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Abstract

This study aims to improve estimates of NOx emission strengths by assimilation of TROPOMI
satellite retrievals in the LOTOS-EUROS chemical transport model. Nitrogen oxides (NO and
NO2) play a pivotal role in atmospheric chemistry, are an important source of air pollution and
contribute to nitrogen deposition over vulnerable natural areas. Therefore, it is paramount to
have accurate estimates of emissions.

Emissions are parameterised by multiplicative correction factors for NOx emission strengths
from existing inventories. Optimal estimates of the correction factors are calculated by
assimilation of TROPOMI NO2 retrievals in LOTOS-EUROS.

This study proposes an adjoint-free approach to solving the 4DVAR data assimilation problem.
Due to the near linearity of LOTOS-EUROS with respect to NO2, an approximate model
is proposed that calculates NO2 concentrations from the background state and a linear
combination of the influences of the parameters on the state. This approximate model is
calculated from an ensemble of LOTOS-EUROS simulations with perturbed parameters. After
substitution of the approximate model in the 4DVAR cost function, it is quadratic and the
minimum can be calculated directly. For this approximate cost function, the optimal estimate
of the parameters and the covariance of this estimation can be obtained with negligible
computational costs.

Twin experiments, where synthetic satellite observations are assimilated, show that the
adjoint-free 4DVAR method is able to accurately minimise the cost function. Errors in estimated
parameters are in agreement with the covariance calculated for the estimate. It was also shown
that by using domain decomposition, it is possible to generate the approximate model from
fewer simulations of LOTOS-EUROS and thereby increasing the computational efficiency of the
method.

In experiments using TROPOMI NO2 retrievals, the method performs well when modelled
plumes align with the retrievals. However, differences between modelled plumes and retrievals,
that are resolved by the high resolution of the TROPOMI instrument, may strongly hamper
results as the method is only able to correct the intensity of the plumes but not their positions.
This leads to an underestimation of NOx emission strengths.

Further research is required to handle differences of plume positions in LOTOS-EUROS and
TROPOMI retrievals to apply the method to actual TROPOMI retrievals. In addition, more
research into domain decomposition may further increase computational efficiency of the
method.

Keywords — TROPOMI, Inverse Modelling, Data Assimilation, LOTOS-EUROS, Emission, NO2
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1
Introduction

Nitrogen oxides (NO and NO2, aggregated as NOx) are trace gases that play a pivotal role in atmospheric
chemistry. NO is the main oxide of nitrogen formed during high-temperature combustion by oxidation
of either atmospheric nitrogen (N2) or nitrogen in the fuel. Small quantities of NO2 are produced by these
combustion processes too, but NO2 is mainly formed by oxidation of NO in the atmosphere (Seinfeld and
Pandis 2016).

In figure 1.1, the main chemical reactions of nitrogen compounds are illustrated. NO2 plays an important
role in the deposition of nitrogen to soil after oxidation to HNO3. The ecological effects of nitrogen
deposition cause significant damage to ecosystems. The Dutch government is forced by law to limit
or compensate for this damage. NOx is also important in the production of ozone in the troposphere.
During daytime, tropospheric ozone is mainly produced by photolysis of NO2. Ozone could cause
severe injuries to human health and also harms vegetation. NO2 itself is also an important source of air
pollution. Research has indicated long-term exposure to NO2 can be associated with non-accidental and
cause-specific mortality in the Dutch population above the age of 30 (Fischer et al. 2015). For all these
reasons, NOx emissions should be kept as low as possible and emission reduction emission measures
are widely implemented.

Over the past year, nitrogen has made it to the headlines of the Dutch news. Nitrogen deposition
on vulnerable natural areas exceeds thresholds established by law. Policies proposed by the Dutch
government were rejected in court, forcing the Dutch government to take more drastic measures to cut
nitrogen emissions to limit the nitrogen deposition on vulnerable nature areas. Such measures have
been proposed in the report “Niet alles kan” (Remkes et al. 2019).

These developments have also raised interest further for atmospheric modelling, emission and
deposition studies. The report “Meer meten, robuuster rekenen” (Hordijk et al. 2020), released June
15, 2020, gives a review of the current state of emission and deposition measurement and calculation
techniques that support policy-making. One of the main recommendations for improving the emission
and deposition modelling reported is making use of satellite retrievals of trace gasses to validate and
improve models. This is exactly what this study is about. Recent developments in satellite technology,
culminating in the launch of the TROPOMI satellite have brought a steady, high-quality stream of
measurement data that can be used in data assimilation for improvement of atmospheric quality models.

1.1. Study aim
The purpose of this study is to estimate emission parameters using satellite data. The parameters
considered are the emission strengths of NOx. Accurate estimates of air pollutant emission such as NOx

are fundamental for air quality modelling. Recent developments in satellite technology, culminating
in the launch of the Tropospheric Monitoring Instrument (TROPOMI) instrument on the Sentinel-5
Precursor (S5P) satellite have brought a wealth of high-resolution measurement data of NO2 and other
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1. Introduction

Figure 1.1: Processes in the atmospheric cycle of nitrogen compounds. A species written over an arrow signifies
reaction with the species from which the arrow originates obtained from Seinfeld and Pandis 2016.

atmospheric trace gasses. These recent developments give rise to great opportunities for improving the
estimation of emission strengths (Bocquet et al. 2015).

Time-averaged columns of NO2 can relatively easily indicate trends in emissions. However, local
meteorological features that dictate the spread of NO2 are highly variable in time. A Chemical transport
model (CTM) is necessary to accurately link the actual emissions to the satellite observations. This study
makes use of the LOng Term Ozone Simulation - EURopean Operational Smog model (LOTOS-EUROS)
air quality model. The estimated parameters are input variables of the atmospheric transport model
and, therefore, the problem to solve is an inverse modelling problem. A data assimilation scheme will
be developed to perform this parameter estimation task. A variational method, 4DVAR will be used. One
specific methodological aim of this study is to develop an assimilation scheme that solves the 4DVAR
problem in an adjoint-free way.

1.2. Atmospheric chemistry model LOTOS-EUROS
This study uses the LOTOS-EUROS model. LOTOS and EUROS were developed in the 1990s by the
Dutch organisation for Applied Scientific Research (TNO) and the Environmental Assessment Agency
of the Dutch National Institute for Public Health and the Environment (RIVM/MNP) and have been
used as models for the study of the atmospheric distribution of photo-oxidants. The two models
were combined in 2004 to give LOTOS-EUROS version 1.0, used by TNO, RIVM and the Royal Dutch
Meteorological Institute (KNMI). The open-source 2.0 version of the model was released in 2016 to
extend the community of users.

LOTOS-EUROS has been used for a wide range of applications supporting scientific research, regulatory
programmes and air quality forecasts. At present, the LOTOS-EUROS model is used in operational air
quality forecasts over Europe (Marécal et al. 2015) and The Netherlands (De Ruyter de Wildt et al. 2011).
Chapter 2 gives more background information on the LOTOS-EUROS and the setup of the model in this
study.

6



1.3. Satellite observations

Figure 1.2: Early NO2 retrievals over the Netherlands by the TROPOMI instrument. Source: www.tropomi.eu

1.3. Satellite observations
In this thesis, observational data from the TROPOMI instrument will be used. TROPOMI was launched
as payload onboard the Sentinel 5-Precursor satellite on October 13, 2017. The main objective of the
Sentinel-5P mission is to perform atmospheric measurements with a high spatio-temporal resolution.
These measurements are to be used for air quality, ozone and UV radiation, as well as climate monitoring
and forecasting. Its mission is part of the earth observatory programme Copernicus which is managed
by the European Commission (EC) and the European Space Agency (ESA). The TROPOMI instrument
was funded by the Netherlands Space Organisation (NSO) and ESA. It was developed by TNO and Airbus
DS Netherlands. The KNMI and SRON are the principal investigators (Veefkind et al. 2012).

The TROPOMI instrument provides measurements of atmospheric trace gases and of cloud and aerosol
properties at an unprecedented spatial resolution of approximately 5.5× 3.5 km2 (approx. 7× 3.5 km2

before August 6, 2019). Early results revealed that the instrument was able to resolve individual NO2
plumes over the Netherlands. In figure 1.2, an example of these early, revolutionary results are shown.
The abundance in data has sparked research interest in model validation and inverse modelling. The
NO2 data, for example, are being used for model validation (Ialongo et al. 2020) and to derive emissions
(Lorente et al. 2019; Wang et al. 2019). Methane columns from TROPOMI have also helped to identify
large leaks at oil-producing sites in the U.S. (Zhang et al. 2020). Chapter 3 gives more background
information on TROPOMI and satellite observation of atmospheric trace gasses.

1.4. NO2 as a proxy for CO2
The applications for improved estimation of NOx emissions are abundant. One specific application
is to investigate whether the co-emission of NOx and CO2 may be used to improve anthropogenic
(caused by human activity) CO2 emission estimates. Anthropogenic CO2 emission is mainly caused
by the burning of fossil fuels. Along with these chemical processes, NOx is produced. NOx is a far
shorter-lived compound than CO2. Effects of anthropogenic CO2 emissions are often negligible against
the background concentrations, which makes it hard to measure by satellites. Using the co-emission
of CO2 and NO2 could help to locate and estimate the CO2 emissions. Curier et al. 2016, show such a
procedure. In Reuter et al. 2019, the authors show a method to enhance the plumes of CO2, observed by
the OCO-2 satellite by making use of NO2 retrievals from TROPOMI. The inversion system developed in
this study could be used for the assimilation of data provided by new CO2 satellites.

ESA is planning the launch of a satellite constellation (CO2M) that will provide measurements of CO2 for
the EU Copernicus program1. This CO2M satellite constellation is supposed to measure CO2 columns
at 2 km×2 km with a precision of 0.7 ppm (Meijer 2019). To locate CO2 plumes, NO2 measurements can

1www.che-project.eu/
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1. Introduction

be used, as they are a good tracer of anthropogenic carbon emissions (Reuter et al. 2019). The CO2M
satellite would also be equipped with sensors for NO2.

1.5. Data assimilation
This study applies data assimilation to provide estimates of NOx emission strengths. In data assimilation,
observational data are combined with numerical models to give the best estimate of model parameters.
The field of data assimilation was initially developed in numerical weather prediction. Broadly speaking,
data assimilation methods may be classified into two categories. Deterministic, variational methods
such as 4DVAR treat the assimilation as an optimal control problem. A cost function based on the misfit
between observations and numerical models is minimised. Stochastic, filtering methods such as the
Kalman filter and ensemble methods statistically estimate parameters recursively.

This thesis investigates the application of variational methods on the assimilation of satellite data. For
solving the Four-Dimensional variational data assimilation (4DVAR) problem, a well-known method is
to use an iterative, gradient-based optimisation technique, where the gradient is calculated using an
adjoint model. This method has proven to be highly efficient for data assimilation. The computational
costs of an increase in the number of parameters do not strongly increase if the number of parameters
to be estimated grows. This is of high importance for data assimilation schemes as computational
resources are always limited and the systems are often extremely high-dimensional. The main drawback
of this method is its dependency on the implementation of the adjoint model. This task requires large
programming and especially maintenance efforts, that are often not feasible.

Solving the variational data assimilation problem without the adjoint method is possible. In this study,
such an adjoint-free, gradient-based method is proposed. This method is non-intrusive: the large
programming effort associated with the development of an adjoint model is not required. Moreover, it is
attractive because of its scalability of the number of parameters with respect to the computational costs
required. The highest computation costs are related to the creation of an ensemble of model simulations.
However, using domain decomposition strategy, increasing the number of parameters does not lead to
a proportional increase of model evaluations. Chapter 4 provides a detailed treatment of the theory of
data assimilation and the methodology proposed for the assimilation of satellite data in this study.

1.6. Research questions
This study aims to improve estimates of NOx emissions through data assimilation of TROPOMI NO2

retrievals. The following research questions have to be answered to reach the objective.

Research question 1: How can an adjoint-free 4DVAR procedure be designed to assimilate
synthetic TROPOMI retrievals in a twin experiment?

The focus of this thesis is the development of adjoint-free data assimilation method
that can be used for the estimation of emission parameters. The proposed method will be
tested in a twin experiment. Synthetic satellite NO2 retrievals are generated from a model
run with known emission parameters. An adjoint-free 4DVAR assimilation scheme should
estimate these parameters correctly. This experiment should provide a proof of concept
for the methodology. As in a twin experiment, the true value of the parameter estimated is
known, it is possible to assess the performance of the data assimilation.

Research question 2: How can domain decomposition methods be used to make the
procedure scalable in the number of parameters compared to the required number of full
order model runs?

When the adjoint method is used to solve the 4DVAR problem, an increase in the number
of parameters does not lead to an increase in the number of model simulations needed to
calculate the gradient of the cost function, although the number of iterations might grow.
However, when using an adjoint-free method, such as finite differences, to calculate the
gradient, the number of full order model runs quickly becomes computationally unfeasible.
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1.7. Structure

This thesis investigates whether, through domain decomposition, the efficiency of the
method can be increased.

Research question 3: Can the procedure assimilate TROPOMI retrievals to improve estimates
of anthopogenic NOx emission strengths?

Experiments with actual TROPOMI retrievals have to be conducted to test the methodology
on real data. Other sources of uncertainty, not captured by the parameters, chosen to
be estimated, might have to be dealt with. Such sources of uncertainty could arise from
priors in the numerical model, for example, meteorological conditions, temporal profiles
of emissions and injection heights of the emissions. Thought will have to be given to the
selection of observations to assimilate too.

1.7. Structure
This thesis introduces the LOTOS-EUROS chemical transport model and its state-space representation
in Chapter 2. An overview of satellite observations of atmospheric trace gasses is presented in Chapter 3.
Chapter 4 is concerned with the mathematical theory of data assimilation. In this chapter, the
adjoint-free method for solving the 4DVAR problem investigated in this thesis is introduced. Chapter 5
presents the results of several twin experiments that have been conducted to validate the method.
In Chapter 6, experiments are conducted with actual TROPOMI data. Chapter 7 presents the main
conclusions of this thesis, followed by recommendations for further research.
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2
LOTOS-EUROS

This chapter gives an introduction to the LOTOS-EUROS air quality model used in this study. Firstly,
the general model characteristics are described. Secondly, the emission module used in the model
is described in more detail, since this study focuses specifically on emissions. Finally, the state
space representation of a numerical model is introduced. With the state space representation of
LOTOS-EUROS, uniform mathematical notation of the data assimilation theory discussed in Chapter 4
is possible.

2.1. Model formulation
The history and main applications of LOTOS-EUROS were introduced in Section 1.2. This section
provides a more technical description of LOTOS-EUROS, adapted from Segers et al. 2019.

2.1.1. Simulated compounds
Concentrations of various atmospheric trace gasses and aerosols, denoted C , can be simulated in
LOTOS-EUROS. Some groups of compounds are coupled through chemical reactions such as oxidants,
but others can be calculated independently, such as dust. As this thesis focuses on NO2, the compounds
that interact with it through the Carbon Bond Mechanism-IV (CBM-IV) scheme are important. A list of
these compounds can be found in Segers et al. 2019.

An aerosol is a suspension of fine particles or droplets in the air. The model distinguishes different
aerosol types based on their chemical composition. For NO2, the nitrate NO3 aerosol is relevant, since
nitrate is one of its oxidation products. Whereas the lifetime of NO2 is rather short 1-12 hours (Stavrakou
et al. 2013), the lifetime of nitrate is longer. This provides a mechanism for transport of nitrogen N
emitted as NOx over longer distances.

A different group of tracers frequently modelled with LOTOS-EUROS is ‘primary aerosol’. Primary
aerosol consists of PM2.5, PM10-2.5, elementary carbon, particulate organic matter, sea-salt, and dust.
The simulation of primary aerosol can be performed independently from the other compounds in
LOTOS-EUROS as it is not chemically coupled to other them.

2.1.2. Simulated processes
LOTOS-EUROS simulates the concentrations of atmospheric trace gasses and aerosols. The processes
incorporated into the model are:

• Emissions

Emissions are the primary source of trace gases and aerosols in the atmosphere. As this thesis
focuses on estimation of emissions, they play a pivotal role in this project. Section 2.2 will provide
more details about the emission module in LOTOS-EUROS.
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2. LOTOS-EUROS

• Transport

Transport of tracers and aerosols is implemented using advection by wind in 3 dimensions,
entrainment and vertical diffusion. Advection, transport by wind, is driven by meteorological
wind fields that are updated every 3 hours from an offline database. Entrainment results from the
changing vertical structure in the atmosphere during the day, which impacts on the vertical levels
defined in the model. After updating the vertical structure of the model, tracer concentrations are
redistributed by linear interpolation. Entrainment only plays a role when vertical levels are varied
in the model. In this study, fixed vertical levels are used. These are defined by the meteorology
input data.

• Chemistry

Atmospheric chemistry is highly complex. Hundreds of organic and inorganic compounds
interact through thousands of reactions. Modelling each of those explicitly is not feasible.
Therefore, the LOTOS-EUROS model has adopted the CBM-IV. This scheme lumps different
compounds together and reduces the number of reactions considered to 81.

• Dry and wet deposition

Dry and wet deposition of gasses and aerosols represent an important sink of compounds
modelled in LOTOS-EUROS. Wet deposition is the process of tracers getting caught by droplets of
water in the atmosphere and eventually being deposited on the surface by gravity. Dry deposition
of particles and gasses is a process through which particles and gasses deposit themselves on
surfaces directly.

2.1.3. Continuity equation
C denotes the concentration of a trace gas or aerosol. For every concentration C , the processes involved
can be described using the following continuity equation:

∂C

∂t
+U

∂C

∂x
+V

∂C

∂y
+W

∂C

∂z
= ∂

∂z
(Kz

∂C

∂z
)+E +R +Q −D −W (2.1)

The large-scale wind components in the west-east, south-north and vertical direction are represented
by U ,V and W respectively. Kz is the vertical turbulent diffusion coefficient. E denotes entrainment due
to variations in layer height. In this study, fixed vertical levels are used so entrainment is disabled. R
represents a source or sink term in chemistry. Q is the contribution by emissions. D and W describe loss
terms due to dry and wet deposition respectively.

It is important to note that in Equation (2.1), the only non-linear contribution to the partial differential
equation (PDE) originate in chemistry. This non-linearity is due to reactions with other tracers. All
other processes are effectively linear operators in terms of concentrations. Thus, doubling the initial
concentration at some time t1 will lead to a doubled concentration at the next time step t2.

2.1.4. Horizontal grid and vertical levels
Continuity Equation (2.1) is discretized in space and time to solve it numerically. The standard horizontal
grid resolution of LOTOS-EUROS is 0.5° longitude and 0.25° latitude. Increasing this resolution by a factor
5 is feasible.

Several options are available for defining the vertical structure of the model. In this study, the vertical
levels are defined by the meteorological input. Concentrations of tracers are calculated in 10 vertical
layers. Concentrations in 5 layers on top of these 10 vertical layers are calculated from global boundary
conditions. In total, the LOTOS-EUROS model has 15 vertical layers in its output.

2.1.5. Time steps
The LOTOS-EUROS model typically has an hourly output. However, concentrations are calculated in
smaller, intermediate time steps. These intermediate time steps are limited by advection. Within one
time step, an air parcel should not cross a complete grid cell.
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2.2. Emission database

2.2. Emission database
The emission module of LOTOS-EUROS simulates the introduction of trace gasses and aerosols into the
atmosphere from various sources. The module considers different sources:

• Anthropogenic sources

Sources of tracers and aerosols related to human activity are a key factor in emissions. In this study
anthropogenic NO2 emissions from power plants, industrial facilities and other sources play a key
role. Therefore, Subsection 2.2.1 gives more details on anthropogenic NOx emissions.

• Biogenic sources

Emission of various tracers results from various natural processes in the biosphere, these are
called biogenic sources. Biogenic NOx emissions are a source of NO2. It is mainly produced by
bacteria in soil. Biogenic NOx emission is usually only relevant in remote places without human
activity since it is quickly exceeded by anthropogenic emissions.

• Sea-spray sources

Through wind and wave action, sea-salt is released from the sea into the atmosphere.

• Dust sources

Emission of dust from the surface can be caused by various processes such as wind erosion and
re-suspension of dust by traffic and agricultural activities.

• Forest fires

Forest fires cause extremely high emissions of trace gasses and aerosols. Due to their irregular
spatial and temporal occurrence, a dedicated inventory for forest fires is used. Forest fires can add
significant quantities of NOx to the atmosphere in densely forested areas.

2.2.1. Anthropogenic NOx emissions
Anthropogenic emissions in LOTOS-EUROS are obtained from databases called inventories. These
inventories are available from the European Union-funded project Copernicus Atmosphere Monitoring
Service (CAMS)1. The version used in this study is the TNO/CAMS v2.2 inventory. The following
paragraphs show how NOx emissions are calculated in LOTOS-EUROS from this database. The
calculation and the structure of the TNO/CAMS database are the same for the anthropogenic emission
of other compounds.

Source categories
Emissions are attributed to 16 different source categories, listed in Table 2.1. Not all of these source
categories account for NOx emissions.

Composition
Emissions of NO and NO2 are aggregated as NOx in the database. A constant ratio of NO and NO2 in the
emitted NOx is assumed. Most of the NOx (97%) is emitted as NO, only a small fraction (3%) is emitted
as NO2.

Resolution and spatial distribution
The database distinguishes area and point sources. Area emission sources are reported spatially on
a regular grid with a resolution of 1/10° × 1/20°. An example of an area source is the emission from
road transport. This is defined based on maps of road and traffic density. The emission map of these
sources shows the road network at the resolution of the inventory, which is detailed enough to resolve
the highway network. Such an emission map is shown in Figure 5.4a . Point sources are e.g. power plants
and large industrial stacks. They are positioned in the emission database at their actual location.

1https://atmosphere.copernicus.eu/
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2. LOTOS-EUROS

Category Short Code

Public Power A
Industry B
Other stationary combustion C
Volatile substances D
Solvents E
Road transport exhaust gasoline F1
Road transport exhaust diesel F2
Road transport exhaust LPG gas F3
Road transport non-exhaust F4
Shipping G
Aviation H
Off-road I
Waste J
Agricultural livestock K
Agricultural other L

Table 2.1: Categories of anthropogenic emission in the CAMS database. N.B. Not all these categories account for
NOx emission.

Temporal distribution
The emission data are stored as a spatially distributed, yearly averaged flux. However, emissions vary
at different time scales. In LOTOS-EUROS, time factors are used to generate realistic temporal emission
profiles. Per source category, time profiles for month-in-the-year, day-in-the-week and hour-of-the-day
are available. The profiles are on average 1 so the total emission corresponds to the yearly average, but
they can be higher or lower based on for example the season; (winter versus summer) or rush hours.
These factors are part of the inventories.

Vertical emission profiles
Some categories of emissions only take place at the surface, such as road transport and agriculture.
However, other emissions have a non-trivial vertical distribution; for example, industrial stacks inject
emissions at higher altitudes. For each source category, an average vertical emission profile is defined
Emissions are distributed over these vertical profiles in LOTOS-EUROS.

2.3. State space representation
A state space representation is a mathematical way of representing a physical system. When the field of
data assimilation was developed, many different ways of notation were introduced. Ide and Ghil 1997
introduced self-consistent notation that has been adopted by the community since. In this section, the
state space representation of LOTOS-EUROS and the mathematical notation used throughout this thesis
is introduced.

2.3.1. State space
The aim of a state space representation is to describe the evolution of the state vector x. Rn , the
n-dimensional Euclidean space, denotes the state space of a dynamic model. The state vector x ∈ Rn

contains the quantities simulated in the model. x is obtained through discretisation of the continuity
Equation (2.1), and contains the concentrations of all tracers and aerosols, at all grid cells defined in the
LOTOS-EUROS. For example, surface concentrations of NO2 are a part of the state vector. Such surface
concentrations are illustrated in Figure 2.1. The state vector x can be extremely high-dimensional, in the
order of millions.

The temporal evolution of the state vector is described with:

x(tk+1) = Mk+1 (x(tk ) ,β), k = 1,2, . . . (2.2)

In this equation, M is a non-linear operator that performs a discrete time step by solving Equation (2.1).
The operator M thus represents the full LOTOS-EUROS model in the state space representation.
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2.3. State space representation

Parameter vector β ∈ RNp controls the temporal evolution of the system, with Np denoting the number
of parameters. In this thesis, β contains emission parameters. The content of β will be defined in
Section 4.1 and depends on the chosen application. Given a parameter vectorβ, the evolution of the state
vector over time, x1,x2, . . . can be calculated. In data assimilation, this evolution is called the trajectory of
x.

2.3.2. Observation space
Real observations of the system yo

m at time tm are often available. In the context of LOTOS-EUROS,
examples of such observations are ground station measurements, deposition measurements and of
course the TROPOMI NO2 retrievals. In the state space representation of a model, observations are
defined as a vector in the no-dimensional observation space Rno .

It is often necessary to compare the model results to these observations. The model equivalent of
the observation, called the simulated observation ym , is defined through observation operator Hm . It
projects the state vector on the observation space:

ym = Hm
(
x(tm),β

)
, m = 1,2, . . . (2.3)

Hm can be non-linear and depend on the parameters β studied. In this thesis, the observations are
satellite observed NO2 columns and Hm is therefore associated with satellite retrieval. In Section 3.5, the
construction of Hm for satellite retrievals is described in detail. Hm will turn out to be a linear operator
for this application.

With a perfect model and highly accurate corresponding state x, due to representation errors, a
real observation can differ still differ from its simulated counterpart. Differences may arise from
measurement noise in the instrument, errors in the retrieval and representation errors. Representation
errors are related to the use of a state with discrete elements representing an average concentration in a

Figure 2.1: Surface concentrations of NO2 on July 2, 2018 at 10:00 calculated by LOTOS-EUROS. These surface
concentrations are part of the state vector x
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2. LOTOS-EUROS

large grid cell, while in reality concentrations could show strong variations even at small spatial scales.
Real observations of the system are therefore linked to the state vector through the following equation:

yo
m = ym +εm = Hm

(
x(tm),β

)+εm , m = 1, . . . , No (2.4)

where εm denotes the observation error at time tm .

Together, state vector x, parameters β, the state evolution Equation (2.2) and measurement
Equation (2.4) define the state space representation of LOTOS-EUROS in this thesis. This compact form
is especially suitable for the discussion of the data assimilation methodology in Chapter 4.
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3
TROPOMI NO2

This chapter introduces the TROPOMI instrument, its measurements and its NO2 retrieval algorithm. It
also describes the concept of averaging kernels, that is essential for assimilation of TROPOMI data into
CTMs. Finally, the observation operator that was developed to link LOTOS-EUROS simulations to the
TROPOMI retrievals is described.

3.1. The TROPOMI instrument
TROPOMI is an instrument onboard the Copernicus Sentinel-5 Precursor satellite. Figure 3.1 shows
an artist’s impression of the satellite. The S5P satellite is the first atmospheric composition Sentinel,
launched on 13 October 2017, planned for a seven-year mission (Veefkind et al. 2012). S5P is a low earth
orbit polar satellite. Because of the polar orbit and wide swath of the scanner, near-daily global coverage
is achieved.

TROPOMI measures light in the ultraviolet (UV), the visible (VIS), the near-infrared (NIR) and the
shortwave infrared (SWIR) light. In this spectrum, TROPOMI is capable of measuring important
atmospheric constituents such as nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon
monoxide (CO), methane (CH4), formaldehyde (CH2O), aerosol properties and clouds.

Figure 3.1: Artist’s impression of the Sentinel 5-Precursor satellite
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3. TROPOMI NO2

Figure 3.2: Timeline of European UV/Vis backscatter satellite instruments that retrieve tropospheric and
stratospheric NO2. Obtained from Van Geffen et al. 2019.

Figure 3.3: Overview of subsequent NO2 monitoring instrument resolutions. From August 6, 2019 TROPOMI
operational resolution was improved to 5.6 km × 3.5 km Source: https://www.tudelft.nl/en/2017/citg/
grs/what-makes-tropomi-special/

3.2. NO2 satellite retrieval history
TROPOMI is not the first instrument to monitor tropospheric concentrations of NO2. A variety of remote
sensing instruments, ground-based, in-situ (such as in weather balloons) and satellite-based - have been
and are currently being developed.

Figure 3.2 shows the timeline of the missions of several satellites that monitor tropospheric NO2. These
instruments have provided continuous measurements over the last 25 years. TROPOMI was launched as
the precursor to the Sentinel 5 mission to bridge the gap between the retirement of OMI and launch of
the Sentinel 5 mission. Each generation of instruments brought improvements in measured spectra,
resolution and signal-to-noise ratios. By receiving wider spectra of light, it is possible to measure
additional trace gasses in the atmosphere. Increased measurement resolution makes it possible to
investigate smaller spatial scales.

Figure 3.3 illustrates the different resolutions of consecutive instruments. From August 6, 2019, onwards,
the operational resolution of the TROPOMI instrument in the along-track direction was improved from
7.2 km to 5.6 km. This resolution is truly revolutionary and enables investigation at city block scale. In
terms of emission measurement, point sources of NOx, such as powerplants can now be resolved.

3.3. TROPOMI NO2 retrieval algorithm
This section gives a brief overview of the TROPOMI NO2 retrieval algorithm, adapted from Van Geffen
et al. 2019. Satellite retrieval of atmospheric trace gasses is complex. High-level overview and a basic
understanding of retrieval methodology are necessary to appreciate the benefits and limitations of the
data being used for assimilation purposes.
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3.3. TROPOMI NO2 retrieval algorithm

Figure 3.4: TROPOMI measurement principle, obtained from Veefkind et al. 2012. The dark-grey ground pixel is
imaged on the two-dimensional detector as a spectrum. All ground pixels in the 2600 km swath are
measured at the same time.

The algorithm consists of a three-step procedure.

1. Retrieval of the total NO2 slant column density using the Differential Optical Absorption
Spectroscopy (DOAS) method.

2. Separation of the total slant column density into a stratospheric and tropospheric part, based on
information from a data assimilation system.

3. Conversion of slant tropospheric and slant stratospheric column densities into Vertical Column
Density (VCD) using Air-mass factors (AMFs).

3.3.1. Slant column density retrieval with DOAS method
TROPOMI uses the DOAS method measurement principle. DOAS stands for Differential Optical
Absorption Spectroscopy. In Figure 3.4, the measurement principle of TROPOMI is illustrated. The
satellite is pointed towards the earth and measures light reflected from the earth and its atmosphere.
The extinction due to scattering and absorbing of photons by tracers changes the reflected spectrum
compared to the direct sunlight reaching the satellite. A radiance model is fitted to these different
received spectra for the calculation of the NO2 concentration. This is the DOAS method. The effective
absorption by NO2 along this path is represented as the slant column density of NO2, Ns .

3.3.2. Separation of slant column density
The light measured in the spectrometer follows a slant trajectory from the sun through the earth’s
atmosphere and back to the satellite. The DOAS method assumes concentrations of NO2 to be
constant along that trajectory. The path passes through both stratosphere and troposphere. From a
meteorological point of view, processes in the stratosphere and troposphere are very different. It is
necessary to separate the slant column into a stratospheric (N strat

s ) and a tropospheric (N trop
s ) part.

Over heavily polluted areas, most of the NO2 measured in the slant column will be contained in the
troposphere. However, in remote areas such as oceans, stratospheric NO2 is dominant in the slant
column density.

Separating the slant column density into a stratospheric and tropospheric part is carried out by a data
assimilation method, based on the Kalman filter technique. The observations are assimilated in the
TM5-MP chemical transport model. This method relies on observations over remote areas with little
tropospheric NO2 to get accurate estimates of stratospheric slant column density (N strat

s ). As total
reactive nitrogen (NOy) is fairly well-conserved in the stratosphere, with relatively small sources and
sinks, information of stratospheric NO2 can be used in the model over long time periods. Stratospheric
winds will transport the analysis results over remote areas to the polluted areas. In that way, a good
estimate of stratospheric NO2 can be given over areas with heavy tropospheric pollution as well.
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3. TROPOMI NO2

After data assimilation, the stratospheric column is estimated. The tropospheric column is calculated by
subtracting the stratospheric column from the total column.

N trop
s = Ns −N strat

s (3.1)

For detailed information, the reader is referred to Van Geffen et al. 2019. It is important to note this step
in the retrieval algorithm incorporates prior information on NO2 columns from the TM5-MP model.

3.3.3. Conversion to vertical column density
The last step of the retrieval algorithm is to convert the slant column densities to vertical columns. This
is important because the vertical column can easily be compared to model results. Slant columns are
converted to vertical columns happens by Air-mass factors (AMFs), denoted by the symbol M . The AMF
links the slant column density to the vertical density in the following way:

Nv = Ns

M
(3.2)

For calculation of the AMFs, prior information is again needed. The AMF depends on the vertical profile
of the trace gas and is written as:

M =
∑

l ml nl cl∑
l nl

(3.3)

The total AMF can thus be expressed as a linear combination of altitude-dependent AMFs ml , that
describes the vertically resolved sensitivity for NO2 in layer l . nl denotes the NO2 column density in
layer l and cl denotes a temperature correction term which is not further considered in this thesis.
The altitude dependent AMFs are based on retrieval parameters such as the satellite viewing geometry,
surface albedo, surface pressure and cloud cover. These AMFs are calculated from a radiative transfer
model and are therefore used as prior information in the retrieval algorithm.

Finally, AMFs can be calculated for the troposphere (M trop) and the stratosphere (M strat) by limiting the
sum in Equation (3.3) to the troposphere and stratosphere layers respectively. Using these factors, slant
columns N strat

s and N trop
s are be converted to vertical columns N strat

v and N trop
v .

3.4. Averaging kernels
For data assimilation purposes, satellite trace gas retrievals need to be compared to results from
a numerical model. The sensitivity of satellite instruments to tracer densities are strongly height
dependent in the troposphere as a result of meteorological conditions. Therefore, large systematic errors
could be introduced if information about these vertical profiles is not incorporated. Column densities,
integrated over the layers of a numerical model cannot be directly compared to N trop

v as supplied by
TROPOMI. Rodgers 1976 introduced the concept of averaging kernels to enable these comparisons.
Eskes and Boersma 2003 published a useful description of averaging kernels for optically thin absorbers
such as NO2.

The TROPOMI data product provides the averaging kernel A for each ground pixel. The averaging kernel
is defined as the altitude-dependent AMFs ratioed by the total air-mass factor M . Figure 3.5 illustrates
several averaging kernels. The three kernels, denoted (a)-(c) all show different sensitivities of the total
vertical NO2 column for modelled vertical profiles. For example, if thick cloud cover is present with the
top at 800 hPa, the satellite is not able to measure any NO2 below this level (kernel (c)). This illustrates
the importance of the averaging kernel for comparison of model results to TROPOMI data. The model
approximation of the tropospheric NO2 column to compare to TROPOMI is the following:

N trop
v = ASxm (3.4)

In this equation, A denotes the TROPOMI averaging kernel operator, xm denotes a vector containing the
NO2 concentrations of one vertical profile from the model, matrix S, denotes an operator that executes
a mass-conserving vertical interpolation of the model profile xm to the TROPOMI layers and when
applicable, a change in units to mlc/m2.

The TROPOMI averaging kernel is defined at 34 vertical levels l = 1, . . . ,nTROP
nlev . The CTM used for

simulations may have a different number of vertical levels j = 1, . . . ,nCTM
nlev , defined at different pressure
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3.5. Observation operator

Figure 3.5: Example of averaging kernels: (a) clear pixel with a surface albedo of 0.02, (b) clear pixel with a surface
albedo of 0.15, (c) pixel over a clouded area with a cloud top at 800hPa. Obtained from Eskes and Boersma
2003.

levels. In that case, vertical interpolation of the model layers is carried out before applying the averaging
kernel A. For level l of the TROPOMI averaging kernel A, the l th row of matrix S, accounts for the applied
vertical interpolation. Each entry of Sl j , corresponds to the fraction of the model layer j is in TROPOMI
level l . Moreover, the units used in the CTM may be different from the TROPOMI retrieval (mlc/m2). The
conversion of units is discussed in the next section.

3.5. Observation operator
This section describes the definition of the observation operator for TROPOMI. The observation operator
was introduced in Subsection 2.3.2.

Observations are continually taken while TROPOMI orbits the earth. For comparison to model results,
timestamps are rounded to the nearest hour. At all rounded timestamps, TROPOMI pixels are retrieved
over the computation grid, measurement operator Hm is calculated. Hm is a matrix with dimension
Npixel ×Nstate, where Npixel denotes the number of pixels in the retrieval ym at time tm and Nstate denotes
the dimension of the state vector. This matrix is very large and needs significant storage resources, but
by using its sparsity when storing the matrix this issue is overcome. For each TROPOMI pixel, the vertical
NO2 profile above the closest model horizontal grid cell is used for comparison. As the TROPOMI pixel
footprints do not equal the model grid cells, horizontal averaging of every model grid cell that overlaps in
some part with the TROPOMI pixels would be the most rigorous way to calculate the model observations,
but that has not been implemented yet.

Every row of Hm corresponds to the observation of one single pixel. The non-zero coefficients of this row
correspond to the vector AS in Equation (3.4). Therefore, entries of matrix S (dimensions (nTROP

nlev ×nCTM
nlev ))

have to be calculated. This is carried out per row, in two steps.

1. Conversion factors from concentrations (ppb) to vertical column densities (1×1015mlc/cm2) are
calculated for the model’s layers.

In the CTM, concentrations of tracers are calculated and stored in ppb. For each vertical model
layer, a factor is calculated that converts these Volume Mixing Ratios (VMRs) of NO2 in ppb to a
vertical column density measured in [1×1015mlc/cm2] 1. This is carried out using the following
equation.

1Reporting of VCD in SI-units would be done in [mol/m2]. However, the units [1×1015mlc/cm2] are more commonly
used for NO2 retrievals.
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In this equation NA denotes the Avogadro number, M air denotes the molar mass of air, VCDair

denotes the air vertical column density of a certain vertical layer which can be approximated
under the hydrostatic assumption from the pressure difference ∆P between the top and bottom
of the vertical layer:

VCDair = −∆P

g
. (3.6)

2. The entries of S corresponding to the vertical interpolation of the model’s layers to the TROPOMI
are calculated.

The vertical layers in the numerical model need to be vertically interpolated to levels of the
TROPOMI averaging kernel A, defined at 34 layers in the TM5-MP model. Interpolation of the
averaging kernel is performed using pressure levels as reference height. A hypothetical model
layer that is defined from 700 hPa to 600 hPa is divided over the TROPOMI layers in and around
that level.

After calculation of the unit conversion factors and the vertical interpolation matrix, matrix S is
completely defined. AS corresponds to the non-zero row entries of the pixel in Hm under consideration.
These are entered in the correct place to correspond to the correct entries in the state vector xm .

3.6. Uncertainties and quality flags
For data assimilation purposes, it is paramount to have estimates of the accuracy of the observations.
Van Geffen et al. 2019 describe in detail how uncertainty arises in the retrieval process. Basically, the
total error arises by propagation of errors made in the three steps of the retrieval algorithm. These are
slant column errors, errors in the separation of slant columns into stratospheric and tropospheric parts,
errors in tropospheric air-mass factors. The total error is reported in the TROPOMI data product. A rough
estimate of the measurement error σ of the vertical tropospheric column N trop

v is given by:

σ= 0.5×1015mlc/cm2 + [0.2 to 0.5] ·N trop
v (3.7)

For each retrieved pixel, a quality value q for the retrieval is reported. This value ranges from 0 to 1.
It mainly depends on cloud presence over the pixel. Van Geffen et al. 2019 advise to use pixels with a
quality value of 0.52 and above for data assimilation purposes. In this study, this threshold is used to
include TROPOMI retrievals in data assimilation.
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(a) (b)

Figure 3.6: Illustration of the TROPOMI retrieval error σ. (a) TROPOMI retrieval (b) TROPOMI error estimate σ.
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4
Data assimilation theory &

methodology

This chapter describes the mathematical theory of data assimilation. In Section 4.1, the parameter
estimation problem is formulated. Section 4.2 gives an overview of methods within the field of data
assimilation and the choice for variational methods in this study is motivated. In Section 4.3, the
variational 4DVAR problem is stated along with the ‘standard’ adjoint-based solution strategy. Next,
Section 4.4 describes adjoint-free methods for solving the 4DVAR problem. A general approach based
on linearisation and reduced order modelling, proposed by Vermeulen and Heemink 2006 is discussed
in Section 4.5. Section 4.6 discusses the application of this approach to the context of this study and
derives an approximate linear model for LOTOS-EUROS. Section 4.7 shows how the 4DVAR problem can
be solved using the approximate model for LOTOS-EUROS. Section 4.8 derives an approximation to the
covariance of the estimated parameters. Section 4.9 synthesises the ideas in this chapter to a proposed
methodology for solving the data assimilation problem in this study. Section 4.10 discusses how domain
decomposition can be used to increase the computational efficiency of the model.

This chapter uses the notation from the state-space representation of LOTOS-EUROS that was
introduced in Section 2.3.

4.1. Parameterisation and problem statement
The parameter vectorβwas introduced in Section 2.3. This section formulates its exact definition, based
on which the data assimilation problem, addressed in this study, is stated.

LOTOS-EUROS simulates atmospheric processes as accurately as possible. However, the model is not
perfect. One source of errors is the uncertainty in the model’s parameters, such as the meteorology
inputs, chemistry parameterisation, emissions and many more. Figure 4.1 illustrates the uncertainty
of parameters in LOTOS-EUROS. Assimilating information from observations in the model is a way of
finding better estimates of these parameters.

This thesis focuses on improving estimates of emission parameters, specifically anthropogenic NOx

emissions. In densely populated areas, these are the main sources of NOx. Subsection 2.2.1 discussed
the emission module of LOTOS-EUROS and the anthropogenic emission inventory. Uncertainty from
anthropogenic emissions can be further broken down. Total emission strength, emission time profiles,
spatial distribution of area sources and injection heights of emissions are important factors to calculate
the emissions that all deal with uncertainty. The output of the emission module of LOTOS-EUROS is an
emission strength per hour that is spatially distributed and subdivided into the source categories from
Table 2.1. In this thesis, the aim is to estimate Multiplication Factors (MFs) for these emission strengths
using satellite observations. No parameterisation of other emission uncertainties such as its temporal
distribution is used. As the satellite retrievals are only available around 12:00 a.m. daily, variations of
emissions within a day cannot be estimated from these retrievals.
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Figure 4.1: Realm of model parameter uncertainty. Many sources of uncertainty may cause the model to be
imperfect. This thesis focuses specifically on improving emission strength estimates by assimilating
satellite observations.

The parameter vector β is defined to contain multiplication factors that correct the emission strength
from the inventories. This method of parameterising uncertainty in the emission strength is useful
because it maintains prior information from the anthropogenic emission inventories. The starting
point of the data assimilation is the so-called background parameter vector βb that is equal to 1, which
corresponds to the anthropogenic emissions from the inventories.

The approach of using MFs provides a flexible way of defining emission uncertainty. Jin et al. 2018 used
the same approach for the parametrisation of uncertainty in dust emissions. MFs can be defined as
spatially varying or uniform over the domain and be applied to specific source categories such as road
transport only or to the total anthropogenic emissions. In principle any combination is possible. For
example, known emission hotspots such as power plants and large industrial sites may receive individual
corrections factors and to area sources such as road transport, a factor that is uniform over the domain
may be applied.

By restricting parameter vector β to emission strengths, other sources of uncertainty from Figure 4.1 are
not taken into account. Consequently, emission MFs may compensate for other errors in the model. This
may lead to incorrect estimates of emissions parameters. This should be kept in mind when interpreting
the multiplication factors.

With β defined, the parameter estimation problem statement is complete. The objective of this thesis
is to assimilate TROPOMI NO2 observations in LOTOS-EUROS to obtain better estimates of emission
strengths through the MFs in parameter vector β. The best estimate of β given the data will be referred
to as β̂.

4.2. Methods for solving the data assimilation problem
Lewis et al. 2006 categorised data assimilation methods in two groups: variational methods and
statistical methods.

Variational methods assume that the underlying model is deterministic. A model is deterministic if no
randomness is involved in the evolution of the state. Variational methods treat the parameter estimation
problem as an optimisation problem. A cost function J (β) is defined that penalises the mismatch
between model simulations and observations and the deviation of the parameters from their a-priori
value. The best estimate of the parameter vector β̂ is the vector β that minimises J . A well-known
example is the 4DVAR algorithm, discussed in Section 4.3.

The statistical approach assumes that the underlying model is stochastic and adds noise to the state
evolution Equation (2.2). Under the assumption of Gaussian error distributions, this approach reduces
to that of the well-known Kalman filter. In the Kalman filter algorithm, data are assimilated sequentially.
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An improved estimate of the model state is reached by a weighted average of the prior and observation
information.

Recently, many data assimilation methods have been proposed that combine variational and statistical
methods. Bannister 2017 gives a good overview of such hybrid methods. This thesis focuses on the
application of variational methods on the parameter estimation problem. This choice is made because
for two reasons.

• Constant-in-time parameters

Estimation of parameters (in this thesis: MFs) that are constant in time fits very well into
the variational problem formulation. In the stochastic approach, parameters would have to
be appended to the state vector to estimate them. As states are inherently supposed to be
(slowly) time-varying in the stochastic approach, the same then applies to the parameters. Extra
smoothing or averaging steps are necessary to calculate the best constant estimate. Moreover, for
constant parameters, the Kalman filter is known to be biased and could even diverge (Vermeulen
and Heemink 2006).

• Variational methods respect model physics

The second advantage of variational methods is that the optimal estimated trajectory corresponds
to a run of a model simulation. The recursive estimations made in the Kalman filter allow for the
trajectory of a state to have shocks and permit that the analysis trajectory is not the result of a
model simulation. As the aim of this thesis is to estimate actual emission strengths, the physical
link between emissions and measured NO2 concentrations is extremely important. This physical
link essentially means conservation of mass, which is not violated in the variational approach.

4.3. The 4DVAR problem
This section states the 4DVAR problem and the canonical adjoint-based way of solving it. The 4DVAR
cost function J is defined as:

J (β) = 1

2
(β−βb)T B−1(β−βb)

+ 1

2

No∑
m=1

(
yo

m −Hm(x(tm),β)
)T Rm

−1 (
yo

m −Hm(x(tm),β)
)

(4.1)

βb denotes the background (prior) parameter vector. The background parameter vector contains the
prior value of β. In this thesis, βb = 1, resulting in emissions that are equal to the original inventory. B
is the prior covariance matrix of β. In Chapters 5 and 6 that describe the experiments, B will be defined.
yo

m are the observations at time tm . In this thesis, the observations are TROPOMI NO2 retrievals. Rm is
the covariance matrix of the observation error εm in Equation (2.4).

Minimisation of Equation (4.1) is the objective of the 4DVAR method. The estimated parameter vector β̂
is therefore defined as:

β̂= arg min
β∈RNp

J (β) = {v ∈RNp |∀w ∈RNp : J (v) ≤ J (w)} (4.2)

It is important to note that minimising Equation (4.1) is a constrained optimisation problem. The
trajectory of state vector x is constrained by Equation (2.2), through which the dependence of the
trajectory on the parameters β is included.

4.3.1. Gradient-based solution strategies
Solving the 4DVAR problem poses a significant mathematical and computational challenge. Solution
strategies are usually gradient-based. In an iterative procedure, the gradient ∇β J (β) is obtained for the
latest estimate of β and a new estimate of β is found using an optimisation strategy such as steepest
descent. Most computational costs in solving the 4DVAR problem are associated with obtaining the
gradient of J .
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4.3.2. The adjoint method of obtaining the gradient
Courant and Hilbert 1953 introduced the so-called adjoint approach of obtaining the gradient of the cost
function J . In this section, this method, adapted from Lewis et al. 2006, will be discussed.

In this method, firstly, the minimisation problem in Equation (4.1) is reformulated as an unconstrained
minimisation problem by Lagrange multipliers λ(tk ). Without loss of generality, it is assumed that
observations are available at each timestep tk . Gradient ∇β J can be calculated to be:

∇β J (β) =B(β−βb)−
K∑

k=1

(
∂Mk (x(tk−1),β)

∂β

)T

λ(tk )−
K∑

k=1

(
∂Hk (x(tk ),β)

∂β

)T

R−1
k

(
yo

k −Hk (x(tk ),β)
)

. (4.3)

In this equation, λ(tk ) are the Langrange multipliers that satisfy the adjoint equations:

λ(tk ) =
(
∂Mk+1(x(tk ),β)

∂x(tk )

)T

λ(tk+1)+(
∂Hk (x(tk ),β)

∂x(tk )

)T

R−1
k

(
yo

k −Hk (x(tk ),β)
)

(4.4)

In this equation, k = K , . . . ,1 and λ(tK+1) = 0. This recursion is solved backwards in time.

Calculation of the gradient using the adjoint method is done in two steps. The first step is a forward
model run during which the trajectory and the Jacobians are stored. The second step is a run of the
adoint model, Equation (4.4) backwards in time to obtain λ(tk ). After this, the ∇J can be calculated
using Equation (4.3).

The adjoint approach is very attractive computationally. For calculation of the gradient, one forward
model and one adjoint model run suffice, irrespective of the number of parameters. Increasing the
number of parameters would likely mean more gradient calculations and updates of β to arrive at the
minimum of J , but the costs of computing a gradient remain more or less the same. If the adjoint model
is available, this would be the preferred method of solving the 4DVAR problem.

However, for many numerical models, the adjoint model is not available. The transposed Jacobians
that form the adjoint model correspond to linearisation of every model step and reversing the time
step. Creating and maintaining it requires a tremendous programming effort. The source code of the
model would have to be accessed for that purpose. Numerical simulation models such as LOTOS-EUROS
consist of thousands of lines of code and are often written by several persons over many years.
Calculation of the tangent and adjoint model needs to be done line by line which requires a lot of time
and detailed knowledge of the code. An approach to solving the 4DVAR problem that includes accessing
the model source code is called intrusive.

4.4. Adjoint-free, gradient-based 4DVAR solution strategies
As implementation of the adjoint of a large, non-linear model is often not feasible, other ways of
obtaining the gradient have been developed. In this thesis, such methods to solve the 4DVAR problem
will be referred to as “adjoint-free, gradient-based methods”.

4.4.1. Finite differences
The most basic method of approximating the gradient of J around some β̃ would be to calculate it by
finite differences. The i th component of ∇β J (β̃) can be approximated by:

∇J (β̃)i = ∂J (β̃)

∂βi
≈ J (β̃+∆βi ei )− J (β̃)

∆βi
, i = 1, . . . , Np (4.5)

for some perturbation∆βi > 0. ei is the i th column of the Np×Np identity matrix. This way of calculating
∇J requires Np +1 simulations of the model: one model run using the base parameters β̃ and Np runs for
perturbation of each parameter. Increasing the number of parameters will increase the computational
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costs of this method greatly. More perturbation runs are required for calculation of the gradient and the
computation needs to be repeated many times to find the minimum of the cost function in an iterative
procedure. Therefore, this method is not feasible in situations where the number of parameters is large
and single model runs are very costly.

4.4.2. Gradients from approximate models
Another approach to make the adjoint method feasible is to replace the original model by an
approximation for which the adjoint model is available. An incremental approach was proposed by
Courtier et al. 1994, who replaced a weather forecast model by a linear approximate model. In the
incremental approach, the modelled state contains perturbations around a base trajectory that was
computed using the full model. This approximate model used simpler physics. It was, however,
necessary to develop and implement this linear model from scratch (Courtier et al. 1994).

4.4.3. Reduced order model approach
Vermeulen and Heemink 2006 introduced a new approach to variational data assimilation that also
makes use of approximate models. Rather than developing it from first principles or deducing the
full tangent linear models, they used an ensemble of forward models to deduce this approximate
model. From this ensemble of forward models, Proper Orthogonal Decomposition (POD) patterns
were calculated that form a subspace of the full state space. A reduced-order model was developed by
projecting the original model onto this subspace. An advantage of this method is that it is non-intrusive
to the model’s source code. This approach was reported to have comparable computational efficiency
to the adjoint method. The method was successfully applied to geological inverse problems (Xiao et al.
2019), (Kaleta et al. 2011) and to shallow-water flow modelling (Altaf et al. 2009). This approach was
chosen as starting point in this study.

4.5. Construction of an approximate, reduced order model
This section presents the approach by Vermeulen and Heemink 2006 of developing a linear
approximation of the original model. The adjoint of this approximate, linear model is used for solving
the 4DVAR problem.

4.5.1. Linearisation of the original model
The approach starts with linearisation of the original model Mk around the background trajectory xb

k
and background parameter vector βb . The background trajectory xb

k is calculated using the original

model with background parameters βb . The difference between a trajectory x and the background is
then approximated by:

x(tk+1)−xb(tk+1) ≈ ∂Mk+1(x(tk ),β)

∂x(tk )
(x(tk )−xb(tk ))

+ ∂Mk+1(x(tk ),β)

∂β
(β−βb) (4.6)

In this equation, both Jacobian matrices are evaluated at (xb(tk ),βb). This linearisation is called the
Trajectory Piece-wise Linearisation (TPWL). This linearisation corresponds to the tangent of the original
model that was necessary to build the adjoint model. These Jacobians are generally not available; if they
were, the adjoint model is would be available as well.

Rather than deriving the Jacobians in Equation (4.6) from the model source code, as is done for derivation
of the adjoint model, they could theoretically be estimated from forward model runs where the state and
parameters are calculated from the background values plus perturbations∆xi and∆βi respectively. The
i th columns of the Jacobians are approximated as:[

∂Mk+1(x(tk ),β)

∂x(tk )

]
i
≈ Mk+1(x(tk )+∆xi ei ,β)−Mk+1(x(tk ),β)

∆xi
(4.7)
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and [
∂Mk+1(x(tk ),β)

∂β

]
i
≈ Mk+1(x(tk ),β+∆βi ei )−Mk+1(x(tk ),β)

∆βi
(4.8)

In Equation (4.7), i = 1, . . . ,n and n is the dimension of the state. In Equation (4.8), i = 1, . . . , Np and Np

is the length of the parameter vector.

Xiao et al. 2019 chose a different strategy for approximating the Jacobians in Equation (4.6) using Radial
Basis Functions. With this approach, an interpolation model is formed from an ensemble of state vectors
and the derivative of this model is used as an estimate for the Jacobians.

Both approaches, however, need to work around the problem that β and especially x can be extremely
high-dimensional. The large number of full model runs needed to calculate all components of the
Jacobians is not feasible. Therefore, Equations (4.7) and (4.8) cannot be used to approximate the
Jacobians.

The innovative approach by Vermeulen and Heemink 2006 was lowering the dimension of both x− xb

and β by using a reduced-order modelling approach based on Proper Orthogonal Decomposition
(POD). After the dimension reduction of β and x, a feasible number of model runs was required to
approximate the Jacobians in reduced dimensions. The following section describes the construction
of a reduced-order approximation of Equation (4.6). Subsection 4.5.3 shows how, by making use of
reduced-order modelling, the calculation of the Jacobians becomes feasible. The description is adapted
from the comprehensive and detailed description of the method in Kaleta et al. 2011, that was was
applied to a geological parameter estimation problem.

4.5.2. POD-based reduced order modelling
In the POD dimension reduction approach, only the main patterns in x−xb are used in the approximate
model. These patterns form the orthogonal projection matrixΦx ∈R(n×nred), where n denotes the length
of the state vector x and nred the reduced state dimension. x− xb is projected on a lower dimensional
subspace Rnred . The reduced state vector z is defined as:

x(tk )−xb(tk ) =Φx z(tk ) ⇒ z(tk ) =Φx
T (x(tk )−xb(tk )) (4.9)

In a similar fashion, the parameter vector β can be approximated in reduced dimension RN p,red by η:

β−βb =Φβη ⇒ η=Φβ
T (β−βb) (4.10)

In nearly linear systems, it is often possible to represent x in a much lower dimension by means of POD.
In the case of modelling NO2 in LOTOS-EUROS, this is therefore expected to be applicable.

The reduction of the parameter space depends heavily on the chosen parametrisation. Xiao et al. 2019
considered spatially varying permeability patterns of geological formations and was able to significantly
reduce the dimension of the parameter vector with acceptable loss of resolution. Jin et al. 2018 used
spatially varying MFs to parameterise dust emissions and also successfully reduced the parameter vector
dimension.

Method of snapshots
To find the dominant patterns in the state space that define the projection matrix Φx , the so-called
method of snapshots is used. Matrix X is formed, where the columns consist of snapshots of the model
state. These snapshots, x j ,k , are meant to capture the variations in the model induced by the parameters.
They are defined as:

x j ,k = Mk (x j (tk−1),β j )−Mk (x j (tk−1),βb), j = 1, . . . , N runs (4.11)

The snapshots are computed from N runs model runs with different parameter settings β j . Snapshot
matrix X is defined as:

X = {x1,1, . . . ,x1,K , . . . ,xNr uns ,1, . . . ,xNr uns ,K } (4.12)

The size of X is n × s, where s is the number of snapshots. K denotes the number of time-steps of the
model at which snapshots are taken. These snapshots define a subspace of the full state space Rn . This
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subspace should capture the variation of the model induced by the parameters. Therefore, in each of
the N runs, another parameter vector β j is used. How N runs and β j should be chosen is discussed below.
POD is used to calculate a basis of this subspace to efficiently describe it in a relatively low dimension.

The dominant, orthogonal patters φi in X form this basis and correspond to the eigenvectors that solve
the eigenvalue problem:

(XXT )φi =λφi . (4.13)

This eigenvalue problem may be solved by calculating the Singular Value Decomposition (SVD) of X:

X =UΣV T (4.14)

U ∈ Rn×n , V ∈ Rs×s are orthonormal matrices and Σ ∈ Rn×s is pseudo-diagonal matrix with the singular
values arranged in decreasing order on its diagonal. It can be shown that the eigenvectors of XXT are
equal to U and that the eigenvalues are the squares of the diagonal of Σ.

By an energy criterion, nred eigenvectors corresponding to the largest eigenvalues can be chosen from U .
The eigenvalue λi , that corresponds to eigenvector φi , provides a measure αi for the energy associated
with φi in U:

αi = λi∑s
i=1λi

. (4.15)

By choosing nred in a way that
nred∑
i=1

αi > 0.95, (4.16)

the eigenvectors φ1, . . . ,φnred
represent 95% of the energy contained in X. The chosen threshold defines

the trade-off between dimension reduction and the quality of the low-dimensional representation of the
state.

4.5.3. Constructing the reduced order model
After the derivation of projection matrices Φx and Φβ from a model ensemble, x and β can be
represented in reduced dimension using Equations (4.9) and (4.10). It is then possible to reduce the
TPWL model in Equation (4.6). This reduced model becomes:

z(tk+1) =
(
Φx

T ∂Mk+1(x(tk ),β)

∂x(tk )
Φx

)
z(tk )+

(
Φx

T ∂Mk+1(x(tk ),β)

∂β
Φβ

)
η (4.17)

Using Equation (4.9), the reduced state vector z can always be transformed into the full state space.
In Equation (4.17), the Jacobian matrices of the original model are still unknown. However, a much
more efficient computational procedure can now be used to estimate them compared to the approach
in Equations (4.7) and (4.8).

In Equations (4.7) and (4.8), every element of x and every element of β is perturbed, a total of n + Np

perturbations. The advantage of the reduced form of the TPWL model in Equation (4.17) is that it
does not require all these perturbations. Due to the projection on the reduced model space, only
perturbations in this reduced space are needed.

The i th columns of the respective Jacobians are approximated by:[
∂Mk+1(x(tk ),β)

∂x(tk )
Φx

]
i
≈ Mk+1(x(tk )+∆φxφx,i ,β)−Mk+1(x(tk ),β)

∆φx
(4.18)

and [
∂Mk+1(x(tk ),β)

∂β
Φβ

]
i
≈ Mk+1(x(tk ),β+∆φβφβ,i )−Mk+1(x(tk ),β)

∆φβ
(4.19)

Here, because ∂Mk+1(x(tk ),β)
∂x(tk ) Φx is a n × nred matrix, only nred perturbations need to be done for

approximating the Jacobian associated with the state. Instead of perturbing the state x(tk ) by ∆xi ei

(where i = 1, . . . ,n) as in Equation (4.7), only perturbations are ∆φxφx,i (where i = 1, . . . ,nred need to
be carried out. φx,i is the i th column of projection matrixΦx .

31



4. Data assimilation theory & methodology

Similarly, only N p,red perturbations have to be carried out for approximating the Jacobian with respect to
the parameters. It is at this point that the added value of reduced-order modelling can be appreciated.

After the projection matricesΦx andΦβ are determined and calculations of the reduced order Jacobians
in Equations (4.18) and (4.19) are finished, the approximate linear model in Equation (4.17) is completely
defined. The adjoint model of this linear approximation is available. The adjoint method, discussed in
Subsection 4.3.2 may then be used to find an approximation of the gradient of cost function J (β).

4.6. Defining the approximate linear model for LOTOS-EUROS
The methodology of finding a linear, reduced order approximate model, that was described generically in
Section 4.5, could be applied to any state space representation of a numerical model. Such applications
can be environmental modelling, weather prediction, geophysical applications and many more. In this
section, the application of the methodology from Section 4.5 to the specific context of this study is
discussed.

4.6.1. State vector definition
When the state space representation of LOTOS-EUROS was introduced in Section 2.3, the state vector
x was defined to contain concentrations at all positions of all tracers simulated in LOTOS-EUROS. It is
necessary to keep track of all tracers in the state vector because tracers can interact through chemical
reactions. Model operator M needs to calculate these reactions for each timestep, and therefore all
tracers have to be stored in x.

In this study, the focus is on NOx emissions and the only measurements available are of NO2. When
developing an approximate model for data assimilation purposes, the reactions of NO2 with other
tracers are not modelled explicitly. Reactions with other tracers are modelled in the LOTOS-EUROS runs
from which the approximate model is developed, but the approximate model state only contains NO2

concentrations. In twin experiments, this approximation will be proven to be valid. Therefore, state
vector x is defined to only contain the NO2 concentrations calculated by LOTOS-EUROS.

4.6.2. Trajectory Piece-Wise Linearisation of LOTOS-EUROS
The TPWL model in Equation (4.6) consists of two types of linearisations. The Jacobian ∂Mk+1(x(tk ),β)

∂x(tk ) ,
dictates how small perturbations of the state vector at time tk translate into perturbations at time tk+1.

Similarly, the Jacobian ∂Mk+1(x(tk ),β)
∂β dictates how perturbations of the parameter vector β translate to

perturbations of the state vector at time tk+1.

As NO2 is a relatively short-lived trace gas (1-12 hours) (Stavrakou et al. 2013), it can be assumed that the
state of a previous day will have little influence on the state of the following day. TROPOMI observations
are available every day around noon. For the 4DVAR problem, accurate estimates of the state are required
only at the times of observations. As a result, the linearisation of the time-evolution of the state through

matrix ∂Mk+1(x(tk ),β)
∂x(tk ) may not be relevant for an approximate model to accurately calculate the state at the

times of observation tm .

If this is indeed the case, the first term of Equation (4.6) may be omitted. The whole reduced order
modelling approach for the state, discussed in Subsection 4.5.2, was only considered for making the

calculation of ∂Mk+1(x(tk ),β)
∂x(tk ) feasible. Omitting ∂Mk+1(x(tk ),β)

∂x(tk ) in Equation (4.6) means that the dimension
reduction of the state x ∈Rn to z ∈Rnred is no longer required.

When ∂Mk+1(x(tk ),β)
∂x(tk ) is omitted from Equation (4.6), only the linearisation of the state around the

background state xb with respect to β, described by ∂Mk+1(x(tk ),β)
∂β is left. The following equation remains:

x(tk+1)−xb(tk+1) ≈ ∂Mk+1(x(tk ),β)

∂β
(β−βb) (4.20)

As mentioned, in this equation, the Jacobian is evaluated in (xb(tk ),βb). On closer inspection, the
time-stepping nature of the approximate TPWL model in Equation (4.6) is abandoned in Equation (4.20).
To calculate the state x(tk+1), the previous state x(tk ) is no longer needed. Rearranging this yields:
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x(tk+1) ≈ xb(tk+1)+ ∂Mk+1(x(tk ),β)

∂β

∣∣∣∣
x(tk )=xb (tk ),β=βb

(β−βb) (4.21)

The Jacobian matrix in Equation (4.21) will play an important role in this thesis and will be referred to
as Ek . As the timestepping nature of the approximate model is lost, the state at time tk will be described
instead of time tk+1.

Ek = ∂Mk (x(tk−1),β)

∂β

∣∣∣∣
x(tk−1)=xb (tk−1),β=βb

(4.22)

A compact notation of Equation (4.21) can now be given:

x(tk ) ≈ xb(tk )+Ek (β−βb) (4.23)

4.6.3. Calculating the approximate model
The approximate model in Equation (4.23) is completely defined by Ek . This Jacobian matrix is not
available explicitly from the model. However, it can be approximated by the finite-difference procedure
in Subsection 4.5.1. In Equation (4.8), this finite difference approximation is defined mathematically.
Several model runs are needed to calculate Ek . Np + 1 forward model runs are needed, one with
background parameters βb and Np where the parameters are consecutively pertubed by ∆βi .

4.6.4. Reducing the parameter space
It is important to note that the reduction of the state vector using projection matrix Φx is no longer
necessary when using the approximation in Equation (4.23). However, reduction of the parameter vector
β, described in Subsection 4.5.2 is still possible and could greatly improve the computational efficiency

of the derivation of Jacobian Ek . If the parameter space is reduced toRN p,red , only N p,red+1 perturbation
runs are needed instead of Np +1.

For the chosen parametrisation in this study for the NOx emissions, reduction of the parameter space will
not bring benefit. Dimension reduction is suitable for global, continuously spatially varying patterns.
Jin et al. 2018 successfully reduced large-scale parameter patterns for dust emissions and Xiao et al.
2019 successfully reduced spatially varying geological permeability patterns. The MFs for NOx emission
strengths in this study do not have redundancy that can be exploited for order reduction. Each MF is
defined explicitly and no correlations between the MFs are present.

4.6.5. The final approximate model in layman’s terms
The theory of finding an approximate model for LOTOS-EUROS in Sections 4.5 and 4.6 was discussed
in a quite formal, mathematical way. This section provides a more intuitive description of the final
approximate model of Equation (4.23) in layman’s terms.

The approximate model for LOTOS-EUROS serves the following purpose: giving a good description of
the influence of the parameters β on the NO2 concentrations in the atmosphere that are calculated
by LOTOS-EUROS and are observed by TROPOMI. For any choice of parameters, LOTOS-EUROS
may be run and calculate the concentrations. However, every run of LOTOS-EUROS is costly and
time-consuming. This depends on the settings of LOTOS-EUROS but as a rule of thumb, simulation of a
week takes about an hour on the high-performance computing cluster that was available for this study.
For optimisation of the parameters in the 4DVAR problem, many parameter settings need to be tried.
This created the need for an approximate model that calculates the concentrations based on chosen
parameters much quicker.

The key to the derivation of this approximate model is to think about the way the parameters influence
the model output. One of these parameters, β1, for example, can change the NOx emission strength from
a power plant. Intuitively, it is clear that increasing that parameter and thereby the NOx emission from
the plant increases the NO2 concentrations in the exhaust plume carried downwind from the plant.

A LOTOS-EUROS is a nearly linear model with respect to NO2, it can be expected that a certain increase
in emissions results in a proportional increase in the NO2 concentrations in the plume from the power
plant. This is exactly what Equation (4.23) shows. The NO2 concentrations x at time tk are approximately
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the NO2 concentrations with the background emissions plus something extra caused by the increased
emission from the power plant.

To calculate the increased concentrations ofNO2, two runs of LOTOS-EUROS are done. One where the
emission of the power plant was as the default emissions (β1 = 1) and one where the emission was
increased, e.g. β1 = 1.5. The difference in concentrations between these runs at time tk is stored in
the first column of matrix Ek .

It is now possible to estimate the NO2 concentrations if for example β1 = 1.2. This is just the
NO2 concentrations resulting from the background emissions plus 40% of the difference between the
concentrations with β1 = 1.5 and β1 = 1. This holds for all parameters βi , i = 1, . . . , Np that are defined.
Figure 5.5 illustrates such plumes of NO2 that are altered by the parameters.

4.7. Approximate 4DVAR optimisation
The approximate model for LOTOS-EUROS derived in Subsection 4.6.2 and stated in Equation (4.23)
turns out to be very convenient for solving the 4DVAR problem. In this section, the optimisation of the
4DVAR cost function J using the approximate model is discussed.

The right-hand side of Equation (4.23) is denoted as x̂. This is the approximate model:

x̂(tk ) = xb(tk )+Ek (β−βb) (4.24)

Substitution of x by x̂ in the 4DVAR cost function, Equation (4.1), yields:

J (β) ≈ 1

2
(β−βb)T B−1(β−βb)

+ 1

2

No∑
m=1

(yo
m −Hm x̂(tm))T Rm

−1(yo
m −Hm x̂(tm)) (4.25)

where Hm is the linear observation operator that corresponds to the averaging kernel of TROPOMI that
was described in Section 3.5.

The substitution of x by x̂ greatly simplifies optimisation of the 4DVAR cost funtion J . Minimising
Equation (4.1) is a constrained optimisation problem, where trajectory x has to satisfy the LOTOS-EUROS
model, Equation (2.2). However, in Equation (4.25) x̂ is explicitly available from Equation (4.24) and the
problem is no longer constrained.

A closer look at Equation (4.25) reveals that it is of a quadratic form in terms ofβ. Therefore, it is relatively
easy to calculate the gradient. The gradient can be calculated by:

∇β J = B−1(β−βb)

−
No∑

m=1
ET

m HT
m R−1

m

[
yo

m −Hm[xb(tm)+Em(β−βb)]
]

(4.26)

Equation (4.26) can be used for some gradient-based optimisation strategy for the 4DVAR problem.
However, functional J (β) reaches its minimum for β when ∇β J (β) = 0. This condition is equivalent to
solving a system Aβ= b where:

A = B−1 +
No∑

m=1
ET

m HT
m R−1

m Hm Em (4.27)

b = B−1βb +
No∑

m=1
ET

m HT
m R−1

m

[
yo

m −Hm xb(tm)+Emβb
]

(4.28)

Using these matrices, the following result is found:

β̂= A−1b. (4.29)

This linear system is of size Np ×Np . In practice, the inverse matrix A−1 is never calculated explicitly but
a numerical solver for the system Aβ= b is used.
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β̂ minimises the approximate cost function in Equation (4.25). It, therefore, is a suboptimal solution of
the original 4DVAR problem. In theory, it can be necessary to repeat the assimilation procedure multiple
times where, in the approximate model in Equation (4.24), β̂ is used as the new background parameter
vector βb . In twin experiments, the necessity of such iterations will be investigated.

4.8. An approximation of the estimate covariance
The approximate 4DVAR method from Section 4.7 only provides an estimate β̂, based on the
observations yo

m . However, the observations yo
m contain measurement errors and also the representation

by the model has uncertainties; the combined observation error is described by εm . It would be valuable
to quantify how the observation error influences the estimate β̂. In this section, an approximation of the
covariance of β̂ is derived. This can be used to quantify the uncertainty in β̂.

β̂ can be calculated using Equation (4.29). The full equation is:

β̂= (B−1 +
No∑

m=1
ET

m HT
m R−1

m Hm Em)−1

(
B−1βb +

No∑
m=1

ET
m HT

m R−1
m (yo

m −Hm xb(tm)+Hm Emβ
b)

)
(4.30)

Four assumptions have to be made to approximate the covariance of β̂.

1. There is some true parameter vector βtrue, of which the value is known.

2. The observations yo
m can be simulated with a model run using βtrue and one particular sample

of the observation error. These observations are generated using the observation operator
Equation (2.4):

yo
m = Hm x(tm)+εm , m = 1, . . . , No . (4.31)

3. The observation error εm , in the equation above, is multivariate Gaussian, independent in time.

εm ∼ N (0,Rm) (4.32)

In this study, the covariance matrix Rm is assumed to be a diagonal matrix withσ2
m on its diagonal,

where σ2
m is supplied in the TROPOMI data product.

4. The fourth assumption is that LOTOS-EUROS can be approximated using the approximate model
in Equation (4.23).

The first three assumptions are satisfied in twin experiments, described in Chapter 5, that will be used
to test the assimilation methodology. In experiments with real TROPOMI data, the assumptions are
violated. However, in experiments with real TROPOMI retrievals, knowledge of the accuracy under
idealised conditions can still be valuable. The fourth assumption has to be tested in experiments, but this
assumption is already fundamental to approximate 4DVAR method described in the previous section. If
this assumption is violated, the approximate 4DVAR method itself will not work, thereby rendering the
derivation in this section useless.

The approximate model plays an important role in the derivation of the covariance of β̂. The following
approximation of the observations can be made using the approximate model in Equation (4.23):

yo
m ≈ Hm

(
xb(tm)+Em(βtrue −βb)

)
+εm , m = 1, . . . , No . (4.33)

Using this approximation of the observations, Equation (4.30) can be rewritten to:

β̂≈ (B−1 +
No∑

m=1
ET

m HT
m R−1

m Hm Em)−1

(
B−1βb +

No∑
m=1

ET
m HT

m R−1
m Hm Emβtrue

+
No∑

m=1
ET

m HT
m R−1

m Hm Emεm

)
(4.34)
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This closed-form approximation of β̂ can be used to estimate the statistical properties of β̂. In
Equation (4.34), εm is a Gaussian random variable. Equation (4.34) is an affine transformation of εm .
It follows that the approximation of β̂ is a Gaussian random variable as well. For a multivariate Gaussian
variable v ∼ N (0,Σ), it can be shown that w = u + Bv is also multivariate Gaussian with mean u and
covariance BΣBT .

Using the assumption that εm ∼ N (0,Rm), the approximation to β̂ in Equation (4.34) is a Gaussian
random variable with mean µβ̂:

µβ̂ = (B−1 +
No∑

m=1
ET

m HT
m R−1

m Hm Em)−1

(
B−1βb +

No∑
m=1

ET
m HT

m R−1
m Hm Emβtrue

)
(4.35)

and covariance Σβ̂:

Σβ̂ =
No∑

m=1
Dm Rm DT

m (4.36)

In this equation, Dm is used to shorten notation. Dm equals:

(B−1 +
No∑

m=1
ET

m HT
m R−1

m Hm Em)−1ET
m HT

m R−1
m Hm Em . (4.37)

Equation (4.36) gives an approximation of the covariance of β̂. It describes how uncertainty in the
observations induced by εm influences β̂. This can be very useful to quantify the uncertainty in β̂.

From Equation (4.35), it follows that µβ̂ is a weighted average of βb and βtrue. This weighting is a result
of the background and observational part of the cost function. In the case that observation covariance
matrices Rm are small compared to the background covariance B, the observations are most important
in the cost function and µβ̂ approaches βtrue. In the case that observation covariance matrices Rm are
large compared to the background covariance B, the prior knowledge about β is most important and,
therefore, µβ̂ approaches βb . This result is consistent with the intuition of the assimilation problem.

The derivation of these results relies on the assumptions mentioned above. In twin experiments, those
assumptions hold and can be used to assess the accuracy with which the parameters can be estimated
based on the satellite data. If Σβ̂ is large, the measurement error limits the accuracy of the estimation of

the parameters. The actual difference β̂ and βtrue may be be larger thanΣβ̂ predicts, because of errors in
the approximate model on which the 4DVAR methodology of Section 4.7 is based.

4.9. Proposed adjoint-free 4DVAR data assimilation method for
LOTOS-EUROS

This chapter is concluded by a description of the proposed method of assimilating TROPOMI NO2

retrievals.

1. Problem definition

The parameter estimation problem is defined by choosing the time range, simulation domain,
LOTOS-EUROS setting and the parameterisation. The parameterisation β defines MFs applied
to anthropogenic NOx emissions for which the best estimate is found based on the TROPOMI
retrievals.

2. Calculation of the observation operators Hm

In the assimilation period, No TROPOMI NO2 retrievals are available at times tm ,m = 1, . . . , No .
From the averaging kernels defined at these times, the observation operators Hm need to be
calculated as described in Section 3.4.

3. Calculation of approximate model

The approximate model was defined by Equation (4.23). At all observation times tm , matrix Em

needs to be calculated. For this, an ensemble of Np +1 model runs is needed: one with default
emissions (β= 1) and Np where each parameter βi is perturbed by ∆βi . Equation (4.8) describes
how the columns of Em can be calculated from the ensemble.
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4.9. Proposed adjoint-free 4DVAR data assimilation method for LOTOS-EUROS

4. Calculating the linear system for β

When matrices Hm and Em have been calculated, it is possible to form the linear system in
Equation (4.29).

5. Solve the system for β̂

The solution of Equation (4.29) is β̂.

6. Calculate the approximate covariance of β̂

An approximation of the covarianceΣβ̂ of β̂ can be calculated using Equation (4.36). This gives an

indication of the uncertainty of β̂ induced by the measurement error in the satellite observations.

7. (Optionally) perform a second optimisation loop

β̂ obtained in step 5 is optimal for the approximate 4DVAR cost function in Equation (4.25). It
may be necessary to repeat the procedure from step 3, taking β̂ as background parameter vector
βb . The need for multiple optimisation loops will be investigated in experiments described in
Chapter 5.

A schematic overview of the method is given in Figure 4.2

The computational effort of the method is dominated by the calculation of the approximate model. Np +
1 runs of the original model are necessary. The other steps in the method are of negligible cost.

As the number of parameters increases, the computational effort of generating the approximate model
increases proportionally. This is prohibitive for a large number of parameters. It is possible to
create a more efficient procedure for calculating the approximate model by making use of domain
decomposition and by reducing chemistry calculations. This will be discussed in the following sections.

Simulated NO2 with
optimised parameters

Simulated NO2 column
from default emissions

TROPOMI NO2 retrieval

Sensitivity to parameters4DVAR

Figure 4.2: Schematic illustration of the proposed assimilation method described.

37



4. Data assimilation theory & methodology

4.10. Increasing computational efficiency by domain decomposition
In this section, a method is proposed to calculate the approximate model more efficiently by using
domain decomposition. Until now, the calculation of each column of Em requires one LOTOS-EUROS
run with background parameters and Np runs where exactly one parameter is perturbed one by one. By
using domain decomposition, it is possible to calculate multiple columns of Em simultaneously from a
run where multiple parameters in different subdomains are perturbed at the same time.

In domain decomposition, the computational grid is subdivided into multiple subdomains. Emission
parameters that are defined in one subdomain may not have any effect in neighbouring subdomains. For
the example of a MF for an emission hotspot, this is the case when the NO2 plume that propagates away
from the source does not enter other subdomains. In the same LOTOS-EUROS run that this parameter
is perturbed, another parameter in another subdomain can be perturbed.

This is illustrated in Figure 4.3. In one LOTOS-EUROS run, parameters β1 - β4 are perturbed
simultaneously. The difference between the LOTOS-EUROS run with background parameters is visible
in the plumes in Figure 4.3b. If the subdomains are chosen as shown in the figure, only the effect of one
parameter is present, within each subdomain. The 4 columns of Em that correspond to β1 −β4 can be
calculated on the subdomains only.

In theory, calculating the effect of changing multiple parameters from one LOTOS-EUROS run is possible
whenever these effects are non-overlapping. The domain decomposition can be defined in various ways.
This will be studied in detail in a twin experiment, described in Section 5.5.

4.11. Increasing computational efficiency by reducing chemistry
The domain decomposition method proposed in the previous section reduces the number of
LOTOS-EUROS simulations needed to calculate the approximate model. Another way of increasing
computational efficiency of the method is to decrease the costs of obtaining the ensemble of simulations.
In the LOTOS-EUROS runs that form the ensemble, only the NOx emission strengths are perturbed.
Although the concentrations of some tracers are affected through chemical reactions with NO2, the effect
for many other tracers may be minor. It would, therefore, be attractive to only simulate all tracers in
LOTOS-EUROS once and store the results. These results may be used in the runs where the perturbations
of NOx emission strengths are done. During these perturbation runs, fewer tracers have to be simulated,
drastically improving the efficiency of obtaining the ensemble. This idea is not investigated in this study
but is interesting to explore in further research.

(a) (b)

Figure 4.3: Illustration of domain decomposition. (a) The plume from the emission hotspot that is estimated by β1
does not travel through the entire domain. (b) After defining subdomains 1-4, it is possible to perturb
parameters β1 −β4 simultaneously in a LOTOS-EUROS run.
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5
Twin experiments

This chapter describes three twin experiments that were performed to test the data assimilation
methodology proposed in Section 4.9. Section 5.1 introduces the general concept and goal of twin
experiments. Sections 5.3 to 5.5 will discuss the three twin experiments conducted and their results.

5.1. Twin experiments
The goal of a twin experiment in the context of data assimilation is to assess the performance of the
methodology used. In Section 4.9, a methodology was proposed to estimate NOx emission strengths
from satellite retrievals. Using actual TROPOMI retrievals, this methodology would return some
estimated emission parameters β̂. However, there is no rigorous way to assess how well the methodology
works as the true value of the parameters is unknown. Furthermore, as described in Section 4.1, there
are other sources of uncertainty and errors in LOTOS-EUROS apart from the NOx emission strengths.
These uncertainties and errors are not covered by the parameters. In experiments with TROPOMI data,
this can cause incorrectly estimated parameters.

The purpose of a twin experiment is to work around the problems that arise in real-life applications to
test the methodology. In a twin experiment, a setting is created where the true value of the parameters
βtrue and the errors introduced in the observations are known. The accuracy of the methodology can
then be assessed.

In Section 4.1, the approach of parameterising NOx emissions by multiplication factors was introduced.
In this study,β consists of MFs for the NOx emission strength. These MFs can be defined in various ways.
In the three twin experiments in this thesis, three different parameterisations i.e. definitions for the MFs
will be used.

In the twin experiments, synthetic satellite observations will be used instead of the TROPOMI retrievals.
These synthetic observations are calculated from a LOTOS-EUROS run with known parameters βtrue

and perturbed by a random error. This run will be called the truth run. The process of creating synthetic
observations is discussed in the next subsection.

The twin experiments described in this chapter answer three questions:

1. How well can parameters be estimated from the synthetic data in the twin experiment?

2. How well does the 4DVAR optimisation procedure using the approximate model work?

3. Does the development of the approximate model using domain decomposition introduce
extra errors?

Twin experiments 1 and 2 address the first two questions. Twin experiment 3 studies the third question.
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5.2. Creating synthetic TROPOMI observations
The synthetic observations used in twin experiments are generated from the truth run. A LOTOS-EUROS
simulation is performed with known parametersβtrue, the resulting trajectory is xtrue. At all times tm that
TROPOMI retrievals are available, the simulated retrieval can be calculated using observation operator
Hm . The construction of the observation operator was discussed in Section 3.5.

It would not be realistic to use these simulated retrievals in data assimilation directly. As discussed
in Section 2.3 noise and representation errors always distort observations. Therefore, the simulated
retrievals are also perturbed by noise to create synthetic observations.

In this study, the noise used to perturb the simulated retrievals to create the synthetic observations is
generated using the standard deviation reported for TROPOMI retrievals. In this way, the observation
error in the twin experiments is comparable to the TROPOMI retrievals, under the assumption that the
supplied error characteristics are correct. An illustration of the process is given in Figure 5.1.

The creation of the synthetic observation yo
m at time tm is described in the following equation:

yo
m = Hm xtrue(tm)+εm (5.1)

In this equation, the random additive error εm is a sample from a Gaussian distribution:

εm ∼ N (0,diag(σ2
m)) (5.2)

The standard deviation of the error, σm , is taken from the TROPOMI product. The assumption of
independence of the error between pixels may be too strong. In reality, the retrieval error of nearby
pixels is likely to be correlated. However, no information on this is supplied in the TROPOMI product.
Therefore, εm is modelled as independent Gaussian in the twin experiments.

(a) (b)

Figure 5.1: Creation of synthetic observations for twin experiments on July, 1, 2018. (a) Simulated retrieval from
truth run. (b) Truth run disturbed by random additive noise that satisfies the TROPOMI noise statistic.
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5.3. Twin experiment 1 - blocks
This section describes the first twin experiment that was conducted. It was created as a first test case in
this study on which methodologies could be tested.

5.3.1. Test region & time
A grid is defined with coordinates [2°,8°]× [50°,54°] with a resolution of 0.1°×0.05°. This translates to a
resolution of 7×6 km. A total of 60×80 = 4.800 horizontal grid cells are used. With 10 vertical layers, this
yields a total of 48.000 grid points where NO2 concentrations are calculated. The assimilation period is
set to July 1-7, 2018. For this period, sufficient cloud-free TROPOMI NO2 retrievals over Benelux area are
available.

5.3.2. Parameterisation
In the experiment, five MFs for NOx emission are chosen, β ∈ R5. Each parameter will correct the total
NOx emission in a square subdomain. These block fields are chosen over the large NO2 emitters that
are the ports of Antwerp, Rotterdam, the steel factories of IJmuiden and the Amsterdam metropolitan
area, the southern part of the Ruhr area and the northern part of the Ruhr area. Figure 5.3d illustrates
these emission hotspots and the NO2 plumes that propagate from them, simulated by LOTOS-EUROS.β
is modelled as an independent Gaussian distributed variable. β∼ N (1, σ2I). Different samples of βb for
σ= 0.3 are shown in figure 5.2.

Figure 5.2: Examples of spatial MFs of NOx emissions in the first twin experiment.

5.3.3. Results and discussion
The results are reported visually in Figure 5.3. On the first day of the assimilation window, July 1, 2018,
the synthetic satellite observation is shown in Figure 5.3a. In Figure 5.3b, the retrieval corresponding
to a model run with the estimated parameters is shown. Figure 5.3c shows the difference between the
synthetic observation and the retrieval corresponding to estimated parameters. Figure 5.3d shows the
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MFs True value Estimated value Error Σβ̂

Block 1 (Antwerp) 0.8 0.8078 0.98% 0.0027 (0.3325%)
Block 2 (Rotterdam) 1.5 1.4996 −0.02% 0.0051 (0.3422%)
Block 3 (Amsterdam) 1.1 1.1015 0.14% 0.0060 (0.5456%)
Block 4 (Southern Ruhr area) 0.9 0.9687 7.63% 0.0015 (0.1623%)
Block 5 (Northern Ruhr area) 1.3 1.3013 0.10% 0.0032 (0.2468%)

Table 5.1: Results of twin experiment 1 with assimilation window July 1, 2018, until July 7, 2018. The blocks contain
the areas between parentheses. The error is calculated as absolute difference between β̂ and βtrue. The
entries under Σ

β̂
are square root of the diagonal of the estimated covariance matrix.

background retrieval i.e. the simulated retrieval with background parameters βb = 1. The difference
between the background retrieval and the retrieval with estimated parameters is visible.

The results of the first twin experiment are reported in Table 5.1. From this table, it can be seen that
all factors are estimated within 1% of their true value, except for the MF of block 4. These results are
promising and show that the methodology is successful for this parameterisation of emission.

An estimate for the covariance of β̂ was also computed using Equation (4.34). The estimated sensitivity
of the estimated parameters to the measurement error is small (< 1%) using this assimilation window
of one week. The square root of the diagonal of Σβ̂ is reported in the table. This is an estimate of the
standard deviation in each parameter.

Twin experiment 1 shows that the methodology can be used to estimate the parameters βtrue. This
implicitly means that the approximate model used in the 4DVAR assimilation works well enough for
its purpose. Of course, other questions arise that are related to this experiment. How does the length
of the assimilation window influence the accuracy of the estimation? How well is the 4DVAR cost
function approximated using the approximate model? These questions are answered in the second twin
experiment, where a more sophisticated parameterisation is implemented.
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(a) (b)

(c) (d)

Figure 5.3: Results of twin experiment 1 at 2018-07-01 12:00. (a) Synthetic satellite observation as described in
Section 5.2 (b) Simulated retrieval with optimal parameters (c) Difference between twin retrieval and
optimal solution (d) Simulated retrieval with background parameters βb = 1.
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5.4. Twin experiment 2 - Source categories and emission hotspots
This section describes the setup and results of the second twin experiment that was conducted. In this
experiment, a more sophisticated parameterisation of emissions was used. A more detailed analysis of
the performance of the assimilation methodology using the approximate model is discussed.

5.4.1. Test region & time
Similar to the first experiment, a grid is chosen with coordinates [2°,8°]× [50°,54°] and a resolution of
0.1°×0.05°. This is equivalent to a resolution of 7×6 km. A total of 60×80 = 4.800 horizontal grid cells
are used. With 10 vertical layers, this yields a total of 48.000 grid points where NO2 concentrations are
calculated.

Two assimilation windows are used. The first is the assimilation period is July 1, 2018, until July 7, 2018.
In this period, sufficient cloud-free TROPOMI retrievals are available over the Benelux area. In a second
experiment, the assimilation window only consists of July 1, 2018, to investigate the performance of the
assimilation using the retrievals of only one day.

5.4.2. Parameterisation
In this experiment, MFs apply to specific NOx emission categories and the total emission of
predetermined emission hotspots. This parameterisation corresponds closely to the emission inventory.
As described in Section 2.2, anthropogenic NOx emissions are classified into different categories.
Table 2.1 lists the categories of anthropogenic emissions that are distinguished in the CAMS v2.2
inventory. A useful experiment could be to specify MFs that apply to these emission categories. The
data assimilation scheme can then be used to calculate whether emission from specific categories is too
high or too low using the satellite data. In the same way, it is interesting to estimate the total emission
from an emission hotspot such as the port of Rotterdam’s industrial area. To achieve this, MFs are defined
that apply to all grid cells that correspond to this area. The definition of MFs for categories and emission
hotspots is discussed in the following subsections.

Multiplication factors for emission categories
In this twin experiment, MFs are applied to the five dominant categories of NOx emission. These
are public power, industry, road transport for four different fuel types (F1-F4), shipping and off-road
vehicles. This selection was made based on their magnitude. No thorough selection criterion was
developed since the goal of this twin experiment is to test whether factors for such categories could be
estimated with the current procedure. Although emissions from road transport are subdivided into four
categories, one MF is used for the total road transport emission. As the spatial and temporal emission
patterns of the four categories are identical, it is impossible to distinguish the four subcategories using
satellite data.

MFs for emission hotspots
From the emission inventories, it is found that the majority of NOx emission is spatially concentrated.
Figure 5.4a shows the aggregated NOx emission from July 1, 2018, until July 7 2018. In this figure, some
clear hotspots of NOx emissions are visible.

In this experiment, hotspots were defined as grid cells for which the NOx emission exceeds 0.2 kgm−2 in
one week. For these grid cells, a MF was defined that applies to the total anthropogenic NOx emission.
To ensure observability, selected cells that are close together share the same MF. In this experiment, grid
cells that are at most 3 cells apart are clustered together. This definition results in 8 clusters of grid cells
that receive a MF. These clusters are shown in Figure 5.4b.

5.4.3. Approximate model
To perform data assimilation using the approximate 4DVAR method outlined in section 4.9, the
approximate model needs to be constructed. Columns of the matrix Em have to be calculated. These
are the derivatives of the state x(tm) with respect to β. Their calculation was defined in Equation (4.8).

On July 1, 2018, at 12:00, four calculated derivatives, after multiplying them with the observation operator
Hm are shown in figure 5.5.
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(a)

(b)

Figure 5.4: (a) Total of anthropogenic NOx emission from July 1, 2018, until July 7, 2018 obtained from CAMS v2.2
database. (b) Clustered grid cells that represent the emission hotspots. Selected grid cells have a NOx
emission of at least 0.2 kgm−2 in one week. The clusters numbers are used to report the results of the
experiments.
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(a) (b)

(c) (d)

Figure 5.5: Approximate derivative of satellite retrieval at 2018-07-01 12:00 with respect to the parameters of NOx
emission. This derivative at tm w.r.t βi can be calculated as (Hm Em )i . (a) - (b): factors for categories
(c)-(d): factor for clustered point source Rotterdam and Antwerp port area.

Computational effort required
For the estimation of 13 parameters in this twin experiment, the computational effort of obtaining the
approximate model consists of 14 LOTOS-EUROS runs. Costs of calculating the derivatives from the
output of the 14 runs are negligible.

Approximate model performance
To estimate the minimum of the exact 4DVAR cost function (4.1), the approximate cost function
(4.25) is minimised. This will only yield an acceptable performance if the approximate model can
accurately replace the LOTOS-EUROS model. To test this, the simulated satellite observations from to
the LOTOS-EUROS run with the true parameters βtrue can be compared to the satellite observations
simulated by the approximate model for parameters βtrue.
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(a) (b)

Figure 5.6: Twin experiment 2. Illustration of approximate model accuracy on July 1, 2018 at 12:00. (a) Simulated
retrieval from xtrue. (b) Difference between simulated retrieval from truth run and simulated retrieval
from the approximate model with β=βtrue.

Figure 5.6 shows the accuracy of the approximate model on July 1, 2018, at 12:00. On average, in
the assimilation window of one week, the mean absolute error of the simulated retrievals from the
approximate model for parameters βtrue was found to be 2%. This error is significantly less than the
uncertainty of the retrieval that the TROPOMI product reports. Therefore, the approximate model is
likely to be sufficiently accurate to use in the data assimilation methodology. This is in line with the
results from twin experiment 1 where the parameters were estimated correctly using the approximate
model. In the next section, the approximate cost function will be compared to the exact cost function for
the estimated parameters β̂ as a second test of the approximate model performance.

5.4.4. Results and discussion
For the assimilation of one week of observations, the results of July 1, 2018, are shown in Figure 5.7.
The synthetic satellite observation is shown in Figure 5.7a. In Figure 5.7b, the retrieval corresponding
to a model run with the estimated parameters is shown. Figure 5.7c shows the difference between the
synthetic observation and the retrieval corresponding to estimated parameters. Figure 5.7d shows the
background retrieval i.e. the simulated retrieval with background parameters βb = 1. The difference
between the background retrieval and the retrieval with estimated parameters is visible in the NO2

plumes.

After constructing the approximate model, the assimilation procedure was carried out. Table 5.2
presents the results using the assimilation window of July 1, until July 7, 2018. Table 5.3 presents the
results using the assimilation window of only July 1, 2018. The numbers show that the method can
estimate the parameters within 10% of their true value if one week of observations is used. When only
the observations on July 1 are assimilated, larger errors in β̂ are found.

These larger errors are also reflected in the approximated covariance of β̂. The approximate covariance
Σβ̂ was calculated using Equation (4.36). The square roots diagonal entries of Σβ̂ give an approximation

of the uncertainty β̂. It indicates the measurability of the parameters given the data and the model. When
assimilating only one day of observations, the estimated covariance of the parameters is significantly
higher. The parameters that correspond to relatively small sources of NOx such as off-road traffic show
have higher uncertainty after assimilation. A parameter that corresponds to relatively larger sources of
NOx such as the port area of Rotterdam (cluster 5) has lower uncertainty. This result is expected: the
effect of parameter changes of strong emitters can be measured better in noisy satellite retrievals.
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5. Twin experiments

Comparisons of β̂ to βtrue as shown in Tables 5.2 and 5.3 give an indication how accurately the
parameters βtrue can be estimated from the data. It does not describe how well the proposed data
assimilation methodology using an approximate model can reduce the cost function. These results can
be found in Table 5.4. Four values of the cost function are important. J (βb) is the value of the cost
function with background parameters. This is the starting point of the assimilation. J (βtrue) is the value
of the cost function calculated from a LOTOS-EUROS run with the true parameters. This can be seen
as the optimal value that can be reached during the optimisation. J̃ (β̂) is the value of the approximate
cost function, calculated using Equation (4.25). J (β̂) is the value of the cost function calculated from a
LOTOS-EUROS run with the estimated parameters.

Two important conclusions can be drawn from the results in Table 5.4. The approximate cost fuction
value J̃ (β̂) is very close to the exact cost function J (β̂). For both assimilation windows, the difference
is well less than 1%. The first conclusion, therefore, is that the approximate cost function accurately
approximates the exact 4DVAR cost function for the estimated parameters β̂. The data assimilation
method minimises the cost function to a value that is very close to J (βtrue), the difference is under 0.5%
for both assimilation windows. For the assimilation window of only July 1, 2018, J (β̂) is even slightly
lower than J (βtrue). This means that the minimisation of the cost function using the approximate model
performs well. Additional optimisation loops are therefore not necessary. This is a positive result for the
computational cost of the assimilation method. Additional optimisation loops would require additional
full model runs to recalculate the approximate model.

For the assimilation window of July 1, 2018, the cost function with estimate parameters β̂ is slightly lower
than the cost function with true parameters βtrue. This means the optimisation of the cost function
by the approximate 4DVAR method was successful. Any other optimisation strategy of the 4DVAR cost
function discussed in Section 4.2 could find approximately the same optimum. However, as can be seen
in Table 5.3, β̂ and βtrue are significantly different for some parameters. This error can, therefore, be
attributed to the error in the measurements. As reflected by the estimated covariance of β̂, assimilating
one day of observations leaves quite some posterior uncertainty for β̂.

MFs True value Estimated value Error Σβ̂

Public Power 0.887 0.9260 4.4392% 0.0212 (2.39%)
Industry 1.511 1.4998 -0.7655% 0.0166 (1.10%)
Road transport (F1-F4) 1.076 1.0899 1.2696% 0.0094 (0.87%)
Shipping 0.479 0.5202 8.6788% 0.0069 (1.45%)
Off-road 0.9 0.8043 -10.6512% 0.0663 (7.37%)
Cluster 1 2.106 2.1095 0.1712% 0.0098 (0.46%)
Cluster 2 1.413 1.3801 -2.3296% 0.0259 (1.84%)
Cluster 3 0.7 0.6825 -2.4661% 0.0105 (1.50%)
Cluster 4 0.497 0.4877 -1.8468% 0.0228 (4.58%)
Cluster 5 1.203 1.1824 -1.7318% 0.0124 (1.03%)
Cluster 6 0.582 0.5853 0.5682% 0.0263 (4.52%)
Cluster 7 1.648 1.6411 -0.4355% 0.0271 (1.64%)
Cluster 8 0.787 0.7958 1.0771% 0.0209 (2.65%)

Table 5.2: Results of twin experiment 2 with assimilation window July 1, 2018, until July 7, 2018. The error is
calculated as absolute difference between β̂ and βtrue. The entries under Σ

β̂
are the values on the

diagonal of the estimated covariance matrix.
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5.4. Twin experiment 2 - Source categories and emission hotspots

MFs True value Estimated value Error Σβ̂

Public Power 0.887 1.012 14.117% 0.0953 (10.75%)
Industry 1.511 1.624 7.477% 0.0836 (5.53%)
Road transport (F1-F4) 1.076 1.063 -1.192% 0.0373 (3.46%)
Shipping 0.479 0.399 -16.614% 0.0472 (9.85%)
Off-road 0.900 0.772 -14.212% 0.2994 (33.26%)
Cluster 1 2.106 2.141 1.676% 0.0294 (1.40%)
Cluster 2 1.413 1.563 10.644% 0.1917 (13.57%)
Cluster 3 0.700 0.737 5.383% 0.0537 (7.68%)
Cluster 4 0.497 0.396 -20.290% 0.0883 (17.77%)
Cluster 5 1.203 1.303 8.322% 0.0674 (5.60%)
Cluster 6 0.582 0.576 -1.073% 0.1317 (22.63%)
Cluster 7 1.648 1.320 -19.926% 0.2901 (17.60%)
Cluster 8 0.787 0.418 -46.916% 0.2555 (32.45%)

Table 5.3: Results of twin experiment 2 with assimilation window July 1, 2018. The error is calculated as absolute
difference between β̂ and βtrue. The entries under Σ

β̂
are the values on the diagonal of the estimated

covariance matrix.

Cost function Assimilation window

July 1, 2018 July 1, 2018 - July 7, 2018

Cost function with background parameters J (βb) 9.572×103 7.296×104

Cost function with true parameters J (βtrue) 7.083×103 4.678×104

Approximate cost function with estimated parameters J̃ (β̂) 7.079×103 4.713×104

Cost function with estimated parameters J (β̂) 7.077×103 4.684×104

Table 5.4: 4DVAR cost function values in twin experiment 2. The cost function value with βb , βtrue and β̂ are
calculated from a LOTOS-EUROS run with those parameters. The approximate cost function with
parameters β̂ is calculated using the approximate model, Equation (4.25).
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5. Twin experiments

(a) (b)

(c) (d)

Figure 5.7: Twin experiment 2 results at 2018-07-01 12:00. (a) Synthetic satellite observation (b) Optimal solution (c)
Difference between twin retrieval and optimal solution (d) Retrieval with background parametersβb = 1.

5.5. Twin experiment 3 - Domain decomposition
This section describes the setup and results of the third twin experiment that was performed. This
experiment aims to increase the computational efficiency of calculating the approximate model through
domain decomposition as described in Section 4.10. For the construction of the approximate model, the
computational grid is decomposed in subdomains on which the approximate model is calculated. In
one LOTOS-EUROS run, parameters in multiple subdomains are perturbed simultaneously. In this way,
fewer runs of LOTOS-EUROS are necessary for the calculation of the approximate model.

In twin experiments, wrong estimates of β after data assimilation are either a result of errors in the
approximate model that is calculated or due to the noise used to perturb the synthetic observations.
To distinguish these sources of error, the synthetic observations generated in this experiment are not
perturbed by noise. Resulting errors in the estimates of β then have to be the result of errors in the
approximate model.
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5.5. Twin experiment 3 - Domain decomposition

5.5.1. Test region & time
A grid is chosen with coordinates [1°,14°]× [48°,54°] and resolution 0.1°× 0.05°. This grid is illustrated
in Figure 5.8. This translates to a resolution of 7×6 km. This domain is larger than in the first two twin
experiments. The assimilation period is again July 1, 2018, until July 7, 2018.

Parametrisation
In this experiment, MFs are applied to emission hotspots according to the procedure in the second twin
experiment. Figure 5.8, shows the total emission from July 1, 2018, until July 7, 2018. The domain is
decomposed into 4 subdomains. The boundary between the subdomains is at 8° longitude and 51°
latitude. Within each of these domains, the largest 5 emission hotspots get a multiplication factor. The
subdomains and the clusters of grid cells that get a multiplication factor are shown in Figure 5.9.

In total, 20 parameters have to be estimated in this twin experiment. The parameters are modelled as
independent Gaussian, β∼ N (1,σ2I), where σ= 0.2.

Approximate model calculation
Using the subdomain decomposition method as outlined in Section 4.10, the calculation of the
approximate model can be done more efficiently. Several perturbation strategies are investigated in this
twin experiment.

• One-by-one perturbation

Parameters are perturbed one-by-one. This corresponds to the original strategy of calculating the
approximate model. This strategy was also performed in this experiment for comparison to more
efficient strategies. This requires a total of 20 perturbation runs and one base run to calculate the
approximate model.

• Simultaneous perturbation

In each subdomain, one parameter is perturbed simultaneously. This requires a total of 5
perturbation runs and one base run to calculate the approximate model.

• Diagonal perturbation

One parameter is perturbed in domains 1&4 and 2&3 at the same time. This requires a total of 10
perturbation runs and one base run to calculate the approximate model.

After the base and perturbation runs of LOTOS-EUROS, the approximate model is calculated by
Equation (4.8). The derivatives are restricted to the subdomains on which the parameters are defined.

Errors in the calculated approximate model using domain decomposition may arise from two origins.
Firstly, the parameters from one domain can influence other subdomains. Secondly, the limitation of
the approximate model to the subdomains, since parts of the plume that start in one domain and then
reach another may be truncated. These errors are illustrated in Figure 5.10. Both the approximate model
in subdomain 1 and 3 have errors. In domain 3, not only the effect of changing β3 is present, but also
the effect of changing β1. The effect in domain 3 is only attributed to β3. In domain 1, by restricting
computation of the approximate model to domain 1, part of the effect of β1 is not calculated.

The results of the assimilation experiment are shown in Table 5.5.
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5. Twin experiments

Figure 5.8: Total NOx emission from July 1, 2018, until July 7, 2018 on the grid of twin experiment 3

(a) Subdomain 3 (b) Subdomain 4

(c) Subdomain 1 (d) Subdomain 2

Figure 5.9: Domain decomposition of the third twin experiment and clusters of gridcells that receive a MF.
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5.5. Twin experiment 3 - Domain decomposition

Figure 5.10: Illustration of a scenario where errors occur in the calculation of the approximate model using domain
decomposition

5.5.2. Results and discussion
The columns under original method shows that calculating the approximate model without domain
decomposition is accurate. The original method correctly estimates the parameters.

However, when restricting the derivatives of parameters to their respective subdomains errors arise.
Using the one-by-one perturbation strategy, the only error made in the calculation of the approximate
model is the limitation of the calculated derivatives to the subdomains. Significant errors arise for the
clusters in domains 1 and 3 that are close to the boundaries of these domains. Other MFs that are defined
more centrally in the subdomains are accurately estimated. It can be concluded that using a domain
decomposition where plumes cross subdomain boundaries should be prevented.

Table 5.5 shows that more efficient perturbation strategies generally do not further deteriorate the
results. The errors in β̂ do not increase significantly using these strategies. The exception is the MF
for cluster 2 in domain 2. Both using the diagonal and simultaneous perturbation methods results in a
10% error in the estimate of the MF. This can be explained by the influence of the very large emission
hotspot corresponding to cluster 2 in domain 3. This MF is perturbed simultaneously with cluster 2 in
domain 2 in both the diagonal and simultaneous perturbation method. The plume from this hotspot
reaches domain 2, resulting in an error in the approximate model.

In conclusion, domain decomposition increases the computational efficiency of the method. Errors
mainly occur due to the limitation of the approximate model to the subdomains. To prevent
this, the subdomains should be chosen in such a way that specified MFs are not close to the
downwind boundaries. In hindsight, the grid chosen for this twin experiment was too small and the
densely populated Benelux area is not suitable for domain decomposition. On larger grids, domain
decomposition can be used to increase the efficiency of calculating the approximate model.

Another possible approach is to use a more flexible definition of the subdomains on which the
derivatives are calculated instead of the static domain decomposition chosen in this experiment. In
Figure 5.10, the plumes that originate from β1 crosses the boundary of the subdomain 3. However, as
the plumes do not overlap, it is possible to define the area on which the derivatives of the state with
respect to β1 and β3 are calculated to capture each plume correctly. This definition may vary in time
to accommodate for changing meteorological conditions. The only requirement for the perturbation
strategy is that the plumes from sources that are perturbed simultaneously do not overlap.

In this twin experiment, by using 4 subdomains, it was possible to perturb 4 parameters simultaneously
for calculation of the approximate model. This means that the number of perturbation runs needed
was reduced by a factor 4. In general, when increasing the number of parameters Np , the number of
perturbation runs needed without domain decomposition is Np . If computational resources become
critical due to a larger number of parameters used, domain decomposition may increase computational
efficiency. Theoretically, any NOx sources for which the derivative states are spatially separable during
the assimilation period can be perturbed simultaneously.
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5. Twin experiments

MFs True value Original method
Subdomain
one-by-one

Subdomain
diagonal

Subdomain
simultaneous

β̂ Error β̂ Error β̂ Error β̂ Error

Domain 1 Cluster 1 1.325 1.322 0% 1.390 5% 1.388 5% 1.307 -1%
Cluster 2 0.878 0.879 0% 1.396 59% 1.409 61% 0.594 -32%
Cluster 3 0.894 0.898 0% 1.032 15% 1.036 16% 0.938 5%
Cluster 4 0.785 0.803 2% 0.812 3% 0.812 3% 0.903 15%
Cluster 5 1.173 1.174 0% 0.980 -16% 0.981 -16% 1.223 4%

Domain 2 Cluster 1 0.540 0.555 3% 0.549 2% 0.547 1% 0.545 1%
Cluster 2 1.349 1.345 0% 1.345 0% 1.211 -10% 1.212 -10%
Cluster 3 0.848 0.856 1% 0.841 -1% 0.839 -1% 0.845 0%
Cluster 4 1.064 1.065 0% 1.050 -1% 1.028 -3% 1.036 -3%
Cluster 5 0.950 0.952 0% 0.954 0% 0.956 1% 0.979 3%

Domain 3 Cluster 1 1.292 1.291 0% 1.290 0% 1.290 0% 1.291 0%
Cluster 2 0.588 0.590 0% 0.671 14% 0.671 14% 0.549 -7%
Cluster 3 0.936 0.935 0% 0.935 0% 0.935 0% 0.934 0%
Cluster 4 0.923 0.925 0% 0.930 1% 0.930 1% 0.923 0%
Cluster 5 1.227 1.226 0% 1.234 1% 1.234 1% 1.223 0%

Domain 4 Cluster 1 0.780 0.797 2% 0.790 1% 0.790 1% 0.803 3%
Cluster 2 0.966 0.967 0% 0.966 0% 0.966 0% 0.938 -3%
Cluster 3 0.824 0.832 1% 0.832 1% 0.832 1% 0.836 1%
Cluster 4 1.008 1.009 0% 1.006 0% 1.006 0% 0.978 -3%
Cluster 5 1.117 1.112 0% 1.118 0% 1.082 -3% 1.097 -2%

Table 5.5: The results of twin experiment 3. The parameters and their true value are shown in columns MFs and
True Value. The column Original method shows the result of the twin experiment where the approximate
model is calculated by the original method as in the first two twin experiments. The columns Subdomain
show the results of the experiment where the approximate models are calculated on and limited to
the subdomains. Three perturbation strategies are studied, one-by-one perturbs one parameter at a
time,diagonal perturbs parameters in domains 1&4 and 2&3 simultaneously and simultaneous perturbs
parameters is all subdomains at the same time.
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6
Assimilation of TROPOMI data

This chapter describes experiments with the assimilation of actual TROPOMI NO2 retrievals using the
methodology discussed in Chapter 4. The experiments aim to estimate MFs for the NOx emission
strengths.

Two experiments will be described in this section. The first experiment estimates a MF for one cluster of
point sources in the Amsterdam metropolitan area. The second experiment estimates MFs for 5 emission
categories and 8 clusters of point sources. The parameterisation in this experiment is equal to twin
experiment 2 from Chapter 5.

6.1. Test region & time
The same LOTOS-EUROS setup is used for both experiments. A grid is chosen with coordinates [2°,8°]×
[50°,54°] and a resolution of 0.1°×0.05° (about 7×6 km). A total of 60×80 = 4.800 horizontal grid cells
are used. With 10 vertical layers, this yields a total of 48.000 grid points where NO2 concentrations are
calculated. The time span of the base model run is the two weeks from June 23 until July 7, 2018. One
week was added to the assimilation window of the twin experiment. In this week, from June 23, until
June 30, 2018, some clouded days are present. The TROPOMI retrievals are shown in Appendix A.

Three assimilation windows will be investigated. The first is the full two-week window from June 23 until
July 7, 2018. Also, correction factors are estimated for the individual days June 25 and July 1. July 1, 2018,
is a cloud-free day on which NO2 plumes are resolved with high detail in the TROPOMI retrievals. On
June 25, 2018, plumes are less clear in the TROPOMI retrievals because of lower wind speeds.

6.2. Experiment 1 - Estimation of a single cluster of point sources
This section describes the parameterisation and results of the first experiment.

6.2.1. Parameterisation
In the first experiment, a correction factor for the emission strength of NOx is estimated for a cluster of
point sources in the Amsterdam metropolitan area. The emission from the city centre and the Tata Steel
plants at IJmuiden are perturbed with one, common factor. These grid cells are highlighted in figure 6.1.
The prior distribution of β is Gaussian with mean 1 and standard deviation 0.3.

6.2.2. Results
For three different assimilation periods, the optimal MF found is reported in table 6.1. From this table,
it is clear that the data assimilation procedure is flawed. The negative correction factors found for the
window from June 23, 2018, until July 7, 2018, and for only June 25, 2018, are non-physical solutions. They
would correspond to a sink of NOx. However, these negative values are mathematically valid solutions
of the approximate 4DVAR optimisation problem (4.25).
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6. Assimilation of TROPOMI data

Figure 6.1: Grid cells for which the emission strength is corrected in the first experiment. One MF corrects the NOx
emission strength from both grid cells.

Correction factors Assimilation window

25-6-2018 1-7-2018 23-6-2018 - 7-7-2018
Amsterdam & Tata −1.1257 1.7203 −1.0653

Cost function reduction 4.73% 0.42% 4.25%

Table 6.1: Results of assimilation experiment with the parametrisation as outlined in Section 6.2. The reduction of
the cost function is calculated as the difference between the approximate cost function (Equation (4.25))
with estimated parameters β̂ and background parameters βb .

Figure 6.2 visually presents the result of the one-day window of July 1, 2018. In Figure 6.2a, the TROPOMI
retrieval shows clear NO2 plumes propagating to the northwest. The simulated retrieval with background
parameters in Figure 6.2d shows a similar plume from the Amsterdam metropolitan area and IJmuiden.
In this assimilation window, the plumes in the simulated and TROPOMI retrievals look quite similar.
The single emission parameter in this experiment was estimated higher than its background value.
Figure 6.2b shows the retrieval calculated with the estimated parameter of 1.7203. Especially further
offshore the fit of the simulated retrieval to the TROPOMI retrieval is improved.

The assimilation using the one-day window of June 25, 2018, is further investigated in figure 6.3. In
figure 6.3a, the TROPOMI retrieval shows a clear NO2 plume propagating to the southeast. The simulated
retrieval with background parameters in figure 6.3d shows a slightly wider NO2 plume that travels in a
more southerly direction. Figure 6.4 illustrates this difference in plume location. Figure 6.4a shows the
TROPOMI retrieval and figure 6.4b shows the derivative of the simulated retrieval with respect to the
parametrisation. Given the parametrisation, the only degree of freedom allowed in the assimilation is
the NOx emission strength from the two grid cells highlighted in figure 6.1. The NO2 plumes from the
grid cells propagate along a slightly different trajectory. Because of the high resolution of the TROPOMI
retrievals, this difference is distinguishable. Furthermore, the tail of the modelled plume partly overlaps
with the NO2 plumes from Rotterdam and Antwerp. The NO2 concentrations in these plumes are higher
in the model than in the TROPOMI retrievals. The only way to correct for this difference is to lower the
emission strength from the Amsterdam metropolitan area and the Tata steel plants. This explains the
unrealistic, negative value estimate for the parameter in this experiment.
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6.2. Experiment 1 - Estimation of a single cluster of point sources

(a) (b)

(c) (d)

Figure 6.2: TROPOMI experiment 1 results on July 1, 2018 at 12:00. (a) TROPOMI retrieval (b) Simulated retrieval
with estimated parameters β = β̂ (c) Difference between TROPOMI retrieval and optimal solution (d)
Simulated retrieval with background parameters βb = 1
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6. Assimilation of TROPOMI data

(a) (b)

(c) (d)

Figure 6.3: TROPOMI experiment 1 results on June 25, 2018, at 12:00. (a) TROPOMI retrieval (b) Simulated retrieval
with estimated parameters β = β̂ (c) Difference between TROPOMI retrieval and optimal solution (d)
Simulated retrieval with background parameters βb = 1
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6.3. Experiment 2 - Multiple clusters of points sources and categories

(a) TROPOMI retrieval at 2018-06-25 12:00 (b) Derivative of simulated retrieval with respect to correction
factor

Figure 6.4: Comparison of TROPOMI retrieval and calculated derivative from the LOTOS-EUROS model

6.3. Experiment 2 - Multiple clusters of points sources and categories
This section describes the parameterisation and results of the first experiment where 13 MFs are
estimated.

6.3.1. Parameterisation
The same parametrisation was used for the emission factors as in the second twin experiment, described
in Section 5.4. NOx emissions strengths from 5 categories (industry, public power, road transport,
shipping and off-road transport) and 8 clusters of point sources are corrected by a MF. Figure 5.4
illustrates the definition of the 8 clusters of point sources for which the emissions are estimated. The
prior distribution of the parameters is Gaussian: βb ∼ N (1,0.32I ). In the cost function, therefore,
B = 0.32I .

6.3.2. Results
For the three assimilation windows, the estimated MFs are presented in Table 6.2. Figures 6.5 and 6.6
graphically present the results of the assimilation on July 1, 2018, and June 25, 2018, respectively.

In comparison to the results to Table 6.1, the reduction of the cost function is larger for each assimilation
window. This is an indication of a better fit of the simulated retrieval using the estimated correction
factors than in the first experiment. This logically follows from the higher degree of freedom in the
parametrisation. However, non-physical, negative estimates for the factors are still found. Furthermore,
the TROPOMI retrieval in Figure 6.6a and the simulated retrieval with the estimated correction factors in
Figure 6.6b visually still show significant differences. For example, the NO2 plume from Amsterdam
and IJmuiden is underestimated, but less severely than in the first assimilation experiment. The
configuration of more degrees of freedom partly avoids that emissions from certain grid cells are not
used to compensate for other emissions that cannot be perturbed, as was the case in the first experiment.

As shown by Figure 6.6, the assimilation procedure is not able to correct a spatial mismatch between
modelled plumes and plumes present in the TROPOMI retrievals. It is only possible to correct the
intensity of the modelled plumes through the MFs in the parameterisation. Therefore, significant
differences remain between the simulated retrievals with optimised parameters and the TROPOMI
retrievals in this experiment.
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6. Assimilation of TROPOMI data

Correction factors Assimilation window

25-6-2018 1-7-2018 23-6-2018 - 7-7-2018
Public power 0.4767 0.2568 0.7608
Industry 0.2923 0.4094 0.6554
Road transport 0.5065 1.1056 0.9269
Shipping 1.0680 1.0095 0.8385
Off-road vehicles −0.2461 5.2912 0.5832
Cluster 1 0.0189 0.5787 0.4301
Cluster 2 0.8391 0.0626 0.3497
Cluster 3 −0.6395 0.2403 −0.1389
Cluster 4 −0.1348 0.5435 0.3530
Cluster 5 0.3791 0.4557 −0.0076
Cluster 6 0.9776 1.2288 0.2934
Cluster 7 0.6794 0.9538 0.2855
Cluster 8 0.2692 1.7213 0.1127

Cost function reduction 77.42% 12.30% 42.13%

Table 6.2: Results of assimilation experiment with the parametrisation as outlined in Section 6.3. The reduction of
the cost function is calculated as the difference between the approximate cost function (Equation (4.25))
with estimated parameters β̂ and background parameters βb .

Analysis of the cost funtion
The value of 4DVAR cost function has been reduced by 77.42% for the assimilation window of June 25,
2018. Figure 6.7 provides more details of the observational part of the cost function. The observational
part of the cost function is the second term of Equation (4.1). It is associated with the mismatch between
real observations and simulated observations.

Figure 6.7a shows the observational part of the approximate cost function (Equation (4.25)) with the
estimated parameters β̂. Figure 6.7b shows the observational part of the cost function with background
parameters βb . Figure 6.7c shows the percentual change of the cost function in each pixel between
the cost function with background parameters and the approximate cost function with estimated
parameters. Figure 6.7d shows how the share of each pixel in the total improvement of the cost function.
This is the ratio of the cost function improvement per pixel and the total cost function improvement.

From Figure 6.7d, it can be seen that the most significant reductions of the cost function are spatially
concentrated around large plumes found in the TROPOMI retrievals. Figure 6.7c shows that although
the overall cost function decreases, the reduction is not uniform throughout the domain. In some places,
the cost function increases to allow more substantial decreases in the cost function elsewhere. This
weighting is a result of the chosen 4DVAR cost criterion that has to be minimised.

The maps show that when plumes in LOTOS-EUROS and TROPOMI retrievals have different positions,
the reduction of the cost function does not necessarily imply a better fit of the model to the data.
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6.3. Experiment 2 - Multiple clusters of points sources and categories

(a) (b)

(c) (d)

Figure 6.5: TROPOMI experiment 2 results on July 1, 2018, at 12:00. (a) TROPOMI retrieval (b) Simulated retrieval
with estimated parameters β = β̂ (c) Difference between TROPOMI retrieval and optimal solution (d)
Simulated retrieval with background parameters βb = 1
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(a) (b)

(c) (d)

Figure 6.6: TROPOMI experiment 2 results on June 25, 2018, at 12:00. (a) TROPOMI retrieval (b) Simulated retrieval
with estimated parameters β = β̂ (c) Difference between TROPOMI retrieval and optimal solution (d)
Simulated retrieval with background parameters βb = 1
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6.4. Conclusions of TROPOMI experiments

(a) Approximate 4DVAR cost function with estimated
parameters β= β̂ (b) 4DVAR cost function with background parameters βb = 1

(c) Percentage change of cost function at each observation
footprint

(d) Percentage of total cost function change at each
observation footprint

Figure 6.7: Distribution of the spatial part of the 4DVAR cost function and changes after optimisation.

6.4. Conclusions of TROPOMI experiments
This section discusses the conclusions of the two experiments using TROPOMI retrievals that were
conducted in this chapter. In general, the data assimilation methodology works in the sense that it
technically optimizes the emission strength parameterised by parameter vectorβ through minimisation
of the 4DVAR cost function. In all experiments, a reduction of the cost function was possible. However,
the results are only realistic when the simulated and observed plumes align rather well, as is the case on
July 1, 2018, in the experiments. There are two important reasons why the current method cannot always
accurately estimate the NOx emission strength using real data.

• Differences of plume positions in the spatio-temporal domain

Slight differences between plume positions in the spatio-temporal domain, that can be resolved
by TROPOMI’s high-resolution satellite product, could strongly hamper the results. Because of the
chosen parametrisation, the data assimilation method is only able to change the intensity of the
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6. Assimilation of TROPOMI data

plumes. Whenever modelled and observed plumes differ in location, modelled plumes are most
likely compared to TROPOMI pixels with low NO2 concentrations in the observational part of the
cost function. To minimise the cost function, the only solution is to drastically lower the emission
parameters. This leads to very low, sometimes negative values of β̂ estimated in the experiments
with TROPOMI retrievals. The use of an increased number of observations by lengthening the
assimilation window will not solve the problem. At every time in the assimilation window that
plumes dot not match, the method will underestimate β̂. There is no such mechanism that results
in an overestimation of β̂. Therefore, the current method consistently underestimates the MFs for
the emission strength in experiments with TROPOMI retrievals.

• Incomplete parameterisation of NOx emission strengths

The second source of bias in the estimated parameters β̂ arises when plumes of different sources
overlap. This happened in the first experiment on June 25, 2018, where only the emission strength
from a cluster of point sources in the Amsterdam metropolitan area is parameterised. The plume
from this cluster partially overlaps with the plumes from Antwerp and Rotterdam. Concentrations
in this plumes are higher in the model than in TROPOMI retrievals. The MF for the cluster of
point sources around Amsterdam is used to compensate for higher emission strengths from other
sources that are not parameterised. Therefore, the emission parameter estimated does not reflect
its true value.

The two issues discussed above need to be addressed to be able to apply the data assimilation method
using actual TROPOMI retrievals.

The issue of incomplete parameterisation can be solved relatively easy by making sure that the
emission strength of relevant sources of NOx is included in the parameterisation, as done in the second
experiment in this chapter.

The problem that arises due to different plume positions in the spatio-temporal domain is harder to
solve. One possible solution is to rigorously select the retrievals used in the assimilation more strictly.
Restricting the assimilation to retrievals that match the modelled plumes will overcome the issue.
However, cherry-picking of observations does not provide a satisfactory solution, giving the impression
that the rejected observations are somehow wrong, whereas it is the model that is unable to accurately
match the TROPOMI retrievals.

Another solution may be to define more degrees of freedom in the data assimilation. As discussed
in Section 4.1, uncertainty is only parameterised for the emission strengths is this study. As
illustrated in Figure 4.1, there are other sources of uncertainty in LOTOS-EUROS. Position errors in
the spatio-temporal domain may occur because of these uncertainties. The main contributor to this is
probably the meteorological input. It may also result from incorrect injection heights, temporal profiles
of emissions or the numerical implementation of transport in the model. Assimilating more parameters
in LOTOS-EUROS may result in better model fits the TROPOMI retrievals. However, this will complicate
the data assimilation. Increasing the number of estimated parameters will increase the computational
cost of the data assimilation. Furthermore, the data assimilation scheme developed in this study relies
heavily on the development of an approximate model. The influence of other parameters may not be
modelled in the same way as in Equation (4.23). If this is the case, the assimilation methodology of this
study can no longer be used. Therefore, this solution is impractical.

Another approach would be to somehow match the modelled and observed plumes before comparison.
One way to do this is by making use of image morphing techniques. The key in these methods is to first
correct the position error of the plumes by distorting the grid. After the distortion of the grid, the model
plumes should align with observed plumes. The distortion is followed by data assimilation in which
the intensity of the plume is corrected. This method was for example applied in geological parameter
estimation problems by Lawniczak 2012. Further research is needed to cope with the position errors of
the NO2 plumes in the data assimilation scheme.
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Conclusions and recommendations

7.1. Conclusions
Accurate estimates of NOx emissions are fundamental to atmospheric modelling of air pollutants.
High-resolution satellite measurements of NO2 that are available from the TROPOMI instrument are
expected to contribute to model validation and emission estimation. The purpose of this study is to
estimate NOx emission strengths using variational data assimilation techniques. The conclusions of this
study are presented by answering the research questions posed in Section 1.6

Research question 1: How can an adjoint-free 4DVAR procedure be designed to assimilate
synthetic TROPOMI retrievals in a twin experiment?

• The starting point of this study was the model-reduced variational data assimilation method
proposed by Vermeulen and Heemink 2006. The key idea of this method is calculating
a reduced-order, linear approximation of a model from which the adjoint can be used to
approximate the gradient of the 4DVAR cost function. For the LOTOS-EUROS model, the
parameters β (multiplication factors for NOx emission strengths) have a nearly linear effect on
the state vector. This linearity was utilized to propose a simpler approximate model compared
to Vermeulen and Heemink 2006. The effect of the parameters on the state is calculated from
an ensemble of one LOTOS-EUROS simulation with background parameters and Np simulations
of LOTOS-EUROS where the parameters are perturbed sequentially. The approximate model
proposed for LOTOS-EUROS calculates the state from the background state plus the effects of
perturbed parameters. After substitution of this approximate model in the 4DVAR cost function
J , it becomes quadratic and an explicit formulation of its gradient is available. The estimated
parameters β̂ are calculated by solving the linear system that follows from setting the gradient
equal to zero. Furthermore, it is possible to derive an approximation of the covariance of β̂ that
indicates the measurability of the parameters.

• Twin experiments demonstrated that the assimilation method, based on the approximate model,
optimizes the 4DVAR cost function correctly. The cost function using the approximate model for
estimated parameters β̂ is very close to the cost of the original cost function given true parameters
β̂ (< 0.5%).

• Depending on the assimilation window, the method is able to accurately estimate the parameters
in twin experiments. Based on one week of mostly cloud-free retrievals in July 2018, emission
strengths for 8 large emission hotspots in the Benelux area and 5 categories of emissions are
estimated with errors of at most 10%. The errors are consistent with the covariance of β̂ that is
calculated.

• The computational costs of this method are Np + 1 full runs of the LOTOS-EUROS model for
the calculation of the approximate model and negligible costs for optimisation of the 4DVAR
cost functions and calculation of the covariance of β̂. Furthermore, the method proved to be
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very efficient during development and testing. Once the ensemble of model runs to calculate
the approximate model is generated, experiments can be repeated with few computational costs
during development.

Research question 2: How can domain decomposition methods be used to make the
procedure scalable in the number of parameters compared to the required number of full
order model runs?

• The method developed in this study needs one extra full run of LOTOS-EUROS for every additional
parameter estimated. For a large number of parameters, this computational burden will be
prohibitive. Through domain decomposition, the efficiency of the method can be increased. A
twin experiment showed that by using a static domain decomposition, it is possible to perturb
parameters in different subdomains simultaneously and calculate the approximate model on
the subdomains. If computational resources are prohibitive, domain decomposition can thus
significantly increase the efficiency of the method.

• For some parameters, domain decomposition induced large errors in the approximate model
due to two reasons. Plumes of NO2 that propagate from one subdomain into another are
truncated during the calculation of the approximate model on the original subdomain and
disturb calculation of the approximate model on the subdomain they enter. The errors in
the approximate model resulted in large errors (> 50%) in estimated parameters and should,
therefore, be prevented by choosing the domain decomposition such, that plumes do not cross
the subdomain boundaries.

Research question 3: Can the procedure assimilate TROPOMI retrievals to improve estimates
of anthopogenic NOx emission strengths?

• The method is technically able to optimize emission parameters using actual TROPOMI retrievals.
However, results are only reliable when simulated and measured plumes are well aligned.

• If positional differences between modelled and measured plumes occur due to the high resolution
of TROPOMI retrievals, this leads to incorrect estimates of emissions, especially for the emission
from emission hotspots. Due to the parameterisation, the assimilation method is only able to
correct intensities of modelled plumes and cannot solve positional errors. Although the cost
function is improved in all cases, simulated retrievals with optimised parameters often do not
match the TROPOMI retrievals. Therefore, the method cannot be used to accurately estimate
NOx emission strengths in cases where positional errors in plumes are present. This issue has to
be solved before the method can be used in an operational procedure.

• Furthermore, it is important to make sure that all relevant sources of NOx are covered by
parameters to prevent MFs from overcompensating for emissions that are not covered by the
parameterisation.

7.2. Recommendations for further research
Further research is required before the method is to be used for improving emission strengths estimates
in inventories by assimilating TROPOMI retrievals.

• It is crucial to handle positional errors of modelled plumes. Experiments showed that
misalignment of TROPOMI and modelled plumes leads to significant underestimation of
emissions. Grid distortion methods could be a way to correct these positional errors, followed
by the correction of the intensity of the plumes by the data assimilation method.

• To increase the computational efficiency of the method, further development of domain
decomposition techniques is necessary. In theory, sources that have non-overlapping plumes can
be perturbed simultaneously. The subdomains used in the approximate model calculation may
be chosen to be time-varying.
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• The method’s computational efficiency may also be increased by storing concentrations of some
other tracers than NO2 during the run with background parameters and using these in the
LOTOS-EUROS runs where the parameters are perturbed. This will significantly decrease the
numerical cost of generating the ensemble of model runs needed to calculate the approximate
model. Further research should investigate how much computational costs decrease and how
much error is introduced by this reduction of simulated compounds.

• Once the method can be used to accurately estimate NOx emissions, it may be interesting to use
these estimations for calculation of anthropogenic CO2 emissions. As NOx is a co-emitted species
of CO2, it may be possible to improve estimates of CO2 emissions by using the ratio of NOx and
CO2 emissions and the estimated NOx emissions.
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A
TROPOMI retrievals July 1-7, 2018
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Figure A.1: Tropomi retrievals
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A. TROPOMI retrievals July 1-7, 2018
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Figure A.2: Tropomi retrievals
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Figure A.3: Tropomi retrievals
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