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We provide a necessary and sufficient graph-theoretical characterization of quotient fixes modes
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1. Introduction

Autonomy is at the heart of automation of increasingly large-
scale dynamical systems such as chemical processes, smart grid,
smart cities, cyber-physical systems, multi-agent systems, and
the Internet of Things (IoT) [1-5]. To address the inherent prob-
lem of restricted communications and spatially distributed sen-
sors and actuators associated with these systems, decentralized
control is often the setting used to perform their design [6]. In this
work, we consider the term decentralized control as is stated in [7].
The decentralization of the control law involves an independent
implementation of local control laws for each control subsystem
in interconnected systems. In other words, the set of control
inputs of each subsystem only depend on the set of outputs of
the same subsystem, yet some may not be considered for the
implementation of a specific control law.

An important property of decentralized control systems is
their performance. The performance capabilities of a decentral-
ized controller are dictated by the actuation and sensing ca-
pabilities, as well as by the information pattern, that describes
what (sensor) data is available to which actuator. Under certain
constraints (that depend on the information patterns), the decen-
tralized controllers may not be able to change all the modes of
the overall system. Specifically, the modes of a linear dynamical
system may not be changed in closed-loop using time-invariant
controllers under a given information pattern — such modes are
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known as fixed modes. Notwithstanding, such characterization
only enables the consideration of time-invariant decentralized
controllers. Indeed, as pointed out in [8,9], if we lift the re-
quirement of linear time invariant controllers, then even for
systems with fixed modes, it may be possible to find periodically
time-varying decentralized controllers or other general nonlin-
ear decentralized controller such that the closed-loop system
does not have fixed modes. In particular, a system with unstable
fixed modes, may become a closed-loop system that is stable.
Alternatively, some fixed modes can be eliminated by vibrational
control [10], or by sampling techniques [11]. However, if those
fixed modes have the property of being also fixed modes of a quo-
tient system, then it is shown in [12] that the closed-loop system
will always have fixed modes, that is, there is no decentralized
controller that can “remove” the fixed modes of the system. These
fixed modes are referred to as quotient fixed modes [12-14].

Fixed and quotient fixed modes often occur due to the can-
celing of terms associated with the accurate representation of
the system’s parameter values. Some of these values are in many
cases unknown, specially in large scale systems, and when it is
not the case, there is always some uncertainty associated to them
that arises for example from the system identification tools that
may produce numerical errors. To cope with the parametric un-
certainty, we propose to leverage structural systems theory [15].
Structural systems theory provides a framework to study systems
properties under the assumption that the system parameters
are either arbitrary independent unknown scalars or fixed ze-
ros due to the non-existence of physical dependency between
variables [15].

In particular, the notion of structurally fixed modes plays a
key role in unveiling vital information when a system (under a
given information pattern) has fixed modes that are solely due
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to its structure [16,17], and subsequently, plays a crucial role
in designing actuation-sensing-communication for decentralized
control [18-21]. In this paper, we introduce the notion of struc-
turally quotient fixed modes that enables us to characterize, from
a structural perspective, the quotient fixed modes emerging in
the context of decentralized control. Furthermore, we provide
necessary and sufficient graph-theoretical conditions for their
non-existence. Additionally, we render a thorough study on the
computational approaches to verify such conditions and the im-
plications of the actuation-sensing—communication capabilities
and the systems’ interconnections on the existence of SQFM.

In summary, the main contributions of this paper are as
follows: (i) we introduce the notion of structurally quotient fixed
modes; (ii) we provide necessary and sufficient graph-theoretical
conditions that guarantee the non-existence of structurally
quotient fixed modes; (iii) we provide computationally efficient
polynomial algorithms to verify the necessary and sufficient con-
ditions; (iv) we explain how the proposed algorithms can be
distributed using parallelization schemes, and also approximate
while attaining linear-time computational complexity; and (v)
we discuss how different actuation-sensing—-communication ca-
pabilities, as well as interconnections between subsystems (also
known as control stations [22]), lead to the eXxistence (or non-
existence) of structurally quotient fixed modes.

2. Structurally quotient fixed modes

In this section, we first do a brief overview of key concepts
required to introduce the notion of structurally quotient fixed
modes (SQFMs). Next, we provide necessary and sufficient graph-
theoretical conditions that are easy to verify. In fact, we show that
they can be verified in polynomial-time and are suitable to deploy
in the context of large-scale decentralized control systems since
they admit parallel implementations and approximation algo-
rithms with nearly linear-time computational complexity. Lastly,
we leverage the aforementioned characterizations to unveil new
insights into how the actuation-sensing-communication (ASC)
capabilities and interconnections between subsystems may lead
to the existence of SQFMs.

In what follows, we represent an element that is different
from zero by x. Moreover, we refer to the structural pattern (or
structure) of a matrix A as A, where A; = 0 if Aj = 0 and Aj = *,
otherwise.

Let us start by considering a large-scale continuous-time sys-
tem given by

N
x(t) Ax(t) + ZBiui(t)v (1)
i=1

yi(t) = Gx(t),

where N denotes the number of subsystems, x(t) € R" is the
system’s state vector, u;(t) € R™ and y;(t) € R’ are the input
and the output vectors of the ith subsystem, respectively.

The sensor measurements available to different actuators, and
used for feedback in the context of closed-loop decentralized con-
trol, are described by the information pattern K € {0, }™ ™" of
the system (A, B, C), with m* = (Z,.N:l mi) and r* = (Z,‘N:l rl-),
where B = [By,...,By] and C = [C], ..., C§I". The information
pattern is a matrix that describes what (sensor) data is available
to which actuator. Specifically, Ky = * if the data of sensor k is
available to the actuator j, and O otherwise.

The capability of changing the system performance, measured
in terms of the closed-loop modes, is dictated by the information
pattern. In particular, the decentralized controller may lack the

i=1,...,N,
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capability to change some of the systems’ modes referred to fixed
modes, formally described as follows [23]:

o = ] o(A+BKC), 2)
KelK]

where [K] = {K € R™*"" : K, = 0 if K;, = 0} and o(M) denotes
the spectrum (i.e., the set of eigenvalues) of a square matrix M €
R™", Note that from (2) it follows that if a given eigenvalue of
the closed-loop system (which has dynamics A + BKC) is a fixed
mode, then there is no K € [K] that will make this fixed mode to
disappear.

Fixed modes often occur due to a perfect canceling of the
system numerical parameters. These are not the ones that we
are interested in, but the ones that are intrinsic to the structure
of the system. Therefore, to avoid such scenarios, structural sys-
tems theory considers the systems’ structural patterns (A, B, C) to
assess the possible systems parameters in ([A], [B], [C]), where
we define for a matrix structural D the set [D] = {E : E = D}.
When we consider only the system’s matrices’ structural pattern,
we say that the triple (A, B, C) denotes a structural linear system. A
structural linear system, (A, B, C) is said to have structurally fixed
modes (SFMs) [24] with respect to (w.r.t.) an information pattern
K if, for all A € [A], B € [B] and C € [C], we have that

ﬂ o(A+ BKC) # 0. 3)

Ke[K]

Conversely, (A, B, C) does not have SFMs w.r.t. an information
pattern K if there are instances of A € [A], B € [B] and C €
[C] such that

() o(A+BKC) = . (4)
KelK]

Moreover, if (A, B, C) does not have SFMs with respect to K, then
almost all systems with the same sparsity do not have fixed
modes [16].

Nonetheless, fixed modes are inherently associated with the
use of static output feedback (possibly with controllers with
memory). That said, we can eliminate some fixed modes by re-
sorting to nonlinear output feedback, whereas others that are not
possible are referred to as quotient fixed modes [12]. The notion
of quotient fixed modes (QFMs) is associated with the quotient
system, which is built upon a graph created using the systems
transfer function between different inputs and outputs of (1).

As such, let us recall that a digraph D = (V, &) is described by

a set of vertices (or nodes) Vv = {1, ...,n}and edges ¢ C Vx V. A
path p of size k € N starting in v; and ending in vy is a sequence
of edges p = {(v1, v2), (v2, v3), ..., (Uk—1, Uk)}, such that v; # v;

for any i # j, and if v{ = vy, then p is a cycle. A path p passes in
vertex v if p has an edge of the form (u, v) and/or (v, u).

Subsequently, we can create a quotient system digraph whose
vertices are the number of subsystems, and there is an edge
from subsystem k to j if and only if the transfer function G(sI —
A)"1By # 0 [12]. If for two distinct subsystems k,j € {1, ..., N*}
we have that G(sI — A)"'B, # 0 and G(sI — A)"'B; # 0,
then the subsystems are called strongly connected. A maximal
set of strongly connected subsystems form a strongly connected
subsystem (SCS).

If we decompose the system (1) into N* SCS, the overall
dynamics of the quotient system can be represented as:

N*
M) = AXt)+ Y Bui(t), (5)
i=1

yit)y = Cx(t), i=1,...,N*,

where x(t) € R" is the system’s state vector, uj(t) € R™ and
* .
yi(t) € Ri are the input and the output vectors of the systems’
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partition ith, respectively. Simply speaking, the input and output
vectors of each partition corresponds to those in the subsystems
belonging to the same SCS in the quotient digraph.

Subsequently, a quotient fixed mode is a fixed mode of the
quotient system. In other words, the system described in (1) has
quotient fixed modes if and only if

N*
Ok oktys = N o (A + ZB?‘Kfo*> £ 0. (6)

K]G[l_ﬁ],,.,,KN* E[I_(N*] i=1

In what follows, we seek to introduce the notion of SQFMs, in
the same spirit that the notion of SFMs. Towards this goal, we first
need to introduce the structural version of the quotient system
digraph.

Definition 1 (Structural Quotient System Dlgraph) Let (A, B, C),
with B = [By,...,By] and C = [C],..., ] denote the
structural pattern of the system matrices assoc1ated with (1). The
structural quotient system digraph is a digraph composed by:

(1) as many nodes as the number of subsystems labeled by their
indices;

(2) the set of edges defined are such that there is an edge from
subsystem k to j if and only if Ci(sI — A)~'B; # 0 for some
G e[Gl, Bk e [Bxl,and A € [A]. o

Remarkably, we will be able to create the structural quotient
system digraph by just considering the digraph representation
of the system presented in (1). Specifically, the system digraph
D(A, B, C), given by D(A, B, C) = (x Uu/UY, Ex.xUEx yU&y x),
where X is the set of state variables, ¢/ is the set of input variables,
and Y is the set of output variables, and the set of edges between
these are described as Ex x» = {(j,1) : Aj # 0}, Exy = {(, 1) :
CU # 0}, and & = {(, 1) : B,] # 0}. Henceforth, the following

holds.
Lemma 1. Let (A B,C), with B = [By,...,By] and C =
[C], ..., CyI", denote the structural pattern of the system matrices

associated with (1). Then, the structural quotient system digraph is
constructed as follows: (1) the nodes’ set is composed by as many
nodes as the number of subsystems, labeled by their indices, (2) the
set of edges are such that there is an edge from subsystem k to j if and
only if there is a path from an input to an output in D(A, By, Gj). o

To illustrate the simplicity of invoking Lemma 1, we provide a
pedagogical example next.

Example 1. Consider the structural plant (A, B, C) with two
subsystems (i.e., N = 2), where

_ B,
s B=|---1=1-
B,

c=[a.al=[s 50 0]

In Fig. 1 (a), we depict the digraph representation of the struc-
tural plant D(A, B, C). In Fig. 1 (b), we present the corresponding
structural quotient system digraph, which corresponds to the
structural quotient subsystems Q; and 9, circumscribed by the
dashed gray boxes of Fig. 1 (a). We can see that there is an edge
from Q; to 9, in Fig. 1 (b) because there is a path from u; to y,
in D(A, By, G,), as per Lemma 1. o

Y|

- |, and

O * OO
* O OO
O * OO

0 0
N 0
0 *
0 *

OO‘!»)&

Now, we can introduce the definition of structurally quotient
fixed modes (SQFMs).

Systems & Control Letters 151 (2021) 104914

(a) (b)

Fig. 1. In (a), we have a digraph representation of the structural plant (A, B, C),
with four states, two subsystems (one with input u; and output yy, and the other
with input u, and output y,), with quotient subsystems ©; and Q,, delimited by
the gray boxes. The obtained quotient system digraph by Lemma 1 is depicted
in (b), where the red edge in (b) corresponds to the red edge in (a) connecting
the subsystem ©; with the subsystem Q. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Definition 2 (Structurally Quotient Fixed Modes). Let (A, B, C), be
as in Definition 1 such that B* = [Bj,...,B}.] and =
[(C;)',...,(Ci)'T", denote the structural pattern of the system
matrices associated with (5), and obtained using the structural
quotient system digrap_h with N* partitions associated with the
SCSs, where (K7, ..., Ky.) denote the information patterns of
each partition. We say that the triple (A, B, C) has no SQFMs with
respect to (Ky, ..., Ky) when (A, B*, C*) has no SFMs with respect
to (K¥, ..., Kg.). o

Subsequently, we have that the following generic property
holds.

Lemma 2 (Necessary Condition for the Non-existence of QFMs). Let
(A,B,C), with B = [By,...,By] and C = [C],... CT]T denote
the structural pattern of the system matrices assoczated wzth (1). If
(A, B, C) has no SQFMs w.r.t. information patterns K, . .Ky, then
almost all (A, B, C), where A € [A], B € [B], and C € [C], have no

QFMs w.r.t. to information patterns Ky, ...Ky. O

Subsequently, we provide a graph-theoretical characterization
of systems without SQFMs, which will require the following ad-
ditional definitions. A subdigraph D’ = (V', £’) of a digraph D =
(v, €) is a digraph such that V' C Vand & C V' x V' C &. The
strongly connected components (SCCs) of a digraph D = (V, &) are
the set of maximal subgraphs which are strongly connected.

Theorem 1 (Necessary and Sufficient Condition for the Non-
existence of SQFMs). Consider the same setting as in Definition 2. Ad-
ditionally, consider the closed-loop system digraph D(A, B, C, K) =
(_X uuuy, SX,X U 5_;(’3) U gz/{’;( U gy,z,{), where 53}’1/{ = {(], l) :
Kjj # 0}. Furthermore, consider the subsystems digraphs associated
with each SCS of the structural quotlent system digraph, denoted
by D(Q;) = D(A,,BI,CI,K) i =1,...,N* where A; denotes the
submatrix of A corresponding to the coupling between states that
belong to a path starting at one of the inputs associated with B; and
ending at one of the sensors associated with C.

Then, (A, B, C) has no SQFMs with respect to (K, . ..
only if the following conditions hold:

,Ky) if and

(i) each state variable x € &; is a vertex of an SCC of D(Q;), and
the SCC includes an edge of £y, 1;; and

(ii) D(Q;) has a finite disjoint union of cycles (say ki), C,, =
(Viy» E;) such that x; C U V. O

Remark 1. From Lemma 2, it follows that the condition holds
generically, and thus, provide us with a necessary condition to
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assess QFM of systems with known parameters. The conditions in
Theorem 1 are easier to verify than the ones previously explored
in [22,25] that depend on the system’s exact parameters, which
conclusions hold almost surely. ©

Besides, both conditions presented in Theorem 1 can be ef-
ficiently verified, as it requires three main steps: (i) form the
structural quotient system digraph and identify the SCSs; (ii)
determine the SCCs of the different SCSs’ closed-loop system
digraphs and verify if they contain a feedback edge (i.e., to guar-
antee condition Theorem 1-(i)); and (iii) determine if there is a
collection of cycles that contain all the state of the system digraph
(i.e., to guarantee condition Theorem 1-(ii)) — see Algorithm 1.

Algorithm 1 Verification of Theorem 1

1: input: The tuple of structural matrices (A, B, C, K), where B =
[B],...,BRI", C=[Cy,...,Cy] and K = diag(Ky, ..., Ky)
2: output: True if (A, B, C, K) has no SQFMs and False otherwise

3: build D(A, B, C, K) = (X UUUY, Ex.x UEx.y Uy x Uy 1)

4: compute the quotient system digraph Dy, with quotient
subsystems Qq, ..., Oy

5: for i from 1 to N* do

6: build 'D(Ql) = (.)C', Ui Uy, gXiaXi 0] gxl-’yi U 51,{,-“% U 537.-%-)

7: compute the SCCs of Q; using the Tarjan’s SCCs algo-

rithm [26]
8: if D(Q;) does not have an edge of &y, ;, then
9: return False

10: else

11: compute a decomposition in paths P and cycles C of
D(Q)

12: if P # () (there are paths) then

13: return False

14: end if

15:  end if

16: end for

17: return True

Therefore, Algorithm 1 has the following computational com-
plexity.

Theorem 2 (Computational Complexity of Verifying the Conditions
in Theorem 1). The time-complexity of verifying the conditions in
Theorem 1 is of order O (v/NyM,N*), with & = argmax/N;M;,

=1 N
where N; and M; are the number of vertices and edges of D(A;, B;, C;),
respectively. O

Despite the polynomial computational complexity for the ver-
ification of Theorem 1, it might still be prohibitive to determine
the non-existence of SQFM in the context of large-scale decen-
tralized control systems. Therefore, we now discuss how the
proposed algorithm can be adapted to be computed in paral-
lel or to achieve an approximated almost linear-time solution.
Therefore, we propose two ways of optimizing the algorithm’s
running-time performance.

A parallel computational version of Algorithm 1

Observe that the for-loop starting in step 5 can be executed
in a parallel fashion since each subsystem i can compute D(Q;).
Subsequently, each subsystem can do steps 7-15 independently
in parallel.

Observe that, when the computation is done in parallel by N*
processes, as in the setting described, the computation complex-

) o «/NO,MO,N*)
ity becomes ————~ = O (foaMa), where @ = argmax
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\/IV,-Mi, and N; and M; are the number of vertices and edges of
D(Q;), respectively.

Approximated solution with almost linear-time complexity of
Algorithm 1

We can obtain an approximated solution to the verification of
Theorem 1 in almost linear-time (in the number of vertices and
edges of the associated system’s digraph), if we allow obtaining
approximated maximum matching (MM), see more details of
where the MM emerges in Algorithm 1 in the proof of Theorem 2.
For example, we may use [27] which allows us to obtain a (1—¢)-
approximation of the solution (for any specified ¢ > 0), with
time complexity that depend on ¢ of O (M1log?) (ie. linear
time), where M is the number of edges of D(A, B, C). Subse-
quently, the total time-complexity cost of Algorithm 1 becomes
O (IN 4+ M]+[M1logl]), where N is the number of vertices
of D(A,B,C) and O(N + M) comes from the computation of
D(Q;) with an algorithm similar to the Tarjan’s strongly connected
components algorithm [26] (step 7 of Algorithm 1, more detailed
in the proof of Theorem 2).

Remark 2. We can further combine the parallel and the ap-
proximation computation versions of Algorithm 1 to improve the
overall computational complexity. ¢

Structurally quotient fixed modes in interconnected subsys-
tems. Lastly, we discuss under what conditions the intercon-
nections between subsystems impact the existence of SQFMs
based on graphical conditions, in Theorem 1, given that each
subsystem may have or not SFM. Specifically, consider that the
structural plant in (5) has, without loss of generality, two sub-
systems, N* = 2. Suppose that Q; = (A1, By, (4, K;) and Q; =
(A2, By, G;, K3) are the subsystems associated to each subsystem.
There are, generically, three possible cases: [Case 1] Subsystems
Q1 and Q, have no SFMs; [Case 2] One subsystem has SFMs
and the other does not have SFMs, for instance Q; and Q,
respectively; and [Case 3] Subsystems Q; and Q, have SFMs.

[Case 1] Regardless of the interconnections between the sub-
systems, the resultant system has no SQFMs. This yields since
there is one instance, corresponding to assigning the value zero
to all such interconnections, which would lead to a structural
quotient system digraph where each partition yield both con-
ditions (i) and (ii) of Theorem 1 since they match the ones for
the SFMs in this scenario. Furthermore, we can invoke measure
theoretical arguments to guarantee that if there is one such
realization that yields a system without SQFMs, then almost all
possible realizations of the systems’ parameters (including the
interconnections) yield a system without QFM; hence, no SQFM
by definition.

[Case 2] First, notice that Q1 can only have SFMs if and only if it
is not structurally controllable, not structurally observable, or both.
This happens because at the subsystem-level the information
patterns are full (i.e., all sensors are available to all actuators) [15].
Briefly, the conclusion follows from invoking measure theoretical
arguments in the context of the pole-placement theorem that
ensures that an arbitrary pole-placement is available if a system
is both controllable and observable [28].

A system described by the pair (A, B) is structurally control-
lable if and only if its digraph representation D(A, B) has a disjoint
union of cycles and paths, such that: the paths start from an input
vertex; there is (at least) one input assigned to a state variable
of each source SCC (i.e., a digraph can be uniquely decomposed
into SCCs and the source SCCs are those with no incoming edges
into their states originated in the states of other SCCs) [18].
By invoking duality, a system described by (A, C) is structurally
observable if and only if its digraph representation D(A, B) has a
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disjoint union of cycles and paths, such that: the paths end in an
output vertex; there is one output assigned to a state variable of
each target SCC (i.e., the SCCs without outgoing edges originated
in their states and ending at states of another SCC).

As such, the solutions to yield an interconnected system with-
out SQFMs are as follows: (i) ensure that the subsystem with
SFM becomes structurally controllable and/or structurally observ-
able. This property can be ensured using minimum actuation
and sensing capabilities [18,29]; and (ii) by adding connections
between the state variables within each subsystem or in-between
the states of two subsystems to ensure the overall system is
structurally controllable and/or observable [30] — see illustra-
tive example in Fig. 2. Remarkably, both solutions involve the
use of a crafted weighed maximum matching problem [26]. This
problem can be efficiently solved in polynomial time and can be
accomplished in parallel and using approximation algorithms, as
considered in Remark 1.

[Case 3] Similarly to the previous case, it can occur that sub-
system Q; is not structurally controllable or structurally observ-
able (or both), and 9, also is not structurally controllable or
structurally observable (or both). We can remove the SQFMs
combining the approaches for [Case 2] in both subsystems Q;
and Q5.

Remark 3. The discussion above can be easily generalized (by
induction) for the case where we have more than two subsys-
tems. Hence, it provides a constructive analysis of the existence
of SQFMs, as well as methods to mitigate their existence. ¢

3. Illustrative example

Consider the plant (A, B, C) used in [12], where the matrices
are parameterized as follows:

0 ap, 0 0 O
azq 0 0 0 0
A= 0 asy 0 0 ass s
0 0 as3 O 0
0 0 (53 0s4 0
by 0O 0 0 O
I T R 0 b, 0 0 O
B = B] Bz B3 B4 Bs = 0 0 b33 0 0 s and
[ 0 0 0 by O
0 0 O O bss
- G - ci1 O 0 0 0
— Cz — 0 Cy 0 0 0
C= — C3 — = 0 0 C33 0 0
— C4 — 0 0 0 Ca4 0
— C5 — 0 0 0 0 Cs5

In Fig. 3 (a), we depict the digraph associated with the struc-
tural plant (A, B, C), which has two subsystems, ©; and Q,, as
depicted in the gray boxes of Fig. 3 (a), and with quotient sub-
systems represented in Fig. 3 (b).

Additionally, consider a full information pattern for each of the
subsystems, as depicted in Fig. 4. Using Algorithm 1, we obtain
a decomposition in paths and cycles for each subsystem that
does not contain paths. The decomposition in paths and cycles
for the subsystem digraph D(Q;) is depicted by the red edges,
in Fig. 4. Analogously, the decomposition in paths and cycles for
the subsystem digraph D(Q;) is depicted by the blue edges, in
Fig. 4. Since for each subsystem digraph the decomposition only
has cycles (P = @), the algorithm outputs True, and the system
does not have SQFMs.

Systems & Control Letters 151 (2021) 104914

Fig. 2. Example of how to add edges between two subsystems’ subsystems
digraph representations to remove SQFMs, illustrating the case where one
subsystem has SFMs and the other subsystems does not. To simplify the
visualization and the analysis, we use meta-nodes that represent an SCC of
the system’s digraph representation given as follows: the source SCCs of the
structural plant digraph representation are denoted by N7, N, and A3 ; the
target SCCs are denoted by NG A3h, A, and A and the other SCCs are
denoted by A3, and Ns. For simplicity, here we consider that both subsystems
are such that all the states belong to a disjoint union of cycles. Thus, the
dashed red edges indicate that there is one edge from and to the state variables
in different SCCS. Notice that after considering these edges, the structurally
quotient system digraph changes into a single partition that is now structurally
controllable and observable, and therefore, the subsystem does not have SFM,
which implies that the original information pattern does lead to the existence
of SQFM. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. In (a), we have a digraph representation of the structural plant (A, B, C),
with five states, two subsystems (one with inputs uq, u; and outputs y4, y,, and
the other with inputs us, u4, us and output ys, y4, ¥s), with quotient subsystems
Q1 and Qy, delimited by the gray boxes. The obtained quotient system digraph
by Lemma 1 is depicted in (b).

4. Conclusions

In this paper, we characterized quotient fixed modes in the
scope of decentralized control of large-scale dynamical systems.
Due to the parameter uncertainty, we introduced the novel con-
cept of structurally quotient fixed modes (SQFMs), which gener-
ically captures the quotient fixed modes that depend on the
system’s structure. If we can ensure that the system does not
have quotient fixed modes, then it is possible to design decen-
tralized controllers (possibly nonlinear) to shape the system'’s
performance through the reassignment of its modes. Therefore,
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Fig. 4. Decomposition in paths and cycles of each subsystem’s digraph of the
structural plant (A, B, C, K), i.e.,, D(Q1) and D(Q,), obtained with Algorithm 1.
In red, we have this decomposition for D(Q;) with only once cycle. In blue, we
have this decomposition for D(Q;) with only two cycles. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

we render a graph-theoretical necessary and sufficient condi-
tions for the non-existence of SQFMs. Further, we presented
an efficient polynomial-time algorithm for the verification of
this graph-theoretical condition. Moreover, we described how
a parallelized version of the algorithm can be implemented,
and how we can consider an almost linear-time computational
complexity approximation algorithm to produce approximated
solutions. These two time-complexity optimizations make the
proposed algorithm suitable for designing large-scale dynamical
systems. Finally, we discussed the implications of the actuation-
sensing-communication capabilities, as well as the systems’ in-
terconnections, on the existence of SQFM that rely solely on the
graph-theoretical necessary and sufficient conditions.
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Appendix

Proof of Lemma 1. When we build the structural quotient
system digraph as being composed by all the vertices that corre-
spond to the labels of the different subsystems in (1), and edges
such that if for each vertex k and j there is a path from the inputs
to the outputs in the digraph D(A, B, G;). This ensures, by [31],
that G(sI — A)"'B, # 0 for some G € [Gl, By € [B«], and
Ac[Al O

Proof of Lemma 2. Consider the system in (5) such that the
system has no SQFMs w.r.t. Ky, ..., Ky. On one hand, we have that
almost all set of parameters of structural quotient system digraph

Systems & Control Letters 151 (2021) 104914

lead to a quotient system digraph such that the transfer function
is nonzero [31]. On the other hand, at each of the partition
subsystem of the quotient system digraph it readily follows that it
does not have structurally fixed modes Kj, ..., Ky+. This implies
that, for almost all parameters, the partition subsystem does not
have fixed modes w.r.t. Ky, . .., Ky= [16]. Hence, the system does
not have QFM w.r.t. Ky, ..., Ky, for almost all parameters. O

Proof of Theorem 1. First, we fix a parameterization of the
system’s structure such that the entries of A corresponding to
edges between state variables of different subsystems to 0. By
doing this, we can write A = diag(A4, ..., Az), where A; contains
the state variables of subsystems i. The system (A;, B;, C;) does not
have SFMs w.r.t. the structural pattern K; if and only if (iff) the
following two conditions hold [32]: (i) each state vertex x € X; (X;
is the set of state variables of A;) is in an SCC of D(A;, B;, G;, K;) that
includes an edge of £y, 1, (i and 14 are the set of output and input
variables of B; and G;, respectively); and (ii) D(A;, B, G, K;) has a
disjoint union of k cycles {Cy = (V, &)} such that x; C U]k:1 V.
So, we notice that we have only to ensure that the subsystem
corresponding to each subsystem does not have SFMs, which are
the conditions (i) and (ii) of the theorem, to ensure that, for that
parameterization of the system’s structure, the system does not
have SQFMs.

Next, we observe that if the aforementioned conditions hold
for a parameterization of the system’s structure, then the con-
ditions hold for almost all parameterizations of the system'’s
structure. Therefore, (A, B, C) has not SQFMs w.r.t. (Ky, ..., Ky)
if and only if conditions (i) and (ii) hold. O

Proof of Theorem 2. The time-complexity of verifying the condi-
tion of Theorem 1 is the sum of the time-complexity of verifying
each condition.

We can build the SCSs, D(Q;), from the input matrices in
O(M;), where M; is the number of edges of D(Q;) (number of
non zeros in matrices (A;, B, G, K;)) supposing that the system’s
matrices are represented as sparse matrices, and where A; is
the submatrix of A containing the state variables accessible from
inputs of B;.

We can compute the SCCs of (i) using the Tarjan’s strongly
connected components algorithm [26]. This can be done in O(N;+
M;), where N; is the number of vertices and M; the number of
edges of D(A;). Subsequently, we can compute condition (ii) by
building N* problems of decomposing the state digraph repre-
sentation of Q; (only considering the state vertices and respective
edges) into paths and cycles.

This step is less straightforward (i.e.,, step 11), and it can
be executed by considering maximum matching (MM) (i.e., the
maximum number of edges without common end-points) on a
bipartite graph B = B(V1, V2, €y, v,). B is a graph where the set
of vertices may be split in two, V; and V,, such that the there
are no edges between vertices in V; or between vertices in V.
Specifically, Algorithm 1 relies on the relationship between the
MM on a system bipartite graph B(A) = B(V, V, &y,y) (with some
abuse of notation for the vertices labels) and the decomposition
of the system digraph D into a disjoint union of cycles and paths
— see [18]. In particular, for the case of a perfect matching (i.e., the
number of edges in the maximum matching equals the number
of vertices in V), we obtain a decomposition into a disjoint union
of cycles (having no paths), where all vertices are part of such cy-
cles. These N* independent maximum matching problems can be
solved using the Hopcroft-Karp algorithm [26] in time O(v/N;M;).

Therefore, the total time-complexity is the sum for each sub-

system of the two previous quantities: (’)(Z?’:] [(N; + M;)

+ /Ni ,]) =0 (Zf:] /N; i). Let « = argmax /N;M;, then
i=1,...,N*

0 (L, VRM) = 0 (VEMNY) . O
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