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ARTICLE INFO ABSTRACT

Keywords: Methanol is considered an alternative fuel for the shipping decarbonisation, the properties of which, however,
Marine dual fuel engine impact the marine dual-fuel engines ignition and combustion characteristics, especially at low load conditions.
Methanol

This study aims at parametrically optimising a marine dual-fuel engine operating with methanol high energy
fraction at low loads to achieve knock-free combustion with the highest efficiency and lowest emissions.
Stratified injection Computational Fluid Dynamics (CFD) modelling in the CONVERGE software is employed for the investigated
Parametric optimisation large-bore marine four stroke engine considering four injection strategies including single, two stage and
CFD stratified injection. The Reynolds Averaged Navier Stokes (RANS) approach is employed to represent turbulence,
the Lagrangian-Eulerian approach is used for the spray formation, and the SAGE detailed chemistry solver is used
for modelling combustion. The CFD model was first developed and validated for the engine diesel mode. Sub-
sequently, the validated model was expanded to accommodate the direct injection (DI) of both methanol and
diesel fuels. Parametric runs are performed considering the compression ratio (CR) in the range 14-17 and the
temperature range at inlet valve closing (Tryc) 360-400 K. The results reveal that acceptable combustion effi-
ciency and high thermal efficiency are achieved with CR and Ty above 17 and 380 K respectively for single
injection, above 16 and 380 K respectively for double injection, as well as above 14 and 360 K respectively for
stratified injection. Stratified injection is proposed to improve engine performance and reduce NOx emissions.
This study provides insights to achieve stable and efficient operation of methanol-fuelled marine engines at low
loads, and as such it contributes to the maritime industry decarbonisation.

Low loads operation
Multi-injection

the diesel substitution energy ratio to 40-60 % [11,12]. Methanol direct
injection (DI), where both methanol and diesel are injected in-cylinder

1. Introduction

Methanol has attracted interest as a potential fuel to achieve ship-
ping decarbonisation, due to its production scalability, physicochemical
characteristics [1-3], and storage requirements [4]. However, methanol
adoption in marine engines faces challenges pertaining to its high
autoignition temperature compared to diesel [5], methanol lower en-
ergy density (associated with higher fuel consumption and considerable
shipboard storage space) [6], and safety due to its toxicity [7].

To overcome the autoignition limitations, methanol is mostly used in
dual-fuel engines with diesel being the pilot fuel. Compared to diesel,
methanol has significantly higher laminar flame velocity, which causes
combustion instabilities such as roar and knocking [8]. For methanol
port injection engines, the formed in-cylinder homogenous meth-
anol-air mixture results in intensified knocking [9,10], hence limiting
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at different timings, allows for higher diesel substitution ratios, as the
methanol diffusive combustion exhibits lower knocking tendency [13].
Due to lower in-cylinder temperature attributed to the methanol high
latent heat of vaporisation and increased methanol mass to achieve the
same energy input compared to diesel, NOx emissions are significantly
reduced for both methanol port and direct injection engines [14,15].
The cooling effect from methanol evaporation results to reduced
compression work and higher thermal efficiency [16].

Methanol latent heat of vaporisation and cetane number affects the
in-cylinder phenomena in contradicting ways. The former leads to
reduced in-cylinder temperature, as well as lower values of maximum
pressure and peak heat release [17], while the latter increases the
ignition delay and, therefore, contributes to knock [18]. These
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Fig. 1. Dual-fuel engine optimisation methodology flowchart.

conditions depend on the in-cylinder reactivity, and hence, high meth-
anol shares results in increased ringing intensity [8] at medium and high
loads, requiring appropriate mitigation measures [19]. On the contrary,
at low loads, where the in-cylinder reactivity is reduced, pilot diesel
injection may not be adequate to initiate combustion [20]. Therefore,
operation in low loads requires measures to overcome the limitation of
low combustion efficiency [21].

The intake temperature increase is proposed as a potential mitigation
measure to increase the in-cylinder reactivity and facilitate stable
methanol combustion. Zincir et al. [22] reported that the intake tem-
perature increase from 102 °C to 107 °C resulted in reducing the ignition
delay and combustion efficiency improvement. Furthermore, increasing
the compression ratio also improves the in-cylinder reactivity [20].
Valera et al. [23] argued that methanol injection in high temperature
improves its atomisation. Kumar et al. [24] reported that increased
intake temperature is essential for effective energy conversion. Both
increase in intake temperature and compression ratio result in NOx
emissions increase. The latter was also reported by Zhang et al. [25] for
an engine operating in low loads for an intelligent charge compression
ignition combustion method with several injection strategies leading to
low temperature combustion. Garcia et al. [26] reported that at low load
and speed operation, glow plugs and increased intake temperature are
not adequate to address inefficient combustion (with combustion effi-
ciency being less than 92 %).

The injection strategy and in-cylinder initial conditions impact the
methanol combustion and emissions [27]. Huang et al. [28] proposed a
split injection strategy in a methanol-diesel dual fuel engine for 50 %
diesel substitution, which effectively reduced CO, NOx and HC emis-
sions. Li et al. [29] recommended 5 % increase of the temperature at
inlet valve close to improve the combustion efficiency for an engine
operating with direct dual fuel injection, 70 % methanol share in low
loads.

A double injection strategy can potentially reduce the requirement
for increased intake temperature [30]. Other strategies may include the
use of cetane improvers that are expected to increase the methanol

ignitability, reducing the need for multi-injection strategies, and/or
increased compression ratio and intake temperatures [31]. For marine
engines, significant amount of ignition enhancer is required, whereas
potential safety issues must also be addressed. Since diesel and methanol
are immiscible liquids, it is possible to achieve methanol-diesel stratified
injection, which results in reduced NOx and PM emissions [32,33]. Jia
et al. [34] reported that diesel-methanol stratified injection resulted in
lower emissions compared to reactivity control compression ignition,
which was also supported by Huag at al. [35] for a light duty diesel
engine.

The preceding literature review identified the following research
gaps: (a) studies dealing with marine dual fuel direct injection engines
operating with high methanol fractions in low loads are limited; (b) the
methanol injection strategies impact on marine engines performance
and emissions is not quantified; (c) two-stage and three-stage injection
as well as stratified methanol-diesel injection strategies for marine en-
gines with high methanol fractions in low loads are not investigated.

This study aims at parametrically optimising a marine dual-fuel en-
gine settings operating with 90 % methanol energy fraction in low loads
considering different injection strategies, namely single, double, triple,
and stratified injection. For each injection strategy, the optimal values/
ranges of the compression ratio (CR), and temperature at the inlet valve
closing are determined to achieve combustion efficiency greater than 97
%. The trade-offs between indicated thermal efficiency and NOx emis-
sions are also identified. This study focuses on low-loads, as the air-fuel
mixture reactivity is reduced due to the charge low temperature and low
methanol cetane number.

The novelty of the study stems from: (a) quantification of the effects
of the intake temperature and compression ratio on the combustion ef-
ficiency in low loads operation (of methanol-diesel dual-fuel marine
engine); (b) comparative assessment of the single, double, and triple,
and stratified injection strategies and quantification on their effects on
combustion and emissions parameters; (c) identification of the trade-offs
between combustion and thermal efficiency and NOx emissions for the
considered injection strategies and several operating conditions.
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Fig. 2. Employed computational domain, initial conditions and models.

The study provides insights on identifying effective methanol injec-
tion strategies for marine dual fuel engines at low loads, and generates
information required for future optimisation studies.

2. Methodology

The methodology illustrated in the flowchart of Fig. 1 is employed to
perform the parametric optimisation of the investigated marine dual-
fuel engine. The inputs include the engine type, methanol energy frac-
tion, engine load and injection strategies. Based on the input and the
variables ranges, the initial population is generated. Subsequently, ac-
cording to the decision variable values and the provided input param-
eters, the CFD model determines the engine performance, emissions. The
CFD model consists of an engine cylinder and is developed in the
CONVERGE-CFD software for the diesel mode, as well as the dual-fuel
mode with methanol direct injection. The developed models are vali-
dated against available measured data for a marine diesel engine and a
light-duty dual-fuel engine operating with methanol. Subsequently, a
grid sensitivity study is performed to select the grid parameters
compromising between acceptable accuracy and required computa-
tional effort. For each injection strategy, parametric runs are performed
for the determined ranges of the compression ratio and temperature at
inlet valve closing. The simulation results are analysed to appraise the
engine performance and emissions parameters considering the com-
bustion efficiency, indicated thermal efficiency, and NOx emissions,
leading to the determination of optimal values/ranges for the engine
settings.

The optimisation objectives include the engine indicated thermal
efficiency (Eq. (1)), the NOx emissions and the unburnt methanol
emissions. The optimisation constraint is to achieve combustion effi-
ciency above 97 % [36], according to Eq. (2).
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where, Qi is the input fuel energy, p is the in-cylinder pressure, V is the
cylinder volume and HRR is the heat release rate.

The parametric optimisation is performed for each injection method.
Table 2 lists the considered optimisation variables, which are classified
in two groups (A and B). This study focuses on Group A and considers the

direct injection of both fuels. The pertinent literature review argues that
the boost pressure exhibits limited effects on the combustion efficiency
and hence this parameter is not used in the optimisation process. The
considered injection strategies and variables ranges are discussed in the
subsequent paragraphs. The investigation of optimisation variables from
Group B is left for future studies.

2.1. CFD model

Fig. 2 provides information on the computational domain, the initial
conditions and the employed models. Due to the cylinder symmetry, a
sector is selected as the domain of the investigated engine to reduce the
computational time. For the diesel mode, the initial values for the
temperature and pressure at the inlet valve closing were set to 360 K and
1.7 bar respectively. The injection pressure of the diesel fuel is 1200 bar.
For the DFDI mode, it was assumed that these initial parameters vary
within selected ranges. Both fuels are injected from the same injector at
different timings in order to facilitate split injection strategies. The
methanol injection starts at 50 °CA BTDC to enable adequate mixing
with the charge air, which benefits ignition and emissions [37]. The
methanol injection pressure is set 1,000 bar to facilitate improved
atomisation and hence, reduced NOx emissions [19].

The developed CFD models employ the mass conservation, diffusion
species, continuity, and generalised energy equations. The extended
Zeldovich model is employed to estimate the NOx emissions [38]. The
model does not consider prompt NOx creation that constitute a small
fraction of thermal NOx especially in dual-fuel combustion with high
methanol fraction [39]. The Reynolds Averaged Navier Stokes (RANS) k-
¢ [40], and KH-RT [41] models are used for the calculation of turbulence
and droplet breakup, respectively. The detailed Andrae and Head re-
action mechanism is employed, which with considers 672 reactions and
143 species [42]. The developed models particulars are listed in
Table A1 (Appendix).

This study considers the following assumptions: (1) the injection
pressure, timings and nozzle geometrical characteristics remain con-
stant for the examined cases; (2) the working medium is considered ideal
gas; (3) trapezoidal injection pulses are considered for the direct injec-
tion of the diesel and methanol fuels [43]; (4) the power output per
cylinder is assumed to be the same for all the engine cylinders.

The SAGE combustion model with the default values for its constants
was employed for both the diesel and dual-fuel modes. A two-dimension
adaptive zoning that conserves the NOx emissions during species
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Table 1

Marine engine characteristics.
Parameter Value
Type Wartsila 9L46C
Brake power at MCR point (kW) 10,500
Speed at MCR point (r/min) 500
Cylinders Number (-) 9
Compression ratio 14.0:1
Bore/Stroke (mm) 460/580
Diesel start of injection (°CA BTDC) 6
Diesel injection pressure (bar) 1,200
Methanol energy fraction (%) 90
Nozzle angle (deg) 67.5
Spray cone angle (deg) 17.5
Nozzle diameter (mm) 0.78
Nozzle holes number (-) 6

IVC - EVO
135°CA BTDC-135°CA ATDC

Simulated cycle period

Table 2
Optimisation variables.

Variable

Temperature at IVC*
Pressure at IVC
Compression Ratio
Injection Method
Injection Strategy

Group A

Exhaust Gas Recirculation

Start of Injection

Injection Duration

Injection Pressure

Spray characteristics (cone angle, size etc.)

Group B

*IVC: inlet valve closing.

Table 3
Computational mesh characteristics.

Parameter Grid 1 Grid 2 Grid 3 Grid 4

Base element size (mm) 8 8 8 8

Final element size (mm) 8 2 1 0.5
Solution duration (h) 4 11 20 70
RMSE on pey* (MPa) 0.288 0.244 0.215 0.214
Error on ppax (%)* 6.2 4.4 1.3 3.4
Adaptive mesh refinement On: between 12°CA BTDC and 135°CA ATDC
Number of Cores Used 40: Intel Cores IPM

*For the diesel operation mode; RMSE: root mean square error; pcyi: in-cylinder
pressure for the closed cycle; pmax: maximum in-cylinder pressure.

remapping was used. A preconditioned, constant volume iterative solver
was employed, with the relative tolerance equal to 0.0001, and the
iteration error for each species equal to 107'# [44]. The KH-RT spray
break up model (considering the default values for its constants) was
employed for the diesel and methanol direct injection. The RT model
breakup time, model size and length constants were set to 1.0, 0.1, and
50, respectively. The KH model breakup time constant and model size
constant was considered 7 and 0.61 respectively, shed factor is 1. These
values were selected according to the previous studies of the authors
based on spray validation using both diesel [45] and methanol [46]
data.

2.2. Investigated engine

This study investigates a nine-cylinder marine medium-speed en-
gine, with a maximum power output of 10.5 MW at 500 rev/m. The
engine is used for propulsion (driving the propeller) in several ship
types. The engine particulars are presented in Table 1, whereas the

Applied Thermal Engineering 281 (2025) 128652

experimental procedure is discussed in authors previous studies [37].
The CFD model for the diesel mode considers the properties of marine
gas oil (MGO). The diesel is directly injected in-cylinder close to TDC at
1200 bar according to the manufacturer guidelines.

2.3. Grid sensitivity study & experimental validation

A grid sensitivity study is conducted to determine the trade-off be-
tween error and computational time for both the diesel and dual fuel
modes. The considered grids include a base element size of 8 mm, which
is refined using adaptive mesh refinement (AMR) reaching 2 mm, 1 mm
and 0.5 mm, for Grids 2, 3 and 4, respectively. Grid 1 is the base grid
without AMR with 8 mm cell size. The characteristics of the considered
computational meshes are listed in Table 3. The in-cylinder pressure,
mean temperature, and heat release rate (for each grid) along with the
available measured results (for the diesel mode) are presented in Fig. 3a
and b for the diesel mode and the dual fuel mode with 90 % MEF at 30 %
load. The relative error is calculated on the maximum in-cylinder
pressure whereas the root mean square error (RMSE) is evaluated for
all the pressure diagram against the experimental values. The results
demonstrate that convergence is achieved, as Grids 3 and 4 exhibit only
slight differences in the maximum in-cylinder pressure and heat release
rate. Grid 4 exhibits reduced maximum in-cylinder temperature
compared to Grid 3. For the dual fuel operation, convergence is achieved
for Grid 3. Based on the presented results, it is deduced that Grid 3 (with
elements size of 1 mm) is considered the best compromise between
computational time and accuracy.

Fig. 4a presents the measured and simulated in-cylinder pressure and
HRR for the considered marine engine operating at 30 % load. The error
in the maximum in-cylinder pressure between the simulation and
measurements is around 1 %, whereas the simulation results exhibit
satisfactory agreement with the respective measurements. The error in
the peak heat release rate is 4 %, whereas the simulated peak HRR is 1 %
higher than the measured one. The differences between measured and
simulated results are attributed to the cylinders degradation, as well as
differences in the initial and boundary conditions [47]. However, it can
be deduced that the CFD model for the diesel mode provides results with
adequate accuracy.

As measurements for the considered marine engine operating with
methanol operation were not available, measured data reported in the
literature for a light-duty high-speed diesel engine operating in the dual
fuel mode with 30 % MEF was employed to validate the CFD model for
the methanol operation. Methanol is injected in the port, whereas the
engine load is 75 %. Details of the experimental procedure and engine
test bench is provided in Zang et al [48]. The in-cylinder pressure and
heat release rate variations are presented in Fig. 4b for the dual-fuel
operation. The error on maximum in-cylinder pressure (pmax) between
experimental and simulated data is 0.5 % with a slight retard in the
crank angle (CA) at pmax from 7.5 °CA ATDC to 11 °CA ATDC. The
combustion efficiency for the dual fuel operation of the light-duty en-
gine is 98 % in the experimental measurements whereas the simulated
operation yielded 96.9 %. According to literature [49-52] the CFD
models developed, and experimental data acquired follow similar trends
with the ones provided in this study. The CFD models tend to over-
estimate the premixed part of the heat release rate by 2-10 % compared
to the experimental data, whereas peak pressure is shifted between 2
and 5 °CA. Such literature data come in agreement with the ones
retrieved from the current analysis. Based on these findings, the devel-
oped CFD models (for both the diesel and dual fuel models) are
considered validated for the scope of this study.

In addition, the developed model is validated against experimental
measurements obtained from the shop trials for the diesel mode and the
dual-fuel mode with natural gas, which are presented in Tables A2 and
A3 (Appendix A). Further details of the developed models are provided
in authors previous studies [53,54].
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Fig. 3. In-cylinder pressure, heat release rate and mean in-cylinder temperature variation for the selected grids; (a) diesel mode, and (b) dual-fuel mode.

2.4. Injection strategies

This study considers the two-stage, thee-stage, and stratified injec-
tion strategies to mitigate the single injection strategy limitations at low
loads. The single injection strategy results in methanol injection during
the compression stroke (SOI: 50°CA BTDC), to achieve homogeneous
methanol-air mixture. The pilot diesel is injected close to TDC to initiate
combustion (Fig. 5a). Single methanol injection is effective at medium
and high loads, as reported in [37]. However, in low-load conditions
with reduced intake temperatures, the 10 % diesel energy fraction is not
sufficient to ignite the air-methanol mixture, as considerable heat is
absorbed due to the methanol evaporation, leading to reduction of the
in-cylinder temperature and reactivity.

The two-stage methanol injection strategy, which is schematically
illustrated in Fig. 5b, entails: (a) injecting half of the total methanol mass
during the compression stroke, (b) the same pilot diesel injection timing
with that of the single-stage strategy is employed to initiate combustion
around 3 °CA BTDC, and (c) the remaining two-thirds of the methanol
fuel is injected 0-8 °CA ATDC. Injecting half methanol mass early during

the stroke, ensures better mixing with air benefitting the combustion
process [54] whereas the rest of methanol is injected close to TDC just
after diesel with the aim to achieve mixing control combustion to
moderate peak heat release rate. The suggested range was the outcome
of initial simulations that explored a feasible operating envelope. The
limitations of this strategy are elaborated in the results section.

The three-stage methanol injection strategy, which reduces NOx
emissions [55], is shown in Fig. 5c. The methanol injection after TDC is
split in two different injections between 0 and 4 °CA ATDC and 5-9 °CA
ATDC. The combustion starts close to TDC as the lower methanol mass
(at each injection stage) reduces the quenching effect. The diffusive
flame front results in the combustion of the methanol injected in the
third stage between 5 and 9 °CA ATDC. The adopted injection ratio
follows the principle of providing a strong initial premixed foundation
while staging the remaining methanol to control the combustion
phasing. The first 50 % injection during the compression stroke estab-
lishes a reactive charge that the diesel pilot can ignite reliably, especially
at low load operation where reactivity is reduced in-cylinder. The sub-
sequent two 25 % injections, delivered shortly after TDC, extend the
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combustion duration and moderate the heat release rate [56].

The stratified injection strategy is achieved by a single injector as
shown in Fig. 6. The stratified injection is modelled by configuring
different injection rate-shape profiles for both fuels. The injected energy
remains constant, whereas the diesel and methanol fuels are injected in
three stages with energy shares of 50 %, 25 % and 25 % for diesel and 20
%, 40 % and 40 % for methanol. The relatively small initial methanol
fraction (20 % of the total methanol amount) prevents excessive cooling
of the in-cylinder charge and avoids quenching of the diesel pilot flame,
while also reducing the risk of spray wall impingement near TDC. The

Applied Thermal Engineering 281 (2025) 128652

subsequent larger fractions (40 % and 40 %) are injected after the diesel
fuel injections and stable flame fronts formations, ensuring that meth-
anol combustion proceeds in a controlled diffusive manner [57]. Both
fuels injection pressure was set to1200 bar for the single, two- and three-
stage injection strategies, and 600 bar for the stratified injection strat-
egy. All the injection parameters considered in the study are listed in
Table A4 (Appendix).

2.5. Cases description

The developed dual-fuel model considers the methanol direct injec-
tion to substitute 90 % of the diesel energy (i.e., 90 % MEF) and 10 %
pilot diesel energy fraction (to initiate combustion). Both fuels are
directly injected in-cylinder, as diffusive combustion is preferred to
reactivity-controlled compression ignition (RCCI) for high MEF values
[58,59]. The injection parameters are listed in Table A4.

The start of combustion is associated with the in-cylinder reactivity,
which depends on temperature and pressure. The examined parameters
are the temperature at inlet valve closing (Tryc) and the compression
ratio (CR), with their considered ranges being 14-17 for CR (14 is the
diesel engine CR), and 360-400 K for Tryc.

The considered cases are listed in Table 4. The higher Tyyc can be is
achieved by controlling the charge air cooler cooling water flow. The
initial conditions with Ty of 360 K and CR of 14 refer to the marine
diesel engine operation (baseline).
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Table 4
Conditions and settings for the investigated cases for 30% engine load.
Case Ty CR  Injection Strategies* Rationale
x) e oc  ac or
1S 25 3S ST
BL 360 14  x Baseline diesel operation
1 360 14 X X X X Higher Ty improves in-cylinder
2 380 14 X X X X reactivity for constant CR.
3 400 14 X X X X
4 360 15 X X X X Higher Ty and CR further
5 380 15 X X X X improves reactivity, as methanol
6 400 15 X X X X quenching characteristics inhibits
7 360 16 x X X combustion at low loads.
8 380 16 X X X
9 400 16 X X X X
10 360 17 X X X
11 380 17 X X X
12 400 17 X X X X

1S: one-stage (single) injection, 2S: two-stage injection, 3S: three-stage injection,
ST: stratified injection.
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Fig. 7. Derived combustion efficiency: (a) for all the investigated cases; (b) for
the cases that satisfy the combustion efficiency constraint.

3. Results

This section presents and discusses the results from the considered
cases to determine the effects of the injection strategies and initial
conditions on the engine performance, and emissions parameters. Three-
dimensional distributions of temperature, NOx, and fuel mass fractions
are also presented and commented.
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3.1. Parametric optimisation

The parametric optimisation included 42 cases (and respective
simulation runs). The constraint set for the combustion efficiency was
97 %, however, due to the uncertainties in CFD simulation results, cases
with combustion efficiency above 95.5 % were analysed. Fig. 7(a) pre-
sents the derived combustion efficiency for the considered injection
strategies. Fig. 7(b) presents the combustion efficiency for the 22 cases
satisfying the combustion efficiency constraint.

For the single injection strategy, three cases satisfied the set
constraint, which exhibit high values for the CR and Tyyc. For the two-
stage injection eight cases were identified with CR and Ty in the
ranges 14-17 and 360-400 K, respectively. For three-stage injection,
seven cases were identified with CR and Tyyc in the ranges 14-17 and
380-400 K. For stratified injection, all the examined cases satisfied the
set combustion efficiency constraint.

The single injection strategy requires high values of CR and Ty and
to achieve increased in-cylinder reactivity facilitating improved reaction
kinetics in-cylinder, leading to close to complete combustion conditions
(e > 99 %). At lower CRs and Tiyc, while combustion starts, the energy
provided from pilot diesel combustion fails to result in unacceptable
methanol combustion efficiency due to the high vaporisation heat and
mass of the injected methanol, hence quenching the diesel flame front.

For the two-stage injection strategy, as half of methanol mass is
injected prior to diesel, the flame front is sustained further. Therefore,
the minimum combustion efficiency constraint was satisfied for cases
with lower values of CR and Tyyc, However, the methanol second in-
jection that takes place after TDC, results in reduced combustion effi-
ciency for low CR and Tiyc, Similar behaviour is exhibited with the
three-stage injection. As only one third from the total methanol amount
is injected during the compression stroke, the pilot diesel combustion is
adequate to initiate the methanol combustion. However, high Ty is
required so that the 2nd and 3rd methanol injected batches combust
effectively. Stratified injection leads to close to complete combustion at
reduced CR and Tyyc, as the established in-cylinder conditions facilitate
the effective combustion of the consecutively injected batches of diesel
and methanol.

Fig. 8 illustrates the distributions of the thermal efficiency, NOx
emissions and unburned methanol (UM) for the cases satisfying the
combustion efficiency constraint. For the indicated thermal efficiency,
most cases concentrate close to 49 % (1-ng; = 0.51) indicating that
there are a few cases with very low or high thermal efficiency values.
The NOx distribution indicates higher variability among the NOx
emissions implying greater sensitivity towards injection strategy and
initial conditions. While the median is around 8 g/kWh, the derived NOx
range is between 4 to 16 g/kWh. The narrow range of UM distribution
indicates that all qualified cases exhibit low unburned methanol emis-
sions. The upper limit of the UM emissions that correspond to the
combustion efficiency constraint of 99.7 % is 4.5 g/kWh.

Fig. 9(a) presents the indicated thermal efficiency and NOx emissions
objectives. Fig. 9(b) illustrates the objectives of the indicated thermal
efficiency and unburned methanol emissions. Fig. 9(c) demonstrates the
objectives of NOx and indicated thermal efficiency are presented along
with contours for the UM emissions.

All the presented cases exhibit higher efficiency and lower NOx
emissions from the baseline diesel operation. The results showcase the
four injection strategies form three clusters. The single injection strategy
cluster exhibits NOx emissions between 7.2 and 9.3 g/kWh whereas the
indicated thermal efficiency is between 52.5 and 53.5 % (1-nm; =
0.475-0.465). The stratified injection (top-left) exhibits reduced NOx
emissions and thermal efficiency ranging in 4.6-7.5 g/kWh and 47-48.3
%, respectively. The two and three stage injection strategies form a
common cluster; the NOx emissions and indicated thermal efficiency
span between 9.6 to 14.7 g/kWh and 47.5 to 50 %, respectively.

For the single injection strategy, the high CR values (16 and 17)
result in greater indicated thermal efficiency due to increased work
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produced during the expansion phase of the closed cycle. Furthermore,
increased Ty (380 and 400 K) results in shorter combustion duration
yielding thermal efficiency improvement. The single injection strategies
cases exhibit smaller thermal efficiency variation, hence, Case 12 (CR =

17 and Ty = 400 K) that has the lowest NOx emissions was selected as

optimal.

The stratified injection cases exhibit low NOx emissions at low CR
and Ty due to the lower in-cylinder temperature conditions. Both fuels
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Fig. 10. In-cylinder pressure and heat release rate for the selected optimal cases of the different injection strategies.

combustion occurs diffusively in a slower rate compares to the other
injection strategy (lower HRR values), resulting in lower maximum in-
cylinder pressure and thermal efficiency. Since thermal efficiency does
not significantly increase with the increase of CR, Case 1 (CR = 14 and
Tive = 360 K) exhibiting the lowest NOx emissions was selected as
optimal.

For the two- and three-stage injection strategies, the indicated
thermal efficiency increases with CR reaching close to 50 %, whereas
higher Tpy¢ results in higher NOx emissions. Hence, for the two-stage
injection, Case 10 (CR = 17 and Tiyc = 360 K) exhibiting the lowest
NOx emissions was selected as optimal. For the three-stage injection,
Case 11 (CR = 17 and Tiy¢ = 380 K) was selected as optimal, as it
exhibited the highest thermal efficiency and the lowest NOx emissions.

The selected optimal cases for each injection strategy exhibit UM
emissions well below the 4 g/kWh threshold; 0.59 g/kWh for the single
injection strategy, 0.65 g/kWh for three-stage injection strategy, almost
0 g/kWh for two-stage and stratified injection strategies indicating close
to complete combustion conditions (. > 99.5 %).

3.2. Engine performance and emissions parameters

Fig. 10 shows the crank angle variations of the in-cylinder pressure
and heat release rate for the selected optimal cases for each injection
strategy, whilst providing information for the start of injection for
methanol and diesel fuels and the combustion duration as represented
by CA90 (which denotes the CA where 90 % of the combustion is

completed). Fig. 11 shows the crank angle variation of the in-cylinder
maximum temperature, NOx mass and methanol mass for the selected
optimal case for each injection strategy.

For the single injection strategy, the maximum in-cylinder pressure
and peak heat release rate are 9.9 MPa and 21.1 kJ/°CA, respectively.
The first peak in HRR is attributed to the pilot diesel fuel combustion. As
methanol has significantly higher laminar flame speed than diesel fuel,
high Tryc and CR, the combustion occurs rapidly, resulting in CA90 close
to 10 °CA ATDC. The rapid combustion of methanol results in fast in-
crease of the maximum in-cylinder temperature (due to high CR and
Trvc). However, the in-cylinder mixture residence above 1800 K (NOx
cut-off temperature) is shorter (compared to the two- and three-stage
injection), resulting in lower NOx emissions.

For the two-stage injection strategy, the pilot diesel started the
combustion of the first injected methanol part (injected at 50 °CA BTDC)
resulting in the first peak at the HRR at 2 °CA ATDC, which is followed
by a period of gradual HRR increase, prior to the second methanol in-
jection. At 0°CA (TDC), the second part of methanol injection starts, and
its diffusive combustion occurs, leading to the maximum HRR value
(11.4kJ/°CA at 8 °CA ATDC), yielding maximum in-cylinder pressure of
9.52 MPa. The combustion duration is extended compared to the single
injection strategy, with CA90 being exhibited at 12.7 °CA ATDC,
resulting in prolonged high temperature period, and increased NOx
emissions to 11 g/kWh compared to 5.3 g/kWh for the single stage in-
jection. According to Fig. 11b, despite the longer duration of the in-
cylinder mixture at elevated temperature, for stratified injection, the
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Fig. 11. (a) Crank angle variations of the in-cylinder maximum temperature NOx mass, and methanol mass for the selected optimal cases for each injection strategy

and (b) in-cylinder mass fraction at temperature higher than 2500 K.

mass fraction is lower than in other injection strategies yielding lower
NOx emissions. The requirement for elevated CR negatively affects NOx
creation.

For the three-stage injection strategy, maximum in-cylinder pressure
is 9.16 MPa and peak HRR 11.3 kJ/°CA. This is due to the prolonged
injection of methanol fuel. This case demonstrates longer ignition delay
compared to the single and two-stage injection, while CA90 occurs at
13.8 °CA ATDC. For all the split injection strategies, the heat release rate
indicates limited premixed combustion periods, due to the direct in-
jection of both diesel and methanol. The extended combustion duration
(compared to the other strategies). The longer combustion duration,
results in considerable period with high in-cylinder temperature values,
leading to high NOx emissions (11.8 g/kWh) compared to two and single

10

injection strategies (11 and 5.3 g/kWh, respectively).

For the stratified injection strategy, a 2 °CA ignition delay is
observed. The maximum pressure is considerably lower than the other
injection strategies, hence the expected thermal efficiency is lower. The
first HRR peak appears at 2°CA BTDC, and is attributed to the diesel
combustion, whereas four more peaks are observed at 5°CA, 10°CA,
15°CA and 20°CA ATDC. These are attributed to the 1st batch of diesel,
2nd batch of methanol, 3rd batch of diesel and final batch of methanol.
After the diesel injection end, the recuring methanol injection effectively
limits the significant in-cylinder temperature increase. The peak HRR
and in-cylinder pressure reached 6.1kJ/°CA and 7.24 MPa respectively,
whereas CA90 occurs at 23 °CA ATDC. The prolonged combustion and
the shift of the peak heat release rate from the typical CA values (10 °CA
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according to Ref. [60]) lead to lower in-cylinder maximum pressure and
thermal efficiency. The stratified injection facilitated the relatively slow
(but effective) methanol combustion (following each diesel batch in-
jection and combustion) leading to reduced maximum in-cylinder tem-
perature (to 2700 K), and hence significantly decreasing the working
medium residency time at high temperatures, which in turn results in
reduced NOx emissions.

Fig. 11(b) demonstrates that the in-cylinder mixture (reaction
products) mass fraction that is exposed to temperatures above 2500 K is
lower for the stratified injection compared to the other injection stra-
tegies. This justifies the reduced NOx emissions for the stratified injec-
tion case. Furthermore, the injected diesel forms ignition kernels of high
reactivity, whereas the injected methanol results in the reaction zones
cooling and flame quenching. On the contrary, for the other injection
strategies, the larger homogeneous regions exposed to at very high
temperatures leads to higher NOx emissions.

3.3. In-cylinder parameters spatial analysis

This section presents the derived three-dimensional variation for the
in-cylinder temperature, NOx emissions, diesel and methanol mass
fractions for the selected optimal cases of each injection strategy. The
comparison between injection strategies is facilitated benchmarking
same combustion phases such as start of combustion, methanol in-
jections, peak HRR and CA90. Fig. 12 shows the parameters contours for
the single stage injection strategy. The combustion starts at 5 °CA BTDC,
where methanol is not homogenously mixed with air as in-cylinder local
rich regions are formed (in the vicinity of the piston bowl and cylinder
head walls). This is a potential area for prompt NOx formation, however
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since temperature is above 2000 K in this region, NOx concentration is
mostly affected by thermal NOx creation. At 2 °CA ATDC, the temper-
ature exceeds the NOx cutoff temperature (1800 K) in areas close to rich
methanol concentration. Therefore, the thermal NOx onset areas (where
the air nitrogen oxidates to NoO and NO) appear in Fig. 12. At 4 °CA
ATDC, 90 % of the combustion is completed with a small amount of
unburnt methanol remaining in the vicinity of the piston bowl.

Fig. 13 shows the parameters contours for the two-stage injection
strategy at different crank angles. At 4 °CA BTDC, the diesel combustion
starts, as indicated by the temperature increase in the jet interface. As
only half of the total methanol amount is injected, the methanol mass
fraction is lower compared to the single injection strategy. During the
second methanol injection starting at 1 °CA ATDC, a clear diffusive
flame front is apparent from the temperature contours. At 6 °CA ATDC,
the peak heat release rate occurs as methanol injection ends, and NOx
rich regions begin to form in areas close to the piston bowl, where
combustion takes place. At 10 °CA ATDC, the combustion propagates
and CA90 is reached whereas the NOx is still generated, till the in-
cylinder temperature reduces below 1800 K (this occurs after 20 °CA
ATDCQ).

The parameters contours for the three-stage injection parameters are
presented in Fig. 14. For 0 °CA TDC, only the first injection of methanol
has taken place and locally rich in methanol zones are formed in-
cylinder. The greatest difference compared to the two-stage injection
strategy is that the third methanol injection quenches the combustion
flame at 5 °CA ATDC reducing the heat release rate and hence the
combustion efficiency. However, the quenching effect leads to a slight
reduction of the NOx emissions as shown for the results at 10 °CA ATDC.

Fig. 15 illustrates the parameters distributions for the stratified
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Shop tests validation of maximum in-cylinder pressure, power output and NO emissions for the considered marine engine.

Load (%) Maximum pressure Indicated power output NO emissions
Measured (bar) CFD (bar) Error (%) Measured (kW) CFD (kW) Error (%) Measured (ppm) CFD (ppm) Error (%)
50 135 135.4 0.3 4725 4900 4.6 9679 10,500 8.9
70 156 160 2.6 7088 6850 3.4 9296 10,100 8.0
100 205 204 0.5 9450 9440 1.0 9179 9390 3.3
Table A3

Shop test trials validation of the marine engine operating with natural gas.

Load Indicated Power Output (kW) Maximum cylinder Pressure (bar) NOx emissions (g/kWh)
Measured Simulation Error (%) Measured Simulation Error (%) Measured Simulation Error (%)
25 % 1950 1900 3.6 38 38 0 9.15 9.9 8.6
50 % 3900 3950 2.3 64 66 4.1 9.7 10.1 4
75 % 5850 5700 3.6 92 90 9.7 10.4 7.8
100 % 7800 7890 2.2 126 125 9.43 10 6.7
Table A4 Table A5
Injection parameters considered in the study. Indicated thermal efficiency influencing parameters considered for the sensi-
Injection Mass of Injection Injection Injection tivity analysis.
Method Diesel/ Duration of Duration of Pressure of Sub-Model Parameter Examined extreme
Methanol Diesel (°CA) Methanol Diesel/ values
(mg) (°CA) Methanol (bar)
Geometry Compression Ratio 12/19
SI 41/778 3 19 1200
TWI 41/ 259, 519 8,8
THS 41/156, 311, 8,55 Boundary Piston Temperature (K) 300/600
311 Conditions Cylinder Wall Temperature (K) 300/600
Str 20.5, 10.3, 1.5, 0.45, 6,7.5,7.5 600
10.3/158, 045 Initial Conditions ~ Temperature IVC (K) 200/400
310, 310 Pressure IVC (bar) 1/ 4
Turbulent Kinetic Energy (m?/s? 10/100
Turbulent Dissipation (m?/s%) 10,000/30,000
k)
x Injection settings Start of Injection Main Fuel (°CA 100/0
8 T T T T T
— —Bascline = BTDC)
3::;‘:;], Start of Injection Pilot Fuel (°CA 20/0
1d_low S BTDC)
= . high F& Injection Duration Main Fuel (°CA) ~ 50/70
a6 *® Injection Pressure Main Fuel (bar) 300/1500
\2, . Spray Temperature (K) 100/400
;‘5’ % T Spray Cone Angle (°) 5/20
L = ‘ A
% 2 % Spray Tilt Angle (°) 40/70
=44 —~
& 5 =
o) S Q . ce L
= Fx o o> enhancement from the diesel injections. Furthermore, alternating in-
> =
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Fig. Al. In-cylinder pressure and heat release rate for the optimal stratified
injection case under variable tke and td.

injection strategy. Overall, the NOx concentration is lower compared to
other cases, due to the lower in-cylinder temperature. The latter is
attributed to the quenching effect of methanol fuel. Every batch of
injected diesel (with injection durations close to 1°CA) initiates a local
diffusive flame front as it is observed at 1 °CA BTDC, 5 °CA ATDC and
9 °CA ATDC. Methanol that is injected directly after the diesel batch,
quenches the flame front, as significant amount of energy is required to
evaporate and as a result, reduces the maximum temperature. However,
combustion efficiency is not penalised due to continuous reactivity
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points in the low load region, the simulation of the stratified injection
strategy optimal case (CR = 14 and Tyy¢ = 360 K) was performed in 15 %
load. Fig. 16 presents the derived results. The heat release rate is char-
acterised by four peaks associated with the combustion of the consec-
utively injected methanol batches. Almost complete methanol
combustion was exhibited. The derived results align with the results for
30 % load, verifying the stratified injection strategy leads to acceptable
engine operation with high methanol energy fraction.

3.4. Discussion and study implications

This study identified optimal conditions for methanol-fuelled marine
dual-fuel engines operating with 90 % methanol energy fraction,
including CR and Ty to improve efficiency and reduce NOx emissions,
whilst eliminating the unburnt methanol. The stratified injection
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Fig. A2. Influence of the examined parameters on indicated thermal efficiency of the dual-fuel marine engine operating with 90 % MEF.

strategy emerged as exhibited considerable efficiency and low NOx
emissions, without needing to increase the CR and Tryc. The dual-fuel
engine with optimised injection strategy reduces reliance on after-
treatment systems for NOx emissions reduction, thereby facilitating
simpler engine design and required control systems.

The parametric optimisation of methanol combustion in marine
dual-fuel engines at low loads for the marine industry’s transition to
lower emissions and improved fuel efficiency. This study findings on the
requited engine setting and in-cylinder phenomena addresses specific
knowledge gaps for these engines operation at low loads yielding
valuable insights to support the maritime industry’s decarbonisation
pathway.

While the study focused on a marine four-stroke large-bore engine,
the findings can be transferred to other engine sizes and types, such as
those used in rail or stationary power applications. The advantages from
the use of stratified and multi-stage injection strategies can inform
design improvements for engines of various scales, as they face similar
challenges at low-load operation and the need for reduced emissions.
Future research can evaluate specific modifications to adapt these
strategies for smaller or larger engines with different combustion
chamber geometries and operating envelopes.

The consideration of split injection strategies is associated with
increased complexity of the injection system and its control. However,
injectors durability may be compromised due to frequent high-pressure
switching, which may also cause faster nozzle wear and erosion as well
as carbon deposits. Additionally, for multiple injections can results in
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fuel spray interactions and wall impingement leading to incomplete
combustion.

This study primarily investigates low-load conditions and does not
cover the engine entire operational envelope. Furthermore, the engine
operational challenges low loads must first be addressed, so that the
engine can operate in higher loads. Additionally, optimisation was
limited to specific CR and Tyy¢ parameters, and further refinement could
explore more extensive parameter variations, including injection timing
and EGR rates. Future studies could also address transient load condi-
tions to understand how rapid shifts in power demand impact methanol
combustion stability. Lastly, experimental validation in real-world ma-
rine engines would enhance confidence in the model’s applicability and
provide insights into other factors, such as fuel quality variability and
ambient temperature effects on engine performance and emissions.

4. Conclusions

This study parametrically optimised the settings of a marine dual-
fuel engine operating with 90 % methanol energy fraction. The inves-
tigation focused on low loads and considered several injection strategies
(split and stratified). CFD models were developed for the considered
marine engine. These CFD models were validated against experimental
data for the considered engine operating in the diesel mode, whereas
validation against reported experimental results for a light-duty meth-
anol fuelled engine was also performed. The engine operation in 30 %
load was investigated considering the same injector for both methanol
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and diesel fuels in different timings. Optimal values for compression
ratio (CR) and temperature at inlet valve closing (TIVC) were selected
for each injection strategy, the performance and emissions parameters of
which were analysed. The study concluded in the following findings:

e High ranges of compression ratio and temperature at inlet valve
closing are required, so that the unburnt methanol remains below the
acceptable of 5 % for the single, two and three stage injection stra-
tegies. The engine operation in these conditions is challenging for
marine dual fuel engines, which must facilitate operation in both the
diesel and methanol modes.

e However, if these challenges are addressed at the design phase, the

optimal selection for the single injection strategy (CR = 17 and Ty¢

= 380 K) yields higher indicated thermal efficiency (53 %) compared
to the optimal selections for the two and three stage injection stra-
tegies (50.4 % and 50.2 %, respectively). The estimated unburnt
methanol (UM) emissions were 0.56 g/kWh (compared to 0.1, and

0.65 g/kWh respectively for the two- and three-stage injection

strategies).

The optimal selection for the two-stage injection strategy (CR = 17

and Tyyc = 360 K) yields the greater unburned methanol emissions

3.2 g/kWh.

e The optimal selection for the three-stage injection strategy exhibits

high NOx emissions (12 g/kWh) significantly due to combustion

duration increase.

The stratified injection can be a solution to mitigate these challenges

allowing for the engine operation at low ranges of compression ratio

and temperature at inlet valve closing, exhibiting almost complete

methanol combustion, associated with low NOx emissions (4.5 g/

kWh) at the expense of lower indicated thermal efficiency compared

with the other strategies.

e The engine operation at other loads exhibited similar behaviour with

that identified for the 30 % load, deducing the validity of this study

finding for the engine low load range.

The stratified injection strategy is recommended for new designs of

methanol fuelled marine dual fuel engines (operating with 90 %

MEF).

This study provides valuable insights on the operating conditions of
the methanol marine engine in low loads, hence supporting to the engine
design decision-making and follow up optimisation studies. Future
studies could deal with the methanol fuelled marine engine settings
optimisation for each injection strategy and full operating envelope, as
well as the design and control of the engine injection and turbocharging
systems. In future work a 0D combustion model will be developed to
investigate transient conditions.
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Appendix A

Table Al introduces the CFD models characteristics including the
reaction mechanism, combustion model, NOx mechanism, turbulence,
droplet breakup and collision models, as well as wall heat transfer and
spray sub-models.

Table A2 lists the validation of the CFD model results (maximum in-
cylinder pressure, power output and NO emissions) against shop test
measurements for the considered marine engine operation in the diesel
mode. Table A3 lists the CFD model validation results for the engine
operating in the gas mode with natural gas (and pilot diesel). Table A4
lists the injection parameters for the considered study including mass of
methanol and diesel, injection duration and pressure of methanol and
diesel.

Fig. Al presents the results of the sensitivity study on turbulence
energy and dissipation constants for the case of the stratified injection
and optimal settings (CR = 14, TIVC = 360 K). Two extreme values are
examined for turbulent kinetic energy (tke) and turbulent dissipation
(td) ranging between -50 % and 200 % of their baseline values.
Furthermore, the spray brake up constants are based on the authors’
previous study investigating a marine engine with methanol and diesel
direct injection [46]. The derived results demonstrate that the tke and td
values only slightly affect the heat release, hence confirming the validity
of the initial values for tke and td.

The sensitivity analysis is conducted with the aim to identify key
parameters for the optimisation process. Table A5 includes 14 selected
parameters that influence the performance of the marine engine. The
analysis considers the dual-fuel operation with 90 % methanol energy
fraction. According to Fig. A2 the most critical parameters to optimise
are hierarchically, the compression ratio, inlet valve closing tempera-
ture and start of injection of main and pilot fuels. Other influencing
parameters include the pressure at the inlet valve closing pressure, spray
angles and injection duration. This study focused on CR and Tyy for the
optimisation process.
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No data was used for the research described in the article.
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