
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

SPS-2024-5799996

M.Sc. Thesis

Dopple Group Chat

Long Xin B.Sc.

Abstract

In response to the echo and noise interference problems faced by multi-
user full-duplex voice communication scenarios, this work proposes
a complete solution from signal modeling to beamforming optimiza-
tion. First, by converting the Bluetooth channel into a virtual acous-
tic channel, a comprehensive acoustic transmission model covering
single-source and multi-source scenarios is established. On this basis,
a variety of beamforming and filtering strategies are discussed, and fi-
nally, the Multichannel Wiener Filter (MWF) beamforming scheme is
proposed. At the same time, for the time-varying spatial domain, the
update of the covariance matrix combined with Voice Activity Detec-
tor (VAD) is discussed. The simulation shows that the MWF scheme
has good robustness and adaptability under different Bluetooth chan-
nel latency and low Signal-to-Interference Ratio (SIR) environments;
when the user end is equipped with a sufficient number of microphones
or there are many bystanders, the system performance is further im-
proved.



Dopple Group Chat
Dereverberation & Denoise in multi-channel full-duplex

communication systems

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Long Xin B.Sc.
born in Lu’An, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2024 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Dopple Group Chat” by Long Xin B.Sc. in partial fulfillment of the
requirements for the degree of Master of Science.

Dated: January 9, 2025

Chairman:
prof.dr.ir. R.C. Hendriks

Advisor:
ir. G. Bologni

Committee Members:
prof.dr. J.A. Martinez Castaneda

dr.ir. Jaap Haartsen



Abstract

In response to the echo and noise interference problems faced by multi-user full-duplex
voice communication scenarios, this work proposes a complete solution from signal
modeling to beamforming optimization. First, by converting the Bluetooth channel
into a virtual acoustic channel, a comprehensive acoustic transmission model cover-
ing single-source and multi-source scenarios is established. On this basis, a variety
of beamforming and filtering strategies are discussed, and finally, the Multichannel
Wiener Filter (MWF) beamforming scheme is proposed. At the same time, for the
time-varying spatial domain, the update of the covariance matrix combined with Voice
Activity Detector (VAD) is discussed. The simulation shows that the MWF scheme
has good robustness and adaptability under different Bluetooth channel latency and
low Signal-to-Interference Ratio (SIR) environments; when the user end is equipped
with a sufficient number of microphones or there are many bystanders, the system
performance is further improved.
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Linear Algebra

(·)−1 Inverse
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Rn Real vector space of n-dimensional vectors

Rn×n Real matrices space of n by n matrices

1 All-ones vector

I Identity matrix

diag(a) Diagonal matrix with a on the diagonal

Mathematical Objects

a Scalar

a Vector

A Matrix

Other symbols

(̂·) Estimated value
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Introduction 1
Voice communication plays an integral role in our daily life and work communications,
allowing people to exchange information with each other. During voice communication,
various factors, such as interference from other people’s speech, ambient noise, and
internal noise from communication equipment, will inevitably affect the clarity of the
voice signal. The combined influence of these interfering elements causes the received
voice signal to move away from its original state and become noisy. This not only
affects the performance of the voice processing system but also reduces the clarity of
the voice and seriously hinders communication efficiency.

In addition to the negative impact of interference and noise on voice communication
systems, echo is another key factor that degrades call quality in video conferencing, calls
using hands-free devices, and other situations. When sound comes from the talker and
travels directly or through multiple reflections, it is superimposed with the original
dialogue signal. It enters the microphone, causing the speaker to hear back his or her
previous words. This phenomenon creates the so-called voice reverberation. If this
delay exceeds 150 milliseconds, it will seriously affect the quality of communication
and reduce the smoothness of the conversation [2]. Therefore, it is important to take
measures to reduce the negative impact of these factors in the communication system on
speech signals, which will help improve the overall performance of the speech processing
system.

Dopple has developed Dopple Group Chat (DGC), a new multi-person full-duplex
communication protocol that runs on top of Bluetooth radios. DGC allows multiple
users to communicate directly with each other over relatively short distances without
the intervention of a smartphone, tablet, or laptop. Areas of application include sports
(e.g.cycling, jogging, and fitness centers), people with hearing impairments, and people
working in noisy environments. In addition, there may be a transparent mode protocol
on DGC-based products. The transparent mode allows external sounds to enter the
headphones, allowing users to hear the surrounding sounds, for those who do not know
about communication protocols, full-duplex communication protocols mean that voice
data can be transmitted in both directions at the same time. A common example is
telephone communication, where users can speak and hear each other at the same time.

Because there are multiple users (multiple microphones and speakers), a full-duplex
working mode is involved, and there is an acoustic propagation path between users at
a relatively close distance in addition to the communication protocol. The acoustic
coupling will occur between the sending end and the receiving end, causing an echo
effect. Based on the above statement, we need to propose a reliable audio processing
algorithm to solve the echo effect (dereverberation), improve the overall performance
and clarity of the DGC system, and ensure high-quality communication.
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1.1 Research Statement

This thesis project aims to find the answer to the following questions:

• How to model the acoustic structure in the network of DGC?

• How to do dereverberation and reduce the noise in the DGC system?

• When the system becomes more complex (e.g. the users increase), how does
the system evolve? (The number of users considered is among 3 persons and
10 persons.)

1.2 Thesis Structure

This topic is explored progressively. We begin with a relatively simple scenario, grad-
ually increasing the complexity of the situations as we try to solve the more difficult
problems.

The thesis is organized in the following ways.

• chapter 2 - Background: First, we give a brief literature review about related work.
Then we give all practical background information to the acoustic structure. First,
we introduce the principle of room acoustics simulation showing how the acoustic
transfer function is simulated. Then we will give the idea of Bluetooth channel
transmission and Bluetooth channel transfer function approximation. In the end,
we investigate the microphone’s self-noise volume, the speech volume, and the
speech volume attenuation in space.

• chapter 3 - Problem Formulation: we define the two problems that are going
to be discussed gradually. In the single-speaker and multiple-speaker cases, we
gradually extend the signal model from the scalar form to the vector form with
multiple bystanders involved.

• chapter 4 - Proposed Methods: we solve the single speaker case by using the
MVDR beamformer. An LCMV beamformer is used to generalize the beamformer
to multiple speaker cases. However, due to the LCMV’s limitations, the MWF
beamformer is used. In addition, we discuss the noise covariance matrix estimation
method.

• chapter 5 - Simulation and Result: we give simulation evaluation metrics and
simulation setup at first, then we implement the solution mentioned before for
two cases. The ideal VAD model was then embedded into the algorithm for the
single-speaker case to test how much improvement it could bring.

• chapter 6 - Conclusion and Future Work: we conclude and propose the potential
future work directions.
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Background 2
In this chapter, we provide a brief literature review and an overview of room acoustics
simulation, modeling of echo problems, microphone noise characteristics, and speech
signal analysis. We compare the advantages and disadvantages of different acoustic
modeling methods. Then, we explore the modeling of Bluetooth channels. The analysis
of microphone noise studies the impact of different sources and their main contributors.
Methods for quantizing noise are discussed. Finally, the volume and spatial attenuation
of speech signals are studied. In summary, this chapter estimates the variables required
in the experiment or provides a theoretical basis for their calculation.

2.1 Literature Review

This section will review the literature on related speech enhancement work. This section
is mainly divided into spectral enhancement methods and spatial processing methods.

With the advancement of technology, people are increasingly interested in mobile
voice devices. However, with increasingly complex usage scenarios, people’s demand
for robust signals is also growing. A mainstream approach is to suppress noise signals
and improve voice quality, which involves single-microphone or multi-microphone noise
reduction solutions. Although some special scenarios may only use a single microphone,
in general, multi-microphone technology can provide better performance.

2.1.1 Spectral Enhancement

Spectral enhancement refers to modifying the short-time spectrum of the received
speech signal to enhance the speech signal. Most spectral enhancements are used in
techniques such as single-channel noise reduction. Single-channel noise reduction plays
an important role in many topics, both as a standalone module and as a post-filter to
improve the performance of a multi-microphone system. In [3], R.C. Hendriks provides
a comprehensive overview of the single-channel noise reduction topic.

The Wiener filter is an optimal filter based on minimizing the mean square error [4].
Assuming that the speech and noise follow a normal distribution and are uncorrelated,
the gain function of the Wiener filter can be represented by the power spectrum function
of the clean speech and the power spectrum function of the noise as shown below,

Hwiener(ω) =
Ps(ω)

Ps(ω) + Pd(ω)
. (2.1)

A disadvantage of the Wiener filter is that its gain is fixed at all frequencies.
Spectral subtraction is one of the earliest algorithms proposed in history to enhance

single-channel speech. In this method, the noise spectrum is estimated during speech
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pauses and subtracted from the noisy audio spectrum to estimate the interested speech.
The disadvantage of this method is the presence of processing distortion, known as
residual noise.

Some beneficial variants have been proposed [5], including a multi-band spectral
subtraction method for real-world colored noise with uniform frequency spacing, which
provides additional control for noise subtraction by customizing the attenuation degree
of each band, and the results show excellent performance.
In [6], an iterative method was proposed, which uses the output of the enhanced speech
as the input signal for the next iterative process. After the spectral subtraction process,
the output signal is used as the input signal for the next iterative process, and the
residual noise is re-estimated for the next iteration. Subsequent studies have shown
that the performance of this method is affected by the number of iterations, and the
greater the number of iterations, the better the effect [7, 8].
The perceptual characteristics of the human ear can also be taken into account. It
is also a feasible method to improve the clarity of the speech signal by attenuating
the noise that is inaudible due to the masking effect of the human ear, which is the
so-called perceptual characteristic-based spectral subtraction. When the noise is below
the perceptual threshold, the human ear can tolerate the additional noise. In [9], the
algorithm adjusts the parameters according to the masking characteristics. [10] gives
the modeling of the masking effect.

In recent years, in addition to traditional methods, machine learning-based tech-
niques have also performed well in this field. Generally, Single-Channel Speech En-
hancement (SCSE) algorithms can be divided into two categories: unsupervised algo-
rithms and supervised algorithms. In unsupervised SCSE methods, statistical models
are used to process noisy speech signals to estimate clean speech, requiring no prior
knowledge of the noise source or target speech source. On the other hand, supervised
SCSE algorithms are trained with clean speech and noisy speech data, and the model
learns the mapping to recover clean speech from noisy signals. Since this part is not
involved in the work, we only provide some related reviews. [11] gives a comprehensive
and detailed overview of supervised SCSE algorithms from the two aspects of speech
intelligibility and quality. Specifically, Krishnamoorthy and Prasanna gave a compre-
hensive review paper on supervised speech enhancement algorithms [12].

In addition to single-channel noise reduction tasks, there are also some studies on
multi-channel spectral enhancement techniques that expect to constructively combine
the correlated information between different channels to improve signal quality. As
early as 1977, Allen et al. conducted relevant research [13]. They used sub-band
technology to perform spectrum processing on a dual-microphone system. In each fre-
quency band, they adjusted the phase between the signals to align them and eliminate
the time delay in the “coherent part” of the two microphone signals. These phase-
corrected signals are then added, a process known as in-phase superposition and band
addition. Subsequently, the gain of each frequency band is adjusted based on the nor-
malized cross-correlation function. The effect of this method is to reduce the energy
in the low “coherence” frequency bands (these frequency bands contain mainly rever-
beration), while retaining or slightly enhancing the energy in the high “coherence”
frequency bands (these frequency bands usually contain significant direct signal com-
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ponents and early reflections). Several subsequent studies investigated [14] the effect of
this technique on speech signals recorded in rooms with long reverberation times (1.3
seconds). However, Allen’s spectral enhancement technique did not show very positive
effects. Bloom improved on this technique by employing a narrower analysis band and
generating a gain function based on an estimate of the time-varying amplitude-squared
coherence function while smoothing based on critical bands in the frequency domain
[15]. However, his research also showed that these modifications did not necessarily
improve average recognition scores.

2.1.2 Spatial Processing

Multi-microphone-based spatial processing techniques can be used for speech enhance-
ment tasks. Multi-microphone systems use spatial information to selectively enhance
signals from specific directions. Most related studies focus on speech enhancement and
robustness in noisy environments but usually do not address dereverberation capabil-
ities, which makes comparisons difficult. A thorough overview can be found in Van
Trees’ Optimal Array Processing [16]. McCowan has authored an educational tuto-
rial that concentrates on enhancing speech signals [17]. A prestigious article [18] also
provides a good summary of this topic.

Based on the far-field assumption, acoustic plane waves entering a microphone array
will typically arrive at slightly different times. Depending on the spacing and geometry
of the microphone array, the component frequencies, and Direction of Arrival (DOA),
the signals received by the sensors can be enhanced or canceled by constructive com-
bination. Thus, by linearly combining the received signals, the array can produce a
directional response that favors certain directions, a technique known as beamforming.

An easily implemented beamforming is delay-and-sum beamforming, which com-
pensates for the delay of the signal in each channel to maximize the response in any
desired direction. It is easy to implement and its directional response is stable un-
der all environmental conditions, but its ability to distinguish signals from different
directions is relatively low [19]. Adaptive beamforming techniques typically exploit
statistical properties of the signal (e.g., second-order statistics) to optimize processing.
However, in practice, these statistics usually need to be estimated from real-time obser-
vations. Therefore, the system needs to have adaptive capabilities to track and respond
to these changes in real time. By dynamically adjusting the filter coefficients, adaptive
beamforming maintains the response to the signal in a specific “observation” direction
while suppressing the response of interfering noise sources. The Minimum Variance
Distortionless Response Filter (MVDR), also known as the optimal beamformer, is the
most well-known technique. It optimizes the output SNR ratio while ensuring a con-
sistent gain for the desired direction. However, it is sensitive to Direction of Arrival
(DOA) estimation errors and allows only one target signal to be acquired. The Linearly
Constrained Minimum Variance (LCMV) beamformer adds a linear constraint to the
MVDR beamforming to collect multiple target signals. To ensure the degrees of free-
dom of the LCMV beamformer, the number of microphones must exceed the number
of imposed constraints. It is shown that the Generalized Sidelobe Canceller (GSC)
proposed by Griffiths and Jim is essentially equivalent to the LCMV beamformer [20].
GSC provides an efficient way to implement LCMV and consists of two main parts: a
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fixed beamformer (wq) for generating non-adaptive outputs, and an adaptive module
that focuses on sidelobe suppression.

In [21], a conventional uniform linear array of omnidirectional microphones is dis-
cussed. In [22], Zhang et al. proposed a noise suppression algorithm that can subtract
background and music noise from speech samples by combining beamforming tech-
niques and multi-band spectral subtraction based on microphone arrays. In [23], a
novel two-channel spatial filtering method proves its value for speech enhancement.

2.1.3 Post-Filtering

In practice, beamformers often fail to achieve their theoretical optimal performance.
This performance gap is usually due to inaccurate assumptions about environmental
conditions or inaccurate steering vector estimation. It can be shown that the MVDR
beamformer is optimal in the maximum likelihood sense and produces the best SNR
for narrowband signals [24], but it cannot guarantee the best SNR for wideband signals
such as speech signals. The Multichannel Wiener Filter (MWF) beamformer is iden-
tified as the optimal linear filter under the MMSE criterion and can be decomposed
into an MVDR beamformer along with a single-channel post-Wiener filter [25]. In gen-
eral, the multi-channel Wiener beamformer can produce better SNR than the MVDR
beamformer, which is the motivation for discussing the post-filter in this section.

As introduced in the previous section, the design of the post-filter is based on the
assumption that the noise signal is incoherent [26] [27]. Fischer et al. studied the
combination of post-filtering and GSC to improve noise suppression in noise fields
dominated by coherent sources [28]. Bitzer et al. studied the solution of combining
superdirectional arrays with post-filtering [29].

In order to solve the problem that the assumption of an incoherent noise field is
often not valid in reality, McCowan and Bourlard [30] and Lefkimmistis and Maragos
proposed some new solutions by applying the diffuse noise coherence function to the
post-filter design. They proposed a generalized post-filter design.

2.1.4 Brief Conclusion

Advances in noise reduction and voice quality enhancement for mobile voice devices
have greatly benefited from spectral enhancement and spatial processing techniques.
Spectral enhancement methods, ranging from traditional approaches such as Wiener
filtering and spectral subtraction to modern algorithms based on machine learning,
play a vital role in mitigating noise in both single-microphone and multi-microphone
setups. While single-microphone solutions offer simplicity for specific scenarios, multi-
microphone techniques generally achieve superior performance by exploiting the spatial
diversity of sound sources. Spatial processing, particularly through various beamform-
ing techniques such as delay-and-sum, MVDR, and LCMV beamformers, effectively
isolate the desired signal by exploiting directional information, although challenges such
as sensitivity to errors in Direction of Arrival (DOA) estimation remain. To bridge the
performance gap between theory and practical implementations, post-filtering strate-
gies have been employed that enhance noise suppression and ensure robustness to slight
beamforming errors. Despite these advances, continued research is essential to address
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limitations associated with reverberation handling and adaptive performance in dy-
namic environments.

2.2 Principle of Room Acoustics Simulation

In this section, we introduce the important knowledge about room acoustic modeling.
Beginning with some assumptions, we introduce geometric methods and wave-based
methods, among which we focus on geometric modeling.

2.2.1 Ray-Wave Interchange Assumption

Sound is a sequence of pressure waves propagating through compressible media such
as air or water. The second-order partial differential equation shown below, known as
acoustic wave equations, describes the temporal and spatial changes in its propagation
through a lossless fluid.

∂2p

∂x2
− 1

c2
∂2p

∂t2
= 0, (2.2)

where p is the acoustic pressure, c is the speed of sound, x is the position and t is the
time.

Enclosed space sound fields can be modeled mainly by two algorithms: geometric
algorithms and wave-based algorithms [31]. The wave-based method finds the numer-
ical solution to the wave equation to recover wave phenomena such as interference
and diffraction without error, which has a great impact on low-frequency response
but comes with a high computational cost. In contrast, geometric methods are less
precise. It assumes here that the wave nature of sound is ignored to achieve some
simplified modeling of the behavior of sound, making sound waves equivalent to rays
or particles. This allows us to achieve faster simulations at the expense of lower ac-
curacy. Figure 2.1 illustrates the connections between the most widely used techniques.

Figure 2.1: Summary of Various Acoustic Simulation Techniques Categorized by Type

As the field of computer graphics advances, modeling waves as particles have been
proven successful. This technique is ideal for simulating relatively high-frequency waves
(such as visible light). Since the wavelength of these waves is typically many times
smaller than any surface in the scene, we can confidently say that wave phenomena can
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be ignored and modeled entirely as rays.
Audible sound frequencies, spanning from 20Hz to 20 kHz, correspond to wavelengths in
air that vary from 17m to 0.017m. Comparing sound wavelengths to the most common
surfaces, it is no longer suitable to ignore wave phenomena, which would otherwise lead
to significant approximation errors [32].
But in many cases, these inaccuracies are acceptable and necessary trade-offs. Wave
modeling is so computationally expensive that running large-scale simulations is out of
the reach of ordinary people except for professionals with mainframe computers. This
makes geometric methods the sole viable choice.

2.2.2 Geometric Methods

Geometric methods can be divided into two categories: stochastic methods and de-
terministic methods. Stochastic methods are usually based on statistical approxima-
tions. The purpose is to conduct random and continual sampling of the problem
space, preserve samples that adhere to specific correctness criteria, and discard the
non-conforming ones. By increasing the number of random samples, we can reduce the
probability of false results and increase accuracy. A good number of samples should
balance accuracy and operation speed.
The image source method is the main deterministic technique, searching exhaustively
for all possible precise reflection paths connecting the source and receiver. It works well
in shoebox-shaped rooms with completely rigid surfaces. However, this method is lim-
ited to modeling only specular reflections, neglecting the wave phenomenon. Therefore,
its accuracy is reduced for non-standard shoebox rooms, and it suffers from deficiencies
in calculating reverberation tails, which are mostly diffuse. Moreover, the method’s cost
escalates rapidly with higher reflection orders. Initially, the method mirrors the sound
source against all scene surfaces, creating various image sources. Subsequently, each
image source undergoes reflection against all surfaces, leading to a geometric increase
in computational demands for higher reflection orders. Because of these challenges,
the image-source method is best utilized for modeling early reflections. It is often com-
bined with stochastic technique to estimate the late part of the Room Impulse Response
(RIR) for a given scenario.
The wave-based method is accurate, but the computational cost is high at high fre-
quencies. The image-based model is not very accurate at low frequencies, but it can
greatly reduce the computational cost. Therefore, most geometric methods consider
combining the two to construct a computationally affordable and accurate RIR.

The image-source model

The image-source techniques seek to identify all completely specular pathways between
the source and the receiver. The image-source method assumes that sound travels
only in straight lines and that all surfaces are purely reflective, like the reflection of
light in a mirror, as shown in Figure 2.2. The sound traveling speed is fixed to the
corresponding physical constant. The energy of each ray falls off as a function of 1/r2,
which r is the distance the light travels.
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Figure 2.2: A sensor x and a speaker s are located next to a reflective wall. The image-source
s′ emulates the effects of the reflection of sound on the wall.

The ray creates a virtual source s′ “behind” the bounding surface when it is reflected.
Located on a line that intersects the wall perpendicularly, this source remains at the
same distance from the source s. Real sources and virtual sources (or mirror sources,
image sources) emit the same sound at the same time. If the source undergoes reflection
at only one boundary, it represents a first-order reflection. Acoustic rays can be reflected
multiple times before reaching the receiver. As the number of reflections increases, the
order of the virtual source generated by each reflection increases accordingly. Figure 2.3
shows a second-order image-source s3 model that is generated from a first-order virtual
s2 source. It is worth mentioning that not all higher-order sources are valid. During the
calculation, all high-level sources are listed in detail and their effectiveness is calculated
based on audibility test [33, page 202].

Figure 2.3: A sensor x and a speaker s1 are located next to a reflective wall. s2 is a first-order
virtual sources, and s3 is a second-order virtual sources.

Given the system of a speaker s, a sensor x, and an environment providing a reflec-
tion path, the impulse response, the impulse response h(n) is derived by summing the
impulses emitted from all sources.

h(n) =
I∑

i=1

hI(n) (2.3)

where I is the number of mirror sources considered in the model and hI(n) is the
impulse response between the i-th source and the receiver. The real source corresponds
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to the index i = 1, so h1(n) models the direct path. As all sources emit the same
sound simultaneously, the i-th source can be associated with several reflective surfaces
at one time. hI(n) models the amplitude variation of the delay and attenuation of the
source signal according to the distance between the source and receiver (i.e., the total
distance of the specular reflections), and models the frequency variation of the signal
according to the properties of the reflecting interface. In general, reflective surfaces
attenuate high-frequency content more. If the parameter 0 < γI(n) ≤ 1 represents
the combined effect of all the surfaces on the rays from the i-th source. Then,

hI(n) = γI(n) ∗
δ(t−∆i)

∥x− si∥
=

γi(t−∆i)

∥x− si∥
(2.4)

∆i =
∥x− si∥

c
. (2.5)

Where ∆i is the absolute time-of-arrival(TOA) of the i-th image source, ∥x− si∥ is the
distance between the receiver and the i-th source and ∗ denotes convolution. For real
sources, s1 = s and γ1(n) = 1.
However, employing a naive technique to locate all image sources in a scene is highly
demanding in computational terms. Its computational complexity is O(N o), where N
represents the number of reflection interfaces and o is the image source order. The
image-source model is used to calculate direct sound and early reflection.

Ray Tracer

The image-source method is based on deterministic “ray” modeling, while ray tracers
or ray tracing models sound energy propagation using stochastic “rays” modeling. It
involves simultaneously sending uniformly random rays in various directions throughout
a scene, moving at the speed of sound. Upon encountering a boundary, a ray loses part
of its energy based on the characteristics of the boundary material. These rays bounce
around, and only those that eventually hit the receiver are counted.
Ray tracing requires the receiver to have some volume, unlike the image-source method,
which can treat the receiver as a point. This is because the chance of a random ray
hitting exactly one point is extremely low but increases when the receiver occupies
some space.
The accuracy of this method increases linearly with the number of rays used since
more rays increase the probability of hitting the receiver. It is used as a beneficial
complement to the Image-Source Model to find the reverberation tail.

2.2.3 Wave-Based Methods

Wave-based simulation methods effectively take into account wave effects such as in-
terference and diffraction by numerically solving the wave equation [34] which leads
to higher response accuracy in low frequency. Wave effects are great for correctly
constructing the low-frequency response. Nevertheless, full spectrum wave-based sim-
ulations remain impractical, as the output frequency and the volume of the modeling
space increase, the computational overhead grows rapidly. Wave-based methods can be
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developed using Boundary Element Method (BEM), Finite Element Method (FEM),
or Finite-Difference Time-Domain (FDFD) techniques. BEM and FEM are often col-
lectively referred to as elemental methods.

2.3 Bluetooth Modeling

This section discusses the key concepts of Bluetooth channel estimation, focusing on
the impact of latency and signal-to-noise ratio (SNR) on communication performance.

Bluetooth Channel Estimation

The standardized wireless protocol is implemented according to the Bluetooth® Low-
Energy wireless standard.

Time latency

The microphone chain can be divided into three parts: the transmitter (abbreviated as
TX), the radio processor, and the receiver (abbreviated as RX) displayed in Figure 2.4.

The TX consists of the microphone and TX audio processing process, which may
consist of A/D conversion and encoding. The radio processor is through the Bluetooth
protocol. The receiver consists of the speaker and RX audio processing process, which
may consist of D/A conversion, decoding, combining the audio of multiple members in
the group, etc.

Figure 2.4: Microphone Chain

At the transmitter, buffering and audio encoding may cause extra delay τA, the
radio transmission by the Bluetooth protocol may incur a delay of τB, and several
audio functions, RX audio processing will introduce a delay of τC . For the TX audio
processing and Radio transmission, we could assume τA + τB ≈ 15ms, while the delay
τC will mainly be determined by what delay the audio processing algorithm adds.

SNR Ratio

The Signal-to-Noise Ratio (SNR) is defined as the ratio of the desired signal power to
the noise power and is usually expressed in decibels (dB). The calculation formula is
shown as below,

SNR = 10 log10

(
Psignal

Pnoise

)
(2.6)

When a device sends some information to another device through Bluetooth, a low
received SNR will lead to difficulty in decoding the information contained within the
signal without error. Bit Error Rate (BER) refers to the ratio of the number of error
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bits to the total number of transmitted bits. High BER can cause communication
failures.
According to Bluetooth Core Specification [35], a receiver must exhibit a BER of no
more than 0.1% at a signal strength of −70 dBm. The Minimum SNR(SNRout,min) for
the receiver analog front end can be calculated from the BER. This depends on the
different modulation schemes adopted by the standard and the assumed type of the
digital demodulation algorithm [36]. According to Zhang [37], optimal demodulation
requires an SNRout,min of 12 dB.
In conclusion, we can assume that the Bluetooth channel can be modeled as an impulse
response with a delay of 15ms.

2.4 Microphone Noise

We do not want to hear noise from the microphone. However, the microphone itself
always generates some noise which is the so-called self-noise. Self-noise is a signal
generated by the microphone itself, even when no sound source is present. Noise
mainly originates from the current running in the circuit, typically including the “shot
noise”, thermal noise, and Brownian noise.

• Shot Noise
“Shot noise” or Poisson noise is a type of noise that can be modeled by a Poisson
process. In electronic circuits, electric current is the flow of discrete charges
(electrons), and random fluctuations in current can cause shot noise [38]. In short,
the discrete nature of electric current causes shot noise. Compared with other
noise in circuits, such as thermal noise, discrete noise is generally insignificant
and independent of temperature and frequency.

• Thermal Noise
Thermal noise, also known as Johnson noise, is electronic noise produced by the
thermal agitation of charge carriers within an electrical conductor in equilibrium
and is present in all electrical circuits. The amount of thermal noise generated by
any given circuit element depends on its impedance and temperature. The higher
the impedance or the higher the temperature, the higher the thermal noise.

• Brownian Noise
Brownian noise, also known as Brown noise or red noise, is generated by the
movement of air molecules [39]. It occurs due to the air particles randomly hitting
or rubbing against the diaphragm, and it is insignificant.

Quantifying noise

To make a connection to the physical world, we need to know how noise is quantized.
This section mainly discusses the concepts of sound pressure level (SPL), perceptual
weighting function, and equivalent noise level.
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Sound Pressure Level

Because sound pressure amplitudes vary over large scales, microphone noise levels are
often expressed in decibels (Lp) rather than pascals. The expression is given by,

Lp = 10 log10(
p

p0
)2 (2.7)

where p is the sound pressure in pascals and p0 is the reference sound pressure of 20µPa.
On the decibel scale, the range of audible sounds gradually increases from p0 0 dB, which
corresponds to the hearing threshold. It is considered noisy in the range of 60 dB to
90 dB and painful to the human ear at about 130 dB. Although by definition, doubling
the sound pressure is equivalent to a 6 dB increase. However, if we want the sound
to subjectively appear twice as loud, we need to increase it by about 10 dB [40, page
137]. Because the human ear has different sensitivities to different frequencies, with the
most sensitive range being between 2 kHz and 5 kHz. To simulate the subjective human
experience of sound, a weighting function is often applied. Figure 2.5 [1] shows the most
common A weightings in the United States, the CCIR-468 (ITU-R 468) weightings in
Europe, and the inverse ISO 226 equal loudness contours.

Figure 2.5: Three weighting curves: A, CCIR-468, and the inverse of ISO 226. Adapted from
”A-weighting — Wikipedia, The Free Encyclopedia” [1].

Equivalent noise level

Different recording equipment has different performances. According to Neumann,
one of the world’s leading studio microphone manufacturers [41], overall recording
equipment noise levels are below.
Below 10 dB-A Noise below 10 dB-A is extremely low, and even recordings in a
very quiet environment may produce noise over 10 dB-A. Typically, extremely low
self-noise figures are only found with modern large-diaphragm condenser microphones.
11-15 dB-A is still very good. It may be possible to discern some slight noise in key
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places, but it’s generally unlikely to be heard throughout the mix.
16-19 dB-A is good enough for most purposes. When recording relatively quiet
sounds, some noise may be heard, but it’s usually not noticeable.
20-23 dB-A is a very high self-noise coefficient for a studio microphone, and the
performance of a microphone corresponding to this range cannot be called excellent.
Within this range, each decibel increase is different. Because perceptible noise levels
have been reached. This noise figure may be acceptable when recording loud sounds
but will cause a noticeable impact when recording quieter sounds.
24 dB-A and above: Such self-noise figures are unworthy for recording.

The self-noise for dynamic microphones is not commonly specified because their
noise performance largely depends on the microphone preamplifier used. From expe-
rience, dynamic microphones on ultra-low noise preamplifiers can achieve self-noise
values of around 18 dB-A.

2.5 Speech Signal

In this section, we mainly introduce the knowledge related to speech signals in modeling,
including empirical data obtained from well-known headphone manufacturers and point
sound source attenuation rules.

2.5.1 Speech Volume

According to Shure, one of the leading manufacturers of audio electronics [42], typical
dBA readings for speech are shown below,

• Maximum shout = 90 dBA at one meter (roughly 40 inches)

• Shout = 84 dBA at one meter

• Very Loud = 78 dBA at one meter

• Loud = 72 dBA at one meter

• Raised = 66 dBA at one meter

• Normal = 60 dBA at one meter

• Relaxed = 54 dBA at one meter

Other dBA readings can be estimated as follows: if the distance is divided by 2, the
level increases by 6 dB. Example: Maximum Shout at 0.5meter = 96 dB SPL.

2.5.2 Sound Attenuation from a Point Source

As introduced in section 2.4, the unit of actual microphone noise is the sound pressure
level (SPL). However, to calculate the Room Impulse Response (RIR) in the Python
library pyroomacoustics, we need to convert SPL to SNR. The SNR of the received
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audio signal to the local microphone noise for each user can be calculated using the
sound attenuation rule from a point source.

A sound source can be modeled as a point source if its dimension is small compared
with the distance between the source and receiver. An omnidirectional point source
uniformly radiates the sound to all directions in the space. Under free field conditions
(i.e. ideal conditions without reflection and absorption), the sound attenuation from
a point source can be estimated using the inverse square law, the formula of which is
shown as

LP (2) = LP (1) − 20× log10

(
R2

R1

)
, (2.8)

where:

• LP (2) is the estimated sound pressure level at position 2 whose distance to the
source is R2.

• LP (1) is the measured sound pressure level at position 1 whose distance to the
source is R1.

• R2 is the distance between position 2 to the source.

• R1 is the distance between position 1 to the source.

Figure 2.6: schematic diagram of sound attenuation of a point source

An example is given here. Combining the information provided before, the sound
pressure level received at a distance of 3meters from a person speaking at a normal
volume is approximately 50.5 dBA.

LP (2) = LP (1) − 20× log10

(
R2

R1

)
= 60− 20× log10 3

= 50.5 dBA

(2.9)
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Given the microphone self-noise info, the SNR at the given position is about 32.5 dB.

SNRdB = 20× log10

(
ps
pn

)
= 20× log10

(
ps
p0
pn
p0

)

= 20×
(
log10

(
ps
p0

)
− log10

(
pn
p0

))
= LP (s) − LP (n)

= 50.5− 18

= 32.5 dBA

(2.10)
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Problem Formulation 3
In modern group communication systems (such as DGC), due to the complex acoustic
structures involved, understanding how audio signals converge at the receiver and iden-
tifying the echo sources are often crucial for designing algorithms to solve the problem.
This chapter aims to address the acoustic structure problem in a multi-user environ-
ment in a DGC system and develop a mathematical model to represent the audio signal
at the receiver.
For a linearly uniformly distributed microphone array, we can effectively extract the
target signal through beamforming. In the DGC scenario, we have a system that mixes
Bluetooth channels and acoustic channels. For such a system where different types of
communication media or protocols work together to transmit data in a communica-
tion system, we can call it a heterogeneous communication link. By abstracting the
Bluetooth channel into a virtual acoustic channel, we transform the dereverberation
and noise reduction task in the heterogeneous communication link into an equivalent
microphone array problem and lay the foundation for the beamforming solution.

3.1 Single Speaker Case Signal Model

For simplicity, we assume only 3 users, A, B, and C, are involved here. Suppose A
is speaking, B is listening, and C is a bystander. The signal emitted from user A is
termed sA(n), and the signal received by user B is termed xB(n).

Let the following variables be defined as

• hacous.
ij (n) represents the impulse response of the air acoustic path from position i

to microphone j. A time delay is possibly contained in the impulse response. It is
a general form for hacous.

AA (n), hacous.
AB (n), hacous.

AC (n) , hacous.
IA (n), hacous.

IB (n), hacous.
IC (n),

the subscript A,B,C means user A, B, C, and I means interference source.
It is worth mentioning that when i = j, it refers to the acoustic transfer function
from the speaker’s mouth to the speaker’s microphone, such as hacous.

AA (n). It de-
pends on the microphone geometry design and is assumed as an impulse response
for the moment.

• hBT (n) is the digital transmission function that models the Bluetooth channel’s
effect, such as filtering, modulation, and demodulation with a time delay intro-
duced by Bluetooth transmission.

• htr.(n) is the impulse response of the transparency mode. Transparency mode is
an optional mode that allows the user to actively pick up external ambient noise
and play it inside the ear canal, helping the user to perceive possible dangers in
the environment.
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• nI(n) is the interference source.

• nA(n), nB(n), nC(n) are the microphone self-noise.

3.1.1 Received Signal at Listener B (No Leakage From Loudspeaker)

Voice leakage from the user’s speaker to its own microphone is often related to
the headset shape design and the microphone distribution. According to Dopple, we
do not consider the speech leakage from the speaker to its own microphone in this work.

Figure 3.1: echoes at listener B with user A speaking, excluding leakage from loudspeaker to
MIC, VPU

With each signal component representing a transmission path, the signal of interest
picked up at listener B xB(n) can be represented as,

xB(n) = x1
B(n) + x2

B(n) + x3
B(n), (3.1)

where x1
B(n), x

2
B(n), x

3
B(n) are the sub-signals defined below.

For path 1 (transparency mode), x1
B(n) represents the voice that reaches the recip-

ient via sound waves through the air.

x1
B(n) = (sA(n) ∗ hacous.

AB (n) + nI(n) ∗ hacous.
IB (n) + nB(n)) ∗ htr.(n) (3.2)

For path 2, x2
B(n) represents the voice picked up by the speaker’s microphone and

sent digitally via Bluetooth to the recipient.

x2
B(n) = (sA(n) ∗ hacous.

AA (n) + nI(n) ∗ hacous.
IA (n) + nA(n)) ∗ hBT (n) (3.3)
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Figure 3.2: A schematic construction of signal xB

For path 3, x3
B(n) represents the voice picked up by the bystander’s microphone and

sent digitally via Bluetooth to the recipient.

x3
B(n) = (sA(n) ∗ hacous.

AC (n) + nI(n) ∗ hacous.
IC (n) + nC(n)) ∗ hBT (n) (3.4)

A schematic construction of signal xB is given in Figure 3.2.
The listener hears the echo because the signal it receives is multichannel, and cou-

pling between these signals through channels deforms them into deformed copies of
each other. Therefore, in this scenario, the algorithm runs on the listener’s hardware,
and the signal we know is the signal received by the listener, or more precisely, we
know every single signal transmitted through different channels. The signal we want to
recover is the sound emitted by the speaker. This then leads to the problem of finding
an estimate of the clean target signal sA(n), given xB(n).
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3.1.2 Signal in Matrix Form

The above-described signals are separated and represented individually. In matrix form,
the signals should be written as follows,

xB(n) =

 x2
B(n)

x1
B(n)

x3
B(n)


=

 hacous.
AA (n) ∗ hBT (n)
hacous.
AB (n) ∗ htr.(n)

hacous.
AC (n) ∗ hBT (n)

 ∗ sA(n) +
 hacous.

IA (n) ∗ hBT (n)
hacous.
IB (n) ∗ htr.(n)

hacous.
IC (n) ∗ hBT (n)

 ∗ nI(n) +

 nA(n) ∗ hBT (n)
nB(n) ∗ htr.(n)
nC(n) ∗ hBT (n)


= a(n) ∗ sA(n) + b(n) ∗ nI(n) + v(n)

= a(n) ∗ sA(n) + n(n)
(3.5)

where xB(n), a(n),b(n),v(n),n(n) ∈ R3, sA(n), nI(n) ∈ R. a is the transfer function
from talker A to listener B, b(n) is the transfer function from the interference source
to listener B, v is the microphone self-noise, and n is the overall noise which contains
two parts, the environmental noise caused by external interference source and system
noise caused by devices itself. sA is the talker itself signal.

We want to transform the signal from the time domain to the frequency domain
to facilitate the following processing. Since the signal we are dealing with is a speech
signal, which is a non-stationary signal. However, in a short period (such as 20ms to
30ms), we can assume that the frequency of the signal will not change, which means
that we need to perform a Discrete Fourier transform (DFT) on the short time frames
of the signal, that is, Short-Time Fourier Transform (STFT).
Knowing Bluetooth channel hBT (n) can be modeled as a pure delay hBT (n) = δ(n−n1).
Defining ∆BT (k) = e−j2πkn1/K , where K represents the FFT length in STFT, the signal
model can be represented as,

xB(k, l) =

 X2
B(k, l)

X1
B(k, l)

X3
B(k, l)


=

 Hacous.
AA (k, l)∆BT (k)

Hacous.
AB (k, l)H tr.(k, l)

Hacous.
AC (k, l)∆BT (k)

SA(k, l) +

 Hacous.
IA (k, l)∆BT (k)

Hacous.
IB (k, l)H tr.(k, l)

Hacous.
IC (k, l)∆BT (k)

NI(k, l)

+

 NA(k, l)∆
BT (k)

NB(k, l)H
tr.(k, l)

NC(k, l)∆
BT (k)


= a(k, l)SA(k, l) + b(k, l)NI(k, l) + v(k, l)

= a(k, l)SA(k, l) + n(k, l)
(3.6)

where k represents the frequency index, l represents the time index.
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We note a simple fact that the received signal xB(k, l) can be decomposed into a
basic pattern as follows,

xB(k, l) = a(k, l)SA(k, l) + b(k, l)NI(k, l) + v(k, l)

= a(k, l)SA(k, l) + n(k, l),
(3.7)

which is a combination of three components: target signal, interference signal, and
self-noise. Based on this basic abstraction, we can easily extend the signal model as
follows.

First, in our study, the main goal is echo cancellation within the system. One mi-
crophone per user is enough to form a three-channel system, forming a beamforming
solution. However, it can be foreseen that as the number of microphones increases,
the quality of beamforming can be improved because the available information in-
creases. Assuming M microphones in use per user will cause our subchannels to
change from X1

B(k, l), X
2
B(k, l), X

3
B(k, l) ∈ R to x1

B(k, l),x
2
B(k, l),x

3
B(k, l) ∈ RM , mak-

ing xB(k, l), a(k, l),b(k, l),v(k, l),n(k, l) ∈ R3M

Secondly, the analysis we conducted at the beginning is the simplest case, that is,
there are only 3 people involved in the system, but the system is designed for group
communication, and the number of people considered is not less than 3 and not more
than 10. Therefore, if the system involves N people, we need to introduce N − 2
bystanders. The increased number of bystanders should be accounted for in x3

B(k, l),
so the dimension of x3

B(k, l) expands from RM to R((N−2)M).

xB(k, l) =

 x2
B(k, l)

x1
B(k, l)

x3
B(k, l)


=

 hacous.
AA (k, l)∆BT (k)

hacous.
AB (k, l)H tr.(k, l)
hacous.
AC (k, l)∆BT (k)

SA(k, l) +

 hacous.
IA (k, l)∆BT (k)

hacous.
IB (k, l)H tr.(k, l)
hacous.
IC (k, l)∆BT (k)

NI(k, l)

+

 nA(k, l)∆
BT (k)

nB(k, l)H
tr.(k, l)

nC(k, l)∆
BT (k)


= a(k, l)SA(k, l) + b(k, l)NI(k, l) + v(k, l)

= a(k, l)SA(k, l) + n(k, l)
(3.8)

where x1
B(k, l),x

2
B(k, l) ∈ RM , x3

B(k, l) ∈ R((N−2)M). We use
hexample to represent the stacked microphone array transfer functions for
hacous.
AA ,hacous.

AB ,hacous.
AC ,hacous.

IA ,hacous.
IB ,hacous.

IC and nexample to represent the stacked
noises for nA,nB,nC as following,

hexample =

H1
...

HM

 , nexample =

N1
...

NM

 (3.9)
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Note that we have now reformulated the problem into the well-known form of x =
as+ n with s noting the target and x noting the received signal.

3.2 Multiple Speakers Case Signal Model

The above analysis is based on a single sound source, but in reality, multiple speakers
may be speaking simultaneously, which requires introducing more sound sources.

3.2.1 Received Signal at Listener B (No Leakage from the Loudspeaker)

Figure 3.3: Echo at listener B with users A and C talking simultaneously, excluding leakage
from speaker to MIC, VPU

There are 2 sources, sA(n) at talker A and sC(n) at speaker C. Compared with only
one talker A, in Figure 3.3 there are additional components x4

B(n) and x5
B(n). Thus a

few changes are made to the signal model. Again, xB(n) is the signal of interest picked
up by listener B. With each signal component representing a transmission path, the
signal received at user B is given by,

xB(n) = x1
B(n) + x2

B(n) + x3
B(n) + x5

B(n). (3.10)

For path 1 and path 5, these paths are both acoustic paths from different uses to
listener B, thus can be combined. Speaker C’s sound travels through the air to B’s
position and is actively picked up by transparency mode. Thus the

x1
B(n) + x5

B(n) = (sA(n) ∗ hacous.
AB (n) + sC(n) ∗ hacous.

CB (n) + nI(n) ∗ hacous.
IB (n) + nB(n)) ∗ htr.(n)

(3.11)

For path 2, speaker C’s sound travels through the air to A’s microphone due to
path 4 and is mixed with path 2 before being transmitted to B’s speaker through the
Bluetooth channel. Thus x2

B(n) can be reformatted as,

x2
B(n) = (sA(n) ∗ hacous.

AA (n) + sC(n) ∗ hacous.
CA (n) + nI(n) ∗ hacous.

IA (n) + nA(n)) ∗ hBT (n).
(3.12)
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For path 3, in addition to the original content, speaker C’s sound is picked up
and travels through the Bluetooth channel path 3 to listener B. Thus x3

B(n) can be
reformatted as,

x3
B(n) = (sA(n) ∗ hacous.

AC (n) + sC(n) ∗ hacous.
CC (n) + nI(n) ∗ hacous.

IC (n) + nC(n)) ∗ hBT (n).
(3.13)

A schematic construction of signal xB is given in Figure 3.4.

Figure 3.4: A schematic construction of signal xB with additional speaker C

Compared with the previous scenario in section 3.1, the change here is that we have
to restore an additional signal source sC(n). To be precise, we do not need to restore
the separate copies of these two signals sA(n) and sC(n), but a combination of them,
in the situation that the xB(n) is known.

3.2.2 Signal in Matrix Form

The above-described signals are separated and represented individually. Inheriting the
previously extended multi-microphone and multi-spectator viewpoints, the signal in
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matrix form should be written as follows,

xB(n) =

 x2
B(n)

x1
B(n) + x5

B(n)
x3
B(n)


=

 hacous.
AA (n) ∗ hBT (n)
hacous.
AB (n) ∗ htr.(n)

hacous.
AC (n) ∗ hBT (n)

 ∗ sA(n) +
 hacous.

CA (n) ∗ hBT (n)
hacous.
CB (n) ∗ htr.(n)

hacous.
CC (n) ∗ hBT (n)

 ∗ sC(n)
+

 hacous.
IA (n) ∗ hBT (n)
hacous.
IB (n) ∗ htr.(n)

hacous.
IC (n) ∗ hBT (n)

 ∗ nI(n) +

 nA(n) ∗ hBT (n)
nB(n) ∗ htr.(n)
nC(n) ∗ hBT (n)


= aA(n) ∗ sA(n) + aC(n) ∗ sC(n) + b(n) ∗ nI(n) + v(n)

= aA(n) ∗ sA(n) + aC(n) ∗ sC(n) + n(n)

(3.14)

where x1
B(n),x

2
B(n),x

5
B(n) ∈ RM , x3

B(n) ∈ R((N−2)M), xB(n), aA(n), aC(n),
b(n),v(n),n(n) ∈ RNM .

Using STFT, the Equation 3.14 can be transformed from the time domain to the
STFT domain, as shown below.

xB(k, l) =

 x2
B(k, l)

x1
B(k, l) + x5

B(k, l)
x3
B(k, l)


=

 hacous.
AA (k, l)∆BT (k)

hacous.
AB (k, l)H tr.(k, l)
hacous.
AC (k, l)∆BT (k)

SA(k, l) +

 hacous.
CA (k, l)∆BT (k)

hacous.
CB (k, l)H tr.(k, l)
hacous.
CC (k, l)∆BT (k)

SC(k, l)

+

 hacous.
IA (k, l)∆BT (k)

hacous.
IB (k, l)H tr.(k, l)
hacous.
IC (k, l)∆BT (k)

NI(k, l) +

 nA(k, l)∆
BT (k)

nB(k, l)H
tr.(k, l)

nC(k, l)∆
BT (k)


= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + b(k, l)NI(k, l) + v(k, l)

= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + n(k, l)
(3.15)

In section 3.1, we considered the extensions based on the microphone and bystander
and noticed a basic signal composition pattern, where the received signal contains a
combination of the target signal, the interference signal, and the self-noise.

xB(k, l) = a(k, l)SA(k, l) + b(k, l)NI(k, l) + v(k, l)

= a(k, l)SA(k, l) + n(k, l).
(3.7)

For scenarios with multiple signal sources, the expressions can be expanded accord-
ingly. If the system concerns N people in total, the signal model of xB(k, l) can be
written as:

xB(k, l) = A(k, l)s(k, l) + b(k, l)NI(k, l) + v(k, l)

= A(k, l)s(k, l) + n(k, l).
(3.7)
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where A(k, l) aggregates all the individual channel responses into a single matrix:
A(k, l) = [aA(k, l), aC(k, l)]. s(k, l) is the vector of all speech signals: s(k, l) =
[SA(k, l), SC(k, l)]

T

3.3 Chapter Summary

In this chapter, we first abstract the Bluetooth channel into a virtual acoustic channel,
laying the foundation for the following methodology chapter. Next, we build a complete
acoustic signal model for the DGC system in different scenarios and give problem
formulations. For the three-user case(one speaker, one listener, and one bystander),
the signal received by the listener is decomposed into contributions in vector form from
multiple transmission paths, including the acoustic path (via Transparency mode) and
the digital path (via Bluetooth). Noise and interference components are explicitly
incorporated into the model.
For multiple active loudspeakers, the signal model is extended by introducing additional
transmission paths. The task changes from isolating a single clean signal to estimating
the combination of multiple signals perceived by the listener.
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Proposed Methods 4
In the previous chapter, we systematically modeled the signal model in the entire system
and formulated the problem. Based on the signal model, we will propose solutions for
different scenarios in this chapter. The following mainly introduces the MVDR, LCMV,
and MWF beamformers and the noise covariance matrix estimation.
Before proposing the methods, we need to make some assumptions here. In our work,
we assume the target signals sA(n), sC(n) and noise signal n(n) ∈ n(n) are uncorrelated.
The signal v(n) is zero-mean Gaussian noise. All signals considered in the work are
broadband signals. Here, Acoustic Transfer Functions (ATFs) represents the direct
acoustic path from the source to each microphone, while Relative Acoustic Transfer
Functions (RTFs) is the normalized version of ATFs to the reference microphone.

4.1 Minimum Variance Distortionless Response Fil-
ter(MVDR)

The Minimum Variance Distortionless Response Filter (MVDR) beamformer, alterna-
tively called the Capon beamformer [43], seeks to minimize the beamformer’s output
power under the condition of a single linear constraint on the array’s response to the
target signal. The MVDR beamformer can be generalized to the Linearly Constrained
Minimum Variance (LCMV) beamformer developed by Er and Cantoni [44], which
imposes multiple linear constraints. The MVDR is a commonly used technique for
beamforming in array processing, allowing the microphone array to recover the signal
coming from the direction of the target source. However, in our case, the beamformer
tries to extract the signal of interest by taking the different channels as the input of
the MVDR.

In theory, with the prior knowledge of the desired sources and ATFs, the MVDR
beamformer is possible to achieve dereverberation and noise cancellation perfectly.
With the MVDR, it is also possible to recover any component at the microphone
X1(k, l), X2(k, l), X3(k, l) . . . XN(k, l) when the corresponding channel is chosen as the
reference channel. We want to recover the clean target signal SA(k, l) copy in one
speaker source case and achieve noise reduction. Thus, we shall choose the channel with
the highest SNR as the reference channel [45]. This leads to selecting the Bluetooth
channel X1(k, l), which frames the problem as recovering hacous.

AA (k, l)hBT (k, l)sA(k, l),
given xB(k, l).

4.1.1 Filter Design

The objective of beamforming here is to construct a left-inverse wH(k, l) of a(k, l) such
that wH(k, l)a(k, l) = 1 and hence wH(k, l)xB(k, l) = SA(k, l).
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ŜA(k, l) = wH(k, l)xB(k, l)

= wH(k, l) (a(k, l)SA(k, l) + n(k, l))

= wH(k, l)a(k, l)SA(k, l) +wH(k, l)n(k, l)

(4.1)

Here a(k, l) is called the acoustic transfer function. However, in many applications,
it is not possible to know exactly the ATFs. Thus, we are interested in the relative
acoustic transfer function, which is normalized with respect to a reference location,
concerning one of the microphones. As demonstrated before, using the highest SNR
channel as the reference channel will lead to taking hacous.

AA (k, l)e−j2πkn1/KSA(k, l) as
the reference signal, so the RTFs is given below,

a′(k, l) = [1, A2(k, l)/A1(k, l), ..., AM(k, l)/A1(k, l)]
T (4.2)

The estimated signal ŝ(k, l) can be written as follows,

ŜA(k, l) = wH(k, l)

 1
hacous.
AB (k, l)H tr.(k, l)hacous.−1

AA (k, l)∆BT (k)
hacous.
AC (k, l)hacous.−1

AA (k, l)

S ′
A(k, l) + n(k, l)


= wH(k, l) (a′(k, l)S ′

A(k, l) + n(k, l))

= wH(k, l)a′(k, l)S ′
A(k, l) +wH(k, l)n(k, l)

(4.3)

where S ′
A(k, l) is SA(k, l)h

acous.
AA (k, l)e−j2πkn1/K

After applying the filter, one more noise residue term is left which is wH(k, l)n(k, l)
as shown above. It automatically leads to the optimization problem below.

J = E{|wH(k, l)x(k, l)|2}
= wH(k, l)Rx(k, l)w(k, l)

(4.4)

The optimization problem is given by minimizing the output signal power and keep-
ing the gain in the desired direction at 1.

min
w(k,l)

J(w(k, l))

s.t. w(k, l)Ha′(k, l) = 1
(4.5)

To find the optimization problem solution, we should construct the Lagrange function
and set its derivative to 0, that is,

d

dwH(k, l)

{
J(w(k, l)) + λ

(
wH(k, l)a′(k, l)− 1

)}
= Rx(k, l)w(k, l) + λa′(k, l) = 0

w(k, l) = −R−1
x (k, l)λa′(k, l).

(4.6)
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Now we can use the constraint: wH(k, l)a′(k, l) = 1, we can have a′H(k, l)w(k, l) =
−a′(k, l)HR−1

x (k, l)λa′(k, l) = 1. Thus, we can represent λ as,

λ = − 1

a′H(k, l)R−1
x (k, l)a′(k, l)

⇒ w(k, l) =
R−1

x (k, l)a′(k, l)

a′H(k, l)R−1
x (k, l)a′(k, l)

(4.7)

Given the relation between the matrix Rx(k, l) and Rn(k, l) that Rx(k, l) =
Rn(k, l) + a′(k, l)a′H(k, l)σ2

s(k, l), using the matrix inversion lemma, the equation can
be expressed as

w(k, l) =
Rn(k, l)

−1a′(k, l)
(
1− a′H(k,l)Rn(k,l)−1a′(k,l)σ2

s(k,l)
1+a′H(k,l)Rn(k,l)−1a′(k,l)σ2

s(k,l)

)
a′H(k, l)Rn(k, l)−1a′(k, l)

(
1− a′H(k,l)Rn(k,l)−1a′(k,l)σ2

s(k,l)
1+a′H(k,l)Rn(k,l)−1a′(k,l)σ2

s(k,l)

)
=

Rn(k, l)
−1a′(k, l)

a′H(k, l)Rn(k, l)−1a′(k, l)

(4.8)

Equation 4.8 shows that MVDR performance does not necessarily depend on the noisy
covariance matrix Rx(k, l), and the noise matrix Rn(k, l) will serve as an alternative
method to calculate the result. It can be shown that the Equation 4.7 is actually
equivalent to the Equation 4.8 in case of uncorrelated noise with respect to the target
signal and precise estimation on steering vector [46]. However, if the steering vector
estimation is imprecise, the Equation 4.7 leads to performance degradation and target
cancellation [47]. The usage of the noise covariance matrix can provide more robustness,
but it is harder to estimate in practice [48].

Thus,

w(k, l) =
R−1

x (k, l)a′(k, l)

a′H(k, l)R−1
x (k, l)a′(k, l)

=
Rn(k, l)

−1a′(k, l)

a′H(k, l)Rn(k, l)−1a′(k, l)

(4.9)

4.1.2 Estimation of RTFs

A precise estimation of the RTFs is crucial to the MVDR’s performance, as it helps
steer the beamformer to the source direction and preserve spatial information. A poor
estimation on a(k, l) will normally lead to the severe performance degradation of the
beamformer.

Before we jump into RTFs, the autocorrelation matrix of microphone signals should
be elaborated on. The autocorrelation matrix of the microphone signals in “speech
and noise periods” and “noise only period” is necessary to construct the beamformer.
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The autocorrelation matrix of microphone signals in “speech and noise periods”,
the desired speech component, and the noise component can be written as,

RxB
= E{xBxB

H}
Rs = E{xSxS

H}
Rn = E{xnxn

H},
(4.10)

where xS is the target signal component of the received signal, and xn is the noise
residual component.

• Subspace-based RTFs Estimation: A subspace-based RTFs estimator is
based on the Generalized Eigenvalue Decomposition (GEVD) method for matrix
pair (RxB

,Rn). That is,

R−1
n RxB

U = UΛ (4.11)

where Λ and U are the eigenvalue and eigenvector matrix pair of the covariance
matrix R−1

n RxB
. In practice, the noise presented is not necessarily white noise.

However, by performing GEVD on (RxB
,Rn), pre-whitening is achieved.

Under the assumption that signal and noise are uncorrelated, the covariance ma-
trix RxB

of the received microphone is given by,

RxB
= U−HΛU−1

= QΛQH

= Q(Λs + IM)QH

= QΛsQ
H +QQH

= Rs +Rn

(4.12)

where Q = U−H = (q1, . . . ,qM), qi ∈ CM is the left eigenvector matrix. Defining
σ2
s = E[||s||2] as the signal power, σ2

n = E[||n||2] as the noise power, by definition,
we have the noisy covariance matrix after pre-whitening as,

RxB
= Rs +Rn

= σ2
sa

′a′H + σ2
nI

(4.13)

Based on the single source assumption, the matrix Rs is rank-1. By taking the
eigenvector corresponding to the largest eigenvalue of the matrix R−1

n RxB
as the

RTFs vector, the RTFs vector can be estimated as,

a′ =
q1

eT1 q1

with e1 = [1, 0, . . . , 0]T (4.14)

Where q1 is the principal eigenvector corresponding to the largest eigenvalue of
Λ. In practice, the covariance matrix is estimated by taking the average of the
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time frames for each frequency bin. Thus, the rank-1 assumption does not nec-
essarily hold even for the single source case. Nevertheless, selecting the principal
eigenvector corresponding to the largest eigenvalue of the matrix R−1

n Rx is still
a good estimation of the source RTFs vector, which points more to the signal
component than the noise component [49].

• Minimum Distortion-Based RTFs Estimation: The minimum distortion-
based RTFs estimation is based on minimizing the distortion between the esti-
mated signal and the desired signal [50]. The following optimization problem
induces a so-called spatial prediction vector [51],

argmin
a′

E[(xB − a′x2
B)

H(xB − a′x2
B)]. (4.15)

Which is

a′ =
Rse1

eT1Rse1
(4.16)

To compute Equation 4.16, the signal covariance matrix Rs is required. Assuming
we have an estimation of the noise covariance matrix Rn, given the relationship in
Equation 4.12, the signal covariance matrix can be estimated by the GEVD-based
subspace method under the rank-1 assumption.

Rs = Q(diag(max(λ1 − 1, 0), 0, . . . , 0)QH (4.17)

where Q = U−H = (q1, . . . ,qM),qi ∈ CM is the left eigenvector.

• SCFA: A few new methods such as simultaneous confirmatory factor analysis
(SCFA) [52] could jointly estimate the RTFs and PSDs of sources. However, the
problem formulation is not convex, and the computational complexity is high.
Thus, it is not suitable for use in real-time applications.

In the experiment, we use the subspace-based RTFs estimation method, as the
explicit use of Rs(k, l) in the minimum distortion-based RTFs estimation method can
decrease the beamformer performance.

4.1.3 Limitation of MVDR

MVDR beamformer is a good solution to the single-speaker scenario, but it gets stuck
in a two-speaker scene. As the MVDR beamformer can only preserve one target signal
from the reference microphone. That is why we investigate the use of the LCMV
beamformer for a two-speaker solution.

4.2 Linear-Constraint Minimum-Variance(LCMV)

The well-known MVDR beamformer imposes the single constraint to the desired signal.
The intention of the MVDR beamformer is to ensure that the signal passes without dis-
tortion in a specified direction while minimizing the output power, thereby suppressing
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interference from other directions. However, the MVDR filter has only one constraint,
which is to maintain a constant gain in the specified direction. Therefore, it may have
limited performance in the presence of other interference or if we want to preserve more
signals of interest from different directions. The Linearly Constrained Minimum Vari-
ance (LCMV) beamformer extends the concept of MVDR by adding multiple linear
constraints to ensure the filter maintains specific responses in various directions.

4.2.1 Filter Design

Let us first review Equation 3.15,

xB(k, l) =

 x2
B(k, l)

x1
B(k, l) + x5

B(k, l)
x3
B(k, l)


= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + b(k, l)NI(k, l) + v(k, l)

= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + n(k, l)

(3.15)

A signal xB(k, l) consists of two desired signal sources SA, SC , an interference source
NI , and some noise. The target signals are distributed in different channels; thus, we
cannot preserve target signals simultaneously with the MVDR beamformer.

Assuming we have d sources received by M ′ microphone, where M ′ = (2 +
#bystanders)M . The objective of the beamformer is to recover a mixture ofKd < d de-
sired sources and the number of undesired sources is Ku = d−Kd. To give a generalized
illustration, the Equation 3.15 should be extended as follows,

xB(k, l) = A(k, l)s(k, l) + n(k, l)

= z(k, l) + n(k, l)
(4.18)

where

xB(k, l) = [XB1(k, l) XB2(k, l) . . . XBM ′(k, l)]T

A(k, l) = [a1(k, l) a2(k, l) . . . aM′(k, l)]T

am′(k, l) = [A1,m′(k, l) A2,m′(k, l) . . . Ad,m′(k, l)]T

s(k, l) = [S1(k, l) S2(k, l) . . . Sd(k, l)]
T

n(k, l) = [N1(k, l) N2(k, l) . . . Nd(k, l)]
T

z(k, l) = [Z1(k, l) Z2(k, l) . . . ZM ′(k, l)]T

Zm′(k, l) = aT
m′(k, l)s(k, l)

and Ad,m′(k, l) is the acoustic transfer function from source d to the microphone m′.
The steering vector constraint condition can be constructed by a column vector

f(k, l) of length d to preserve the signal from the directions of interest, while the rest
degrees of freedom to minimize the influence of interference source and the additive
noise to the array output as follows,

min
w(k,l)

wH(k, l)Rn(k, l)w(k, l)

s.t. wH(k, l)A(k, l) = fH(k, l)
(4.19)
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Where A(k, l) ∈ CM ′×d, and f(k, l) = [A∗
1,1 . . . A∗

Kd,1
(k, l) 0 . . . 0]T . Thus, the

spatial filtering is expanded from signal direction to multiple directions. In case d < M ′,
Equation 4.19 has a closed-form solution:

w(k, l) = R−1
n (k, l)A(k, l)

(
A(k, l)R−1

n (k, l)A(k, l)
)−1

f(k, l). (4.20)

As demonstrated in Section 4.1, it is attractive to use RTFs to replace ATFs. Thus each
microphone’s steering vector am′(k, l) can be divided by the reference channel, which
makes the d constraint condition wH(k, l)A(k, l) = fH(k, l) the following format,

wH(k, l)A′(k, l) = f ′
H
(k, l) (4.21)

where

A′(k, l) =


1 · · · 1

A1,2(k,l)

A1,1(k,l)
· · · Ad,2(k,l)

Ad,1(k,l)
...

. . .
...

A1,M′ (k,l)

A1,1(k,l)
· · · Ad,M′ (k,l)

Ad,1(k,l)

 (4.22)

and vector f ′(k, l) indicates desired and undesired signals,

f ′ = [1 . . . 1︸ ︷︷ ︸
Kd

0 . . . 0︸ ︷︷ ︸
Ku

]T . (4.23)

Note that Equation 4.22 allows us to perform an executable RTFs estimate, whereas
accurate ATFs estimation is generally challenging.

4.2.2 Limitations of LCMV

The improvement from ATFs to RTFs makes LCMV beamformer an applicable tech-
nique in practice. There are various techniques we can use in practice to identify RTFs
[53, 18, 54]. All techniques require a reference microphone, which is usually chosen as
the one with the highest input SNR.

However, in the case of multiple target speakers, for distributed microphone array
systems or large-aperture microphone systems, we may need to select different reference
microphones according to different speakers. More specifically, in the Equation 3.14 the
highest energy of different speakers is marked in the block.
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xB(k, l) =

 x2
B(k, l)

x1
B(k, l) + x5

B(k, l)
x3
B(k, l)


=

 hacous.
AA (k, l)∆BT (k)

hacous.
AB (k, l)H tr.(k, l)
hacous.
AC (k, l)∆BT (k)

SA(k, l) +

 hacous.
CA (k, l)∆BT (k)

hacous.
CB (k, l)H tr.(k, l)

hacous.
CC (k, l)∆BT (k)

SC(k, l)

+

 hacous.
IA (k, l)∆BT (k)

hacous.
IB (k, l)H tr.(k, l)
hacous.
IC (k, l)∆BT (k)

NI(k, l) +

 nA(k, l)∆
BT (k)

nB(k, l)H
tr.(k, l)

nC(k, l)∆
BT (k)


= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + b(k, l)NI(k, l) + v(k, l)

= aA(k, l)SA(k, l) + aC(k, l)SC(k, l) + n(k, l)

= A(k, l)s(k, l) + n(k, l)
(3.15)

The relative transfer function A′(k, l) should be then defined as follows,

A′(k, l) = [a′
A(k, l), a

′
C(k, l)]

a′
A(k, l) =

[
1,

A12(k, l)

A11(k, l)
,
A13(k, l)

A11(k, l)

]T
a′
C(k, l) =

[
A21(k, l)

A23(k, l)
,
A22(k, l)

A23(k, l)
, 1

]T (4.24)

However, in practice, estimating the multiple references RTFs is challenging. To
distinguish the different reference microphones we need to estimate the true ATFs for
each microphone, which is a known-to-all difficult question.

4.3 Multiple Channel Wiener Filter (MWF)

To overcome the dilemma of multiple speakers, Multichannel Wiener Filter (MWF) is
considered. As is known, the single-channel Wiener filter can be considered as one of the
most basic methods for single-channel noise reduction. The Wiener filter can produce
the Minimum Mean Square Error (MMSE) estimate of the target speech by construc-
tively combining the signal received from the microphone array. Doclo and Moonen
[55] considered the MMSE estimation in multichannel systems, namely Multichannel
Wiener Filter (MWF).

4.3.1 Filter Design

Similar to what is introduced before, the objective of the MWF beamformer is to
construct a left-inverse wH such that a MMSE criterion is minimized. As demonstrated
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in the Section 4.1, the desired signal for the MWF is chosen from the Bluetooth channel
signal x2

B, for example, the first component e1x
2
B. This can be written as,

DMWF = eH1 xB, with e1 = [1, 0, 0, . . . , 0]T (4.25)

Thus, the MWF minimization objective of the squared distance between the filtered
microphone output and the desired signal (4.25) can be written as,

JMWF = E{|wHxB − eH1 xS|2} (4.26)

This expression is equivalent to the one below:

JMWF = wHRsw −wHRse1 − eH1 Rsw + eH1 Rse1 +wHRnw (4.27)

and the solution is given as:

wMWF = (Rs +Rn)
−1Rse1 (4.28)

4.3.2 Decomposition

It is well known that MWF can be decomposed as a combination of MVDR beamformer
and a post single channel Wiener filter [56]. Thus, MWF beamformer can be viewed
as dual optimization in the spatial and time-frequency domains.

MVDR beamformer are pure spatial filters in the traditional sense. It uses direc-
tional information to construct weight vectors, suppress the signal in the interference
direction in the spatial domain, and ensure that the signal in the target direction passes
without distortion. However, since MVDR only suppresses signals from directions other
than the target direction, significant residual noise will remain when the noise power is
high.

In comparison, the multi-channel Wiener filter (MWF) can be viewed as further
introducing the statistical characteristics of the time-frequency domain based on
MVDR spatial filtering. Starting from the global optimization goal of the Minimum
Mean Square Error (MMSE), the target signal is selected in the spatial direction,
and the second-order statistical characteristics of the signal and noise are further
used to perform additional spectral post-filtering optimization on the output result.
Specifically, while implementing spatial filtering, MWF also achieves frequency domain
smoothing noise reduction similar to a single-channel Wiener filter, thereby further
reducing residual noise while ensuring signal fidelity. In this way, MWF can be de-
composed into a “MVDR spatial beamforming + single-channel Wiener post-filtering”
structure, thereby suppressing residual noise on the spectrum through post-filtering
while ensuring distortion-free gain in the direction of the target signal.

4.4 Noise Covariance Matrix Estimation

As shown above, the noise covariance matrix Rn and the noisy covariance matrix RxB

are required to construct the beamformer. In a practical real-time process stream, at
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step 0, we can use the noise covariance matrix Rn as initialization for RxB
, with newly

received data, we can continuously update the noisy covariance matrix RxB
as shown

below:

At step 0 do calibration: R̂xB0
← R̂n0 ,

At step n do update: R̂xBn
← αR̂xBn−1

+ (1− α)xBnxBn

H .
(4.29)

where xBn ∈ CM is the latest data vector in the STFT domain, RxB
∈ CM×M is

the covariance matrix, and α ∈ R is a scalar indicating the influence of new data on
old data, usually taking a value between 0 and 1.

Now we need to find a good way to estimate the noise covariance matrix Rn.

4.4.1 Noise Calibration

Assuming a spatially stationary environment, a simple idea for estimating the noise is
that at the beginning of the algorithmic process, we can collect a few seconds of data to
calculate the noise covariance and use it as a rough estimate of the noise signal, which
can be represented as the following,

R̂n0 ←
1

L
ΣL

i=1nin
H
i (4.30)

where n ∈ CM is the noise vector in the STFT domain, L is the time frame length
of calibration segments in the STFT domain, and R̂n ∈ CM×M is the estimated noise
covariance matrix.

4.4.2 Voice Activity Detector (VAD)

Voice Activity Detector (VAD) is a crucial technique in audio signal processing that
distinguishes between target speech periods with additive noise and noise-only peri-
ods. Based on the detection theory, VAD can be modeled as a two-hypothesis testing
problem.

H0: x(n) = n(n) n = 0, 1, . . . , N − 1

H1: x(n) = n(n) + s(n) n = 0, 1, . . . , N − 1
(4.31)

where H0 represents the current frame only containing noise N. H1 represents the
current frame containing noise N and speech S.

In practice, the covariance matrices in DGC system may need to be updated in
real-time with a Voice Activity Detector (VAD) for two reasons:

• The spatial stationarity is not guaranteed. Or specifically, target source moves.

• During the algorithm process, there are unexpected new noises that have not been
calibrated.

Rn can be estimated in the “noise only period” and RxB
can be estimated in the

“speech and noise periods”. If the VAD detects both speech and noise present, it
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estimates the noisy covariance matrix as shown in Equation 4.29. If the VAD detects
only noise, it estimates the noise covariance matrix as shown below,

R̂nn ← αR̂nn−1 + (1− α)nnnn
H , without target signal detected

R̂xBn
← αR̂xBn−1

+ (1− α)xBnxBn

H , with target signal detected
(4.32)

VAD system development has been an active field for the past decades. The imple-
mentation ideas of VAD mainly include threshold-based methods [57][58][59], statistical
probability-based methods [60][61], and deep learning-based methods [62][63]. In earlier
times, frame-based Voice Activity Detector (VAD) systems usually used two Gaussian
Mixture Models (GMMs), trained on speech frames and non-speech frames, respec-
tively, to estimate the probability of each frame belonging to speech. To ensure the
temporal continuity of the detection results, this method introduced a hidden Markov
model (HMM) to optimize the prediction by limiting the frequent switching between
speech and non-speech states [60].

In this study, we only considered the performance improvement of the ideal VAD.
Web Real-Time Communication (WebRTC) VAD [64] was developed for the WebRTC
project, a set of open source projects and protocol stacks defined and standardized by
the Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C)
that enable real-time transmission of voice, video, and data over the Internet, and is a
good component for embedding practical implementations into algorithms. WebRTC
VAD is an example of a GMM-based VAD model whose input features are the logarith-
mic energies of six frequency bands between 80Hz and 4000Hz. By using fixed-point
arithmetic, WebRTC VAD is optimized for real-time use over Internet transmissions.

4.5 Chapter Summary

In this chapter, we propose several signal processing methods for extracting the desired
signal from multi-microphone systems in various scenarios, based on the previously
constructed signal models. We first outline the key assumptions, including the uncor-
related nature of the target and noise signals, the Gaussian nature of the microphone
self-noise, and the broadband nature of all considered signals.

We first introduce the Minimum Variance Distortionless Response Filter (MVDR)
beamformer, also known as the Capon beamformer. The MVDR beamformer minimizes
the output power of the array while maintaining an undistorted response to the desired
signal. We present the filter design in detail and discuss the RTFs estimation method.
We also discuss the limitations of MVDR, in particular, its inability to effectively handle
scenarios with multiple desired loudspeakers, as it can only retain one target signal from
the reference microphone.

To address multi-speaker scenarios, we propose the Linearly Constrained Minimum
Variance (LCMV) beamformer. LCMV extends MVDR by incorporating multiple lin-
ear constraints, enabling it to preserve multiple signals of interest from different di-
rections while minimizing interference and noise. We also address the challenges of
estimating ATFs in systems with large apertures or distributed microphone arrays,
making it a less than perfect method.
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Recognizing the limitations of MVDR and LCMV in complex environments, we
introduce Multichannel Wiener Filter (MWF). MWF aims to produce Minimum Mean
Square Error (MMSE) estimates of the desired speech components by jointly optimizing
noise reduction and signal distortion. We explore filter designs for MWF and discuss
its advantages in balancing noise suppression and preserving multiple desired signals.

We also discuss the key task of noise covariance matrix estimation, which is crit-
ical to the performance of the aforementioned beamforming techniques. We explore
methods for estimating the noise covariance matrix, including initial noise calibration
and continuous updating using Voice Activity Detector (VAD). VAD helps distinguish
between speech-plus-noise periods and noise-only periods, enabling real-time updating
of the covariance matrix to accommodate nonstationary environments and unexpected
noise.

In summary, this chapter presents a comprehensive set of beamforming methods
applicable to different scenarios involving single or multiple speakers. By analyzing
the theoretical foundations, practical considerations, and limitations of the MVDR,
LCMV, and MWF beamformers, we discuss the development of robust signal processing
algorithms that can operate effectively in challenging acoustic environments.
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Simulation and Result 5
The previous chapter described the proposed beamforming strategy for single or multi-
ple sound sources. In this chapter, we will numerically simulate the proposed method.

5.1 Evaluation Metrics

For one speaker, we use the clean Bluetooth channel signal as the comparison reference,
which is sref (n) = hacous.

AA (n) ∗ hBT (n) ∗ sA(n), where sref (n) ∈ R. For two speakers,
we use the combination of clean speech signals sref (n) = hacous.

AA (n) ∗ hBT (n) ∗ sA(n) +
hacous.
CC (n) ∗ hBT (n) ∗ sC(n) as the reference signal.

Short-Time Objective Intelligibility (STOI)

Proposed by Cees H. Taal [65], Short-Time Objective Intelligibility (STOI) is a speech
intelligibility metric comparing the processed speech signal with a clean reference signal.
Based on the description in his paper, STOI is based on the correlation between the
temporal envelopes of clean and degraded speech in a short segment (382 milliseconds).
Through extensive comparison, STOI has advantages over other intelligibility compar-
ison methods. The code implementation came from GitHub pystoi [66]. However, it
should be noted that STOI is not designed to be used for mixing multiple reference
signals.

STOI has a score ranging from 0 to 1, with 0 meaning poor intelligibility and 1
meaning high intelligibility. The STOI between the reference signal sref ∈ RN and the
processed signal sresult ∈ RN is computed as:

STOI = stoi(sref (n), sresult(n)) (5.1)

Frequency-weighted Segmental SNR

The Segmental SNR is an objective measure of speech enhancement based on the
geometric mean of the SNR of all frames in a speech segment, which can be evaluated
either in the time or frequency domain.

The silence segment may greatly impact the criteria performance due to its low
energy as its logarithm result leads to negative infinity. To avoid the influence of the
silence segment on the criteria performance, a common method is to use threshold com-
parison to exclude the silence segments. Another way is to apply perceptual weighted
filters to constrain the output range. By perceptually weighting the filter coefficients,
we can compute the segmental SNR based on the outputs of the filters after passing
the clean and processed signals through them.
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Richard [67] proposed a weighted strategy as follows:

SNRseg =
10

M

M−1∑
m=0

log10

(
1 +

∑Nm+N−1
n=Nm x2(n)∑Nm+N−1

n=Nm (x(n)− x̂(n))2

)
, (5.2)

which limits the minimum value of the output to 0 dB rather than negative infinity.
Its frequency extension is shown as,

fwSNRseg =
10

M

M−1∑
m=0

∑K
j=1 Wj log10

[
X2(j,m)/

(
X(j,m)− X̂(j,m)

)2]
∑K

j=1 Wj

(5.3)

where:

Wj represents the weight assigned to the j-th frequency band,

K denotes the total number of frequency bands,

M refers to the total number of frames in the signal,

X(j,m) is the filter-bank magnitude of the clean signal at the j-th frequency band and m-th frame,

X̂(j,m) is the filter-bank magnitude of the enhanced signal in the same frequency band.

Normalized Mean Square Error (NMSE)

The Normalized Mean Square Error (NMSE) quantifies the difference between the
estimated signal and the reference signal. Normalizing the Mean Square Error (MSE)
by the entire energy of the reference signal, NMSE gives a dimensionless measure of
error. In this case, we use the clean Bluetooth channel signal, sref , as the reference.

The NMSE between the reference signal sref ∈ RN and the processed signal sresult ∈
RN is computed as:

NMSE =

∑N
n=1 |sref (n)− sresult(n)|2∑N

n=1 |sref (n)|2
(5.4)

5.2 Simulation Set Up

The proposed methods are evaluated in the context of dereverberation and noise re-
duction. The geometry of the acoustic setting is shown in Figure 5.1. The acoustic
geometry is a group of users, each equipped with a maximum of four microphones within
a closed shoe-box size room of size 10 meter×10 meter×2.4 meter. The sources used
were speech signals from the TCD Timit audio-visual speech database [68], representing
the words spoken by the speaker, and an impact drill interference source downloaded
from the open-source website FreeSound [69], both with a duration of 12 s. Each speech
signal undergoes convolution with the room impulse responses in the time domain. The
room impulse responses are generated using the image source model and ray tracing
principle described in section 2.2.2 with the Python library pyroomacoustics [70]. The
room reflection coefficient is set to 0.95.
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In this experiment, the following parameters are used: the sampling rate fs =16 kHz,
and the sampled noisy microphone signals are processed by STFT for all sub-time
frames with a 32ms hamming window function and 50% overlapping. The FFT length
is 512 points. The microphone self-noises are assumed to be zero-mean uncorrelated
Gaussian process with a variance σ2

v , calculated as described in section 2.5.1 for each
user.

According to Dopple, the Bluetooth channel latency in the system is stable. To
avoid the randomness of the results, we assume that the Bluetooth channel transfer
function in the system has slight delay fluctuations in the millisecond range between
channels.

Figure 5.1: Top view of the acoustic scene with 10 bystanders.

The room geometry is shown in Figure 5.1. The DGC system is designed to involve
people between 3 people to 10 people. The user number and the speaker number
are assumed to be known in the system. The four microphones are designed to be
distributed on both sides of the human ear, 2 on each side. The square block around
the speaker and listener shows the general form of microphone array distribution for
users. For example, the speaker is at position (5,5), the listener is at position (3,1), and
the plot shows the corresponding speaker’s and listener’s microphone array positions.
For simplicity, the orientation of people is not considered here.
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5.3 Simulation Result

5.3.1 Single Speaker Case

Regarding the system performance, we investigated the parameters involved in the
signal models which are the Bluetooth channel latency, the Signal-to-Interference Ratio
(SIR) of the sources. As the number of sensors available increases, we can obtain
more information and get better results. Therefore, we also need to investigate the
relationship between the total number of microphones and the results of the algorithm.

The impact of the number of microphones

As the number of microphones enabled per user increases, the number of signals received
by the listener on the same channel will also increase accordingly, and the microphone
signals received on the same channel are copies of each other with phase shift and
attenuation in case of no interference source and noise. According to the beamforming
theory, as we receive more signals, we get more information and we should be able
to get better performance. During the design phase, we considered more than one
microphone per user. We need to find out how many microphones are necessary.

In reality, more microphones bring higher performance at the cost of higher compu-
tational complexity.

The following plot is drawn in the setting of a typical Bluetooth channel latency of
15ms, SIR of −20 dB.

(a) 1 Bystander (b) 6 Bystanders

Figure 5.2: relationship of enabled microphones and STOI

Experiments show that the more microphones there are, the better the speech in-
telligibility we get. The improvement is significant when the number of microphones
increases from 1 to 2, but it is not significant after that. This is consistent with
our expectation of the gain of the array, that is, increasing the number of antennas
can increase the average SNR at the receiving end through a coherent combination of
multi-path signals. The array gain is strongly correlated with the logarithm lg(M) of
the number of sensors M , i.e., by doubling the number of microphones, the SNR at the
output increases by only 3 dB [19].

In addition, we observed that when there are more bystanders, speech intelligibility
improves with the same number of microphones. This is a reasonable result because
intuitively it would seem that increasing the number of microphones or the number

41



of bystanders would result in more knowledge and beamforming could achieve better
results. Mathematically, with more channels, the signal available to the beamforming
increases, and beamforming can achieve a more refined combination to recover the
signal. This also suggests that we need to ensure a sufficient number of signals to obtain
stable performance during the operation of the algorithm. More specifically, when the
number of users in the system is small, we need to enable additional microphones to
ensure the performance.

The impact of SIR

Due to the bad acoustic environment that can be encountered, the user will be in an
extremely noisy environment. As SIR continues to decrease, we can foresee that the
quality of the voice picked up by the microphone will decrease, which will significantly
impact the performance of the algorithm. We hope to understand under what circum-
stances the algorithm will perform poorly, which leads us to understand the relationship
between SIR and algorithm performance.

Here we consider using the global SIR, which is the logarithmic ratio of the speaker’s
speaking volume to the interference source volume. Due to the foreseeable noisy usage
environment, the following figure is drawn when global SIR is [-30, -20, -10, 0, 10] dB
with a typical Bluetooth channel latency 15ms.

(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.3: Relationship of SNR and STOI
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(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.4: Relationship of SNR and fwSNR
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(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.5: Relationship of SNR and NMSE

Naturally, we see that as SIR increases, the performance of the system improves. We
observe that MWF performs slightly better than MVDR in bad acoustic environments,
except for the case of insufficient information (i.e., when there are few bystanders and
insufficient number of microphones). When SIR is good, MWF performs slightly worse
than MVDR. It is due to the fact that MWF filter can be decomposed as a spatial
filtering and a post-filtering dealing with the residual noise. The post-filtering is based
on the covariance matrix which undergoes smoothing, so the estimate is not accurate,
which will damage the results under high SIR conditions.

It is worth noting that when there is only one speaker and one bystander (insuffi-
cient information), the MWF beamformer has a smaller nmse error, but poorer speech
intelligibility and fwSNR. We believe that the reason is that the MWF beamformer
incorrectly suppresses part of the speech signal. The suppressed portion of the spectral
content disappears. This result can also be verified from the spectrogram.
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(a) Spectrum of 1 Bystander with 1 mic
each user with SIR = -30 dB

(b) Spectrum of 6 Bystanders with 1 mic
each user with SIR = -30 dB

(c) Spectrum of 1 Bystander with 2 mic
each user with SIR = -30 dB

(d) Spectrum of 6 Bystanders with 2 mic
each user with SIR = -30 dB

Figure 5.6: Enhanced spectrum plots in case of 1 speaker when SIR = -30 dB

The figure above shows the enhanced spectrum with the first one the MVDR spec-
trum and the second the MWF spectrum at each subplot. These plots explain well
that the MWF beamformer can be decomposed into a combination of the MVDR
beamformer and a single-channel post-Wiener filter, which is accordingly a combina-
tion of spatial filtering and time-frequency filtering. In the Figure 5.6, we can see that
MWF beamformer eliminated part of the noise from MVDR beamformer result. In
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Figure 5.6a, the reason why insufficient information leads to intelligibility degradation
is MWF incorrectly suppresses the speech part.

The impact of Bluetooth channel latency

In Equation 3.15, we can see two delays, one is the delay included in the Bluetooth
channel, and the other is the delay included in the acoustic channel. We did not consider
the delay in the acoustic channel because the propagation attenuation of sound conforms
to the following formula:

L ∝ 1

r2
, (5.5)

where L is the SPL, and r is the distance. If the distance is far, the acoustic transmission
channel will be negligible, while the delay difference can be ignored when the distance
is close. However, the delay of the Bluetooth channel may vary relatively significantly
in a short period of time, so it is worth studying the robustness of the algorithm to the
Bluetooth channel latency.

According to Dopple, the Bluetooth channel latency among different channels can be
assumed to be the same thus in Equation 3.15, the Bluetooth channel transfer function
∆BT (k) was assumed to be the same. However, in the simulation, assuming that the
delays between different Bluetooth channels are the same would reduce the credibility
of the results. Therefore, millisecond-level latency differences were created between
different Bluetooth channels.

The following plot is drawn in the setting of SIR = −6 dB. A typical Bluetooth
channel latency of 15ms and a time frame length of 32ms are marked on the horizontal
axis.

time frame length =
512

Fs
=

512

16000
= 32(ms)
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(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.7: Relationship of Bluetooth Channel latency and STOI
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(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.8: Relationship of Bluetooth Channel latency and fwSNR

(a) 1 Bystander with 1 mic each user (b) 6 Bystanders with 1 mic each user

(c) 1 Bystander with 2 mic each user (d) 6 Bystanders with 2 mic each user

Figure 5.9: Relationship of Bluetooth Channel latency and NMSE
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We can see that beamforming is effective and shows stable performance under dif-
ferent Bluetooth channel latency, and is quite robust to latency. From the experiment,
we can conclude the beamforming method is robust against Bluetooth channel latency.

5.3.2 Multiple Speakers Case

In this section, we present simulations under multiple sound sources. It should be noted
that, as discussed before, estimating ATFs for each sound source is a challenging task.
The LCMV plot here is based on the results of the true ATFs.

The impact of SIR

For the same reasons as before, we need to study the impact of SIR in the multiplayer
case, so we use the same settings as the single speaker, with global SIR [-30, -20, -10,
0, 10] dB and a typical Bluetooth channel latency 15ms.

(a) 1 Bystander with 1 mic each user in
case of 2 speakers

(b) 6 Bystanders with 1 mic each user in
case of 2 speakers

(c) 1 Bystander with 2 mic each user in
case of 2 speakers

(d) 6 Bystanders with 2 mic each user in
case of 2 speakers

Figure 5.10: Relationship of SNR and fwSNR in case of 2 speakers
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(a) 1 Bystander with 1 mic each user in
case of 2 speakers

(b) 6 Bystanders with 1 mic each user in
case of 2 speakers

(c) 1 Bystander with 2 mic each user in
case of 2 speakers

(d) 6 Bystanders with 2 mic each user in
case of 2 speakers

Figure 5.11: Relationship of SNR and STOI in case of 2 speakers

Based on the fwSNR results, we can see that MWF performs well except when there
is insufficient information (again, a small number of bystanders and a small number of
microphones). Comparing the results of MWF and theoretical LCMV, we can see that
the theoretically achievable performance is higher. A noteworthy phenomenon is that
when information is insufficient, the fwSNR of theoretical LCMV is better than that of
MWF, but theoretical LCMV NMSE is higher. The reason is the same as before. The
MWF suppresses most of the time-frequency segment due to inaccurate post-filtering,
only a few segments are retained. Since most of the spectrum is empty, its NMSE error
is small. It can be verified in the following spectrum plot.
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(a) Spectrum of 1 Bystander with 1 mic
each user, SIR = -30 dB in case of 2
speakers

(b) Spectrum of 6 Bystanders with 1 mic
each user, SIR = -30 dB in case of 2
speakers

(c) Spectrum of 1 Bystander with 2 mic
each user, SIR = -30 dB in case of 2
speakers

(d) Spectrum of 6 Bystanders with 2 mic
each user, SIR = -30 dB in case of 2
speakers

Figure 5.12: A few spectrum plots in case of 1 speaker when SIR = -30 dB in case of 2
speakers

We can draw the same conclusion as before: with more channel information (enabled
microphones per user or bystanders), the system performance improves.
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The impact of Bluetooth channel latency

The plot setting is the same as a single speaker case, with SIR = −6 dB and 1 bystander.

(a) 1 Bystander with 1 mic each user in
case of 2 speakers

(b) 6 Bystanders with 1 mic each user in
case of 2 speakers

(c) 1 Bystander with 2 mic each user in
case of 2 speakers

(d) 6 Bystanders with 2 mic each user in
case of 2 speakers

Figure 5.13: Relationship of Bluetooth Channel latency and fwSNR in case of 2 speakers
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(a) 1 Bystander with 1 mic each user in
case of 2 speakers

(b) 6 Bystanders with 1 mic each user in
case of 2 speakers

(c) 1 Bystander with 2 mic each user in
case of 2 speakers

(d) 6 Bystanders with 2 mic each user in
case of 2 speakers

Figure 5.14: Relationship of Bluetooth Channel latency and STOI in case of 2 speakers

The performance remains the same as with a single speaker, i.e. the beamforming
automatically takes care of the delay between channels. Therefore, by comparing the
results of a single sound source, we can conclude that the Bluetooth channel latency
has no influence on the performance regardless of the number of microphones.

5.4 Ideal VAD

As discussed before, VAD allows us to update the covariance matrix in case of moving
target and uncalibrated noise, corresponding to the inaccurate acoustic transfer func-
tion and inaccurate noise covariance matrix. It is not easy to simulate with a moving
target source, so we simulate with uncalibrated noise.

The noise source is divided into 2 different segments with their spectrum shown
below. The first noise source is called “calibration noise” with a length of 5 s, followed
by the second noise called “not recorded noise”. The calibration period is the first 2 s
when the algorithm runs. Thus, the noise covariance matrix is calculated according to
the “calibration noise” spectrum.
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Figure 5.15: Spectrum of calibration noise segment and the one not recorded

The reference VAD result is obtained by applying silero-vad [71] to the clean speech
audio. Figure 5.16 shows the plot of the speech occurrence time period detected by
silero-vad and the clean sound waveform.

Figure 5.16: S0 and Reference VAD over Time Frames

The simulation is done at the single-speaker scenario with a typical 15ms Bluetooth
channel delay and a global SIR = −6 dB, the criteria used is STOI. The result is shown
below.
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(a) 1 Bystander (b) 6 Bystanders

Figure 5.17: comparison between ideal VAD and calibration only in case of uncalibrated noise

The results show that the ideal VAD brings an inconspicuous improvement inde-
pendent of the number of bystanders. The algorithm does not crash in the presence
of uncalibrated noise sources because even if there is an error in the estimation of the
noise covariance matrix, the orientation of the noise in the signal space remains the
same. That is, the ATF remains unchanged, and the beamforming direction is still
correct, so the performance is not greatly affected. Since the source spatial informa-
tion remains the same, the MVDR beamformer performance is basically not affected.
For MWF beamformer, given the decomposition of “MVDR spatial beamforming +
single-channel Wiener post-filtering”, we can look at the problem in two parts. The
performance of spatial filtering is comparable to that of MVDR, but the performance of
post-filtering is much affected, meaning the noise residual is likely wrongly suppressed.
That is all the reason for bigger improvement brought ideal VAD to MWF than MVDR.

Simulation of moving targets is of interest and is being actively explored.

5.5 Chapter Summary

In this chapter, we numerically evaluate the proposed beamforming strategy in various
scenarios and conditions. Simulations in complex acoustic environments confirm that
both single-speaker and multi-speaker algorithms are robust to Bluetooth channel la-
tency and can effectively handle challenging conditions with low signal-to-interference
ratios. Increasing the number of microphones and adding bystanders can provide more
spatial information, further improving the performance. Notably, while the MVDR-
based approach acts as a reliable spatial filter, the MWF-based approach (which can
be interpreted as MVDR plus a Wiener postfilter) provides additional gains in noise
suppression. Voice activity detection (VAD) brings only marginal improvements even
in ideal situations, indicating that the spatial characteristics of the scene determine
the performance of the proposed solution. In summary, simulations show that the pro-
posed beamforming approach is versatile, robust, and scalable for distributed group
communication systems operating in complex acoustic environments.
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Conclusion and Future Work 6
In this chapter, we are going to conclude the work and give some possible directions
for future work.

6.1 Conclusion

The DGC system is a new multi-person full-duplex communication protocol designed
for Bluetooth radios. Echo effects and possible interference sources caused by acoustic
coupling in close-range scenarios pose significant challenges to achieving high-quality
communications. We addressed these issues through step-by-step problem formulation,
modeling, algorithm development, and implementing beamforming techniques for the
DGC system. Our work helps ensure that complex communication systems achieve
effective and reliable communications in complex acoustic environments.

In Chapter 3, we focus on the problem formulation in the multi-user DGC scenario.
We first abstract the Bluetooth channel as a virtual acoustic channel and build a
detailed mathematical model to represent the received signal at each user end. The
model reveals how the coupling and mixing of signals lead to echo. With increasing
complexity, we extend the analysis to multiple active speakers. By introducing the
corresponding acoustic and digital paths for each source, a comprehensive model of the
multi-user environment is formed, laying the foundation for beamforming and signal
separation strategies.

In Chapter 4, we propose several methods to extract the target signal in a multi-
microphone system. First, we clarify several assumptions, then introduce the MVDR
beamformer and discuss the estimation method of Relative Acoustic Transfer Functions
(RTFs). Although MVDR performs well in a single-speaker environment, it faces limita-
tions in multi-speaker scenarios. To address the problem of multi-speaker scenarios, we
introduce the LCMV beamformer, but for distributed or large-scale microphone arrays,
it is necessary to estimate RTFs at different reference points, which is challenging in
practical applications. Subsequently, a multi-channel Wiener filter (MWF) can be used
as the next step. MWF estimates the desired signal through the minimum mean square
error criterion in multi-channel scenarios, achieving noise reduction while ensuring sig-
nal fidelity. Finally, we discuss the estimation method of the noise covariance matrix.
In practical applications, preliminary noise statistics can be obtained through the cal-
ibration phase, and the voice activity detection (VAD) method can be used to update
the received signal in real-time to adapt to the changes in the non-stationary acous-
tic environment and burst noise. In summary, this chapter proposes various solutions
from single-speaker to multi-speaker scenarios based on the multi-source multi-channel
signal model, including MVDR, LCMV and MWF.

In Chapter 5, we simulated and analyzed the results of the proposed beamforming
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method in different scenarios. In the experiments, we focused on the impact of key
system parameters on the performance, including Bluetooth channel delay, Signal-to-
Interference Ratio (SIR), and the number of enabled microphones and bystanders. The
results show that the beamforming scheme is insensitive to Bluetooth channel delay. In
addition, under low SIR conditions, the algorithm can still robustly recover the target
speech. Regarding the impact of the number of microphones, we found that when a
single user is configured with 2 microphones, the performance is significantly improved.
As the number of bystanders in the system increases, the additional observation chan-
nels are more beneficial to the beamforming algorithm. If there are fewer users in the
system, appropriately increasing the number of microphones can make up for the lack
of data and ensure the final processing effect. In general, the simulation results verify
that the proposed MWF beamforming algorithm has good adaptability and robustness
in multi-user distributed communication scenarios.

In summary, by abstracting the Bluetooth channel, a comprehensive signal model
suitable for different scenarios is constructed. For different application scenarios, we dis-
cuss a variety of beamforming and filtering schemes, theoretically gradually extending
from single target extraction to simultaneous recovery of multi-source speech, balanc-
ing the signal fidelity and noise suppression requirements. Additionally, by introducing
ideal voice activity detection (VAD) and implementing dynamic methods for updating
the noise covariance matrix, robustness can be maintained in time-varying acoustic
environments. The results of the simulation support the theoretical hypothesis.

This work systematically analyzes and studies the speech processing problem in
the Dopple Group Chat (DGC) system, and proposes a complete set of methods from
signal modeling to beamforming strategy. Given the speech coupling echo and noise
interference problems in multi-user full-duplex communication under the DGC archi-
tecture, an effective signal model and beamforming algorithm are proposed and verified,
which provides a strong technical reference and direction guidance for the application
of Dopple Group Chat (DGC) system in practical scenarios.

6.2 Future Work

Two main aspects can be explored in the future.

1. To distinguish between single-speaker and multi-speaker cases, we can perform
detection by using VAD for each channel. However, we can explore more details.
Multi-speaker speech signals collected by spatially separated microphones will
have time delays with each other. Some research shows that it is possible
to determine the number of speakers by determining the time delay [72][73]
based on the direct components of the speech signals from the two microphones
remaining unchanged. However, these approaches fail if the direct component is
masked by high levels of ambient noise and reverberation. It would be interesting
to investigate improving the performance of VAD or latency difference-based
algorithms under robust conditions.
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2. Speech information obtained under adverse acoustic conditions with high levels
of non-stationary background noise will degrade speech intelligibility. The ef-
fectiveness of speech enhancement depends heavily on the accuracy of the noise
covariance matrix. To cope with time-varying environments, we need to continu-
ously update the noisy covariance matrix and the noise covariance matrix. Using
VAD is a simple solution.
Researchers have been continuously studying techniques for single-channel and
multi-channel noise reduction, such as maximum likelihood (ML) [74][75][76], and
maximum a posteriori (MAP) [74][77]. In addition, some popular deep neural
network techniques have also performed well. The deep neural network makes
a probability judgment on each time-frequency point based on the mask rule,
thereby updating the covariance matrix. Its performance has been proven whether
for the single-channel enhancement [78][79], or for the multi-channel enhancement
[80][81]. It is also an interesting topic to investigate methods for providing a better
noise covariance matrix.
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