather complex and subsequently that
multiplication of different terms makes convexity of this function hard to infer. Therefore,
using the fact that a log operation on function preserves convexity, allows for the definition
of the log-likelihood (LL):

LL =
N∑

k=0
−1

2
ε⊤

x [k]Q−1εx[k] − 1
2

ε⊤
y [k]R−1εy[k] − log(||Q||) − log(||R||) − log(2π) (3-9)

Which is the cost function that EM minimizes. For a more comprehensive derivation of the
LL from the ML, please refer to appendix A-5.

3-3-2 Maximization

In the previous section I stated that parameter estimation can be considered as maximization
of the likelihood of the estimated data. This led to a cost function called the LL, which was
simplified to the log-likelihood.

3Which is in fact the approach that Particle filtering methods adopt
4Estimating the parameters that determine this probability distribution, i.e. the hyper-parameters, is not

part of the scope of this thesis.
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In most cases, maximization of this cost is achieved by iterative gradient ascent on the full
batch of data, which mathematically brings [10]:

θ̂[i + 1] = θ̂[i] + α
∂LL

∂θ
(3-10)

with θ the vector containing the system’s parameters and α the step-size, a tunable hyper-
parameter.

On-line EM Alternatively, the same scheme can be applied in an on-line setting where the
parameters are updated with each time step:

θ̂[k + 1] = θ̂[k] + α
∂LL[k]

∂θ
(3-11)

with LL[k] the LL evaluated at a each incoming data sample. Note that incrementally updat-
ing the model matrices yields a time-varying solution to the Ricatti equation, which implies
that the error-covariance estimation and gain updating Eq. (3-6) will have to be run in parallel
to the on-line parameter estimations scheme.

Note: In some implementations of the expectation maximization algorithm, a 2nd

order gradient ascent schemea is adopted, which essentially replaces the scalar step-
size with the inverse of the Hessianb of the LL towards θ. Even though these algo-
rithms generally converge faster, the region of attraction in terms of initial param-
eters is much smaller for such an algorithm than for 1st gradient descent, as the
former needs the Hessian to be positive definite, and the interval on which this can
be guaranteed is generally tighter than that on which the function decreases, which is
the only assumption that 1st order gradient descent needs. In my implementation,
I therefore chose for 1st order gradient descent.

aIn literature commonly referred to as Gauss-Newton
b 2nd order gradient

Algebraical approximation of the gradient The gradient, can be algebraically described by:

∂J

∂θ
= 1

N

N∑
k=0

(∂(x[k] − x̂[k])
∂θ⊤

)⊤
P−1(x[k] − x̂′[k]) +

(∂(y[k] − ŷ[k])
∂θ⊤

)⊤
S−1(y[k] − ŷ′[k])

= 1
N

N∑
k=0

−
(∂x̂[k]

∂θ⊤

)⊤
P−1(x[k] − x̂[k]) −

(∂ŷ[k]
∂θ⊤

)⊤
S−1(y[k] − ŷ′[k])

Note however, how this gradient depends on both the estimated hidden state data as well as
the actual hidden state data, which is unknown.

This is were the KF enters the algorithm. We have two estimates for the hidden state data.
One which depends only on the model and the parameters, and one which has been updated
with the measured data. Therefore, an approximation of this likelood function can be achieved
by adopting the KF, which immediately provides an estimate for the P and S matrices as
well.
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18 Expectation Maximization

Therefore, the gradient can be approximated by

∂J

∂θ
≈ 1

N

N∑
k=0

−
(∂x̂[k]

∂θ⊤

)⊤
P−1(x̂′[k] − x̂[k]) −

(∂ŷ[k]
∂θ⊤

)⊤
S−1(y[k] − ŷ′[k])

The gradients of the hidden state towards the parameters are found by :
∂x̂[k]

∂θ
= F[k] + AdF[k − 1] + A2

dF[k − 2]...

∂ŷ[k]
∂θ

= H[k] + Cd

(
F[k] + AdF[k − 1] + A2

dF[k − 2]...
)

(3-12)

with F[k] the gradient of the state equations towards the parameters ∂f
∂θ and H[k]the gradient

of the measurement equations towards the parameters ∂h
∂θ .

Note how, formally, the gradient will have to be traced back in time infinitely, which is
not practically feasible. In any implementation, therefore, some finite gradient-embedding
order is chosen as an extra tunable hyper-parameter. An extreme case are models where the
parameters are are directly on the observable state, in which case the order can be set to one.
In any other case the tuning of this parameter will have to be a balance between accuracy
and computational efficiency

Remark: Tracing the gradient of x̂ towards θ back multiple steps for each sam-
ple becomes infeasible quickly as the order of the system or the number of samples
increases. Therefore, in some implementations, the gradient is approximated nu-
merically.
Note, however that doing so will increase the problem of x̂′ not truly representing
x, and thus shift the actual optimum of the cost function further away from the
theoretical optimuma. In other words, numerical gradient approximations will yield
a more efficient algorithm at the cost of parameter estimation performance.

aThe real parameters

3-4 Answers to research questions

To conclude this chapter I briefly circle back to the research questions as formulated in the
introduction to answer them based on the content of this chapter.

Why is EM the state-of-the art method? EM is directly applicable in both the off- and
online stages of robot learning. Furthermore, EM is widely adopted, provides optimal per-
formance given certain circumstances and is very similar to DEM in terms of cost and mini-
mization.

What are the theoretical principles which define EM? EM combines the hidden state
estimations of a KF with a maximum-likelihood estimation of the system parameters. The
minimization of the likelihood is achieved by gradient descent using either an algebraical or
numerical gradient approximation. Estimated parameters can either be updated iteratively
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3-4 Answers to research questions 19

on a batch of collected data or incrementally on new data, i.e. EM can be applied both in an
off-line and on-line setting.

What are the limitations of EM? Only under strict assumptions can EM perform optimally.
One of the assumptions is the uncorrelated of noise assumption. Violation of this assumption
seriously deteriorates the filtering accuracy of the identified model and filter. As discussed
in chapter 2, there is but one type of noise for which this property holds, namely White
noise. There are many real world systems for which the noise processes can not be accurately
modelled by White noise. Consequently there are many systems which can not be accurately
identified using EM. Naturally, there are more limitations, but these are not relevant for the
comparison with DEM as it will be made in this thesis5.

5Further limitations, such as lack of input estimation must be considered at a later stage in this research
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Chapter 4

Dynamic Expectation Maximization

In this chapter I introduce the Generalized Filtering (GF) [11] and dynamic expectation maxi-
mization (DEM) [12] methods as described from the Free-Energy principle (FEP) [13] by K.J.
Friston. In order to translate the theory into an applicable method for system identification,
I propose a discrete-time interpretation of GF and DEM. Ultimately, this chapter provides
answers to research questions 4 and 5.

4-1 The Free-Energy Principle

In the first part of this chapter, where I explain the theoretical principles underlying dynamic
expectation maximization, I will adopt the continuous-time definitions as stated by Friston
in his literature. Furthermore I will adopt the state-space formulations as discussed in [14]
and [15] (both yet to be published). Later in the chapter, I will propose a discrete-time
definition of the algorithm, which will be more in line with the rest of the theory described
in this thesis.

4-1-1 Generalized systems

Central to the Free-Energy principle, which is the broader set of theories which includes
dynamic expectation maximization is the concept of generalized systems. It rests upon the
fact that, depending on the nature of the signals, there might be information embedded in
the time derivatives of the input and noise signals .

One way of accessing the information embedded in these higher order signal derivatives, is
by considering not only the 1st order hidden state derivative of the system, but rather
considering all its higher order derivatives up to a certain order p, the embedding order. The
dynamics of these higher order derivative signals are driven by copies of the system itself and
the derivatives of the input and noise signals. This can be easily shown by considering a
continuous-time LTI SS system, perturbed with state noise w ⌢ N (0, Q) and output noise
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z ⌢ N (0, R), both of which do not necessarily conform to the white noise assumption.
Taking the time derivatives on both sides up to order p brings:

ẋ(t) = Acx(t) + Bcu(t) + w(t)
ẍ(t) = Acẋ(t) + Bcu̇(t) + ẇ(t)

...
x(p+1)(t) = Acx

(p)(t) + Bcu
(p)(t) + w(p)(t)

and
y(t) = Ccx(t) + Dcu(t) + z(t)
ẏ(t) = Ccẋ(t) + Dcu̇(t) + ż(t)

...
y(p)(t) = Ccx

(p)(t) + Dcu
(p)(t) + z(p)(t) (4-1)

Considering the union of the variables and their higher order derivatives, i.e. by generalizing
the state, input, noise and output and consequently the dynamics underlying them, brings:

ẋ(t)
ẍ(t)

...
x(p+1)(t)

 =


Ac

Ac

. . .
Ac




x(t)
ẋ(t)

...
x(p)(t)

 +


Bc

Bc

. . .
Bc




u(t)
u̇(t)

...
u(p)(t)

 +


w(t)
ẇ(t)

...
w(p)(t)




y(t)
ẏ(t)

...
y(p)(t)

 =


Cc

Cc

. . .
Cc




x(t)
ẋ(t)

...
x(p)(t)

 +


Dc

Dc

. . .
Dc




u(t)
u̇(t)

...
u(p)(t)

 +


z(t)
ż(t)

...
z(p)(t)


(4-2)

which can be written in a more concise format as
˙̃x(t) = Ãcx̃(t) + B̃cũ(t) + w̃(t)
ỹ(t) = C̃cx̃(t) + D̃cũ(t) + z̃(t) (4-3)

Note how all generalized SS matrices are block-diagonal, and thus there is no coupling between
the different embedding layers, and thus evolution of the signals is independent.

4-1-2 Generalized filtering

Directly following the concept of generalized systems comes that of generalized filtering, i.e.
inferring the evolution of the generalized hidden state in the presence of unknown generalized
noise from the evolution of the measured in- and output signals.

One way of inferring this generalized hidden state is by employing a model of the generalized
system, which is for now assumed to be an exact copy of the actual generalized system as
described in Eq. (4-3):

˙̃̂x(t) = ˆ̃Ac ˆ̃x(t) + ˆ̃Bcũ(t)
ˆ̃y(t) = ˆ̃Cc ˆ̃x(t) + ˆ̃Dcũ(t) (4-4)
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Considering the diagonal structure of the generalised system matrices as defined in Eq. (4-
2), it becomes immediately clear that each layer in the estimated generalized hidden state
evolves completely independent from all other others. This implies that only when the initial
conditions of the generalized hidden state and the complete evolution of the generalized input
and noise signals are known and consistent, can we expect consistence in the evolution of
the estimated generalized hidden state. A generalized variable is consistent if the signal in
each consecutive layer of a generalized variable is exactly the derivative of the signal in the
preceding layer

Since the noise signals are not known, there will not be consistence between the embedding
layers. However, assuming that the generalized input is known, the inconsistency of the
estimated hidden state can is driven only by the generalized noise. It is therefore that it is
exactly this inconsistency that we aim to minimize in order to infer the generalized hidden
state.

Considering the fact that in each subsequent layer of the generalized hidden state is the
derivative of the current layer, allows for the definition of the layer-shift-up operator

D := Up ⊗ In (4-5)
with Up a p × p upper-shift matrix1 and In an n × n2 Identity matrix, such that

˙̃̂x′(t) = Dˆ̃x(t) (4-6)

This method for generalized hidden state derivative approximation leads to the definition of
the internal consistency error, i.e. the how much any layer does NOT represent the derivative
of the preceding one:

εx̃(t) : = ˙̃̂x′(t) − ˙̃̂x(t)

= Dˆ̃x(t) − ˆ̃Ac ˆ̃x(t) − ˆ̃Bcũ(t) (4-7)
Furthermore, assuming the generalized system output is fully available for measurement3,
leads to the definition of the generalized prediction error.

εỹ(t) : = ỹ(t) − ˆ̃y(t)

= ỹ(t) − ˆ̃Cc ˆ̃x(t) − ˆ̃Dcũ(t) (4-8)

Free-Energy Then, the Free-Energy principle considers filtering as minimization of the width
of the joint probability distribution that describes both the error in internal consistency and
the error in output prediction. Furthermore, assuming one more that the errors independent4

and are normally distributed5 leads to the formulation of the variational Free-Energy, which
is in fact a log-likelihood of the form6:

F(t) := U(t) + Wθ(t)
(4-9)

1Sparse matrix with 1’s on the super-diagonal
2Recall n is the dimensionality of the state-space, i.e. the length of x
3Of course in many applications it is not. The next chapter will concern methods for estimating generalized

signals
4Mean-field approximation
5Laplace assumption
6Please refer to appendix A-5 once more for the derivation of the log-likelihood.
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with the internal energy

U(t) := −1
2

ε⊤
x̃ (t)Π̃wεx̃(t) − 1

2
ε⊤

ỹ (t)Π̃zεỹ(t) + log(Π̃w) + log(Π̃z) (4-10)

denoting the likelihood of the generalized hidden state estimation. Wθ(t) is the mean field
term which concerns the uncertainty of the parameters. For now the parameters can be
assumed as known, as the mean-field term can be assumed as zero. I will discuss this term
more in-depth in the next section.

Noise precision matrices The matrices Π̃w and Π̃z are constructed such that they contain
the inverses of the covariances Q and R of the White noise that preceded the correlation
filter, and information on how this covariance is expected to scale in the deeper layers of
embedding:

Π̃w := S−1 ⊗ Q−1

Π̃z := S−1 ⊗ R−1 (4-11)
with S the temporal correlation matrix which includes te information from the (assumed)
autocorrelation function [16]:

S :=


E[ρ(t)ρ(t)] E[ρ(t)ρ̇(t)] · · · E[ρ(t)ρ(p)(t)]
E[ρ̇(t)ρ(t)] E[ρ̇(t)ρ̇(t)] · · · E[ρ̇(t)ρ(p)(t)]

... . . .
E[ρ(p)(t)ρ(t)] E[ρ(p)(t)ρ̇(t)] · · · E[ρ(p)(t)ρ(p)(t)]

 (4-12)

where ρ(t) as stated in chapter 2 can formally be any kind of auto-correlation, but in Friston’s
literature it is most commonly assumed as a Gaussian-convolved noise, see ch. 2 or [16].

Minimization As stated, generalized filtering is then minimization of the FE using gradient
descent, such that the generalized hidden state remains consistent, i.e.:

˙̃̂x(t) = Dˆ̃x(t) − αx̃
∂F(t)

∂x̃
(4-13)

with αx̃ the gradient descent step size, a tunable hyper-parameter.

4-1-3 Parameter estimation

In the previous section I explained that filtering under the Free-Energy principle is in fact
minimization of a function called the variational Free-Energy. In this section, I will build
on that statement, by showing how a similar principle can be used for estimating unknown
parameters underlying a system, i.e. how parameter estimation is also a form of free energy
minimization7.
In the previous chapter I explained how for expectation maximization, the parameters are
estimated as a maximization of the likelihood of the estimated data. For parameter estimation
under the Free-Energy principle using dynamic expectation maximization, this statement
remains unchanged8.

7In fact, according to Friston all forms of inference, including estimating unknown inputs and selecting
optimal control action, are a form of Free-Energy minimization

8Aside from the fact that the FE is in fact negative Likelihood which is thus minimized rather than
maximized
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However, the actual variational Free-Energy is more complex than what was stated in Eq. (4-
9). In fact, the former definition is a simplification of the full definition of the Free-Energy for
cases where the parameters are known and certain, as some terms that define the Free-Energy
in fact drop when the parameters are certain.

Free-Energy This happens because, subsequent to the estimated generalized hidden states
and output, the parameters are modelled as a probability distribution as well, which allows
for estimation of not only the parameters, but also their certainty9. Consequently, the Free-
Energy brings:

F̄ : = Ū + W̄x̃

=
∫ t

0
U(t)dt +

∫ t

0
Wx̃(t)dt (4-14)

with U(t) as defined in Eq. (4-10) and

Wx̃(t) = −tr
(
Π−1

x̃ (t)
(∂ε⊤

x̃ (t)
∂x̃

Π̃w
∂εx̃(t)

∂x̃
+

∂ε⊤
ỹ (t)

∂x̃
Π̃z

∂εỹ(t)
∂x̃

))
(4-15)

correcting the parameter estimates for the uncertainty in the generalized hidden state esti-
mates, as according to the mean-field theory [9].

Recall that I mentioned in the previous section how the variational Free-Energy also contains a
mean-field term which is a consequence of the mean-field approximation10 [9] and corrects the
generalized hidden state estimates for the uncertainty in the parameter estimates. Since now
the parameters are unknown, it cannot be assumed that this term drops to zero. Therefore,
it is defined as:

Wθ(t) = −tr
(
Π−1

θ (t)
(∂ε⊤

x̃ (t)
∂θ

Π̃w
∂εx̃(t)

∂θ
+

∂ε⊤
ỹ (t)
∂θ

Π̃z
∂εỹ(t)

∂θ

))
(4-16)

State and parameters precision Matrices Lastly, note how both of these terms depend on
the precision of x̃ and θ of the generalized hidden state and parameters respectively. As
proposed by Friston, these precisions can be approximated as the second order gradient of
the internal energy towards the corresponding variables. For the precision of x̃ this brings:

Πx̃(t) = ∂2Ū

∂x̃2

=
∫ t

0

∂2U(t)
∂x̃2 dt

=
∫ t

0

(∂ε⊤
x̃ (t)

∂x̃
Π̃w

∂εx̃(t)
∂x̃

+
∂ε⊤

ỹ (t)
∂x̃

Π̃z
∂εỹ(t)

∂x̃

)
dt (4-17)

(4-18)

9In fact, Friston goes further to state that even the hyper-parameters, i.e. the parameters that determine the
noise and its correlation, can be modelled by a probability distribution rather than a fixed number. Estimation
of the noise parameters will not be considered within the scope of this thesis.

10Which raises the question why EM, which is also built upon the mean-field approximation, does not contain
these terms

Master of Science Thesis Laurens Žnidaršič



26 Dynamic Expectation Maximization

and for the precision of θ this brings:

Πθ(t) = ∂2Ū

∂θ2

=
∫ t

0

∂2U(t)
∂θ2 dt

=
∫ t

0

(∂ε⊤
x̃ (t)
∂θ

Π̃w
∂εx̃(t)

∂θ
+

∂ε⊤
ỹ (t)
∂θ

Π̃z
∂εỹ(t)

∂θ

)
dt (4-19)

Note how, as time evolves, the values in the precision matrices are expected to grow due to
the integration. Consequently, note that the mean field terms, which include the inverse of
these precision matrices, are thus expected to die out as time evolves.

Parameter update Now that we have fully defined the Free-Energy as it is minimized for
the parameter estimation step. The actual minimization is once more performed via 1st

order gradient descent, which is formally defined as

θ̇(t) = −αθ
∂F̄
∂θ

(4-20)

4-1-4 Priors

For completeness it must be mentioned that there is in fact one11 last term in the Free-
Energy which is referred to as the prior expectation term. It is defined as a log-likelihood of
the estimated parameters as opposed to their prior expectation:

Ξ := ε⊤
θ Pθεθ (4-21)

where

εθ := ηθ − θ̂ (4-22)

with ηθ containing the prior parameter values, and Pθ the certainty of the prior parameter
values. Setting the values in P to high values indicate a large certainty in the prior estimates
for the parameters. Note that by inverting this logic, the term can formally be removed by
just assuming complete uncertainty in the prior expectation, which is analogous to setting
the values in Pθ to zero.

The argumentation against the use of priors as described in Eq. (4-21) can be formulated
by comparing it with the standard way that prior information is included, namely as initial
estimates. Note that placing the prior information in the cost function inherently shifts the
optimum of the cost function, whilst just choosing the prior as an initial estimate does not.
It can be argued that when including the prior into the cost function, the new optimum will
lie somewhere between the prior and the initial optimum. This will increase accuracy of the
final estimate if only if the prior was in fact a better estimate than the minimum of the cost
function, but in such a case one might have wondered why system identification was necessary
in the first place.

11Actually two, considering the hyper-parameter estimation contains a prior as well
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4-2 Discretization

Any application of the theory explained in the previous section, be it for robot learning or
system identification in general, will inevitably deal with discrete samples. This makes the
continuous-time interpretation of the world, which is at the foundation of the free-energy
principle as presented in the previous section, though very suitable for analysis of continuous
systems, rather incompatible for real applications.

Thus, it makes sense to consider the world as a discrete-time generative process of data,
i.a. to consider discrete-time systems. Therefore, in this section I will propose a discrete-
time interpretation of all principles discussed in the previous section, which together form a
complete discrete-time interpretation of DEM.

4-2-1 Embedded signals and their discrete-time interpretation

Preceding the formulation of a discrete-time version of dynamic expectation maximization is
the interpretation of discrete-time generalized systems, and more fundamentally discrete-time
embedded signals. Considering the latter, there is one major design choice which drives the
definition of discrete-time DEM: what information is embedded in the deeper layers of the
generalized signals. In this section I will propose three options regarding this choice and
briefly motivate their pro’s and cons.

Firstly the question on what information is hidden in the deeper layer of embedding: do they
contain the 1st -, 2nd -, 3rd -, etc. order derivative signals, or their one-, two-, three, etc. step
ahead predictions, or even one-, two-, three, etc. step back predictions. I will refer to these
three different approaches as embedded derivatives (DEM-ED), embedded predictions (DEM-
EP) and embedded history (DEM-EH). Mathematically these generalized signals would bring,
for an exemplary signal ϕ[k]:

ϕ̃p[k] : =
[
ϕ[k] ϕ[k + 1] ϕ[k + 2] · · · ϕ[k + p]

]⊤

ϕ̃d[k] : =
[
ϕ[k] ϕ̇[k] ϕ̈[k] · · · ϕ(p)[k]

]⊤

ϕ̃h[k] : =
[
ϕ[k] ϕ[k − 1] ϕ[k − 2] · · · ϕ[k − p]

]⊤
(4-23)

with subscripts p, d and h referring to DEM with embedded predictions (DEM-EP), deriva-
tives (DEM-ED) and history (DEM-EH) respectively.

As will become clear in the remainder of this chapter, each of the three proposed approaches
introduces inherent changes to how the equations as introduced in the previous section are
formulated. It is hard to predict how these changes will affect the behaviour and perfor-
mance of DEM, which led to the decision to elaborate and implement all three. Aside from
their behaviour however, there are practical advantages and disadvantages to each of the
approaches.

DEM-EP relies on future data, which in an off-line system identification setting can be easily
obtained by simply shifting the signals 1, 2, 3, etc. time-steps back. However, when System
identification has finished the model that has been identified will likely be employed in an
on-line filtering setting. Then, the future data will not be readily available and will thus have
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to be estimated using some external method. As will become clear as will become clear in
section 4-2-3, DEM-EP yields a change in precision matrices Π̃w and Π̃z.

DEM-ED relies on derivative data, which even in an off-line system identification setting must
be estimated using some external method as it is not readily available. In an off-line setting
this method does not have to be causal; it can for example be a central-difference estimator.
However, when System identification has finished and the model that has been identified will
be employed in an on-line filtering setting, the method will have to be causal due to the
unavailability of future data. It remains unclear whether the final filtering performance will
be better when the non-causal method is used both for system identification and filtering, or
when the identification is done non-causally and the filtering is done causally. As will become
clear as will become clear in section 4-2-3, DEM-ED yields a change in the shift matrix D.

DEM-EH relies on past data, which means that both in system identification and filtering
applications there is no need for an external method for generalized signal estimation. How-
ever, as will become clear in section 4-2-3, DEM-ED yields a change in both the shift matrix
D and the precision matrices Π̃w and Π̃z, which means that this approach is most dissimilar
to the original formulation of DEM and thus behaviour is hardest to predict.

4-2-2 Generalized systems and their discrete-time interpretation

Any interpretation of discrete-time embedded signals as defined in the previous section allows
for the discrete-time interpretation of discrete-time generalized systems. Consider a discrete-
time LTI SS process:

x[k + 1] = Adx[k] + Bdu[k] + w[k]
y[k] = Cdx[k] + Ddu[k] + z[k] (4-24)

Then, combining th definition of a discrete-time system with my definition the embedded
signals as stated in the previous section leads to my definition of a discrete-time generalized
system:

x̃[k + 1] = Ãdx̃[k] + B̃dũ[k] + w̃[k]
ỹ[k] = C̃dx̃[k] + D̃dũ[k] + z̃[k] (4-25)

with generalized system matrices:

Ãd : = Ip ⊗ Ad

B̃d : = Ip ⊗ Bd

C̃d : = Ip ⊗ Cd

D̃d : = Ip ⊗ Dd (4-26)

and p denoting the embedding order12. The definition of the signals ũ, x̃, ỹ, w̃ and ṽ is
according to Eq. (4-23) and depends on the embedded information setting.

12Note the slight abuse of notation, where p is used both as an indication of a generalized signal with
embedded predictions, and as the embedding order (parameter determining the length of the generalized
signals)
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4-2-3 Generalized Filtering

Building upon the proposed definitions of the three types of discrete-time embedded signals
and generalized systems, I will propose three methods for estimating the generalized hidden
state based on the method of generalized filtering as discussed in section 4-1-2.

Generalized model At the foundation of the proposed generalized filter is still the generative
model, which is for now assumed again as an exact copy of the system:

ˆ̃x[k] = ˆ̃Ad ˆ̃x[k] + ˆ̃Bdũ[k]
ˆ̃y[k] = ˆ̃Cd ˆ̃x[k] + ˆ̃Ddũ[k] (4-27)

Shift-matrices For generalized signals with embedded predictions the upper shift matrix
as proposed in Eq. (4-5) yields a forward shift, i.e. one-step ahead prediction, which is in
accordance with the model:

Dp := D (4-28)

with D as in Eq. (4-5).

The first real differences between the my discrete-time (DT) generalized filtering approach
and the one discussed by Friston in [11, 12] emerge in the shift matrices for the remaining
two proposed approaches. Note that simply shifting the entries of ˆ̃x up for generalized
signals with embedded derivatives or embedded history will yield derivative and 1-step-back
predictions respectively, whereas the model still predicts a one-step-ahead prediction. These
two realizations of the generalized signals therefore call for a different shift matrix.

For the generalized signals with embedded history, it can be reasoned that if an upper-
shift matrix yields a backwards prediction, then a lower-shift matrix will yield a forwards
prediction. Therefore, the shift matrix D must be redefined as the 1-step-down operator:

Dh := Lp ⊗ In (4-29)

with Lp a p × p lower-shift matrix13 and In an n × n Identity matrix, such that
ˆ̃x′[k + 1] = Dh ˆ̃x[k] (4-30)

Proof of this statement can be found in appendix A-6.

For the generalized signals with embedded derivatives, it can be reasoned that if a upper-shift
matrix yields a derivative prediction, then the translation from derivative predictions to one-
step-ahead predictions yields a discretization step. Therefore, using the exact discretization
approach, the shift matrix D must be redefined as the discretization operator:

Dd := eDpdt (4-31)

with Dp the upper-shift matrix used for the generalized signals with embedded predictions.

13Sparse matrix with 1’s on the sub-diagonal
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Generalized errors The redefinition of the shift matrices as proposed in the previous para-
graph allow me to define the discrete-time version of the internal consistency- and output
prediction error for the generalized system with embedded predictions:

εx̃[k] : = Dp ˆ̃xp[k] − ˆ̃Ad ˆ̃xp[k] − ˆ̃Bdũp[k]

εỹ[k] : = ỹp[k] − ˆ̃Cc ˆ̃xp[k] − ˆ̃Dcũp[k] (4-32)

Similar statements can be written for the generalized errors with embedded derivatives and
those with embedded history, but since

Free-energy With the definition of the internal consistency errors, the Free-Energy used for
filtering can be redefined. However, note that the Free-Energy (FE) as defined in Eq. (4-
9) is instantaneous. Therefore, the discrete-time statement is equal to the continuous-time
definition as in
u

F [k] := U [k] + Wθ[k]
(4-33)

with

U [k] := −1
2

ε⊤
x̃ [k]Π̃wεx̃[k] − 1

2
ε⊤

ỹ [k]Π̃zεỹ[k] + log(Π̃w) + log(Π̃z) (4-34)

and the mean field term Wθ[k], for now, again zero as I assumed no parameter uncertainty.

Noise precision matrices The definitions of the precision matrices, including the temporal
correlation, remains unchanged for the embedded derivatives case.

However, for the other two cases, i.e. embedded prediction and embedded history, the tempo-
ral correlation matrix underlying these matrices does change, as it must now contain informa-
tion on how subsequent samples are correlated, rather then how samples and their derivatives
are correlated. For both DEM-EP and DEM-EH this brings:14:

S :=


E[ρ[0]ρ[0]] E[ρ[0]ρ[1]] · · · E[ρ[0]ρ[p]]
E[ρ[1]ρ[0]] E[ρ[1]ρ[1]] · · · E[ρ[1]ρ[p]]

...
... . . . ...

E[ρ[p]ρ[0]] E[ρ[p]ρ[1]] · · · E[ρ[p]ρ[p]]

 (4-35)

with for the Gaussian-convolved noise case ρ[k] = e− 1
2

k2
σ2

Filtering Finally, the filtering law remains unchanged, and thus brings gradient descent on
the Free-Energy such that internal consistency is enforced:

ˆ̃x[k + 1] = Dˆ̃x[k] − αx̃
∂F [k]

∂x̃
(4-36)

14Strictly speaking, for the embedded history case, the positive numbers in the corellation matrix should be
negative. However, since, the Gaussian corellation filter is symmetric, this does not yield any change in the
matrix entries.
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4-2-4 Parameter estimation

Following the same principles as derived in the previous section, I will now redefine the
equations for parameter estimation using DEM.

Free-Energy Consequent to the discrete-time definition of the free-energy function in the
previous section is the one that is used for parameter estimation. It contains an integral,
which in discrete time can be approximated by:

F̄ :=Ū + W̄x̃

=
N∑

k=0
U [k]∆t +

N∑
k=0

W̄x̃[k]∆t (4-37)

with U [k] as defined in Eq. (4-10)

Mean-Field terms Since the mean field terms are instantaneous, they can be directly trans-
lated to the discrete-time definition by substituting (t) with [k]. Furthermore, the assumption
of a LTI SS system and model allows for the further simplification of the terms:

Wx̃[k] := − tr
(
Π−1

θ [k]
(∂ε⊤

x̃ [k]
∂x̃

Π̃w
∂εx̃[k]

∂x̃
+

∂ε⊤
ỹ [k]

∂x̃
Π̃z

∂εỹ[k]
∂x̃

))
= − tr

(
Π−1

θ [k]
(
(Di − ˆ̃Ad)⊤Π̃w(Di − ˆ̃Ad) + (− ˆ̃Cd)⊤Π̃z(− ˆ̃Cd)

))
Wθ[k] := − tr

(
Π−1

x̃ [k]
(∂ε⊤

x̃ ([k]
∂θ

Π̃w
∂εx̃[k]

∂θ
+

∂ε⊤
ỹ ([k]
∂θ

Π̃z
∂εỹ[k]

∂θ

))
= − tr

(
Π−1

θ [k]
(
(− ˆ̃F[k])⊤Π̃w(− ˆ̃F[k]) + (− ˆ̃H[k])⊤Π̃z(− ˆ̃H[k])

))
(4-38)

with F̃[k] and H̃[k] the generalized counterparts of the transition- and measurement-function
to parameter gradients as defined in Eq. (3-12).

State- and parameter precision Matrices Furthermore, the precision matrices that are
needed for the mean-field terms, and which involve an integral, can be approximated by a
sum over the samples. Furthermore, once more assuming LTI SS system and model allows
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for the further simplification of precisions:

Πx̃[k] :=∂Ū

∂x̃

=
k∑

i=0

(∂ε⊤
x̃ [i]

∂x̃
Π̃w

∂εx̃[i]
∂x̃

+
∂ε⊤

ỹ [i]
∂x̃

Π̃z
∂εỹ[i]

∂x̃

)
∆t

=
k∑

i=0

(
(Di − ˆ̃Ad)⊤Π̃w(Di − ˆ̃Ad) + (− ˆ̃Cd)⊤Π̃z(− ˆ̃Cd)

)
∆t

=k∆t
(
(Di − ˆ̃Ad)⊤Π̃w(Di − ˆ̃Ad) + (− ˆ̃Cd)⊤Π̃z(− ˆ̃Cd)

)
Πθ[k] :=∂Ū

∂θ

=
k∑

i=0

(∂ε⊤
x̃ ([i]
∂θ

Π̃w
∂εx̃[i]

∂θ
+

∂ε⊤
ỹ ([i]
∂θ

Π̃z
∂εỹ[i]

∂θ

)
∆t

=
k∑

i=0

(
(− ˆ̃F[i])⊤Π̃w(− ˆ̃F[i]) + (− ˆ̃H[i])⊤Π̃z(− ˆ̃H[i])

))
∆t (4-39)

Note how the precision terms grow as time evolves, due to summation of positive definite
matrices. Consequently, their inverse, which drives the mean-field terms decreases. As a
result, the mean-field terms die out as time evolves.

The parameter update Now that we have fully defined the Free-Energy as it is minimized
for the parameter estimation step. The actual minimization is once more performed via 1st

order gradient descent, which is formally defined as

θ[i + 1] = θ[i] − αθ
∂F̄
∂θ

(4-40)

The on-line parameter update Similar to expectation maximization (EM), DEM also in-
cludes the possibility of updating the parameters on-line, which brings

θ[k + 1] = θ[k] − αθ
∂F̄ [k]

∂θ
(4-41)

with F̄ [k] the FE as stated in Eq. (4-37), but evaluated at a single data sample.

The parameter gradient Note how the parameter updating scheme relies on the calcula-
tion of the gradient from the Free-Energy towards the parameters. This gradient can be
algebraically calculated by

∂F̄
∂θ

= ∂Ū

∂θ
+ ∂W̄x̃

∂θ

= 1
N

N∑
k=0

∂U [k]
∂θ

∆t + 1
N

N∑
k=0

∂Wx̃[k]
∂θ

∆t (4-42)
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with
∂U [k]

∂θ
= −1

2
∂ε⊤

x̃ [k]
∂θ

Π̃wεx̃[k]

−1
2

∂ε⊤
ỹ [k]
∂θ

Π̃zεỹ[k] = −1
2

∂x̃⊤[k]
∂θ

Π̃wεx̃[k] − 1
2

∂ỹ⊤[k]
∂θ

Π̃zεỹ[k] (4-43)

and the mean-field term gradient to be evaluated per-hidden state-variable:
∂Wx̃[k]

∂θi
= −tr

(
Π−1

θ [k]
(∂2ε⊤

x̃ [k]
∂x̃∂θi

Π̃w
∂εx̃[k]

∂x̃
+

∂2ε⊤
ỹ [k]

∂x̃∂θi
Π̃z

∂εỹ[k]
∂x̃

))
= −tr

(
Π−1

θ [k]
(∂2 ˆ̃x⊤[k]

∂x̃∂θi
Π̃w

∂εx̃[k]
∂x̃

+ ∂2ˆ̃y⊤[k]
∂x̃∂θi

Π̃z
∂εỹ[k]

∂x̃

))
(4-44)

Though theoretically relevant, it remains unclear whether tracing the gradient towards θ
further than one step is necessary within DEM. In his SPM-toolbox [17], Friston does not,
which simply leaves: ∂x̂[k]

∂θ = F[k] and ∂ŷ[k]
∂θ = H[k]. Even stronger, in many of the demos

that the SPM-toolbox includes, Friston simply approximates the gradients numerically.

4-3 Answers to research questions

To conclude this chapter I briefly circle back to the research questions as formulated in the
introduction to answer them based on the content of this chapter.

What is the theoretical principle which defines DEM? DEM is part of the Free-Energy
principle. Consequently it assumes systems are perturbed with correlated noise, which intro-
duces the need for generalization of systems, i.e. considering the information in higher order
derivatives of the signals. Furthermore, the FEP considers all types of inference, i.e. both
that of parameters and that of hidden states, as minimization of a function called the Free-
Energy, which is essentially the joint negative log-likelihood (LL) of the estimated generalized
hidden state’s internal consistency in the generalized output prediction accuracy.

How can DEM be translated into a method for filtering and system identification? The
major translation step from DEM as proposed by Friston to something directly applicable as
a system identification method is a discrete-time interpretation.
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Chapter 5

Generalized signal estimation

In this chapter I introduce the feasibility limitation that is inherent to two of the three for-
mulations of dynamic expectation maximization (DEM) as proposed in the previous chapter.
Furthermore, I propose two different solutions for overcoming the feasibility problem and vali-
date their performance with numerical simulations. Ultimately, this chapter provides answers
to research questions 6, 7 and 8

5-1 The feasibility limitation

Central to filtering and system identification under the Free-Energy principle (FEP) is the as-
sumption that the derivatives of a systems in- and outputs can be obtained. However, in most
real world applications these signals are inherently unobtainable, posing serious limitations
to the feasibility of any real world application of DEM.

Therefore, I propose two methods for estimating generalized signals with embedded deriva-
tives. Subsequently I extend these methods to a discrete-time formulation, such that the
methods can be used directly in conjunction with the formulations of DEM as proposed in
the previous chapter.

5-2 Numerical signal differentiation

Following a local linearity assumption and zero order hold, a first-order backward-Euler ap-
proximation can be performed to numerically estimate the derivative of any signal ϕ based
on the current and previous data-point:

ϕ̇[k] ≈ 1
∆t

(ϕ[k] − ϕ[k − 1]) (5-1)
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Similarly, this procedure can be repeated using three data-points to estimate the second order
derivative:

ϕ̈[k] ≈ 1
∆t

(ϕ̇[k] − ϕ̇[k − 1])

≈ 1
∆t

( 1
∆t

(ϕ[k] − ϕ[k − 1]) − 1
∆t

(ϕ[k − 1] − ϕ[k − 2]))

= 1
∆t2 (ϕ[k] − 2ϕ[k − 1] + ϕ[k − 2]) (5-2)

Repeating this procedure p times allows for estimation of all the entries of the generalized
signal ϕ̃d[k] of order p:

ϕ̃[k] :=
[
ϕ[k] ϕ̇[k] ϕ̈[k] · · · ϕ(p)[k]

]⊤
(5-3)

Vectorization of the system of equations that follows the repetitive application of Eq. (5-1)
and Eq. (5-2) brings:

ϕ̃[k] ≈ ∆−1PpI±ϕ̃h[k] (5-4)

with Pp a Pascal matrix of order p, ∆ := diag(∆t, ∆t2, ..., ∆tp) and I± an identity matrix
with 1 on uneven rows and −1 on even rows. Furthermore

ϕ̃h[k] :=
[
ϕ[k] ϕ[k − 1] · · · ϕ[k − p]

]⊤
(5-5)

is the generalized signal with embedded history, which can be directly inferred from past data.
For a more detailed derivation of these equations please refer to appendix A-1.

5-3 Dynamical filter signal differentiation

In this section I propose a second, fundamentally different, approach for generalized signal
estimation, which is adopted from the field of adaptive control and thoroughly discussed
in [18].

It states that for a continuous-time signal ϕ(t) the derivative can be inferred by considering
the signal in the frequency domain. Recall from chapter 2 that the pth-order derivative in the
time-domain yields a slope-transform in the frequency domain, i.e.:

L(ϕ(p)(t)) = spL(ϕ(t)) (5-6)

with L(·) the Laplace transform and s the Laplace variable. Note that in terms of a bode
plot of the operation, differentiation is equivalent to placing a zero at s = 0.

Furthermore, linear systems theory states that any operator ϕ(t) whose Laplace transform has
a numerator that is of higher order than its denominator1, is inherently unstable. Therefore,
the adaptive control approach includes a (p+1)th-order filter into the the derivative estimation
scheme, which flattens the slope of the frequency domain response, thus rendering a stable
differentiator operation. In the Laplace domain, this filter can be considered as:

Λ(s) = λp+1

(s + λ)p+1

1i.e. has more zeros than poles
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with λ the cut-off frequency of the filter and p the order of the derivative. The full differen-
tiation operation, including the stable filter, then brings:

H(s) = Λ(s)sp

= λp+1sp

(s + λ)p+1 (5-7)

A translation step from this transfer function into a dynamical filter that can be directly used
for signal differentiation, yields a transfer function to LTI SS mapping of H(s).

Even more so, by choosing a specific realization, the controllable canonical form, it turns out
that the state of this dynamical filter already contains the filtered input signal in its top layer,
the 1st order derivative in the second layer, the 2nd order derivative in the third layer and
so on, up to a scaling factor. Mathematically, this realization brings a continuous-time LTI
SS system:

ẋϕ(t) = Aϕxϕ(t) + Bϕϕ(t)
ϕ̃d(t) = Cϕxϕ(t) + Dϕϕ(t)

where Aϕ and Bϕ follow from realization theory, Cϕ = λp+1Ip×p+1 and Dϕ = 0. For a more
detailed description of the controllable canonical state-space realization and how it can be
inferred from the transfer function, please refer to appendix A-2.

The stable dynamical filter can then be discretized using theory from the field of digital
control [19], which states that exact discretization2 yields:

Ad = eAϕ∆t

Bd = A−1
ϕ (Ad − I)Bϕ (5-8)

which can then be used in the discrete-time filter:
xϕ[k + 1] = Adxϕ[k] + Bdϕ[k]

ϕ̃d[k] = Cϕxϕ[k] (5-9)

Note: Choosing the cut-off frequency λ very large will yield a negligible phase shift
and thus very accurate estimation. However, doing so will also yield large spikes
when the initial embedded signal is unknown and will increase the sensitivity to
discretization error.

5-4 Signal predictions estimation

The approaches in the previous two sections provide methods for estimating generalized sig-
nals which involve embedded derivatives. However, another interpretation of DEM that was
proposed in the previous chapter involved embedded predictions rather than embedded deriva-
tives. Therefore, the approaches as introduces in the previous sections must be extended such
that the estimated generalized signals do not contain embedded derivatives, but embedded
predictions.

2Still assuming zero-order hold and local linearity, so not really exact, just more accurate than Euler
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This can be easily realized by applying the inverse procedure of numerical derivative estima-
tion, i.e. by assuming local linearity and numerically integrating the embedded signal using
forward Euler, such that for a signal ϕ[k], given ϕ[k] and ϕ̇[k]:

ϕ[k + 1] ≈ ϕ[k] + ∆tϕ̇[k] (5-10)
Subsequently,

ϕ̇[k + 1] ≈ ϕ̇[k] + ∆tϕ̈[k] (5-11)
and thus

ϕ[k + 2] ≈ ϕ[k + 1] + ∆tϕ̇[k + 1]
≈ ϕ[k] + ∆tϕ̇[k] + ∆t(ϕ̇[k] + ∆tϕ̈[k])
≈ ϕ[k] + 2∆tϕ̇[k] + ∆t2ϕ̈[k] (5-12)

Repeating this procedure and vectorizing the equations yields:
ϕ̃p[k] ≈ Pp∆ϕ̃d[k] (5-13)

with ϕ̃d[k] as defined in Eq. (5-3). For a more detailed derivation of these equations please
refer to appendix A-4.

Numerical discrete-time generalized signal estimation Combining the approach as pro-
posed in this section with the first approach I proposed for embedded derivative estimation,
yields a method which can be used directly to infer a generalized signal with embedded pre-
dictions from a historical sequence of data. In other words, combining equations Eq. (5-4)
and Eq. (5-13) yields:

ϕ̃p[k] ≈ Pp∆∆−1PpI±ϕh[k]
≈ ∆PpPpI±ϕh[k] (5-14)

Stable discrete-time generalized signal estimation Combining the approach as proposed in
this section with the second approach I proposed for embedded derivative estimation, yields
a method which can be used to infer a generalized signal with embedded predictions from
a dynamical filter which stabily estimates the embedded derivatives of a generalized signal.
Shifting from embedded derivatives to embedded predictions does not induce changes for
the dynamics of the filter itself, only for the observation model. In other words, combining
equations Eq. (5-9) and Eq. (5-13) yields:

ϕ̃p[k] ≈ Pp∆
(
Cϕ̃x̃ϕ[k] + Dϕ̃ϕ[k]

)
= Pp∆Cϕ̃x̃ϕ[k] (5-15)

where x̃ϕ[k] is obtained from the dynamical filter as defined in Eq. (5-9).

5-5 Results

In order to validate the performance of the two methods for derivative estimation as proposed
in this chapter, numerical simulations are performed on both the methods.

The simulation involves estimation of the 1st , 2nd and 3rd order derivatives of a signal with
tractable derivatives, namely ϕ(t) = sin 2t2. Choosing such a signal allows for the comparison
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between the estimated derivative signals and the true derivative signals, as the derivatives of
sinusoids3 can be analytically determined up to an infinite order.

Finally, the relative performance of the two methods is compared. Their relative comparison
in conjunction with the more practical pros and cons of the two methods is the foundation
on which my final proposition for generalized signal estimation is based.

Figure 5-1: with two different cut-off frequency settings. From this figure it can be observed
that the dynamical filters exert dynamical behaviour, and that the numerical filter tracks the
signals more accurately than both dynamical filters. ϕ(t) = sin(2t2) T = 10 s. Source:
github.com/lznidarsic/sir/

Most notable in this figure is the clearly present behaviour of the dynamical filter, which causes
lag and an amplitude decrease when signal approaches the cut-off frequency. It would then
be expected that increasing the cut-off frequency will yield more accurate signal estimation
performance. However, as can be observed in the figure denoting the fourth embedding
layer, the filter with a cut-off frequency of 200Hz deviates strongly from the true signal. This
instability can be explained by the build-up of round-off errors which root in the discretization.

Considering the numerical filter, no errors can be visually observed, except upon very close
inspection of the figure depicting the fourth embedding layer. It must be noted, however, that
when the signal would have contained a certain degree of roughness, e.g. if it were perturbed
with a level of Pink, White, Blue or Violet noise, the numerical filter would turn to instability
in the deeper layers.

Conclusion Based on the results as discussed in this section, and the fact that the stable
filter relies on a tuning parameter which may or may not destroy the essential information,
or might even add wrong information to the embedded data, I propose to use the numerical
differentiator for on-line DEM. Furthermore, I propose to use the numerical differentiator in
combination with the numerical predictor for on-line DEM with embedded predictions.

3Along with cosinusoids, gaussians, etc.
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Remark: It might be that at some point in further research the need emerges to
include compatibility with White noise into DEM. In this case, it might prove to be
necessary to include a kind of filter which can estimate generalized signals perturbed
with white noise. Then, the dynamical filter as proposed in this chapter might prove
to be a solution.

5-6 Answers to research questions

To conclude this chapter I briefly circle back to the research questions as formulated in the
introduction to answer them based on the content of this chapter.

What feasibility problems arise when translating DEM to a filtering and system identifica-
tion method? For two of the three proposed methods, any implementation will rely on data
that is not readily available, namely the higher order derivative signals or future predictions
of the input and the output signals.

How can these problems be solved? Two different methods for estimating these derivative
signals are proposed, the first being a simple causal numerical differentiating scheme, which is
efficient but inaccurate. The second is a stable filter with a tunable cut-off frequency, which
is, in theory, less prone to instability, at the cost of computational efficiency.

Do the proposed solutions to the feasibility perform accurately? Simulations showed that
both solutions find some estimate of the generalized signals. However, the stable approach
showed, contrary to expectation, to be more sensitive to discretization errors. Furthermore,
performance of the stable filter depends on tuning. Therefore I propose to use the numerical
estimation method.
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Chapter 6

Results

In this chapter I will discuss the system, model, parametrization and signal properties used
for the numerical simulations in this chapter. These are then performed on the methods for
filtering and system identification as proposed in the previous chapters. The results of the
numerical simulations are discussed. Ultimately, this chapter provides answers to research
questions 9 and 10

6-1 Dataset, simulation and parametrization

This chapter will include numerical simulations of all the methods on data obtained from a
2nd order spring-mass damper system, excited with a persistently exciting input signal and
two different types of noise. All data will be from a simulation with T = 10 and ∆t = 10−2,
i.e. N = 1001.

System As mentioned, the system is a 2nd order spring-mass damper system, from which
only the position is available for measurement. The system has been discretized preceding
the simulation using forward Euler, i.e. the simulation data is from an actual discrete-time
system:

x[k + 1] = Adx[k] + Bdu[k] + w[k]
y[k] = Cdx[k] + Ddu[k] + z[k] (6-1)

Following the Euler discretization, the parametrization brings:

Ad(θ) =
[

1 ∆t
−∆tθ1 1 − ∆tθ2

]
, Bd(θ) =

[
0

∆tθ3

]
, Cd(θ) =

[
1 0

]
, Dd(θ) =

[
0
]

(6-2)

with θ =
[

k/m d/m 1/m

]⊤
, k the spring constant, d the damping coefficient and m the mass.

Model It is common for state-space identification methods to parametrize all entries of
the SS model1. However, as the SS representation of systems is not unique, doing so will
not necessarily bring a final model estimate which represents the system one-to-one, making

1and thus assume no structure in the matrices
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hidden state estimation performance hard to evaluate. A solution would be to constrain
structure in the model before estimation2 3. For the scope of this thesis I will assume the
model structure to be the equal to the system’s structure. In other words, the model will
be an exact copy of the system as presented in Eq. (6-1) and Eq. (6-2), the parameters
θ = [θ1, θ2, θ3]⊤ of which are to be estimated. Doing so will also allow direct evaluation of
the parameter-estimation performance by comparison of the estimated parameters with the
real system’s parameters.

Noise The first type of noise will be Gaussian-convolved white noise with a very thin kernel
width of σ = 1∆t (0.01 s), such that the realization can be considered as white noise4. The
second type of noise will be Gaussian-convolved white noise with a wide kernel width of
σ = 10∆t (0.1 s), such that the realization can be considered as Gaussian-convolved white
noise. The white noise preceding both the Gaussian filters will have Q = 0.1I, R = 0.2. The
near-White noise and corellated noise-sequences can be observed in Figure 6-1.

Figure 6-1: The two different noise signals . Top figure: Near-White noise signal, kernel width
σ = 0.01 s. Bottom figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s.
T = 10 s. Source: github.com/lznidarsic/sir/

Input To ensure there is enough information in the collected data to properly identify the
system, the data must be collected whilst the system is excited with an input signal following
the persistence of excitation property [?, 18, 20]. For the simulation data used in this thesis,
the input signal is a sum of sinusoids as can be observed in figure Figure 6-2.

Figure 6-2: Persistently exciting input signal , sum of sinusoids. ∆t = 10−2 s. T = 10 s. Source:
github.com/lznidarsic/sir/

2If the structure is unknown, the simplification can also be achieved via canonical realizations. Canonical
realizations for 2nd order systems contain four parameters, and thus for a true canonical realization the model
would have had to be parametrized in the 0-entry of the B-matrix as well.

3Another way to compare the model estimate with the system would be via similarity transforms
4Using actual white noise introduces problems regarding the temporal correlation matrix
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6-2 Filtering

Underlying the performance and convergence behaviour of the system identification methods
lies the performance of the filters which they employ for state estimation. As a first test, all
system parameters are assumed known, and the filtering methods are used for hidden state
estimation on the dataset as described in the previous section. The filtering results for both
noise settings can be observed in Figure 6-3 to Figure 6-6 respectively.

Figure 6-3: Results of the Kalman filter method calculated from an exemplary 2nd order mass-
spring-damper system perturbed with the two different noise signals. Top figure: Near-White
noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved noise-signal signal, kernel width
σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/
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Figure 6-4: Results of the Generalized Filter with embedded predictions method calculated from
an exemplary 2nd order mass-spring-damper system perturbed with the two different noise signals.
Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved noise-
signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

Figure 6-5: Results of the Generalized Filter with embedded derivatives method calculated from
an exemplary 2nd order mass-spring-damper system perturbed with the two different noise signals.
Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved noise-
signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

Laurens Žnidaršič Master of Science Thesis

https://github.com/lznidarsic/sir/blob/master/demo_generalized_filtering.py
https://github.com/lznidarsic/sir/blob/master/demo_generalized_filtering.py


6-2 Filtering 45

Figure 6-6: Results of the Generalized Filter with embedded history method calculated from an
exemplary 2nd order mass-spring-damper system perturbed with the two different noise signals.
Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved noise-
signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

The conclusion that can immediately be drawn from the figures is that in their current setting
the filtering performance5 of all three Generalized Filters is inferior to that of the conventional
Kalman filter, both for noise that is almost white and for noise that is clearly correlated.

It must be noted that the filtering performance of all generalized filters could have been
majorly improved by increasing the updating gain αx̃. However, increasing the gain further
than the values that have been used for the depicted simulation yielded instability. Identifying
the source of this instability and subsequently finding a means to overcome it, will highly
increase the performance of all generalized filters and will yield a better comparison between
the behaviour of the filters.

A possible candidate for the source of instability are the internal consistency mismatch in
initial generalized input, hidden state and output due to a wrongly constructed D matrix.
Another possible candidate is the temporal correlation matrix S, which would explain the
behaviour of the DEM-EP and the DEM-EH methods.

A possible way to improve the performance of the generalized filters, as suggested to me by my
supervisor P. Mohajerin Esfahani, would be to use a generalized Kalman updating scheme
rather than gradient-descent Free-Energy minimization. Together we worked out that the
coupling between different embedding layers would can then be achieved via the updating
gain, which will be partly determined by the precision matrices and thus include te temporal
correlation model. This last statement is particularly important to keep the ability to filter
under the presence of corellated noise, as without coupling there would be no added value in
generalization.

5Measured in MSE between actual hidden state and estimated hidden state
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6-3 Parameter-cost optima

In this section the theoretical parameter estimation performance of the proposed methods
will be tested by means of cost function evaluation on the system and dataset as proposed in
the first section of this chapter. The performance will be evaluated as the distance between
the parameters that are at the minimum of the cost-function6, and the real parameters, i.e.
the parameters of the real system.

6-3-1 Cost optima with known hidden states

Before the parameter estimation methods can be properly tested in conjunction with their
corresponding filtering methods, their stand-alone performance must be evaluated. This can
be achieved by assuming the (generalized) hidden states (x, x̃) as known, and thus evaluating
the cost functions only in terms of a 1-step prediction from this known hidden state.

For each method two types of cost functions will be evaluated. The first being the theoretical
cost, where errors are obtained in terms of the distance between the predicted (generalized)
hidden state and the real one:

εx,theoretical[k] = x[k + 1] − Ax[k] − Bu[k]
εx̃,theoretical[k] = x̃[k + 1] − Ãx̃[k] − B̃ũ[k] (6-3)

The second being the actual cost function that the method minimizes, where errors are
obtained in terms of the distance between the predicted (generalized) hidden state and the
estimate that the filter provides.

εx,practical[k] = K(y[k + 1] − C(Ax[k] − Bu[k]))
εx̃,practical[k] = Dx̃[k] − Ãx̃[k] − B̃ũ[k] (6-4)

with εx̃ implemented for all three flavour of DEM, and their shift matrices D and embedded
signals x̃ according to the theory7 as described in chapter 4. With respect to the DEM-
based methods, the difference between the two costs can be considered a measure of much
error the D operator introduces. The cost functions of all proposed methods and expectation
maximization (EM) in both the noise settings can be observed in figure Figure 6-7 to Figure 6-
10.

Remark: Since there are three parameters in the system, the full cost function
cannot be properly depicted. Rather, the costs are evaluated per-parameter, with the
other parameters set to their real parameter valuesa. If then for all three parameters
the cost minimum is on the real parameter, it can be concluded that at least some
local optimum of the method is on the real system parameters.

ai.e. I am evaluating projections of the cost functions on planes spanned by the real parameters

6i.e. the parameter the algorithm will converge towards
7in this section the subscripts p, d and h were omitted to denote that the equation would be equivalent for

all three cases.
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Figure 6-7: EM: The negative log-likelihood cost function with known hidden states calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top row of figures: near-White noise signal, kernel width σ = 0.01 s. Bottom row
of figures: convolved noise-signal signal, kernel width σ = 0.1 s. From the figure it can be
observed that noise correlation shifts both the theoretical and practical optima away from the real
parameters. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

From Figure 6-7 it can be observed that, given known hidden states, the EM method has its
theoretical optimum on the real parameters for both noise cases and its practical optimum
very close to, if not exactly on, the real parameters as well. This is not a surprise, as the
expected failure of the EM algorithm will arise as a result of poor filtering performance rather
than a shifted parameter optimum. Consequently, given some filter that is able to accurately
estimate the hidden states under the presence of coloured noise, the EM parameter estimation
step would still perform close-to optimal.

Figure 6-8: DEM: The Free-Energy with embedded predictions cost function with known hidden
states calculated from an exemplary 2nd order mass-spring-damper system perturbed with the
two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom
figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. From the figure it
can be observed that though noise correlation shifts the practical optimum away from the real
parameters, the theoretical optimum remains on the real parameters. T = 10 s. github.com/
lznidarsic/sir/demo_parameter_estimation_cost.py

From Figure 6-8 it can be observed that, given known hidden states, the DEM method with
embedded predictions has both its theoretical and practical optimum on the real parameters
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for the near-white noise case. In other words, if its corresponding filtering method is able to
accurately infer the hidden states8 given known parameters, and furthermore the accuracy of
the hidden state estimates increases with increasing parameter accuracy9, then this method
would be able to infer the real parameters of the system.

However, the bottom row of Figure 6-8 clearly shows that, though the theoretical optimum of
the cost function remains on the real parameters, the practical does not. This implies that the
parameter estimation performance of the method is not invariant to noise correlation. In fact,
the negative influence of the noise correlation on the parameter estimation accuracy is larger
for DEM-EP than for regular EM. The fact that the error increases with increasing correlation
suggests an error in the Temporal Corellation Matrix that I defined for the generalized signals
with embedded derivatives.

Figure 6-9: DEM: The Free-Energy with embedded derivatives cost function with known hid-
den states calculated from an exemplary 2nd order mass-spring-damper system perturbed with
the two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s.
Bottom figure: Convolved noise-signal signal, kernel width σ = 0.1 s. From the figure it can
be observed that the theoretical optimum is on the real parameters but the practical optimum is
not, and that the error increases with increased correlation. ∆t = 10−2 s. T = 10 s. Source:
github.com/lznidarsic/sir/

From Figure 6-9 it can be observed that, given known hidden states, the DEM method
with embedded derivatives has its theoretical optima on the real parameters for both noise
cases, but its practical optima are not. The accuracy of the practical cost deteriorates with
increasing correlation.

8which I showed in the previous section that unfortunately it cannot
9again, I showed that unfortunately it does not
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Figure 6-10: DEM: The Free-Energy with embedded history cost function with known hidden
states calculated from an exemplary 2nd order mass-spring-damper system perturbed with the
two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom
figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source:
github.com/lznidarsic/sir/

From Figure 6-10 it can be observed that, given known hidden states, the DEM method with
embedded derivatives has its theoretical optima on the real parameters for both noise cases,
but its practical optima are not. There is no noticeable difference in accuracy of the practical
cost with increasing correlation.

The results presented in Figure 6-10 and Figure 6-10 suggest that using shift operators within
the Free-Energy for parameter estimation introduces errors which seriously deteriorate the
performance of DEM.

A possible workaround would be to simply replace the Dˆ̃x[k − 1] terms with ˆ̃x[k] such that
the internal consistency error yields:

εx̃[k] = ˆ̃x[k] − ˆ̃Aˆ̃x[k − 1] − ˆ̃Bˆ̃u[k − 1]
Of course, this approach will still not solve the problem when the filters don’t provide accurate
estimates for the hidden states. Also note that changing the Free-Energy as suggested will
bring the definition of DEM closer to EM, especially when combined with my suggestion for
improving the filters via a Kalman scheme. In that case, DEM will essentially be EM with
generalized coordinates.
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6-3-2 Optima with unknown hidden states

Now that the independent performance of both the parameter estimation- and filtering meth-
ods have been established, their joint performance must be evaluated. This can be achieved
by considering once more the cost functions as dependent on the unknown parameters, but
now the hidden states are also unknown and are thus estimated using corresponding filters
that each method includes.

Figure 6-11: EM: The negative log-likelihood cost function with unknown hidden states calcu-
lated from an exemplary 2nd order mass-spring-damper system perturbed with the two different
noise signals. Top row of figures: near-White noise signal, kernel width σ = 0.01 s. Bottom row
of figures: convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source:
github.com/lznidarsic/sir/

From Figure 6-11 it can be observed that the EM method has practical optimum close to the
real parameters 10. However, note that the optima are much closer to the real parameters
in the near-White noise as compared to the correlated noise case, providing proof to the
statement that noise correlation deteriorates the performance of EM.

10note that the scale of the parameter-space x-axis is much smaller for EM than in the DEM-based methods.
Decreasing the parameter interval was necessary for EM due to instability for parameter values which rendered
the model unstable.
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Figure 6-12: DEM with embedded predictions: The Free-Energy cost function with unknown
hidden states calculated from an exemplary 2nd order mass-spring-damper system perturbed
with the two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s.
Bottom figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s.
Source: github.com/lznidarsic/sir/

Figure 6-13: DEM with embedded derivatives: The Free-Energy cost function with unknown
hidden states calculated from an exemplary 2nd order mass-spring-damper system perturbed
with the two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s.
Bottom figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s.
Source: github.com/lznidarsic/sir/
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Figure 6-14: DEM with embedded history: The Free-Energy cost function with unknown hidden
states calculated from an exemplary 2nd order mass-spring-damper system perturbed with the
two different noise signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom
figure: Convolved noise-signal signal, kernel width σ = 0.1 s. ∆t = 10−2 s. T = 10 s. Source:
github.com/lznidarsic/sir/

From Figure 6-12, Figure 6-13 and Figure 6-14 it can be observed that none of the proposed
DEM-based methods have their optima close to the real parameters. Even stronger, some
of the cost functions have an don’t appear to have an optimum at all, which would render
the methods unstable. Note however, as both the parameter and state- estimation methods
do not perform adequately individually, it was to be expected that their joint performance
would not be accurate. Nonetheless, the results presented in this section provide additional
proof to the conclusion that DEM in its current implementation does not outperform EM in
a correlated noise setting.
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6-4 System Identification

In this section I will provide numerical simulations of all proposed methods, both in an off-line
and an on-line setting. Note that these do not add directly to the conclusions made in this
thesis. However, as a proof-of concept of all the methods described in this thesis as well as
additional evidence to the statements made in previous sections, it is important to observe
the behaviour of the algorithms from a practical perspective. In other words, to show that
when applying the methods to a real (simulated) system identification problem, they behave
as theory predicted.

6-4-1 Offline system Identification

Figure Figure 6-15 to Figure 6-18 depict the numerical simulation results for an off-line system
identification setting. The final hidden state estimates are not shown, as for all the DEM-based
methods the parameters values tend to infinity, rendering the final hidden state estimates as
invalid numbers. This result was to be expected based on the (local) non-convexity of the cost
functions as discussed in the previous section. The simulations do show that the performance
of the EM-method deteriorates as noise correlation increases.

Figure 6-15: EM: Offline system identification results calculated from an exemplary 2nd order
mass-spring-damper system perturbed with the two different noise signals. Top row: Near-White
noise signal, kernel width σ = 0.01 s. Bottom row: Convolved noise-signal signal, kernel width
σ = 0.1 s. This figure shows that noise correlation deteriorates the performance of EM. ∆t =
10−2 s. T = 10 s. github.com/lznidarsic/sir/demo_offline_parameter_estimation.py
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Figure 6-16: DEM with embedded predictions: offline system identification results calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top row: Near-White noise signal, kernel width σ = 0.01 s. Bottom row: Convolved
noise-signal signal, kernel width σ = 0.1 s. This figure shows that DEM-EP is unstable in its
current setting. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

Figure 6-17: DEM with embedded derivatives: offline system identification results calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top row: Near-White noise signal, kernel width σ = 0.01 s. Bottom row: Convolved
noise-signal signal, kernel width σ = 0.1 s. This figure shows that DEM-ED is unstable in its
current setting. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

Figure 6-18: DEM with embedded history: offline system identification results calculated from an
exemplary 2nd order mass-spring-damper system perturbed with the two different noise signals.
Top row: Near-White noise signal, kernel width σ = 0.01 s. Bottom row: Convolved noise-signal
signal, kernel width σ = 0.1 s. This figure shows that DEM-EH is unstable in its current setting.
∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/
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6-4-2 Online system Identification

Figure Figure 6-15 to Figure 6-18 depict the numerical simulation results for an on-line system
identification setting. For all the DEM-based methods the parameters values tend to infinity.
This result was to be expected based on the (local) non-convexity of the cost functions as
discussed in the previous section. The simulations do show that the performance of the
EM-method deteriorates as noise correlation increases.

Figure 6-19: OEM: On-line system identification results calculated from an exemplary 2nd

order mass-spring-damper system perturbed with the two different noise signals. Top figure:
Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved noise-signal signal,
kernel width σ = 0.1 s. This figure shows that noise correlation deteriorates the performance of
EM. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/
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Figure 6-20: ODEM with embedded predictions: on-line system identification results calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved
noise-signal signal, kernel width σ = 0.1 s. This figure shows that DEM-EP is unstable in its
current setting. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

Figure 6-21: ODEM with embedded derivatives: on-line system identification results calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved
noise-signal signal, kernel width σ = 0.1 s. This figure shows that DEM-ED is unstable in its
current setting. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/
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Figure 6-22: ODEM with embedded history: on-line system identification results calculated
from an exemplary 2nd order mass-spring-damper system perturbed with the two different noise
signals. Top figure: Near-White noise signal, kernel width σ = 0.01 s. Bottom figure: Convolved
noise-signal signal, kernel width σ = 0.1 s. This figure shows that DEM-EH is unstable in its
current setting. ∆t = 10−2 s. T = 10 s. Source: github.com/lznidarsic/sir/

6-5 Answers to research questions

To conclude this chapter I briefly circle back to the research questions as formulated in the
introduction to answer them based on the content of this chapter.

Does DEM outperform EM w.r.t. filtering under the presence correlated noise I showed
that none of the proposed DEM-based filtering methods in their current setting outperform
the conventional Kalman filter in terms of hidden state estimation. I suggested to replace
the shift matrices with a Kalman update as a possible way to improve the state-estimation
performance.

Does DEM outperform EM w.r.t. identification under the presence correlated noise I
showed that none of the proposed DEM-based parameter estimation methods in their current
setting outperform EM in terms of parameter estimation. I suggested to replace the shift
matrices with the filtered state estimate as a possible way to improve the parameter-estimation
performance.
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Chapter 7

Conclusion

In this chapter I will provide a short summary of the main findings of this thesis, based
on the answers of the research questions. I will then address the main research question.
This chapter will conclude with an overview of the research contributions of this thesis and
recommendations for further research

7-1 Summary

In this thesis I proposed three discrete-time methods for system identification under the
presence of coloured noise, based on the continuous-time definition of the DEM-algorithm as
proposed by neuroscientist K.J Friston.

The major translation steps from theoretical principle to feasible system identification meth-
ods involved discretization and overcoming the feasibility issues due to dependency of unavail-
able data. For the latter, two solutions were considered of which the numerical differentiator
proved the best candidate.

I showed that none of the proposed DEM-based filtering methods in their current setting out-
perform the conventional Kalman filter in terms of hidden state estimation, due to instability
issues. Should these instability issues be solved, then the filtering methods might outperform
the Kalman filter when noise is correlated. I suggested to replace the shift matrices with a
Kalman update as a possible way to improve the state-estimation performance.

I showed that none of the proposed DEM-based parameter estimation methods in their current
setting outperform expectation maximization (EM) in terms of parameter estimation, but this
can be mainly attributed to the poor performance of the filters. The theoretical optima of
the Free-Energy cost functions proved to be invariant to noise correlation, providing strong
evidence that when a different method for approximating the theoretical optima is included
and a way to improve filtering performance is found, DEM might outperform EM in terms of
parameter estimation when noise is correlated. I suggested to replace the shift matrices with
the filtered state estimate as a possible way to improve the parameter-estimation performance.
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7-2 Answer to the main question

Do the DEM-based methods for filtering and system identification as suggested in this
thesis outperform EM for systems perturbed with correlated noise? No. In the current
interpretations that were proposed in this thesis the filters suffer from instability issue which
seriously deteriorate the hidden state estimation performance. As a result, the DEM-based
system identification methods, which heavily rely on the hidden states estimated by the filters,
cannot accurately identify the system. However, I have shown that the optima of the Free-
Energy cost function as dependent on the parameters is invariant to noise correlation, which
implies that, should further research find a means of overcoming the stability issues of the
generalized filters and a better way to approximate the theoretical optimum for parameter
estimation, there is evidence that DEM might outperform EM.

7-3 Contributions

A brief overview of the major contributions of this thesis:

• Showed that noise correlation deteriorates performance of EM
• Provided three discrete-time system identification methods based on DEM
• Implemented EM and my interpretations of DEM
• Laid the foundations of a system identification toolbox around EM and DEM in python

which includes:

various filters

model structure (works both for linear and non-linear state-space systems)

noise generator for correlated noise in various flavours

derivative observers for generalized signal estimation

various demos showing on all topics discussed in this thesis
• Validated the performance of DEM in terms of parameter estimation and filtering
• Provided evidence suggesting that performance of DEM in its current implementation

is not invariant to noise correlation
• Provided suggestions on how the performance of the both the filters and the parameter

estimation can be improved

7-4 Recommendations

In this section I will describe recommendations for further research. Some of these will build
on findings of this thesis, and others will concern subjects that I considered outside the scope
of this thesis.
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Improving state-estimation performance The major step in improving the performance of
the DEM-based system identification methods as discussed in this thesis, will be achieved by
improving the performance of the filters. More specifically, finding a means such that the
state-estimation gain αx̃ can be increased without causing instability. Doing so, will highly
increase the hidden-state estimation accuracy of the filters.

Furthermore, if further research brings that the reason for the instability is inherent to how
the filters are currently defined, it might be necessary to adopt a fundamentally different kind
of filtering scheme. A possible candidate would be to replace the D ˆ̃x in ˆ̃x[k + 1] = D ˆ̃x − ∂x̃F
with a more accurate prediction estimate, i.e. one calculated with the model or even a Kalman
filter.

The latter might even be used without Free-Energy minimization if it can be proven that a
generalized Kalman filter will directly provide the necessary coupling1 to ensure the infor-
mation in the deeper embedding layers is utilized. If it turns out that a generalized Kalman
filter will yield no coupling between embedding layers, it might be necessary to combine it
with Free-Energy minimization.

Improving parameter-estimation performance From the results presented in this thesis it
has become evident that the parameter estimation scheme, even with sufficiently performing
filters, will not converge towards the real parameters. The results did show, however, that
this bad performance can be attributed to how the hidden state error is approximated. DEM
as proposed by Friston relies heavily on the concept of shift operators to approximate the
hidden state error, but the results of this thesis have shown that in a discrete-time setting
these are a bad estimator for the generalized hidden state.

A possible workaround would be to simply replace the Dˆ̃x[k] terms with ˆ̃x[k + 1] such that
the internal consistency error yields:

εx̃[k] = ˆ̃x[k + 1] − ˆ̃Aˆ̃x[k] − ˆ̃Bˆ̃u[k]

Of course, this approach will still not solve the problem when the filters don’t provide accurate
estimates for the hidden states. Also note that changing the Free-Energy as suggested will
bring the definition of DEM closer to EM, especially when combined with my suggestion
for improving the filters via a Kalman scheme. In that case, DEM will essentially be EM
with generalized coordinates. Nonetheless, working such a scheme out and evaluating its
performance might be an interesting topic for further study.

The mean-field terms To this point it remains unclear what influence the mean-field terms
have on the performance of the state- and parameter estimation. The main questions consid-
ering the terms are: does omitting the mean-field terms cause a shift in state- and parameter
optima, if so, does this shift de- or increase the estimation accuracy2, and if not, why are
they there at all? The results of this thesis yielded insufficient insight in this matter, but
they are fundamental to the Friston-defined DEM, and thus a better understanding in their
functionality is desired.

1via the Kalman gain, which relies on the inverse precisions as discussed in this thesis
2i.e. in what direction is the shift? Towards, or away from the real optima
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Include hyper-parameter estimation into EM and DEM, and find a means to validate
its performance Both EM as defined by Dempster in [6] and DEM as defined by Friston
in [12] include mechanisms for estimating the parameters which determine the noise, i.e.
the covariance matrices Q and R. For a better foundation of the argument of autonomous
robotics it will be very valuable to evaluate how inclusion of these mechanisms influences the
parameter- and state-estimation performance of DEM and EM.

Input estimation To keep the scope of this thesis somewhat compact I decided to not con-
sider the input-estimation part of DEM as defined by Friston. I do however recommend a
follow-up study in which the influence of input uncertainty on the state- and parameter esti-
mation performance is evaluated. I firmly believe that without inputs one cannot estimate the
model parameters, and without the model one cannot estimate the inputs, i.e. the number of
degrees of freedom in the estimation exceeds the number of constraints, but I invite anyone
to challenge me on this point of view.

Auto-tuning of αx̃ and αθ The fact that DEM relies on scaling factors that have to be
manually tuned and do influence the performance of at least the state-estimation methods, is
a very strong argument against the superiority of DEM. the method for the use of autonomous
robots. A much more elegant solution, which would bring much more value to its application
within autonomous agents, would be a method which does not rely on tunable scaling factors.
I would therefore recommend to include either some heuristic trial-and-error based auto-
tuning3 of the scaling factors, or to trade-in the 1st order gradient descent for a 2nd order
gradient descent which, though sensitive to non-convexity4, does not rely on tuning and
subsequently converges much faster.

Priors From my perspective the inclusion of Priors on the parameters, states, hyper-parameters
or inputs defeats the purpose of mechanisms designed for estimating these variables. If the
prior is correct, then why perform estimation at all, if it is wrong, then inclusion will shift the
optima of the cost function towards this wrong value and thus deteriorate the performance
of the estimation schemes. Rather, I would suggest using priors as initial estimates. I do
however recommend an open debate and a thorough review on the meaning of the priors, as
it might very well be that my argumentation is simply too blunt.

3e.g. prior to estimation, increase α to the maximum value that still renders stable results
4Can be solved by global optimization, i.e. multi-starting from (pesudo-)random initial estimates, which

would strictly be necessary anyway
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A-1 Numerical approximation of generalized signals with embed-
ded derivatives

Given a causal sequence of data of a certain signal ϕ of length p, i.e. a generalized signal with
embedded history 1 :

ϕ̃h[k] =
[
ϕ[k] ϕ[k − 1] ϕ[k − 2] ϕ[k − 3] · · · ϕ[k − N ]

]⊤

which we want to use to approximate the generalized signals with embedded derivatives of
order p:

ϕ̃d[k] =
[
ϕ[k] ϕ̇[k] ϕ̈[k] · · · ϕ(p)[k]

]⊤

The derivative approximation is performed using 1st order backward Euler differentiation
via:

ϕ̇[k] ≈ 1
∆t

(ϕ[k] − ϕ[k − 1])

ϕ̈[k] ≈ 1
∆t

(ϕ̇[k] − ϕ̇[k − 1])

≈ 1
∆t2 (ϕ[k] − 2ϕ[k − 1] + ϕ[k − 2])

ϕ(3)[k] ≈ 1
∆t

(ϕ̈[k] − ϕ̈[k − 1])

≈ 1
∆t2 (ϕ[k] − 3ϕ[k − 1] + 3ϕ[k − 2] − ϕ[k − 3])

ϕ(4)[k] ≈ 1
∆t

(ϕ(3)[k] − ϕ(3)[k − 1])

≈ 1
∆t2 (ϕ[k] − 4ϕ[k − 1] + 6ϕ[k − 2] − 4ϕ[k − 3] + ϕ[k − 4])

Repeating this procedure of substitution and expansion up to the order p, allows for the
estimation of all the entries of the generalized signal. Then, vectorization of the derivative
estimates such that it describes the generalized signal, yields the following matrix equation:

ϕ̃d[k] ≈ ∆−1PpI±ϕ̃h[k]
with ∆ := diag(∆t, ∆t2, ..., ∆tp), I± an identity matrix with 1 on uneven rows and −1 on
even rows and Pp a Pascal matrix, which for an exemplary embedding order of p = 6 yields:

P6 =



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1



1i.e. the only generalized signal that is directly measurable
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A-2 Estimation of generalized signals with embedded derivatives
using a stable filter

Given a stable a strictly proper transfer function of the form:
Y (s)
U(s)

= bn+1sn + bnsn−1 + ... + b3s2 + b2s + b1
sn+1 + an+1sn + ansn−1 + ... + a3s2 + a2s + a1

(A-1)

Then, realization theory states that the coefficients of this transfer function can be directly
used in a SISO controllable canonical state-space realization2:

ẋ(t) =


1

. . .
1

−a1 −a2 · · · −an+1

 x(t) +


0
...
0
1

 u(t)

y(t) =
[
b1 b2 · · · bn+1

]
x(t) (A-2)

Then, considering the transfer function of my filtered differentiator, the exponents can be
expanded:

H(s) = λn+1sn

(s + λ)n+1

= λn+1sn

(sn+1 + cn+1λsn + cnλ2sn−1 + cn−1λ3sn−2 + ... + c2λns + c1λn+1 (A-3)

where the constants c1, c2, etc. are the 2nd to (n + 1)th entries of the last row of a (n + 1)th

order Pascal matrix. Then, substituting for all an+1 = cn+1λ, an = cnλ2 ... a1 = c1λn+1 and
bn+1 = λn+1, bi = 0 ∀i ̸= n + 1 and using Eq. (A-2) leads to the following realization of of
the stable differentiator:

ẋ(t) =


1

. . .
1

−c1λn+1 −c2λn · · · −cn+1λ

 x(t) +


0
...
0
1

 u(t)

y(t) =
[
0 0 · · · λn+1

]
x(t) (A-4)

where y(t) = û(n)(t), i.e. the filtered estimate of the nth order derivative of u. Now, note how
the state-to-output mapping states that the output signal, which is our nth order derivative
estimate of the input signal, is in fact the scaled (n+1)th entry of the hidden state. Also note
how the state-transition matrix states that all entries in the layers of x are in fact obtained
by in integration of their superseding layers. In other words, if the last entry of x is a scaled
estimate of the nth order derivative of u, then the second to last entry is a scaled estimate
of the (n − 1)th order derivative of u, and so on. Thus, the estimate of the full generalized
signal can be obtained simply by retrieving the full scaled hidden state:

ˆ̃u(t) =


λn+1

λn+1

. . .
λn+1

 x(t) (A-5)

2the same holds for the observable canonical realization
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A-3 Off- and online learning

In the context of autonomous robotics, where system identification can be considered as an
agent learning the behaviour of its environment, the learning process can be divided into two
stages.

The first being the learning stage, in which the agent is allowed to freely control its input
and is in a safe environment where it cannot do any harm. With these permissions, the
agent is able to drive it’s states through the full space of its dynamics, such that it is able to
collect sufficient information to be able to infer the system parameters. This is analogous to
stating that during this stage, the system is allowed to feed an input signal adhering to the
persistence of excitation property3 [20,21], and is thus not constricted to the control strategy.
Furthermore, during this stage, the parameters can be updated iteratively after inferring the
hidden states on the full batch of data, i.e. the agent can employ an off-line learning method.
Such methods are generally less prone to local minima and are more efficient in terms of data.

When the learning stage is over, the robot will have learned its dynamics and can thus
proceed to executing the task it was designed for. However, it generally occurs that during its
lifetime, parameters slowly change due to temperature fluctuations, wear, changes in pressure
or humidity. Therefore, an autonomous robot should continue its learning process parallel
to task execution, such that it can update the model and filter for changing circumstances.
In other words, the robot should employ an on-line learning method. It is of paramount
importance that this on-line method is be built on the same principles as the off-line learning
method, to avoid a shift in optima.

3A necessary condition for parameter convergence

Laurens Žnidaršič Master of Science Thesis



A-4 Numerical approximation of generalized signals with embedded predictions 67

A-4 Numerical approximation of generalized signals with embed-
ded predictions

Following a very similar procedure as presented in the previous appendix, any (estimated)
generalized signal with embedded derivatives:

ϕ̃d[k] =
[
ϕ[k] ϕ̇[k] ϕ̈[k] · · · ϕ(p)[k]

]⊤

can be translated to a generalized signal with embedded predictions of the form:.

ϕ̃p[k] =
[
ϕ[k] ϕ[k + 1] ϕ[k + 2] · · · ϕ[k + p]

]⊤

In fact, this translation step can be once again be achieved via Euler’s method, only now
instead of differentiation, the translation yields integration and we use the forward method
rather than the backwards method:

ϕ[k + 1] ≈ ϕ[k] + ∆tϕ̇[k]
ϕ̇[k + 1] ≈ ϕ̇[k] + ∆tϕ̈[k]
ϕ[k + 2] ≈ ϕ[k + 1] + ∆tϕ̇[k + 1]

≈ ϕ[k] + 2∆tϕ̇[k] + ∆t2ϕ̈[k]
ϕ̇[k + 2] ≈ ϕ̇[k] + 2∆tϕ̈[k] + ∆t2ϕ(3)[k]
ϕ[k + 3] ≈ ϕ[k + 2] + ∆tϕ̇[k + 2]

≈ ϕ[k] + 3∆tϕ̇[k] + 3∆t2ϕ̈[k] + 3∆t3ϕ(3)[k]
ϕ̇[k + 3] ≈ ϕ̇[k] + 3∆tϕ̈[k] + 3∆t2ϕ(3)[k] + ∆t3ϕ(4)[k]
ϕ[k + 4] ≈ ϕ[k + 3] + ∆tϕ̇[k + 3]

≈ ϕ[k] + 4∆tϕ̇[k] + 6∆t2ϕ̈[k] + 4∆t3ϕ(3)[k] + ∆t4ϕ(4)[k]
Repeating this procedure of substitution and expansion up to the order p, allows for the
estimation of all the entries of the generalized signal. Then, vectorization of the derivative
estimates such that it describes the generalized signal, yields the following matrix equation:

ϕ̃p[k] ≈ Pp∆ϕ̃d[k]
with Pp and ∆ as defined in the previous appendix.

Note how the combination of the procedures as described in the current and the previous
appendices can be used for direct mapping between (measurable) generalized signals with
embedded history and generalized signals with embedded predictions:

ϕ̃p[k] ≈ Pp∆∆−1PpI±ϕ̃h[k]
= PpPpI±ϕ̃h[k]
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A-5 Log-likelihood

Consider a hidden- and measured-data joint-density maximum-likelihood function:

ML =
N∏

k=0

1
||Q||

√
2π

e− 1
2 ε⊤

x [k]Q−1εx[k] 1
||R||

√
2π

e− 1
2 ε⊤

y [k]R−1εy [k] (A-6)

then, using the fact that any log(a · b) = log(a) + log(b) brings:

LL = log(ML) =
N∑

k=0

(
log

(
1

||Q||

)
+ log

(
1

||R||

)
+ 2 log

(
1√
2π

)
+ log(e− 1

2 ε⊤
x [k]Q−1εx[k])+

+ log(e− 1
2 ε⊤

y [k]R−1εy [k])
)

(A-7)

then, using log(ea) = a brings:

LL =
N∑

k=0

(
log

(
1

||Q||

)
+ log

(
1

||R||

)
+ 2 log

(
1√
2π

)
− 1

2
ε⊤

x [k]Q−1εx[k] − 1
2

ε⊤
y [k]R−1εy[k]

)
(A-8)

and finally by simplifying log( 1
a) = − log(a) yields:

LL =
N∑

k=0

(
− log(||Q||) − log(||R||) − log(2π) − 1

2
ε⊤

x [k]Q−1εx[k] − 1
2

ε⊤
y [k]R−1εy[k]

)
(A-9)

Note that generally, including in the definition used in this thesis, the − log(2π) is omitted
since it is static and thus does not influence the optima of the LL.
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A-6 Shift matrices

For each of the three information embedding settings i ∈ {p, d, h} as discussed in this thesis,
the following holds:

ˆ̃xi[k + 1] = Ãdx̃i[k] + B̃dũi[k]
ỹ[k] = C̃dx̃i[k] + D̃dũi[k] (A-10)

and thus, in order for the internal consistency error:

εx̃[k] := x̃′
i[k + 1] − x̃i[k + 1] (A-11)

to be properly defined, the following must hold

x̃′
i[k + 1] = Di ˆ̃xi[k] (A-12)

with Di a linear operator which brings the generalized signal as closely to its one step ahead
prediction as possible.

Embedded predictions Firstly, for a generalized signal with embedded predictions it is easy
to show that the original shift up operator native to DEM as described by Friston fulfils this
property: 

x[k + 1]
x[k + 2]

...
x[k + p]

0


︸ ︷︷ ︸

x̃′
p[k+1]

=



0 I
0 I

0 . . .
. . . I

0


︸ ︷︷ ︸

Dp≡D


x[k]

x[k + 1]
x[k + 2]

...
x[k + p]


︸ ︷︷ ︸

x̃′
p[k]

(A-13)

Embedded derivatives Secondly, for a generalized signal with embedded derivatives the
original shift up operator native to DEM as described by Friston in fact yields a derivative
step: 

ẋ[k]
ẍ[k]

...
x(p)[k]

0


︸ ︷︷ ︸

˙̃x′
d
[k]

=



0 I
0 I

0 . . .
. . . I

0


︸ ︷︷ ︸

D


x[k]
ẋ[k]
ẍ[k]

...
x(p)[k]


︸ ︷︷ ︸

x̃d[k]

(A-14)

and thus, following the discretization approach from the field of digital control, which states
if ẋ(t) = Ax(t) then x[k + 1] = eA∆tx[k] and thus:

˙̃x′
d[k] = Dx̃d[k] (A-15)

x̃′
d[k + 1] = eD∆t︸ ︷︷ ︸

Dd

x̃d[k] (A-16)
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Embedded history For a generalized signal with embedded history, the it appears that the
best candidate for the shift operation is in fact a shift-down matrix:

0
x[k]

x[k − 1]
...

x[k − p]
x[k − p + 1]


︸ ︷︷ ︸

x̃′
h[k+1]

=


0
I 0

I 0
. . . . . .

I 0


︸ ︷︷ ︸

Dp≡D


x[k]

x[k − 1]
x[k − 2]

...
x[k − p]


︸ ︷︷ ︸

x̃′
h[k]

(A-17)
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