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Abstract

Elevated micrometer-scale iron deposits in the brain are a crucial early detection marker for numerous neurode-
generative diseases. Although iron deposits exist below conventional magnetic resonance imaging resolution,
sub-voxel information on their spatial properties can be encoded into the MR signal through magnetic suscep-
tibility differences and diffusion effects. Spin-lock pulse sequences have recently emerged as a powerful tool
sensitive to diffusion-mediated dephasing, characterized by the time constant 𝑇1𝜌. By employing continuous
low-frequency radiofrequency pulses, signal dynamics can be sensitized to motions in the order of sub-kilohertz,
rendering it sensitive to the effect of diffusion. In this work, the potential of microstructure characterization with
𝑇1𝜌 was explored through simulation and phantom experiments. A Monte Carlo simulation of a conventional
spin-lock pulse showed high sensitivity to microbead radius, concentration, and susceptibility shift through 𝑅1𝜌
dispersion magnitude and inflection point. Phantom experiments of a balanced and refocused spin-lock pulse
demonstrated minimal changes in relaxation rate, suggesting that a considerable susceptibility gradient must be
present before signal dynamics are affected. By overcoming current experimental limitations, spin-lock pulse
sequences hold great promise as reliable tools for probing structures of micrometer size.
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Abbreviations

Abbreviation Definition
ADC Apparent diffusion coefficient
𝐵 Magnetic field
BOLD Blood oxygenation level-dependent imaging
𝐶𝑢𝑆𝑜4 Copper sulfate
D Diffusion coefficient
dHB Deoxyhemoglobin content
DWI Diffusion weighted imaging
dTE Delta echo time
EPI Echo-planar imaging
FFE Fast field (gradient) echo
FOV Field of view
𝑓𝑆𝐿 Spin-lock frequency
Gd Gadolinium
GraSE Gradient and spin echo
𝐻𝑜𝐶𝑙3.6𝐻20 Holmium chloride hexahydrate
𝑀 Net magnetization
MC Monte Carlo
MR Magnetic resonance
MRI Magnetic resonance imaging
𝑁𝐻2 Amine group
𝑁𝑖𝐶𝑙2 Nickel chloride
PA Polyacrylamide
PEG Polyethylene glycol
RF Radiofrequency
ROI Region of interest
SAR Specific absorption rate
SE Spin echo
SL Spin-lock
𝑇1 & 𝑅1 Longitudinal relaxation time & rate
𝑇2 & 𝑅2 Transverse relaxation time & rate
𝑇∗2 & 𝑅∗2 Observed transverse relaxation time & rate
𝑇1𝜌 & 𝑅1𝜌 Longitudinal relaxation time & rate in the rotating frame of reference
TE Echo time
TFE Turbo field (gradient) echo
TR Repetition time
𝑡𝑆𝐿 Spin-lock time
VSI Vessel size imaging
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1
Introduction

Microstructures provide valuable information on tissue states, enabling early detection and disease monitoring of
pathologies as neurodegenerative diseases. Specifically, elevated micrometer-scale iron deposits in the brain are
associated with Alzheimer’s disease, Parkinson’s disease, and dementia [1]. Although iron is essential for cell
function, increased levels cause oxidative damage to brain tissue. Detecting and quantifying these microstructural
changes non-invasively and timely provides a means to improve early diagnosis, monitor disease progression, and
evaluate treatment efficacy. However, the spatial scale of microstructures poses significant diagnostic difficulties
in non-invasive detection.

MRI as non-invasive tool has gained interest for microstructure detection despite its relatively large resolution. In
vivo microstructures such as iron deposits [1, 2], lung alveoli [3], labeled cells [4], and regions with exogenous
contrast agents [5] affect signal dynamics, thereby encoding spatial information below the resolution limit into
the image. The signal is affected by small magnetic field inhomogeneities generated around microstructures due
to inherent magnetic susceptibility differences to the surrounding tissue. Additionally, the diffusion of hydrogen
spins, which serve as our sensor in MR imaging, is non-negligible in the presence of field inhomogeneities.
Understanding the relation between susceptibility variations and diffusion is essential for the precise quantification
of microscopic magnetic tissue inhomogeneities. This sensitivity enables MRI to reveal tissue composition and
pathology, even at micrometer size.

The transverse relaxation rate (𝑅2 and 𝑅∗2) is highly sensitive to magnetic field inhomogeneities and diffusion -
key aspects for microstructure detection. Therefore, many studies focus on 𝑇2 and 𝑇∗2 relaxation to detect mag-
netic perturbers of micrometer scale [6–9]. The theoretical formalisms of susceptibility and diffusion effects on
transverse relaxation are well understood, stating that static and dynamic dephasing are the primary contributors
to signal dynamics [10]. In this regard, techniques such as blood oxygenation level-dependent imaging (BOLD)
and vessel size imaging (VSI) have been studied extensively. BOLD imaging depends on the deoxyhemoglobin
(dHb) content. Due to its intrinsic susceptibility, the presence of dHb increases the transverse relaxation rate, pro-
viding additional image contrast [11]. In VSI, an intravascular superparamagnetic contrast agent causes changes
in 𝑅2 and 𝑅∗2, where the ratio Δ𝑅2/Δ𝑅∗2 is used to calculate a weighted mean of the vessel size [12].

Recently, 𝑇1𝜌 has gained interest as a needle-free and contrast agent-free technique that can visualize phenomena
occurring at low interaction frequencies [13]. Unlike𝑇1 methods that probe molecular motions close to the Larmor
frequency and 𝑇2 and 𝑇∗2 methods that rely on transverse relaxation effects, 𝑇1𝜌 sensitizes the signal to motions
similar to the effective precession frequency in the order of sub-kilohertz [14]. Hence, it holds great potential in
shedding new light on the slow-motional process of spin diffusion [15].

𝑇1𝜌 is characterized as spin-lattice relaxation in the rotating frame, which can be quantified with a spin-lock
pulse sequence [16]. In such a sequence, magnetization is locked into the transverse plane with a continuous
pulse at a certain spin-lock frequency, preventing normal free precession and spin dephasing. 𝑇1𝜌 is sensitive to
both diffusion and chemical exchange processes, while these processes can be distinguished based on their time
scales [15]. With faster time scales, a basis is provided to estimate chemical exchange rates [17, 18], while the
mechanism of diffusion may be studied using lower interactional frequencies [14].
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2 1. Introduction

Although theoretical formalisms explaining 𝑇1𝜌 behavior are lacking, the ability to probe spin diffusion through
susceptibility gradients offers a unique possibility to detect microstructures [19]. While preliminary studies in
in vivo rat models demonstrate the feasibility of 𝑇1𝜌 in detecting microvascular changes, further investigation
is needed to establish its robustness and clarify the relationship between microstructure geometry and signal
dynamics [20].

In this work, the sensitivity and reliability of a spin-lock pulse sequence was systematically evaluated for de-
tecting microstructural features in MRI. The effect of microstructure size, concentration and magnitude of the
susceptibility gradient was evaluated through simulations and phantom experiments.



2
Theoretical background

In this chapter, the theoretical principles of MRI necessary to understand the effects of microstructures on signal
dynamics are discussed. First, the fundamental concept of nuclear magnetism and the process of relaxation are in-
troduced, followed by how spin diffusion through intrinsic susceptibility gradients in microstructure environments
sheds light on their spatial characteristics.

2.1. Nuclear magnetism
The signal in magnetic resonance imaging (MRI) relies on nuclear magnetism. The concept of nuclear magnetism
describes the phenomenon that particles exposed to an externally applied magnetic field will become aligned and
precess around it, properties that depend on the particle spin [21].

Spin is an intrinsic form of angular momentum that is quantum in nature [21]. The nucleus of a particle with a
non-zero spin creates a magnetic dipole moment 𝜇 proportional to the spin angular momentum 𝐽 in accordance
with Eq. 2.1. They are related through the gyromagnetic ratio, 𝛾, a constant specific to the atomic species and
often expressed in MHz/Tesla [22].

𝜇 = 𝛾𝐽, (2.1)

Hydrogen is the most used nucleus in MRI due to its high natural abundance in biological tissue and its strong
interactions with external magnetic fields. Since hydrogen particles have a non-zero spin, they possess an intrinsic
magnetic dipole moment that causes particles to behave like tiny bar magnets when exposed to an external mag-
netic field. Hence, an ensemble of spins induces a net magnetization in a tissue that can be exploited to generate
image contrasts depending on tissue type.

Figure 2.1: A) The magnetic moment 𝜇 of an atomic nucleus. B) The Zeeman splitting effect. When atomic nuclei are placed in an external
magnetic field, they interact with it. In the case of a hydrogen atom, the nuclei will orient parallel or anti-parallel to the magnetic field, 𝐵0. A
potential energy gap Δ𝐸 arises between spin-up and spin-down states. C) A net magnetization forms as more spins align parallel to the field
than antiparallel. Figure adapted from [23].

3



4 2. Theoretical background

The net magnetization induced by an ensemble of particles with non-zero spin in a magnetic field occurs according
to the Zeeman effect (Fig. 2.1). The Zeeman effect dictates that the intrinsic spin 𝑠 of a particle determines its
possible orientations in a magnetic field, given by 2s + 1. A small potential energy gap between spin states,
Δ𝐸, arises following Eq. 2.2. Here, ℏ is the reduced Planck constant, 𝛾 is the gyromagnetic ratio, and 𝐵0 is the
magnitude of the external magnetic field [23].

Δ𝐸 = 𝜇
𝑠 𝐵 = 𝛾ℏ𝐵 (2.2)

A hydrogen spin with 𝑠 = 1/2 has two spin states: parallel or antiparallel to the effective field. Spins will
naturally distribute over the two spin states according to the principles of thermodynamics. The number of spins
existing in a spin-up, 𝑁+ and spin-down state, 𝑁−, can be described using Boltzmann statistics as a function of
Δ𝐸, temperature 𝑇 and the Boltzmann constant 𝑘 [23]:

𝑁+
𝑁− = 𝑒

−Δ𝐸𝑘𝑇 (2.3)

The combined effect of the spin-up and spin-down nuclei in a sample is known as the net magnetization, 𝑀.
In MRI, the initial net magnetization 𝑀0 is induced by a strong static magnetic field, 𝐵0, that causes spins to
exhibit the rotational motion of Larmor precession [24]. The Larmor frequency is the frequency at which the
spins precess around the magnetic field, 𝜔0, and is dependent on the combined properties of the particle and of
the static magnetic field (Eq. 2.4) [21] .

𝜔0 = 𝛾𝐵0 (2.4)

In thermal equilibrium, the magnetization precesses fully along the direction of the magnetic field, 𝑀𝑧. Lacking
a time-varying transverse component, 𝑀𝑥𝑦, no electrical current is induced in the receiver coil through electro-
magnetic induction. To induce a transverse magnetization, a rotating magnetic field 𝐵1 is applied with a radiofre-
quency (RF) pulse tuned to match the Larmor frequency following the on-resonance principle [21]. To model the
evolution of the magnetization vector in MRI, the Bloch equation can be used, which will be introduced in the
following section.

2.2. Bloch equation
The Bloch equation classically describes the interactions of the magnetization vector M (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧) with its
surroundings through Larmor precession and relaxation (Eq. 2.5) [25]. Here, 𝑇1 and 𝑇2 indicate longitudinal and
transverse relaxation times - the two most widely used causes of contrast in MRI. 𝛾 denotes the gyromagnetic
ratio, 𝐵(𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧) is the applied magnetic field, �̂�, �̂�, �̂� are the unit vectors in the directions of the Cartesian
coordinate system, and 𝑀0 is the initial net magnetization. In the following section, the relaxation mechanisms
will be described.

𝑑𝑀
𝑑𝑡 = 𝛾(𝑀 × 𝐵) −

𝑀𝑥
𝑇2
�̂� −

𝑀𝑦
𝑇2
�̂� + 𝑀0 −𝑀𝑧𝑇1

�̂� (2.5)

2.2.1. Relaxation
After the initial RF pulse, the net magnetization vector is no longer fully in the longitudinal plane, and a transverse
magnetization 𝑀𝑥𝑦 is induced. The spin system will recover along the direction of the static magnetic field, 𝑀𝑧,
by dissipating energy to the surrounding lattice until𝑀𝑧 =𝑀0. The rate of regrowth depends on the excess energy
of the spin and a tissue-specific time constant, 𝑇1, known as the longitudinal relaxation time. For time 𝑡 after an
RF pulse with flip angle 𝛼,𝑀𝑧 may be described as [23]:

𝑀𝑧(𝑡) = 𝑀0 ⋅ 𝑐𝑜𝑠(𝛼) + (𝑀0 −𝑀0 ⋅ 𝑐𝑜𝑠(𝛼)) ⋅ (1 − 𝑒
− 𝑡
𝑇1 ),

𝑀𝑧(𝑡) = 𝑀0 ⋅ (1 − 𝑒
− 𝑡
𝑇1 ) for 𝛼 = 90°

(2.6)

A frequently faster relaxation process is the loss of phase coherence due to spin-spin interactions. During the
initial RF pulse, all magnetic moments precess in phase at the same frequency creating a magnetization in the
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transverse plane, 𝑀𝑥𝑦. When the RF pulse is no longer applied, the magnetic moments fan out. The magnetic
moment of one spin affects the observed magnetic field of a neighboring spin, leading to phase decoherence
and a return to thermal equilibrium of 𝑀𝑥𝑦 = 0. The rate at which this occurs depends on the tissue-specific
time constant, 𝑇2. 𝑇2 can only be measured directly by compensating for temporally invariant factors, such as
static field inhomogeneities and magnetic susceptibility differences. Otherwise, spin-dephasing is caused by the
combined effects of the true spin-spin relaxation (𝑇2) and spatial disparities in magnetic field strength (𝑇′2), which
is characterized as 𝑇∗2 [23]:

1
𝑇∗2
= 1
𝑇′2
+ 1
𝑇2

(2.7)

The detectable magnetization𝑀𝑥𝑦 at time 𝑡 following a flip-angle of 90° can be described by Eq. 2.8, where 𝜔0
denotes the Larmor frequency [23]:

𝑀𝑥𝑦(𝑡) = (
𝑐𝑜𝑠(𝜔0𝑡)
𝑠𝑖𝑛(𝜔0𝑡)

0
)𝑀0 ⋅ 𝑒

− 𝑡
𝑇∗2 (2.8)

An alternative type of relaxation, not captured in Eq. 2.5, is the spin-lattice relaxation in the rotating frame of
reference, 𝑇1𝜌. 𝑇1𝜌 is a fundamentally different relaxation process than 𝑇1 and 𝑇2. This type of relaxation occurs
when the spin is locked in the rotating frame with a continuous resonant RF pulse (Fig. 2.5) [15, 26]. Under the
spin-lock (SL) pulse, slow-motion frequencies similar to the effective precession frequency (𝜔eff) are enhanced.
The effective precession frequency is determined by the effective magnetic field 𝐵eff, which is oriented at an
angle 𝜃eff in the rotating frame. Since 𝜔eff is influenced by both the spin-lock pulse (𝜔1) and frequency offsets
(Δ𝜔), slower processes are enhanced ranging from zero to a few thousand Hz, in contrast to 𝑇1, which enhances
processes close to the Larmor frequency at MHz [14]. Magnetization decay after an RF pulse with 𝛼 = 90° is
described as Eq. 2.9, where 𝑡𝑆𝐿 is the duration of the spin-lock pulse:

𝑀𝑥(𝑡𝑆𝐿) = 𝑀0 ⋅ 𝑒
− 𝑡𝑆𝐿
𝑇1𝜌

= 𝑀0 ⋅ 𝑒−𝑡𝑆𝐿⋅𝑅1𝜌
(2.9)

The magnetization evolution under a continuous spin-lock pulse can be modeled with the Bloch equations fol-
lowing [27], where the𝑀𝑥 can be used in the mono-exponential fit of Eq. 2.9 to extract 𝑇1𝜌:

𝑑𝑀𝑥(𝑡)
𝑑𝑡 = Δ𝜔0𝑀𝑦(𝑡) − 𝑅2𝑀𝑥(𝑡)

𝑑𝑀𝑦(𝑡)
𝑑𝑡 = −Δ𝜔0𝑀𝑥(𝑡) − 𝑅2𝑀𝑦(𝑡) + 𝜔1𝑀𝑧(𝑡)

𝑑𝑀𝑧(𝑡)
𝑑𝑡 = −𝜔1𝑀𝑦(𝑡) + 𝑅1[𝑀0 −𝑀𝑧(𝑡)]

(2.10)

Here,𝑀 (𝑀𝑥,𝑀𝑦 𝑀𝑧) is the magnetization vector,𝜔1 is the frequency of the spin-lock pulse, Δ𝜔0 is the frequency
offset to the Larmor frequency, 𝑅1 =

1
𝑇1

is the longitudinal relaxation rate, 𝑅2 =
1
𝑇2

is the transverse relaxation
rate and𝑀0 is the magnetization in thermal equilibrium. Δ𝜔0 plays a crucial role in microstructure detection, as
will be discussed in detail in the next section.

2.3. Microstructure detection
Microstructures can be detected on a sub-voxel level due to their influence on signal decay. Microstructure envi-
ronments drive the decay of nuclear magnetic resonance signals with two key phenomena. First, microstructures
perturb the magnetic field, which leads to locally varying offsets to the Larmor frequency, Δ𝜔0. Second, spin-
bearing particles diffuse through these susceptibility gradients, which leads to a loss of phase coherence. The
geometry of the microstructure affects how this phenomenon contributes to the MR signal. Subsequent sections
elaborate on these phenomena, focusing on spherical perturber geometries that resemble iron deposits [1, 2], lung
alveoli [3], and exogenous contrast agents [5] .
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Figure 2.2: A) Spherical magnetic perturber (gray) with radius 𝑅. A single hydrogen spin (blue) diffuses around it. At time 𝑡, the location
of the hydrogen spin may be described in spherical coordinates (𝑟, 𝜃,𝜙). B) When a perturber is placed in a magnetic field, an intrinsic
susceptibility gradient is produced that affects the local Larmor frequency. The frequency shift is described as Eq. 2.11.

Microstructures perturb the magnetic field due to an intrinsic magnetic susceptibility difference to its surround-
ings. In the extended Bloch equations, this is represented as Δ𝜔0 (Eq. 2.10). The geometry of the perturbing
microstructures affects the magnitude and spatial extent of the produced field perturbations [13]. For the case of
a homogeneously magnetized spherical perturber, the magnetic field is that of a magnetic dipole. The associated
offset it causes to the Larmor frequency can be described in spherical coordinates with Eq. 2.11, where 𝑟 is the
distance of a spin to the center of a perturber, 𝜃 is the angle between the position vector and 𝐵0, and 𝑅𝑖 is the
radius of a spherical structure [28], also illustrated in Fig. 2.2:

𝜔(𝑟) = 𝛿𝜔𝑅3𝑖
3𝑐𝑜𝑠2(𝜃) − 1

𝑟3 (2.11)

In Eq. 2.11, 𝛿𝜔 = 1
3𝛾Δ𝜒𝐵0 is the equatorial frequency shift of a sphere of radius 𝑅𝑖, where 𝛾 is the gyromagnetic

ratio and Δ𝜒 is the susceptibility difference between the spherical object and the surrounding medium. The
local Larmor frequency can be obtained by summing the contributions from multiple perturbers, where 𝐵0 is the
external magnetic field, 𝜔𝑛 is the field shift due to the nth perturber and (𝑟 − 𝑟𝑛) is the distance from a spin to
the nth perturber [29]:

𝜔(𝑟) = 𝛾 ⋅ 𝐵0 +∑
𝑛
𝜔𝑛(𝑟 − 𝑟𝑛) (2.12)

The degree to which a spatially varying local Larmor frequency enhances spin dephasing depends on the amount
of spin diffusion with respect to the size of the field fluctuations. The correlation time 𝜏, which is in the order
of 𝑅2/𝐷, describes the characteristic time scale associated with the fluctuations of the local magnetic field [30].
Minimal diffusion with respect to the correlation time leads to signal loss that can be reversed with a refocusing
pulse, referred to as the static dephasing regime. In the static dephasing regime, magnetic heterogeneity in the
sample shortens the 𝑇∗2 but does not affect the 𝑇2 [12]. Motional narrowing occurs when the diffusion time is
considerably longer than the correlation time, causing all spins to experience an average Δ𝜔0 [29]. As a result, the
relaxation times 𝑇∗2 and 𝑇2 are not reduced [12, 30]. The regime between static dephasing and motional narrowing
sensitizes the signal to the effects of diffusion with an irreversible loss of phase coherence characteristic to the
perturber size [31]. Although the effect of diffusion is not included in the extended Bloch equations (Eq. 2.10), a
generalization of the Bloch equation from Eq. 2.5 exists that has an added term for the effects of diffusion, named
the Bloch-Torrey equation [32]:

𝛿
𝛿𝑡𝑚(𝑟, 𝑡) = [𝐷Δ − 𝑖𝜔(𝑟)]𝑚(𝑟, 𝑡), (2.13)

where 𝑚(𝑟, 𝑡) = 𝑚𝑥(𝑟, 𝑡) + 𝑖𝑚𝑦(𝑟, 𝑡) is the complex-valued local magnetization, 𝑟 = (𝑟, 𝜙) is the position in
polar coordinates, Δ = 𝛿2𝑟 + 𝑟−1𝛿𝑟 + 𝑟−2𝛿2𝑟 represents the two-dimensional Laplace operator, 𝐷 is the diffu-
sion coefficient and 𝜔 is the Larmor frequency. The Bloch-Torrey equation represents challenges for analytical
solutions, and exact mathematical solutions are often limited to simplified models or extreme scenarios [30, 33].
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Figure 2.3: Sequence diagram of a standard𝑇2 sequence. The magnetization is refocused with a varying number of refocusing pulses, adjusting
the ratio of diffusion time to correlation time, where the latter is characteristic to the perturber size.

Alternatively, the Bloch-Torrey equation can be solved numerically with a Monte Carlo approach, where dif-
fusion is modeled as numerous spins subjected to random-walk, and the magnetization is averaged over many
realizations.

By similarly extending the Bloch equations in Eq. 2.10 with a Monte Carlo approach, the combined effects of
magnetic susceptibility and molecular diffusion can be investigated in microstructure environments. To quan-
tify the spatial properties of microstructures, understanding the interplay between these two effects is essential.
Both 𝑇2 and 𝑇1𝜌 are sensitive to diffusion-mediated dephasing and can therefore be used to study microstruc-
ture environments. 𝑇2 has been studied extensively and can investigate microstructure size through varying the
time between refocusing pulses, probing the regime between static dephasing and the motional narrowing limit
[29]. An MR pulse sequence utilizing 𝑇2 decay with various inter-refocusing times is illustrated in Fig. 2.3. The
following section will elaborate on how 𝑇1𝜌 relaxation can probe microstructures.

2.3.1. T1ρ as microstructure probe
𝑇1𝜌 relaxation is a less studied method for investigating diffusion through susceptibility gradients, though it shows
promising results in vivo [20]. The spatial frequency of the field variations can be investigated with spin-lock fre-
quency, similar to probing correlation time with inter-refocusing pulse interval. Intrinsic properties that affect
𝑇1𝜌 relaxation are macromolecule interactions, such as chemical exchange, and motional processes, such as dif-
fusion (Fig. 2.4 and Eq. 2.14) [15, 20]. At 𝑓𝑆𝐿 = 0 Hz, 𝑅1𝜌 approaches the transverse relaxation rate 𝑅2. Low
𝑓𝑆𝐿 emphasize the effects of diffusion (𝑅Diff

1𝜌 ), which can be sensitized to susceptibility gradients surrounding
microstructures. A higher 𝑓𝑆𝐿 is sensitive to chemical exchange processes (𝑅Ex

1𝜌), which is mainly affected by
the exchange rate of hydroxyl, amine, and amide protons as well as the chemical shift of the exchanging species
[15]. Beyond a maximum 𝑓𝑆𝐿 the signal is no longer expected to be sensitive to chemical exchange processes and
reflects the intrinsic transverse relaxation rate between tissue and water (𝑅2𝑤) [20].

𝑅1𝜌 = 𝑅Diff
1𝜌 + 𝑅Ex

1𝜌 + 𝑅2𝑤 (2.14)

Imaging over a range of spin-lock frequencies provides an 𝑅1𝜌 dispersion profile (Fig. 2.4). The midpoint of re-
gions where the dispersion is strongest is expected to correspond to the appropriate diffusive or chemical exchange
rate. The second derivative of the 𝑅1𝜌 curve provides three inflection points, which correspond to the mean dif-
fusive rate, the mean chemical exchange rate, and the midpoint between the two processes [15]. Since diffusion
around magnetic perturbers provides information on the microstructures causing the magnetic inhomogeneities,
the work in this thesis focused on 𝑅Diff

1𝜌 .

Few studies have explored an explicit expression for 𝑅Diff
1𝜌 . When assuming the susceptibility gradient caused by

a perturber to be of a singular sinusoidal spatial frequency, 𝑅Diff
1𝜌 can be described as [15]:

𝑅Diff
1𝜌 = 𝛾2𝑔2𝐷

(𝑞2𝐷)2 + 𝜔21
(2.15)

Here, 𝑞 is the spatial frequency, 𝛾 is the gyromagnetic ratio, 𝑔 is the mean gradient strength, 𝐷 is the diffusion
coefficient, and 𝜔1 is the spin-lock frequency.
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Figure 2.4: 𝑅1𝜌 dispersion plot based on [15]. The dispersion profile is a combination of the diffusion component, the chemical exchange
component and the transverse relaxation rate between tissue and water. The first dashed line (green) highlights the rate where the signal is most
sensitive to diffusional processes, whilst the second (yellow) dashed line highlights the rate most sensitive to chemical exchange. The final
plateau represents the intrinsic transverse relaxation rate between tissue and water, where the signal is no longer sensitive to either diffusion
or chemical exchange.

𝑅Diff
1𝜌 = 𝛾2𝑔2𝐷 ⋅ 𝜏2𝑐

1 + 𝜔2𝜏2𝑐
(2.16)

In Eq. 2.16, the correlation time is defined as 𝜏𝑐 = 1/(𝑞2𝐷), and it is inversely related to the characteristic locking
field frequency, 𝑤𝑐 = 1/𝜏𝑐. The correlation time is dependent on the spatial scale of the inhomogeneities and is
not influenced by the magnitude of the susceptibility variations [34]. At the inflection point of the dispersion, the
period of spin nutation matches the time required for a spin to diffuse through the characteristic dimension of the
perturber. According to Eq. 2.15 this is expected to occur at 𝜔inflection

1 = 1/(√3𝜏𝑐) [34].

2.3.2. Measuring T1ρ
The 𝑇1𝜌 value of a tissue can be measured with a pulse sequence locking the magnetization in the transverse plane
(Fig. 2.5). In an SL module, the longitudinal magnetization is tipped into the transverse plane with an initial RF
pulse. A subsequent continuous RF pulse effectively locks the magnetization in the transverse plane, during which
time 𝑇1𝜌 relaxation occurs [35]. The SL pulse is aligned with the net magnetization vector, has an amplitude 𝐵1,
is applied for a duration called the spin-lock time (𝑡𝑆𝐿), and is not slice selective [36, 37]. It is included into the
Bloch equations (Eq. 2.10) as 𝜔1. Afterward, the magnetization is flipped back to the longitudinal plane by a
third RF pulse and the residual transverse relaxation is crushed with a gradient crusher [38]. The now relaxed
longitudinal magnetization is imaged with an imaging module.

The classical SL module as illustrated in Fig. 2.5 is greatly influenced by 𝐵0 and 𝐵1 field inhomogeneities. 𝐵1
inhomogeneities lead to imperfect excitation and spin-locking, while 𝐵0 inhomogeneities lead to an off-resonant
application of the SL pulse causing the locked magnetization vector to precess around an effective 𝐵eff. The
produced banding artifacts in the image are 𝑡𝑆𝐿 and 𝑓𝑆𝐿 dependent, thus inhibiting the accurate measurement of
𝑇1𝜌 in quantitative imaging [12, 39]. Several adaptations to the SL prepulse have been proposed to increase the
resilience to field imperfections [39]. Approaches as the rotary echo [36], composite SL [40] and balanced SL
module [39] aim to reduce 𝐵1 artifacts through phase balancing and 𝐵0 artifacts with refocusing pulses.
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Figure 2.5: A) Sequence diagram of a standard spin-lock pulse sequence. After tipping 𝑀 away from the longitudinal plane, it is locked
in the transverse plane with a continuous RF pulse, during which time 𝑇1𝜌 relaxation occurs. 𝑀 is nutated back and residual transverse
magnetization is crushed with a gradient crusher. The now relaxed𝑀𝑧 is imaged with an image acquisition sequence. B-E) The dynamics of
the net magnetization vector𝑀 when exposed to a standard spin-lock pulse sequence at times corresponding to illustrated prepulse.





3
Methods

Simulation and phantom experiments were performed to investigate the reliability of detecting microstructures
with a spin-lock pulse sequence. This chapter elaborates on the implementation of the simulation and on the
experimental design of the phantom experiments.

3.1. Simulations
The temporal evolution of the magnetization vector 𝑀 under a spin-lock pulse sequence was modeled with Eq.
2.10, where the Bloch equation has been numerically solved with a Monte Carlo approach and the diffusion was
added as a random walk [41]. The diffusion of individual spin-bearing particles is modeled with the following
sequential steps:

1. A number of spins was randomly distributed throughout the simulation volume.

2. At each time step Δ𝑡, the spins moved randomly. The diffusion was stochastic and assumed to be isotropic,
with a random displacement with mean 0 and a standard deviation of √2𝐷Δ𝑡. 𝐷 is the diffusion coefficient
[8, 42]. The size of the time step ensured that the displacement within one time step was much smaller than
the size of the magnetic perturbers.

3. The respective distance of each spin to the magnetic perturber was computed. The locally experienced
magnetic field was calculated with Eq. 2.11.

4. The signal was calculated from the evolution of the magnetic moment using Eq. 2.10.

3.1.1. Implementation of simulation
A 3D extended Krogh capillary model was used to model a complex arrangement of spherical magnetic perturbers
[30]. The model comprises a single spherical perturber placed at the center of a spherical volume, representing
a repeating unit cell. The volume of the unit cell was determined by the volume fraction, 𝜂. The perturber was
modeled as uniformly magnetized and impermeable [8, 30, 32, 34].

Boundary conditions were implemented to account for spins reaching the voxel edge and the perturber surface
(Fig. 3.1). When a spin reaches the edge of the voxel, it was placed at the opposite side of the model imitating
a spin entering the repeating unit cell from a neighboring voxel. At the surface of the spherical perturber, a spin
was reflected by computing a new 𝜃 and 𝜙 and positioning it at the previous distance 𝑟 from the center of the
perturber.

The magnetization in the voxel was subjected to a conventional spin-lock sequence in MATLAB R2018b. It
assumed a perfect 𝜋/2 initial hard pulse to tip the magnetization into the transverse plane (𝑀0 = 1) after which it
was locked in the transverse plane with a continuous SL pulse. The model was simulated with locking frequencies
of 𝑓𝑆𝐿 0, 1, 3, 10, 30, 80, 140, 250, 500, 1000, and 3000 Hz and averaged over a total of 20,000 spin trajectories.
The resulting signal was fit to the mathematical model of mono-exponential decay in Eq. 2.9 with a two-parameter
fit on 15 equally spaced 𝑡𝑆𝐿 between 1 and 120 ms.

11
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Figure 3.1: A) The simulated volume (green) was assumed to be a repeating unit cell with one spherical perturber (gray) at its center. The
cubic unit cell was modeled as spherical to increase computational speed. B) When a spin enters a neighboring cell, it was modeled as entering
its current cell with the path it would have taken in the neighboring cell. C) When a spin at distance 𝑟 at time 𝑡1 moved into the perturber
at 𝑡2,𝑜𝑙𝑑, it was reflected to 𝑟(𝑡2)𝑛𝑒𝑤. A new 𝜃 and 𝜙 were computed and the spin was placed at the old distance 𝑟 from the center of the
spherical perturber.

3.2. Phantom experiments
Experiments were performed on a 3T Ingenia system (Philips, the Netherlands) to investigate the detection of
microstructures in phantom. The following sections elaborate on the setup of the phantom experiments and the
image acquisition that was performed.

3.2.1. Phantom construction
Microbeads
Polystyrene microbeads lacking a chemical exchange species were selected for isolating the effect of diffusion
(𝑁𝐻2-coated Micromer-M, Micromod, Germany). They were studied at bead diameters of 3, 10, and 20 𝜇m for
ensuring sensitivity in clinically feasible spin-lock frequencies [34].

Medium
Microbeads diluted in water tend to settle over time [34]. To ensure a uniform and reproducible dispersion, mi-
crobeads are often suspended in a gel matrix. In this thesis, the suitability of gelatin, agarose, and polyacrylamide
was assessed for microstructure detection.

In addition to the gel matrix, the magnetic susceptibility difference was adjusted to enhance the field perturbation
around a microstructure. A range of four susceptibility agents was tested for suitability in regard to magnetic
properties and phantom fabrication, being gadolinium Dotarem (𝐺𝑑), copper sulfate (𝐶𝑢𝑆𝑜4), nickel chloride
(𝑁𝑖𝐶𝑙2) and holmium (III) chloride hexahydrate (𝐻𝑜𝐶𝑙3 ⋅ 6𝐻20).

Configuration
The vials were prepared according to the protocol in Appendix A as 1.8 mL dilutions containing microbeads, a
gelling agent, and a susceptibility agent in a 2 mL plastic vial. The vial was submerged in a water bath secured in
a 3D-printed holder to ensure a negligible susceptibility difference between the vial and the surroundings, thereby
reducing susceptibility artifacts (Fig. 4.2) [43].

3.2.2. System verification
The system verification aimed to identify the experimental parameters of the phantom experiments and to evaluate
the prepulse resilience to banding artifacts by investigating the effect of:

• the gelling agent on the diffusion coefficient, 𝐷,
• the susceptibility agents on the relaxation times 𝑇1 and 𝑇2,
• the susceptibility agents on the frequency shift, Δ𝜒,
• (non)-adiabatic refocusing pulses on banding artifacts.

Diffusion coefficient
The𝐷 was estimated to determine the influence of the gelling agent on spin diffusivity with a DWI sequence (Tab.
3.1). The signal from the images was fit to the equation below to extract the apparent diffusion coefficient (ADC)
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of water and of a medium of PA:

𝐷 = −1𝑏 ⋅ 𝑙𝑛
𝑆𝐷𝑊𝐼
𝑆𝑏=0

(3.1)

Table 3.1: Scan parameters utilized in acquiring DWI images for quantifying the effect of the gelling agent, read out with a spin echo - echo
planar imaging (SE-EPI) sequence.

Scan type Image readout FOV Resolution TR/TE FA b-value
[mm] [mm] [ms] [°] [𝑠/𝑚𝑚2]

DWI SE-EPI 200x200x14 1.5x1.89x4 1000/68 90° 0, 300, 600

Volume magnetic susceptibility
The effect of the susceptibility agent on the magnetic susceptibility of the vials was assessed with a 𝐵0 map (Tab.
3.2) following the validation of the measurement method in Appendix B. The map displayed the frequency shift
to the Larmor frequency. The effect of the susceptibility agent was extracted by:

ΔΩ = 𝐵0,𝑎𝑔𝑒𝑛𝑡 − 𝐵0,𝑟𝑒𝑓 , (3.2)

where 𝐵0,𝑟𝑒𝑓 is the frequency map in the absence of a susceptibility agent and 𝐵0,𝑎𝑔𝑒𝑛𝑡 in the presence of it. The
frequency shift was related to the magnetic susceptibility of the vial with Eq. 3.3 [41]. Here, Ω0 = 42.58𝑀𝐻𝑧/𝑇
is the Larmor frequency of the hydrogen spin, 𝜃 is the angle of the vial to the static magnetic field, ΔΩ is the shift
caused by the susceptibility agent, and Δ𝜒 is the magnetic susceptibility of the vial as a whole. Because the vial
was aligned with the static magnetic field, 𝜃 can be regarded as 0:

ΔΩ = Δ𝜒𝑣𝑖𝑎𝑙
6 (3𝑐𝑜𝑠2𝜃 − 1)Ω0

= Δ𝜒𝑣𝑖𝑎𝑙
3 Ω0, 𝑓𝑜𝑟 𝜃 = 0,

(3.3)

Table 3.2: Scan parameters utilized in 𝐵0 maps for quantifying the effect of the susceptibility agents, acquired with a fast field (gradient) echo
(FFE).

Scan type Image readout FOV Resolution TR/TE FA dTE
[mm] [mm] [ms] [°] [ms]

𝐵0 map 3D FFE 130x130x8 1x1x1 30/5.5 10 1

T1 and T2 maps
The effect of the susceptibility agent on the medium was determined by mapping the magnetic properties 𝑇1 and
𝑇2 with scan parameters summarized in Tab. 3.3.

Table 3.3: Scan parameters utilized in 𝑇1 and 𝑇2 maps for quantifying the effect of the susceptibility agents. The 𝑇1 map is acquired with a
fast field (gradient) echo (FFE) and the 𝑇2 map with a gradient and spin echo (GraSE).

Scan type Image readout FOV Resolution TR/TE FA
[mm] [mm] [ms] [°]

𝑇1 map 2D Balanced FFE 130x130x10 2x2x10 2.2/0.99 20
𝑇2 map 2D GraSE 130x130x10 2x2x10 1000/n*10.24, n=9 echos 90
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Spin-lock prepulse evaluation
The prepulses implemented in this study aimed to reduce banding artifacts with extensive phase balancing com-
bined with either adiabatic or non-adiabatic refocusing pulses following [44], illustrated in Fig. 3.2. Different
from a regular on-resonance block pulse, an adiabatic pulse sweeps the magnetization over a range of frequencies
with a modulated pulse amplitude. Adiabatic pulses are resilient to 𝐵1 inhomogeneities of the refocusing pulse,
providing more optimal refocusing for 𝐵0 inhomogeneities. Following an evaluation of the prepulses at a range
of 𝑓𝑆𝐿, the prepulse with adiabatic refocusing was selected for microstructure detection.

Figure 3.2: Adaptations to the standard SL prepulse implemented in this thesis with non-adiabatic refocusing (A) and adiabatic refocusing (B).
Both prepulses provide resilience against 𝐵1 imperfections by phase balancing and against 𝐵0 imperfections by refocusing pulses. Adiabatic
refocusing pulses are designed to provide a more optimal 𝐵0 resilience.

3.2.3. Spin-lock imaging
The prepulse as illustrated in Fig. 3.2B was elected to quantify the 𝑇1𝜌 in phantom experiments with microbeads.
To generate dispersion graphs, scans were acquired at a range of 𝑓𝑆𝐿 of 80, 100, 150, 200 and 400 Hz with scan
parameters as summarized in Tab. 3.4. Each scan comprised two time dynamics used to extract the 𝑅1𝜌, being a
reference image without a spin-lock prepulse (𝑡𝑆𝐿 = 0 ms), and an image with a spin-lock prepulse (𝑡𝑆𝐿 = 30 ms).

Table 3.4: Scan parameters utilized in microstructure detection with 𝑇1𝜌. The images were acquired with a turbo field (gradient) echo (TFE).

Scan type Image read-
out

FOV Resolution TR/TE FA Mz recovery

[mm] [mm] [ms] [°] [ms]

𝑇1𝜌 𝑇1-weighted 130x130x8 1x0.98x8 3.1 / 1.55 10 3000
2D TFE
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Results

The results from simulation and phantom experiments illustrated the possibility of detecting microstructures with
a spin-lock pulse sequence. The simulations primarily exhibited the influence of several microstructure charac-
teristics on the relaxation rate, while phantom data presented to what extent microstructures can be detected with
the current experimental design.

4.1. Simulation
The simulation results demonstrated how several characteristics of microstructures alter the𝑅1𝜌 dispersion profile.
In separate simulation experiments, the effects of microstructure radius, concentration, susceptibility difference,
and spin diffusivity were assessed with the parameter set summarized in Tab. 4.1. Throughout these experiments
all other parameters were maintained at a constant value indicated in bold.

Table 4.1: Parameters used in simulation experiments, where 1𝜒 = -1.21 ⋅10−7 and bold printed numbers represent the parameter at its constant
value. Parameters were chosen to resemble [34]. The range of 𝐷 was extended from a clinically relevant value of 2.3 10−6𝑚𝑚2/𝑚𝑠 to
investigate various diffusion regimes.

Parameter Unit Values
R 𝜇m 0.5, 1, 2.5, 4, 5, 6, 7.5, 10, 20, 50
𝜂 - 0.005, 0.010, 0.015, 0.020
𝛿𝜒 - 1𝜒, 2𝜒, 3𝜒, 4𝜒
D 10−6𝑚𝑚2/𝑚𝑠 10−6, 10−3, 2.3, 103
𝑇1 ms 2597
𝑇2 ms 1200
Δ𝑡 𝜇s 0.4
𝐵0 T 3

The 𝑅1𝜌 dispersion plots generated from simulation experiments are illustrated in Fig. 4.1. Each plot displays the
influence of an individual parameter on the relaxation rate. In general, microstructures induced a characteristic
profile with an initial plateau at low and high spin-lock frequencies connected through a slope steepest at the in-
flection point. In Fig.4.1A, the influence of the microstructure radius was illustrated. The radius contributed to the
relaxation rate by altering both the dispersion magnitude and the inflection point. An increase in radius produced
a higher plateau at low spin-lock frequencies for a specific range of radii, thereby indicating an increased relax-
ation rate. Additionally, larger microstructures shifted the position of the inflection point to lower frequencies.
Fig.4.1B displays the effect of the microbead concentration. Within the range of simulated concentrations, more
closely spaced microstructures accelerated the relaxation at low spin-lock frequencies, though the inflection point
remained at the original position. The susceptibility difference influenced the relaxation rate in a similar manner,
as visible from Fig.4.1C. The amount of spin diffusivity altered the profile through a more complex mechanism,
where both the dispersion magnitude and the inflection point were affected (Fig.4.1D). The behavior indicated
that the order of diffusion influences the size-selectivity of 𝑇1𝜌

15
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Figure 4.1: Simulation results. The used parameter set was summarized in Tab. 4.1, where bold print indicates fixed parameter values. A) The
effect of perturber radius on the 𝑅1𝜌 dispersion profile. Solid lines represent beads smaller than 5 𝜇m, whereas dotted lines are larger beads.
B) The effect of perturber concentration. Since the simulation consisted of one perturber in a spherical volume, a change in concentration was
achieved with a change in simulation volume. C) The effect of the susceptibility shift, where 1𝜒 = −1.21 ⋅ 10−7. D) The effect of varying
the diffusion coefficient.

4.2. Phantom experiments
Microbeads were suspended in a polyacrylamide gel to demonstrate the effect on the relaxation rate in phantom.
Independent measurements were performed to verify the suitability of gelling and susceptibility agents by mea-
suring experimental parameters of diffusion, 𝑇1, 𝑇2, and frequency shift ΔΩ. Afterward, microstructure detection
was evaluated with a spin-lock pulse sequence.

4.2.1. System verification
Gelling agents
The suitability of gelatin, agarose, and polyacrylamide in microstructure detection was investigated to determine
the optimal phantom configuration. Despite gelatin and agarose being common gelling agents in MR, specific
properties rendered them unsuitable for microstructure characterization. Gelatin gels tended to contain air bub-
bles which interfered with microstructure detection due to their comparable size and magnetic susceptibility [43].
Agarose was less susceptible to trapping air, yet it dramatically reduced the 𝑇2 diminishing the relative contribu-
tion of the microstructures [45]. Given the limitations of both gelatin and agarose, polyacrylamide was used as
alternative gelling agent [10]. It demonstrated both a longer 𝑇2 - approximately 1900 ms at 10% concentration
compared to 150 ms for 1% agarose [45] - and exhibited a lower tendency to trap air bubbles. Despite its advan-
tages, polyacrylamide did lead to a slightly decreased diffusion coefficient as compared with agarose gels [45].
Based on these considerations, a gel with a concentration of 9% polyacrylamide was selected.

The diffusion of spins was dependent on properties of the gelling agent. The effect of polyacrylamide gel on the
spin diffusivity was assessed with an ADC map. The ADC values of a vial with 9% PA were shown in Figure
4.2B. The mean ADC value in a rectangular ROI in the center of the vial was 1.94 ⋅10−6 𝑚𝑚2/𝑚𝑠. The mean
ADC value of an ROI in the water surrounding the vial was 2.06 ⋅10−6 𝑚𝑚2/𝑚𝑠.
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Figure 4.2: A) Setup of phantom experiments with microbeads with a radius of 10 𝜇m suspended in a 9% PA solution submerged in a water
bath. B) ADC map of a vial without microbeads in coronal orientation. The ADC was only minimally affected by the PA gel. C) Microscope
images of the microbeads at varying concentrations.

Susceptibility agents
The addition of a susceptibility agent aided microstructure detection by enhancing the intrinsic susceptibility
gradient around a perturber. As the difference in magnetic susceptibility between the microstructures and the
surrounding medium increases the experienced frequency shift, spin dephasing was enhanced. Therefore, it was
crucial to understand the relation between the susceptibility agent concentration and the frequency shift along with
their suitability in phantom fabrication. Following the verification of the measurement method (Appendix B), the
magnetic properties and the production suitability of 𝐻𝑜𝐶𝑙3 ⋅ 6𝐻20, 𝐶𝑢𝑆𝑜4, 𝑁𝑖𝐶𝑙2 and 𝐺𝑑 were investigated.
The ΔΩ, 𝑇1, 𝑇2, and the effect on the gelling of polyacrylamide were summarized in Tab. 4.2.

It was essential that the agents enhance the effect of the susceptibility gradient while minimizing significant
reductions in 𝑇1 and 𝑇2 relaxation times. Additionally, they should not interfere with the gelling process of
PA. The agent with the largest effect on the susceptibility shift with a limited reduction in dipole relaxivity was
𝐻𝑜𝐶𝑙3 ⋅ 6𝐻20. However, polystyrene microbead aggregations formed when the gel matrix included holmium
(Appendix C). 𝐶𝑢𝑆𝑜4 prolonged the gelling process of PA from a minute to more than a day. Finally, both 𝑁𝑖𝐶𝑙2
and 𝐺𝑑 had a considerable effect on the susceptibility shift yet additionally reduced the dipole relaxivity. Since
𝑁𝑖𝐶𝑙2 experienced a color-changing chemical reaction and gadolinium provided possibilities in subsequent in
vivo experiments, gadolinium was selected as a susceptibility agent for the phantom experiments.

Table 4.2: Comparison of the susceptibility agents𝐻𝑜𝐶𝑙3 ⋅6𝐻20, 𝐶𝑢𝑆𝑜4,𝑁𝑖𝐶𝑙2 and𝐺𝑑 𝐷𝑜𝑡𝑎𝑟𝑒𝑚 . The effects on the magnetic properties
and the gelling process of polyacrylamide were included in the comparison.

Susceptibility agent Concentration Frequency shift T1 T2 Effect on gelling
[Hz] [ms] [ms]

𝐻𝑜𝐶𝑙3 ⋅ 6𝐻20 5 mM 114 493 528 Bead aggregations
10 mM 206 281 350

𝐶𝑢𝑆𝑜4 4 mM - - - Slows gelling to > 24h
8 mM - - -

𝑁𝑖𝐶𝑙2 3 mM 8 1100 750 Chemical reaction
6 mM 22 750 450

𝐺𝑑 𝐷𝑜𝑡𝑎𝑟𝑒𝑚 0.15 v/v% 14 680 192 None
0.30 v/v% 31 212 110

Spin-lock prepulse evaluation
Spin-lock preparatory modules with non-adiabatic and adiabatic refocusing were evaluated for their resilience
against 𝐵0 and 𝐵1 imperfections. Images were acquired at various 𝑡𝑆𝐿 and 𝑓𝑆𝐿 with scan parameters as described
in Tab. 3.4. At 0 Hz, the prepulse with non-adiabatic refocusing displayed significant banding artifacts increas-
ing with spin-lock duration that are less pronounced in the adiabatic refocusing prepulse. The banding artifacts
diminished with higher 𝑓𝑆𝐿. The prepulse with adiabatic refocusing pulses was utilized in phantom experiments
with microbeads.
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Figure 4.3: Evaluation of the implemented spin-lock pulse sequences from Fig. 3.2 to facilitate a comparison between adiabatic and non-
adiabatic refocusing pulses. A) Signal magnitude images acquired with 𝑓𝑠𝑙 = 0 Hz and a range of 𝑡𝑠𝑙. B) Signal magnitude images acquired
at 𝑡𝑠𝑙 = 50 ms and a range of 𝑓𝑠𝑙.

4.2.2. Microstructure detection
After system verification, phantom experiments were conducted to evaluate the detection of microstructures with
a spin-lock pulse sequence. Vials were fabricated as summarized in Tab. 4.3 to address the following objectives:

• to investigate the effect of microbead concentration of 3 𝜇m beads (set 1),
• to investigate the effect of microbead concentration of 10 𝜇m beads (set 2),
• to investigate the effect of microbead concentration of 10 𝜇m beads in the absence of Gd (set 3),
• to monitor whether signal evolution under the SL pulse is mono-exponential (set 4),
• to evaluate the reproducibility of phantom fabrication with Gd (set 5),

Table 4.3: Vials used in phantom experiments. The first three sets aimed to investigate the effect of microbead concentration on the signal
acquired with an SL pulse sequence. Set 4 was imaged to monitor the mono-exponential behavior of signal decay. Set 5 assessed the
reproducibility of the phantom fabrication process. Scans were acquired with 5 repetitions (set 1-4) or with 10 repetitions (set 5).

Polyacrylamide Gadolinium Microbead radius Microbead concentration
[%] [%] [𝜇m] [%]

set 1 9 0.3 3 0.0, 0.5, 1.0, 1.5, 2.0
set 2 9 0.3 10 0.0, 0.5, 1.0, 1.5, 2.0
set 3 9 0.0 10 0.0, 0.5, 1.0, 1.5, 2.0
set 4 9 0.3 10 0.0, 2.0
set 5 9 0.3 20 0.0 × 5, 1.0 × 5

The phantom results were compared to simulation experiments with parameters based on the outcomes of the
system identification (Tab. 4.4).
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Table 4.4: Parameters used in simulation experiments for comparison to phantom experiments. The susceptibility difference, 𝑇1 and 𝑇2 values
were adjusted to suit the conditions with and without gadolinium.

Parameter Unit Values
R 𝜇m 3, 10
𝜂 - 0.005, 0.010, 0.015, 0.020
𝛿𝜒, 𝛿𝜒𝑔𝑑 - -1⋅10−7, -5⋅10−7
𝑇1, 𝑇1,𝑔𝑑 ms 2300, 210
𝑇2, 𝑇2,𝑔𝑑 ms 1900, 62
D 10−6 𝑚𝑚2/𝑚𝑠 2.0
Δ𝑡 𝜇s 0.4
𝐵0 T 3

Fig. 4.4A illustrates the results obtained to address the first aim of the phantom experiments: how varying the
concentration of 3 𝜇m beads affected the 𝑅1𝜌 dispersion profile with an enhanced susceptibility difference caused
by 0.3% Gd. The resultant signal and 𝑅1𝜌 dispersion plot for an 𝑓𝑆𝐿 of 80, 100, 150, 200, and 400 Hz at a 𝑡𝑆𝐿
of 30 ms with a mean and standard deviation of 5 scan repetitions per vial was displayed. For reference, the
images at 𝑡𝑆𝐿 = 30 ms normalized to 𝑡𝑆𝐿 = 0 ms corresponding to the 2.0% microbeads vial were displayed above
the phantom signal plot. The relaxation rate for different microbead concentrations differed minimally and the
order was inconsistent. The resultant dispersion plot was compared to simulation results, where the dispersion
magnitude was small though an increase in microbead concentration led to a consistent increase in relaxation rate.

Figure 4.4: Phantom experiments to determine the effect of 3 𝜇m bead concentration on the signal (left) and on 𝑅1𝜌 (right) in a medium of 9%
PA and 0.3% Gd. Signal images at 𝑡𝑆𝐿 = 30 ms normalized to 𝑡𝑆𝐿 = 0 ms of the 2.0% beads are shown for reference. The data points represent
an average of five repetitions and the error bars represent ± one standard deviation. Both experimental and simulated data are shown.

To investigate the effect of microbead radius in phantom, experiments were repeated with 10 𝜇m beads and 0.3%
Gd. The signal, 𝑅1𝜌 dispersion and simulation plots for a range of 10 𝜇m microbead concentrations with gadolin-
ium were shown in Fig. 4.5. The simulation predicted a slight dispersion magnitude with step-wise increase in
relaxation rate of an increase in bead concentration. However, the gradual and consistent increase in relaxation
rate could not be captured in phantom data.
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Figure 4.5: Phantom experiments to determine the effect of 10 𝜇m bead concentration on the signal (left) and on 𝑅1𝜌 (right)in a medium of
9% PA and 0.3% Gd. Signal images at 𝑡𝑆𝐿 = 30 ms normalized to 𝑡𝑆𝐿 = 0 ms of the 2.0% beads are shown for reference. The data points
represent an average of five repetitions and the error bars represent± one standard deviation. Both experimental and simulated data are shown.

When comparing the results of 3 𝜇m beads and 10 𝜇m beads, as was shown in Fig. 4.6 for 0%, 1% and 2%
microbeads, simulated data predicted minimal effect of the microbeads on the relaxation rate and experimental
data did not display a characteristic dispersion profile.

Figure 4.6: Comparison of radius and concentration effects in phantom data (solid lines) and simulated data (dashed lines). Results are shown
for 3 and 10 𝜇m microbeads in 9% PA with 0.3% Gd.

The influence of a lower susceptibility shift was investigated by imaging a set of vials with 10 𝜇m microbeads
lacking Gd as susceptibility agent. Fig. 4.7 visualizes signal dephasing due to a weaker susceptibility gradient.
The system experienced negligible signal decay in the duration of the spin-lock preparation rendering the fit of
the relaxation rate unstable.

In an additional experiment, the behavior of signal decay was monitored. As the calculation of the relaxation rate
depended on fitting the signal to a mathematical model of mono-exponential decay, it was crucial to ensure that
the phantom data adhered to it. A scan mapping the signal over the course of 30 ms with a 𝑑𝑡 of 5 ms normalized
to the first-time dynamic provided insights into the signal decay behavior at an 𝑓𝑆𝐿 of 0, 200, and 400 Hz. From
Fig. 4.8, it could be deduced that for 10 𝜇m microbeads in 0.3% Gd the signal behaved as expected.
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Figure 4.7: Phantom experiments to determine effect of 10 𝜇m bead concentration on the signal (left) and on 𝑅1𝜌 (right) in a medium of 9%
PA. Signal images at 𝑡𝑆𝐿 = 30 ms normalized to 𝑡𝑆𝐿 = 0 ms of the 2.0% beads are shown for reference. The data points represent an average
of five repetitions, and the error bars represent ± one standard deviation. Both experimental and simulated data are shown.

Figure 4.8: Signal decay of a reference vial (A) and a vial with 2% 10 𝜇m beads (B). The signal was measured at 5 ms intervals for a total
𝑡𝑆𝐿 of 30 ms and an 𝑓𝑆𝐿 of 0, 200 and 400 Hz. The mean represents the average of five scans with error bars of ± one standard deviation.

The number of dynamics required for the mapping was investigated by fitting the results from Fig. 4.8 to various
number of time dynamics. Tab. 4.5 displays the 𝑅1𝜌 extracted from the signal decay with 2 (0 and 30 ms), 3 (0, 15
and 30 ms), 4 (0, 10, 20 and 30 ms) or 7 (0, 5, 10, 15, 20, 25, 30 ms) time dynamics. Despite slight overestimation
of the 𝑅1𝜌 at fewer time dynamics, the results were comparable.

Table 4.5: Extracting𝑅1𝜌 [Hz] from the signal decay of a reference vial and a vial with 2% 10 𝜇m beads at a varying number of time dynamics
to indicate the quality of the fit.

0% microbeads 2% microbeads
0 Hz 200 Hz 400 Hz 0 Hz 200 Hz 400 Hz

2 dyn 15.3 14.9 15.4 15.2 14.5 14.4
3 dyn 16.4 16.0 16.4 16.2 15.5 15.3
4 dyn 16.0 15.8 16.1 15.9 15.2 15.0
7 dyn 14.3 14.0 14.2 14.1 13.3 13.2
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The last experiment aimed to investigate the repeatability of the phantom fabrication. A pair containing a reference
vial without any beads, and a vial with 1% 20 𝜇m beads was produced five times with 0.30% Gd. They were
imaged ten times to obtain a mean and standard deviation of their 𝑇2 values identical to the method used for
selecting the susceptibility agent in the system verification (Fig. 4.9).

Figure 4.9: Reproducibility of experimental design in presence of a susceptibility agent. 5 identical pairs were produced containing a reference
vial and a vial with 1% 20�m microbeads. 𝑇2 results of 10 scans are shown. For the reference and bead-containing vial of pair 2, a zoom in
of the ROI is shown for each of the 10 scan repetitions. One full image is displayed below the ROIs, in which the ROI is highlighted with a
yellow box.
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Discussion

This study explored the potential of spin-lock pulse sequences for characterizing microstructures beyond the res-
olution of conventional MRI. Spatial information was encoded into the signal on a sub-voxel level by hydrogen
spins diffusing through intrinsic susceptibility gradients. Simulation experiments demonstrated that the disper-
sion magnitude and inflection point of the 𝑅1𝜌 dispersion profile provided valuable insights into spatial properties
of microstructures. However, phantom experiments did not achieve an optimal experimental configuration. The
findings and future research directions will be discussed in two separate sections: simulation and phantom exper-
iments.

5.1. Simulation experiments
The inflection point, marked by the steepest section of the dispersion curve, served as metric for microbead radius
estimation (Fig. 4.1). The spin-lock frequency at the inflection point corresponded to the time required for a
spin to travel the characteristic length of a perturber [34]. While dispersion magnitude was highly dependent on
microstructure concentration and susceptibility differences, the inflection point remained largely independent of
these factors. Although the diffusion coefficient affected the inflection point, its variations are limited under physi-
ological conditions. For example, the ADC of gray matter reported in healthy tissue is around 0.9 ⋅10−6𝑚𝑚2/𝑚𝑠,
whereas the tissue of patients with dementia has an ADC of approximately 1 ⋅10−6𝑚𝑚2/𝑚𝑠 [46]. The consis-
tent behavior of the inflection point could make it a reliable indicator of microstructure size. However, since the
inflection point is a second-order derivative, its quantification is highly sensitive to noise.

Information on microbead radius was provided by the 𝑅1𝜌 dispersion curve within the 2.5-20 𝜇m range (Fig.
4.1A). Within this range, the microbead radius affected both dispersion magnitude and inflection point position.
Larger microbeads created less rapidly varying field distortions, thereby shifting the inflection point to a lower
spin-lock frequency. However, this effect became negligible for microstructures exceeding 20 𝜇m, and the in-
flection point stabilized independent of the microbead radius. Beyond 20 𝜇m, the interactional frequency was
too low to capture with a spin-lock pulse. Conversely, for beads smaller than 2.5 𝜇m, the field distortions were
rapidly varying, averaging the effective magnetic field at all spin-lock frequencies.

Both microstructure concentration and susceptibility shift positively correlated with dispersion magnitude (Fig.
4.1B&C). Higher microbead concentrations enhanced relaxation at low spin-lock frequencies due to increased
spatial field variations. Similarly, a larger susceptibility shift resulted in faster relaxation due to stronger field
variations surrounding a perturber. In in vivo applications, iron deposits are more likely to be detected due to
high susceptibility differences rather than high concentrations. Notably, while a clinically relevant range of iron
concentration is below 0.02% in the brain, the susceptibility shift of a deposit of four iron atoms is around 10.1
ppm, or equivalent to 8𝜒 in Fig. 4.1C [2].

Relaxation induced by microstructures was highly dependent on the diffusion length. Variations in the diffusion
coefficient, D, altered the effective diffusive length, influencing the averaging of field fluctuations (Fig. 4.1D). A
lower D reduced field averaging, thereby increasing dispersion magnitude, particularly at low spin-lock frequen-
cies. Below a critical 𝐷, the situation approximated the static dephasing regime, where diffusion is negligible,
and relaxation becomes reversible with a refocusing pulse. Additionally, diffusion influenced the inflection point,
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where lower diffusion coefficients shifted the inflection point to lower spin-lock frequencies due to prolonged
interactions with field distortions.

It should be noted that the performed simulations considered a singular spherical perturber in a repeating unit cell.
At high volume fractions, the effect of multiple spherical perturbers on a hydrogen spin becomes non-negligible,
potentially altering relaxation behavior. Furthermore, a random distribution of multiple spherical perturbers may
introduce a more complex 𝑅1𝜌 dispersion.

5.2. Phantom experiments
Phantom experiments demonstrated to what extent microstructures could be detected with the current experi-
mental setup. Firstly, phantom fabrication and system identification are discussed, followed by microstructure
detection experiments.

The system verification aimed to investigate the effect of the gelling agent and the susceptibility agent. Gelatin, as
a common gelling agent, was limited in suitability due to air bubble trapping [41]. Independent degassing cycles
with an ultrasonic bath, vacuum pump, and vacuum oven proved to be insufficient for eliminating air bubble
formation. Agarose is less sensitive to air bubble trapping; however, high melting temperatures are required,
under which conditions polystyrene bead stability cannot be ensured. To mitigate the temperature issue, low-melt
agarose was tested for phantom fabrication. Although the reduced melting temperatures preserved bead stability,
low-melt agarose did not serve as a suitable agent due to large 𝑇2 reductions, rendering the phantom fabrication
highly sensitive to weighing and pipetting errors. Alternatively, polyacrylamide was assessed as gelling agent.
Despite the inability of polyacrylamide to reverse gelling for microbead-reuse, it was best suited for the research
purpose as it did not lead to air bubble formation, large 𝑇2 reductions, nor high melting temperatures [45].

The spin-diffusion analysis of the effect of the gel matrix indicates that PA had minimal impact on the ADC. From
Fig. 4.2B, the diffusion coefficient in PA gel was calculated as 1.94 ⋅10−6 𝑚𝑚2/𝑚𝑠, which was a reduction of
5.8% from the ADC of the surrounding water. The value reported for water was in agreement with the expected
ADC at room temperature [47]. Since the ADC is temperature dependent, lowering the sample temperature could
align phantom conditions with clinical values (1 ⋅10−6𝑚𝑚2/𝑚𝑠) [34]. However, maintaining a stable tempera-
ture during MRI acquisition is challenging, as spin-lock sequences deposit energy into the system (typically 1°C
[40]) and acquiring a dispersion profile is timely. Refrigerated samples are, therefore, not recommended unless
temperature constancy can be ensured.

Regarding the susceptibility agent, holmium (III) chloride hexahydrate induced the largest susceptibility difference
from the tested agents. Along with dysprosium ions, holmium possessed the largest effective magnetic moment
from the rare earth ions while not greatly reducing dipole-relaxivity [43]. However, the addition of holmium to the
medium created an unstable solution where microbeads flocculate (Appendix C). To counter bead aggregations,
vials were fabricated with the addition of Triton-X or EDTA, both proving to be suboptimal for providing a
stable suspension. Alternatively, the agents 𝐶𝑢𝑆𝑜4 and 𝑁𝑖𝐶𝑙2 were also unsuited for microstructure detection,
respectively due to the prolonged PA gelling time and a color-changing chemical reaction. Therefore, the use of
gadolinium as susceptibility agent was investigated. Gd is a well-established contrast agent in MRI that may be
used in in vivo experiments [48]. Although the maximum concentration was limited by the considerably shortened
𝑇1 and 𝑇2, Gd generated a 30 Hz frequency shift (Tab. 4.2). Hence, gadolinium was selected for further phantom
experiments.

The preparatory spin-lock module with adiabatic refocusing pulses was more resilient to𝐵0 imperfections than the
module with block refocusing pulses (Fig. 4.3). In line with previous findings, 𝐵0 insensitivity greatly reduced the
banding artifacts in acquired spin-lock images and refocusing adiabatically was a robust method for achieving 𝐵0
insensitivity [40, 49]. The module with adiabatic refocusing was therefore selected for further spin-lock imaging.

Phantom experiments demonstrated minimal changes in the relaxation rate with increasing bead concentrations,
suggesting that the current experimental design lacked a considerable effect size. Simulations predicted no mea-
surable 𝑓𝑆𝐿 dependency on the 𝑅1𝜌 for 3 𝜇m beads, while 10 𝜇m beads should exhibit subtle changes dependent
on 𝑓𝑆𝐿 (Fig. 4.4 & 4.5). However, experimental data showed only a slight increase in relaxation rate with in-
consistencies across bead concentrations, which was additionally illustrated in Fig. 4.6. It was hypothesized that
variations in Gd concentration were at the root of these inconsistencies. 𝑅1𝜌 is highly dependent on 𝑇2, and slight
changes in the gadolinium concentrations altered the 𝑇2 considerably, complicating the detection of the subtle
𝑅1𝜌 variations (2-3 Hz) expected for the current phantom vials.
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No clear inflection point was observed in dispersion profiles for 3 and 10 𝜇m beads (Fig. 4.4 and Fig. 4.5).
Simulations predicted these results for 3 𝜇m beads, though the dispersion profile for 10 𝜇m beads should be
converging to a plateau at 400 Hz. One possible explanation is that the susceptibility gradient was insufficient
to induce a measurable change in the relaxation rate. The frequency shift of 0.3% Gd was around 30 Hz, which
may not produce sufficient field distortions, which therefore inhibited the identification of an inflection point. In
contrast, an in vivo deposit of four iron atoms has a susceptibility of 10.1 ppm, equivalent to a ΔΩ of 420 Hz [2],
and lung alveoli provide a susceptibility difference of 8 ppm within a voxel, equivalent to 336 Hz [50].

The experimental configuration should be optimized to demonstrate microstructure detection in phantom. To
increase the effect size, a greater magnetic susceptibility difference between the medium and the microstructures
must be achieved, possible in one of two ways. Firstly, the configuration can be chosen to allow the use of
𝐻𝑜𝐶𝑙3 ⋅ 6𝐻20 as a susceptibility agent to generate a larger frequency shift with minimal reduction in dipole
relaxivity. In this regard, adding a high molecular weight PEG coating can increase bead stability in a high ionic
strength medium due to steric hindrance (Appendix C). Secondly, gas-filled microbubbles, a well established
ultrasound contrast agent, may be used as alternative microstructures [4]. Microbubbles are lipid-shelled circular
structures with an air- or gas-filled cavity ranging from 2 to 6 𝜇m with a slightly higher susceptibility shift than
polystyrene - 0.36 ppm as compared to 0.1 ppm [30, 43]. Although they are harder to preserve in a stable phantom
environment, the simulation results show that larger susceptibility differences are expected to further amplify the
observed 𝑇1𝜌 change.

Fig. 4.7 demonstrates negligible signal loss during the SL prepulse in the absence of 𝑇2-shortening Gd. Due to
specific absorption rate (SAR) and RF power restrictions, spin-lock magnetization preparations were limited to
a short 𝑡𝑆𝐿, inhibiting correct mapping of long relaxation times [51]. Increasing the number of shots in multi-
shot acquisition could slightly mitigate this limitation by reducing RF power deposition during image readout,
providing modestly greater flexibility in prepulse duration [52]. In some cases, the normalized signal exceeded
1 at the end of the prepulse. This likely resulted from insufficient 𝑀𝑧 recovery between consecutive scans. The
current 𝑀𝑧 recovery time of 3000 ms was insufficient for full magnetization regrowth, assuming the 𝑇1 of the
medium was around 2400 ms [45]. Although elongating𝑀𝑧 recovery increases signal regrowth, it was impractical
for the sequence implemented on our scanner. In our case, unintended RF calibration blocks were introduced by
the system into the pulse sequence at longer𝑀𝑧 recovery durations, restricting the prepulse to adhere to the SAR
and RF power limit considerably to a maximum 𝑓𝑆𝐿 of 150 Hz for 𝑡𝑆𝐿 of 30 ms.

Fig. 4.9 assessed the reproducibility of phantom fabrication for vials with Gd in 𝑇2 maps, resembling a spin-
lock pulse sequence of 0 Hz. As gadolinium significantly reduced T2, slight concentration variations affected
the results, reducing phantom reproducibility. Fabrication errors outweighed the contribution of the intrinsic
susceptibility gradient effect on the relaxation time. Therefore, phantom fabrication with Gd was not reliably
reproducible. The use of an alternative susceptibility agent with less effect on the dipole-relaxivity might increase
the reproducibility of the phantom.

Regarding the number of time dynamics required to map signal decay, it should be noted that the number of
dynamics does not compromise 𝑅1𝜌 quantification. As shown in Fig. 4.8 and Tab. 4.5, the results obtained with
a varying number of time dynamics were comparable.

Once a suitable phantom configuration is established, the existing relationship of the spatial frequency to 𝑅1𝜌
should be expanded (Eq. 2.15). The current model assumes a single sinusoidal field variation, which rarely
occurs naturally [34]. More complex field variations should be captured for accurate in vivo translation.

Finally, a comparative study between 𝑇1𝜌 and 𝑇2 mapping in microstructure detection would assist in the under-
standing of diffusion through susceptibility gradients. Similar to relating the characteristic perturber frequency
to the 𝑓𝑆𝐿, the characteristic perturber time is matched to the interval between refocusing pulses. The lower RF
power deposition provides added flexibility in the application enabling microstructure detection embedded in tis-
sues with a longer transverse relaxation time. Evaluating the robustness of microstructure detection with both
measures would provide valuable insights into the direction that microstructure research should take.





6
Conclusion

Although micrometer-scale structures exist below the resolution of conventional MRI, sub-voxel level information
is encoded into the image; the MRI signal is affected by microstructures through the combined influence of
susceptibility differences and non-negligible spin diffusion. In this thesis, relaxation under a spin-lock pulse
sequence was evaluated for its ability to detect microstructures, characterized as𝑇1𝜌. A simulation model of a spin-
lock pulse sequence showed high sensitivity to microbead radius, concentration, and susceptibility shift through
𝑅1𝜌 dispersion magnitude and inflection point. However, phantom experiments with polystyrene microbeads
and gadolinium showed minimal changes in relaxation rate, indicating that signal dynamics were insufficiently
influenced by the microstructures, and a stronger susceptibility gradient was required. Additionally, the spin-lock
pulse duration was reduced by SAR and RF amplifier limitations, restricting its applications to short relaxation
times. By addressing current experimental limitations, spin-lock pulse sequences have the potential to become
reliable tools for detecting micrometer-scale structures in the body.
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A
Phantom fabrication protocol

An example procedure for fabricating a polyacrylamide gel phantom with polystyrene microbeads is detailed
below.

Preparing the medium
To ensure consistency in gel and magnetic properties, microbead samples within one experiment should be pro-
duced from the same medium:

1. Pipette the desired amount of polyacrylamide, water, ammonium persulfate and gadolinium into a vial (Tab.
A.1).

2. Degas the solution in an ultrasonic bath for at least one minute. Continue until no new air bubbles appear
at the surface.

3. Place the solution in an ice bath. Cold temperatures slow down the polymerization process, allowing more
time to pipette the solution into the final vials.

4. Pipette the catalyst TEMED into the solution to initialize the polymerization process.

Fabricating the microbead vials

1. Heat a glass beaker with water in the microwave until the temperature reaches 45 °C.

2. Prepare the final vials by labeling the vials and pipetting the required amount of prediluted microbead
solution into them.

3. Add the prediluted polyacrylamide solution, while ensuring that the pipet tip is below the surface level to
inhibit the introduction of unwanted air into the medium.

4. Place the finished vials in the beaker with warm water to speed up the polymerization process. If the gelling
speed is not critical, this is not necessary.

Polyacrylamide gels are stable at room temperature.

Table A.1: Required amounts of polyacrylamide, ammonium persulfate, TEMED, gadolinium Dotarem and Milli-Q for creating a 10 mL
batch of prediluted polyacrylamide gel solution.

Final concentration Dilution ratio Volume
[%] [-] [mL]

40% acrylamide 15.31 2.6 3.830
10 % ammonium persulfate 0.14 71.4 0.140
TEMED 0.14 714 0.014
Gd 1.00 100 0.100
Milli-Q - - 5.97
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B
Measuring magnetic susceptibility

The frequency shift caused by susceptibility agents was calculated from 𝐵0 maps. The validity of this method
was tested by performing the measurements for five vials with known ΔΩ and Δ𝜒 and comparing the outcomes.
The vials contained an increasing concentration of holmium (III) chloride hexahydrate. The ΔΩ and Δ𝜒 values
were compared to previously reported values, where [𝐻𝑜] is the concentration of holmium in mM [43]:

Δ𝜒 = −9.03 ⋅ 10−6 + 0.566 ⋅ 10−6 ⋅ [𝐻𝑜]. (B.1)

Figure B.1: A susceptibility agent was added to alter the frequency shift of the medium. To confirm the method of calculating the frequency
shift, a range of holmium concentrations was imaged and compared to the expected frequency shifts reported in literature.

Fig. B.1 visualizes the measured and expected relationship between the holmium concentration and ΔΩ. Espe-
cially at lower holmium concentrations, there was a close match between the measured and expected ΔΩ. The
underestimation at frequency shifts > 300 Hz may be attributed to the short 𝑑𝑇𝐸 of 1 ms affecting the quality of
the linear fit. In a 𝐵0 map, the frequency shift is fit to the phase data consisting of linear and periodic components.
At high ΔΩ, phase decoherence might have progressed beyond the point of being accurately identified, causing
an underestimation of the ΔΩ. The ΔΩ alongside the Δ𝜒 are summarized in Tab. B.1.
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Table B.1: Vials used to confirm the validity of the method of measuring the susceptibility difference. The expected Δ𝜒 and ΔΩ of the
susceptibility agent holmium (III) chloride hexahydrate served as reference values to which results from the susceptibility experiments were
compared [43].

Vial Medium Holmium Expected Δ𝜒 Measured Δ𝜒 Expected ΔΩ Measured ΔΩ
[mM] [ppm] [ppm] [Hz] [Hz]

1-ref 9% PA 0 0 0 0 0
2 9% PA 5 2.77 2.68 118 114
3 9% PA 10 5.57 4.84 237 206
4 9% PA 15 8.38 7.26 357 309
5 9% PA 20 11.15 6.39 475 272



C
DLVO theory

The addition of holmium (III) chloride hexahydrate to a polystyrene microbead solution in a PA gel caused mi-
crobead aggregations. This behavior can be explained by the theory of colloidal stability developed by Derjaguin,
Landau, Vervey and Overbeek (DLVO) [53]. The DLVO theory states that the primary reason for aggregation is
the balance between attractive van der Waals forces and repulsive electrostatic forces.

Van der Waals forces arise from interactions from the induced dipoles of molecules. Electrostatic repulsion
depends on electric double layer (EDL) interactions of charged substrates; a charged particle is surrounded by a
layer of counterions which exerts a repulsive force when identical particles approach. The length of the EDL,
termed the Debye length, determines the strength of the repulsive force. A longer EDL inhibits particles from
aggregating due to the high force required to overcome the repulsive force. The balance between these two forces
determines the DLVO profile, as illustrated in Fig. C.1 (left, green).

Figure C.1: The left figure displays the force profile of the interaction between two identical particles as described by the DLVO theory. The
total DLVO curve is compared to the van der Waals attraction force and the EDL repulsion force. The right graph displays the DLVO curve
for a range of salt concentrations, where high salt levels demonstrate dominant attractive van der Waals forces. Figure adapted from [53].

The strength of electrostatic repulsion depends on the salt concentration of the solution. An increase in salt
concentration progressively decreases the exerted repulsive forces, as displayed in Fig.C.1 (right). From a certain
salt concentration onward, the attractive forces dominate.

The reduction in electrostatic repulsion due to an increased salt concentration arises from the shortening of the
EDL. The EDL is highly dependent on the ionic strength of the medium, where an increase in ionic strength leads
to a reduction in Debye length. The ionic strength of the solution is given by:

33



34 C. DLVO theory

𝐼 = 1
2 ∑

𝑖
𝑧2𝑖 𝑐𝑖 , (C.1)

where 𝐼 is the ionic strength expressed in mol/L, 𝑧 the valence of an ion of type 𝑖 and 𝑐 the ion concentration in
mol/L. The contributions from all ion types 𝑖 in a solution are summed. As salts increase the ionic strength and
thereby decrease the Debye length, the DLVO profile becomes more attractive.

Whether the DLVO profile is attractive or repulsive determines the behavior of the particles in a solution (Fig. C.2).
In solutions that exhibit a repulsive profile, particles repel and a stable suspension forms. When the DLVO profile
is attractive, identical particles approach until contact, where they remain due to van der Waals attraction. Over
time, larger aggregations form that will eventually sediment. The latter is referred to as an unstable suspension.

Figure C.2: When the DLVO profile is strongly repulsive, identical particles will repel and form a stable suspension. When the profile is
attractive, the particles approach until contact. Bead aggregations will form that increase in size over time. Figure adapted from [53].

Holmium chloride hexahydrate
In the presence of holmium (III) chloride hexahydrate, 𝑁𝐻2-coated polystyrene microbeads formed aggrega-
tions when gelled in polyacrylamide. The observed behavior may be explained by applying the DLVO theorem.
Holmium is a trivalent ion, which induced a stark increase in ionic strength according to Eq. C.1, shifting the
DLVO profile from repulsive to attractive. The resultant suspension was unstable, forming progressively larger
bead aggregations over time and eventually leading to sedimentation.
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