
 
 

Delft University of Technology

Tabular Schema Matching for Modern Settings

Koutras, C.

DOI
10.4233/uuid:d6d859df-8e15-4f7b-9eef-10452c96bd36
Publication date
2024
Document Version
Final published version
Citation (APA)
Koutras, C. (2024). Tabular Schema Matching for Modern Settings. [Dissertation (TU Delft), Delft University
of Technology]. https://doi.org/10.4233/uuid:d6d859df-8e15-4f7b-9eef-10452c96bd36

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:d6d859df-8e15-4f7b-9eef-10452c96bd36
https://doi.org/10.4233/uuid:d6d859df-8e15-4f7b-9eef-10452c96bd36


Tabular Schema Matching for Modern Settings





Tabular Schema Matching for Modern Settings

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,

chair of the Board for Doctorates,

to be defended publicly on

Monday 11 November 2024 at 12.30 o’clock

by

Christos KOUTRAS

Master of Philosophy in Computer Science and Engineering,

The Hong Kong University of Science and Technology, Hong Kong, China,

born in Thessaloniki, Greece.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. ir. G.J.P.M. Houben, Delft University of Technology, Promotor

Dr. A. Katsifodimos, Delft University of Technology, Copromotor

Dr. C. Lofi, Delft University of Technology, Copromotor

Independent members:

Prof. dr. J. Freire, New York University, USA

Prof. dr. F. Naumann, Hasso Plattner Institute, Germany

Prof. dr. G. Smaragdakis, Delft University of Technology

Prof. dr. Y. Velegrakis, Utrecht University

Prof. dr. A. E. Zaidman, Delft University of Technology, reserve member

SIKS Dissertation Series No. 2024-38.

The research reported in this thesis has been carried out under the auspices of SIKS, the

Dutch Research School for Information and Knowledge Systems.

Keywords: schema matching, tabular data, data discovery, graph neural networks

Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/phd-thesis-template

Copyright © 2024 by Christos Koutras

ISBN 978-94-6366-944-3

https://github.com/Inventitech/phd-thesis-template


Few people, yet they fight without swords or bullets

Μιϰρός λαός ϰαι πολεµά δίχως σπαϑιά ϰαι βόλια

Yannis Ritsos / Γιάννης Ρίτσος





vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Tabular Schema Matching Basics . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Defining a Column Match . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Tabular Schema Matching Settings . . . . . . . . . . . . . . . . . 5

1.1.3 Tabular Schema Matching Methods . . . . . . . . . . . . . . . . 7

1.1.4 From Column Relevance to Column Matches. . . . . . . . . . . . 10

1.1.5 Thesis Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Applications of Tabular Schema Matching . . . . . . . . . . . . . . . . . 12

1.2.1 Schema Matching for Entity Resolution . . . . . . . . . . . . . . 13

1.2.2 Schema Matching for Data Cleaning . . . . . . . . . . . . . . . . 14

1.2.3 Schema Matching for Data Augmentation . . . . . . . . . . . . . 14

1.2.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Main Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Thesis Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Evaluating Matching Techniques for Dataset Discovery 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 From Schema Matching to Dataset Discovery . . . . . . . . . . . . . . . 21

2.2.1 Dataset Discovery Methods . . . . . . . . . . . . . . . . . . . . 21

2.2.2 The Schema Matching Component . . . . . . . . . . . . . . . . . 22

2.2.3 Evaluating Matching Techniques for Discovery . . . . . . . . . . 23

2.3 Dataset Relatedness Scenarios . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Unionable Relations . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Joinable Relations . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Fabricating Dataset Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Dataset Sources of Fabricated Dataset Pairs . . . . . . . . . . . . 28

2.5.2 Dataset Sources of Human-curated Dataset Pairs . . . . . . . . . . 29

2.6 Matching Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Methods Description . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 Method Parameterization . . . . . . . . . . . . . . . . . . . . . 32



viii Contents

2.7 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Fabricated Dataset Pairs (TPC-DI, Open Data, ChEMBL) . . . . . . 33

2.7.2 Human-Curated Dataset Pairs (WikiData, Magellan, ING) . . . . . 36

2.7.3 Efficiency Results . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Valentine in Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9.1 Valentine for Schema Matching Evaluation. . . . . . . . . . . . . 40

2.9.2 Valentine for Holistic Matching at Scale . . . . . . . . . . . . . . 41

3 Matching Tabular Datasets Across Silos Using Graph Neural Networks 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Schema Matching . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Dataset Discovery & Semantics Types . . . . . . . . . . . . . . . 49

3.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 GNNs for Matching Data Silos . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Preliminary: GNNs . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Modeling Data Silos as Graphs . . . . . . . . . . . . . . . . . . . 53

3.5.3 Profiles as Initial Features . . . . . . . . . . . . . . . . . . . . . 53

3.6 Training GNNs for Matching Silos . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 SiMa’s Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7.1 Negative Sampling Strategies. . . . . . . . . . . . . . . . . . . . 58

3.7.2 Incremental Training. . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8.2 Effect of Optimizations . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.3 SiMa comparison to other methods. . . . . . . . . . . . . . . . . 67

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Self-Supervised Any-Join Discovery in Tabular Data Repositories 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The Any-Join Discovery Problem . . . . . . . . . . . . . . . . . . . . . 75

4.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Column Similarities as a Graph. . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Pairwise Column Similarities. . . . . . . . . . . . . . . . . . . . 77

4.4.2 Similarity Graph Construction . . . . . . . . . . . . . . . . . . . 80

4.5 Graph Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Initial Column Features . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Column Representation Learning via Message Passing . . . . . . . 81

4.5.3 Generating Training Examples . . . . . . . . . . . . . . . . . . . 83

4.5.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.5 Training and Inference of Join Predictions . . . . . . . . . . . . . 84



Contents ix

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.2 Comparison to State-of-the-Art Baselines . . . . . . . . . . . . . 89

4.6.3 Comparison to Other ML Models. . . . . . . . . . . . . . . . . . 90

4.6.4 Ablation Study: Effect of Similarity Signals. . . . . . . . . . . . . 91

4.6.5 OmniMatch Execution Times. . . . . . . . . . . . . . . . . . . . 92

4.7 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7.1 Schema Matching . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7.2 Related Dataset Search/Discovery . . . . . . . . . . . . . . . . . 94

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion 95
5.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Evaluating Schema Matching Methods on Tabular Data . . . . . . 95

5.1.2 Capturing column relationships among data silos . . . . . . . . . 96

5.1.3 Any-join discovery in data repositories. . . . . . . . . . . . . . . 97

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Constructing Evaluation Datasets for Schema Matching . . . . . . 98

5.3.2 Large Language Models and Schema Matching . . . . . . . . . . . 99

5.3.3 Privacy-preserving Schema Matching . . . . . . . . . . . . . . . 100

5.3.4 Application-oriented Evaluation of Schema Matching . . . . . . . 100

5.3.5 Schema Matching and Semantic Type Detection . . . . . . . . . . 101

Bibliography 103

Curriculum Vitæ 119

List of Publications 121

SIKS Dissertation Series 123





xi

Summary

Schema matching is a critical data integration process, which aims at capturing relevance

between elements of different datasets; when datasets are tabular, it translates to the

process of discovering related columns among them. Accurately discovering column

matches is integral for several applications, such as entity resolution, data cleaning and

data augmentation. While there exists a multitude of schema matching methods in the

literature, we identify three major issues: i) there is no comprehensive study of comparing

them in terms of effectiveness and efficiency, due to not available implementations and

lack of evaluation datasets, ii) existing methods might be impractical and even inapplicable

in certain modern settings, and iii) the heterogeneity and complexity of data can impede

capturing relevance among columns for existing methods, as certain assumptions might

not be holding for the entirety of underlying datasets. In this thesis, we tackle these issues

by reviewing existing schema matching techniques and proposing novel methods capable

to address challenges imposed by modern settings.

Starting with Chapter 2, we present an extensive comparison study on existing schema

matching methods, by introducing Valentine. Specifically, Valentine constitutes an open-

source experimental suite, which encompasses several state-of-the-art schema matching

solutions. To guide the evaluation process towards modern applications, we extract four

relatedness scenarios from the dataset discovery literature. To tackle the lack of existing

datasets with ground truth, we devise a principled fabrication process. Our findings lead

to insights that can help to improve future research on the field of schema matching, while

they affect the design choices we make for novel methods we present in the following

chapters.

Next, in Chapter 3, we turn our focus on applying schema matching among datasets

stored in different data silos, which cannot be collocated and each contains information

about column matches. Towards this direction, we introduce SiMa, a matching method that

leverages existing matches in each silo, to build a column match prediction model, powered

by the employment of a Graph Neural Network (GNN). To do so, SiMa transforms columns

and matches among them in each silo to a graph, while it performs targeted negative edge

sampling and incremental training to enhance the learning process. In our experimental

evaluation, we show the benefits of using SiMa over state-of-the-art techniques, both in

terms of effectiveness and efficiency.

Finally, Chapter 4 discusses the problem of discovering join relationships among

datasets in a repository. To ameliorate the shortcomings of previous methods, we propose

OmniMatch, a self-supervised method that can effectively capture both equi- and fuzzy-

joins among tabular data. At the core of the method is the exploitation of a comprehensive

set of similarity signals among columns, which are then transformed into a similarity graph.

This graph, in conjunction with automatically generated positive and negative column

match examples, enable the employment of a Relational Graph Convolution Network

(RGCN) towards training a generalizable join prediction model. We compare the effective-



xii Summary

ness of OmniMatch with several other state-of-the-art matching and column representation

methods, while we verify the usefulness of utilizing a wide-spectrum of similarity signals

to capture joins.

We conclude the thesis by reviewing our main findings, reflecting on our contributions

and discussing potential limitations of the methods and approaches presented. Moreover,

based on the insights we gain from surveying and developing novel matching methods, we

discuss challenges and future directions in the field.



xiii

Samenvatting

Schema matching is een cruciaal data integratieproces, dat gericht is op het vastleggen

van relevantie tussen elementen van verschillende datasets; wanneer datasets in tabel-

vorm zijn, vertaalt dit zich naar het proces van het ontdekken van gerelateerde kolommen

tussen deze datasets. Het nauwkeurig ontdekken van overeenkomsten tussen kolommen

is een integraal onderdeel van verschillende toepassingen, zoals het identifeceren van

entiteiten, het opschonen van gegevens en het vergroten van gegevens. Hoewel er een

veelheid aan schema matching methoden in de literatuur bestaat, identificeren we drie

belangrijke problemen: i) er is geen uitgebreide studie om ze te vergelijken in termen van

effectiviteit en efficiëntie, omdat implementaties niet beschikbaar zijn en een gebrek aan

evaluatie datasets, ii) bestaande methoden kunnen onpraktisch en zelfs ontoepasbaar zijn

in bepaalde moderne omgevingen, en iii) de heterogeniteit en complexiteit van gegevens

kan het vastleggen van relevantie tussen kolommen voor bestaande methoden belemmeren,

omdat bepaalde aannames mogelijk niet gelden voor het geheel van onderliggende datasets.

In dit proefschrift pakken we deze problemen aan door bestaande schema matching tech-

nieken te beoordelen en nieuwe methoden voor te stellen die de uitdagingen van moderne

omgevingen aankunnen.

Vanaf Hoofdstuk 2 presenteren we een uitgebreide vergelijkende studie van bestaande

schema matching methoden, door Valentine te introduceren. Valentine is een open-source

experimentele suite die verschillende state-of-the-art schema matching oplossingen omvat.

Om het evaluatieproces te sturen in de richting van moderne toepassingen, halen we

vier verwantschapsscenario’s uit de literatuur over het ontdekken van datasets. Om het

gebrek aan bestaande datasets met ground truth aan te pakken, ontwikkelen we een

principieel fabricageproces. Onze bevindingen leiden tot inzichten die kunnen helpen

om toekomstig onderzoek op het gebied van schema-matching te verbeteren, terwijl ze

van invloed zijn op de ontwerpkeuzes die we maken voor nieuwe methoden die we in de

volgende hoofdstukken presenteren.

Vervolgens richten we in Hoofdstuk 3 onze aandacht op het toepassen van schema-

overeenstemming tussen datasets die zijn opgeslagen in verschillende datasilo’s, die niet

kunnen worden samengevoegd en die elk informatie bevatten over kolom-overeenkomsten.

In deze richting introduceren we SiMa, een overeenstemmingsmethode die gebruikmaakt

van bestaande overeenkomsten in elke silo, om een voorspellingsmodel voor kolomover-

eenkomsten te bouwen met behulp van een Graph Neural Network (GNN). Om dit te

doen, transformeert SiMa kolommen en overeenkomsten daartussen in elke silo naar een

grafiek, terwijl het gerichte negatieve edge sampling en incrementele training uitvoert om

het leerproces te verbeteren. In onze experimentele evaluatie tonen we de voordelen van

het gebruik van SiMa ten opzichte van state-of-the-art technieken, zowel in termen van

effectiviteit als efficiëntie.

Hoofdstuk 4 tenslotte bespreekt het probleem van het ontdekken van join relaties

tussen datasets in een archief. Om de tekortkomingen van eerdere methoden te verhel-



xiv Samenvatting

pen, stellen we OmniMatch voor, een zelfgesuperviseerde methode die zowel gelijke als

fuzzy-joins tussen gegevens in tabelvorm effectief kan vastleggen. De kern van de methode

is de exploitatie van een uitgebreide set van similariteitssignalen tussen kolommen, die

vervolgens worden omgezet in een similariteitsgrafiek. Deze grafiek, in combinatie met

automatisch gegenereerde positieve en negatieve kolomovereenkomstvoorbeelden, maakt

het gebruik van een Relational Gracph Convolution Network (RGCN) mogelijk voor het

trainen van een generaliseerbaar join voorspellingsmodel. We vergelijken de effectiviteit

van OmniMatch met verschillende andere state-of-the-art matching- en kolomrepresenta-

tiemethoden, terwijl we het nut verifiëren van het gebruik van een breed spectrum van

similariteitssignalen om joins vast te leggen.

We sluiten het proefschrift af met een overzicht van onze belangrijkste bevindingen,

reflecteren op onze bijdragen en bespreken mogelijke beperkingen van de gepresenteerde

methoden en benaderingen. Bovendien bespreken we, op basis van de inzichten die we

hebben verkregen uit het onderzoeken en ontwikkelen van nieuwe matchingmethoden,

uitdagingen en toekomstige richtingen op dit gebied.



xv

Acknowledgments

To my parents for all the sacrifices they made to provide me with the education that enabled

me to pursue a PhD. To my sister, who I always looked up to and shaped my character.

To my close friends that supported me wholeheartedly throughout this journey. Maki, it

took us a while, but we made it!

To Agathe with whom I enjoyed every bit of my life in the Netherlands during my PhD.

My gratitude and admiration will always hold for you.

To George and Kyriakos, the Greek duet that kept me entertained on a daily basis, while

they supported me in various ways to successfully finish my PhD. I guess it wasn’t all in

vain in the end!

To the very special people I met in Delft and WIS that made it to my heart: David, Garrett,

Lijun, Lorenzo, Manos, Petros, Shabnam, Ujwal and Ziyu. Special mention to my very good

friend, and paranymph, Alisa. I consider you all as people that I can refer to whenever I

need, or else friends.

To the colleagues in the office, old and newer ones, which endured my company (and

lukewarm jokes) and with whom I shared laughs, concerns and random, yet interesting,

discussions. Shout-out to my favorite Brazilian-infested office, which was my break-time

haven for my first years. We had such a good run!

To the friend I made out of a supervisor, Asterios, who provided me with everything I

needed to finish this journey. Looking back to 2018, you were the right person to meet and

restart my academic career. I will never forget it.

To Kostas Patroumpas, the person that introduced me to research, and whose invaluable

advice has always guided me. I will always speak to people about the awesome person and

researcher you are.

To Nikos Kavakiotis - Mr Kavakio, the person that greatly affected my decision of career

choice during my teenage years.

To my beautiful Delft, the fairy-tale town I had the luck to spend the last 6 years of my life.

To the small apartment I felt like my home in Oude Delft. To the soul of my two favorite

bars in Delft, Bebop and Doerak.

To AEK Athens and the ideals it represents, the team that I support since I remember

myself and has provided me with so many strong and emotional moments.

To the people of my favorite radio show, Ellinofreneia, which accompanied me through

countless walks and rides and helped me cleanse my mind.

To the people I have never met, but whose hard everyday work granted me with many

comforts.

To my childhood and teenage years, the dreams, experiences and people that they comprise.

And finally, to my stubbornness that led me here.

Christos

Delft, 2024





1

1

1
Introduction

E
very sizeable organization maintains and processes numerous data assets. The ability to

extract insights from data and leverage them for successfully completing downstream

tasks is vital. Yet, data might have discrete origins (data sources), and consequently, come

under different formats: i) structured datasets, such as relational data stored in databases

and web tables [1], which are organized following a defined model, ii) semi-structured data,

such as .csv [2] and .json [3] files, which are partially organized, and iii) unstructured data,

such as text and log files, which do not follow any pre-defined model. Interestingly, it is

very common for organizations, or even different teams inside them, to gather data assets

of different formats and sources, i.e., heterogeneous data, in central repositories called data

lakes [4, 5].

Extracting necessary information from datasets found in data lakes can be challenging.

First, the obscurity of some data types makes it difficult to access and query them; except

for structured data that follow a specific model and can be easily processed, other types of

data (semi- or un-structured) require tailored post-processing that can facilitate knowledge

acquisition, such as extraction of structured data from log files [6] or detection of layouts

and tables in .csv files [7, 8]. Even if data are stored in structured formats, it can still

be challenging to query them due to the lack of meaningful metadata, i.e., additional

information that enhance our perception of data semantics. For example, tables that are

extracted from the web might not come with comprehensible column names, if not any,

which hinders the ability of the users to access specific parts to get necessary information.

To ameliorate such issues, data profiling [9] methods automate the generation of metadata:

from simple statistics, histograms about distributions and value patterns [10] to fine-grained

semantic type detection [11, 12].

Notably, organizing data in structured datasets, which are then processed to extract

descriptive metadata enables solely the extraction of knowledge from single assets; yet, it is

quite common that the information that users search for is spread across multiple datasets.

Therefore, an essential procedure in data repositories and data lakes is the discovery

of relationships among different datasets. Indeed, capturing relevance among disparate

datasets is one of the core problems in the general field of data integration [13], which

studies methods that facilitate exploration, processing and querying of data coming from



1

2 1 Introduction

different sources with disparate shapes and formats (as in the case of data lakes). Essentially,

fostering links among datasets enables navigation in data repositories, while it allows for

better discovery of relevant information with respect to the user needs. Such links can be

of different types depending on the granularity of data assets they connect: i) links that

connect data instances across datasets, as in the case of entity resolution [14] where the goal

is to find similar entity mentions, ii) links concerning metadata describing different datasets,

such as entity types and attributes in ontologies [15], and iii) links between entire datasets

[16]. Interestingly, discovery of one type of links can help with capturing connections of

other types. For example, finding multiple correspondences among data instances and

metadata information between two datasets can potentially point to connecting them as

related ones [17], while captured links among disparate data might serve as an intermediate

to realize additional connections [16, 18].

Nonetheless, the actual process of capturing links among datasets in, potentially het-

erogeneous, data repositories, is a challenging task, regardless of their type. Erroneous or

missing data [19], lack of meaningful additional information about datasets (e.g., dataset

title, textual description etc.) and value discrepancy across disparate datasets [20] are

some of the main factors that can hinder the acquisition of links. As a matter of fact,

discovering links mainly relies on designing similarity metrics that accurately reflect the

level of semantic equivalence between data assets; defining such effective metrics by solely

relying on, possibly, erroneous data instances poses a considerably research challenge.

Consequently, methods for capturing inter-dataset relevance should account for such issues

and introduce tailored techniques that deal with them.

In this thesis, motivated by the noticeable benefits and intriguing challenges of discov-

ering dataset connections, we focus on the problem of capturing relevance in tabular data

repositories, i.e., schema matching on tabular data [21]. In the remaining of this chapter, we

formally define the problem of tabular schema matching, further justify the importance of

developing related effective methods, and introduce the research questions that the thesis

attempts to answer together with its original contributions.

1.1 Tabular Schema Matching Basics
Tabular data comprise the main type of datasets found in every enterprise’s data repositories

and in the web. In the former case, tabular data may be fully structured with some,

potentially incomplete, metadata, as found in relational databases, or semi-structured

with potentially missing or incomplete metadata, as happens with .csv files. On the other

hand, tables found in the web may come with metadata such as titles, surrounding text

and column headers, but usually require post-processing to become fully structured and

semantically enhanced [1, 2]; such tables may be also found in an organization’s data lake,

after being crawled fro and possibly post-processed. Yet, to navigate, search and leverage

tabular data for downstream tasks there need to exist links among them that represent

semantically relevance; this is where schema matching comes into play.

A data schema is an organization of a set of related data elements in specific structures.

Schema matching refers to the problem of capturing potential correspondences between

elements of different schemata. Virtually, schema matching for tabular data is the process of



1.1 Tabular Schema Matching Basics

1

3

Book Title Author Name Pages

Dune Herbert, Frank 896

It King, Stephen 1138

… … …

Book Author No Pages

Dune F. Herbert 900

1984 G. Orwell 328

… … …

Case #3Case #2Case #1

(a) Valid Column Matches (b) False Column Matches

BookID Name Pages

FH12 Dune 896

SK43 It 1138

… … …

Name Country Year

Aleppo Syria 1138

SF USA 1906

… … …

Case #1 Case #2

Figure 1.1: Cases of valid and false column matches: (a) matches where the corresponding column pairs contain

values from the same domain, but potentially with different formats or even non overlapping ones, (b) non correct

column matches due to similar column names or value overlaps.

capturing relevance among their columns [21, 22]. Specifically, tabular schema matching
1

studies methods that extract semantic and syntactic information from schema and data

information associated with tabular columns, to foster links among them when there is

significant evidence of relatedness. Although this definition of schema matching seems

simple and comprehensible at first sight, there are two important questions that arise and

need careful consideration: i) how is relevance captured between columns of tabular data?

and ii) when is relevance between columns significant enough to foster a link?.

In the following subsections we discuss how existing methods in the literature deal with

these questions. Prior to that, we discuss what constitutes an accurate column match and

introduce the different settings under which tabular schema matching has been researched.

1.1.1 Defining a Column Match
As we already discussed, tabular schema matching encompasses all methods that attempt

to capture relevance among columns of tabular datasets. Nonetheless, it is still not clear

what we mean by a match between two columns; specifically, we need to further define

when a link between two columns should be regarded as a valid one and when not. Below,

we describe possible column match cases which have been discussed in the literature:

• Case #1: Two columns containing values that overlap, which are syntactically identical

and are drawn from the same domain. Such column pairs represent the most compre-

hensible form of a match: storing values with the same format and meaning is a direct

sign of high relevance. As we see in Figure 1.1a, a match between Book Title

1
Tabular schema matching, column matching or matching are used interchangeably in this thesis.



1

4 1 Introduction

and Book is a valid one since their instances overlap and based on the semantics

we extract from their column names they both store values from the same domain

(i.e., titles of books). Interestingly, equi-joins belong to this category of column

matches, since they represent column pairs that share overlapping values from the

same domain.

• Case #2: Two columns containing values that overlap, which are semantically identical

and are drawn from the same domain. The only difference in this case, with respect

to the previous one, is that the two columns store the same values but use a different

format; this makes capturing such a column match more challenging. For example,

in Figure 1.1a the pair of columns Author Name and Author store both names

of book authors that overlap, yet they use a different format. Fuzzy-joins [23] and

semantic-joins [24] fall in this category of column matches, since they represent joins

where the corresponding column pairs share values with formatting discrepancies.

• Case #3: Two columns containing non-overlapping values that are drawn from the

same domain. This is the most challenging case of a column match that schema

matching methods need to capture, since relevance between the two columns can

only be captured by extracting semantics. A representative example of this match

case is shown in Figure 1.1a between columns BookID and Code, which both store

number of pages for books; we see that even for the same book, the two tables store

a different number of pages since they may refer to different versions of the same

book. Capturing matches of this category is very important as they can help with

multiple applications, such as error correction, as we will see in the next section.

Notably, the aforementioned definitions of match cases share one commonality: to foster a

link between columns, they need to store values from the same domain. By domain here

we mainly refer to the fine-grained semantic type of the columns and not typical data

types, such as text, integers and other ones. Essentially, defining the relevance of two value

domains can be a major challenge itself; therefore, defining what domain similarity means

should be part of a schema matching method’s assumptions. For instance, some methods

might regard first names and last names belonging to the same domain as full names, while

others might see those as three discrete domains belonging to the same broader one. While

in such cases it is difficult to define what a valid match is, and needs to be further clarified,

there are clear cases where a column match should not be fostered:

• Case #1: Two columns sharing the same column name, but storing values from different

domains. Indeed, it is common for two columns to have similar or even exactly the

same column names, yet their semantics can considerably differ. In Figure 1.1b we see

an indicative example of such a false match case between columns both called Name;
nonetheless, one of them stores names of books and the other one names of places.

This category of false matches is commonly captured by matching methods that are

solely based on schemata, and points to the importance of leveraging instance values

to avoid such false positives.

• Case #2: Two columns storing overlapping values, which do not come from the same

domain. While we previously saw that value overlaps can be a major indicator of a



1.1 Tabular Schema Matching Basics

1

5

BookID Title Pages

FH12 Dune 896

SK43 It 1138

… … …

Code Author Book

FHD F. Herbert Dune

GO1 G. Orwell 1984

… … …

Publisher Title

Chilton Dune

O’Reilly SQL

… …

BookID Title Pages

FH12 Dune 896

SK43 It 1138

… … …

Code Author Book

FHD F. Herbert Dune

GO1 G. Orwell 1984

… … …

BookID Title Pages

FH12 Dune 896

SK43 It 1138

… … …

Code Author Book

FHD F. Herbert Dune

GO1 G. Orwell 1984

… … …

Title Author Publisher Pages

… … … …

Publisher Title

Chilton Dune

O’Reilly SQL

… …

(a) Pairwise Schema Matching (b) Holistic Schema Matching

(c) Mediated Schema Matching

Figure 1.2: The three settings studied in the tabular schema matching literature: (a) pairwise schema matching,

(b) holistic schema matching, and (c) mediated schema matching.

valid column match, there are cases where they can be misleading. Columns Pages
and Year between the tables shown in Figure 1.1b, happen to share at least one value,

yet their domains are different. To avoid falsely capturing such column matches,

schema matching methods need to be able to extract semantics either by available

schema information, metadata or context of columns.

Based on these observations about valid and false column matches, we infer that building

a schema matching method that exhibits high effectiveness is not straightforward. Indeed,

similarity signals that may point to a correct column match in some cases, might falsely

lead to the realization of a link between two columns in other ones. In Chapter 2 we will

verify that there is no schema matching method that is consistently better than other ones,

since performance heavily depends on the underlying characteristics of the datasets.

1.1.2 Tabular Schema Matching Settings
While there are various methods in the literature that can be used towards columnmatching

for tabular data, their goal may differ due to the specific setting they study. Interestingly,

the setting under which a schemamatching method is applied can affect the way it proceeds.

Figure 1.2 showcases the three major settings found in tabular schema matching works in

the literature, which we briefly discuss in what follows.

Pairwise Schema Matching. In its simplest form, schema matching is studied for pairs of

tabular datasets. Particularly, in pairwise schema matching we are given two datasets for

which we want to find correspondences between their columns; using traditional terms in

the early literature, one of the tables is the source containing columns to be matched to the

ones of the target table. Such a setting is quite common inside small-scale databases with



1

6 1 Introduction

missing inter-relation links and pairs of tabular datasets across databases or repositories for

which we know they store similar entities and want to align their schemata. An example of

pairwise schema matching for tabular data is shown in Figure 1.2a, where related columns

are discovered between two tables storing information about books. To deal with pairwise

schema matching, existing methods mostly develop and employ pairwise similarity metrics

between all column pairs of the respective tabular datasets. The similarity metrics consist

of pairwise set [25, 26], string [27–29] or even embedding-based ones [16, 30], which

we further discuss later on in this section; related work on pairwise schema matching

introduces fundamental ideas and methods that can be generalized and re-applied in the

other two settings.

Holistic Schema Matching. In modern settings, where there are numerous disconnected

datasets, matching needs to take place in whole repositories or databases rather than on few

dataset pairs. Towards this direction, holistic matching comprises methods that deal with

the discovery of possible column relationships among a set of tabular data, as shown in

Figure 1.2b for a set of three tables among which inter-column relationships are illustrated.

To deal with column matching among several datasets, there are three main approaches:

i) generalize pairwise schema matching methods for all pairs of datasets [26, 31], ii) treat

columns as individual data assets and employ clustering techniques to create groups of

related columns [32, 33], or iii) link tables to an existing knowledge corpus, such as an

ontology, and realize column connections using these links as an intermediate [16, 34].

Employing each of the aforementioned approaches comes with specific benefits and

potential drawbacks. Specifically, generalizing pairwise schema matching guarantees

an exhaustive search of all possible pairs, yet this might cause holistic matching to be

considerably time and resource consuming, as complexity increases exponentially with the

number of tables to be matched; moreover, this approach is susceptible to the potential

pitfalls of the similarity metrics used for pairwise schema matching. On the other hand,

employing clustering on columns can be more efficient, but further refinement through

column pairwise computations might be needed to increase quality. Finally, using external

knowledge as an intermediate for capturing links among datasets can bring substantial

effectiveness gains, only if such additional information can be found, trusted and covers

the domains of data stored in the tables.

Mediated Schema Matching. As we discussed in the beginning of the chapter, it is

quite common that information needed to fulfill user queries in data repositories might be

scattered across several datasets. Therefore, it is essential to capture links among them that

together with an appropriate representation would make it easy for users to query data

without needing to know how to locate their original sources. In this context, mediated

schema matching methods for tabular data define a global view of attributes to which

columns of every table may be connected in the existence of semantic relevance. Different

from holistic matching, in this setting we are not interested in fetching all possible inter-

column relationships, but only the relationships from the available datasets to themediated

schema of attributes. As an example, in Figure 1.2c we see a globally defined schema in

the top, containing attributes referring to information about books, enhanced with links

towards only semantically corresponding columns of the tabular data. Approaches used for

mediated schema matching can be similar to the ones used for pairwise or holistic matching,

such as employing string similarity metrics between the column names and the attributes



1.1 Tabular Schema Matching Basics

1

7

Books Authors_Books

BookID Title Pages

FH12 896

SK43 1138

… …

Code Author Book

FHD F. Herbert

GO1 G. Orwell

… …

Books Authors_Books

BookID Pages

FH12 Dune 896

SK43 It 1138

… … …

Code Author

FHD F. Herbert Dune

GO1 G. Orwell 1984

… … …

BookID Title Pages

FH12 Dune 896

SK43 It 1138

… … …

Code Author Book

FHD F. Herbert Dune

GO1 G. Orwell 1984

… … …

Books Authors_Books

SELECT AB.Author, B.Title, B.Pages 

FROM Books B JOIN Authors_Books AB ON Title = Book

(a) Schema-based Matching (b) Instance-based Matching

(c) Hybrid Matching (d) Usage-based Matching

Figure 1.3: The four main categories of schema matching methods on tabular data: (a) Schema-based methods, (b)

Instance-based matching approaches, (c) Hybrid matching methods, and (d) Usage-based methods.

of the mediated schema. However, in this specific setting of matching, semantics play a

major role and methods that do not account for accurately interpreting the meaning of data

stored in tables are more prone to low quality results. Notably, the recently emerging field

of semantic type detection [11, 12] encompasses methods for annotating tabular columns

with semantic types, which can be seen as an alternative solution to mediated schema

matching.

1.1.3 Tabular Schema Matching Methods
In this subsection, we answer to the question of how relevance among columns is captured,

by summarizing related work on tabular schema matching. To guide the discussion, we

introduce the main categories under which schema matching methods fall, based on the

information they exploit [21]. Particularly, we distinguish four categories, as shown in

Figure 1.3, which we define below together with a brief discussion of related methods in

the literature.

• Schema-based matching methods use only schema-level knowledge in order to

capture potential relationships. Column headers, data types, table titles comprise

some of the main metadata information that schema-based matching methods can

leverage to compute similarity metrics among the corresponding tables. The main

advantage of employing this type of matching is the savings in time and resources

since schema-based methods are agnostic to the size of data stored. Yet, unless

available metadata are available and accurately describing data semantics, schema-

based methods might result into low quality column matches. For instance, in

Figure 1.3 relying solely on column names does not help to decide whether columns



1

8 1 Introduction

Title and Book match, whereas the corresponding table names can help deduce

that both columns possibly contain book titles.

Related research efforts use a multitude of techniques that leverage schema infor-

mation towards matching. In [35] the authors propose a method to identify corre-

sponding attributes in different DBMSs by using neural networks to characterize

available metadata. A graph-based approach is described in [28], where the two

input schemata are transformed into graphs and the output consists of a mapping

between corresponding nodes. In a similar manner, [36] transforms the schemata

into trees and finds semantic matches between their nodes by using labels for the

corresponding schema elements, whereas [37] computes various affinity scores

between attributes to cluster them. Name similarity and structural properties of

schema elements are taken into consideration in [27], which represents a purely

schema-based technique that also uses external knowledge such as domain-specific

dictionaries and thesauri. In contrast, COMA [29] and its successor [38] propose a

generic match system that combines a spectrum of matchers. Finally, Clio [39] has

a correspondence machine employing an attribute classification while also using

user-definable external knowledge to find matches.

• Instance-based approaches rely on the data instances contained in the columns to

decide on potential similarity. Such methods are usually preferred when metadata

either do not exist or are not trusted to reveal due to low quality (e.g. incompre-

hensible column names). Moreover, taking into consideration the values stored

under columns, enables the application of a wide set of similarity metrics and func-

tions, such as overlap and distribution based ones. As an example, in Figure 1.3b

an instance-based method applied on the sets of values of columns Title and

Book, respectively, could signal a potential relationship due to overlapping instances.
However, instance-based matching methods should be applied with caution when

execution time matters or computing resources are limited due to the potentially

sheer amount and complexity of data values stored in the columns. Notably, it is quite

common that columns storing semantically similar values to use different formats to

represent them. Therefore, the similarity metrics that instance-based methods apply

should account for such discrepancies to guarantee quality matching results.

Towards this direction, existing instance-based methods develop and apply a wide

gamut of techniques that attempt to accurately capture data value similarity. In

[32] clustering of different attributes is performed with respect to the distribution of

their respective values. Another instance-based approach is presented in [40], where

the authors use duplicate elimination algorithms in order to focus on capturing

matching between relational attributes whose values appear in duplicate records.

Moreover, a matcher which exploits dependencies inside tables is introduced in [20].

An instance-based flavor of COMA is presented in [25], which uses two categories

of matchers relying on instance-level information. EmbDI [30] proposes a matching

technique based on vector representations which are learned from input datasets;

in addition, the authors introduce a set of heuristics towards producing relational

embeddings for data integration tasks, including schema matching.



1.1 Tabular Schema Matching Basics

1

9

• Hybrid matching methods combine both information from available schema and

instance data. To decide on a possible column match, multiple criteria based on

schema and instance value similarities are tested. In principal, hybrid methods should

achieve at least the performance of other schema/instance only approaches, since

they take into consideration a superset of similarity signals. In practice, however, the

performance of a hybrid matching method heavily depends on the way it processes

the information of the various similarity indicators. For instance, in Figure 1.3c a

hybrid method that first uses schema-based criteria for pruning, can falsely reject a

potential match between columns Title and Book, since the corresponding column

names are not similar. On the other hand, another hybrid method that mainly bases

its output on instance-based similarities would succeed in finding this column match.

Apart from the risk of mishandling schema and instance based information, hybrid

matching methods might suffer from low efficiency when all similarity signals are

exhaustively computed for all column pairs between tables; bringing forward the

computation of lightweight similarities can vastly improve execution time, but might

negatively impact effectiveness as we saw in the previous example.

Therefore, different hybrid methods in the literature leverage schema and instance

information in various ways. LSD [41] uses several existing schema mappings that

serve as training samples for different matching training modules, where each of

them learns to predict a match based on separate criteria. In contrast, the iMAP

system [42] discovers matches by searching them in the entire possible space of

match candidates, and employing a variety of different methods. Data Tamer [43]

matches each attribute in the input against a collection of existing ones through a

number of similarity measures and algorithms which are called experts. Aurum [44]

builds knowledge graphs, where different datasets are linked with respect to their

content or schema. In [45] the authors introduce a hybrid matching system that

unifies a wide spectrum of methods. By making use of domain-specific ontologies

and pre-trained word embeddings, [16] attempts to discover approximate matches.

Finally, works that focus on discovering related tabular datasets [17, 26, 31, 46–51]

make use of their own hybrid schema matching techniques to facilitate their methods.

• Usage-based approaches study how to leverage available information found in

logs and provenance data towards schema matching. Specifically, the majority of

these methods mainly rely on the following observation: columns that are found in

close proximity or simply in the same query, very likely store similar data. Based

on this, in Figure 1.3 a usage-based method that looks into query logs can identify

a potential match between columns Title and Book, since their corresponding
tables are joined on them. Therefore, we see that usage-based matching methods

can accurately identify column matches, yet there are two critical requirements that

need be satisfied. First, the amount of query logs and other provenance data, which

such methods leverage, need to cover all potential column matches to guarantee high

effectiveness. Moreover, analyzing such data might entail considerable processing,

which needs to be done efficiently and accurately to extract necessary information

without sacrificing execution time.

Virtually, query logs and provenance data are rarely available for the purposes of



1

10 1 Introduction

Book Title Author Name Pages
… … …

Book Author No Pages
… … …

BookID Name Pages
… … …

Name Country Year
… … …

Schema 
Matching

Book Title Book- : 0.85

Book Title - Name : 0.7
. 

. 

.
Name Year- : 0

Filtering

Book Title Book-

Book Title - Name
. 

.
Pages  - Pages

Figure 1.4: An illustration of a typical tabular schema matching pipeline: a schema matching method receives as

input a number of datasets, for which it computes a (ranked) list of similarities among their columns. Then, a

filtering strategy is applied upon this list and outputs a final set of column pairs as valid matches.

academic research on the problem of schema matching; in reality, such data can

only be found either for a specific domain or inside companies. Consequently, the

amount of usage-based matching methods that have been proposed is considerably

smaller than the rest of them. The authors in [52] define a new class of matching

techniques, which take advantage of query logs to find correspondences between

schema elements. Similarly, [53] uses clicklogs extracted from a search engine to

enable schema matching; in [54] provenance of datasets that are used within Google

is explored through production logs. To mine data for training a model that predicts

joins among columns, the authors in [55] analyze query logs from their data lake.

1.1.4 From Column Relevance to Column Matches
In the previous subsection, we saw how existing schema matching methods attempt to

capture relevance among columns of different tables, by leveraging different types of

information. Yet, we still have to discuss how this relevance can be translated into actual

matches between columns, which answers to the second question we posed in the beginning

of this section. As shown in Figure 1.4, in a typical tabular matching pipeline, results from

a schema matching method are further processed to filter out column pairs that do not

constitute valid matches.

Towards this direction, we first briefly describe simple ways we can filter out column

pairs that do not represent valid matches, and then discuss more sophisticated strategies

in the literature for further refining similarities between column pairs. Our discussion is

based on the assumption that a matching method’s intermediate output is a list of column

pair similarities based on the information and techniques they employ to compute them,

regardless the setting.

Similarity thresholds. A straightforward way to filter out column pairs from the final

match output, is to use a similarity threshold. Particularly, any column pairs sharing a

similarity below this threshold are regarded as non valid matches, while the rest qualify as

valid ones. Intuitively, a high similarity threshold guarantees that the returned column

pairs represent valid column matches. On the other hand, deciding on a threshold that

will translate to high effectiveness is very challenging, due to the specific characteristics

of underlying datasets. Moreover, low similarity scores do not necessarily mean that

two columns should not match, but should rather be treated relatively to other ones

to successfully decide on the final output. Based on this observation, techniques like



1.1 Tabular Schema Matching Basics

1

11

transforming absolute similarity scores to relative ones, as introduced in the seminal

matching method Similarity Flooding [28], before applying a threshold, might improve

effectiveness. Interestingly, similarity thresholds do not control the size of the output

matches, which might entail additional complexity for end users.

Selecting top-k. An alternative to using similarity thresholds, is selecting top-k column

pairs with the highest similarity scores as potential column matches. This technique has

the advantage of controlling the size of the output, while it avoids defining similarity in

absolute terms. Nevertheless, there is a risk of including false column matches of low (or

even close to zero) similarity, which affects how precise the results are. In addition, as

previously, defining a good value for 𝑘 is complex: a low value guarantees column pairs

that most probably constitute valid matches, yet might lead to missing other ones. To

further improve the quality of the returned top-k matches, methods like [56] aim to re-rank

returned lists with the goal of pushing valid matches up. Top-k can also be used on a

per-column basis, where a column from one table can be matched to k ones from another

one, as one of the strategies described in [29].

Combining top-k with thresholds. Since utilizing solely similarity thresholds or picking

top-k as the final schema matching result might result into either including several false

matches ormissing numerous valid ones. To ameliorate their shortcomings, we can combine

them by selecting top-k while setting a lowest similarity threshold to accept column pairs

as potential matches. Employing this filtering strategy has the benefit of controlling the

output size, while making sure that column pairs that share a low similarity score will not

qualify into final output; hence, precision should be increased, whereas high recall cannot

still be guaranteed.

Filtering for 1:1 matching. The previous strategies apply regardless the matching cardi-

nality [21]. With this term, we refer to the maximum possible number of matches between

a column of a table and the column set of another one: i) 1:1 matching means that one

column from a table can match to at most one from another one, whereas in ii) 1:n matching

a column from a table might match to more than one columns from the other one. For

the latter case, all techniques that we discussed above can be straightforwardly applied,

without further modifications. However, in the case of 1:1 matching filtering techniques

can be enhanced based on the fact that each column cannot be matched with more than one

from another dataset. As an example, in [30] the authors apply a match filtering algorithm

where each column is matched to at most another one if and only if one is the closest to the

other and vice versa, in terms of similarity score. On the other hand, in [32] the authors

opt for a clustering approach, where columns can strictly belong to one cluster, due to the

1:1 cardinality constraint. In both cases, assuming that each column cannot match more

than one columns from another table, allows for safe pruning of candidate match pairs.

Similarity adjustment techniques. Research on adjusting similarity scores, in the form

of similarity matrices between pairs of schemata (in our case, pairs of tables), has been

conducted with the goal of achieving higher effectiveness [57]. Such adjustment might rely

on ad-hoc or learned rules and heuristics, while they also on specific constraints, such as

matching cardinality. The results of the adjustment process can either be straightforwardly

used for outputting valid column match pairs, or further streamlined to other filter tech-

niques for reaching the final output. Similar to such methods, there exist works focusing



1

12 1 Introduction

on schema matching prediction [58], which propose techniques to assess the effectiveness

of a matching result, without relying on known valid column matches.

1.1.5 Thesis Context
In this section, we briefly reviewed fundamental notions and practices around the area of

schema matching on tabular data. Importantly, this discussion provides a background for

the reader to follow the works presented in the main chapter, which have the following

characteristics and design choices with respect to the concepts we introduced:

• Settings: We focus on the settings of pairwise (Chapter 2) and holistic tabular schema

matching (Chapters 3 and 4). In fact, the holistic matching settings we study refer

to modern real-world scenarios where schema matching is critical. We study each

of these settings individually, while we also evaluate the performance of pairwise

matching methods in holistic schema matching scenarios.

• Types of methods: We first compare the performance of several schema-based,

instance-based and hybrid matching methods (Chapter 2). Then, we introduce

and discuss two novel instance-based methods (Chapters 3 and 4), since we regard

the existence of clean and interpretable schema data a rare occasion in real-world

scenarios; similarly, query logs and provenance data are hard to be found. Hence,

building matching methods that solely rely on instances guarantees their application

in the majority of use cases.

• Filtering: We saw that a matching filtering strategy is at least as important as the

actual matching method it succeeds, since it dictates which column pairs should be

regarded as valid matches. In this thesis, we focus on the ability of schema matching

methods to capture relevance based on the techniques and similarity metrics they

employ. Therefore, our evaluation is based on the list of ranked column pairs, together

with their similarity scores, before using a filtering strategy; this is in alignment

with current literature that regards the evaluation of schema matching filtering and

refinement methods as a separate research topic.

Up until this point, we have discussed what types of column links tabular schema

matching methods capture, how and in which settings. Nevertheless, we have yet to

provide the use cases where applying tabular schema matching is a fundamental, or even

necessary, step. Therefore, equipped with the knowledge of fundamental concepts, in the

next section we move our focus to the applications that schema matching enables and

facilitates.

1.2 Applications of Tabular Schema Matching
In this section we elaborate on how the output of schemamatching can facilitate solutions to

other important problems, in settings where datasets come in the form of tables. Specifically,

we investigate the utilization of schema matching in the following three applications: i)

Entity Resolution, ii) Data Cleaning, and iii) Data Augmentation.



1.2 Applications of Tabular Schema Matching

1

13

Schema 
Matching Blocking Candidate 

Refinement

Book Title Author Name Pages
Dune Herbert, Frank 896

It King, Stephen 1138
… … …

Book Author No Pages
Dune F. Herbert 900
1984 G. Orwell 328

… … …

Book Title Author Name Pages
Dune Herbert, Frank 896

It King, Stephen 1138
… … …

Book Author No Pages
Dune F. Herbert 900
1984 G. Orwell 328

… … …

Figure 1.5: A representative entity resolution pipeline between a pair of tables: first, the column correspondences

between them are captured by a schema matching method, followed by blocking and candidate refinement to

reach the final output, which consists of all matched tuple pairs.

1.2.1 Schema Matching for Entity Resolution
Entity Resolution

2
[14] studies the problem of finding entries across datasets that describe

the same entities; in the context of tabular data, the goal is to find relevant tuples across

tables. Typically, as we see in Figure 1.5 for a pair of tables, schema matching constitutes a

necessary initial step in every entity resolution pipeline, which enables safe pruning of

entity pairs that do not match (blocking [59]) and reaching the final output of potential

similar tuples (candidate refinement). Particularly, if we regard tuples in tables as entities,

then columns store their characteristic attributes. Consequently, schema matching makes

it possible to compare different entities across tables with respect to the values they store

for the same columns (i.e., attributes). Essentially, the success of an entity resolution

method relies heavily on the quality of column matches that the selected schema matching

approach outputs; false positives or missed matches might negatively affect the final result.

Book Title Author Name Pages
Dune Herbert, Frank 896

It King, Stephen 1138
… … …

Reference Table
Book Author

Duned F. Herbert
It S. King
… …

Title Pages
Dune 896

It Nan
… …

Schema 
Matching

Book Title Book Title

Author Author Name

PagesPages

- -

-

-

Book Author
Dune F. Herbert

It S. King
… …

Title Pages
Dune 896

It 1138
… …

Figure 1.6: An example of how schema matching can help towards error detection and repairing: given a reference

table containing ground truth values, we can detect and correct or even impute values missing from other tables

with the help of column matches between them and the reference table.

2
We regard Entity Resolution, Entity Matching, Record Matching and Deduplication as research problems of the

same nature, where Schema Matching plays the same crucial role.



1

14 1 Introduction

1.2.2 Schema Matching for Data Cleaning
Data Cleaning is a thoroughly researched area which studies methods for detecting and

repairing errors in datasets [19]. When datasets are tabular, such errors concern cell

values: misspellings, wrong or even missing values are some of the most popular types.

Interestingly, schema matching can facilitate the detection and potentially repairing of

errors in cell values, when there are tables that can be regarded as reference ones, i.e.,

containing only clean and correct data. As shown in Figure 1.6, column matches between

the tables that need to be cleaned and a reference table, which represents a mediated schema

matching scenario as we discussed previously, can help detect and correct erroneous or

missing cell values. Nonetheless, to effectively leverage such column matches, the output

of an entity resolution method is a necessary prerequisite; to accurately capture the specific

cell values from the reference table that can provide us with the necessary information,

we need to first know how to detect their correct corresponding tuples that contain them.

Moreover, such an alignment between entities and their attributes can further facilitate

the construction of dictionaries containing information about different formats of the

same values. For instance, in Figure 1.6, through the column match between Author and

Author Name, we can build a dictionary with different formats names referring to the

same author (e.g. F.Herbert ≡ Herbert, Frank).

Book Author
Dune F. Herbert

It S. King
… …

Title Pages
Dune 896

It 1138
… …

Book Author Pages
Dune F. Herbert 896

It S. King 1138
… …

(a) Augmenting Columns (b) Augmenting Tuples

Book Title Author Name Pages
Dune Herbert, Frank 896

… … …

Book Author
Dune F. Herbert

It S. King
… …

Title Pages
Dune 896

It 1138
… …

Book Title Author Name Pages
Dune Herbert, Frank 896

It S. King 1138
… … …

Figure 1.7: Two examples of augmenting a table through column matches: (a) a match to another table can enable

a join between them and extend the column set of the given table, while (b) matches among tables in a repository

and the given one can help populate it with more tuples.

1.2.3 Schema Matching for Data Augmentation
Inmost cases, data scientists andmachine learning practitioners considerably rely on tabular

datasets to extract further insights through prediction models based on them. However,

it is quite common that the datasets they have access to are either missing informative

attributes (i.e., features) or store an insufficient amount of data points to guarantee that

the produced models will accurately perform according to their needs. Towards enhancing



1.3 Main Research Questions

1

15

datasets with more information, Data Augmentation methods [46–48, 51] aim to extend a

given table, with either more columns, more data points (tuples), or both. Notably, schema

matching can play an integral role in the data augmentation pipeline. Specifically, column

matches between table pairs might represent potential join cases; hence, through their

realization, tables can be augmented with additional attributes borrowed from the ones

they join with, as shown in Figure 1.7a. Additionally, finding finding matches for most

of the columns of a table with respect to other ones in the repository, can help expand

its tuple set; if column matches are available for an entire repository, which is the case

in Figure 1.7b, then they might enable ways to combine them before adding more tuples

to the given table [49]. Interestingly, such augmentation techniques have been shown

to improve the accuracy of machine learning models, without making changes to their

internals [60, 61]. Finally, dataset discovery methods that search for related tables with

respect to a given one [17, 26, 31, 50] and facilitate data augmentation, employ schema

matching at the core of their pipelines.

1.2.4 Summary
We see that schema matching can assist and is vital towards a successful result in several

important applications that consider tabular datasets. Interestingly, in connection to the

previous section, these applications impose the schema matching settings, the type of

links that should be captured and the information that the methods can leverage towards

matching. Therefore, developing highly effective and generalizable matching methods that

can be employed for several use cases is critical. In this context, we address some of the

most important research challenges in the field of tabular schema matching and propose

novel solutions and frameworks; essentially, our works are motivated by the main research

questions that we pose in the next section.

1.3 Main Research Questions
Schema matching on tabular data encompasses multiple methods that use various tech-

niques, consider several types of information and can be applied for different settings

and applications, as we have already discussed. Notably, the research efforts in the field

span a period of more two decades, with novel methods continuing to emerge due to new

technologies available and settings. Nevertheless, proposed methods rarely compare with

former state-of-the-art ones, due to missing or insufficient publicly available documentation

and implementation. On top of that, the community lacks a thorough comparison of state-

of-the-art matching methods, with settings that reflect the needs of modern applications;

besides, evaluation of past and novel methods is impeded by the lack of available datasets

with ground truth of column matches. These issues and considerations bring us to the first

main research question:

RQ-1: How do state-of-the-art schema matching approaches on tabular data compare,

in terms of effectiveness and efficiency? How to evaluate them towards the goals of

modern dataset discovery methods?

Based on the study and results towards answering RQ-1, as presented in Chapter 2, we

conclude that state-of-the-art schema matching methods are computationally and resource



1

16 1 Introduction

expensive, which might prohibit their application on holistic matching settings where

the number of candidate column match pairs can become considerably high. Specifically,

such settings are very common in modern organizations that maintain their own dataset

repositories; interestingly, this might be the cases for different teams inside the same

organization. To facilitate collaboration and information sharing among such different

stakeholders, schema matching among their respective data silos plays an integral role.

However, existingmatching techniques require the collocation of datasets, hence theymight

not be applicable for the setting of data silos. In addition, existing schemamatchingmethods

focus on automated methods for capturing relevance between columns. Consequently,

existing column relationships inside data silos derived from their metadata catalogs, query

logs or even by practitioners and experts working on them cannot be leveraged. This

creates the need for a novel matching approach that can take advantage of existing column

matches inside silos to capture potential ones among them. These research gaps motivate

our second main research question:

RQ-2: How can we leverage existing column relationships within silos to predict

similar ones across silos? Can we do this efficiently and effectively?

Answering RQ-2 is very important for building column matching methods that bridge

different data repositories when matches are known for datasets inhibiting them; nonethe-

less, effectively capturing column relationships for data repositories, when no previous

matching information is available, is still an open challenge. Particularly, discovering join

relationships among datasets in a given repository is of high value when the goal is to

explore and potentially combine them for further applications. Due to the heterogeneity

and complexity of datasets in a repository, building an effective solution requires to meet

three main criteria: i) ability to capture joins even the case of value discrepancies, ii)

applicability when there are no available or clean metadata, such as column names or exist

join relationships, and iii) practicality. However, existing solutions usually fail to satisfy

all of the aforementioned criteria, which brings us to the third, and final, main research

question:

RQ-3: How can we discover both equi-join and fuzzy-join relationships among columns

of tabular data in a data repository? Can we effectively discover such joins even when

the quality of the metadata is low, or the metadata is missing?

Guided by these research questions, we first conduct an extensive experimental study

on the effectiveness and efficiency of several state-of-the-art schema matching methods

(Chapter 2). The methods in comparison cover the wide spectrum of column similarities

used in the literature to capture relevance among them, while they are evaluated on

scenarios that stem from dataset discovery applications; in addition, we tackle the limited

availability of existing evaluation datasets by introducing a method for fabricating dataset

pairs. Notably, we also build a schema matching evaluation framework, which can further

used for holistic matching settings. Next, we engage in the problem of column match

prediction among different data silos (Chapter 3). Towards this direction, we propose

a prediction model that leverages existing column match information in each data silo,

by transforming them into representative graphs and employing Graph Neural Networks

(GNNs). Finally, we deal with equi-join and fuzzy-join discovery in repositories, when the



1.4 Contributions

1

17

only available data are the instances of the corresponding datasets (Chapter 4). Specifically,

we employ a diverse set of similarity signals based on the schema matching and dataset

discovery literature, to build a similarity graph among columns of different datasets; the

structure and characteristics of this graph enables the application of GNNs to build an

effective join prediction model.

1.4 Contributions
The main contributions of this thesis are summarized as follows:

1. We develop a unified and extensible, open-source experimentation suite, where we

implement and integrate six state-of-the-art schema matching methods for tabular

data. We further propose an evaluation dataset fabricationmethod, tailored to specific

relatedness scenarios that we also define (Chapter 2).

2. We enhance our experimentation framework with a GUI to make it more accessible

for users, while we extend it with holistic matching functionalities. We further

introduce valentine3 as a package for easily applying schema matching methods

on pipelines implemented in Python (Chapter 2).

3. We propose a generic and inductive GNN-based learning framework, which discovers

columnmatches across tabular datasets belonging to different data silos, by leveraging

existing matching information in each of them (Chapter 3).

4. We introduce a novel self-supervised approach that targets the problem of any-join

discovery in tabular data repositories, by transforming a variety of similarity signals

between column pairs into a graph and leveraging the power of GNNs (Chapter 4).

1.5 Thesis Origins
This thesis consists of three main chapters, which are based on the research papers that

we list below.

Chapter 2 is based on the following papers:

 C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, M. Fragkoulis, J. Brons, A. Bonifati

and A. Katsifodimos. Valentine: Evaluating Matching Techniques for Dataset Discovery,

ICDE’21 [62].

 C. Koutras, K. Psarakis, G. Siachamis, A. Ionescu, M. Fragkoulis, A. Bonifati and A.

Katsifodimos. Valentine in action: matching tabular data at scale, VLDB’21 [63].

Chapter 3 is based on the following paper:

 C. Koutras, R. Hai, K. Psarakis, M. Fragkoulis and A. Katsifodimos. SiMa: Effective

and Efficient Matching Across Data Silos Using Graph Neural Networks , arXiv, under

submission [64].

3
https://pypi.org/project/valentine/



1

18 1 Introduction

Chapter 4 is based on the following paper:

 C.Koutras, J. Zhang, X. Qin, C. Lei, V. Ioannidis, C. Faloutsos, G. Karypis, A. Kat-

sifodimos. OmniMatch: Effective Self-Supervised Any-Join Discovery in Tabular Data

Repositories, arXiv, under submission [65].



2

19

2
Evaluating Matching Techniques for

Dataset Discovery

Data scientists today search large data lakes to discover and integrate datasets. In order to

bring together disparate data sources, dataset discovery methods rely on some form of schema

matching: the process of establishing correspondences between datasets. Traditionally, schema

matching has been used to find matching pairs of columns between a source and a target

schema. However, the use of schema matching in dataset discovery methods differs from its

original use. Nowadays schema matching serves as a building block for indicating and ranking

inter-dataset relationships. Surprisingly, although a discovery method’s success relies highly

on the quality of the underlying matching algorithms, the latest discovery methods employ

existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available

datasets with ground truth, reference method implementations, and evaluation metrics.

With the work described in this chapter we aim to rectify the problem of evaluating the

effectiveness and efficiency of schema matching methods for the specific needs of dataset

discovery. To this end, we propose Valentine, an extensible open-source experiment suite to

execute and organize large-scale automated matching experiments on tabular data. Valentine

includes implementations of seminal schema matching methods that we either implemented

from scratch (due to absence of open source code) or imported from open repositories. The con-

tributions of Valentine are: 𝑖) the definition of four schema matching scenarios as encountered

in dataset discovery methods, 𝑖𝑖) a principled dataset fabrication process tailored to the scope

of dataset discovery methods and 𝑖𝑖𝑖) the most comprehensive evaluation of schema matching

techniques to date, offering insight on the strengths and weaknesses of existing techniques,

that can serve as a guide for employing schema matching in future dataset discovery methods.

This chapter is based on the following full research and demonstration papers:

 C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, M. Fragkoulis, J. Brons, A. Bonifati and A. Katsifodimos.

Valentine: Evaluating Matching Techniques for Dataset Discovery, ICDE’21 [62].

 C. Koutras, K. Psarakis, G. Siachamis, A. Ionescu, M. Fragkoulis, A. Bonifati and A. Katsifodimos. Valentine in

action: matching tabular data at scale, VLDB’21 [63].



2

20 2 Evaluating Matching Techniques for Dataset Discovery

Method
Match Type Attribute

Overlap
[46, 49, 50]

Value Overlap
[17, 31, 44, 46,

49, 50, 66]

Semantic
Overlap
[17, 26]

Data Type
[44]

Distribution
[44, 50]

Embeddings
[17, 44, 50]

Cupid [27] ✔ ✔ ✔
Similarity Flooding [28] ✔ ✔
COMA [29] ✔ ✔ ✔ ✔ ✔
Distribution-based [32] ✔ ✔
SemProp [16] ✔ ✔ ✔
EmbDI [30] ✔
Jaccard-Levenshtein ✔

Table 2.1: Schema matching techniques implemented in Valentine, and the match types they cover. Match types

are marked with the discovery methods requiring them.

2.1 Introduction
Virtually every non-trivial, data science task nowadays begins with data integration. At

the core of data integration lies dataset discovery: the process of navigating numerous data

sources in order to find relevant datasets as well as the relationships among those datasets.

The bulk of work in dataset discovery, focuses on tabular data [17, 26, 31, 44, 46–51, 66]

since it constitutes the main form of datasets in the web and enterprises: web tables,

spreadsheets, CSV files and database relations.

Typically, a dataset discovery method receives a dataset as input and finds other datasets

in a data repository which are related to it. The ultimate goal of dataset discovery is to

augment a dataset with information previously unknown to the user. There are many

flavors of dataset discovery: 𝑖) searching for tables that can be joined [26, 31, 49], 𝑖𝑖)
augmenting a given table with more data entries or extra attributes [46–48, 50], frequently

for improving the accuracy of machine learning models [51, 66], and 𝑖𝑖𝑖) finding similar

tables to a given one using different similarity measures [17, 44].

The majority of these methods are based on a common, very critical component: schema

matching, i.e., capturing relationships between elements of different schemata. In the case

of tabular data, dataset discovery methods typically use schema matching techniques

to automatically determine whether two columns (or even entire tables) are joinable or

unionable. Since dataset discovery methods exploit relatedness information about a given

set of datasets, the underlying matching technique of any data discovery method greatly

affects its performance.

At the moment of writing, dataset discovery methods typically implement their own

matcher, by combining or customizing existing methods. However, the majority of discov-

ery works do not take advantage of the abundance of schema matching methods in the

literature [21, 67, 68]. This happens for good reasons: the vast majority of the techniques

are not open-source or available for use, and oftentimes the on-paper description of algo-

rithms can be vague. Worse, most methods require setting a vast number of parameters,

making any reproducibility effort a tough or impossible task. Most importantly, even when

a few schema matching methods are publicly available, employing them into a dataset

discovery pipeline becomes a daunting task: there exists no proper comparison of the

state-of-the-art schema matching techniques in the literature – an open problem which

was stated almost two decades ago [21].

In this work, we present the first attempt towards evaluating schema matching algo-

rithms on tabular data, for the specific needs of dataset discovery. Traditionally, schema



2.2 From Schema Matching to Dataset Discovery

2

21

matching algorithms have been evaluated for 1-1 matches: for each column in the source

schema, algorithms aim at matching exactly one column in the target schema. This is

limiting for dataset discovery use cases where users typically navigate ranked lists of results.

We argue that providing ranked lists instead of 1-1 matches, both challenges the traditional

matching evaluation metrics (precision and recall), and requires changes to existing algo-

rithms. This work aims to facilitate the development of novel dataset discovery methods

by 𝑖) automating the schema matching component, 𝑖𝑖) by adapting existing algorithms and

𝑖𝑖𝑖) by proposing novel evaluation metrics with Valentine: a unified, open-source schema

matching experiment suite for dataset discovery.

The contributions of this work can be summarized as follows:

• we survey the dataset discovery literature and distill four relatedness scenarios that

we strictly define: two joinability and two unionability scenarios;

• we devise a method to fabricate dataset pairs for those relatedness scenarios in a

principled manner;

• we implement and integrate six schema matching algorithms [16, 27–30, 32] and our

own baseline method, and adapt them to the needs of dataset discovery;

• we develop a unified and extensible, open-source
1
experimentation suite that can be

used as a drop in replacement of the schema matching component in current and

future dataset discovery methods;

• we present – to the best of our knowledge – the most comprehensive effectiveness

and efficiency evaluation of schema matching algorithms for tabular data to date,

with ∼75K experiments (553 dataset pairs × 135 configurations over multiple schema

matching methods).

2.2 From Schema Matching to Dataset Discovery
In this section, we present a concise overview of dataset discovery methods, followed by a

discussion on how matching is an integral part of these techniques. Finally, we justify the

suitability and necessity of Valentine as a building block for dataset discovery.

2.2.1 Dataset Discovery Methods
Existing dataset discovery methods on tabular data mainly focus on searching and aug-

menting/combining information found in related datasets. The early literature in the field

has focused on Web Tables and later on dataset repositories. The Octopus system [31] can

search and augment Web Tables. It provides the user with three operations: i) keyword-

search for related datasets, ii) specifying semantics of potential new attribute values to a

given source, and iii) extending data of a given table. InfoGather [46] and its successor

[47] introduce methods for augmenting tables either by adding more data entries or by

discovering new potential attributes. Similarly, EntiTables [48] uses generative probabilistic

models in order to augment entity-focused tables, i.e., each row stores information about a

specific entity.

1https://github.com/delftdata/valentine

https://github.com/delftdata/valentine


2

22 2 Evaluating Matching Techniques for Dataset Discovery

In the same spirit, other dataset discovery methods aim specifically at detecting joinable

or unionable tables [17, 26, 50] given an input table, often with different end goals, such as

improving matching of tabular data to knowledge bases [49], constructing a knowledge

graph to represent relationships between datasets [44] or enrich training data and improve

accuracy of machine learning methods [51, 66].

2.2.2 The Schema Matching Component
By studying the literature we observed that the goal of dataset discovery is very similar to

the one of schema matching. As a matter of fact, a lot of methods use multiple different

matchers in order to identify relationships based on the knowledge sources they have

available. For example, if a knowledge base is available and suitable to use then a semantic

matcher is used. Furthermore, if a method needs to search for joinable datasets, it might

use a matcher that is based on column value overlaps. To help understand the area, we

divided those matching needs in six categories as follows (summarized in Table 2.1):

• Attribute Overlap Matcher (used by [46, 49, 50]): Specifies that two columns are

related when their attribute names have a syntactic overlap above a given threshold.

• Value Overlap Matcher (used by [17, 31, 44, 46, 49, 50, 66]): Signals that two

columns are related when their corresponding value sets significantly overlap.

• Semantic Overlap Matcher (used by [17, 26]): In the presence of an external source

of knowledge (such as a knowledge base), it derives labels describing the semantics

of a column or even the domain of its values. Then, a match between two columns

is valid when there is a significant overlap between their corresponding labels or,

equivalently, they store values of the same domain.

• Data Type Matcher (used by [44]): Flags (ir)relevant columns based on their data

type (integer, string, etc.).

• Distribution Matcher (used by [44, 50]): Flags relevant columns based on their

value distributions.

• EmbeddingsMatcher (used by [17, 44, 50]): Identifies related columns by computing

the similarity of their corresponding values based on their embeddings [69]. The

embeddings are derived from an existing pre-trained model on natural language

corpora.

Note that it is possible for a given schema matching method to provide more than one

type of matchers and, at the same time, a given dataset discovery method might require

or use multiple types of matchers. Valentine encompasses six state-of-the art matching

techniques derived from the schema matching literature plus a baseline approach. As

shown in Table 2.1, Valentine’s’ method selection covers all types of matchers used for

dataset discovery today.

Valentine as a Discovery Component. Valentine can contribute to the development of

dataset discovery methods in multiple ways. First, it provides with a variety of methods for

each matcher type, which enables a dataset discovery method to experiment with different



2.2 From Schema Matching to Dataset Discovery

2

23

1. Pair Fabrication
2. Noise Addition

Original Datasets →

A B C D
1
2
3

A B C ※

1
2 ※

3 ※

Fabricated Pairs

…

A ※ C
1
2 ※

3

C D
※ …

Joinable

Unionable

…

1. Dataset-pair Fabrication

foreach m in Matching-methods
foreach p in Method-parameter-variants
foreach d in Dataset-pairs

run experiment(m,p,d)

3. Experiment Execution

※ noise

2. Method Parameterization
{ algorithm: Coma,

parameter_name: threshold,
min_value: 0.1,
max_value: 0.2,
step: 0.05

} …

Figure 2.1: Valentine first fabricates dataset pairs alongside ground truth, then creates multiple parameterized

runs of methods and finally exhaustively executes all combinations of methods, parameters and dataset pairs.

techniques based on the data information it can exploit. Moreover, each of Valentine’s

methods includes sophisticated schema matching techniques that cover not one, but several

matcher types. In essence, Valentine consolidates the best of schema matching efforts

and make it accessible and usable by dataset discovery methods; Valentine can prevent

researchers from having to implement their own, schemamatching component or searching

through the vast schema matching literature in order to discover techniques well-suited to

their needs.

2.2.3 Evaluating Matching Techniques for Discovery
We use Valentine to evaluate the performance of multiple schema matching methods by

applying them each time on a pair of denormalized tabular datasets with some known

schema information - such as table/attribute names and data types - and their associated

data values. Moreover, we assume that the intended output consists of matches between

columns. An important aspect of the framework is that the output of each method is a list

of pairs of matching attributes ranked by the matching confidence as determined by the

chosen method.

1-1 Matches vs. Ranked Matches. Typically, schema matching approaches return a set

of 1-1 matches (source to target column matches), however, we argue that rankings are

better suited to the needs of dataset discovery: ranking allows users to explore and decide

on match candidates more efficiently. Furthermore, it allows us to judge the degree of

correctness of a match based on its ranking, thus better reflecting a method’s performance.

More importantly, it enables dataset discovery methods to utilize these schema matching

methods through Valentine, since they need to know similarities and rankings among

column pairs in order to calculate their corresponding relatedness measures or decide the

degree to which two tables can be unioned or joined.

For each pair of relations with potential matches, we know the ground truth, i.e., the

matching attribute pairs a schema matching method should capture. This allows us to

compute the accuracy of each algorithm based on the ranked matches they produced as

defined below:



2

24 2 Evaluating Matching Techniques for Dataset Discovery

Client Street PO
J. Watts 2, Tea St. 39499
B. Mei 8, Fly St. 34682

… … …

C_Name Addr P_Cod
eB. Mei 8, Fly St. 34682

Q. Man 3, Bay St. 35472
… … …

Client Street PO
J. Watts 2, Tea St. 39499
B. Mei 8, Fly St. 34682

… … …

Addr P_Code C_ID
8, Fly St. 34682 C10012
3, Bay St. 35472 C23672

… … …

Client Street Country
J. Watts 2, Tea St. USA
B. Mei 8, Fly St. China

… … …

Cntr C_Office Head
USA 68346 B. Stan

China 74742 J. Ki
… … …

Client Street Country
J. Watts 2, Tea St. USA
B. Mei 8, Fly St. China

… … …

Cntr C_Office Head
States 68346 B. Stan
Chn 74742 J. Ki
… … …

SEM

a) Unionable b) View-Unionable

c) Joinable

d) Semantically Joinable
Figure 2.2: Four cases of dataset relatedness scenarios.

Definition (Recall@k). Measures the number of relevant matches regarding only the top-k

match pairs in the result:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
# 𝑜𝑓 𝑡𝑜𝑝-𝑘 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑘
where 𝑘 = |𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ|

Recall@𝑘 (where k is the number of correct matches, also known as R-Precision) shows

the quality of the ranking a method produces as it computes the top relevant results with

respect to the ground truth. Intuitively, it is a measure that reflects how helpful the output

list is for a human who wants to assess only a limited list (e.g., a page) of top-𝑘 results. In
other words, Recall@𝑘 indicates how well a method is able to output all the correct results

in the top ranks. Note that since 𝑘 = |𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ|, Recall@𝑘 is essentially equivalent to

Precision@𝑘, hence we only use Recall@𝑘 as an effectiveness metric in this study.

In our experiments, we exclude traditional effectiveness metrics such as Precision, Recall

and F-measure since those would apply in the case where matching techniques would

return a set of unranked 1-1 matches that satisfy a threshold.

2.3 Dataset Relatedness Scenarios
Traditionally, schema matching methods on tabular data are evaluated based on a limited

and abstract set of table pairs with a given ground truth of relationships that are valid.

However, the scope of a dataset discovery method defines specific relatedness semantics



2.3 Dataset Relatedness Scenarios

2

25

between tables. Therefore, existing schema matching evaluations do not provide any useful

insights for dataset discovery techniques.

In this section, we define and describe the specific relatedness scenarios that Valentine

fabricates in order tomeaningfully evaluate existing schemamatchingmethods. Specifically,

we develop a relatedness scenario taxonomy with two fundamental categories, unionable

and joinable relations, and further refine each of these categories. This taxonomy covers

the scope of any dataset discovery method and guides our evaluation in section 2.7 as

certain approaches can cope with different problem cases better than others.

2.3.1 Unionable Relations
In the unionable case, relations store data of the same conceptual entity type using the

same attributes. This can be formalized as:

Definition (Unionable Relations). Two relations 𝑅1 with attribute set  and 𝑅2 with
attribute set  are unionable if:

1. They are of the same arity.

2. There exists a 1-1 mapping ℎ ∶→ , denoting semantic equivalence, between their

attribute sets ,i.e., ∀𝐴𝑖 ∈ ,∃𝐵𝑗 ∈  so that ℎ(𝐴𝑖) = 𝐵𝑗 , and there is no 𝐴𝑘 , 𝑘 ≠ 𝑖 and
𝐵𝑙 , 𝑙 ≠ 𝑗 for which ℎ(𝐴𝑘) = 𝐵𝑗 or ℎ(𝐴𝑖) = 𝐵𝑙 .

Essentially, two relations are unionable if they are union compatible, as defined in

relational algebra, with the only difference being that corresponding attributes from the

two relations may be of different but similar data type (e.g., string and varchar). This

problem can become very challenging when attributes correspond semantically, but their

instancesmostly differ; yet, a union between the relations should be possible and identifiable.

In Figure 2.2a we see an example of two unionable relations storing information about

clients. Note that even if the names of the corresponding attributes are not the same, they

store the same type of information.

Furthermore, there are a lot of cases where two tables may share a lot of corresponding

attributes but also have some extra ones each. This would mean that the two tables are

similar but not unionable; instead, we call such relations view-unionable.

Definition (View-Unionable Relations). Two relations 𝑅1 and 𝑅2, with corresponding

attribute sets  and , are view-unionable if there exist two views 𝑉1 = 𝜋𝑆1⊆𝑅1 and
𝑉2 = 𝜋𝑆2⊆𝑅2, such that 𝑉1, 𝑉2 are unionable.

In other words, two view-unionable relations share attributes that correspond to each

other semantically, but can also contain attributes that are unique to each; note that in the

case where 𝑆1 ≡ and 𝑆2 ≡  we fall back to the unionable case. This could be a more

typical case, since data that is partitioned across different sites, may be differently modelled

under the conventions of the respective data owner. More specifically, each such data shard

may be enhanced with information (in our case attributes) that are relevant to each owner,

thus making it difficult to identify similarity between relations that refer to the same data.

An example pair of view-unionable relations is illustrated in Figure 2.2b, where we observe

that while the two relations share a lot of common attributes, they still differ in the way

they refer to clients (one uses names, the other IDs). Thus, they are unionable only with

respect to the views defined on their corresponding attributes.



2

26 2 Evaluating Matching Techniques for Dataset Discovery

Unionable

Horizontal Split
Row Overlap

[0%,50%,100%]

VS
VI

NS
VI

VS
NI

NS
NI

View-Unionable

Vertical Split
Column Overlap

[30%,50%,70%]

Horizontal Split
Row Overlap

0%

VS
VI

NS
VI

VS
NI

NS
NI

Joinable

Vertical Split
Column Overlap

[1,30%,50%,70%]

VS
VI

NS
VI

Horizontal Split
Row Overlap

50%

VS
VI

NS
VI

Semantically-Joinable

Vertical Split
Column Overlap

[1,30%,50%,70%]

VS
NI

NS
NI

Horizontal Split
Row Overlap

50%

VS
NI

NS
NI

VS Verbatim Schemata VI Verbatim Instances NS Noisy Schemata NI Noisy Instances

Figure 2.3: Fabrication of datasets with respect to each relatedness scenario.

Identification of (view-)unionable relations has been the goal of several dataset discovery

methods [17, 44] that focus on fetching tables storing similar entities with respect to a

given one. Moreover, discovery of unionable relations is vital for techniques that augment

information about a given table by finding more data entries to populate it [46, 47, 50].

Thus, Valentine’s evaluation on unionable scenarios could be a very important indicator of

which existing schema matching methods could effectively enhance such data discovery

methods.

2.3.2 Joinable Relations
In the joinable case, two relations store complimentary data of the same conceptual entity

type. Formally:

Definition (Joinable Relations). Two relations 𝑅1 and 𝑅2, with corresponding attribute sets

 and , are joinable if there exists at least one pair (𝐴𝑖,𝐵𝑗 ), where 𝐴𝑖 ∈ and 𝐵𝑗 ∈ , on
which a join can be executed, i.e., 𝐴𝑖 and 𝐵𝑗 are related through a function ℎ ∶→ , which
denotes semantic equivalence, and have overlapping instances or 𝑅1 ⋈𝐴𝑖=𝐵𝑗 𝑅2 ≢ 𝑅1 ×𝑅2.

Relation joinability can be reduced to finding overlaps between the instance sets of

attributes, in the case where data is formatted in the same way for all relations. Figure

2.2c shows a classic example of two relations that can join on common values, drawn from

the join attributes which are Country and Cntr respectively. However, capturing joinable

relations can become a very hard problem, when they come from diverse data sources. In

such cases, it is highly possible that correspondence between instances of two attributes

cannot be found due to different format conventions. Therefore, we distinguish this as

another joinability problem: one that demands capturing of semantic equivalence.

Definition (Semantically-Joinable Relations). Two relations 𝑅1 and 𝑅2, with correspond-

ing attribute sets and, are semantically-joinable if there exists at least one pair (𝐴𝑖,𝐵𝑗 ),



2.4 Fabricating Dataset Pairs

2

27

where 𝐴𝑖 ∈ and 𝐵𝑗 ∈ (on which a semantic join can be executed, i.e., 𝐴𝑖 and 𝐵𝑗 are related
through a function ℎ ∶  → , which denotes semantic equivalence) share semantically

equivalent instances and 𝑅1 ⋈𝑠𝑒𝑚𝐴𝑖=𝐵𝑗 𝑅2 ≢ 𝑅1 ×𝑅2.

In essence, semantic-joins are a superset of fuzzy-joins [70] which have been studied in

the literature but only exploit string-based similarities. Figure 2.2d showcases the hardness

of the problem, where in order to join the two relations, we need a function that captures

equivalence between semantically identical values from the Country and Cntr attributes.

Determining whether relations are (semantically-)joinable is a major necessity for

dataset discovery methods that augment a given a table with extra attributes [46, 47, 50].

Moreover, recently, discovery methods search for extra features to augment a given dataset

in order to improve accuracy of machine learning models [51, 66]. With our evaluation on

joinable scenarios, judging which schema matching method to use in such cases becomes

much easier.

2.4 Fabricating Dataset Pairs
Possibly the biggest challenge in evaluating schema matching methods is the lack of openly

available datasets with schema matching ground truth. There are various ways to create

dataset pairs with ground truth: one can 𝑖) split existing datasets horizontally to fabricate

unionable dataset pairs, and vertically to fabricate joinable dataset pairs [17, 71] where

the ground truth lies with the original table, 𝑖𝑖) curate existing datasets by determining

the ground truth manually [32] or, 𝑖𝑖𝑖) generate datasets that contain matches by design

[72, 73] (e.g., generate PK-FK relationships). In Valentine, we opted for i) and ii): fabricate

dataset pairs and create ground truth. This section details the fabrication methods.

Fabricating Dataset Pairs. We fabricate datasets with synthetic matching challenges by

splitting existing tables in a systematic fashion. Here we extend the approach of eTuner [74]

which performs multiple perturbations on the schema and the instances of a table: in short,

it splits tables horizontally and vertically, and adds noise in schema information and the

value instances. This creates a synthetic matching problem with the original data as ground

truth. Below we explain the details of the strategy we followed.

Noise in Data. Apart from keeping the instances of columns verbatim (i.e., after we split a

table, we keep the overlapping values the same), we also include noisy data in columns as

follows: for string columns we insert random typos based on keyboard proximity, while

for columns containing only numerical values, we randomly change them according to

their value distribution (similar to [74]).

Noise in Schemata. In the real world, two columns of different tables can have different

names, even if they contain the same information. To represent this in our experiments, we

include both types of table pairs, i.e., pairs with verbatim column names and pairs in which

one of the tables has noisy column names. We use a combination of three transformation

rules to add “noise”: 𝑖) we prefix column names with their table name (common practice in

DB design), 𝑖𝑖) we abbreviate column names and 𝑖𝑖𝑖) we drop vowels.

We finally split tables horizontally to create unionable pairs, vertically to create joinable

pairs, and in both ways (joinable and unionable), following [17, 74]. Figure 2.3 shows the

dataset fabrication process for four relatedness scenarios (section 2.3).



2

28 2 Evaluating Matching Techniques for Dataset Discovery

Unionable. To create datasets for the unionable case we need two tables to contain the

same columns. Thus, we horizontally partition the table with varying percentages of row

overlap, which is necessary for instance-based matching methods. As mentioned above,

such a table pair might contain verbatim schemata or noisy ones, as well as verbatim or

noisy instances. We use all possible instances-schemata combinations, while the ground

truth for each case consists of all corresponding columns of the two horizontally-split

tables that match.

View-unionable. For the view-unionable case, we need two tables with a common subset

of columns, but no row overlap. This represents a typical matching problem in practical

applications, i.e., finding more instances of a given type scattered across tables with slightly

varying schema representation. The lack of row overlap provides an extra challenge for

naive instance-based algorithms. We create view-unionable cases by splitting the original

table both horizontally and vertically with zero row overlap and varying column overlap.

Again, we consider every feasible instances-schemata combination. Joinable. Joinable
tables should have at least one (joining) column in common and, in contrast to view-

unionable, they should have a large row overlap. This represents the common challenge

of finding additional information/features about known data instances in other tables.

To create this case, we split a table vertically keeping a varying amount of overlapping

columns (e.g., 1 column, or 30% of columns or 50%, etc.). Another way to create joinable

tables is to split the table both vertically and horizontally but with a row overlap of different

percentage (in our case 50%). We create variants with noise/no-noise in each schema, but

since we refer to the “classical” join operation we include only verbatim instances.

Semantically-joinable. The semantically-joinable case is similar to the joinable case, but

we perturb the overlapped instances by inserting noise. Thus, because of noise, an equality

join on the common columns will not yield the original table anymore. As before, we create

variants with noise/no-noise in the schema, but include only noisy instances (non-noisy

instances are the “vanilla” joinable case).

2.5 Datasets
We have selected a set of datasets to evaluate the schemamatching methods (see Section 2.6)

included in Valentine. The datasets bear distinct characteristics such that they challenge all

methods. We group the datasets in two broad categories. The first category presented in

Section 2.5.1 contains dataset sources that provided us with a total of 540 fabricated dataset

pairs by applying Valentine’s fabricator module on them as we described in Section 2.4.

In this case the ground truth are the original tables. The second category presented in

Section 2.5.2 features real-world datasets with an inherent schema matching challenge that

we curated in order to manually create the ground truth for them.

2.5.1 Dataset Sources of Fabricated Dataset Pairs
TPC-DI [75] - 180 pairs. TPC-DI focuses on Data Integration. We used the Prospect table

from TPC-DI 1.1.0 with a scale factor of three. The fabricated TPC-DI datasets vary from

11 to 22 columns and 7492 to 14983 rows.

Open Data [17] - 180 pairs. This dataset consists of tables from Canada, USA and UK



2.5 Datasets

2

29

Open Data, provided to us by the authors of [17] for their dataset discovery techniques. We

used the second table from the base.sqlite collection of the benchmark. The fabricated

Open Data datasets vary from 26 to 51 columns and 11628 to 23255 rows.

ChEMBL2 - 180 pairs. ChEMBL is an open chemical database closely related to the EFO
3

ontology. Thus, it is one of the few datasets that come with an ontology. We used the Assays

table from ChEMBL 22. The fabricated ChEMBL datasets vary from 12 to 23 columns and

7500 to 15000 rows.

2.5.2 Dataset Sources of Human-curated Dataset Pairs
WikiData4 - 4 pairs. WikiData is a knowledge base supporting Wikimedia projects and is

a great source of real world data. We create two tables as a matching challenge covering the

same entity type queried from WikiData, but represented with slightly varying schemata

and instance encodings. We focus on singers who are USA citizens. The schemata for these

tables are identical at first: both cover twenty columns containing mostly strings (e.g. artist

name, parents name, song genre). To resemble a real-life scenario as accurately as possible,

we vary the column names of the second table (e.g. partner→ spouse). Additionally, we

change the values for all cells of six selected columns by replacing the original value with

alternative versions (e.g., Elvis Presley→ Elvis Aaron Presley). Finally, we manually created

variants for all matching classes of the matching scenarios as in the previous subsection,

with relations varying from 13 to 20 columns and 5423 to 10846 rows.

Magellan Data [76] - 7 pairs. The Magellan Data Repository [76] contains dataset pairs

collected from real-world data and curated mainly for Entity Matching techniques. We pick

7 of these datasets pairs which have been previously used for Schema Matching evaluation

in [30]. With respect to our relatedness scenarios, the datasets represent unionable pairs of

tables with value overlaps and use the same naming conventions between corresponding

columns. Magellan datasets vary from 3 to 7 columns and 864 to 131099 rows.

ING Data (proprietary) - 2 pairs. Our industry partner ING Bank Netherlands provided

us with access to two production datasets, comprising a pair of matching tables each.

The first pair of tables (ING#1) contains information about SCRUM sprints with dates,

team ids, owner-team, tasks, EPIC names, dates, etc. The bank owns multiple custom

SCRUM systems that they would like to integrate and query for team-performance analysis.

The corresponding tables consist of 33 columns - 935 rows and 16 columns - 972 rows

respectively.

The second dataset (ING#2) contains tables that describe the software applications

that a team is responsible for, alongside information like the owner-team, the hardware

it operates on, the manager name, department, the relationships between applications

(e.g., app1 is used by app2), etc. The dataset contains two tables: a wide one (with 59

columns - 1000 rows) with low-level general-domain information, and another (with 25

columns - 1000 rows) containing higher-level business-oriented information. These tables

are denormalized, and even contain nested/composite values. Finding matches in this

dataset is very challenging also for human domain experts, and semi-automated matching

2https://www.ebi.ac.uk/chembl/
3https://www.ebi.ac.uk/efo/
4https://www.wikidata.org

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/efo/
https://www.wikidata.org


2

30 2 Evaluating Matching Techniques for Dataset Discovery

for cases like this would be very appreciated by practitioners. Thus, this dataset is a very

good test case for schema matching methods.

We gathered the ground truth for both datasets with the help of an expert DB admin

who performed the schemamatching manually. Unfortunately, we cannot make this dataset

public due to privacy constraints.

2.6 Matching Methods
Schema matching approaches are classified based on the kind of information they make

use of. In specific, schema-based matching methods [27–29] exploit only schema-level

knowledge in order to capture potential relationships, such as attribute names, data types

and contextual information. On the other hand, instance-based matching approaches rely

on data instances, such as those that compare value distributions of attributes [32] or

compute various syntactic similarity measures [25]. Finally, there exist hybrid methods

that combine both schema and value information [16, 30]. In this section we give a brief

overview of each method contained in Valentine, and explain our parameter configuration

process.

2.6.1 Methods Description
In what follows we briefly describe the schema matching methods that we either integrated

or implemented in Valentine. Furthermore, we explicitly report any modifications we made

while attempting to reproduce the original algorithms.

Cupid [27]. Cupid is a schema-based approach. Schemata are translated into tree structures

representing the hierarchy of different elements (relations, attributes etc.). The overall

similarity of two elements is the weighted similarity of i) Linguistic Matching and ii)

Structural Matching. The first calculates the name similarity for each pair of elements from

the two schemata belonging to the same category. Structural matching utilizes the tree

transformations of the schemata to compute similarity between elements based on their

context. The overall similarity of two elements is the weighted sum of the linguistic and

structural similarities. Cupid is not openly-available, thus in our implementation we used

WordNet
5
as thesaurus, while we rely on the name similarity formula to compute data

compatibility scores.

Similarity Flooding [28]. Similarity Flooding is a schema-based matching approach that

relies on graphs, and outputs correspondence between any kind of elements (relations,

attributes, data types) of two given schemata. Specifically, the schemata are transformed

to directed graphs, which have as nodes every element and as edges the relationships

that these elements have with each other (e.g. a relation has an attribute, which is of

a certain type). The graphs are then merged into a propagation graph, where pairs of

nodes having similar connections collapse into map pairs. The intuition of the algorithm

is that each such map pair propagates its similarity to its neighbors, causing an update

in their similarity score in an iterative manner, until convergence. In our study we have

implemented from scratch the original method (since there exists only an outdated Java

version of it from 2003), with the only difference that we use a string similarity of our own

5https://wordnet.princeton.edu/

https://wordnet.princeton.edu/


2.6 Matching Methods

2

31

choice, i.e. Levenshtein distance [77], since there are no details on the actual function that

the authors used.

COMA [29]. COMA combines multiple schema-based matchers. Schemata are represented

as rooted directed acyclic graphs, where the associated elements are graph nodes connected

by edges of different types (e.g. containment). The match result is a set of element pairs and

their corresponding similarity score. COMA also supports human feedback by allowing

users to indicate the correctness of the resulting matches, which is taken into consideration

in next iterations, allegedly improving general accuracy. [25] extended COMA to also

incorporate two instance-based matchers, while COMA++ [38] provided a graphical user

interface and [78] presented a new version of the system, addressing some issues of the

previous versions. In our experiments we use the COMA 3.0 Community Edition, where

we use the default schema-based and instance-based strategies.

Distribution-based Matching [32]. Distribution-based Matching is an instance-based

method. Relationships between different columns are captured by comparing the distribu-

tion of their respective data values. The method computes and refines clusters of relational

attributes, using the Earth Mover’s Distance (EMD) between pairs of columns, which is a

measure of distribution similarity of the corresponding instance sets. In the end, a number

of disjoint clusters is given as output, wherein relational attributes are considered to be

related. We implemented the original method (which was not openly-available) without

any modifications, except for using another software for solving the integer programming

problem in the last step of the algorithm, which decides the final clusters (we used PuLP
6

instead of IBM CPLEX ).

SemProp [16]. SemProp tries to capture relationships between schema elements beyond

syntactic similarity by making use of pre-trained word embeddings [69]. SemProp first

builds a semantic matcher that given a domain-specific ontology links attribute and table

names to ontology classes using their embedding representation; then it relates disparate

attributes and tables by transitively following these links. Pairs of elements that fail to

be related by the semantic matcher are forwarded to a syntactic one. In our experimental

evaluation, we make use of the open-sourced code for the Aurum [44] dataset discovery

system, which includes the SemProp matcher.

EmbDI [30]. EmbDI is a framework facilitating data integration tasks on relational data,

by building relational embeddings. The authors propose a method for embedding values and

attribute names of relations, by training them based on the input without using pre-trained

embeddings. However, the method uses external knowledge, such as synonym dictionaries

or pre-trained embeddings, in order to deal with more challenging cases. EmbDI is eligible

for schemamatching tasks, where it finds relationships between the columns of two datasets

by comparing their corresponding embeddings. We integrated EmbDI in Valentine by

importing the code
7
accompanying the original paper.

Jaccard-Levenshtein Matcher. As a simple baseline, we implemented a naive instance-

based matcher computing all pairwise column similarities by using Jaccard similarity. We

treat two values as being identical if their Levenshtein distance is below a given threshold.

6https://pythonhosted.org/PuLP/
7https://gitlab.eurecom.fr/cappuzzo/embdi

https://pythonhosted.org/PuLP/
https://gitlab.eurecom.fr/cappuzzo/embdi


2

32 2 Evaluating Matching Techniques for Dataset Discovery

Method Parameter Values Step

Cupid [27]
leaf_w_struct [0, 0.6] 0.2

w_struct [0, 0.6] 0.2
th_accept [0.3, 0.8] 0.1

Sim. Fl. [28] prop.coeff. inverse_average -
fix-point comp. C -

COMA [29] strategy [schema, inst.] -

threshold 0 -

Dist.#1 [32] phase 1 𝜃 [0.1, 0.2] 0.05
phase 2 𝜃 [0.1, 0.2] 0.05

Dist.#2 [32] phase 1 𝜃 [0.3, 0.5] 0.1
phase 2 𝜃 [0.3, 0.5] 0.1

SemProp [16]
minh.threshold [0.2, 0.3] 0.1
sem.threshold [0.4, 0.6] 0.1

coh.sem.threshold [0.2, 0.4] 0.2

EmbDI [30]

train. algorithm word2vec -
sentence_length 60 -

window_size 3 -
n_dimensions 300 -

Jacc. Lev. threshold [0.4, 0.8] 0.1

Table 2.2: Parameterization of implemented matching methods. For each parameter combination we run a separate

experiment, as shown in Figure 2.1.

CU SF COS
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l a

t s
iz

e 
of

gr
ou

nd
 tr

ut
h

Unionable

CU SF COS

View-Unionable

Noisy Schemata

CU SF COS

Joinable

CU SF COS

Semantically-Joinable

CU - Cupid SF - SimilarityFlooding COS - COMA-Schema

Figure 2.4: Effectiveness results of Valentine’s schema-based matching methods for each dataset relatedness

scenario

The method outputs a ranked list of column pairs, along with their respective similarity

score.

2.6.2 Method Parameterization
For each method and dataset, we performed a grid search with the method parameters as

shown in Table 2.2. The parameters that are not included are set to their default values as

described in the respective papers. We performed two different runs for the distribution-

based method [32]. The first based on the recommended threshold values of the original

paper, and the second to help the method find more matches in column pairs with low

overlap. Additionally, we split the single global threshold that was proposed in two, one for

each phase. For COMA, we allow the output to include any found element pair, regardless

of their similarity (i.e. we set the accept similarity threshold parameter to be 0). Finally,

in Cupid we ran experiments with the weight of the structural similarity w_struct ≤ 0.6,



2.7 Findings

2

33

DB JL COI
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l a

t s
iz

e 
of

gr
ou

nd
 tr

ut
h

Unionable

DB JL COI

View-Unionable

Noisy Instances Verbatim Instances

DB JL COI

Joinable

DB JL COI

Semantically-Joinable

DB - DistributionBased JL - JaccardLevenMatcher COI - COMA-Instance

Figure 2.5: Effectiveness results of instance-based matching methods for each dataset relatedness scenario.

since relational tables do not have the complex structure of XML schemata for which the

method was designed.

Note that grid search allows each algorithm to operate under optimal conditions. In

realistic schema matching use cases, exhaustive parameter search is not possible as it

relies on having ground truth. Thus, parameters need to be estimated, leading to lower

performance, especially for algorithms that rely on many parameters and thresholds.

2.7 Findings
We assess the performance of schema matching methods through an exhaustive set of

experiments, as shown in Figure 2.1. In the following, we summarize the effectiveness of all

matching methods measured by Recall@𝑘 (subsection 2.2.3) over all conducted experiments

showing minimum, median and maximum recall at ground truth values. Furthermore, we

assess the efficiency of the approaches by presenting the average execution time of each

matching method over all dataset pairs. An extensive collection of all detailed experimental

results per dataset source can be found in our code repository.

2.7.1 Fabricated Dataset Pairs (TPC-DI, Open Data, ChEMBL)
Schema-based Methods
First, we focus on methods that leverage only schema-level information, such as attribute

names and data types: Cupid [27], Similarity Flooding [28] and the schema-based flavor of

COMA [29]. In Figure 2.4 we present the effectiveness results aggregated over all dataset

pairs (540 in total) created by our fabrication process based on the dataset sources described

in subsection 2.5.1.

Expected Results. In Figure 2.4, we opted for showing results for noisy schemata, i.e.,

the matching columns do not use the same attribute names. With verbatim schemata we

verified that all schema-based methods are accurate: they place correct matches at the

top. Furthermore, we see that the results we get for both joinable scenarios are almost

identical, since schema-based methods ignore the noise in instances, which separates the

two scenarios. The small differences we observe, are a consequence of our fabrication

process.

Interesting Outcomes. Figure 2.4 shows that when matching columns are represented by

different attribute names, there is no schema-based method that can provide satisfying and

consistent results in any scenario. Specifically, in the case of unionable datasets, we see



2

34 2 Evaluating Matching Techniques for Dataset Discovery

EDI SP
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l a

t s
iz

e 
of

gr
ou

nd
 tr

ut
h

Unionable

EDI SP

View-Unionable

Noisy Instances/Schemata Verbatim Instances/Schemata

EDI SP

Joinable

EDI SP

Semantically-Joinable

EDI - EmbDI SP - SemProp

Figure 2.6: Effectiveness results of hybrid matching methods for each dataset relatedness scenario.

that Similarity Flooding and COMA outperform Cupid, yet their effectiveness is varying

with median recall at ground truth close to 0.6. In the rest of the scenarios, we see exactly

the same behavior: all three methods give inconsistent results, with Cupid being slightly

the worst and their median recall at ground truth values below 0.6.

Therefore, we see that in the absence of good attribute names, the rest of the schema

information graph (e.g., types, transitive relationships) or contextual information such

as the neighborhood of columns per dataset do not actually give any useful insights for

any schema-based method. Especially for the view-Unionable, joinable and semantically-

Joinable scenarios we see that different attribute names and structures among disparate

relations appear to be a major obstacle for schema-based matching approaches.

Instance-based Methods
We move our focus to Valentine’s instance-based methods, which only exploit the cor-

responding value sets of each dataset’s columns: Distribution-based matching [32], the

instance-based flavor of COMA [25] and our Jaccard-Levenshtein baseline. Figure 2.5

shows the effectiveness results over the same dataset pairs as above.

Expected Results. First, we observe and verify that all methods perform better in the

absence of noisy instances. Furthermore, we see that for joinable dataset pairs, Valentine’s

instance-based methods are very effective, with the Distribution-based and COMAmethods

showing high consistency; columns that can be joined share the same instances.

Interesting Outcomes. The first interesting observation is that the view-unionable

relatedness scenario is considerably harder than the unionable one. The main reason for

this is that there are extra vertical splits on the tables, and there is no row-overlap to help

instance-based matchers. The significant difference in recall at ground truth with respect

to the unionable scenarios shows that methods need to be smarter when two tables do not

have many values in common.

In addition, all instance-based methods show worse results for semantically-joinable

datasets compared to the joinable ones. This is a consequence of the dissimilarity between

the instance sets of corresponding attributes. The high dispersion in effectiveness and

significantly lower median recall at ground truth values that even state-of-the-art methods

provide regardless the sophisticated similarity measures they use point to a valuable

take-away message: capturing semantic similarity between relations with respect to their

corresponding instances is a hard problem. In fact, evaluating matching methods on such

relatedness scenarios emphasizes the need for more research.

Comparing instance-based methods across all dataset relatedness scenarios, we see

that COMA is the most effective one. However, our simple Jaccard-Levenshtein baseline



2.7 Findings

2

35

DB JL COI EDI CU SF COS
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

R
ec

al
l a

t s
iz

e 
of

 g
ro

un
d 

tru
th

Unionable

DB JL COI EDI CU SF COS
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000
View-Unionable

DB JL COI EDI CU SF COS
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000
Joinable

DB JL COI EDI CU SF COS
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000
Semantically-Joinable

DB - DistributionBased JL - JaccardLevenMatcher CU - Cupid SF - SimilarityFlooding COS - COMA-Schema COI - COMA-Instance EDI - EmbDI

Figure 2.7: Effectiveness results on WikiData.

regularly provides better results than the Distribution-based matcher, or is even comparable

to COMA when instances are verbatim. Nevertheless, all methods output results with

high skew in effectiveness (except for the joinable scenarios), which proves that we are

comfortably far from “out of the box” instance-based matchers.

Evaluation of Hybrid Methods
Finally, we evaluate Valentine’s hybrid matching methods, which utilize both schema and

instance-level information: EmbDI [30] and SemProp [16]. Figure 2.6 shows effectiveness

results across the same set of datasets as previously for EmbDI, whereas for SemProp

we show results only over fabricated datasets stemming from ChEMBL; SemProp needs

domain-specific ontologies in order to function properly, hence we could only test it on

this dataset source which is compatible with the ontology provided in SemProp’s code

repository. Furthermore, with Noisy Instances/Schemata we indicate cases where there is

noise either in schemata, instances or both.

Expected Results. The only anticipated observation we make by looking at Figure 2.6 is

that EmbDI provides acceptable results in the case of joinable datasets regardless of the

existence of noise in schemata. This happens because it benefits from overlaps between

instance sets of the corresponding dataset columns. Yet, its performance is worse than any

of Valentine’s instance-based approaches.

Interesting Outcomes. Since hybrid methods utilize both schema and instance informa-

tion, we would expect that they perform at least as well, if not better, than all other methods.

However, the results depicted in Figure 2.6 show the opposite. SemProp’s effectiveness is

unexpectedly low over all relatedness scenarios, worse than any other matching method

we tested with Valentine. Therefore, we observe that the pre-trained word embeddings

that SemProp leverages in order to capture relatedness are not reliable, since they cannot

help when the data domain is too specific (as in the case of ChEMBL data).

On the other hand, EmbDI is more effective than SemProp, but it provides with in-

consistent and low recall at ground truth values across all dataset pairs, since it ranks

irrelevant matches very high. This is particularly unexpected for dataset pairs that are

semantically-joinable, since we would anticipate that the local embeddings of EmbDI will

be able to capture semantics of data instances better than any other matcher, leading to

higher effectiveness. However, it performs the worst among all schema- and instance-based

methods. We believe that its low effectiveness scores for all four relatedness scenarios that

we tested arises from the randomness in training data generation and the dependence on

overlapping instance values; in the case where the overlapping values are few or missing,



2

36 2 Evaluating Matching Techniques for Dataset Discovery

and external knowledge is absent, the method struggles to accurately capture context and

semantics of data elements.

2.7.2 Human-Curated Dataset Pairs (WikiData, Magellan, ING)
We now discuss the experiments on the human-curated dataset pairs. We do that on a

per dataset basis presenting each matching method individually. What makes this set of

experiments interesting is the idiosyncrasies of the individual manually-curated datasets.

WikiData
In Figure 2.7 we see the accuracy results for the dataset pairs coming from WikiData (see

section 2.5). First, all four instance-based methods exhibit better recall at ground truth than

the schema-based ones, in unionable relations. This is reasonable, since they can leverage

the overlaps of the corresponding attributes’ instance sets, while the schema-based ones

heavily rely on attribute names which, in some cases, are very different. For view-unionable

relations, we observe almost the same behavior, but with a major difference: distribution-

based matching gives results of poor quality due to discrepancy in value distributions,

since through our fabrication process we are able to create matching columns with varying

distribution similarity (using horizontal splits and by adding noise).

The instance-based methods are able to find all relevant matches and place them in

the top ranks (recall at ground truth=1), when the relations are joinable due to high data

value overlaps. In contrast, schema-based methods are unable to find some of the correct

matches, since they can only exploit attribute names and types. The COMA instance-based

approach is the clear winner in the case of semantically-joinable relations, being able to

provide every correct match in the first places of the ranked list even in the existence of

noise. Interestingly, the Jaccard-Levenshtein baseline and EmbDI are able to give acceptable

results.

Moreover, the difference in the names of corresponding columns makes it even more

difficult for schema-based approaches to perform as expected. This confirms again that in

all considered scenarios, the instance-based techniques are superior to the schema-based

ones.

Magellan Data
Table 2.3 summarizes the effectiveness of Valentine’s matching methods over all dataset

pairs drawn from the Magellan data repository as discussed in section 2.5. Recall that all

these dataset pairs represent unionable tables, using exactly the same attribute names for

corresponding columns. Therefore, it is reasonable that all schema-based methods output

all relevant matches in the top ranks.

On the other hand, we observe that there is a difference in performance across methods

that use instance-based information. With the exception of COMA, all other methods are

not able to have the same effectiveness as Valentine’s schema-based approaches. This

mainly happens due to minor discrepancies between value sets of matching columns, which

as we saw in subsection 2.7.1 complicates the effectiveness of instance-based or hybrid

matching methods. Furthermore, Magellan datasets may contain multi-valued attributes

(such as lists of actors for movie datasets) that add extra complexity.

As a final remark, we see that the results we get from Magellan Data are not as

informative as the ones we got from our fabricated dataset pairs. Conversely, they provide



2.7 Findings

2

37

no or misleading information on the advantages or disadvantages of the different schema

matching method categories, while they do not cover all our relatedness scenarios which

are highly important and relevant for any dataset discovery approach.

ING Data
In Table 2.3 we summarise the performance of the seven methods upon the two provided

backlog datasets from ING, as described in section 2.5.

ING#1. For the first dataset we expected the schema-based algorithms to perform better

than the instance-based ones. This is because the corresponding/matching columns be-

tween the two tables have either identical or very similar names. At the same time, the

corresponding columns contain hashes, descriptions and similar words that are used in

multiple contexts (i.e., can create false positives). Contrary to our expectations, almost all

of the methods managed to find around 70% of the expected matches, with the exception

of Similarity Flooding which placed a lot of false positives in the top ranks.

The Distribution-based method performed the best, one of the reasons being that these

tables contained a lot of almost-identical values in the matching columns, leading to very

similar distributions that created matches. Interestingly, the Jaccard-Levenstein method

could find most of the matches, but with some false-positives ranked high. The reason is

that Jaccard-Levenshtein does not compare distributions but actual set similarity measures.

ING#2. Our expectation for this dataset was that schema-based algorithms would not

perform well, as the column names of the second table, contained suffixes that could

complicate schema-based-matching. On the other hand, we expected that instance-based

methods would work well: the instances in dataset ING#2 were even more similar than the

ones of ING#1. Moreover, the ground truth contained multiple matches for each column of

the small table to lots of columns of the 60-column table. The Distribution-based method

performed far better than any other algorithm for similar reasons to the ones we outlined

above. On the other hand, COMA, although we configured it to match each source-column

with more than one target-column, it did not find a lot of those target-column matches.

We believe that to be a bug of the current version of COMA (v3.0). Finally, we see that

EmbDI’s local embeddings could not accurately capture relationships between matching

columns, since the randomness that inhibits in the method’s training set construction does

not facilitate capturing relevance.

Methods Magellan ING#1 ING#2

Cupid [27] 1 0.714 0.5

Similarity Flooding [28] 1 0.357 0.439

COMA Schema-based [29] 1 0.786 0.121

COMA Instance-based [78] 1 0.786 0.136

Distribution-based [32] 0.54 0.857 0.879
Jaccard Levenshtein 0.787 0.786 0.621

EmbDI [30] 0.818 0.714 0.227

Table 2.3: Recall at size of ground truth for the Magellan and ING Data.



2

38 2 Evaluating Matching Techniques for Dataset Discovery

Methods Average Runtime
Cupid [27] 9.64

Similarity Flooding [28] 7.09

COMA Schema-based [29] 1.67

COMA Instance-based [78] 318.07

Distribution-based [32] 71.16

SemProp [16] 735.25

EmbDI [30] 4817.87

Jaccard Levenshtein 522.94

Table 2.4: Average runtime per experiment (i.e., table pair) in seconds.

2.7.3 Efficiency Results
We executed all experiments as batch jobs in two 80-core Linux virtual machines, with 320

GB of RAM each; experiments on the ING datasets ran on our partner’s in-house machines

for privacy reasons, hence they are excluded. In Table 3.4 we show the average runtime

per method over all dataset pairs. First of all, we see that schema-based methods are by far

the most efficient since they avoid looking into instance values; the schema-based variant

of COMA seems to be the fastest among them, whereas Cupid and Similarity Flooding are

considerably slower due to the fact that they build and process structures that attempt to

exploit context (trees and graphs respectively).

On the other hand, methods that utilize instance-level information are several orders

of magnitude slower, with EmbDI exhibiting the worst runtime overall. Specifically, we

observed that EmbDI’s bottleneck is the random walk generation part which does not

scale efficiently when the number of available instances grow; in addition, the training of

embeddings can be very time consuming. Furthermore, we observe that the Distribution-

based and COMA are the most efficient instance-based methods. Nonetheless, we noticed

that both of them can exhibit very long execution times, mainly due to heavy processing

they apply on data values, where COMA invokes procedures on sets of values and the

Distribution-based method applies a two-stage clustering.

2.8 Lessons learned
Valentine was motivated by the lack of a comprehensive experimental framework to

compare the performance and effectiveness of existing schema matching techniques as

core operations for dataset discovery. To the best of our knowledge, this work contributes

the first comprehensive and large-scale experiment suite, encompassing over 500 dataset

pairs, state of the art schema matching tools and meaningful dataset discovery scenarios.

To stimulate further research, Valentine is entirely open-source (including data, ground

truths, scenarios, outputs) and easily reproducible. Our analysis led to a number of lessons

learned as discussed below.

One size does not fit all. Our evaluation over both Valentine’s fabricated dataset pairs

and those stemming from real-world data show that there is not a single schema matching

method that consistently performs better than others. Instead, we see that COMA [29]

exhibits higher effectiveness over most of our fabricated dataset pairs, yet the Distribution-



2.9 Valentine in Action

2

39

basedmethod [32] is themost well-suited for our real-world ING datasets. Consequently, we

believe that following COMA’s approach of composing state-of-the-art matching methods

(e.g., by adding the recent embeddings-based approaches), should be the preferred way in

dataset discovery or other integration pipelines.

Embeddings for matching. Our experimental results showed that SemProp’s pre-trained

embeddings provides with low effectiveness when used in isolation. On the other hand,

EmbDI’s local embeddings can improve effectiveness, yet most of the times they do not

perform as well as other state-of-the-art schema or instance-based methods. Therefore,

while we acknowledge that embeddings-based techniques can improve effectiveness by

incorporating them into existing matching methods, we believe that further research is

needed in order to make them effective.

Complex parameterization. Most methods require complex parameterization in order

to perform well. For the most part, parameters are dependent on the input data that

needs to be matched, which makes it very hard for practitioners to use those methods.

We believe that our community should focus on “self-driving” matching methods that

do not require parameterization [74]. Machine learning might be a solution to some of

the parameterization problems [79], but then would require at least some availability of

ground truth to steer the learning process. The experimental results presented in this

work represent idealized near-optimal conditions as we determined most parameters by

performing a grid-search (which exploited our ground truth). In the wild, we expect to see

lower performance for most algorithms as parameters are then likely not optimized.

Simple baselines perform well. Our simple baseline Jaccard-Levenshtein matcher (ca.

70 lines of Python code) works surprisingly well, especially considering its simplicity. We

argue that similar baselines to ours, along with the rest of the methods discussed in this

paper, can foster future comparative analysis for schema matching and dataset discovery

processes.

Humans-in-the-loop. “Self-driving” matching methods should be able to work along-

side humans giving feedback on the matching process, not in the form of parameters or

thresholds, but in the form of positive/negative examples, etc. In the same spirit, the design

of schema matching methods should focus on presenting matches as ranked candidates;

we strongly believe that the schema matching problem should be approached as a search

problem, rather than an optimization problem (e.g., find the best set of 1-1 matches of

columns). Schema matching of the future should focus more on preparing results that will

be shown to humans, and should utilize feedback from humans [80].

Schema Matching is resource-expensive. Instance-based methods are still quite expen-

sive as they have to calculate similarity metrics between large sets. Thus, in large datasets,

it can be very expensive to find matches; future research should focus on approximations

of existing or future methods to allow for better scaling [71, 81, 82].

2.9 Valentine in Action
Valentine is the first system to offer an open-source experiment suite to organize, execute

and orchestrate large-scale matching experiments. To further facilitate the development

and evaluation of novel state-of-the-art schemamatching and data discovery techniques, we



2

40 2 Evaluating Matching Techniques for Dataset Discovery

extend Valentine’s functionalities by enhancing it through: i) a scalable system, with a user-

centric GUI, that enables the fabrication of datasets and the evaluation of matching methods

on schema matching scenarios tailored to the scope of tabular dataset discovery, and ii) a

scalable holistic matching system that can receive tabular datasets form heterogeneous

sources and provide with similarity scores among their columns, in order to facilitate

modern procedures in data lakes, such as dataset discovery.

In what follows, we describe these novel functionalities and how a user can engage

with them. First, we focus on how we make every component of Valentine easily accessible

and applicable for evaluation of schema matching methods, by providing an intuitive GUI

and a compact way of presenting experimental results. Then, we introduce Valentine’s

holistic matching capabilities for facilitating dataset discovery methods, backed by a system

architecture for ingesting heterogeneous sources of tabular data and easily applying schema

matching at scale.

2.9.1 Valentine for Schema Matching Evaluation
In Figure 2.8 we see the different frames of Valentine for fabricating datasets and eval-

uating schema matching methods. In the following we provide with details about the

functionalities that each of them provide and how the user can interact with the system.

Part 1: Dataset Fabrication. First, the users are given the option to fabricate their own

schema matching dataset pairs in the dataset fabricator section shown in Figure 2.8a.

There we see that they can upload any tabular dataset (in .csv format) containing the

corresponding attribute names and instance sets. Next, they can i) choose the schema

matching scenarios which the dataset pairs will adhere to (as discussed in section 2.3), ii)

decide whether they desire noise to be injected in some of the respective schemata and/or

instances, iii) give the number of dataset pairs for each scenario, and iv) provide with a

name for the group of datasets to be produced. By clicking the submit button, Valentine

invokes the dataset fabricator with the given parameters and provides the user with the

ability to inspect and download the fabricated dataset pairs in the form of a .zip file. In

addition, Valentine automatically updates the list of available dataset groups with the newly

fabricated pairs.

Part 2: Configuration of Experiments. In Figure 2.8b we see Valentine’s frame for

configuring schema matching experiments. On the left, the user can choose the dataset

groups on which the schema matching methods will run. The groups can either originate

from the dataset fabricator or might be dataset pairs that the user uploaded. Next, users

are able to decide which schema matching methods to apply, which can be either the ones

that Valentine offers (section 2.6) or methods that the user integrated into Valentine’s

framework through our defined input/output abstractions
8
. For each of these methods

the user might choose specific parameters or specify ranges for Valentine to run a grid

search on them. Finally, by clicking the submit button in the bottom, Valentine creates a

job containing the specified configurations, which is added in a task queue and is given a

specific identifier for the user to able to browse its results in the results frame.

Part 3: Presentation of Findings. Figure 2.8c shows the frame containing the results

of the finished jobs. In particular, the user is presented with a list where each item is

8
More details in our Valentine repo https://github.com/delftdata/valentine

https://github.com/delftdata/valentine


2.9 Valentine in Action

2

41

distinguished by its job identifier. Clicking on a particular item causes it to expand into

a new view, containing a list with all dataset group names on which the user decided

to run the experiments in the previous step. By clicking the View Results action button

associated with each dataset category, Valentine visualizes the effectiveness results of each

method in the form of box plots. This way Valentine is able to show the range of recall

at ground truth values that each selected method exhibits across all pairs of the specified

dataset group and categorized by the matching scenarios. Results for each method are

shown for the parameters specified from the previous step or, in the case of grid search, for

the parameters providing with the best recall at ground truth scores for each method and

dataset pair. Therefore, users are presented with an intuitive visualization that summarizes

how well each method is able to rank correct matches at the top, while it also shows how

consistent it is with respect to different matching scenarios. Moreover, the user is able to

download detailed results, containing ranked matches for each dataset pair and method

configuration, by clicking the Download icon.

2.9.2 Valentine for Holistic Matching at Scale
We enhance Valentine to extend the application of schema matching methods in the case of

a data repository consisting of multiple heterogeneous sources of tabular datasets. In what

follows we present how Valentine is able to scale holistic matching in multiple machines

and the GUI that complements it for facilitating employment by the users.

Part 1: Executing Holistic Matching. Figure 2.9 shows the frames associated with

Valentine’s employment as a holistic matching system. First, the user is prompted to select

the data sources and datasets to apply the schema matching methods on. Specifically,

for each data source the user is given the option to select which of the included datasets

should be regarded for execution by the system (Figure 2.9a). Furthermore, users can select

which of Valentine’s SotA schema matching methods to run on the specified datasets,

while prescribing their configurations; to ease the execution for users that are not familiar

with each method’s tunable parameters, we also provide default configurations was in the

original corresponding papers of the methods. By clicking the Submit button, a holistic

matching job is queued with the specified configurations and is given an identifier.

Part 2: Result Presentation. Valentine’s frame for presenting results of finished holistic

matching jobs is depicted in Figure 2.9b. The users see a list with the different jobs for

which the respective holistic matching with the given configurations has succeeded in

finishing. It is possible to immediately view (or hide) the list of matches provided by each

corresponding schema matching method that the user selected in the previous step, by

clicking the Show/Hide Matches button. In detail, matches are displayed between every pair

of columns among all datasets and ordered by each method’s similarity measure which is

indicated with a gradient color bar moving from red to green as the similarity increases. To

not overwhelm the users, Valentine paginates the resulting proposed matches. In addition,

the Download Results action button allows users to receive a .csv file containing the ranked

list of similarities between all pairs of columns coming from the repository’s selected

datasets for each schema matching algorithm employed. These results can be then fed into

any dataset discovery pipeline, making Valentine an easily deployed schema matching

component and a very reliable one, since it consolidates the best of schema matching

efforts.



2

42 2 Evaluating Matching Techniques for Dataset Discovery

Part 3: Result Verification. Lastly, Valentine enables manual verification of match pairs.

Users can verify or discard match pairs by clicking the corresponding Verify / Discard

buttons as shown in Figure 2.9b. In order to facilitate verification of matches, users can

click on a match pair and inspect a representative sample of instance sets drawn from the

inspected columns. Verified matches are then stored in a separate database, which can be

regarded as holding the ground truth of matches for the specific datasets that Valentine

was applied upon. Therefore, Valentine could be deployed by data scientists in order to

facilitate and accelerate capturing matches among columns of different datasets.



2.9 Valentine in Action

2

43

c)

b)

a)

Figure 2.8: Screenshots from dataset fabrication (a), configuration of experiments (b) and presentation of findings

(c).



2

44 2 Evaluating Matching Techniques for Dataset Discovery

a)

b)

Figure 2.9: Screenshots of system configuration for holistic matching (a) and presenting results (b).



3

45

3
Matching Tabular Datasets Across

Silos Using Graph Neural Networks

How can we leverage existing column relationships within silos, to predict similar ones across

silos? Can we do this efficiently and effectively? Existing matching approaches, as studied

in Chapter 2, do not exploit prior knowledge, relying on prohibitively expensive similarity

computations.

In this chapter, we present the first technique for matching columns across data silos, called

SiMa, which leverages Graph Neural Networks (GNNs) to learn from existing column relation-

ships within data silos, and dataset-specific profiles. The main novelty of SiMa is its ability

to be trained incrementally on column relationships within each silo individually, without

requiring the consolidation of all datasets in a single place. Our experiments show that SiMa is

more effective than the – otherwise inapplicable to the setting of silos – state-of-the-art match-

ing methods, while requiring orders of magnitude less computational resources. Moreover, we

demonstrate that SiMa considerably outperforms other state-of-the-art column representation

learning methods.

This chapter is based on the following full research paper:

 C. Koutras, R. Hai, K. Psarakis, M. Fragkoulis and A. Katsifodimos. SiMa: Effective and Efficient Matching Across

Data Silos Using Graph Neural Networks , arXiv, under submission [64].



3

46 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

3.1 Introduction
Given a large set of datasets spread across different data silos [83], as well as example

column relationships within those silos, how canwe detect pairs of dataset columns, that are

joinable or unionable across silos? Can we do this efficiently and effectively? Organizations

nowadays accumulate large numbers of heterogeneous datasets in data lakes, with the goal

of gaining insights by combining those datasets. The structure (e.g., departments, teams,

locations) of organizations, but also the sheer scale of their data lakes, force organizations

to establish barriers for their data assets, leading to the phenomenon of data silos: disjoint

and isolated collections of datasets, belonging to different stakeholders. Interestingly, data

silos may even exist within the same organization, as individual teams enforce their own

conventions and formats, as well as encapsulate knowledge about their data assets. Silo-ing

data impedes collaboration and information sharing among different groups of interest.

Running Example. Consider an organization in the banking industry as depicted in

Figure 3.1. Employees of the banking silo already know the relationships between their

datasets (black dotted lines), i.e. columns from tables inside the silo that are semantically

related (storing values that refer to the same semantic type). However, the possible rela-

tionships between the banking silo and the other two silos (green lines) are missing, i.e.

columns of the same semantic type, residing in different silos. Data scientists building ML

models can benefit from dataset augmentation in terms of extra data points (by finding

other unionable datasets) and/or extra features (by finding other joinable datasets) from

other data silos [66].

Column Matches Within Silos. To enable collaboration across departments and teams,

organizations build and maintain dataset metadata catalogs [44, 54]: a graph structure that

encapsulates relationships among datasets. Typically, within a given silo, one can enrich a

metadata catalog with PK-FK relationships using schema information and automated data

profiling techniques [9] as well as joinability/unionability relationships, using matching

techniques[62]. Moreover, such relationships can be derived from domain experts, query

logs [53, 55], and even data science notebooks [84]. However, discovering relationships

among columns across data silos is very challenging [83].

Existing solutions. In the data management research, the problem of finding relationships

among datasets has been investigated in three different contexts (more details in section 3.3):

i) schemamatching, with amultitude of automatedmethods [16, 21, 30, 32, 49, 85]; 𝑖𝑖) related-
dataset search [17, 44, 50, 51, 71, 86–88], and 𝑖𝑖𝑖) column-type detection [11, 12]. In short,

traditional schema matching methods are a) computationally and resource expensive; b)

they cannot always be employed in the setting of data silos as they require co-locating all

datasets to calculate similarities; c) they do not leverage existing knowledge within silos.

Related-dataset search methods are not applicable to the matching problem as their goal is

to search top-k related datasets to a given dataset, sacrificing recall for precision. To tune

such methods for discovering more column matches (increase the recall), we would need

to set k to a large value, which could dramatically affect the quality of the results (high

false positive rates, thus lower precision). Finally, column-type detection requires knowing

the types of all columns in advance, alongside massive training data.

SiMa: an efficient & effective silo matcher. In this paper we propose SiMa, a novel

approach to the problem of discovering relationships between tabular columns across data



3.1 Introduction

3

47

Account

History

Transac
tion

Banking

Id

Account

OwnerAmount

Tax Id

Criminal Record

NameAddress

Credit History

Tax Id Purchase

Address

Customer

Tax Id Name

Payment 
History

Insurance

NameAddress

Insurance

Bounda
ries

District

Name

District

Metrics

Avg. 
house 
price

Criminal
ity rate

Public District Data

Figure 3.1: Three typical data silos in the banking industry.

silos (Figure 3.2). SiMa is based on the observation that within silos we can find existing

matches among columns and train a ML model that learns to predict column relationships

across silos: i) equi-joinable, ii) fuzzily-joinable, iii) unionable columns of the same domain.

SiMa leverages the representational power of Graph Neural Networks (GNNs). However,

employing GNNs for the purposes of matching across data silos is far from straightforward,

as we need to: i) transform tabular data to information-preserving graphs, ii) initialize

nodes with suitable features, iii) introduce non-trivial negative-sampling techniques and

training schemes to optimize the learning process. SiMa provides with effective and efficient

solutions to each of these problems, proceeding as shown in Figure 3.2.

In short this paper makes the following contributions:

• We define the problem of matching across data silos (§ 3.4).

• We propose SiMa, a generic and inductive GNN-based learning framework, which

discovers relatedness across different data silos. To the best of our knowledge, our

work is the first to generalize local matches within a silo, to links across silos.

• We show how to represent data silos, and the knowledge about matches among

datasets inside those silos as graphs, turning the problem matching across data silos

into a link prediction task (§ 3.5).

• We propose two optimization techniques, negative edge sampling and incremental

model training, which improve the training efficiency and effectiveness of our GNN

for the purposes of matching across silos (§ 3.7).

• With experiments (§ 3.8) over real-world data from several domains and open datasets,

SiMa demonstrates significant effectiveness gains with orders of magnitude run-time

performance savings (up to 600x) compared to traditional (and inapplicable) schema

matching methods and column representation techniques.



3

48 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

The datasets, ground truth and code of this work, are available at https://github.
com/delftdata/SiMa.

3.2 Approach Overview
Five aspects comprise SiMa’s approach: a relatedness graph, data profiles, a learning

method, a prediction method, and an optimization process.

– Relatedness Graph (section 4.4). As shown in Figure 3.2b, SiMa transforms each silo’s set of

columns and the respectivematches among them (Figure 3.2a) into nodes and corresponding

edges, thus creating as many graphs as data silos.

– Data Profiles (subsection 3.5.3). For each column, SiMa builds a profile of 987 features

(Figure 3.2b), such as the number of numerical values among the instances or character-

level aggregates [9, 11]. These column profiles facilitate the training process of a Graph

Neural Network (GNN).

– Learning from profiles and graph information (section 4.5). Each data profile is used as a

feature vector of each node in the relatedness graph (Figure 3.2b). Using GNNs, SiMa takes

into consideration the profiles and the graph edges in order to learn how to incorporate

the graph’s neighborhood information together with the features of each node.

– Predicting matches across silos (subsection 3.6.1). Finally, as depicted in Figure 3.2e, SiMa

uses the learned graph embeddings from the GNNs to capture similarity among columns,

and discover matches across data silos. We do this by fine tuning a link prediction model,

enabling SiMa to decide whether there could be a match between a pair of columns or not.

– Optimizing the GNN learning process (section 3.7). SiMa applies sophisticated negative edge

sampling techniques on the graphs (Figure 3.2c) to fine tune the prediction ability of the

GNNs by leveraging the knowledge inside each data silo (subsection 3.7.1). Moreover, as

shown in Figure 3.2d, with incremental training (subsection 3.7.2) SiMa not only improves

its match prediction ability, but also allows silos to train a GNN individually, without

having to consolidate all data profiles in one place.

3.3 Related Work
The closest work to this paper is traditional schema matching methods that were not

designed for the problem of matching across silos (subsection 3.3.1), as well as dataset

discovery & semantic type detection that do not address our problem directly (subsec-

tion 3.3.2).

3.3.1 Schema Matching
A natural choice to bridge data silos would be to employ schema matching [21, 68], namely a

set of methods responsible for finding matches among elements of disparate datasets based

on various similarity criteria (e.g. Jaccard similarity). Schema matching is a well-studied

research topic, with various methods mainly focusing on finding matches between pairs of

tables [27, 29, 30, 32, 57, 89]. However, existing matching methods assume global access to

all datasets so that they can compute similarities between pairs of columns. Across data

https://github.com/delftdata/SiMa
https://github.com/delftdata/SiMa


3.3 Related Work

3

49

silos, this is usually impossible, since the stakeholders are not willing to share data with

each other [90].

Statistics-based methods. One can base a matching method’s similarity calculations on

data statistics [29, 32]: first compute statistics of columns within a silo, and carry those

statistics over to other silos for similarity calculations. However, it is often the case that

characteristics of values across silos can differ substantially, even for the same semantic

types (e.g., names of people in different countries) leading to false negative matches.

Embedding-based methods. Embedding-based methods could be applied in matching.

However, despite their employment on embedding cell-values, and consequently table

columns [16, 17], pre-trained models have been shown to not work well on domain-specific

datasets [62]. On the other hand, locally-trained embedding methods [30, 33, 85] leverage

the architecture of skip-gram models [69, 91] to train on corpora consisting of tabular data;

yet, these still seem to be insufficiently effective when used for matching related columns

[62].

Scalability Issues. Most importantly, applying schema matching solutions [16, 21, 30,

32, 49, 85] requires, in the worst case, computation of similarities between all pairs of

columns. As the number of columns 𝑛 increases beyond the thousands – a small number

considering the size of data lakes and commercial databases – computing O(𝑛2) similarities

is impractical.

3.3.2 Dataset Discovery & Semantics Types
Related-dataset search. Related-dataset search methods [17, 26, 31, 44, 50, 51, 71, 86–

88] rely on the syntactic-, distribution- or even embedding-similarity of data instances

within dataset columns. In order to scale, related dataset search methods make use of LSH

[17, 44, 50] or inverted [71] indexes. However, their application to the matching problem is

not straightforward: dataset search methods return the top-k related datasets to a dataset

given as query. In the case of matching across data silos, we are not concerned with

capturing the top-k related datasets, but matches among columns across silos. Therefore, to

use a related-dataset search method for capturing all possible column matches, one would

need to set k to a high value, in order to expand the range of the results. Yet, this could

have a very negative impact on precision, as large k values could severely increase false

positive rates.

Column-type detection. Solving the problem of matching across data silos as a column-

type detection problem [11, 12], assumes knowledge of the exact set of semantic types that

exist across the data silos, and requires massive training data that are tailored to those

types. None of these assumptions hold true in the context of data silos. Despite their

proven effectiveness on column classification tasks, these methods are not applicable on

silos, since the semantic types and their number are unknown when trying to find links

among datasets from different silos.



3

50 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

````

Tax Id
Address

N
am

e
21456

1 Yellow
 St.

H
. Page

36598
3 H

ow
ard St.

P. Sanches
…

…
…

Address
P. H

istory 
H

istory
N

am
e

32 Lake St., Little Italy
…

H
. Page

43 Pine St., N
orthside

…
P. Sanches

…
…

…

C
ustom

er (C
)

Insurance (I)

C
.Address <-> I.Address 

C
.N

am
e <-> I.N

am
e 

Silo S1: Insurance
Silo S2: Public D

istrict D
ata

N
am

e
Boundaries

Little Italy
…

Soho
…

…
…

D
istrict

C
rim

inality R
ate

Avg house pr. 
priceprice

Silverlake
15,2

$1.500.000
Little Italy

31,3
$ 800,000

…
…

…

D
istrict (D

)

M
etrics (M

)

D
.N

am
e <-> M

.D
istrict 

Data Profile

R
elatedness G

raph of Silo S1 (R
G

1)
R

elatedness G
raph of Silo S2 (R

G
2)

D
.Boundaries

D
.N

am
e

M
.D

istrict

M
.C

rim
inality R

ate

M
.Avg house price

C
.Tax Id

C
.N

am
e

I.N
am

e

C
.Address

I.Address

I.Paym
ent H

istory

0.90.70.9⋮00

10.30⋮0.40.9

10.20.1⋮0.50.8

h 0C.Address
h 0I.Address

h 0D.N
am

e

(a) D
ata Silos

(b) R
elatedness G

raph G
eneration and P

rofiling 

D
.Boundaries

D
.N

am
e

M
.C

rim
inality R

ate

C
.Tax Id

C
.N

am
e

I.N
am

e

C
.Address

I.Address

I.Paym
ent H

istory

M
.Avg house price

M
.D

istrict

(c) N
egative E

dge Sam
pling

R
G

1 of S1
R

G
2 of S2

(d) Increm
ental T

raining

PredictorR
G

1

R
G

1 of S1
R

G
2 of S2

(e) Inter Silo L
ink P

rediction

G
N

N
R

G
1

Data Profile

Data Profile

PredictorR
G

1+2

G
N

N
R

G
1+2

R
elatedness G

raph of Silo S1 (R
G

1)
R

elatedness G
raph of Silo S2 (R

G
2)

F
ig
u
r
e
3
.2
:
S
iM

a
o
v
e
r
v
ie
w
:
(a
)
d
e
p
ic
ts
d
a
ta

s
ilo

s
a
n
d
th
e
ir
c
o
lu
m
n
m
a
tc
h
e
s
w
h
ic
h
a
r
e
tr
a
n
s
fo
r
m
e
d
in
to

r
e
la
te
d
n
e
s
s
g
r
a
p
h
s
((b

)-s
e
c
tio

n
4
.4
),
w
h
e
r
e
n
o
d
e
s
r
e
p
r
e
s
e
n
t
c
o
lu
m
n
s

a
n
d
r
e
c
e
iv
e
th
e
ir
in
itia

l
fe
a
tu
r
e
s
fr
o
m

a
ta
b
u
la
r
d
a
ta

p
r
o
fi
le
r
(s
u
b
s
e
c
tio

n
3
.5
.3
).
T
h
e
n
,
n
e
g
a
tiv

e
e
d
g
e
s
a
r
e
b
e
in
g
s
a
m
p
le
d
fr
o
m

e
a
c
h
r
e
la
te
d
n
e
s
s
g
r
a
p
h
a
s
s
h
o
w
n
in

(c
)

(s
u
b
s
e
c
tio

n
3
.7
.1
)
a
n
d
a
lin

k
p
r
e
d
ic
tio

n
m
o
d
e
l
is
b
e
in
g
tr
a
in
e
d
b
a
s
e
d
o
n
a
n
in
c
r
e
m
e
n
ta
l
tr
a
in
in
g
s
c
h
e
m
e
d
e
p
ic
te
d
in

(d
)
(s
u
b
s
e
c
tio

n
3
.7
.2
).
F
in
a
lly
,
u
s
in
g
th
e
tr
a
in
e
d
m
o
d
e
l

w
e
a
r
e
a
b
le
to

p
r
e
d
ic
t
r
e
la
tio

n
s
h
ip
s
a
m
o
n
g
c
o
lu
m
n
s
fr
o
m

d
iff
e
r
e
n
t
s
ilo

s
a
s
d
e
p
ic
te
d
in

(e
).



3.4 Problem Definition

3

51

3.4 Problem Definition
In this work, we are interested in the problem of capturing relevance among tabular datasets

that belong to different silos; we focus on tabular data since they constitute the main form

of useful, structured datasets in silos and include web tables, spreadsheets, CSV files and

database relations. To prepare our problem setting, we start with the following definitions.

Definition (Data silos). Consider a set of data silos 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑛}. Each data silo

𝑆𝑖 (𝑖 ∈ [1, 𝑛]) consists of a set of tables. Assuming that the number of columns in 𝑆𝑖 is 𝑑, we
denote a column from data silo 𝑆𝑖 as 𝑐𝑖𝑙 (𝑙 ∈ [1, 𝑑]).

Definition (Intra-relatedness and Inter-relatedness). If two columns 𝑐𝑖𝑘 , 𝑐
𝑖
𝑙 are from the

same data silo 𝑆𝑖 (𝑘 ≠ 𝑙), and represent the same semantic type, we refer to their relationship as

intra-related; if two columns 𝑐𝑖𝑙 and 𝑐
𝑗
𝑡 (𝑖 ≠ 𝑗) are located in different data silos, and represent

the same semantic type, we refer to their relationship as inter-related.

Intra- and inter-related columns refer to three different notions of matches: i) columns

that share exact value overlaps and draw values from the same domain, i.e., they are

equi-joinable, ii) columns that share semantically equivalent values of different formats

and belong to the same domain, i.e., they are fuzzily-joinable, and iii) columns that do not

share any kind of value overlaps but store instances from the same domain, i.e., they are

unionable.

Given a set of data silos  , we refer to the set of all columns in  as . For example, in

Figure 3.1 we have  = {Insurance, Banking, Public District Data }, and the total number of

columns |𝐶| is 21. In this work, we assume that the intra-relatedness in each data silo is

known, which is common in organizations as discussed in Section 3.1.

The Problem of Matching Across Data Silos. Consider a set of data silos  , and that the
intra-relatedness relationships in each data silo 𝑆𝑖 ∈  are known. The problem ofmatching

across data silos, is to capture the potential inter-relatedness relationships among the table

columns belonging to different silos.

According to our problem definition, in Figure 3.2 we know that in the silo Insurance
the columns Customer.Address and Insurance.Address are related. Our goal is

to discover inter-relatedness between different silos, such as Insurance.Address and

District.Name (in the silo Public District Data), which are from two data silos

and remain unknown among their corresponding stakeholders. In Section 4.5 we will

elaborate on how we transform the above problem to a link prediction problem.

3.5 GNNs for Matching Data Silos
In this section, we present how SiMa utilizes intra-silo column relatedness knowledge

and manages to leverage Graph Neural Networks (GNNs) to provide with inter-silo link

suggestions. Towards this direction, we first give a preliminary introduction on GNNs in

Section 3.5.1. Then in Section 4.4 we showcase how we model a set of data silos as graphs,

and obtain the initial features via profiling in Section 3.5.3. We transform the problem of

matching across data silo to a link prediction task, and describe how SiMa employs GNNs

to solve the problem in Section 4.5. We explain SiMa’s algorithmic pipeline in Section 3.6.1.

In Table 3.1 we summarize the notations frequently used in this paper.



3

52 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

Table 3.1: Essential notations used in this chapter.

Notations Description
 A graph

𝑣 A node in 
𝑣 The set of neighborhood nodes of 𝑣
h𝑣 Features associated with 𝑣
𝐡0𝑣 The initial feature vector of 𝑣
𝑘 The layer index

h𝑘𝑣 The 𝑘-th layer feature vector of 𝑣
h𝑘𝑣

The 𝑘-th layer feature vector of 𝑣

W𝑘
The weight matrix to the 𝑘-th layer

 The set of data silos

𝑖 The data silo index

𝑆𝑖 The 𝑖-th data silo

 The set of relatedness graphs of 
𝑅𝐺𝑖 The relatedness graph of 𝑆𝑖
f𝑣 Initial feature vector of 𝑣 obtained via profiling

𝑃𝐸𝑖 The set of positive edges of 𝑅𝐺𝑖
𝑁𝐸𝑖 The set of negative edges of 𝑅𝐺𝑖

3.5.1 Preliminary: GNNs
Recently, Graph Neural Networks [92] have gained a lot of popularity due to their straight-

forward applicability and impressive results in traditional graph problems such as node

classification [93, 94], graph classification [95] and link prediction [96–98]. Intuitively, GNNs

can learn a “recipe" to incorporate the neighborhood information and the features of each

node in order to embed it into a vector.

In this work, we aim at finding a learning model that can perform well, not only on

silos with known column relationships, but also on unseen columns in unseen data silos.

This requires a generic, inductive learning framework. Based on the wealth of literature

around GNNs, we opt for the seminal GNN model of GraphSAGE [94], which is one of

the representative models generalizable to unseen data during the training process. More

specifically, GraphSAGE incorporates the features associated with each node 𝑣 of a graph,
denoted by h𝑣 , together with its neighborhood information𝑣 , in order to learn a function

that is able to embed graph nodes into a vector space of given dimensions. The embedding

function is trained through message passing among the nodes of the graph, in addition to

an optimization objective that depends on the use case. Typically, GraphSAGE uses several

layers for learning how to aggregate messages from each node’s neighborhood, where in

the 𝑘-th layer it proceeds as follows for a node 𝑣:

h𝑘𝑣
= AGGREGATE𝑘({h𝑘−1𝑢 ,∀𝑢 ∈𝑣})

h𝑘𝑣 ← 𝜎(W𝑘 ⋅CONCAT(h𝑘−1𝑣 ,h𝑘𝑣
))

(3.1)

Given a node 𝑣, GraphSAGE first aggregates the representations of its neighborhood



3.5 GNNs for Matching Data Silos

3

53

nodes from the previous layer 𝑘-1, and obtains h𝑘𝑣
. Then the concatenated (CONCAT)

result of the current node representation h𝑘−1𝑣 and the neighborhood information h𝑘𝑣
is

combined with the 𝑘-th layer weight matricesW𝑘
. After passing the activation function

𝜎(⋅), we obtain the feature vector of 𝑣 on the current layer 𝑘, i.e., h𝑘𝑣 . Such a process

starts from the initial feature vector of the node 𝑣, i.e., 𝐡0𝑣 . By stacking several such layers

GraphSAGE controls the depth from which this information arrives in the graph. For

instance, 𝑘 = 3 indicates that a node 𝑛 will aggregate information until 3 hops away from 𝑛.

3.5.2 Modeling Data Silos as Graphs
We see that applying a GNN model on a given graph is seamless and quite intuitive: nodes

exchange messages with their neighborhood concerning information about their features,

which is then aggregated to reach their final representation. Yet, for the GNN to function

properly, the graph on which it is trained should reveal information that is correct, namely

we should be sure about the edges connecting different nodes.

Based on this last observation and on the fact that data silos maintain information

about relationships among their own datasets, we see that if we model each silo as a graph

then this could enable the application of GNNs. In order to do so, for each data silo 𝑆𝑖, as
defined in Section 3.4, we construct a relatedness graph that represents the links among the

various tabular datasets that reside in the corresponding data silo.

Definition (Relatedness graph). Given a data silo 𝑆𝑖, its relatedness graph 𝑅𝐺𝑖 = (𝑉𝑖,𝐸𝑖)
is an undirected graph with nodes 𝑉𝑖 and edges 𝐸𝑖. Each column 𝑐𝑖𝑙 of 𝑆𝑖 is represented as a
node 𝑣 ∈ 𝑉𝑖. For each pair of columns 𝑐𝑖𝑙 , 𝑐

𝑖
𝑡 of 𝑆𝑖 that are intra-related, there is an edge 𝑒 ∈ 𝐸𝑖

between their corresponding nodes in 𝑅𝐺𝑖.

For example, Figure 3.3 shows the corresponding relatedness graph of the data silo

Insurance from Figure 3.1. Based on it, we see that a silo’s relatedness graph consists of

several connected components, where each of them represents a different domain to which

columns of the datasets that are stored in the data silo belong; thus, the neighborhood of

each node in the graph includes only the nodes that are relevant to it in the silo. This is

shown in Figure 3.3, where we see four different connected components, colored differently,

which represent four different domains in the silo: addresses, names, tax ids and purchase

info.

3.5.3 Profiles as Initial Features
Initialization requirement of GNNs. With SiMa we opt for applying the GraphSAGE

model using the relatedness graphs of the corresponding data silos. For this to be possible

two conditions should be satisfied about the relatedness graph: i) there should be a repre-

sentative set of edges and ii) each node should come with an initial feature vector. SiMa’s

relatedness graphs already satisfy the first condition, since every such graph includes edges

denoting similar columns. Yet, nodes in the relatedness graphs are featureless. Moreover,

in order to leverage GNNs and use them for matching across data silos, we need to employ

them towards a specific goal. Therefore, in the following we discuss how to produce initial

features for each column-node in a relatedness graph, and present a method of using a

GNN model for bridging data silos by modeling our problem as a link prediction task.



3

54 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

Name Address …

Customer

Name Payment 
History …

Insurance

Address

Tax Id

Name Payment 
HistoryName

Insurance

PurchaseTax IdAddress Name

Criminal

Record Credit History

Customer
Address

Name Address Tax Id …

Criminal Record

Tax Id Purchase …

Credit History

Figure 3.3: Relatedness graph of the Insurance data silo.



3.6 Training GNNs for Matching Silos

3

55

Initial feature vectors from data profiles. In order to handle the feature initialization

requirement, in SiMa we draw inspiration from the data profiling literature [9]. In the case

of tabular data, profiles summarize the information of a data element, by calculating a

series of simple statistics (e.g. number of null values, aggregates etc.). Consequently, we

can utilize a simple profiler in order to associate each column in a data silo to a feature

vector, summarizing statistical information about it.

In specific, for each data silo, we feed all the including tables into the profiling compo-

nent we adopt from [11]. However, since we need the initial profiles to summarize simple

information for each column (so as not to depend on complex profiles), we exclude the

features referring to pre-trained value and paragraph embeddings. In short, SiMa computes

a feature vector for each column in a silo by collecting the following:

– Global statistics. Those include aggregates on high level characteristics of a column, e.g.

number of numerical values among the included instances.

– Character-level distributions. For each of the 96 ASCII characters that might be present in

the corresponding values of the column, we save charachter-level distributions. Specifically,

the profiler counts the number of each such ASCII character in a column and then feeds it

to aggregate functions, such as mean, median etc.

Using the above profiling scheme, we associate each node 𝑣, belonging to a relatedness

graph 𝑅𝐺𝑖, with a vector f𝑣 . This f𝑣 will serve as h0𝑣 for initializing the feature vector of 𝑣
before starting the GraphSAGE training process, as shown in Figure 3.2b.

3.6 Training GNNs for Matching Silos
Matching across silos as link prediction. In order to leverage the capabilities of a GNN,

there should be an objective function tailored to the goal of the problem that needs to be

solved. With SiMa we want to be able to capture relatedness for every pair of columns

belonging to different data silos, which translates to the following objective. [Link
prediction of relatedness graph] Consider a set of relatedness graphs, the challenge
of link prediction across relatedness graphs is to build a model  that predicts whether

there should be an edge between nodes from different relatedness graphs. Given a pair

of nodes (𝑢,𝑣) from two different relatedness graphs 𝑅𝐺𝑖,𝑅𝐺𝑗 ∈ (𝑖 ≠ 𝑗) where 𝑢 ∈ 𝑅𝐺𝑖,
𝑣 ∈ 𝑅𝐺𝑗 , ideally

(𝑢,𝑣) =

{
1, 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑙𝑖𝑛𝑘𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

It is easy to see that we have now transformed our initial matching across data silos

problem to a link prediction problem over the relatedness graphs.

Two types of edges for training. Towards this direction, we train a prediction function

𝜙 that receives as input the representations h𝑢 and h𝑣 , of the corresponding nodes 𝑢 and
𝑣, from the last layer of the GraphSAGE neural network, and computes a similarity score

𝑠𝑖𝑚(𝑢,𝑣) = 𝜙(h𝑢,h𝑣).
To train a robust GNN model, we need the following two types of edges in our related-

ness graph.



3

56 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

Definition (Positive edges and negative edges). In a relatedness graph 𝑅𝐺𝑖 = (𝑉𝑖,𝐸𝑖), we
refer to each edge 𝑒 ∈ 𝐸𝑖 as a positive edge; if a ‘virtual’ edge 𝑒 connects two unrelated nodes
𝑢 and 𝑣, we refer to it as a negative edge. Thus, we obtain the following two sets of edges.

Positive edges 𝑃𝐸𝑖 = {(𝑢,𝑣)|𝑟(𝑢,𝑣) = 1∧𝑢,𝑣 ∈ 𝑅𝐺𝑖}
Negative edges 𝑁𝐸𝑖 = {(𝑢,𝑣)|𝑟(𝑢,𝑣) = 0∧𝑢,𝑣 ∈ 𝑅𝐺𝑖}

To differentiate with negative edges 𝑁𝐸𝑖, in the sequel we refer to the edges of a

relatedness graph 𝑉𝑖 as positive edges 𝑃𝐸𝑖. Notably, the training samples we get from our

relatedness graphs contain only pairs of nodes for which a link should exist (i.e., positive

edges 𝑃𝐸𝑖). Thus, we need to provide the training process with a corresponding set of

negative edges, which connect nodes-columns that are not related. To do so, for every

relatedness graph 𝑅𝐺𝑖 we construct a set of negative edges 𝑁𝐸𝑖, since we know that nodes

belonging to different connected components in 𝑅𝐺𝑖 represent pairs of unrelated columns

in the corresponding data silo 𝑆𝑖; we elaborate on negative edge sampling strategies in

Section 3.7.1.

Two-fold GNN model training. After constructing the set of negative edges, we initiate

the training process with the goal of optimizing the following cross-entropy loss function:

 = − ∑
(𝑢,𝑣)∈𝑅𝐺𝑖

log𝜎(𝑠𝑖𝑚(𝑢,𝑣))

− ∑
(𝑢,𝑣)∈𝑁𝐸𝑖

[1− log(𝜎(𝑠𝑖𝑚(𝑢,𝑣)))]
(3.2)

where 𝜎(⋅) is the sigmoid function and 1 ≤ 𝑖 ≤ 𝑛, with 𝑛 representing the number of

relatedness graphs (constructed from the original data silos) included in training data.

The similarity scores are computed by feeding pairs of node representations to a Multi-

layer Perceptron (MLP), whose parameters are also learned during the training process in

order to give correct predictions. Intuitively, with this model training we want to compute

representations, so as to build a similarity function (through the training of the MLP), which

based on them, correctly distinguishes semantically related from unrelated nodes-columns.

To summarize, SiMa uses a two-fold model, which consists of:

• A GraphSAGE neural network that applies message passing and aggregation (Equa-

tion 1) in order to embed the nodes-columns of the relatedness graph into a vector

space of given dimensions.

• A MLP, with one hidden layer, which receives in its input a pair of node representa-

tions and based on them it calculates a similarity score in order to predict whether

there should be a link or not between them, i.e., whether the corresponding columns

are related.

In the above model, there can be certain modifications with respect to the kind of GNN

used (e.g. replace GraphSAGE with the classical Graph Convolutional Network [93]) and

prediction model (e.g. replace MLP by a simple dot product model). However, since the

focus of this work is on building a method which uses GNNs as a tool towards matching

across data silos, and not on comparing/proposing novel GNN-based link prediction models,

we opt for a model architecture similar to the ones employed for link prediction [97, 99].



3.6 Training GNNs for Matching Silos

3

57

Algorithm 1: SiMa

Input :Set of data silos 
Model 
Profiler 
Number of training epochs 𝑒

Output :Trained model 
1 ← {} // Initialize set of relatedness graphs
2 f← [] // List of initial node feature vectors
3 𝑛← | |
4 for 𝑖← 1 to 𝑛 do
5 𝑅𝐺𝑖← ConstructGraphFromSilo(𝑆𝑖)
6 .add(𝑅𝐺𝑖)
7 foreach node 𝑢 ∈ 𝑅𝐺𝑖 do
8 f𝑢 ← (𝑢) // Compute profile of corresponding column

and store it as u’s initial feature vector
9 f.append(f𝑢)

10 end
11 end
12  , ← {} // Initialize sets of positive/negative edges
13 for 𝑖← 1 to 𝑛 do
14 foreach edge (𝑢,𝑣) ∈ 𝑅𝐺𝑖 do
15  .add((𝑢,𝑣))
16 end
17  .union(SampleNegativeEdges(𝑅𝐺𝑖))
18 end
19 for 𝑖← 1 to 𝑒 do
20 h←.GraphSage(, f) // Apply GraphSAGE to all

relatedness graphs and get node embeddings
21 𝑃𝑜𝑠𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑←.MLP( , h) // Get link predictions for

positive edges
22 𝑁𝑒𝑔𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑←.MLP( , h) // Get link predictions for

negative edges
23 Loss←ComputeLoss(𝑃𝑜𝑠𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑, 𝑁𝑒𝑔𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑) // Compute

cross-entropy loss based on predictions
24 Loss.BackPropagate(.parameters) // Tune model parameters with

backwards propagation
25 end



3

58 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

3.6.1 SiMa’s Pipeline
In Algorithm 1 we show the pipeline that we employ with SiMa. The key challenge here is

to build a model that can represent columns of data silos in such a way, so that relatedness

prediction based on them is correct. Our method has four inputs: i) the set of data silos  ,
ii) our defined model, including the GraphSAGE neural network and the MLP predictor,

iii) the profiler  that we use in order to initialize feature vectors of nodes, and iv) the

number of training epochs 𝑒. The output of SiMa consists of the trained model , which

can then be used to embed any column of a data silo and, based on these embeddings,

predict links between columns.

Initially, all data silos in  are transformed to their relatedness graph counterpart. In

addition, we compute the corresponding profiles of each node and store them as initial

feature vectors (lines 4-11). Based on these graphs, we construct the sets of positive and

negative edges to feed our training process (lines 13-18). While getting positive edges is

trivial, since we just fetch the edges that are present in the relatedness graphs, constructing

a set of negative edges requires a sampling strategy (line 17). This is because the set of

all negative edges is orders of magnitude larger than the set of positive ones. Ergo, we

need to sample some of these negative edges in order to balance the ratio of positive to

negative examples for our training. We elaborate on our optimized strategies for negative

edge sampling in Section 3.7.1.

Following the preparation of positive and negative edge training samples, we move

to the training of our model (lines 19 - 25). In specific, we start by applying the current

GraphSAGE neural network through the message passing and aggregation functions shown

in Equation 1. At the next step, we get the predictions for the pairs of nodes in the set

of positive and negative edges respectively (lines 21-22), by placing in the input of our

defined MLP architecture their corresponding embeddings. Finally, the cross-entropy loss

is calculated (Equation 2) based on all predictions made for both positive and negative edges

(line 23) and based on it we back propagate the errors in order to tune the parameters of the

GraphSAGE and MLP models used (line 24). The training process repeats for the number

of epochs 𝑒, which is specified in the input. In the end of this loop, we get our trained

model which is able to embed columns in data silos and, based on these representations,

predict whether they are related or not.

3.7 Optimization Techniques
In this section, we present novel techniques applied in Algorithm 1: i) sampling (Sec-

tion 3.7.1) and ii) incremental model training (Section 3.7.2).

3.7.1 Negative Sampling Strategies
Since the number of possible negative edges in our relatedness graphs might be overwhelm-

ing with respect to the number of positive edges, we need to devise negative sampling

strategies. In fact, negative sampling for graph representation learning has been shown to

drastically impact the effectiveness of a model [100].

Such sampling techniques can provide with negative edge samples that help our link

prediction model distinguish related/dissimilar columns. Thus, in the following we describe

three negative sampling strategies (termed as NS1, NS2, NS3), each enhanced with different



3.7 Optimization Techniques

3

59

Ad
dr

es
s

Ta
x 

Id

Na
m

e
Pa

ym
en

t 
Hi

st
or

y
Na

m
e

Pu
rc

ha
se

Ta
x 

Id
Ad

dr
es

s
Na

m
e

Ad
dr

es
s

Ad
dr

es
s

Ta
x 

Id

Na
m

e
Pa

ym
en

t 
Hi

st
or

y
Na

m
e

Pu
rc

ha
se

Ta
x 

Id
Ad

dr
es

s
Na

m
e

Ad
dr

es
s

Ad
dr

es
s

Ta
x 

Id

Na
m

e
Pa

ym
en

t 
Hi

st
or

y
Na

m
e

Pu
rc

ha
se

Ta
x 

Id
Ad

dr
es

s
Na

m
e

Ad
dr

es
s

(a
) R

an
do

m
 S

am
pl

in
g

(b
) R

an
do

m
 S

am
pl

in
g 

pe
r N

od
e

(c
) S

am
pl

in
g 

on
e 

N
od

e 
pe

r D
om

ai
n

F
ig
u
r
e
3
.4
:
S
tr
a
te
g
ie
s
fo
r
n
e
g
a
ti
v
e
e
d
g
e
s
a
m
p
li
n
g
o
n
th
e
r
e
la
te
d
n
e
s
s
g
r
a
p
h
o
f
th
e
in
s
u
r
a
n
c
e
d
a
ta

s
il
o
.



3

60 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

insights. It is important to mention here that these negative sampling techniques take

place inside every relatedness graph, where we have the knowledge of which node pairs

represent negative examples. In Figure 3.4 we depict each sampling strategy and how it

operates on the relatedness graph of Figure 3.3.

NS1: Sampling on whole graph. The most straightforward and simple way to compute a

sample of negative (non-directed) edges per relatedness graph, is to randomly sample some

of them out of the set of all possible negative node pairs. Specifically, based on the node

connectivity information we have about each relatedness graph, we are able to compute the

full set of distinct pairs which include nodes from different connected components. Then,

we randomly pick some of them in order to construct a set with a size equal to the number

of positive edges in the corresponding relatedness graph to feed to our loss function.

As we see in Figure 3.4a, a major drawback is that there could be nodes not connected

with any negative edge in the sample, like the three rightmost nodes in the figure. This

could severely affect the training process, since for these nodes we miss information about

nodes they should not relate to. Moreover, it might be that certain nodes show up more

frequently in the negative samples than others, which creates an unwanted imbalance in

the training data for negative examples.

NS2: Sampling per node. To guarantee that every node is associated with at least one

negative edge, we randomly sample negative edges for each node separately. To balance the

number of positive and negative edges that a node is associated with, we specify the sample

size to be equal to the degree of the node in the relatedness graph, i.e., to the number of

positive edges; since we want to control the number of incoming negative edges per node,

we opt for directed edges.

Figure 3.4b shows a possible output of such a negative edge sampling strategy. In con-

trast to the previous strategy, we see that now every node in the graph receives a sample of

directed negative edges, of size equal to its corresponding degree in the original relatedness

graph. Nonetheless, this improved sampling strategy does not ensure that a node will

receive negative edges from a set of nodes that belong to different connected components,

namely different column domains. For example, in Figure 3.4b the upper left “Address”

node receives two edges both coming from the connected component representing the

domain of customer names. This non-diversity of the negative samples that are associated

with each node, disrupts the learning process since the model does not receive enough

information about which columns should not be regarded as related.

NS3: Sampling per domain. To improve the shortness of diversity in the negative edges

each node receives, we impose sampling per node to take place per different domain,

i.e., for each different connected component in the relatedness graph. In detail, this time

we pick the random samples based on each connected component that has not yet been

associated to the node. Hence, each node receives at least one negative edge from every

other connected component in the graph, ensuring this way that there is diverse and

complete information with respect to domains that the corresponding column does not

relate. To keep the number of negative edges close to the number of positive ones, we

specify one random sample from each domain per node.

To illustrate how the above strategy proceeds, in Figure 3.4c we show negative samples

computed only for two different nodes, “Tax id" and “Name" (we do so in order to not



3.7 Optimization Techniques

3

61

Algorithm 2: Incremental Training

1 𝑛← || ;
2 𝑇𝐺← [] // List of relatedness graphs included in the

training
3 for 𝑖← 1 to 𝑛 do
4 𝑇𝐺.append(𝑅𝐺𝑖) ;
5 for 𝑗 ← 1 to 𝑒𝑝 do
6 h←.GraphSage(𝑇𝐺𝑖, f𝑖) // Apply GraphSAGE only on

relatedness graphs in TG
7 𝑃𝑜𝑠𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑←.MLP( 𝑖, h) // Get link predictions for

positive edges
8 𝑁𝑒𝑔𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑←.MLP( 𝑖, h) // Get link predictions for

negative edges
9 Loss← ComputeLoss(𝑃𝑜𝑠𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑, 𝑁𝑒𝑔𝐸𝑑𝑔𝑒𝑃𝑟𝑒𝑑) // Compute

cross-entropy loss based on predictions
10 Loss.BackPropagate(.parameters) // Tune model parameters

with backwards propagation
11 end
12 end

overload the figure with negative edges for all nodes). Indeed, as we discussed above, both

of these nodes receive exactly one randomly picked edge from each unrelated domain.

Therefore, every node has complete information which can be leveraged by our proposed

model in order to learn correctly which pairs of nodes should not be linked.

Remarks. When using NS3 the number of negative edges sampled for training might be

considerably higher than the one of positive edges. To deal with this imbalance of positive

and negative data, we use the weighted version of the binary cross-entropy function:

 = − ∑
(𝑢,𝑣)∈𝑅𝐺𝑖

𝑤𝑝 ⋅ log𝜎(𝑠𝑖𝑚(𝑢,𝑣))

− ∑
(𝑢,𝑣)∈𝑁𝐸𝑖

log(1−𝜎(𝑠𝑖𝑚(𝑢,𝑣)))
(3.3)

where 𝑤𝑝 is the weight we use to balance the contribution of the positive and the negative

examples, which we set to be equal to the ratio of negative to positive edges included in

the training.

3.7.2 Incremental Training
Originally, SiMa trains on the positive and negative samples it receives by taking into

consideration every relatedness graph in the input (lines 19-25 in Algorithm 1). However,

proceeding with training on the whole set of graphs might harm the effectiveness of

the learning process, since the model in each epoch trains on the same set of positive



3

62 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

and negative samples; hence, it can potentially overfit. Therefore, we need to devise an

alternative training strategy, which feeds the model with new training data periodically.

Towards this direction, we design an incremental training scheme that proceeds per

relatedness graph. In specific, we initiate training with one relatedness graph and the

corresponding positive/negative samples we get from it. After a specific number of epochs,

we add the training samples from another relatedness graph and we continue the process

by adding every other relatedness graph. In this way, we help the model to deal periodically

with novel samples potentially representing previously unseen domains that the new

relatedness graph brings; thus, we increase the chances of boosting the effectiveness

that the resulting link prediction will have. Essentially, our incremental training scheme

resembles curriculum learning [101] in that it constantly provides the learning process with

new data; yet, curriculum learning methods also verify that the training examples are of

increasing difficulty.

Algorithm 2 shows how incremental training proceeds and replaces the original training

scheme in the context of our initial pipeline in Algorithm 1. We see that the only difference

with the previous scheme is that now we train the model on an incrementally growing set

of relatedness graphs (𝑇𝐺 of lines 2), which is initialized with the first relatedness graph

and it receives an extra graph, periodically every 𝑒𝑝 epochs (which we assume to be a

fraction of the original number of epochs 𝑒 in Algorithm 1), until it contains all of them in

the final iteration. For each epoch, we apply GraphSAGE only on the relatedness graphs

in 𝑇𝐺 (lines 6) and use positive/negative samples coming from them in order to train the

MLP (lines 8-9).

3.8 Experimental Evaluation
In this section, we assess the effectiveness and efficiency of SiMa through an extensive

set of experiments. In what follows, we first describe our experimental setup, namely the

datasets, baselines and settings against which we assess our method. We then present our

experimental results, where we focus on: i) the effect of different parameters for training

the GraphSAGE model, ii) how the different sampling and training techniques (Section 3.7)

affect SiMa’s effectiveness and execution time, and iii) how SiMa compares with other

matching and simple ML baselines both in terms of effectiveness and efficiency. Our main

results can be summarized as follows:

• The optimization techniques introduced in section 3.7 considerably boost SiMa’s

effectiveness Figure 3.5.

• SiMa’s GNN-basedmodel leverages existingmatches better than a simpleML baseline

Figure 4.6 that takes into account only the profiles.

• SiMa is more effective than the state-of-the-art schema matching method, due to its

ability to maintain higher precision values when recall increases Figure 4.6.

• Contextualized representations are not suitable for matching columns across data

silos.

• SiMa exhibits lower execution times than other methods Table 3.4. Especially when

compared to state-of-the-art matching methods the gap is considerably high.



3.8 Experimental Evaluation

3

63

3.8.1 Setup
Methods used for evaluation. We make use of three different methods for comparing

SiMa in terms of effectiveness and efficiency:

– COMA [29], which is a seminal and state-of-the-art matching method that combines

multiple criteria in order to output a set of possible matches. We make use of the COMA

version that uses both schema and instance-based information about the datasets in order to

proceed. Note that COMA is not an applicable solution to the problem of matching across data

silos as studied in this paper (Section 3.3.1). However, we use it in order to see how close

SiMa can get to a state of the art matching method, on the same data and in a non-siloed

setting. In our experiments we use COMA 3.0 Community Edition.

– Starmie [86] is a state-of-the-art top-k unionable table search in data lakes. The method

employs a multi-column table encoder that serializes instances from tables to feed them

into a pre-trained Language Model (LM) (specifically, the authors use RoBERTa [102]).

Starmie uses contrastive learning [103] to produce column representations that capture

relatedness. In our evaluation, we use Starmie, as shared in a public repository
1
, to produce

contextualized column representations for the columns of the datasets included in each

silo. We then compute pairwise cosine similarity for columns among datasets of different

silos. We ran Starmie with default parameters, except for tuning the max sequence length

to 256, number of epochs to 5, and batch size to 8.

– Baseline: MLP. To show the gains of using SiMa’s GNN model to represent dataset

columns, we compare ourmethod against a simpleMulti-Layer Perceptron (MLP) prediction

model. In specific, we use a MLP with one hidden layer, which receives in its input pairs

of profiles and learns to predict whether there is a relationship among the columns they

represent. In other words, this model disregards column representations computed through

SiMa’s GNN model and straightforwardly uses only column profiles and information about

existing column matches.

Note that we have not included baselines from the dataset discovery literature [17, 26,

31, 44, 50, 51, 71] as those do not address the problem of matching columns across silos;

instead, they address the top-k similar dataset retrieval problem, which makes them not

directly applicable to our problem setting.

Except for COMA, Starmie and the MLP baseline, we ran our experiments with two

additional schema matching techniques, namely Distribution-based matching [32] and

EmbDI [30]. Both the Distribution-based method and EmbDI exhibited consistently worse

results than COMA, exhibiting very high false negative rates. In addition, EmbDI can

only run on considerably smaller number of datasets than the ones we examine in our

evaluation. Therefore, we omit presentation of results coming from these methods, and

keep COMA as the representative state-of-the-art matching method.

Real-world Datasets and Ground Truth. Since there is no benchmark available for

matching across silos in the area of schema matching, nor in the area of related dataset

search, we opted for leveraging two real-world, open data repositories:

• NYC OpenData. The New York City OpenData repository
2
contains public data

1https://github.com/megagonlabs/starmie
2https://opendata.cityofnewyork.us/

https://github.com/megagonlabs/starmie
https://opendata.cityofnewyork.us/


3

64 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

published by New York City agencies and other partners. For the needs of this paper,

we use tables under the City Government category.

• LA OpenData. The Los Angeles OpenData portal3 encompasses public datasets

covering different activities and sectors of the city of Los Angeles. We focus on

tabular data under the Administration & Finance category.

For each of the above sources we select a subset of tables and curate them to contain

only columns that i) store categorical or text data, and ii) the majority of their instances

are not null values. Matching columns that store numerical data is out of the scope of this

paper: calculating distribution similarity or set overlaps would be the adequate method to

use in such cases [71]. Based on this curation, we ended up with 22 tables, for which we

manually annotated column matches among them, including equi/fuzzy-joins as well as

columns of the same domain that are non-overlapping. We captured 125 and 193 column

matches for the tables from the NYC and LA OpenData repositories, respectively.

To derive a larger number of tables, we adopt the method of [17, 74]. These methods

produce pairs of tabular datasets that share a varying number of columns/rows. We make

use of Valentine [62] to create scenarios of equi-joinable, fuzzily-joinable and unionable

columns of varying difficulty (i.e., zero/low/high - exact/non-exact value overlaps), based

on the subsets of tables we created from the two OpenData repositories.

Creating Data Silos. To evaluate our method we construct sets of data silos based on

the tables we derived from the two OpenData repositories. Particularly, we create two

benchmarks containing a given number of data silos, where each silo contains a number of

tables coming from different source tables. This way we ensure that there is a sufficient

amount of column matches within each silo from which our model can learn to predict

column relationships among datasets across different silos. In Table 3.2 we detail the

number of tables, column matches inside (used for training) and among (used for testing)

silos for each of the two benchmarks we created.

Effectiveness calculation. We evaluate the effectiveness of SiMa and the methods we

compare against, by computing precision-recall curves based on the predictions (similarity

scores for the case of COMA) that we retrieve for every possible pair of columns belonging

to datasets of different silos. We opt for using precision-recall curves. Those are ideal for

showing effectiveness results, when the distribution of labels in the test set is considerably

imbalanced [104], which is the case in our benchmarks. Indeed, in realistic matching sce-

narios, the number of non-matching column pairs, significantly outnumbers the matching

column pairs. Notably, with precision-recall curves we show the effectiveness of methods

with respect to varying similarity thresholds. Therefore, we achieve a non-biased presenta-

tion of results across the board, in contrast to showing precision and recall values only for

specific threshold values.

Implementation details. We experimented with different parameters for training SiMa’s

model and the simple MLP-baseline to pick the configuration that performs the best in

both benchmarks. We list our observations in the following:

– GNN layers: SiMa does not benefit from using more than one layers for GraphSAGE,

since the connected components formed by our graph construction method are complete

3https://data.lacity.org/

https://data.lacity.org/


3.8 Experimental Evaluation

3

65

Benchmark # Silos # Datasets # Training Matches # Test Matches

NYC OpenData 10 290 5437 34537

LA OpenData 10 224 5913 34986

Table 3.2: Data silo matching benchmarks used for evaluation.

graphs. Moreover, we found out that using max-pooling, as described in [94], to aggregate

the representations of each node’s neighborhood nodes gives the best results.

– Number of epochs: We ran our model and the simple MLP baseline for several epochs

and plotted loss curves when validating their prediction capability in a small subset of

the training data (using a 90:10 split). We observed that for more than 100 epochs there

is no considerable change in the training/validation loss. Thus, in these experiments we

train for 100 epochs. In the case of incremental training and since we have 10 relatedness

graphs (|| = 10) we train incrementally for 10 epochs per relatedness graph, leading to

100 epochs in total.

– Dimension of embeddings: We evaluated the effectiveness of our model for varying

dimensions of node representations produced by the GraphSAGE model we use in the

range of {32,64,128,256,512}. We found out that using embeddings of 256 dimensions

provides with the best results.

For training we use the Adam optimizer [105] with a learning rate of 0.01, while we
use a MLP of one hidden layer for both SiMa and the baseline. Furthermore, our method is

implemented in Python and is openly available for experimenation
4
, while GraphSAGE

was implemented using the Deep Graph Library [106] on top of PyTorch.
5
Experiments for

SiMa and the MLP baseline ran on an 8-core MacBook Pro, while for running COMA we

set up a Linux machine with 128 AMD EPYC 7H12 2.60GHz cores.

3.8.2 Effect of Optimizations
We assess the effectiveness of different negative sampling techniques and training schemes,

as discussed in Section 3.7. To this end, we run two sets of experiments: i) using the

incremental training scheme, we apply four variants of SiMa, where three are based on a

different negative sampling strategy and one considers all negative edges without sampling,

and ii) using the best such variant, we compare SiMa’s incremental training against training

on the whole set of relatedness graphs we get from the data silos.

Sampling Strategies. In Figure 3.5 we see precision-recall curves for SiMa’s different

variants when evaluated upon both data silo benchmarks. First, we validate the boost in

effectiveness that sampling edges from each other domain per node, i.e. NS3, can bring.

Particularly, we see a considerable increase in both precision and recall, since with NS3

every node receives negative edges that cover the spectrum of other domains present in the

corresponding relatedness graph. Consequently, the false positive links that our method

predicts decrease (i.e. precision increases), while the better representational quality of

the embeddings produced by our encapsulated GraphSAGE model ensures fewer false

4https://github.com/delftdata/SiMa
5https://pytorch.org

https://github.com/delftdata/SiMa
https://pytorch.org


3

66 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

SiMa-NS1
SiMa-NS2
SiMa-NS3
SiMa-No Sampling

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SiMa-Incremental
SiMa-Non incremental

(a) NYC OpenData

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SiMa-NS1
SiMa-NS2
SiMa-NS3
SiMa-No Sampling

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

SiMa-Incremental
SiMa-Non Incremental

(b) LA OpenData

Figure 3.5: Effect of negative edge sampling techniques and training schemes.

negatives (i.e. recall increases). Moreover, we see that using SiMa with NS3 can produce a

higher precision for high recall values, especially in the case of LA OpenData.

On the other hand, the other two sampling techniques, NS1 and NS2, and the variant

using all negative samples exhibit different results depending on each benchmark. In spe-

cific, we see that sampling edges per node, as specified by NS2, produces low effectiveness

results in both data silo settings. Precision for high recall values is mediocre, due to the

lack of diversity and completeness about the knowledge each node receives about other

domains in the relatedness graph. Surprisingly, picking negative edges at random on the

whole graph, as specified by NS1, seems to bring consistently better results than the NS2

variant, even if it does not guarantee that every node is covered by the negative edges

sampled. However, NS1 may pick negative edges that are more informative, yet this cannot

be guaranteed due to its randomness.

Finally, we observe that using all available negative edges without sampling brings



3.8 Experimental Evaluation

3

67

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SiMa
COMA
Starmie
MLP

(a) NYC OpenData

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SiMa
COMA
Starmie
MLP

(b) LA OpenData

Figure 3.6: Precision-Recall curves of SiMa and other methods.

inconsistent results. In Figure 3.5a we see the variant using all negative edges during

training performs better than employing NS1 and NS2, while it is very close to NS3. On

the contrary, in Figure 3.5b SiMa with all negative edges results is worse than using NS1

and only slightly better than NS2. This behavior is to be expected, since not employing

a dedicated sampling strategy that guarantees the quality and amount of negative edges

included during training (like NS3), means that the model risks overfitting.

Takeaways: 𝑖) among the different sampling strategies, sampling per domain – NS3, yields

the best results; 𝑖𝑖) removing negative sampling harms effectiveness.

Incremental Training. Here we want to verify whether incremental training has a

substantial influence on the effectiveness of the training process. We observe that training

on all relatedness graphs from the beginning can severely affect the effectiveness of our

method, since our model overfits on the set of possible and negative samples it receives.

In contrast, our incremental training scheme drastically helps our model to adapt to new

examples and significantly improves its prediction correctness. Indeed, as seen on the right-

hand side of Figure 3.5 by applying SiMa’s model on every relatedness graph incrementally

in the order of number of edges they store, we make sure that the learning process can

leverage the novel information that each graph brings, i.e. novel examples of semantic

types that were not introduced by the previous graphs. Moreover, incremental training

ensures faster execution times, since in earlier epochs the model sees less training examples.

Therefore, in the following experiments we configure SiMa to apply the incremental training

scheme and use NS3 as the negative edge sampling strategy.

Takeaway: SiMa’s incremental training scheme improves the effectiveness of SiMa as shown

by the precision-recall curves, with higher precision for high recall values.

3.8.3 SiMa comparison to other methods
We compare SiMa with COMA, Starmie and the MLP baseline, to showcase the capability

of our method to achieve better results in both effectiveness and efficiency. For a fair

comparison with the MLP baseline we train it using the best negative sampling technique



3

68 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

as found in subsection 3.8.2, i.e., NS3, while we do so by employing the incremental training

scheme. Below, we discuss the results.

Effectiveness comparison. Figure 4.6 shows the comparison of SiMa against COMA

[29], Starmie [86] and the MLP baseline, in terms of effectiveness. First, we observe that

SiMa learns significantly better how to disambiguate between positive and negative links,

based on the knowledge that exists in each data silo, than the MLP baseline. For both

data silo benchmarks we see that using only the initial column profiles with a simple MLP

prediction model does not give good results. Indeed, existing matches between columns

that are represented by profiles that are not similar, cannot help a model. On the contrary,

SiMa can learn the intrinsic graph characteristics that lead to a column relationship, by

exploiting the message passing component of GNNs.

Surprisingly, even in the case where we could employ the state-of-the-art schema

matching method of COMA for matching data silos, we observe that it would give inferior

results compared to SiMa. In particular, Figure 3.6a shows that COMA cannot keep a high

precision for recall values above 0.4, which means that there is only a small fraction of

matches that it can correctly predict. Similarly, in Figure 3.6b we see that COMA’s precision

significantly drops for recall values above 0.5. On the contrary, SiMa in both cases can be

highly precise even for recall values above 0.8. This is due to the fact that the similarity

signals that COMA uses are oftentimes not sufficient to distinguish whether a pair of

columns is a match or not; however, existing matches in the silos and the architecture of

SiMa’s model enable our method to accurately sort out true negatives. Notably, our model

outperforms COMA even if matching columns in the benchmarks we created have similar

or exactly the same names, which is something that COMA takes advantage of. In a real

world scenario, column names might not be human-understandable or could be missing,

which would considerably decrease the effectiveness of COMA. SiMa is agnostic to column

names, hence its performance is not affected by their existence/quality.

Finally, we observe that the contextualized column representations trained through

BERT [107] with Starmie produce results of low quality. In specific, we noticed that the false

negative rate is significantly highwhen considering cosine similarity of Starmie embeddings

between columns. Nonetheless, this result is expected: using context information to find

column matches among datasets of different silos is not effective in our case, since most of

the matches represent joins of columns that share no common context. In the original paper

of Starmie [86] such column representations are shown to be effective due to the nature of

the problem that is targeted there: discovering unionable tables, requires a method that

captures well the context of their columns.

Takeaways: 𝑖) SiMa exhibits consistently high effectiveness, whereas the competition falls

short in precision for high recall values; 𝑖𝑖) embeddings computed through GNNs, have

higher representational power than initial column features (MLP baseline); 𝑖𝑖𝑖) contextualized
column representations are not suitable for matching columns across data silos.

Efficiency comparison. In Table 3.4, we see how SiMa compares with the other method

in terms of efficiency measured in minutes. The total execution time for SiMa and the MLP

baseline refers to the sum of dataset profiling, training and inference times.

First, we observe that SiMa is considerably cheaper than the state-of-the-art traditional

matching method COMA. Specifically, SiMa is more than two orders of magnitude faster.



3.9 Conclusion

3

69

Best F1 Scores
Benchmark SiMa COMA Starmie MLP

NYC OpenData 0.787 0.564 0.384 0.656

LA OpenData 0.858 0.600 0.310 0.736

PR-AUC Scores
Benchmark SiMa COMA Starmie MLP

NYC OpenData 0.774 0.561 0.358 0.619

LA OpenData 0.861 0.578 0.292 0.761

Table 3.3: Effectiveness scores of SiMa and competition.

Benchmark SiMa COMA Starmie MLP

NYC OpenData 52 30900 73 59

LA OpenData 51 20100 61 54

Table 3.4: Total execution times in minutes (CPU).

SiMa’s runtime is dominated by the computation of profiles (roughly 80% of total execution),
hence in the case where these are pre-computed our method can give results in a small

fraction of the time shown in the table. Additionally, we verify that employing state-of-the-

art schema matching methods, in this scale, might be infeasible: in real-world scenarios

where datasets of multiple data silos with variable sizes need to be matched this can be

prohibitively expensive. Specifically, COMA’s syntactic similarity-based matching can

be slow due to computations of various measures among instance sets of columns (e.g.

TF-IDF), especially in the case where there are a lot of text values.

On the other hand, we observe that using the initial profiles of the columns for training

a simple prediction model with the MLP baseline not only is much less effective, but also

exhibits slower training times. This is because the dimensionality of the initial profiles is

much larger than the ones produced through the GraphSAGE model we employ in SiMa. In

addition, Starmie is slow when ran on CPU due to the computationally intensive training

of the contextualized column representations through BERT, and the generation of positive

and negative examples for its contrastive learning process.

Takeaway: the complete pipeline of SiMa (profile computation, graph construction, training

and inference) requires orders of magnitude less time and resources than the best-performing

schema matching algorithm. This is due to the use of lower-dimension GNN embeddings for

training our prediction model.

3.9 Conclusion
In this chapter, we introduced SiMa, a novel method for matching columns across disparate

data silos, which uses an effective prediction model based on the representational power

of GNNs. SiMa uses the knowledge about existing relationships among datasets in silos,



3

70 3 Matching Tabular Datasets Across Silos Using Graph Neural Networks

in order to build a model that can capture potential links across them. Our experimental

results show that SiMa can be more effective than state-of-the-art matching and column

representation methods, while it is significantly faster and cheaper to employ. Moreover,

we show that our optimization techniques significantly improve the effectiveness of our

method.



4

71

4
Self-Supervised Any-Join Discovery

in Tabular Data Repositories

How can we discover join relationships among columns of tabular data in a data repository?

Can this be done effectively when metadata is missing? Traditional column matching works

mainly rely on similarity measures based on exact value overlaps, hence missing important

semantics or failing to handle noise in the data. At the same time, recent dataset discovery

methods focusing on deep table representation learning techniques still need to fully utilize

the rich set of column similarity signals found in prior matching and discovery methods.

Finally, existing methods heavily depend on user-provided similarity thresholds, hindering

their deployability in real-world settings.

In this chapter, we proposeOmniMatch, a novel join discovery technique that detects equi-joins

and fuzzy-joins between columns by combining column-pair similarity measures with Graph

Neural Networks (GNNs). OmniMatch’s GNN can capture column relatedness leveraging

graph transitivity, significantly improving the recall of join discovery tasks. At the same time,

OmniMatch also increases the precision by augmenting its training data with negative column

join examples through an automated negative example generation process. Most importantly,

compared to the state-of-the-art matching and discovery methods, OmniMatch exhibits up to

14% higher effectiveness in F1 score and AUC without relying on metadata or user-provided

thresholds for each similarity metric.

This chapter is based on the following full research paper:

 C.Koutras, J. Zhang, X. Qin, C. Lei, V. Ioannidis, C. Faloutsos, G. Karypis, A. Katsifodimos. OmniMatch: Effective

Self-Supervised Any-Join Discovery in Tabular Data Repositories , arXiv, under submission [65].



4

72 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

4.1 Introduction
How can we accurately detect join relationships among columns in a repository of tabular

data? Is it possible to identify both equi- and fuzzy-joins in the data? Can we effectively

discover such joins even when the quality of the metadata is low, or the metadata is missing?

Organizations are creating and maintaining numerous uncurated data repositories,

which are rendered less valuable due to the absence of relatedness metadata. These data

repositories mainly comprise tabular data, such as relational data from databases, and

semi-structured data, including CSV files and spreadsheets. They often contain valuable

information for various stakeholders. The column joinability relationships are among the

most critical types of relatedness metadata across tabular datasets. Joins play a vital role

in facilitating the exploration and exploitation of datasets. For instance, data scientists,

who train machine learning (ML) models on specific datasets, can leverage joins to identify

related datasets that provide additional features, thereby improving the accuracy of an ML

model [60, 61]. In addition, joins can aid in data cleaning by enabling the discovery of new

sources of information that serve as ground truth for error checking, inferring missing

values, or eliminating duplicates.

Challenges in Join Discovery. A join between two columns entails an overlap among

their values, which should also refer to the same domain. However, it is often difficult to

quantify value overlaps since using thresholds on set similarity metrics, such as Jaccard

Index, might increase false negative/positive rates (due to high/low thresholds respectively).

Importantly, joins between columns can exist even when their contents differ syntactically.

In the literature, those are termed fuzzy joins [23, 70, 108–110]. Fuzzy joins require sim-

ilarity metrics that capture relatedness beyond value overlaps. This raises the question

of which similarity metrics should be used to ensure high effectiveness. Finally, without

metadata, such as column names and descriptions about tabular data, finding joins requires

understanding the value semantics.

Existing Solutions. Existing join discovery methods primarily fall into the domain of

schema matching [21]. These methods aim to find column correspondences between

tabular datasets using various techniques such as leveraging metadata [27, 28], instances

[32] or both [29]. Notably, language models have also been utilized to create column

representations for finding column matches by using pre-trained word-embeddings [16],

training skip-gram models on the domain-specific datasets [30], or learning contextualized

representations with the help of contrastive learning [86]. Recently, a method that uses

column similarities on metadata and values as features for supervised classification was

introduced [55].

However, these solutions suffer from at least one of the following issues despite their

usefulness. i) Limited similarity metrics: these methods often choose a small and fixed set of

similarity metrics to determine potential joins, limiting their flexibility in capturing diverse

join scenarios. ii) Dependency on similarity thresholds: most existing solutions require

similarity thresholds to determine potential joins based on exact value overlaps, which can

lead to missed or incorrect matches when values do not perfectly overlap. iii) Ignoring

data noise: many methods do not adequately account for noise in the data, resulting

in less accurate join discovery. Data perturbations or inconsistencies are not properly

handled, reducing the robustness of these methods. iv) Dependency on metadata: existing



4.1 Introduction

4

73

0.0 0.2 0.4 0.6 0.8 1.0

OmniMatch

Starmie (BERT)

DeepJoin (MPNet)

COMA (Matching)

DB (Matching)

Real World Join Benchmark
Best F1
PR-AUC

Figure 4.1: OmniMatch outperforms the state-of-the-art column matching and representation methods in terms of

best F1 and Precision-Recall AUC scores achieved when tested upon real-world join benchmarks on open data

repositories (§ 4.6). Best viewed in color.

solutions heavily rely on clean and human-understandable metadata for join discovery.

However, in practice, metadata can be noisy or even unavailable, limiting the effectiveness

of these approaches [27, 28]. v) Need for labeled data: certain methods [55] rely on large

amounts of labeled data to train column relatedness models, which can be expensive and

labor-intensive.

OmniMatch: Effective Any-join Discovery. In this paper we present OmniMatch, a

novel self-supervised approach that targets the problem of any-join discovery in tabular

data repositories. OmniMatch effectively addresses the issues associated with existing

join discovery methods in the following ways: i) Enhanced similarity metrics: OmniMatch

leverages a diverse suite of similarity metrics between column pairs from different datasets,

enabling a more comprehensive understanding of column relatedness. ii) Flexible join

detection: OmniMatch considers both equi and fuzzy joins by consolidating and propagating

various similarity signals using a variant ofGraph Neural Networks (GNNs) [111], effectively

handling diverse join conditions. iii) Robustness to data noise: by incorporating a graph-

based representation that captures the inherent structure of the data,OmniMatch can handle

noise and perturbations in the input datasets, resulting in more accurate join discovery

outcomes. iv) Metadata independence: OmniMatch focuses more on the column content

data and utilizes the column relatedness information captured in the graph, allowing it

to perform join discovery even when metadata is noisy or unavailable. v) Data labeling

free: OmniMatch employs a self-supervised learning approach by generating join examples

from the original datasets, completely eliminating the need for large amounts of labeled

data. This makes OmniMatch practical and applicable in data-scarce or labeling-challenged

scenarios.

Intuition. Figure 4.2 depicts three datasets with different similarity scores (Jaccard Simi-

larity – JS and Set Containment – SC). The column pairs (Country, CNTR) and (Cntry,
CNTR) have high similarities, while Cntry and CNTR have very low similarities. Tradi-

tional similarity-based methods rely on a user-defined threshold, often set at a low value

(i.e., JS≥0.09) to discover those joins, negatively affecting precision. In contrast, SiMa



4

74 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

CNTR

China

USA

Greece

India

France

Kenya

Country

Sweden

Norway

Finland

India

France

Kenya

Cntry

Sweden

Norway

Croatia

India

Italy

Mexico

JS = 0.33JS = 0.33

JS = 0.09

SC = 0.5

SC = 0.13

SC = 0.5

OmniMatch discovered join
Traditional similarity-based discovered join 
Traditional similarity-based missed join

Figure 4.2: OmniMatch at work: (best viewed in color) traditional similarity-based methods vs. OmniMatch. If the

similarity-based threshold is set to 0.3 for Jaccard Similarity (JS) or to 0.5 for Set Containment (SC), traditional

methods will miss the match between columns Cntry and CNTR. Choosing these thresholds is very hard in

practice as those are use-case- and dataset-dependent. OmniMatch’s RGCN-based method is able to discover

joins using graph neighborhood information, despite the low similarity between columns, without user-provided

thresholds.

harnesses the power of GNNs with messaging-passing mechanisms, utilizing graph neigh-

borhood information. This approach allows the discovery of joins that remain undetectable

when using threshold-based discovery methods. By leveraging GNN, SiMa enhances the

precision of join discovery without the need for a predefined threshold.

Contributions. In short, the proposed OmniMatch has the following desirable properties:

• Automatic: it takes a self-supervised approach to find equi and fuzzy joins among

tabular datasets in a data repository that automatically generates positive and negative

examples for self-training, using the power of GNNs.

• Effective: it decreases the number of false negatives by discovering indirect join relation-

ships. OmniMatch transforms similarity signals into a graph that represents relationships

among columns of different datasets. At the same time, the negative join examples used

during training make OmniMatch robust against false positives.

• Extensible: its graph modeling scheme can accommodate an expandable set of well-

studied similarity signals between column pairs that cover semantics (via column em-

beddings), value distributions, as well as set similarities.

• Practical: On real-world data, OmniMatch achieves 14% higher F1 and AUC scores,

compared to the state-of-the-art column matching and dataset discovery methods.



4.2 The Any-Join Discovery Problem

4

75

4.2 The Any-Join Discovery Problem
This work addresses the problem of any-join discovery among columns from tabular

datasets within a given data repository. Tabular data are abundant in every organization

that maintains such repositories, which can store CSV files, spreadsheets, and database

relations. Therefore, finding join relationships among their columns can better leverage the

information stored in them. In what follows we define the types of joins that our method

focuses on.

Definition (Equi-join). Two columns 𝐴 and 𝐵, with corresponding value sets  and ,
represent an equi-join pair if i) they share values, i.e., ∩ ≢ ∅ and ii) they store values

from the same domain, i.e., of the same semantic type.

In principle, a value overlap between two columns indicates an equi-join relationship

only if their domains coincide. Pairs of columns in Figure 4.2 represent valid equi-joins

since they share exact overlaps of values belonging to the same domain, i.e., country names.

However, tabular datasets in a data repository come from different sources with value

encodings. We refer to these cases as fuzzy-joins.

Definition (Fuzzy-join). Two columns 𝐴 and 𝐵, with corresponding value sets and ,
represent a fuzzy-join pair if i) there exists a function ℎ ∶→  so that they share values,

i.e., ℎ() ∩ ≢ ∅ and ii) they store values from the same domain, i.e., of the same semantic

data type.

A fuzzy-join example is shown in Figure 4.4, where both columns store street addresses

using different formatting conventions. Fuzzy-join discovery is a challenging task since

it is difficult to strictly define the function ℎ(⋅) that transforms the values of one column

to coincide with the ones of the other column syntactically; examples of such functions

might drop, rearrange, or abbreviate tokens.

Any-join Discovery in Tabular Data Repositories. Given a data repository consisting of
a set of tabular datasets, the problem of any-join discovery is to capture potential equi-joins

and fuzzy-joins among columns belonging to different datasets stored in the repository.

4.3 Approach Overview
Figure 4.3 summarizes OmniMatch’s steps towards building a prediction model for any-join

between columns of tabular datasets in a repository.

– Creating training examples: OmniMatch utilizes a dedicated dataset join-pair generator for

the datasets that reside in a given repository (Figure 4.3b) to establish the self-supervision.

The created positive and negative join examples from individual tables serve as supervisions

for training OmniMatch’s prediction model to discover joinable relationships across tables.

– Pairwise column feature computation: At the core of OmniMatch we featurize all column

pairs among the generated joinable datasets by computing several similarity signals that

are widely used in the literature for capturing column relatedness (Figure 4.3c).

– Column similarity graph construction: Using the features we calculated earlier, we build a

similarity graph where columns are connected with different types of edges, each corre-

sponding to a different feature (Figure 4.3d). To reduce the noise in graph construction, we

propose a filtering strategy.



4

76 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories
Code

N
am

e
Categ

A
w

ard

C
S10

D
esign and 

C
onstruction

C
onstruction 
Services

1000$

H
S09

H
ealth and 

M
ental H

ygiene
H

um
an 

Services
5000$

…
…

…
…

Col1
Col2

Col3

1
Design/Constr

12/01/2018

2
Health &

 M
ental 

Hygiene
03/25/2019

…
…

…

Code
N

am
e

Categ

C
S10

D
esign and 

C
onstruction

C
onstruction 
Services

H
S09

H
ealth and 

M
ental H

ygiene
H

um
an 

Services

…
…

…

N
am

e
Categ

A
w

ard

D
esign/ 

C
onstruction

C
onstr 

Services
1000$

H
ealth &

 M
ental 

H
ygiene

H
um

an 
Services

5000$

…
…

…
…

(a) Rep
ository of O

rig
inal Tab

ular D
atasets

(b
) D

erived
 D

atasets w
/ Positive/N

eg
ative Join Exam

p
les

(c) C
om

p
ute C

olum
n Pairw

ise Features

N
am

e
N

am
e

[
0
.
6
,
 
0
.
8
,
 
0
.
5
,
 
0
.
9
,
 
0
.
9
]

Code
N

am
e

[
0
.
0
,
 
0
.
0
,
 
0
.
0
,
 
0
.
1
,
 
0
.
0
]

N
am

e
Categ

[
0
.
2
,
 
0
.
1
,
 
0
.
2
,
 
0
.
6
,
 
0
.
3
]

…

All 
tokens
Jaccard 

Sim
ilarity

Infrequent 
tokens
Jaccard 

Sim
ilarity

Set 
C

ontainm
ent

Em
bedding 

Sim
ilarity

D
istribution 
Sim

ilarity

…

(d
) B

uild
 sim

ilarity g
rap

h on d
erived

 training
 d

ata

…

D
1

D
2

D
1.1

D
1.2

D
1.1.C

ateg

D
1.2.C

ateg

D
1.1.N

am
e

D
1.2.N

am
e

D
1.1.N

am
e ↔

  D
1.2.N

am
e

D
1.1.Categ ↔

  D
1.2.Categ

D
1.1.N

am
e ↔

  D
1.2.Categ

…

RG
CN

Trained 
Prediction 

M
odel

(e) Train RG
C

N
 b

ased
 on p

ositive/neg
ative exam

p
les

Perform
 (c) and (d) for the 

original tabular datasets

(f) Infer joins on orig
inal d

atasets

Sim
ilarity graph of original 

and/or new data

D
1.N

am
e ↔

  D
2.Col2

+

Sim
ilarity G

raph of
D

erived Training D
ata

Positive & negative exam
ples

D
1.N

am
e

D
2.Col2

Trained 
Prediction 

M
odel

Predicted Join

F
ig
u
r
e
4
.3
:
O
m
n
iM

a
tc
h
o
v
e
r
v
ie
w
:
(b
)
p
o
s
itiv

e
a
n
d
n
e
g
a
tiv

e
jo
in

e
x
a
m
p
le
s
a
r
e
g
e
n
e
r
a
te
d
in

a
s
e
m
i-
s
u
p
e
r
v
is
e
d
m
a
n
n
e
r
b
a
s
e
d
o
n
th
e
o
r
ig
in
a
l
d
a
ta

r
e
p
o
s
ito

r
y
s
h
o
w
n
in

(a
).
F
o
r
e
a
c
h
p
o
s
itiv

e
a
n
d
n
e
g
a
tiv

e
jo
in

p
a
ir,

O
m
n
iM

a
tc
h
c
o
m
p
u
te
s
a
s
e
t
o
f
s
im

ila
r
ity

s
ig
n
a
ls
(c
)
a
n
d
th
e
n
c
o
n
s
tr
u
c
ts
a
s
im

ila
r
ity

g
r
a
p
h
(d
),
w
h
ic
h
r
e
p
r
e
s
e
n
ts
th
e
m
o
s
t

p
r
o
m
in
e
n
t
c
o
lu
m
n
r
e
la
tio

n
s
h
ip
s
a
m
o
n
g
tr
a
in
in
g
d
a
ta
.
T
h
e
s
im

ila
r
ity

g
r
a
p
h
a
n
d
th
e
jo
in

e
x
a
m
p
le
s
a
r
e
th
e
b
a
s
is
fo
r
p
r
o
d
u
c
in
g
c
o
lu
m
n
r
e
p
r
e
s
e
n
ta
tio

n
s
th
r
o
u
g
h
a
n
R
G
C
N

a
n
d
tr
a
in
in
g
a
jo
in

p
r
e
d
ic
tio

n
m
o
d
e
l,
a
s
s
h
o
w
n
in

(e
).
F
o
r
d
is
c
o
v
e
r
in
g
jo
in
s
,
w
e
r
e
p
e
a
t
s
te
p
s
(c
)
a
n
d
(d
)
fo
r
th
e
o
r
ig
in
a
l
ta
b
u
la
r
d
a
ta
s
e
ts
in

th
e
r
e
p
o
s
ito

r
y
a
n
d
u
s
e
th
e
tr
a
in
e
d

m
o
d
e
l
to

in
fe
r
jo
in
s
a
m
o
n
g
th
e
ir
c
o
lu
m
n
s
.
B
e
s
t
v
ie
w
e
d
in

c
o
lo
r.



4.4 Column Similarities as a Graph

4

77

– Training: Based on the similarity graph, OmniMatch leverages the Relational Graph

Convolutional Network (RGCN) architecture, in conjunction with the positive and negative

join examples from the first step, to train a prediction model for joins (Figure 4.3e).

– Inference on original datasets: OmniMatch is an inductive model and can adapt to new

datasets. Specifically, SiMarepeats the column pairwise feature computation and similarity

graph construction steps for the original testing repository datasets. Applying the pre-

diction model on this similarity graph, we can effectively infer joins among the tabular

datasets residing in the repository (Figure 4.3f).

Why Graph Neural Networks. The graph-based data model over the columns creates

opportunities for OmniMatch to use similarity signals that go beyond the profiles of each

column. Specifically, OmniMatch constructs a multi-relational [112] graph using columns

as nodes and edges representing various types of “relatedness” between the nodes. The fact

that an edge connects two columns indicates that they are similar according to a pairwise

similarity metric (e.g., Jaccard Index or embedding similarity). However, using different

signals to predict joinable relationships is non-trivial in such a graph. GNNs can automat-

ically extract signals from the raw input graph through a message passing mechanism.

This mechanism generates representations that aggregate diverse neighboring signals via

different relations. Specifically, OmniMatch adopts the Relational Graph Convolutional

Network (RGCN) model, a type of GNN that can effectively handle multi-relational data.

Intuitively, the joinable relationship discovery can be seen as a learning problem over the

constructed multi-relational similarity graph. The RGCN model aims to construct a new

graph that consists of the same nodes (columns) but only contains edges that connect

the joinable columns. This view is partially observed based on OmniMatch’s self-created

joinable pairs. Through its learning process, such a partial observation trains the RGCN to

gradually learn how to encode signals from a column’s profile and its 𝑘-hop neighboring

columns connected via different relatedness relations (i.e., similarity metrics). Note that

OmniMatch is inductive and can adapt to unseen datasets.

4.4 Column Similarities as a Graph
This section discusses how OmniMatch builds a graph representing column relatedness

to train a join prediction model. We first describe the similarity signals that OmniMatch

considers. Then, we show how these similarities constitute the basis for building a similarity

graph among columns of different tables and analyze the construction process.

4.4.1 Pairwise Column Similarities
A main part of OmniMatch is figuring out how similar two columns are to find possible

joins. We picked these similarity signals after many studies on column matching and

related dataset discovery. Next, we explain the set of similarity signals we used in our

method and why we use them.

Jaccard Similarity on All Tokens. Jaccard similarity is a widely used similarity metric to

assess column relatedness. Specifically, this similarity score is calculated as the size of the

intersection divided by the size of the union of the set of values included in two columns (𝐴
and 𝐵), i.e., 𝐽 (𝐴,𝐵) = |𝐴∩𝐵||𝐴∪𝐵| . Note that for computing this metric, we regard the entirety of

the cell values that a column contains, i.e., we consider all tokens. Jaccard similarity is the



4

78 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

Addr

25 Jubilee St

25 Main St

13 Traders St

2 Maple St

Address

Jubilee Street, 25

3rd Street, 13

Traders Street, 13

Elm Street, 25

JS = 0

JS Infrequent Tokens = 0.33

Embedding Similarity = 1

Figure 4.4: Using Jaccard similarity on infrequent tokens and embedding similarity on frequent tokens for

capturing fuzzy-joins.

most commonly used metric to inspect whether two columns store a considerable amount

of overlapping values, which is a strong indicator of equi-join relationships [44, 50, 51, 113].

Jaccard Similarity on Infrequent Tokens. Jaccard similarity based on the complete

formats of the values stored in columns strongly indicates an equi-join, yet it might be

ineffective in fuzzy-joins. This is because even a slight change in the formats of values in

one of the columns (e.g., St instead of Street) might cause the signal to be close to zero.

Therefore, it is helpful to include a Jaccard similarity signal based on individual tokens

stored in a column rather than on full values. To do so, OmniMatch includes a metric

recently used in a state-of-the-art dataset top-𝑘 search method [50], which we call Jaccard

similarity on infrequent tokens.

Specifically, we first tokenize the values of each column and create a histogram of

their occurrences. Then, for each value, with possibly multiple tokens, we keep as its

representative the token that has the lowest frequency. This enables us to compute Jaccard

similarity on the sets of infrequent tokens stored in each column. Intuitively, a high value

for this similarity signal indicates a strong relatedness between the corresponding columns

since they overlap on tokens that are hardly found in their value sets. Figure 4.4 depicts an

example of a fuzzy join between two columns storing addresses. Using Jaccard similarity

on infrequent tokens (i.e., street names), we can capture relatedness between these two

columns. On the contrary, Jaccard similarity on full values is zero.

Set Containment. There are multiple cases where Jaccard similarity might be a weak

signal of column relatedness, even if the size of overlapping values is relatively large for

one of the columns. Essentially, if a column with a small value set is completely covered

by another one that stores thousands of discrete values, the Jaccard similarity will be low;

indeed, the size of the intersection will be relatively much smaller than the size of the

union of values stored in the corresponding columns. To ameliorate this problem, several

methods [46, 113] employ set containment. Specifically, the set containment from column 𝐴



4.4 Column Similarities as a Graph

4

79

to column 𝐵 is defined as
|𝐴∩𝐵|
|𝐴| and indicates how many unique values from 𝐴 are included

in the intersection with 𝐵; a set containment of 1 indicates that those of column 𝐵 fully

cover values of column 𝐴. Since this similarity measure is asymmetric, in OmniMatch,

we choose to include the maximum set containment for a pair of columns (from one to

another and vice versa). This way, we include the strongest similarity signal between the

two columns. Notably, set containment is significantly effective for capturing inclusion

dependencies among columns, which is a significant step towards primary key - foreign

key (PK-FK) relationship discovery [114].

Embedding Similarity. OmniMatch is designed to rely on data instances of the tables,

when meta-data, such as curated column/table names or descriptions, is not available.

Therefore, we compute semantic relatedness for a column of pairs by using embedding

similarity of their data instances. Value-based similarity based on pre-trained word em-

bedding models, such as Glove [115] and FastText [116], has been widely used in related

dataset search [17, 50, 117, 118] to capture the semantics of values stored in the columns of

tabular datasets.

In OmniMatch, we decided to employ value-based embedding similarity between

columns by adopting the approach introduced in [50]. Specifically, for each cell value in a

column, we keep the token with the highest occurrence frequency based on the histogram

created for computing Jaccard similarity on infrequent tokens. Next, for each such frequent

token, we compute a word embedding using FastText, since it can produce representations

of any given token, regardless of whether it is included in its vocabulary. Hence, this is

a perfect fit for tokens containing misspellings or typos. The column representation is

then computed as the mean of all embeddings of frequent tokens in the column, and the

similarity between the two columns is based on the cosine similarity of their corresponding

embeddings. Frequent tokens are usually representative of the column’s domain. Hence,

basing embedding similarity on them can strongly indicate semantic relevance between

columns. For instance, in Figure 4.4 we see that embedding similarity on frequent tokens

(𝑆𝑡 and 𝑆𝑡𝑟𝑒𝑒𝑡) suggests that both columns store values from the same domain (i.e., street

addresses).

Distribution Similarity. The last signal that OmniMatch considers for a pair of columns is

their distribution similarity. Virtually, this type of similarity is often used to capture column

relatedness when their value intersection is low (i.e., Jaccard similarity is low) [32, 119],

based on the observation that columns storing values from similar domains usually have

relevant distributions. Distribution similarity can be beneficial when capturing synonymous

terms stored in different columns, which may differ syntactically since we expect them to

share similar contexts. Significantly, such a similarity signal could facilitate the discovery

of fuzzy joins in OmniMatch. Consequently, in OmniMatch, we opted for Jensen-Shanon

(JS) divergence [120] as the distribution similarity measure between two columns, adopting

it from [119] where it was found to be effective towards finding similar values for column

matching.

Note that OmniMatch can be configured to compute other similarity signals due to

its flexible design. Essentially, adding similarity signals in the method means adding new

types of edges in the similarity graph, as discussed in the following. Therefore, OmniMatch

can easily be modified to tailor the characteristics of the underlying datasets in a data

repository by extending it to include other pairwise column similarities.



4

80 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

4.4.2 Similarity Graph Construction
OmniMatch’s pairwise column similarities can provide strong indicators of join relation-

ships. However, relying solely on a single similarity metric can negatively affect the

effectiveness of a join discovery method. As we show in Figure 4.2, a column pair with a

low JS score can still be a valid join but will be missed out if a high threshold is chosen.

Moreover, some similarity measurements can become less reliable due to discrepancies in

data formats, as we have discussed in Section 4.4.1.

Similarity Signals as a Graph. OmniMatch uses these similarity signals to construct a

similarity graph, which encodes important column relatedness information and enables

OmniMatch to discover indirect join relationships. Specifically, columns from different

datasets are transformed into nodes in a graph connected with edges of different types.

Each edge type corresponds to a different similarity signal. Such a graph-based data model

allows OmniMatch to learn 𝑖) the characteristics of column profiles in join and non-join

cases, ii) whether different similarity signals contribute to a join or non-join case and iii)

whether there are graph patterns with pairwise similarity signals and column profiles that

constitute a join/non-join case.

Similarity Signals & Thresholds. Including every type of edge for each pair of nodes

would result in a complete graph that is difficult to interpret and leverage towards join

discovery. The most straightforward approach to filtering out edges would be to choose

similarity thresholds for each similarity type. However, if we employ this graph con-

struction technique, we might lose important column relatedness information (and graph

connectivity), as it is hard to assess how suitable a value for a threshold is. For example,

in Figure 4.2, using a threshold above 0.5 would filter out all possible edges between the

corresponding columns, whereas all column pairs represent a valid join relationship.

Top-k Similarity Types per Node. To ensure high graph connectivity while accounting

for different similarities, OmniMatch opts for a different approach: for each node in the

graph, it keeps only the top-k edges per node and per type based on the value of the

corresponding similarity signal. Essentially, for each node (i.e., column), OmniMatch keeps

the edges that represent the most prominent join relationships with other nodes. For

instance, if we set 𝑘 = 1 in Figure 4.2, then the only edges that will be kept are the ones

between the Cntry-Country and Country-CNTR pairs. Most importantly, in OmniMatch, the

value of 𝑘 is automatically selected based on the validation set during the training of the join

prediction model, as discussed in Section 4.6. As a result, the edges of the similarity graph

that OmniMatch constructs using the aforementioned top-𝑘 edges represent candidates
of potential join relationships between the corresponding columns. Yet, the graph is not

guaranteed to contain edges connecting every possible true column join pair (e.g., Cntry

and CNTR share no edges for 𝑘 = 1). As we see in the following section, OmniMatch tackles

this issue by taking advantage of transitive paths in the similarity graph, to capture joins

indirectly.

4.5 Graph Model Training
We denote the constructed similarity graph as  = ( , ,) with nodes (columns) 𝑣𝑖 ∈ 
and edges (𝑣𝑖, 𝑟 , 𝑣𝑗 ) ∈  , where 𝑟 ∈  is a relation type indicating one of five similarity

relation types defined in Section 4.4.1. In this section, we discuss how OmniMatch leverages



4.5 Graph Model Training

4

81

the graph  to learn column representations with GNNs. We begin by exploring the

process of creating the initial column features. Subsequently, we employ the message

passing paradigm of GNNs to calculate the aggregated column representations and provide

a detailed illustration of using RGCN in OmniMatch. Then, we explain how OmniMatch

automatically creates positive and negative column joins for training and how to use

different loss functions to guide training. Finally, we discuss how to do inference.

4.5.1 Initial Column Features
We describe a column with a collection of identified features that better represent its

characteristics [9]. We denote the initial feature vector for a column 𝑖 as 𝐱𝑖 ∈ ℝ𝑑𝑓 , where
𝑑𝑓 denotes the feature dimension. Specifically, for each column, we use a simple profiler

that summarizes statistical information about the values of a given column. We do so since

more complex information about the column contents is captured by different types of

edges among the nodes in the similarity graph. To this end, we make use of the column

profiling component from Sherlock [11] by computing statistics falling into the following

two categories:

– Global statistics. Those include aggregates on high-level characteristics of a column, e.g.,

the number of numerical values. We use the implementation
1
from Sherlock [11].

– Character-level distributions. For each of the 96 ASCII characters that might be present in

the corresponding values of the column, we save character-level distributions. Specifically,

the profiler counts the number of each such ASCII character in a column and then feeds

it to aggregate functions, such as mean, median etc. Our implementation is based on the

original character-level distributions features
2
in Sherlock [11].

4.5.2 Column Representation Learning via Message Passing
Next, we build upon the message-passing architecture of GNN, specifically RGCNs, to

capture necessary similarity signals within the graph and refine the representation of

columns.

The message passing paradigm for GNNs
Themessage passing paradigm follows an iterative scheme of updating node representations

based on the aggregation from neighboring nodes. Suppose 𝐡(𝓁)𝑖 represents the node

representation for column 𝑖 at iteration 𝓁, then the paradigm composes four parts:

1. Initialization: 𝐡(0)𝑖 = 𝑓𝜃1(𝐱𝑖),∀𝑣𝑖 ∈  . For each node 𝑖, we initialize its node represen-
tation 𝐡(0)𝑖 as a function of the feature vector defined in Section 4.5.1.

2. Message computation: 𝐦(𝓁)𝑖←𝑗 = 𝜙𝜃(𝓁)2
(𝐡(𝓁−1)𝑗 ,𝐡(𝓁−1)𝑖 ,𝐞(𝓁−1)𝑖,𝑗 ). Function 𝜙𝜃(𝓁)2

(⋅) parameter-

ized by 𝜃(𝓁)2 computes a message from each neighboring node 𝑗 to the central node

𝑖. Here, 𝐞𝑖,𝑗 denotes edge information between nodes 𝑖 and 𝑗 , which contains the

information of a specific relation type.

1https://github.com/mitmedialab/sherlock-project/blob/master/
sherlock/features/bag_of_words.py

2https://github.com/mitmedialab/sherlock-project/blob/master/
sherlock/features/bag_of_characters.py

https://github.com/mitmedialab/sherlock-project/blob/master/sherlock/features/bag_of_words.py
https://github.com/mitmedialab/sherlock-project/blob/master/sherlock/features/bag_of_words.py
https://github.com/mitmedialab/sherlock-project/blob/master/sherlock/features/bag_of_characters.py
https://github.com/mitmedialab/sherlock-project/blob/master/sherlock/features/bag_of_characters.py


4

82 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

3. Neighbor aggregation: 𝐦(𝓁)𝑖 = 𝜓𝜃(𝓁)3
({𝐦(𝓁)𝑖←𝑗 |𝑗 ∈𝑖}). This step aggregates the messages

received from all the neighboring nodes defined by 𝑖 to form a comprehensive

message for node 𝑖. 𝜓𝜃(𝓁)3
(⋅) is the function parameterized by 𝜃(𝓁)3 that aggregates

messages.

4. Message transformation: 𝐡(𝓁)𝑖 = 𝑓𝜃(𝓁)4
(𝐡(𝓁−1)𝑖 ,𝐦(𝓁)𝑖 ). Function 𝑓𝜃(𝓁)4

(⋅) parameterized by

𝜃(𝓁)4 transforms the aggregated information into an updated representation for node

𝑖.

In summary, the GNN message-passing paradigm initializes node representations,

computes messages between neighboring nodes, aggregates these messages, and transforms

the aggregated information to update node representations in an iterative manner. a column

gains the ability to receive a greater number of relevant messages from its neighbors at the

𝐿th-hop. This enables us to delve into high-order connectivity information and enhance our

understanding of intricate relationships within the data. Such high-order connectivities are

crucial to encode the similarity signal to estimate the joinable score between two columns.

The parameters 𝜃1, 𝜃(𝓁)2 , 𝜃(𝓁)3 , and 𝜃(𝓁)4 are adjustable based on different GNN architectures

and can be learned during the training of GNN.

Relational Graph Convolutional Network (RGCN)
In SiMa, we leverage the power of the RGCN model to effectively capture multi-relational

and multi-hop neighboring features.

Node feature initialization. We set the initial value of 𝐡(0)𝑖 as 𝐱𝑖 in ℝ𝑑𝑓 , with an empty

parameter set 𝜃1.
Message Computation. Intuitively, the neighboring columns in a similar graph can give

more clues about the semantic meaning of a column. We build upon this basis to encourage

message feature propagation between linked columns under different types of similarity

relations as follows. In SiMa, we use linear transformations as the encoding function:

𝐦𝑟
𝑖←𝑗
(𝓁) =

1
| 𝑟

𝑖 |
(𝐖(𝓁)𝑟 𝐡

(𝓁−1)
𝑗 +𝐛(𝓁)𝑟 )+

1
∑𝑟∈ | 𝑟

𝑖 |
(𝐖(𝓁)0 𝐡

(𝓁−1)
𝑖 +𝐛(𝓁)0 ), (4.1)

where𝐖(𝓁)𝑟 ∈ℝ𝑑
(𝓁)
ℎ ×𝑑

(𝓁−1)
ℎ is a weight matrix for relation 𝑟 , which transforms a column feature

vector of dimension 𝑑(𝓁−1)ℎ to a hidden dimension 𝑑(𝓁)ℎ . There is also a different weight matrix

𝐖0 ∈ ℝ𝑑
(𝓁)
ℎ ×𝑑

(𝓁−1)
ℎ that helps preserve some of the original information (residual connection).

So, we have 𝜃(𝓁)2 = {𝐖(𝓁)𝑟 ,𝐛(𝓁)𝑟 ,𝐖(𝓁)0 ,𝐛
(𝓁)
0 }. 𝐛(𝓁)𝑟 and 𝐛(𝓁)0 are the bias vectors.  𝑟

𝑖 stands for

the set of neighboring columns of 𝑖 under relation 𝑟 ∈ and∑𝑟∈ | 𝑟
𝑖 | indicates the total

number of neighbors under all types of similarities. Thus, the coefficient scalar controls

the number of messages being propagated based on the degrees of the node under each

relation.

Neighbor Aggregation. In the aggregation stage, messages from neighboring columns

are passed to the target column via different types. This helps refine the understanding of

our target column 𝑖:
𝐦(𝓁)𝑖 = 𝜎(∑

𝑟∈
∑
𝑗∈ 𝑟

𝑖

𝐦𝑟
𝑖←𝑗
(𝓁)), (4.2)



4.5 Graph Model Training

4

83

After computing the aggregated specific messages, we sum the messages from all types

and pass the output to a non-linear function 𝜎(⋅). Here 𝐦(𝓁)𝑖 denotes the representation of

column 𝑖 after aggregating 𝓁 column propagation layers. We use sigmoid as the activation

function 𝜎(⋅), since it allows messages to encode positive signals and filter the negative

ones.

Message Transformation. We use the residual connection without any additional param-

eters to update the node representation. In addition to the messages propagated from the

neighbors under different similarity channels, we consider the self-connection of 𝑖, which
retains the information of the original column features:

𝐡(𝓁)𝑖 = 𝐡
(𝓁−1)
𝑖 +𝐦(𝓁)𝑖 . (4.3)

At the 𝐿-th layer, the node representations are 𝐡(𝐿)𝑖 ,∀𝑣𝑖 ∈  .

4.5.3 Generating Training Examples
Training our prediction model requires join (positive) and non-join (negative) labels. To

do so, OmniMatch takes a self-supervised approach, leveraging positive and negative

join examples that are automatically generated from the tabular data in the repository.

Specifically, for each table in the input, OmniMatch adopts a join pair fabrication process,

similar to the ones described in [17, 62, 71]. Specifically:

• We randomly pick some columns from the input table that the derived pair of datasets

will share.

• Then, we split the original dataset’s rows into two randomly overlapping sets. Conse-

quently, we create a pair of datasets with a random number of columns and rows.

• To simulate fuzzy-joins, we randomly perturb the data values of one of the two created

datasets. We do so only for instances belonging to columns that are shared among the

generated tables. To perturb the data values, we either i) insert random typos based on

keyboard proximity (e.g., science becomes scienxe) or ii) use common alternative values

formats for specific column cases (e.g., dates, money amounts, street addresses, etc.).

Based on the above join generation process, we create a pair of joinable tables for each

original dataset in the repository (Figure 4.3b). The columns that join in these pairs are

used as positive training examples, while the rest of the column combinations between the

two tables are regarded as negative join examples. Note that with this generation process,

the derived pairs will share joins of various overlaps and fuzziness, ensuring that our model

is effective is several join scenarios.

4.5.4 Loss Functions
To refine the column representations produced from the RGCN, OmniMatch leverages the

automatically created positive and negative join examples to train a prediction model. In

what follows, we describe two alternative training procedures that are characterized by

different loss functions.



4

84 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

Training with cross-entropy loss. In this training procedure, the model’s goal is to

optimize the following cross-entropy loss function:

 = − ∑
(𝐴,𝐵)∈

𝑤𝑝 ⋅ log𝜎(𝑠𝑖𝑚(𝐡(𝐿)𝐴 ,𝐡(𝐿)𝐵 )) − ∑
(𝐴,𝐵)∈

log(1−𝜎(𝑠𝑖𝑚(𝐡(𝐿)𝐴 ,𝐡(𝐿)𝐵 ))), (4.4)

where 𝜎(⋅) is the sigmoid function, while  and  are the sets of positive and negative

column join examples. Notably, the parameter 𝑤𝑝 is the weight we use to balance the

positive and the negative examples, which we set as the ratio of negative to positive

join examples in training. The similarity scores are computed by feeding pairs of RGCN-

produced column representations to a Multi-layer Perceptron (MLP), whose parameters are

also learned during training to give correct predictions. With this model training, we aim

to compute column representations (using RGCN), so we can build a similarity function

(through MLP) that scores join examples higher than non-join ones.

Training with triplet margin loss. An alternative for proceeding with training is using

the triplet margin loss function:

 = ∑
(𝐴,𝐵+ ,𝐶−)

max{𝑑(𝐡(𝐿)𝐴 ,𝐡(𝐿)𝐵+ )− 𝑑(𝐡
(𝐿)
𝐴 ,𝐡(𝐿)𝐶− )+𝑚𝑎𝑟𝑔𝑖𝑛, 0}, (4.5)

where 𝑑(⋅, ⋅) is a vector distance function, and 𝑚𝑎𝑟𝑔𝑖𝑛 is a positive value. For each column,

we consider one column that joins (denoted by +) and all others that do not join (denoted

by −) based on the generated dataset pairs. Intuitively, training to minimize the triplet

margin loss helps the RGCN learn to bring the representations of columns that join, closer

than the ones that do not.

4.5.5 Training and Inference of Join Predictions
Figure 4.5 summarizes OmniMatch’s training and inference procedures. We derive a pair

of joinable pairs for each original dataset in the repository, as discussed in Section 4.5.3.

Based on the derived tables, our method first computes all pairwise column similarities

and constructs the similarity graph. Then, the join prediction model training process is

applied to the constructed graph, where learning is guided by one of the two loss functions,

as described in Section 4.5.4.

While the join-prediction model-training process occurs on the derived dataset pairs,

our objective is to discover joins among the columns of the original datasets in the data

repository. To this end, OmniMatch builds the similarity graph based on the pairwise

similarities of columns belonging to the original tabular datasets (right part in Figure 4.5).

Based on the connectivity information of this graph, the trained RGCN model can be

straightforwardly applied to retrieve the representations of columns: message aggregation

takes place once to infer the column embeddings based on the weight matrices learned

during training. As a last step, OmniMatch uses the column representations to produce

a joinability score between each pair of columns coming from different datasets in the

repository; the joinability score depends on the loss function used to guide the learning

process (Section 4.5.4).



4.6 Experimental Evaluation

4

85

Repository of Original Datasets

Derive Joinable Pairs 
Per Original Dataset

Build Similarity
Graph of Columns 

from Original Datasets

Build Similarity Graph of Columns from Derived Pairs and
Fetch Joinable/Non-Joinable Columns for Training

= Joinable Columns per Pair

= Non-Joinable Columns per Pair

Train Join
Prediction Model

Use Trained Model 
For Inference 

T1

T2

T3

I1

I2

Figure 4.5: For training, OmniMatch fabricates pairs of joinable datasets (T1) from each original one in the

repository to build a similarity graph (T2) for training the join prediction model (T3). For inference, OmniMatch

constructs the similarity graph of the columns stemming from the original datasets (I1) and uses the trained

model for inference on it (I2).

4.6 Experimental Evaluation
In this section, we present a comprehensive set of experiments that showcase the effec-

tiveness of OmniMatch. First, we describe the join discovery benchmarks and baseline

methods against which we evaluate our method. Then we provide the experimental results

that demonstrate i) the gains in effectiveness with respect to state-of-the-art methods

when using OmniMatch, ii) how OmniMatch’s prediction model compares to using other

models and iii) how different similarity signals are related to the model’s effectiveness. We

summarize our main results as follows.

• OmniMatch is considerably more effective than state-of-the-art column matching and

column representation methods.

• We showcase that utilizing only one similarity signal reduces OmniMatch’s effectiveness.

The degree of reduction depends on the characteristics of the underlying datasets.

• OmniMatch’s choice of using RGCNs for leveraging the set of similarity signals is superior

to using alternative ML models.

4.6.1 Experiment Setup
Datasets. We construct two realistic join benchmarks to properly evaluate the effective-

ness of OmniMatch and the other methods. Table 4.1 summarizes the statistics of both

benchmarks. We explored the New York City OpenData
3
, specifically the City Government

3https://opendata.cityofnewyork.us/

https://opendata.cityofnewyork.us/


4

86 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

OmniMatch
DeepJoin (MPNet)
Starmie (BERT)
COMA (Matching)
DB (Matching)

(a) City Government

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OmniMatch
DeepJoin (MPNet)
Starmie (BERT)
COMA (Matching)
DB (Matching)

(b) Culture Recreation

Figure 4.6: Effectiveness comparison of OmniMatch with the state-of-the-art methods.

Benchmark #Tab. #Col. #Equi-
Joins

#Fuzzy-
Joins

City Government 110 703 1451 128

Culture Recreation 120 687 1254 256

Table 4.1: Statistics of the evaluation benchmarks. ‘Tab.’ stands for ‘Table’ and ‘Col.’ stands for ‘Column’.

and Culture Recreation tabular data repositories. The City Government benchmark consists

of 110 tables derived by 11 denormalized tables using techniques of [17, 62], i.e., horizontal

and vertical partitions. Similarly, the Culture Recreation benchmark consists of 120 tables

derived from 12 denormalized tables. Most columns in both benchmarks store mainly

categorical and text data. At the same time, a few cases of numerical data are mostly

distinguishable based on their value sets, i.e., with minimal/empty overlaps.

Ground Truth. To measure effectiveness, we manually annotated column join relation-

ships (both equi and fuzzy ones) among the corresponding base tables of the benchmarks.

Based on these annotations, we automatically generated the ground truth for column

pairs among all tables included in both benchmarks. Nonetheless, to secure the validity

of the captured fuzzy join relationships in the ground truth, we manually inspected their

correctness to avoid false positives.

State-of-the-art Baselines. We compare OmniMatch against the two best-performing

column matching methods, according to a recent study [62], and the state-of-the-art

contextualized column representation method for capturing relatedness among columns,

described below.

– COMA [29] is a seminal matching method that takes into consideration multiple sim-

ilarity scores, from both metadata and data instances [25]. COMA’s effectiveness relies

on processing these similarity signals from simple metrics to decide on possible column

matches. In our evaluation, we make use of the COMA 3.0 Community Edition.

– Distribution-Based (DB) Matching [32] is an instance-based column matching method. The

method constructs clusters using the Earth Mover’s Distance (EMD) to capture relatedness



4.6 Experimental Evaluation

4

87

among columns of different tabular datasets. During cluster refinement, the method

considers exact value overlaps between column pairs to avoid false positives. To include

the DB matching method in our experiments, we use the implementation provided by

Valentine [62].

– Starmie [86] is a state-of-the-art dataset discovery method. It contextualizes column

representations (embeddings) to facilitate unionable table search in data lakes. The method

employs a multi-column table encoder that serializes instances from tables to feed them

into a pre-trained Language Model (LM) (specifically, the authors use RoBERTa [102]).

Starmie uses contrastive learning [103] to produce column representations that capture

dataset relatedness. In our evaluation, we use Starmie, as shared in a public repository
4
, to produce contextualized column representations for the datasets in the input. We

then compute the pairwise cosine similarity of the column embeddings among different

datasets. To produce the best results for Starmie, we fine-tuned its parameters for both

join benchmarks.

– DeepJoin [121] proposes a state-of-the-art deep learning model for dataset discovery,

which leverages a pre-trained LMs (the authors use MPNET [? ] since it produces the best
results), similarly to Starmie [86], in order to produce fine-tuned column representations

for joinable table search in data lakes. Specifically, DeepJoin serializes columns as sentences

by concatenating their values. These sentences are then fed to a sentence transformer

[? ] model to produce initial vector representations of the corresponding columns. To

fine-tune them for joinable dataset search, DeepJoin trains an embedding model based

on a set of positive join pairs, and towards minimizing the multiple negative ranking loss;

the set of positive join pairs is computed based on a similarity join method of choice

and a high threshold to ensure lower numbers of false positives. For the needs of our

evaluation, we train the DeepJoin model based on the Sentence-BERT
5
library, to produce

column representations. As in the case of Starmie, we use pairwise cosine similarity as the

joinability score between two columns, while we fine-tune DeepJoin’s parameters to get

the best results; positive training pairs are generated based on pairwise cosine similarity of

initial column representations (≥ 0.9 to ensure high true positive rates).

Other ML Predictive Methods. We also evaluate the strength of OmniMatch’s graph

model and RGCN architecture by comparing it to other straightforward column join

prediction models that make use of the same features (pairwise similarities) but do not

take the graph information into account. Namely:

– Random Forest considers only the column pairwise similarities and the positive and

negative join training examples that our method computes to train a binary classification

method, similar to [55]. For our experiments, we use the random forest implementation

from sklearn [122] Python toolkit, for both training and inference, with 100 decision

tree classifiers.

–MLP uses the same information as the Random Forest baseline but feeds them to a shallow

Multi-Layer Perceptron (MLP) binary classification model. Specifically, we use an MLP

with one hidden layer, which takes input as the pairwise similarities and learns to predict

joins between the corresponding columns.

4https://github.com/megagonlabs/starmie
5https://www.sbert.net/

https://github.com/megagonlabs/starmie
https://www.sbert.net/


4

88 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

Measuring Effectiveness. We use Precision-Recall (PR) curves to evaluate the effectiveness

of OmniMatch and the other baseline methods based on the final join prediction scores for

each column pair among different datasets in the benchmarks. PR curves are suitable for

illustrating effectiveness results when there is an imbalanced distribution of labels in the

test set. Indeed, in our case, the number of non-joinable column pairs is significantly higher

than the number of joinable ones for both benchmarks, as happens in every real-world data

repository. A significant advantage of using PR curves is that we can observe effectiveness

for varying similarity thresholds, thus making the presentation non-biased. PR curves can

help us observe how different similarity thresholds affect a method’s performance; stable

precision for increasing recall values means that the method’s effectiveness is robust to

different similarity thresholds. We also report the best F1 and PR-AUC scores to summarize

the results shown in PR curves.

Tuning OmniMatch. We configure OmniMatch by running experiments when varying

the model’s parameters. By doing so, we came to the following conclusions.

– Graph Construction: We trained OmniMatch’s join prediction model for different values

of top-𝑘 edges that we consider in the graph for each node and similarity signal to assess

changes in effectiveness. Our results showed that using values greater than 5 did not

improve our model’s effectiveness. To automatically decide on the value of 𝑘 that gives the
best results for each benchmark, we use a validation set that we exclude from the training

column pair samples.

– Number of RGCN Layers: We evaluated how the number of layers (i.e., range [1, 3])
used for training the RGCN affects OmniMatch’s performance. Our results showed that

using two layers provides the highest effectiveness gains, meaning that OmniMatch’s

model benefits from looking one hop away from each node (column). This verifies our

intuition that leveraging transitivity in the similarity graph improves the quality of the

join predictions.

– Number of Epochs: We trained OmniMatch for several epochs and used loss curves with

a 90:10 training/validation data split. Notably, using more than 30 epochs does not

incur considerable changes in the training/validation losses. Therefore, for the rest of the

experiments, we train OmniMatch for 30 epochs; the same stands for the Random Forest

and MLP baselines.

– Dimension of Embeddings: We assessed the influence on OmniMatch’s effectiveness when

producing column representations of varying dimensionality through the RGCNmodel. We

ran experiments with {32, 64, 128, 256, 512} dimensions and found that column

embeddings of 256 dimensions produce the best results.

– Initial Node Features: We evaluated how the initial node features we use for training

the RGCN affect the performance of OmniMatch. Instead of using the proposed node

features, we generated random feature vectors for each node of the same length as the

RGCN’s dimension of embeddings. Results verified the effectiveness of our node feature

initialization process, as we observed a decrease of more than 10% in terms of PR-AUC

scores when using randomized initial node features.

– Loss Function: As we discussed in Section 4.5, our training process can be guided using two

different loss functions: i) cross-entropy loss and ii) triplet margin loss. Thus, we evaluated

the effectiveness of the prediction model when employing a different loss function in both

benchmarks. Notably, the results show that using triplet margin loss can greatly improve



4.6 Experimental Evaluation

4

89

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OmniMatch
Random Forest
MLP

(a) City Government

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OmniMatch
Random Forest
MLP

(b) Culture Recreation

Figure 4.7: Effectiveness comparison of OmniMatch with other ML-models.

Best F1 Scores
Benchmark OmniMatch Starmie DeepJoin COMA DB
City Government 0.857 0.781 0.819 0.720 0.803

Culture Recreation 0.894 0.759 0.681 0.744 0.708

PR-AUC Scores
Benchmark OmniMatch Starmie DeepJoin COMA DB
City Government 0.920 0.798 0.820 0.733 0.760

Culture Recreation 0.921 0.765 0.763 0.786 0.680

Table 4.2: Best F1 and PR-AUC scores comparison of OmniMatch and the state-of-the-art baselines.

the effectiveness as opposed to the cross entropy loss; its ability to bring closer column

representations of joinable pairs while setting apart the ones of non-joinable pairs helps

OmniMatch to better distinguish between the two cases.

Implementation details. For training, we use the Adam optimizer [105] with a learning

rate of 0.001, while we use an MLP of one hidden layer when employing OmniMatchwith

a cross-entropy loss. OmniMatch is implemented in Python; we used Amazon’s in-house

Deep Graph Library (DGL) [106] on top of PyTorch. We use an AMD EPYC 7H12 Linux

machine with 128 2.60GHz cores and an NVIDIA A40 GPU.

4.6.2 Comparison to State-of-the-Art Baselines
In Figure 4.6, we show how OmniMatch compares against the state-of-the-art methods

(Section 4.6.1) in terms of effectiveness using Precision-Recall curves. First, our method

significantly outperforms the baselines since it can consistently provide high precision

values even for recall values close to 0.8. Essentially, our method achieves high precision

no matter the similarity threshold (except for very low ones), thus securing the quality of

the returned joins. Interestingly, the column matching methods (COMA and DB) give low



4

90 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

Best F1 Scores
Benchmark OmniMatch Random Forest MLP
City Government 0.857 0.827 0.813

Culture Recreation 0.894 0.862 0.755

PR-AUC Scores
Benchmark OmniMatch Random Forest MLP
City Government 0.920 0.805 0.788

Culture Recreation 0.921 0.835 0.618

Table 4.3: Best F1 and PR-AUC scores comparison of OmniMatch & other ML models.

precision even for recall values that are not high, i.e., when the similarity thresholds are

high. The reason is that these methods rely on a limited set of similarity signals based on

data instances, which do not account for value semantics and syntactic differences, leading

to false join predictions. Their results get worse in the Culture Recreation benchmark due

to its more difficult join cases among column pairs of different datasets.

On the other hand, Starmie, with its contextualized column representations, does not

deliver high precision for recall values above 0.6. This mainly happens due to the counter-

intuition behind contextualized column representations and join discovery: columns that

join among different columns do not necessarily share similar contexts. In addition, the

training examples produced by Starmie do not account for value discrepancies (i.e., fuzzy

joins). Similarly, DeepJoin embeddings entail low precision for high recall, especially in the

case of the Culture Recreation benchmark. This is mainly due to the positive and negative

pairs on which the model is trained, which are not guaranteed to be accurate. On the

contrary, SiMa avoids this issue by relying on a training example generation that ensures

true positive and negative pairs (Section 4.5.3). Furthermore, challenging join cases, where

value overlaps are relatively small, are difficult to be captured by DeepJoin, since it cannot

propagate various similarity signals as our graph model.

In Table 4.2, we summarize the effectiveness of OmniMatch and the other methods

by showing the best F1 and PR-AUC scores. Results verify that OmniMatch is the most

effective method for both join benchmarks across all similarity thresholds. This finding is

of high importance, as the effectiveness of the other methods can fluctuate depending on

the underlying datasets.

Takeaways: i) OmniMatch is consistently more effective than the state-of-the-art baselines,

and ii) other methods exhibit low precision when the recall is high, while OmniMatch

provides far fewer false join predictions.

4.6.3 Comparison to Other ML Models
We assess the gains in effectiveness of OmniMatch’s training model in comparison to

other ML baselines that utilize only the column pairwise similarities. Figure 4.7 shows the

Precision-Recall of our method compared to the Random-Forest (RF) and MLP models for

both join benchmarks. The main observation here is that, regardless of the underlying



4.6 Experimental Evaluation

4

91

datasets, OmniMatch’s join prediction model is superior to the other two, as it achieves

considerably higher precision for the majority of recall values; the RF model achieves

higher precision only when the similarity threshold is too low (thus, a threshold that

would not be used in a realistic scenario). This result highlights the effectiveness of our

graph modeling: OmniMatch’s RGCN column representations better capture column join

relationships and avoid false positive predictions of models that rely only on the column

pairwise similarities.

Results in Table 4.3 verify OmniMatch’s improvements in overall effectiveness as

opposed to using less sophisticated ML models. Specifically, our method produces the

highest overall F1-score, i.e., it can predict more accurate join relationships than pairwise

similarities in conjunction with either an RF or MLP model. In addition, the high PR-AUC

scores further showcase that OmniMatch consistently achieves high precision regardless of

the similarity threshold used to decide whether a column pair represents a valid join. In

contrast, using only the column pairwise similarities cannot help the RF and MLP models

to capture less direct join relationships, while it can critically increase false-positive rates.

Takeaway: OmniMatch’s prediction model, using the column representations produced

by the RGCN model, leverages column pairwise similarities to result in significantly better

effectiveness than less sophisticated prediction models.

4.6.4 Ablation Study: Effect of Similarity Signals
We evaluate the power of using multiple similarity signals to construct our graph, in

contrast to considering single ones. In Figure 4.8, we show the percentage decrease in

the best F1-score achieved by OmniMatch when considering only one similarity signal

per run. First, in Figure 4.8, we see that the results support our intuition: using only one

signal to build the similarity graph considerably affects the ability of our model to decide

correctly on whether a column pair represents a join. Indeed, relying on single similarities

incurs drops in the best F1 scores achieved due to increasing false positive rates. Moreover,

many valid column join cases in our benchmarks have yet to be discovered by OmniMatch

when employing single similarity signals due to information loss of transitive paths in the

constructed similarity graph. For instance, using only Jaccard similarity can severely harm

the effectiveness of capturing fuzzy joins since it checks only for exact value overlaps.

In addition, a crucial observation here is that the percentage decrease vastly relies

on the underlying datasets and column joins to be captured. As we see in Figure 4.8, the

drop in best F1-scores is significantly higher on the Culture Recreation benchmark with

percentage decrease values of at least 10%. This is due to the following two reasons: i)

there are column pairs in this benchmark that share (partial) value overlaps (e.g., dates),

whereas they do not represent join relationships and ii) most column joins in the City

Government benchmark are more distinguishable, i.e., a potential (partial) value overlap

strongly indicates a valid join.

No similarity signal consistently incurs larger/smaller effectiveness drops across the two

join benchmarks. For instance, using only set containment leads to the lowest percentage

decrease in the best F1 score for the Culture Recreation benchmark and the highest for

the City Government one. This observation reinforces our claim that no similarity signal

can be fully trusted when isolated from the rest since its effectiveness depends on the



4

92 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

Jac
car

d 

 Similar
ity

Set 

 Contain
ment

Jac
car

d 

 Infre
quent

Embedding 

 Similar
ity

Distr
ibution

 

 Similar
ity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 D

ec
re

as
e 

(%
)

City Government
Culture Recreation

Figure 4.8: Reduction (in Percentage Decrease) of best F1-scores when OmniMatch considers a single similarity

signal.

characteristics of the underlying datasets. Only the complete set of similarity signals used

in OmniMatch can provide the best join discovery results.

Takeaways: i) using a single similarity signal incurs a notable decrease in effectiveness,

and ii) OmniMatch’s consistency is strongly connected to using a comprehensive set of the

proposed similarity signals.

4.6.5 OmniMatch Execution Times
While we consider any-join discovery as an offline procedure in data repositories (as

opposed to online procedures such as dataset search in data lakes), for the sake of complete-

ness we report in Table 4.4 the execution times of OmniMatch for both join benchmarks.

Specifically, we report the time for the steps we show in Figure 4.5, i) generating joinable

pairs and transforming them into a similarity graph (T1 + T2), ii) training OmniMatch’s

join prediction model (T3), iii) building the similarity graph based on the original datasets

(I1), and iv) using the trained model for inference on it (I2). As expected, we see that the

main bottleneck of our method is the similarity graph construction both for training and

inference: computing the set of similarity signals and the initial node features for all column

pair combinations for different datasets entails numerous column pairwise operations; yet,

accelerating these computations is a trivial issue that is not in the scope of this work (e.g.,

when multiple cores are available they can be parallelized). On the other hand, we see

that training times in both benchmarks are relatively small, especially when we consider

that training takes place on a CPU; notably, training of state-of-the-art column embedding

methods [86, 121] requires access to a GPU. Finally, the discrepancies we observe between

the two benchmarks are due to the different number of columns and complexities of values

stored in them.



4.7 Related Work

4

93

Benchmark T1 + T2 T3 I1 I2 Total
City Government 48.8 7 53.6 0.5 109.9

Culture Recreation 23 8.4 8.7 0.5 40.6

Table 4.4: OmniMatch execution times in minutes (CPU). T1-T3 and I1,I2 represent different steps of our method

as shown in Figure 4.5.

4.7 Related Work
We have already gone through essential works in Section 4.1 and Section 4.6. In this

section, we discuss related work relevant to join discovery, including schema matching

(Section 4.7.1) and dataset search/discovery (Section 4.7.2).

4.7.1 Schema Matching
Traditional Matching Methods. Schema matching on tabular data includes automated

methods for capturing relevance between columns of dataset pairs [21]. These methods are

mainly categorized into four categories: i) schema-based matching methods [27, 28] take

into consideration only metadata at the schema level, such as column names, types etc., ii)

instance-based methods that rely on the instances stored in the datasets to capture similarity

among their columns, using signals like distribution similarity [32], value overlaps and

patterns [25], iii) hybrid ones that incorporated schema with instance information to

predict column matches [29], and iv) usage-based methods that rely on query logs to build

relatedness graphs among columns of datasets [52].

OmniMatch is a self-supervised, instance-based method that can be used for any-join

discovery. Contrary to other schema matching methods, OmniMatch is the first one to

create column representations with RGCNs making use of multiple similarity metrics,

outperforming COMA by 14% on average (Section 4.6).

Embedding-based Matching. Multiple embedding-based column matching methods

have emerged, applying widely used methods for producing word embeddings to encode

table columns into the vector space and then to identify related columns in that space

(e.g., with vector cosine similarity). To this end, pre-trained models such as Word2Vec [69]

and FastText [91], have been applied to embed either column names [16] or cell-values

[17]. In addition, locally-trained embedding methods [30, 33, 85] leverage the architecture

of skip-gram models [69, 91] used in NLP, with extra pre-processing steps. Despite the

seamless employment of methods using pre-trained models [16, 17], or locally-trained

embedding methods [30, 33, 85], they still seem to be insufficiently effective when used for

matching related columns [62]. The latest and state-of-the-art embeddings-based method

Starmie [86] and DeepJoin [121], use Large Language Models (LLMs) and fine-tune them

to create column embeddings for the needs of dataset discovery (unionable and joinable

respectively).

Complementary to these methods, OmniMatch can use pairwise similarity metrics

extracted from embedding-based methods (e.g., FastText value embeddings on infrequent

tokens as discussed in Section 4.4.1). In our evaluation, we showcase our method’s superior

performance (14% higher F1 and PR-AUC scores) with respect to the state-of-the-art



4

94 4 Self-Supervised Any-Join Discovery in Tabular Data Repositories

contextualized column embeddings methods [86, 121].

4.7.2 Related Dataset Search/Discovery
Given a dataset 𝑄 as a query, dataset search methods focus on returning the top-𝑘 related
datasets for 𝑄. Relatedness refers to either table unionability [17, 50, 86, 87] or table

joinability [44, 71, 117]. Typically, related-dataset search methods use column similarity

signals (as used in schema matching methods [62]) between column pairs to generalize

relatedness scores between datasets. Contrary to top-𝑘 dataset search that focuses on

returning the top-𝑘 dataset, given a query dataset, OmniMatch focuses on the problem of

column joinability discovery (returns pairs of joinable columns, not datasets). At the same

time, OmniMatch draws inspiration from pairwise column similarities that have been used

in the related dataset search literature (Section 4.4.1). In addition, we have adapted column

embeddings from the state-of-the-art dataset discovery methods Starmie [86] and DeepJoin

[121], for the needs of returning joinable column pairs as described in Section 4.6, where

SiMa outperforms them by 14% in F1 and PR-AUC scores.

4.8 Conclusion
In this chapter, we introduced OmniMatch, a novel self-supervised method that captures

joins of any kind across tabular data of a given repository. OmniMatch leverages a com-

prehensive set of similarity signals and the transitive power of a graph model to learn

column representations based on an RGCN. Notably, our method can automatically gener-

ate positive and negative join examples to guide the learning process. Our experimental

evaluation shows that OmniMatch is considerably more effective than state-of-the-art

column matching and representation methods. In contrast, our prediction model based

on RGCNs is substantially more accurate than others. In addition, we justify the gains of

using the comprehensive set of similarity signals we propose.



5

95

5
Conclusion

In this thesis, we investigated the problem of schema matching on tabular data for a variety

of settings. Schema matching is an integral process for many important applications,

which can critically affect the performance of their respective pipelines. Therefore, several

methods have been proposed, spanning a period of more than two decades, either solely

targeting the problem of column matching for tabular datasets or proposing matching

solutions towards the goals of a specific application, such as dataset discovery. Nevertheless,

we identified three main research gaps that led to our contributions: i) the absence of

a thorough and detailed comparison of state-of-the-art methods, which impedes their

utilization and further development of novel approaches, ii) the need for matching methods

that can leverage existing column matches and can be applied effectively in modern

settings where datasets might be stored in separate data silos, and iii) the insufficiency and

impracticality of existing methods for join discovery among datasets of a data repository. In

what follows, we summarize our findings and reflect on our contributions towards tackling

the aforementioned research gaps. We conclude this chapter by briefly discussing future

directions and open challenges in the field of tabular schema matching.

5.1 Main Findings
5.1.1 Evaluating Schema Matching Methods on Tabular Data
In Chapter 2, we presented our efforts towards developing a schema matching experiment

suite, considering the following research question:

RQ-1: How do state-of-the-art schema matching approaches on tabular data compare,

in terms of effectiveness and efficiency? How to evaluate them towards the goals of

modern dataset discovery methods?

To answer RQ-1, we implemented and integrated six state-of-the-art schema matching

methods in a unified and extensible experimentation suite, which we call Valentine. To

properly guide the evaluation of the methods towards the goals of modern dataset discovery

methods, we surveyed the literature and distilled four main dataset pairwise relatedness

scenarios: i) joinable, ii) semantically-joinable, iii) unionable, and iv) view-unionable

datasets. Due to the absence of available evaluation dataset pairs with ground truth, we



5

96 5 Conclusion

developed a dataset fabricator, tailored to the aforementioned relatedness scenarios. To

the best of our knowledge, we proceeded to the most comprehensive effectiveness and

efficiency evaluation of schema matching methods (∼75K experiments), by testing several

configurations of the included matching methods and applying them on dataset pairs of

variable levels of difficulty.

Our findings confirmed that there is not a single schemamatchingmethod that performs

better than the other ones, regardless the underlying datasets. In fact, while we saw that

COMA [29] performed better across our fabricated dataset pairs, the Distribution-based

matching method [32] showed better effectiveness for the real world dataset scenarios we

tested. On the other hand, we observed that pre-trained embeddings for capturing column

relevance should only be used in conjunction with other similarity metrics and not as a

stand-alone solution. Notably, our evaluation showed that simple baselines employing

standard set similarity metrics can achieve comparable results to state-of-the-art techniques.

From our efficiency experiments we concluded that schema matching methods leverag-

ing instance data are considerably expensive, due to column pairwise similarity calculations;

even when possessing considerable computing power, we observed that some methods

might run for several hours for a set of pairwise matching scenarios. Finally, to obtain the

best results possible for each method, we needed to perform a grid-search on the possible

combinations of values for the parameters they use, which mainly constitute similarity

thresholds. Consequently, this deems schema matching methods to be impractical, since

their performance relies on fine-tuning of such parameters with respect to the specific

characteristics of the datasets.

The lessons learned from the results of our experimental study considerably affected our

design decisions for the development of the novel matching methods that we introduced

in this thesis.

5.1.2 Capturing column relationships among data silos
Following our experimental study on schema matching methods, in Chapter 3 we focused

on a specific modern setting, where datasets belong to different data silos while column

matches are known inside each of them. In this context, we examined the following research

question:

RQ-2: How can we leverage existing column relationships within silos to predict

similar ones across silos? Can we do this efficiently and effectively?

We addressed RQ-2 by proposing SiMa, a novel approach that captures column rela-

tionships across tabular data stored in disparate data silos. Particularly, SiMa leverages

existing column relationships inside silos by using them to train a model that accurately

predicts column matches across them. Towards this direction, we transform columns and

matches in each silo into a graph, where the first are represented as nodes and the latter as

edges among them. In addition, we compute column profiles (based on their values) to use

as initial node features, which in conjunction with our proposed negative edge sampling

strategies enable the training of a column relationship prediction model based on GNNs.

We further propose an incremental training scheme, where the model is trained separately

in each data silo, to boost the learning process and decrease training times.

In our experimental evaluation, we first verified the validity of our proposed negative



5.1 Main Findings

5

97

sampling and incremental training scheme strategies. Indeed, we observed that negative

sampling resulted into better effectiveness of SiMa as opposed to using all possible neg-

ative examples during training; balancing positive with informative negative examples

considerably helps the model disambiguate between valid and false column relationships.

Moreover, the incremental training scheme seemed to enhance the model’s ability to accu-

rately capture column matches, while it improved the execution time. When comparing

SiMa with state-of-the-art schema matching methods and approaches from the dataset

discovery literature, we saw that it outperforms them both in terms of effectiveness and

efficiency; moreover, SiMa’s GNN-based model showed better results than other ML models

using the same training examples.

SiMa’s positive effectiveness and efficiency results confirmed that it is possible to build

a method that leverages existing column matches, which outperforms state-of-the-art

approaches that proceed in an unsupervised manner.

5.1.3 Any-join discovery in data repositories
Informed by the benefits of using a graph-based approach towards capturing column

relatedness, in Chapter 4 we turned our focus on the problem of discovery equi- and

fuzzy-joins among datasets belonging to the same repository. Essentially, our efforts were

led by the following research question:

RQ-3: How can we discover both equi- and fuzzy-join relationships among columns of

tabular data in a data repository? Can we effectively discover such joins even when

the quality of the metadata is low, or the metadata is missing?

We tackledRQ-3 by introducing OmniMatch, a self-supervised approach able to capture

both types of joins among tabular data in a repository. Specifically, OmniMatch employs a

comprehensive set of instance-based similarity signals between column pairs of different

datasets, which stem from the schema matching and dataset discovery literature and

have been shown to contribute into capturing relevance. Then, the similarity signals

are transformed into multi-type edges between nodes representing columns, through a

similarity graph construction process, which does not require setting similarity thresholds

that existing join discovery methods might employ. To enable the training of a join

prediction model, we propose a strategy for automatically generating positive and negative

examples from original datasets by utilizing a join fabrication process. The similarity graph

together with the positive and negative join examples naturally lead to the utilization of a

specific type of GNNs, called Relational Graph Convolutional Network (RGCN), towards

learning a column representation model for join prediction.

When comparing OmniMatch with other state-of-the-art methods for discovering joins,

we discovered that our approach consistently outperforms them in terms of effectiveness,

due to its ability to reject false cases of joins. At the same time, we saw that the rep-

resentational power of GNNs enhances join prediction quality over other ML baselines.

Interestingly, when measuring the time needed for training and inference of our model we

concluded that the bottleneck was the computation of similarities between all column pairs,

whereas training times where noticeably smaller; surprisingly, training was efficient even

if the experiments did not run on GPUs, whereas state-of-the-art column representation

methods rely on them. Finally, we verified our intuition that using an extensive set of



5

98 5 Conclusion

metrics that cover a wide spectrum of similarity signals should improve the quality of the

prediction model in contrast to previous efforts.

With OmniMatch we developed a self-supervised solution which we empirically ver-

ified that can be employed for an improved discovery of both equi- and fuzzy-joins in

data repositories storing numerous tabular datasets, over existing matching and column

representation methods.

5.2 Limitations
Despite the contributions we make in the field of tabular schema matching with this thesis,

there are still some potential limitations that we need to acknowledge. First, and foremost,

the majority of the experiments presented throughout the thesis were run on fabricated

datasets, due to the lack of available benchmarks or standardized datasets in the literature.

Therefore, we would expect that there might be slight deviations for the behavior of our

proposed methods and state-of-the-art approaches when tested in real-world scenarios,

which we actually observed in Chapter 2. Nonetheless, the principled manner in which we

constructed these datasets and their respective ground truth, in combination with the real

world sources we used to obtain the original ones, guarantee that our findings are reliable.

Moreover, we realize that the methods we introduce might not be applicable in scenarios

where privacy is prioritized, since they rely on information extracted exclusively from the

instances contained in the datasets. Indeed, there exist many cases where either access

to data is limited or prohibited, or stakeholders require specific privacy guarantees to be

satisfied to securely share their data. However, in line with these considerations, both

methods we introduce in Chapters 3 and 4 are applied on profiles of columns, rather than

on the actual data they store. Consequently, dataset owners would only need to locally

compute these profiles and provide them as input to our methods; yet, we have not formally

proved the level of privacy that such profiles ensure.

Finally, several results from state-of-the-art methods that we presented in all chapters,

come from reproducing their respective algorithms according to the original papers, due

to their code not being publicly available. While we made our best effort to accurately

implement these methods, through rigorous testing and finetuning, their performance

might slightly differ with respect to their original implementations.

5.3 Future Research Directions
In this section, based on the insights and the experience we got from developing the

frameworks and methods presented in this thesis, we identify open challenges in the field

of tabular schema matching. Guided by these, we briefly discuss potential future directions.

5.3.1 Constructing Evaluation Datasets for Schema Matching
With Valentine (Chapter 2) we introduced the first attempt on comparing state-of-the-

art schema matching solutions on tabular datasets. To evaluate them, we employed a

fabrication method which produces a pair of tables with a specific number and type of

matches from a given one; we used a similar fabrication process for our experiments

in Chapters 3 and 4. At the same time, dataset discovery methods in the literature [17,

86, 87] make use of similar fabrication techniques to measure effectiveness. To create



5.3 Future Research Directions

5

99

challenging scenarios of matches where the corresponding columns share values with

different formats, these fabrication processes resort to simple techniques such as random

typos, abbreviations, dropping/shuffling of characters and whole tokens, and moving the

distribution of numerical data. These techniques, while leading to realistic experimental

setups, can be extended to include more column matching cases, where semantics cannot

be straightforwardly captured from value formats. In addition, from our extensive study

in Chapter 2, we saw that simple baselines that employ similarity metrics able to capture

minor syntactic discrepancies between equivalent values, can perform sufficiently well on

such fabricated datasets.

Therefore, to further enhance the automatic fabrication of datasets for the purposes of

evaluating schema matching and its applications, we believe that modern Generative AI

models can play an integral role. Specifically, recently we have noticed the considerable

effects that Large Language Models (LLMs), such as the ones stemming from the GPT

family [123], on text generation. Such models can be used to generate different formats of

values, which can lead into the creation of dataset pairs that share column matches which

are more similar to the ones found in real-world cases. Another interesting direction could

be their employment for generating whole datasets for specific domains, with automatically

produced schemata and column relationships; nevertheless, early attempts [124] seem to

exhibit limitations in terms of the size, heterogeneity and quality of the produced scenarios.

Moreover, such LLM-based dataset creation approaches should make sure that evaluation

will not be biased towards methods that leverage similar technologies in their solutions.

Apart from utilizing fabricated ground truth for the needs of evaluation, an important

and necessary direction is the discovery of column matches for publicly available real

world data. As we saw in Chapter 2, having access to such data with actual ground truth is

vital towards building more robust insights. Therefore, future efforts should be focused on

enriching publicly available tabular data, such as the ones from GitTables [2] and open data

repositories (e.g., NYC OpenData
1
), with column relatedness information. Nonetheless,

navigating and annotating such repositories should be properly designed to effectively

and efficiently combine human expertise with automated approaches, in order to be done

at scale and ensure correctness; indeed, based on our experience, manual inspection and

discovery of matches can be considerably time consuming and impede the development of

novel methods.

5.3.2 Large Language Models and Schema Matching
In this thesis, we have reviewed existing matching [16, 30] and dataset discovery [86,

121] methods that compute column representations either based on pre-trained language

models or transformer-based models, to leverage them towards their goals. While showing

improvements in performance when used for specific settings, in Chapters 2, 3 and 4 we

saw in our experimental results that they still have difficulties in capturing some types of

column matches; in some cases, we even observed that their precision can severely drop

due to high false positive rates. A promising line of research, which can build upon and

improve the effectiveness of methods that aim at capturing semantics among columns, is

the employment of LLMs.

1
https://opendata.cityofnewyork.us/



5

100 5 Conclusion

There are two ways in which current LLMs can be used towards schema matching:

i) as black box embedding generation models to compute column representations, and

ii) as complex task solvers, with prompt-based interaction. The former case shares a lot

of similarities with existing transformer-based models that are used for the purposes of

dataset discovery, with two major differences. First, LLMs exhibit larger token limits, which

makes them a better fit for large datasets, since they can consider more information in

order to compute the column representations. The other difference is that while smaller

language models based on transformers can be efficiently finetuned for specific domains

and applications, this is possibly not the case for most LLMs; finetuning them is still quite

resource expensive, yet there exist techniques that can improve training times [125].

On the other hand, prompt-based utilization of LLMs has already been researched for

the purposes of data wrangling and integration tasks, including schemamatching [126, 127].

Particularly, these early efforts focus on finetuning LLMs through prompts and few-shot

learning for improving their effectiveness in such tasks. Yet, their applicability is limited:

they show comparable near state-of-the-art effectiveness for simple pairwise matching

scenarios, with available metadata and sampling of the contained instances (due to token

limits). These issues might deem the utilization of prompt-based LLM methods prohibitive

in column match scenarios where looking into instances is critical, such as join discovery.

Consequently, we believe that future research should focus on whether employing LLMs

towards schema matching for modern settings, as the ones we have discussed in this thesis,

can be an effective and practical solution.

5.3.3 Privacy-preserving Schema Matching
In Chapter 3, we investigated schema matching under a challenging setting, where datasets

belong to disparate data silos. An important issue that might arise in this scenario is

data privacy, since different stakeholders that maintain the silos might not be willing

to share (potentially sensitive) data with each other [90]. While our method for captur-

ing matches across silos, SiMa, tackles the issue of collocating datasets and performs on

computed profiles rather than their actual data instances, it still does not provide a for-

mal privacy guarantee. Besides, none of the existing matching methods that have been

proposed and employed in the literature take into consideration such concerns; hence,

privacy-preserving schema matching remains an open challenge. Future directions for the

development of methods that can be applied in settings where datasets belong to different

stakeholders, might utilize notions and practices such as data encryption schemes [128]

and differential privacy [129]. Notably, there already exist research attempts focusing

on privacy-preserving entity resolution [130–132], which can either be altered for the

purposes of schema matching or serve as a basis for future research.

5.3.4 Application-oriented Evaluation of Schema Matching
In the introduction, we presented several applications where the results of tabular schema

matching considerably affect their performance. Moreover, for the purposes of evaluating

effectiveness, in this thesis we opted for presenting results that are independent of addi-

tional filtering techniques and showcase the ability of the methods to accurately capture

relevance; this is in contrast to previous works that report precision and recall based on

best performing thresholds and parameters. Nonetheless, the usefulness of the discovered



5.3 Future Research Directions

5

101

matches towards further applications has not yet been studied, with the exception of

augmentation for improving ML model accuracy [51, 61, 66, 86]. Consequently, we argue

that including application-oriented evaluation in works that employ schema matching

would help practitioners extract better insights and easily decide on which method serves

better their purposes.

5.3.5 Schema Matching and Semantic Type Detection
Semantic type detection methods [11, 12, 133] study the problem of annotating table

columns with fine-grained types referring to the notion of data they store; these are

different from traditional data types such as integer, char etc., since they refer to fine-

grained semantics of the data rather than their broader domains. Intuitively, we see a

strong connection between these methods and schema matching approaches, since schema

matching on tabular data refers to the problem of capturing relationships between columns

that store semantically equivalent values. Thus, if we successfully annotate columns with

semantic types, these can be used to capture accurate relationships among them. In theory,

this approach should be effective, yet there are cases where it might not. Indeed, if the

column matches we want to capture represent joins, then using semantic types does not

guarantee that discovered column pairs share overlapping values. Additionally, state-of-the-

art semantic type detection methods can only annotate columns based on a pool of available

types, which might impede their application on domain specific datasets. Nevertheless,

we still believe that studying how semantic type detection can facilitate schema matching

is an important direction; in fact, semantic types can be used in conjunction with other

existing matching techniques to enhance them, as in cases where columns store numerical

data or tables miss other sources of metadata.





103

Bibliography

References
[1] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.

Webtables: exploring the power of tables on the web. Proceedings of the VLDB

Endowment, 1(1):538–549, 2008.

[2] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. Gittables: A large-scale

corpus of relational tables. Proceedings of the ACM on Management of Data, 1(1):1–17,

2023.

[3] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč.

Foundations of json schema. In Proceedings of the 25th international conference on

World Wide Web, pages 263–273, 2016.

[4] Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu, and Patricia C Arocena.

Data lake management: challenges and opportunities. Proceedings of the VLDB

Endowment, 12(12):1986–1989, 2019.

[5] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. Data lakes: A sur-

vey of functions and systems. IEEE Transactions on Knowledge and Data Engineering,

2023.

[6] Yihan Gao, Silu Huang, and Aditya Parameswaran. Navigating the data lake with

datamaran: Automatically extracting structure from log datasets. In SIGMOD, pages

943–958. ACM, 2018.

[7] Gerardo Vitagliano, Lan Jiang, and Felix Naumann. Detecting layout templates in

complex multiregion files. arXiv preprint arXiv:2109.06630, 2021.

[8] Christina Christodoulakis, Eric B Munson, Moshe Gabel, Angela Demke Brown, and

Renée J Miller. Pytheas: pattern-based table discovery in csv files. Proceedings of the

VLDB Endowment, 13(12):2075–2089, 2020.

[9] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data: a

survey. VLDBJ, 24(4):557–581, 2015.

[10] Vijayshankar Raman. Potter’s wheel: An interactive data cleaning system. In VLDB,

volume 1, pages 381–390, 2001.

[11] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Cagatay Demiralp, and César Hidalgo. Sherlock: A deep

learning approach to semantic data type detection. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages

1500–1508, 2019.



104 Bibliography

[12] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Catagay Demiralp, and

Wang-Chiew Tan. Sato: Contextual semantic type detection in tables. Proceedings of

the VLDB Endowment, 13(11).

[13] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration. Elsevier,

2012.

[14] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice &

open challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

[15] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and future

challenges. IEEE Transactions on knowledge and data engineering, 25(1):158–176,

2011.

[16] Raul Castro Fernandez, Essam Mansour, et al. Seeping semantics: Linking datasets

using word embeddings for data discovery. In IEEE ICDE, 2018.

[17] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table union search

on open data. In VLDB, 2018.

[18] Jayant Madhavan, Philip A Bernstein, AnHai Doan, and Alon Halevy. Corpus-based

schema matching. In 21st International Conference on Data Engineering (ICDE’05),

pages 57–68. IEEE, 2005.

[19] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning: Overview

and emerging challenges. In Proceedings of the 2016 international conference on

management of data, pages 2201–2206, 2016.

[20] Jaewoo Kang and Jeffrey F Naughton. On schema matching with opaque column

names and data values. In Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, pages 205–216, 2003.

[21] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema

matching. VLDBJ, 10(4):334–350, 2001.

[22] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching approaches.

In Journal on data semantics IV, pages 146–171. Springer, 2005.

[23] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. Auto-fuzzyjoin:

Auto-program fuzzy similarity joins without labeled examples. In Proceedings of the

2021 International Conference on Management of Data, pages 1064–1076, 2021.

[24] Yeye He, Kris Ganjam, and Xu Chu. Sema-join: joining semantically-related tables

using big table corpora. Proceedings of the VLDB Endowment, 8(12):1358–1369, 2015.

[25] Daniel Engmann and Sabine Massmann. Instance matching with COMA++. In BTW

workshops, volume 7, pages 28–37, 2007.

[26] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,

Reynold Xin, and Cong Yu. Finding related tables. In ACM SIGMOD, 2012.



References 105

[27] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic schema matching

with cupid. In VLDB, 2001.

[28] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A

versatile graph matching algorithm and its application to schema matching. In IEEE

ICDE, 2002.

[29] Hong-Hai Do and Erhard Rahm. COMA: a system for flexible combination of schema

matching approaches. In VLDB, 2002.

[30] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating

embeddings of heterogeneous relational datasets for data integration tasks. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of

Data, pages 1335–1349, 2020.

[31] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. Data integration for

the relational web. In VLDB, 2009.

[32] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, et al. Automatic discovery

of attributes in relational databases. In ACM SIGMOD, 2011.

[33] Raul Castro Fernandez and Samuel Madden. Termite: a system for tunneling through

heterogeneous data. In Proceedings of the Second International Workshop on Exploiting

Artificial Intelligence Techniques for Data Management, pages 1–8, 2019.

[34] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching

web tables using entities, types and relationships. Proceedings of the VLDB Endowment,

3(1-2):1338–1347, 2010.

[35] Wen-Syan Li and Chris Clifton. SEMINT: a tool for identifying attribute corre-

spondences in heterogeneous databases using neural networks. Data & Knowledge

Engineering, 33(1):49–84, 2000.

[36] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-Match: an algorithm

and an implementation of semantic matching. In European semantic web symposium,

pages 61–75. Springer, 2004.

[37] Silvana Castano and Valeria De Antonellis. Global viewing of heterogeneous data

sources. IEEE Transactions on Knowledge and Data Engineering, 13(2):277–297, 2001.

[38] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and

ontology matching with COMA++. In ACM SIGMOD, 2005.

[39] Renée J Miller, Mauricio A Hernández, Laura M Haas, Lingling Yan, CT Howard Ho,

Ronald Fagin, and Lucian Popa. The Clio project: managing heterogeneity. ACM

Sigmod Record, 30(1):78–83, 2001.

[40] Alexander Bilke and Felix Naumann. Schema matching using duplicates. In 21st

International Conference on Data Engineering (ICDE’05), pages 69–80. IEEE, 2005.



106 Bibliography

[41] Anhai Doan, Pedro Domingos, and Alon Halevy. Learning to match the schemas of

data sources: A multistrategy approach. Machine Learning, 50(3):279–301, 2003.

[42] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domingos.

iMAP: discovering complex semantic matches between database schemas. In Pro-

ceedings of the 2004 ACM SIGMOD international conference on Management of data,

pages 383–394, 2004.

[43] Michael Stonebraker, Daniel Bruckner, Ihab F Ilyas, et al. Data curation at scale: The

data tamer system. In CIDR, 2013.

[44] Raul Castro Fernandez, Ziawasch Abedjan, et al. Aurum: A data discovery system.

In IEEE ICDE, 2018.

[45] Isabel F Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. AgreementMaker:

efficient matching for large real-world schemas and ontologies. Proceedings of the

VLDB Endowment, 2(2):1586–1589, 2009.

[46] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. Info-

gather: entity augmentation and attribute discovery by holistic matching with web

tables. In ACM SIGMOD, 2012.

[47] Meihui Zhang and Kaushik Chakrabarti. Infogather+ semantic matching and an-

notation of numeric and time-varying attributes in web tables. In ACM SIGMOD,

2013.

[48] Shuo Zhang and Krisztian Balog. Entitables: Smart assistance for entity-focused

tables. In ACM SIGIR, 2017.

[49] Oliver Lehmberg and Christian Bizer. Stitching web tables for improving matching

quality. In VLDB, 2017.

[50] Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstantinou.

Dataset discovery in data lakes. In IEEE ICDE, 2020.

[51] Yi Zhang and Zachary G Ives. Finding related tables in data lakes for interactive

data science. In ACM SIGMOD, 2020.

[52] Hazem Elmeleegy, Mourad Ouzzani, and Ahmed Elmagarmid. Usage-based schema

matching. In 2008 IEEE 24th International Conference on Data Engineering, pages

20–29. IEEE, 2008.

[53] Arnab Nandi and Philip A Bernstein. Hamster: using search clicklogs for schema

and taxonomy matching. Proceedings of the VLDB Endowment, 2(1):181–192, 2009.

[54] Alon Halevy, Flip Korn, Natalya F Noy, et al. Goods: Organizing google’s datasets.

In SIGMOD, pages 795–806. ACM, 2016.

[55] Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha. Discovering

related data at scale. Proceedings of the VLDB Endowment, 14(8):1392–1400, 2021.



References 107

[56] Avigdor Gal, Haggai Roitman, and Roee Shraga. Learning to rerank schema matches.

IEEE Transactions on Knowledge and Data Engineering, 33(8):3104–3116, 2019.

[57] Roee Shraga, Avigdor Gal, and Haggai Roitman. Adnev: Cross-domain schema

matching using deep similarity matrix adjustment and evaluation. Proceedings of the

VLDB Endowment, 13(9):1401–1415, 2020.

[58] Tomer Sagi and Avigdor Gal. Schema matching prediction with applications to data

source discovery and dynamic ensembling. The VLDB Journal, 22:689–710, 2013.

[59] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.

Blocking and filtering techniques for entity resolution: A survey. ACM Computing

Surveys (CSUR), 53(2):1–42, 2020.

[60] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim

Kraska, and David Karger. Arda: Automatic relational data augmentation for machine

learning. Proceedings of the VLDB Endowment, 13(9), 2021.

[61] Zixuan Zhao and Raul Castro Fernandez. Leva: Boosting machine learning perfor-

mance with relational embedding data augmentation. 2022.

[62] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry Brons,

Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsifodimos. Valen-

tine: Evaluating matching techniques for dataset discovery. In 2021 IEEE 37th Inter-

national Conference on Data Engineering (ICDE), pages 468–479. IEEE, 2021.

[63] Christos Koutras, Kyriakos Psarakis, George Siachamis, Andra Ionescu, Marios

Fragkoulis, Angela Bonifati, andAsterios Katsifodimos. Valentine in action: matching

tabular data at scale. Proceedings of the VLDB Endowment, 14(12):2871–2874, 2021.

[64] Christos Koutras, Rihan Hai, Kyriakos Psarakis, Marios Fragkoulis, and Asterios

Katsifodimos. Sima: Effective and efficient data silo federation using graph neural

networks. arXiv preprint arXiv:2206.12733, 2022.

[65] Christos Koutras, Jiani Zhang, Xiao Qin, Chuan Lei, , Vasileios Ioannidis, Christos

Faloutsos, George Karypis, and Asterios Katsifodimos. Omnimatch: Effective self-

supervised any-join disovery in tabular data repositories. under submission, 2023.

[66] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim

Kraska, and David Karger. Arda: Automatic relational data augmentation for machine

learning. arXiv preprint arXiv:2003.09758, 2020.

[67] Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema matching

evaluations. In Net. ObjectDays: International Conference on Object-Oriented and

Internet-Based Technologies, Concepts, and Applications for a Networked World, pages

221–237. Springer, 2002.

[68] Avigdor Gal. Uncertain schema matching. Synthesis Lectures on Data Management,

3(1):1–97, 2011.



108 Bibliography

[69] Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. Distributed representations of words

and phrases and their compositionality. In NIPS, 2013.

[70] Jiannan Wang, Guoliang Li, and Jianhua Fe. Fast-join: An efficient method for fuzzy

token matching based string similarity join. In IEEE ICDE, 2011.

[71] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. JOSIE overlap set

similarity search for finding joinable tables in data lakes. In ACM SIGMOD, 2019.

[72] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: towards a

benchmark for mapping systems. In VLDB, 2008.

[73] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. The IBench

integration metadata generator. In VLDB, 2015.

[74] Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon S. Rosenthal. ETuner:

tuning schema matching software using synthetic scenarios. VLDBJ, 16(1):97–122,

2007.

[75] Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. TPC-DI: The

first industry benchmark for data integration. In VLDB, 2014.

[76] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap Konda,

Yash Govind, and Derek Paulsen. The magellan data repository. https://sites.
google.com/site/anhaidgroup/useful-stuff/data.

[77] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet physics doklady, 10(8), 1966.

[78] Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, and Erhard

Rahm. Evolution of the COMA match system. In ICOM, 2011.

[79] Xin Luna Dong and Theodoros Rekatsinas. Data integration and machine learning:

A natural synergy. In ACM SIGMOD, 2018.

[80] Guoliang Li. Human-in-the-loop data integration. In VLDB, 2017.

[81] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. LSH ensemble:

Internet-scale domain search. arXiv preprint arXiv:1603.07410, 2016.

[82] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A

cardinality-based method for coupled estimation of jaccard similarity and contain-

ment. In IEEE ICDE, 2019.

[83] Essam Mansour, Kavitha Srinivas, and Katja Hose. Federated data science to break

down silos [vision]. SIGMOD record, 2021.

[84] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi, Subru

Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, et al. Data science

through the looking glass: Analysis of millions of github notebooks and ml. net

pipelines. ACM SIGMOD Record, 51(2):30–37, 2022.

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data


References 109

[85] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and Christoph Lofi.

Rema: Graph embeddings-based relational schema matching.

[86] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J Miller. Semantics-aware

dataset discovery from data lakes with contextualized column-based representation

learning. Proceedings of the VLDB Endowment, 16(7), 2023.

[87] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer,

Renée J Miller, and Mirek Riedewald. Santos: Relationship-based semantic table

union search. Proceedings of the ACM on Management of Data, 1(1):1–25, 2023.

[88] Alex Bogatu, Norman W Paton, Mark Douthwaite, and André Freitas. Voyager:

Data discovery and integration for data science. In Proceedings 25th International

Conference on Extending Database Technology (EDBT 2022), 2022.

[89] Chen Chen, Behzad Golshan, Alon Y Halevy, Wang-Chiew Tan, and AnHai Doan.

BigGorilla: an open-source ecosystem for data preparation and integration. IEEE

Data Eng. Bull., 41(2):10–22, 2018.

[90] Renée J Miller. Open data integration. Proceedings of the VLDB Endowment,

11(12):2130–2139, 2018.

[91] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching

word vectors with subword information. TACL, 5:135–146, 2017.

[92] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu

Philip. A comprehensive survey on graph neural networks. IEEE transactions on

neural networks and learning systems, 32(1):4–24, 2020.

[93] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. arXiv preprint arXiv:1609.02907, 2016.

[94] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 1025–1035, 2017.

[95] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison

of graph neural networks for graph classification. arXiv preprint arXiv:1912.09893,

2019.

[96] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

Advances in Neural Information Processing Systems, 31:5165–5175, 2018.

[97] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and

Jure Leskovec. Graph convolutional neural networks for web-scale recommender sys-

tems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 974–983, 2018.

[98] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph

neural networks for social recommendation. In The World Wide Web Conference,

pages 417–426, 2019.



110 Bibliography

[99] Alina Vretinaris, Chuan Lei, Vasilis Efthymiou, Xiao Qin, and Fatma Özcan. Medical

entity disambiguation using graph neural networks. In Proceedings of the 2021

International Conference on Management of Data, pages 2310–2318, 2021.

[100] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.

Understanding negative sampling in graph representation learning. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 1666–1676, 2020.

[101] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th annual international conference on machine

learning, pages 41–48, 2009.

[102] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[103] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR, 2020.

[104] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions

on knowledge and data engineering, 21(9):1263–1284, 2009.

[105] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[106] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-

performant package for graph neural networks. arXiv preprint arXiv:1909.01315,

2019.

[107] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[108] Foto N Afrati, Anish Das Sarma, David Menestrina, Aditya Parameswaran, and

Jeffrey D Ullman. Fuzzy joins using mapreduce. In 2012 IEEE 28th International

Conference on Data Engineering, pages 498–509. IEEE, 2012.

[109] Jin Wang, Chunbin Lin, and Carlo Zaniolo. Mf-join: Efficient fuzzy string similarity

join with multi-level filtering. In 2019 IEEE 35th International Conference on Data

Engineering (ICDE), pages 386–397. IEEE, 2019.

[110] Zhimin Chen, Yue Wang, Vivek Narasayya, and Surajit Chaudhuri. Customizable

and scalable fuzzy join for big data. Proceedings of the VLDB Endowment, 12(12):2106–

2117, 2019.



References 111

[111] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,

and Max Welling. Modeling relational data with graph convolutional networks. In

The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece,

June 3–7, 2018, Proceedings 15, pages 593–607. Springer, 2018.

[112] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. Advances

in neural information processing systems, 26, 2013.

[113] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker. Silkmoth: An

efficient method for finding related sets with maximum matching constraints. arXiv

preprint arXiv:1704.04738, 2017.

[114] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc, and

Divesh Srivastava. On multi-column foreign key discovery. Proceedings of the VLDB

Endowment, 3(1-2):805–814, 2010.

[115] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors

for word representation. In EMNLP, pages 1532–1543, 2014.

[116] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks

for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[117] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. Efficient

joinable table discovery in data lakes: A high-dimensional similarity-based approach.

In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 456–467.

IEEE, 2021.

[118] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J Miller. Inte-

grating data lake tables. Proceedings of the VLDB Endowment, 16(4):932–945, 2022.

[119] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh Agrawal.

Synthesizing products for online catalogs. arXiv preprint arXiv:1105.4251, 2011.

[120] ChristopherManning and Hinrich Schutze. Foundations of statistical natural language

processing. MIT press, 1999.

[121] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi

Oyamada. Deepjoin: Joinable table discovery with pre-trained language models.

Proc. VLDB Endow., 16(10):2458–2470, jun 2023.

[122] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine

Learning research, 12:2825–2830, 2011.

[123] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in neural information processing

systems, 33:1877–1901, 2020.



112 Bibliography

[124] Koyena Pal, Aamod Khatiwada, Roee Shraga, and Renée J Miller. Generative bench-

mark creation for table union search. arXiv preprint arXiv:2308.03883, 2023.

[125] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language

models. arXiv preprint arXiv:2106.09685, 2021.

[126] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifin-

ski Fainman, Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt

for diverse table tasks. arXiv preprint arXiv:2310.09263, 2023.

[127] Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. Jellyfish: A

large language model for data preprocessing. arXiv preprint arXiv:2312.01678, 2023.

[128] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on

homomorphic encryption schemes: Theory and implementation. ACM Computing

Surveys (Csur), 51(4):1–35, 2018.

[129] Cynthia Dwork. Differential privacy. In International colloquium on automata,

languages, and programming, pages 1–12. Springer, 2006.

[130] Yixiang Yao, Tanmay Ghai, Srivatsan Ravi, and Pedro Szekely. Amppere: A universal

abstract machine for privacy-preserving entity resolution evaluation. In Proceedings

of the 30th ACM International Conference on Information & Knowledge Management,

pages 2394–2403, 2021.

[131] Andrei Pintilie. Privacy-preserving entity matching using differential privacy. 2021.

[132] Yuxiang Guo, Lu Chen, Zhengjie Zhou, Baihua Zheng, Ziquan Fang, Zhikun Zhang,

Yuren Mao, and Yunjun Gao. Camper: An effective framework for privacy-aware

deep entity resolution. In Proceedings of the 29th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pages 626–637, 2023.

[133] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen Chen,

and Wang-Chiew Tan. Annotating columns with pre-trained language models.

In Proceedings of the 2022 International Conference on Management of Data, pages

1493–1503, 2022.



113

List of Figures

1.1 Cases of valid and false column matches: (a) matches where the correspond-

ing column pairs contain values from the same domain, but potentially with

different formats or even non overlapping ones, (b) non correct column

matches due to similar column names or value overlaps. . . . . . . . . . . 3

1.2 The three settings studied in the tabular schema matching literature: (a)

pairwise schema matching, (b) holistic schema matching, and (c) mediated

schema matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The four main categories of schema matching methods on tabular data:

(a) Schema-based methods, (b) Instance-based matching approaches, (c)

Hybrid matching methods, and (d) Usage-based methods. . . . . . . . . . . 7

1.4 An illustration of a typical tabular schema matching pipeline: a schema

matching method receives as input a number of datasets, for which it

computes a (ranked) list of similarities among their columns. Then, a

filtering strategy is applied upon this list and outputs a final set of column

pairs as valid matches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 A representative entity resolution pipeline between a pair of tables: first, the

column correspondences between them are captured by a schema matching

method, followed by blocking and candidate refinement to reach the final

output, which consists of all matched tuple pairs. . . . . . . . . . . . . . . 13

1.6 An example of how schema matching can help towards error detection and

repairing: given a reference table containing ground truth values, we can

detect and correct or even impute values missing from other tables with

the help of column matches between them and the reference table. . . . . . 13

1.7 Two examples of augmenting a table through column matches: (a) a match

to another table can enable a join between them and extend the column set

of the given table, while (b) matches among tables in a repository and the

given one can help populate it with more tuples. . . . . . . . . . . . . . . . 14

2.1 Valentine first fabricates dataset pairs alongside ground truth, then creates

multiple parameterized runs of methods and finally exhaustively executes

all combinations of methods, parameters and dataset pairs. . . . . . . . . . 23

2.2 Four cases of dataset relatedness scenarios. . . . . . . . . . . . . . . . . . . 24

2.3 Fabrication of datasets with respect to each relatedness scenario. . . . . . . 26

2.4 Effectiveness results of Valentine’s schema-based matching methods for

each dataset relatedness scenario . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Effectiveness results of instance-based matching methods for each dataset

relatedness scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



114 List of Figures

2.6 Effectiveness results of hybrid matching methods for each dataset related-

ness scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Effectiveness results on WikiData. . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Screenshots from dataset fabrication (a), configuration of experiments (b)

and presentation of findings (c). . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Screenshots of system configuration for holistic matching (a) and presenting

results (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Three typical data silos in the banking industry. . . . . . . . . . . . . . . . 47

3.2 SiMa overview: (a) depicts data silos and their column matches which are

transformed into relatedness graphs ((b)-section 4.4), where nodes repre-

sent columns and receive their initial features from a tabular data profiler

(subsection 3.5.3). Then, negative edges are being sampled from each relat-

edness graph as shown in (c) (subsection 3.7.1) and a link prediction model

is being trained based on an incremental training scheme depicted in (d)

(subsection 3.7.2). Finally, using the trained model we are able to predict

relationships among columns from different silos as depicted in (e). . . . . 50

3.3 Relatedness graph of the Insurance data silo. . . . . . . . . . . . . . . . . . 54

3.4 Strategies for negative edge sampling on the relatedness graph of the

insurance data silo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Effect of negative edge sampling techniques and training schemes. . . . . . 66

3.6 Precision-Recall curves of SiMa and other methods. . . . . . . . . . . . . . 67

4.1 OmniMatch outperforms the state-of-the-art column matching and repre-

sentation methods in terms of best F1 and Precision-Recall AUC scores

achieved when tested upon real-world join benchmarks on open data repos-

itories (§ 4.6). Best viewed in color. . . . . . . . . . . . . . . . . . . . . . . 73

4.2 OmniMatch at work: (best viewed in color) traditional similarity-based

methods vs. OmniMatch. If the similarity-based threshold is set to 0.3

for Jaccard Similarity (JS) or to 0.5 for Set Containment (SC), traditional

methods will miss the match between columns Cntry and CNTR. Choosing
these thresholds is very hard in practice as those are use-case- and dataset-

dependent. OmniMatch’s RGCN-based method is able to discover joins

using graph neighborhood information, despite the low similarity between

columns, without user-provided thresholds. . . . . . . . . . . . . . . . . . 74

4.3 OmniMatch overview: (b) positive and negative join examples are generated

in a semi-supervised manner based on the original data repository shown

in (a). For each positive and negative join pair, OmniMatch computes a set

of similarity signals (c) and then constructs a similarity graph (d), which

represents the most prominent column relationships among training data.

The similarity graph and the join examples are the basis for producing

column representations through an RGCN and training a join prediction

model, as shown in (e). For discovering joins, we repeat steps (c) and (d) for

the original tabular datasets in the repository and use the trained model to

infer joins among their columns. Best viewed in color. . . . . . . . . . . . . 76



List of Figures 115

4.4 Using Jaccard similarity on infrequent tokens and embedding similarity on

frequent tokens for capturing fuzzy-joins. . . . . . . . . . . . . . . . . . . . 78

4.5 For training, OmniMatch fabricates pairs of joinable datasets (T1) from each

original one in the repository to build a similarity graph (T2) for training

the join prediction model (T3). For inference, OmniMatch constructs the

similarity graph of the columns stemming from the original datasets (I1)

and uses the trained model for inference on it (I2). . . . . . . . . . . . . . . 85

4.6 Effectiveness comparison of OmniMatch with the state-of-the-art methods. 86

4.7 Effectiveness comparison of OmniMatch with other ML-models. . . . . . . 89

4.8 Reduction (in Percentage Decrease) of best F1-scores when OmniMatch

considers a single similarity signal. . . . . . . . . . . . . . . . . . . . . . . 92





117

List of Tables

2.1 Schema matching techniques implemented in Valentine, and the match

types they cover. Match types are marked with the discovery methods

requiring them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Parameterization of implemented matching methods. For each parameter

combination we run a separate experiment, as shown in Figure 2.1. . . . . 32

2.3 Recall at size of ground truth for the Magellan and ING Data. . . . . . . . . 37

2.4 Average runtime per experiment (i.e., table pair) in seconds. . . . . . . . . 38

3.1 Essential notations used in this chapter. . . . . . . . . . . . . . . . . . . . . 52

3.2 Data silo matching benchmarks used for evaluation. . . . . . . . . . . . . . 65

3.3 Effectiveness scores of SiMa and competition. . . . . . . . . . . . . . . . . 69

3.4 Total execution times in minutes (CPU). . . . . . . . . . . . . . . . . . . . . 69

4.1 Statistics of the evaluation benchmarks. ‘Tab.’ stands for ‘Table’ and ‘Col.’

stands for ‘Column’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Best F1 and PR-AUC scores comparison of OmniMatch and the state-of-the-

art baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Best F1 and PR-AUC scores comparison of OmniMatch & other ML models. 90

4.4 OmniMatch execution times in minutes (CPU). T1-T3 and I1,I2 represent

different steps of our method as shown in Figure 4.5. . . . . . . . . . . . . 93





119

Curriculum Vitæ

Christos Koutras

01-04-1991 Born in Thessaloniki, Greece

Professional Experience

2023-2024 Applied Scientist Intern, Amazon Web Services, USA

2022 Applied Scientist Intern, Amazon Web Services, USA

Education

2018-2024 Doctor of Philosophy (PhD), Computer Science

Delft University of Technology, Netherlands

2016-2018 Master of Philosophy (MPhil), Computer Science

The Hong Kong University of Science and Technology, China

2009-2015 Diploma (M.Eng), Electrical and Computer Engineering

National Technical University of Athens, Greece





121

List of Publications

 1. Christos Koutras, Jiani Zhang, Xiao Qin, Chuan Lei, Vasileios Ioannidis, Christos Faloutsos,

George Karypis, Asterios Katsifodimos. OmniMatch: Effective Self-Supervised Any-Join

Discovery in Tabular Data Repositories, in arXiv, 2023.

2. Rihan Hai, Christos Koutras, Andra Ionescu, Ziyu Li, Wenbo Sun, Jessie van Schijndel,

Yan Kang, Asterios Katsifodimos. Amalur: Data Integration Meets Machine Learning, in

International Conference on Data Engineering (ICDE), 2023.

3. Rihan Hai, Christos Koutras, Christoph Quix, Matthias Jarke. Data Lakes: A Survey of

Functions and Systems, in Transactions on Knowledge and Data Engineering (TKDE), 2023.

4. RihanHai,ChristosKoutras, Andra Ionescu, Asterios Katsifodimos. Amalur: Next-generation

Data Integration in Data Lakes, in Conference on Innovative Data Systems Research (CIDR),

2022.

 5. Christos Koutras, Rihan Hai, Kyriakos Psarakis, Marios Fragkoulis and Asterios Katsifodimos.

SiMa: Effective and Efficient Matching Across Data Silos Using Graph Neural Networks, in

arXiv, 2022.

 6. Christos Koutras, Kyriakos Psarakis, George Siachamis, Andra Ionescu, Marios Fragkoulis,

Angela Bonifati and Asterios Katsifodimos. Valentine in Action: Matching Tabular Data at

Scale, in Very Large Data Bases (VLDB), 2021.

 7. Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Marios Fragkoulis,

Jery Brons, Angela Bonifati and Asterios Katsifodimos. Valentine: Evaluating Matching

Techniques for Dataset Discovery, in International Conference on Data Engineering (ICDE),

2021.

8. Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, Christoph Lofi. REMA: Graph

Embeddings-based Relational Schema Matching, in International Conference on Extending

Database Technology (EDBT) Workshops, 2020.

9. Christos Koutras. Data as a Language: A Novel Approach to Data Integration, in Very Large

Data Bases (VLDB) PhD Workshop, 2019.

10. Kostas Patroumpas, Christos Koutras. Probabilistic k-Nearest Neighbor Monitoring of Mov-

ing Gaussians, in International Conference on Scientific and Statistical Database Management

(SSDBM), 2017.

 Included in this thesis.





123

SIKS Dissertation Series

Since 1998, all dissertations written by PhD students who have conducted their research

under auspices of a senior research fellow of the SIKS research school are published in the

SIKS Dissertation Series.

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through

decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge

Worker Support

04 Laurens Rietveld (VUA), Publishing and Consuming Linked Data

05 Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and an

Application in Explaining Missing Answers

06 Michel Wilson (TUD), Robust scheduling in an uncertain environment

07 Jeroen de Man (VUA), Measuring and modeling negative emotions for virtual

training

08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data

09 ArchanaNottamkandath (VUA), Trusting Crowdsourced Information onCultural

Artefacts

10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms

11 Anne Schuth (UvA), Search Engines that Learn from Their Users

12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent

Systems

13 Nana Baah Gyan (VUA), The Web, Speech Technologies and Rural Development

in West Africa - An ICT4D Approach

14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization

15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algo-

rithms and Experiments

16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn from

Human Reward

17 Berend Weel (VUA), Towards Embodied Evolution of Robot Organisms

18 Albert Meroño Peñuela (VUA), Refining Statistical Data on the Web

19 Julia Efremova (TU/e), Mining Social Structures from Genealogical Data

20 Daan Odijk (UvA), Context & Semantics in News & Web Search

21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:

Automatic Analysis of Player Behavior in the Interactive Tag Playground

22 Grace Lewis (VUA), Software Architecture Strategies for Cyber-Foraging Sys-

tems

23 Fei Cai (UvA), Query Auto Completion in Information Retrieval



24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An

Iterative and data model independent approach

25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching

and Browsing Behavior

26 Dilhan Thilakarathne (VUA), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural

Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on

epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -

Markets and prices for flexible planning

30 Ruud Mattheij (TiU), The Eyes Have It

31 Mohammad Khelghati (UT), Deep web content monitoring

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks

for Crisis Organisations

33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning from just one

example

34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation, Analysis,

and Enactment

35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classification

and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction

behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computa-

tional inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Inter-

action Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal

Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design

41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance

42 Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of Bilin-

gual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From

Theory to Practice

44 Thibault Sellam (UvA), Automatic Assistants for Database Exploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy

47 ChristinaWeber (UL), Real-time foresight - Preparedness for dynamic innovation

networks

48 Tanja Buttler (TUD), Collecting Lessons Learned

49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic

Analysis



50 Yan Wang (TiU), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime

02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks

using Argumentation

03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach

with Autonomous Products and Reconfigurable Manufacturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

05 Mahdieh Shadi (UvA), Collaboration Behavior

06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search

07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

08 Rob Konijn (VUA), Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspec-

tive on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior

11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter

#anticipointment

12 Sander Leemans (TU/e), Robust Process Mining with Guarantees

13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social

touch through haptic technology

14 Shoshannah Tekofsky (TiU), You Are Who You Play You Are: Modelling Player

Traits from Video Game Behavior

15 Peter Berck (RUN), Memory-Based Text Correction

16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern Search

Engines

17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

18 Ridho Reinanda (UvA), Entity Associations for Search

19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Infor-

mation Retrieval

20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing:

The Role of Perceived Benefits, Costs and Visibility

21 Jeroen Linssen (UT), MetaMatters in Interactive Storytelling and Serious Gaming

(A Play on Worlds)

22 Sara Magliacane (VUA), Logics for causal inference under uncertainty

23 David Graus (UvA), Entities of Interest — Discovery in Digital Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

25 Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines,

with applications to Multimorbidity Analysis and Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and respond to

human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VUA), Architecture Practices for Complex Contexts



29 Adel Alhuraibi (TiU), From IT-BusinessStrategic Alignment to Performance: A

Moderated Mediation Model of Social Innovation, and Enterprise Governance

of IT"

30 Wilma Latuny (TiU), The Power of Facial Expressions

31 Ben Ruijl (UL), Advances in computational methods for QFT calculations

32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives

33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documenta-

tion: A Model of Computer-Mediated Activity

34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics

35 Martine de Vos (VUA), Interpreting natural science spreadsheets

36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-

throughput Imaging

37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation Frame-

work that Enables Control over Privacy

38 Alex Kayal (TUD), Normative Social Applications

39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and

compressive sensing methods to increase noise robustness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Hu-

man Control in Relation to Emotions, Desires and Social Support For applications

in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental

Processes and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with

applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics

in Agile Requirements Engineering

45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement

46 Jan Schneider (OU), Sensor-based Learning Support

47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration

48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations

02 Felix Mannhardt (TU/e), Multi-perspective Process Mining

03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior Pre-

diction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in

Data-Centric Engineering Tasks

05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the Information

Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-

Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations



10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior

change through intelligent technology

11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Collaborative

Networks

12 Xixi Lu (TU/e), Using behavioral context in process mining

13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future

14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal Gabor Filters

15 Naser Davarzani (UM), Biomarker discovery in heart failure

16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group

of children

17 Jianpeng Zhang (TU/e), On Graph Sample Clustering

18 Henriette Nakad (UL), De Notaris en Private Rechtspraak

19 Minh Duc Pham (VUA), Emergent relational schemas for RDF

20 Manxia Liu (RUN), Time and Bayesian Networks

21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing

scenario-based serious games

22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of

Behaviours, Perceptions and Emotions in Social Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational

Messages for Behavior Change Technology

27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Software

Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they feel and how

they make you feel

29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech

30 Wouter Beek (VUA), The "K" in "semantic web" stands for "knowledge": scaling

semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A

graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for As-

sessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on Databases:

Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data

05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data

06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to Linked Cultural

Heritage Datasets

07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Pro-

cesses



09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy efficiency in

software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and

Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behav-

ioral Engagement in MOOCs

12 Jacqueline Heinerman (VUA), Better Together

13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Gen-

eration

14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior

& Improving Learning Outcomes in Massive Open Online Courses

15 ErwinWalraven (TUD), Planning under Uncertainty in Constrained and Partially

Observable Environments

16 Guangming Li (TU/e), Process Mining based on Object-Centric Behavioral Con-

straint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents

20 Chide Groenouwe (UU), Fostering technically augmented human collective

intelligence

21 Cong Liu (TU/e), Software Data Analytics: Architectural Model Discovery and

Design Pattern Detection

22 Martin van den Berg (VUA),Improving IT Decisions with Enterprise Architecture

23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification

24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing Labeled Data

for Natural Language Processing

25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic) image description

26 Prince Singh (UT), An Integration Platform for Synchromodal Transport

27 Alessandra Antonaci (OU), The Gamification Design Process applied to (Massive)

Open Online Courses

28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare

airline pilots for critical situations

29 Daniel Formolo (VUA), Using virtual agents for simulation and training of social

skills in safety-critical circumstances

30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems

31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in Robotics

32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence

in Games

33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning in Artificial

Neural Networks

34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain Network Features

for Classification of Epilepsy and PNES

35 Lisa Facey-Shaw (OU), Gamificationwith digital badges in learning programming

36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to Master Complex

Skills



37 Jian Fang (TUD), Database Acceleration on FPGAs

38 Akos Kadar (OU), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic

Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language

Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges

05 Yulong Pei (TU/e), On local and global structure mining

06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Require-

ments Elicitation - An Approach and Tool Support

07 Wim van der Vegt (OU), Towards a software architecture for reusable game

components

08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree

Search

09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital

Humanities Research

10 Alifah Syamsiyah (TU/e), In-database Preprocessing for Process Mining

11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMeth-

ods for Long-Tail Entity Recognition Models

12 Ward van Breda (VUA), Predictive Modeling in E-Mental Health: Exploring

Applicability in Personalised Depression Treatment

13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing

Evolutionary Algorithms for Genetic Programming

14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases

15 Konstantinos Georgiadis (OU), Smart CAT: Machine Learning for Configurable

Assessments in Serious Games

16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling

17 Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from Multi-

modal Experiences

18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with

Uncertainties: Electricity Markets in Renewable Energy Systems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems

20 Albert Hankel (VUA), Embedding Green ICT Maturity in Organisations

21 Karine da Silva Miras de Araujo (VUA), Where is the robot?: Life as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems implementa-

tion through a modeling approach: the case of e-government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to

studying writing processes using keystroke logging

24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling, human? Towards

emotionally supportive chatbots

25 Xin Du (TU/e), The Uncertainty in Exceptional Model Mining

26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based

mixed-Integer opTimization



27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educa-

tional context

28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training

complex skills with augmented reality

29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference

30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst

31 Gongjin Lan (VUA), Learning better – From Baby to Better

32 Jason Rhuggenaath (TU/e), Revenue management in online markets: pricing

and online advertising

33 Rick Gilsing (TU/e), Supporting service-dominant business model evaluation in

the context of business model innovation

34 Anna Bon (UM), Intervention or Collaboration? Redesigning Information and

Communication Technologies for Development

35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social

Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice

Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning

analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems

06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with

a social robot

07 Armel Lefebvre (UU), Research data management for open science

08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on

Computational Thinking

09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and

Non-Verbal Robots to Promote Children’s Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and

Facilitating Predictability for Engagement in Learning

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource

Re-Configurations through the Business Services Paradigm

16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues

17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues

using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools

and Formal Systems - Facilitating the Construction of Bayesian Networks and

Argumentation Frameworks

19 Roberto Verdecchia (VUA), Architectural Technical Debt: Identification and

Management



20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure

Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes

22 Sihang Qiu (TUD), Conversational Crowdsourcing

23 Hugo Manuel Proença (UL), Robust rules for prediction and description

24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Processing

25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and

Self-Adaptation to Create Adaptive E-Health Mobile Applications

26 Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowledge Bases from

Human-readable Tables

27 Jelte vanWaterschoot (UT), Personalized and Personal Conversations: Designing

Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate En-

trepreneurship Programs

2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing video games

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A

Deep Learning Journey

03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement

Learning For Personalized Healthcare

04 Ünal Aksu (UU), A Cross-Organizational Process Mining Framework

05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-

Parameterization

06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time

Bidding

07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-

located Collaboration Analytics

08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design

09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-

Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative

Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative

approach to studying preschoolers’ engagement with robots and tasks during

second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases

13 XanderWilcke (VUA), Machine Learning onMultimodal Knowledge Graphs: Op-

portunities, Challenges, andMethods for Learning on Real-World Heterogeneous

and Spatially-Oriented Knowledge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms

15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process

Mining

16 Pieter Gijsbers (TU/e), Systems for AutoML Research

17 Laura van der Lubbe (VUA), Empowering vulnerable people with serious games

and gamification



18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game

Personalisation

19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation

20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Computational Analysis

of Negative Human Behaviors on Social Media

21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive

Assessments

22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to

foster Empathy, Immersion, and Collaboration Skills in Video Games and Virtual

Reality Simulations

23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents

24 Samaneh Heidari (UU), Agents with Social Norms and Values - A framework for

agent based social simulations with social norms and personal values

25 Anna L.D. Latour (UL), Optimal decision-making under constraints and uncer-

tainty

26 Anne Dirkson (UL), Knowledge Discovery from Patient Forums: Gaining novel

medical insights from patient experiences

27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in

video sequences

28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems

29 Jan Kolkmeier (UT), From Head Transform to Mind Transplant: Social Interac-

tions in Mixed Reality

30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays

31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing

with Advanced Manufacturing Process Management

32 Cezara Pastrav (UU), Social simulation for socio-ecological systems

33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion

Management

34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion

& Desire Regulation for Behaviour Change

35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship: Interaction

Design Patterns for a Sustainable Interaction

2023 01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health Interventions

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What our bodies can

tell us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving Explanations

in Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-enhanced legal

information retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for Large-Scale

Real-Valued Optimization, Including Real-World Medical Applications

06 António Pereira Barata (UL), Reliable and Fair Machine Learning for Risk As-

sessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on Trustworthiness

of Deep Learning



08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learning

09 Xu Wang (VUA), Scientific Dataset Recommendation with Semantic Techniques

10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for General Game

Playing

11 Fawad Taj (VUA), Towards Motivating Machines: Computational Modeling

of the Mechanism of Actions for Effective Digital Health Behavior Change

Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search Behavior in Digital

Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge Representation

14 Selma Čaušević (TUD), Energy resilience through self-organization

15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning Tractable Proba-

bilistic Graphical Models

16 Peter Blomsma (TiU), Building Embodied Conversational Agents: Observations

on human nonverbal behaviour as a resource for the development of artificial

characters

17 Meike Nauta (UT), Explainable AI and Interpretable Computer Vision – From

Oversight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for Conversational

Search and Recommendation

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smartphones to Capture

Signals of Well-Being in Individuals

20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-Based Evolu-

tionary Algorithms applied to Medical Image Segmentation using Deep Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart Inspection in the

Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity

23 Theo Theunissen (UU), Documentation in Continuous Software Development

24 Agathe Balayn (TUD), Practices Towards Hazardous Failure Diagnosis in Ma-

chine Learning

25 Jurian Baas (UU), Entity Resolution on Historical Knowledge Graphs

26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled Representations

and their Out-of-Distribution Behaviour

27 Ghada Sokar (TU/e), Learning Continually Under Changing Data Distributions

28 Floris den Hengst (VUA), Learning to Behave: Reinforcement Learning in Human

Contexts

29 Tim Draws (TUD), Understanding Viewpoint Biases in Web Search Results

2024 01 Daphne Miedema (TU/e), On Learning SQL: Disentangling concepts in data

systems education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learning Systems

03 Feri Wijayanto (RUN), Automated Model Selection for Rasch and Mediation

Analysis

04 Mike Huisman (UL), Understanding Deep Meta-Learning

05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment Cooperative

Inspection & Construction Crack Autonomous Repair



06 Azqa Nadeem (TUD), Understanding Adversary Behavior via XAI: Leveraging

Sequence Clustering to Extract Threat Intelligence

07 Parisa Shayan (TiU), Modeling User Behavior in Learning Management Systems

08 Xin Zhou (UvA), From Empowering to Motivating: Enhancing Policy Enforce-

ment through Process Design and Incentive Implementation

09 Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian Networks

10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Semantic Publishing

in Science

11 withdrawn

12 Peide Zhu (TUD), Towards Robust Automatic Question Generation For Learning

13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid Intelligence

14 Larissa Capobianco Shimomura (TU/e), On Graph Generating Dependencies

and their Applications in Data Profiling

15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs for Interrelating

the Gut Microbiome and Mental Health

16 Arthur Barbosa Câmara (TUD), Designing Search-as-Learning Systems

17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture Design

18 Laurens Stoop (UU), Data Driven Understanding of Energy-Meteorological Vari-

ability and its Impact on Energy System Operations

19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance Checking: Iden-

tifying and Understanding Patterns of Anomalous Behavior

20 Ritsart Anne Plantenga (UL), Omgang met Regels

21 Federica Vinella (UU), Crowdsourcing User-Centered Teams

22 Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM for Knowledge-

Intensive Processes with Controllable Dynamic Contexts

23 Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits Improves Robot

Evolution

24 Nirmal Roy (TUD), Exploring the effects of interactive interfaces on user search

behaviour

25 Alisa Rieger (TUD), Striving for Responsible Opinion Formation in Web Search

on Debated Topics

26 Tim Gubner (CWI), Adaptively Generating Heterogeneous Execution Strategies

using the VOILA Framework

27 Lincen Yang (UL), Information-theoretic Partition-basedModels for Interpretable

Machine Learning

28 Leon Helwerda (UL), Grip on Software: Understanding development progress of

Scrum sprints and backlogs

29 David Wilson Romero Guzman (VUA), The Good, the Efficient and the Inductive

Biases: Exploring Efficiency in Deep Learning Through the Use of Inductive

Biases

30 Vijanti Ramautar (UU), Model-Driven Sustainability Accounting

31 Ziyu Li (TUD), On the Utility of Metadata to Optimize Machine Learning Work-

flows

32 Vinicius Stein Dani (UU), The Alpha and Omega of Process Mining



33 Siddharth Mehrotra (TUD), Designing for Appropriate Trust in Human-AI inter-

action

34 Robert Deckers (VUA), From Smallest Software Particle to System Specification

- MuDForM: Multi-Domain Formalization Method

35 Sicui Zhang (TU/e), Methods of Detecting Clinical Deviations with Process

Mining: a fuzzy set approach

36 Thomas Mulder (TU/e), Optimization of Recursive Queries on Graphs

37 James Graham Nevin (UvA), The Ramifications of Data Handling for Computa-

tional Models

38 Christos Koutras (TUD), Tabular Schema Matching for Modern Settings


