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1
Introduction

The term last mile delivery refers to the final leg of a business-to-customer (B2C) service, in which
a product is shipped from a depot or a retail store to the final point, that can be either customer’s
home or a designated pick-up point (Gevaers et al., 2014). It is the final part of a bigger logistic and
production chain that starts from the manufacturing and ends when the product is delivered to the end
user.
Last-mile logistics are currently operated by means of road transport systems, such as vans and trucks,
which ship the product from the retailer’s transportation hub to the final delivery destination. The fast
progress in global online retail sales that characterised the last few years has a potentially important
impact on urban logistics and traffic network, especially in residential area (Visser et al., 2014). Ac-
cording to ITV (2018) the growing demand of home deliveries is increasing the number of vans on the
road, causing in most of the cases network congestion. This phenomenon, together with infrastructure
limitation, is one of the conditions that mostly curbs the last-mile delivery process, leading to delayed
shipments, cost inefficiency and customer dissatisfaction.
As a mean to boost and support the growth of the last-mile sector, several studies have been conducted
on the potential introduction of drones in the transportation field, with a focus on the last-mile delivery
sector (Choi-Fitzpatrick et al., 2016). The reasons behind the popularity that drones have gained lies
on the peculiar characteristics of drones. Drones are not bounded to the road infrastructure, being
thus able to deliver goods in highly populated areas that suffer from heavy congestion and/or reach
places that might be inaccessible via road transport.

1.1. Problem definition
The use of drones for last-mile logistics is a new and recent solution that has not been elaborately in-
vestigated yet. In the past few years, potential applications of drones and prototypes have been linked
to parcel distribution. The first company who envisioned the adoption of this new technology was
Amazon, with the CEO Jeff Bezos announcing in December 2013 that the world’s largest e-commerce
company was carrying out several tests on drone parcel deliveries (Yoon, 2018). Following the same
path, German courier company DHL launched its Parcelcopter Hern, 2015 while Google introduced its
X-Labs’ Project Wing (Madrigal, 2014).
When searching into the literature of drones used for delivery purposes, several studies can be found.
The common thread concerns the performance capabilities and the technical aspects of drones, focus-
ing on the potential applications of these vehicles in different disciplines. Examples of previous studies
on parcel delivery and emergency supply distribution can be found in Claesson et al. (2017), Thiels
et al. (2015) and Scott and Scott (2017).
Despite the results obtained so far, the scientific aspect of optimisation models and network develop-
ment has not been thoroughly investigated yet. When referring to the last-mile delivery process, the
main transport means are trucks and vans (Dell’Amico and Hadjidimitriou, 2012). Therefore, optimisa-
tion models and network development are generally focused on road-bound vehicles. When referring
to drones, difficulties arise in terms of adapting the current road optimisation models to flying drones,
considering a certain number of depots or charging stations, the number of drones to be used for the
shipment and the distribution in time and space given a certain demand.

1
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1.2. Case study
The challenges that are faced by last-mile delivery differ between cases. The definition of a proper
case study is thus important to determine the implications that this feasibility investigation will have
on the delivery market. This study on drones for last-mile delivery will be supported by a collaboration
with BENU Apotheek, one of the biggest pharmaceutical companies in the Netherlands. The interest in
this pharmaceutical company lies on their omni-channel retailing options: consumers can purchase all
kind of products from a variety of retail channels, with the possibility of having the product delivered
directly at their home. Together with the pharmacy involved, a thorough research on the current
logistic process and the actual demand for home delivery of medical supplies is carried out. The cost
associated will be compared to the ones found for the drone delivery network through optimisation
models. In this way, the pharmacy involved will have a scientific assessment on the feasibility of drone
last-mile deliveries, that might help them with the decision on whether to implement this innovative
transportation means in the near future.

1.3. Research objectives and research questions
When conducting a quantitative study, it is important to state some hypotheses that will be supported
or falsified throughout the research. The leading hypothesis of this research concerns the feasibility
of using drones for the last-mile logistic process. A specific mean of transport becomes feasible if it
is allowed and safe and, at the same time, it is less expensive than other conventional means. This
hypothesis can be formulated as follows:

H. Drones provide a feasible fleet addition for the last-mile logistic process, when added
to conventional transportation means that are currently in use.

To measure this feasibility, optimisation theories for road transport network will be adapted for aerial
vehicles. In this model, the distribution in time and space for a given market segment will be optimised,
considering the number of depots and the number of vehicles to be used. Comparing the results of
the optimisation model with simulations of the current delivery methods will assess the veracity of the
hypothesis.
Following the definition of the hypothesis, the objectives of the research can be stated. The most
important objective concerns the feasibility assessment of a network that includes drones in the vehicle
fleet for last-mile delivery of medical supplies, adapting the current road-based models to aerial vehicles.
Another important objective is data collection. To confer a scientific relevance, data gathering, and data
analysis are two fundamental aspects of this research. Data on drone capabilities, geographical area
of shipment and product to be shipped will be then collected to be used for the model implementation
and validation.
Considering what discussed so far, the proposed research question is formulated as follows:

RQ. How can the pharmaceutical sector benefit from the introduction of drones for the
last-mile logistic process, in combination with the current means of transport?

To help answering the main research question, some sub questions are formulated. It is decided to
maintain the number of sub questions as limited as possible, for them to be a guidance throughout the
research, without averting the attention from the main question.
SQ1. What are the main characteristics of a B2C last-mile delivery process?
A thorough analysis on the features of last-mile delivery is conducted, to provide the basis for a last-
mile network comparison. In fact, to assess the feasibility of a drone freight network, it is important
first to understand the characteristics of this logistic process.
SQ2. Who are the main stakeholders involved in the last-mile logistic process, in relation to the case
study?
The identification of the stakeholder involved in the process is an important step to ensure the feasi-
bility and the success of a project. By answering this sub-question, a list of people interested in the
introduction of drones in the last-mile logistic process of pharmaceutical product delivery is created,
focusing on their relative interest and power.
SQ3. What are the main KPIs, data and design methodologies for a comparative analysis of last-mile
delivery transport networks?
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The first step to conduct a comparative analysis is to define a set of Key Performance Indicators that will
measure how a specific network operates in comparison to other networks or to standardised values.
Based on these KPIs, several data will have to be retrieved. These data will then be used as inputs for
a comparative design method, chosen based on network characteristics.
SQ4. How to adapt the chosen design methodology for last-mile delivery networks to fit the case study
requirements?
When the most suitable design methodology is chosen, an important step is to adapt the known for-
mulation found in literature in order to tailor it to the case study. The answer will provide the design
methodology to be used to assess the drone last-mile delivery network.
SQ5. What network alternative is the most promising in the case of last-mile logistic of medical prod-
ucts for home deliveries?
Once the performance of the current situation are analysed in comparison with the future scenario, it
is possible to define which network alternative is most beneficial for the health care sector.

1.4. Research methodology
A structured methodological approach sets the base for the whole research, rationalising the theoretical
framework of the study. Therefore, a systematic procedure must be arranged. For the development
of complex systems, the System Engineering (SE) approach as formulated by Dym and Little (2000)
is an example of well-structured methodology. This step-wise approach helps the designer to achieve
reliable, efficient and cost-effective results in several fields, including transport network development
(Sage and Armstrong, 2000). The steps that are followed in this approach start with the problem
formulation, moving to the problem analysis and concluding with the problem interpretation. The
outcome is a complete design that addresses the identified problems and complies with the system
requirements. Referring to the approach of Dym and Little (2000), the report is structured in the
following way.

Problem definition
Introduction - The research procedure starts with a clear identification and definition of the problem.
The motivation behind the project will open the way to the problem statement identified as research
gap, research objectives and research question.

Conceptual design
System description: Last-mile delivery of medical products - In this initial part of the research, a
thorough description of the system is provided. Related to the case study, the geographical location,
the product to be delivered and the current last-mile delivery modes are defined, by conducting a series
of interviews and literature study. A proposed scenario for future home deliveries is elaborated, which
will be used later on for the comparison analysis together with the current situation. Although not
the main focus of the research, a brief explanation on legal issues related to the use of drones in the
Netherlands is here included. The chapter is concluded with the stakeholder analysis, that defines the
important actors involved in the system.
Theories and models on last-mile logistic network and network comparison - Following the system
description, this section provides an overview of the theories on network optimisation, focusing on
last-mile delivery networks. In this chapter, a list of KPIs and related data that must be retrieved
is provided. Methodologies for data gathering are explained, focusing on the elaboration of a cost
model for what concerns cost data. The chapter continues with an analysis and description of different
mathematical models that can be found in literature to assess transport networks. This section ends
with the definition and formulation of the most suitable model to be used for the case study.
Model optimisation last-mile logistic - This chapter starts with the model conceptualisation, in which
data to be used in the implementation are displayed by means of the cost model results. The focus then
moves to the implementation of the model, setting up the solution approach. In the same way,data
and procedures for model verification and validation are displayed.

Detailed design
Results and analysis - This section will contain all the results obtained in the model optimisation phase.
With an overview of the main results obtained in the implementation phase, it is possible to pertinently
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answer the research question.

Design communication
Conclusions and further recommendations - This last section will contain the conclusion of the whole
research. Based on the results obtained in the previous chapters, it will be possible to answer the main
research question stated at the very beginning of the process. Furthermore, considering the limitations
of the study, further recommendations for future studies will be provided.

1.5. Scope of the research
The scope of this research is to assess the feasibility of introducing drones in the available fleet of the
last-mile delivery process. This valuation is carried out through a comparison with the transportation
means that are currently used in this logistic process. Several scenarios will be hypothesised, going
from a network fully operated by drones, to an optimal combination of new and old technologies.

1.5.1 Data for comparative analysis of last-mile networks
An important step to be made to reach the main goal is data gathering. Data to be collected regard the
geographical area and the product to be delivered, related specifically to the case study, but also drone
capabilities, characteristics and features. Different data collection techniques can be found in Cyfar
(2018). Relevant for this research are the Interview technique, the Observation/Testing technique and
the Documents and Records technique.
In the system description and background analysis, the case study is introduced. Following the descrip-
tion of the product to be shipped and the geographical area of interest, data that are needed for the
research regard the geographical location and the product characteristics. Geographical data can be
retrieved from the data portal of the Dutch Government and in the Municipality offices. Geographical
data consist of municipal information (e.g. planning zones, and nearby utilities) and geo-hydrological
information (such as land form, soil maps, rivers and lakes). Data on population are also important for
determining the feasibility of a drone network in medical supplies delivery. Such information regards
the average age of the population, the percentage of elderly people, the number of physically impaired
people, the number of chronically ill people and the number of households with several children. These
are indeed considered to be potential target groups, given the limited possibility and ease of reaching
a pharmacy.
For what concerns the product to be delivered, it is important to define the characteristics and the
particularities of those specific products. To gather this type of data, literature research, interviews
and observations might be suitable techniques. Interviews with the company related to the case study
are also important to define the demand and the offer of product deliveries.
Data about drones concern mostly their flight range, autonomy and payload. Several challenges re-
lated to last-mile delivery concern the distance to be travelled and the number of parcels that can
be delivered in one trip. Knowing the capabilities of drones is hence of fundamental importance to
properly assess a last-mile transport network. Data can be retrieved conducting a literature study on
existing drones and interviews with drone companies.

1.5.2 Limitations of the research
Given the extensive broadness of the research and the time constraint, some limitations must be de-
cided upon. As stated before, the scope of the research is to assess the feasibility of a drone transport
network for last-mile deliveries. Therefore, the focus will be on reaching a proper scientific level in
the field of operation research by means of data gathering, optimisation model formulation and model
testing.
For this reason, the societal aspect of drones will be left out of scope. In the past several papers
have addressed people acceptance to flying drones. Rao et al. (2016) have studied how drones influ-
ence society, analysing the communal perception of drones being a surveillance equipment, and hence
harming privacy and private properties. The perceived safety of drones has been analysed by Pappot
and de Boer (2015), who conducted a quantitative risk analysis together with a qualitative analysis on
people acceptance of drone’s risks. A survey conducted among industries, regulator and civil society
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organisations regarding privacy, data protection and ethics for civil drone practice can be found in Finn
and Wright (2016). Other examples of studies concerning the societal aspect of drones can be found
in Boucher (2016), Ramadan et al. (2017) and Clothier et al. (2015).
Regulations are also not included in the research. Different countries have different restrictions regard-
ing the use of Unmanned Aerial Vehicles, albeit it is not considered as the focus of the research. On
the other hand, given the importance of providing a business case in the Dutch territory, it might be
interesting to shortly investigate on the regulations in force in The Netherlands regarding commercial
use of drones.

1.6. Thesis outline
Figure 1.1 provides a visual representation of the thesis structure. For each step of the research
methodology, the chapter subdivision is reported, with a brief explanation of the concerning content.
This visualisation also shows the chapter in which each sub question is answered.

Figure 1.1: Outline of the thesis
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System description: Last-mile
delivery of medical products

This initial part of the research contains a thorough description of the system. A study on the last-
mile delivery process is first carried out on a general basis. Current challenges related to the last-
mile delivery sector are explained, together with the transportation modes that are used for product
shipment. Narrowing down to the case study, the system description is then related to the geographical
location, the product to be delivered and the vehicles used by BENU Apotheek. The system is then
extended to one proposed future scenario that will lead to the introduction of drones in the daily last-
mile operations. The description of this scenario is followed by legal and technical analyses on drones
flight possibilities and on the stakeholders involved in the system.

2.1. Last-mile delivery process
The concept of last-mile delivery concerns the final leg of a business-to-customer (B2C) service, in
which a product is shipped from a depot to the final destination. Depending on the delivery agree-
ment, the shipment destination can be a cluster of collection points, customer’s home or common pick
up distribution centres.
According to Gevaers et al. (2009), the last-mile logistic process can be described as composed by four
logistic decisions: the starting point of the last-mile, the place of delivery, the type of delivery and
the shipment specifics. Starting points are usually pick-up locations of suppliers, such as warehouses,
depots, or retail shops. The second step is to define the place of delivery, i.e. the final destination in
which the products will be shipped. Depending on the delivery agreement, the product can be shipped
to a pick-up distribution centre or directly to customer’s house. In the latter, the delivery agreement
might or might not require the presence of the customer, hence it can be attended or unattended.
Another place of delivery that has recently gained popularity is a clustering point. Clustering points
provide a common storage space in which several types of products for different customers can be
stored. Examples are reception boxes, collection points and post offices. Figure 2.1 shows the tree
diagram of the last-mile logistic process. Following this structure, it is possible to identify the chal-
lenges that this sector encounters. The effectiveness and efficiency of last-mile delivery is hampered
by several characteristics, that can be related to the logistic process itself, the shipment agreement, or
the final point to which deliver the items.
Cost reduction - Studies have shown that the last-mile leg is the most expensive part of the delivery
process, for which costs account for up to 75% of the total cost of the logistic chain (Gevaers et al.,
2011). A detailed analysis on the costs related to the last-mile delivery process can be found in Ap-
pendix A.
Traffic congestion and pollution - Commonly, last-mile services are carried out with several vans that
deliver the product directly to the customer or to a pick-up point. In this process, delivery points are
partitioned within the delivery area, and each destination is assigned to one specific vehicle (Dell’Amico
and Hadjidimitriou, 2012). The primary methods for last-mile delivery are parcel trucks and third-party
private cars (Edwards et al., 2010). As a result of the increased popularity in last-mile delivery, the
number of trucks that are introduced for last-mile delivery purposes, is steadily increasing, with the
consequence that congestion and pollution are also increasing in parallel. To provide a faster and more
cost-efficient transportation chain for last-mile delivery, companies are now striving for new technolo-
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gies (Agatz et al., 2018). In the context of urban areas, electric cargo bikes have been found to be an
efficient alternative to trucks, addressing the problem of congestion and limited-access areas (Gruber
et al., 2014). Cargo bikes can use a much denser road network, being able to run in both directions
even on one-way roads. For what concerns accessibility, delivering cargo with electric bikes will help
the shipment of products in limited- or no-access zones, such as pedestrian zones. Moreover, the fact
that less parking space is required, it becomes easier to deliver in areas with narrow streets, without
causing congestion or excessive roadblock (Reiter et al., 2014). A very recent alternative that has been
proposed to solve congestion, pollution and infrastructure limitation, is the use of Unmanned Aerial
Vehicles (UAVs), or mostly referred as drones (Agatz et al., 2018). Drones are fast and can operate
without a human driver, saving thus time on congested road and having a low cost per kilometre. On
the other hand, given the small size of a drone and the payload limitation, there is an upper limit to the
size of the package to be delivered. Moreover, the battery-powered system, causes the drone to have a
limited range. To overcome the drawbacks of drone delivery, the University of Cincinnati together with
AMP Electric Vehicles, has conducted a study on a combined truck-drone mode (Wohlsen, 2014). The
concept is that while the delivery truck visits a set of locations to make delivery, a drone simultaneously
visits another set of locations, returning to the truck after each delivery, to pick up another package.
In this way, the benefits of trucks (long range, high payload capacity) are combined with the benefits
of drones (high speed and high accessibility), to provide an efficient and cost-effective delivery service.
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of delivery 
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delivery agreement

4. Final consignment 
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Figure 2.1: Last-mile logistic process. Adapted from Gevaers et al. (2009)

2.2. Home delivery of medical products: a case study
The case study that supports the research involves the delivery of medical products, from the retail
store (pharmacy) to the end user. The pharmacy that has been selected is the BENU Pharmacy ’t Slag,
located in Rotterdam and part of the BENU Apotheek franchising. BENU has shown particular interest
in the development of new technologies for its pharmacies, and envisions a potential introduction of
drones in the delivery fleet. From the side of the researcher, the interest towards this pharmacy is
connected to the wide range of services that it provides. Besides the conventional sale of generic and
prescribed medicines, ‘t Slag allows its customers to order online and have their products shipped at
a prearranged location. Delivery points are either pick-up points, collection machines or customer’s
addresses. They also allow a third person to collect the product, by prior agreement and authorisation.
In the case that the customer is not at home by the time of delivery, a second agreement can be
arranged.
Figure 2.2 shows the complete delivery process of BENU Apotheek franchising, from the production
place to the end user, highlighting with a red square the focus of the research. Drug products are
manufactured in specific plants. Then they are shipped into warehouses, where they are stored for
a specified amount of time. From the warehouses, products are first shipped to retail stores (i.e.
pharmacies) and then they are either sold directly to the customer at the pharmacy or delivered to a
destination point. For the case of BENU Apotheek, warehouses are placed in three different locations:
Amsterdam, Maarssen and Eindhoven. These depots serve 365 pharmacies all around The Netherlands,
and the focus of the case study will be ‘t Slag, in the Southern part of Rotterdam. For the last leg of
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the delivery process, vans are the vehicles currently in use. Being smaller than trucks, they are more
suitable for urban roads, while still able to carry the required amount of product. The red square in
the figure defines the scope of the research, focusing only on the final leg of the delivery process,
discarding all the previous step.

BENU ‘t Slag Customers

3x

WarehousesManufacturer

AmsterdamEindhoven Maarssen

Figure 2.2: Complete delivery process, with research focus

2.2.1 Delivery process of BENU ‘t Slag
Referring to Figure 2.1 and together with the owner of the pharmacy Maria Frijmersum, it is possible
to define the last-mile logistic process for the BENU Apotheek ’t Slag (Frijmersum, 2018). The starting
point is the Pharmacy located in Rotterdam, Sandelingplein 16A. Destination points are usually the
personal address of the customer, since ‘t Slag does not rely on pick up distribution points or clustering
places (in opposition to some other BENU pharmacies). With pre-arrangements, it is possible to deliver
the product at the customer’s work place. The type of delivery is generally attended, with arranged
time windows and a track and trace system. Prior to the shipment, the customer receives a message
announcing the time of delivery (it can be either during the day or specified before noon). In the case
that customers are not at home and unable to receive the package, they can either pick it up directly
from the pharmacy location on a later moment or arrange a second appointment. Referring to the
logistic decisions displayed in Figure 2.1, the same process for BENU ‘t Slag is shown in Figure 2.3.
Besides in-store purchase and home delivery, a third option has recently been introduced, in which
customers fetch their products from an ATM arranged in front of ’t Slag. This ATM is filled up on a daily
basis with different medical and non-medical products. For the collection of prescription drugs, the
customer must provide an identification document together with the date of birth, as a double security.
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Boxes with 
pin code

Boxes Neighbours
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Figure 2.3: Last-mile logistic process for BENU ’t Slag. Adapted from Gevaers et al. (2009)

2.2.2 Geographical area of delivery
BENU Pharmacy ’t Slag operates in the southern part of Rotterdam, between the canals Nieuwe Maas
and Oude Maas. The system with which areas are classified is by means of postcodes; a total of 14
postcodes are covered with the delivery service. Figure 2.4a shows the catchment area of Rotterdam
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south in which BENU Apotheek ‘t Slag operates the home delivery service.
In Figure 2.4b, the borders within the catchment area are shown, based on the 14 postcodes provided
by the pharmacy. The red dot in the figure shows the position of the pharmacy BENU ‘t Slag. The
position is relatively central in relation to the delivery area. For each postcode, it is possible to count
the number of housing units. Table B.1 provides the list of the postcodes reached by the home delivery
service; for each postcode, the number of streets and the number of housing units are provided. With
a population of 630,000 inhabitants in 2014, Rotterdam is a densely populated urban area, with 3,043
inhabitants per square kilometre (WorldPopulationReview, 2018). As can be seen from Figure 2.4b,
the pharmacy serves a clear predefined area. This results from previous agreements with the delivery
company Farma Cleaning and Service. Potentially, this area could be expanded in the case that more
vehicles or more efficient means of transport are introduced. From the picture, it can be estimated
that the area covered by BENU Pharmacy ’t Slag is around 35 square kilometre, meaning a total of
approximately 106,505 people (MapDevelopers, 2019).

(a) Catchment area (b) Border area and pharmacy location

Figure 2.4: Geographical area of delivery (Frijmersum, 2018)

2.2.3 Medical products available for delivery service
The amount of deliveries varies per day, depending on the number of requests the pharmacy receives.
To start a delivery trip, a single request is sufficient, hence no minimum number of product is required
to start the delivery and when a shipment is scheduled, it is always completed.
The products available for delivery are the same ones that are sold in the store. Both prescription
drugs and generic drugs are shipped, as well as cosmetic products, baby food and other essential
goods. For products such as medicine to treat diabetes, incontinence and bed aid, a specific branch of
BENU Apotheek takes over, to reduce the amount of daily deliveries that each pharmacy has.
The delivery of urgent medicine is guaranteed with a speedy delivery service. If an urgent consignment
must be placed, the vehicle changes its route to reach as fast as possible the new destination and
straightaway deliver the urgent package. The same line of reasoning is applied to those medicines that
need to be stored in a cool environment: the route might be readjusted in order for the customer to
receive the medicine as soon as possible.
Beside the different prescription and non-prescription medicines that are sold and delivered, BENU ’t
Slag provides a service tailored for specific customers. Twice a week, pre-packaged medications are
delivered to patients. These small boxes must fit into the customer’s mail box and contain the
essential weekly medications that customers usually take.
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2.2.4 Delivery transport means and associated costs

Figure 2.5: Vehicle used for home deliveries (own
picture)

BENU ’t Slag entrusts the management of deliveries to an
external company, the Farma Cleaning and Service, which
takes care of every single delivery for a fixed monthly pay-
ment. Deliveries are carried out via road transport, using 3
vans Mercedes Citan 108 cti, compact version. The capacity
of the vehicle allows for transportation of products up to a
volume of 2.4mc and a weight of 490 kg. CO2 emissions
are around 119 – 112 g/km and fuel consumption in urban
environment is around 5.0 – 4.7 l/100km (Mercedes-Benz,
2018). Figure 2.5 shows a picture of one of the vans that
are used for deliveries.
The delivery service is free of charge, meaning that it is pro-
vided to the consumer for free. BENU ’t Slag directly pays
the delivery company, with a fixed amount per month. The

cost was fixed to euros per month until February 2018 and then reduced to euros per
month from February 2018 on. This reduction was the consequence of a diminution of delivery demand
noticed after the introduction of the ATM.
The number of deliveries changes every day and does not follow a specific trend. Nonetheless, over the
year it has been noticed that the peak of sales was during the colder months (November, December
and January), with a small drop during the summer period, most likely related to the seasonal flu.
Figure 2.6 shows the number of deliveries for the year 2018. Data have been retrieved on December
20th, meaning that for the month of December the total value is only for 20 days and not for the whole
month. The graph shows only the number of home deliveries that have been registered by the three
delivery men. It does not account for the purchases made at the counter or collected at the ATM. On
a general basis, the introduction of the ATM in the month of February, brought a decrease in the total
number of home delivery.

Figure 2.6: Total home deliveries for the year 2018 (Frijmersum, 2018)

The number of streets and housing units of each postcode can now be extended considering also the
amount of deliveries per day per postcode. An average number of deliveries per month is obtained
from Figure 2.6. Considering an average value of 21 working days per month, the pharmacy carries
out, on average, deliveries per day, using the 3 vans available in the vehicle fleet. These deliveries
can then be distributed to each postcode based on the size of the postcode and on the number of
housing units. The results of the weighted division are rounded up to the closest integer value and are
shown in Table B.1 of section B.1.

2.3. Last-mile delivery of medical product: proposed scenarios
Following the description of the current situation, several scenarios are envisioned. Each of them is
then assessed in a qualitative way, according to the objectives of the research. The one that better
complies to these objectives is then referred as the proposed scenario and used for the comparison
analysis with the current situation.

2.3.1 Scenarios for future home delivery service for BENU ‘t Slag

Scenario 1 – No changes are made. This first scenario suggests to not apply any changes with respect
to the current situation, keeping the 3 vehicles and the ATM, not expand the current area of delivery
and the available fleet.
Scenario 2 – Drones only. All deliveries are carried out via drones, eliminating the current fleet of vans.
The delivery area is expanded due to the elimination of infrastructure limitation.
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Scenario 3 – Drones for speedy deliveries only. A fleet of drone is purchased only to take care of the
speedy deliveries. Whenever an urgent delivery is requested, a drone is used instead of a van, which
can in this way continue with the scheduled deliveries and avoid any change of route.
Scenario 4 – Hybrid van-and-drone deliveries. A drone is attached to the roof of the van and acts as a
sidekick to the van, so that drone and van can split the deliveries, while the drone can transport light
weights and can recharge on the roof.
Scenario 5 – Combination of drones and vans. Introduction of a new fleet of drones that cooperate
with the existing vans. Deliveries are carried out based on an optimised system that minimises costs
and assigns to each customer the most suitable vehicle.
The main objective of the research is to evaluate the feasibility of a drone transport network and to
compare the performances of this network with the performances of the current one. Appendix B pro-
vides a table with arguments for and against each proposed scenario, with potential improvements or
deterioration compared to the current situation. Based on the content of that table and the objectives of
the research, for the comparison analysis scenario 1 and scenario 5 are selected, in such a way that the
current situation, protracted in scenario 1, will be compared to the envisioned future situation depicted
in scenario 5. The choice to use a parallel operation of vans and drones, instead of a synchronised one,
is also supported by the study conducted by Murray and Chu (2015) and explained in subsection F.1.1.
Their results showed that with a parallel drone scheduling, better service time improvements are found
compared to a synchronised mode where drones serve as sidekicks to the van fleet. Moreover, the
size of the delivery area is not such as to justify synchronised operations. The benefits of choosing a
combined mode van-and-drone are stated in Agatz et al. (2018). Drones are fast and less expensive
in terms of costs per kilometre, but they have a rigid limitation in the size of the package and flight
range. Vans, on the contrary, can carry heavier packages for a bigger range, but being bounded to the
physical road infrastructure they can be slow and subjected to congestion. Another positive effect that
could be achieved using drones for last-mile delivery of medical products, is the reduction of vibration.
Packages transported with drones are less subjected to vibration, which can cause the protein decay
of some particular medicine (Vliet and Zaman, 2019). Moreover, temperature and humidity conditions
might be preserved in a better way, due to a faster service (WorldHealthOrganization, 2011).

2.3.2 Description of chosen alternative: combination of vans and drones
From the proposed scenarios elaborated in Appendix B, the combination of vans and drones is selected,
according to which deliveries are carried out based on an optimised system that minimises costs and
assigns the most suitable vehicle. This choice has also been made according to an important feature
described in Appendix B. Twice a week, products are delivered directly to the customer’s mail box,
without requiring any signature or physical collection. This might cause some issues in case of drone
delivery, given the difficulties that a drone might have when it comes to deliver a package directly in
the mail box. For this reason, a combined mode of van and drone is proposed. The pharmacy will have
available a fleet of vans and a fleet of drones. Depending on the trip characteristics, such as location,
type of product, urgency of delivery and traffic flow, either a drone or a van is used. The following
paragraphs contain a more in-depth description of the proposed scenario, with a depiction of the trans-
port means, the delivery process, the geographical area and the products that will be delivered.
The proposed means of transport is then non-synchronised a combined mode van-and-drone, in which
drones and vans carry out their own delivery, each of them starting and ending at the pharmacy. Al-
though really attractive from a technology perspective, synchronised combinations are not considered,
in which drones assist the deliveries carried out by the main vehicles already in use.
According to the International Civil Aviation Organisation, drones are defined as pilot-less aircraft which
are flown without a pilot-in-command on-board and are either remotely and fully controlled from an-
other place or programmed and fully autonomous (ICAO, 2011). Referring to Appendix C, the most
suitable drone for last-mile delivery results to be the Fixed-Wing Hybrid drone. Although still on its de-
velopment phase, the flying characteristics of this type of drones make the Fixed-Hybrid drone the best
choice for a feasibility assessment. Combining the advantages of both Fixed-Wing and Rotor drones,
the Hybrid typology allows for vertical take-off and landing (VTOL) while assuring a long-endurance
flight (Chapman, 2016).
Drone provision could be arranged in several ways. A first option could be to delegate to a third com-
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pany, in the same way as the current vans and service are provided by Farma Clean and Service. A
second option might be the leasing of drones from private owners, who provide the aerial vehicles
whenever needed. An additional choice is for the pharmacy to purchase the drones itself, after a care-
ful analysis of the return on investments.
The delivery process remains unchanged compared to the current situation, with the pharmacy as
starting point and the personal address of the customer as destination point. It implies that no distri-
bution points or clustering centres are introduced in the system. The attended nature of the current
delivery system, with pre-arranged delivery time will also remain unchanged. In the current situation,
the customer receives a message announcing the time of delivery; in the proposed scenario, the same
delivery agreement is envisioned, together with a second message announcing the arrival of the drone.
Once customers receive the second message, they can collect their purchase directly from the drone,
using a specific code provided by the pharmacy (in a similar way as they collect products from the ATM).
The code can be either their birth date, as for the ATM, or it can change from shipment to shipment
and communicated through SMS exchange. A box that can be used to transport medicines and other
medical products, is found in Figure 2.7. This prototype was developed by a team of students from the
faculty of Mathematics and Applied Science of Leiden, within the master track of Physics, and presented
during the Drones in the City Event organised by The Future Mobility Network in the city of Katwijk, on
the 31st of January. The concept of this prototype is that it is composed by separated compartment,
each of them storing one medicine (or a set of medicine) that must be delivered to the customer. Each
compartment can be opened by the customer only, using the code provided by the pharmacy. With
the prototype of Figure 2.7, it can be assumed that a capacity of products is considered for a single
drone.

Figure 2.7: Box prototype (own picture)

The geographical area of delivery can potentially be expanded compared to the current situation. There
are no legal limitations that confine the area of shipment to the current border defined in Figure 2.4.
If the feasibility study provides positive results for the drone delivery network, a new catchment area
could potentially be defined, based on the drone range and future demand.
For what concerns the medical products to be shipped, no differences are applied in the proposed
scenario. As introduced at the beginning of this section, the only restriction is on the customised
products that are delivered twice a week that do not need an attended delivery and thus are dropped
off into the mail box. The problem with this type of delivery lies on current drone technology; the
physical act of dropping the package off into the mail box results complicated to be carried out by
a drone, and thus still needs to be accomplished by a delivery man. A specific type of medicine that
might suite the new drone system belongs to the category of urgent shipment. In the current situation,
when an urgent shipment is required the route is re-arranged to comply to the destination of the speedy
delivery. This change in route comes with some drawbacks, especially on the cost of the shipment and
delays on the scheduled deliveries. The proposed alternative is that these urgent deliveries are carried
out by the new drone system, without any negative impact on the scheduled consignments.

2.3.3 Stakeholder analysis of a drone logistic network for BENU ’t Slag
A stakeholder can be an individual, a group of individuals or an organisation that are actively involved
in a project. They can express their interest up to a certain extent and they have a pre-arranged power
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on important decisions. The extent to which stakeholders are affected by a project and the influence
they have on final decisions determines their typology. According to Gladden and De Mascia (2013),
four categories are defined:

• Key stakeholders, that have significant influence upon project decisions;

• Primary stakeholders, that are most affected by the realisation of the project;

• Secondary stakeholders, who are indirectly affected by the realisation of the project;

• Tertiary stakeholders, who are least impacted by the project.

The stakeholder analysis is used for evaluating needs, power and interest of each actor involved in
the project management. By carrying out an effective study, it is possible to identify stakeholders’
interests, potential risks and misunderstandings, possible ways to influence other stakeholders in a
positive manner, a list of people that must be informed in the execution phase and the potential
stakeholders that might affect the project in a negative way (Eden and Ackermann, 1998).
The most common ways of conducting a stakeholder analysis is to use a so-called stakeholder matrix. In
literature, 7 different matrices can be found, each of them assessing different aspects. For a complete
description, the reader is referred to Appendix E.
It is chosen to use the power – interest matrix, to understand the importance of each stakeholder
involved in the project, and to estimate the extent to which their opinion is considered in the decision
phase. The steps to be taken to construct a power – interest matrix, are described in Appendix E. The
result of the analysis is the power – interest matrix of Figure 2.8.
According to the description provided by Eden and Ackermann (1998), stakeholders are divided into
four main categories: leaders, subjects, crowds and players. Leaders are the one positioned in the top
right part, with high power and high interest; in this case, key leaders are BENU Apotheek and BENU
‘t Slag. The Municipality of Rotterdam, despite the highest power, falls under the Players, given the
relatively low interest compared to other actors. Subjects are the actors with a high interest in the
project but a relatively low power (top left part of the matrix), identified in this case by the delivery
company and the customers. The population of Rotterdam and other pharmacies are considered as
crowds, given the relatively low interest and low power. The fact that customers are defined as crowds
and thus have no important role in the project management, might be debatable. They have almost
no decision power, but in theory they have a high interest per se. Nonetheless, when compared to
other actors, their relative interest drops. Figure 2.8 shows the power-interest matrix that is developed
according to the list and description of stakeholders for this case study, provided in section E.1.
With respect to the stakeholder typologies defined in Gladden and De Mascia (2013), key and primary
stakeholders are the BENU Apotheek franchising, the pharmacy BENU ‘t Slag and the Municipality of
Rotterdam. Despite the low-medium interest of the Municipality, it has the highest decision power,
being the one involved in policies and regulations.

Figure 2.8: Power - Interest matrix. Own analysis
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2.4. Legal issues related to the introduction of drones in last-
mile logistics

Drones are classified as airborne objects, and as such they fall within aviation laws. Being a recent
innovation technology, regulations on drones are still on an early phase. New procedures will be
applied a year from now, which makes it important to state what is nowadays in force and what will
be implemented in the near future.
The European research organisation SESAR JU - Single European Sky ATM Research Joint Undertaking
- distinguishes four phases in the civilian development of drone use (Van Nieuwenhuizen Wijbenga,
2018):

1. Current situation: applications are limited to drone operations in sight distance and at a safe
distance from people and buildings;

2. Second phase: the airspace in which drones will be able to flight is expanded. For what con-
cerns urban areas, operations must remain within sight distance, whereas in rural areas they are
broaden to out of sight distances;

3. Third phase: operations become possible for distances out of sight of operators, and drones will
be able to fly above urban areas for parcel deliveries;

4. Fourth phase: full integration of drones into the sky, where full autonomous unmanned freight
and passenger transport will be allowed, envisioned to start by 2030.

Pilot experiments are currently being conducted for the second phase of drone use development. An
example is the first pilot experiment involving an out of sight distance flight, from Lauwersoog to Schier-
monnikoog, for the delivery of medicines, a collaboration between the Ministry of Infrastructure and
the Environment, the NLR (the Netherlands Aerospace Centre), ANWB Medical Air Assistance, UMCG
Ambulance care, TU Delft and Dronehib GAE (Van Nieuwenhuizen Wijbenga, 2018). Results of pilot
experiments provide standardisation for future regulations, and possible adjustments of existing ones.
The integration of drones into the sky is possible with the introduction of an UTM - Unmanned Traffic
Management - system, which enables communication between drones and other airspace users. More-
over, this integration is also enforced by technological aspects, such as development of new sensors,
software and data technologies that can ensure higher level of safety and thus increased societal ac-
ceptance.
The following paragraphs provide a brief description of the current regulations on drone use and the
future possibilities of drone development. More information on Dutch regulations and insurance policies
are found in Appendix D.

2.4.1 Current regulations on drone use
A map of the Netherlands in which drones are currently allowed to fly is shown in Figure 2.9. From the
map it is possible to notice that the amount of airspace in which flying a drone is permitted is quite
restricted. Most of the airspace area is indeed already claimed by airports for passenger transport,
or belongs to protected nature space. For what concerns the area of interest for the case study of
BENU ’t Slag, current regulations do not allow drones to fly in the related airspace, being too close to
a heliport. Other restrictions imposed by the law in force regard the conditions in which a drone can
be flown: the maximum height is set to 120 meters, away from crowds, continuous buildings, roads,
railways, industrial and port areas.

2.4.2 Future possibilities on drone use and regulations
New regulations regarding drones for parcel deliveries will be published by the end of 2019. The
Netherlands will implement these regulations on a national level, and will comply with the European
legislation imposed by EASA - European Agency for Security in Aviation. The map in Figure D.1 will
be redacted, with more airspace available for drone operations. The area of Natura 2000 will become
accessible, provided that no landings or take-offs will be performed. According to Vliet and Zaman
(2019), the geographical area in which BENU ’t Slag operates will become accessible to drone flight,
landing and take-off.
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Figure 2.9: Outline map flying with drones (Rijksoverheid, 2018)

2.5. Conclusion
In this chapter, the picture of the system was metaphorically portrayed, starting with a general de-
scription of the last-mile logistic process, with the different strategies that can be followed to go from
the retail store to customer locations and the related challenges that this growing business faces. With
this general description, research sub question 1 was answered:

What are the main characteristics of a B2C last-mile delivery process?

Four logistics decisions were found to define this process, from the starting point to the final place of
delivery. The first decision concerned the location from which products are shipped (e.g. warehouses,
depots, retail shops). Then the second decision regards the identification of delivery destination, i.e.
the place where product are consigned (e.g. pick up points, clustering points, customer’s home). Once
the delivery destination is set, the means of collecting product must be arranged. In case of clustering
points, products can be collected through reception boxes, collection points or post offices. For home
deliveries, collection might be attended or unattended. Lastly, the agreements on the final consignment
of products must be arranged, e.g. pin code security in reception boxes, or neighbours pick ups for
unattended home deliveries. The related challenges faced by the last.mile delivery sector were then
identified in high costs of operations, traffic congestion and environmental damage.

Following this general description, the case study was introduced, with a thorough description of the
home delivery service provided by BENU ’t Slag, a pharmacy of the BENU Apotheek franchising located
in the southern part of Rotterdam. Three different methods for purchasing medical and non-medical
products are identified: in-store purchase, fetch of products using an ATM in front of the pharmacy
and home delivery. For what concerns home deliveries, operations are carried out using three vans
and three corresponding drivers that consign the products to customers on a daily basis. The demand
pattern is also part of the system description. Therefore, this chapter includes the procedure that is
followed to obtain the total demand per customer.
A proposal for the future scenario followed the description of the current situation, with an analysis
of the potential logistic of the home delivery service. In this scenario, the main hypothesis is that
drones provide a feasible fleet addition for the last-mile logistic process, when added to conventional
transportation means that are currently in use. A stakeholder analysis was included in this stage of the
research, to highlight the important actors involved in the system. At this point, the second research
sub question was answered:

Who are the main stakeholders involved in the last-mile logistic process, in relation to the case study?

Relevant actors were identified in the BENU Apotheek franchising and the BENU pharmacy ’t Slag, as
the two most interested parts in this research. Moreover, delivery companies and the Municipality of
Rotterdam were also identified as important stakeholders. Customers of BENU ’t Slag, other pharmacies
in Rotterdam and the general population were also defined as side stakeholders, having a small power
on the project but a potential high interest in it. Each stakeholder is compared to the others based on
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their power and interests, which resulted in the power-interest matrix of Figure 2.8.

To conclude the chapter, some insights on Dutch regulations related to flying a drone are provided.
Although not part of the research and out of the defined scope, investigating the legal issues related
to drone utilisation helps to collocate the research in a potential real situation and to understand the
applicability in the near future.





3
Theories and models on last-mile
logistics and network comparison

To define the extent to which the pharmaceutical sector can benefit from the introduction of drones
in the last-mile logistic process, and thus answer the research question, a comparison between the
current situation and the proposed scenarios must be performed. The framework that will be used in
this research consists of four steps.
Firstly, it is important to assess the parameters according to which the alternatives will be assessed
on. For this purpose, a list of Key Performance Indicators (KPIs) and design requirements must be
elaborated. With the term KPIs one refers to those attributes that describe the performance of the
system, providing the starting point for a comparison analysis. Design requirements refer to the needs
that a system aims to satisfy, and are closely related to the performance indicators that best describe
the system. In this step, data are gathered via interviews with stakeholders, such as BENU ’t Slag, the
Municipality, delivery companies and drone providers.
Once the relevant data have been retrieved, and the general assumptions made, the second step
concerns the definition of the costs associated with each scenario. Using the data retrieved on costs
and operations, it is possible to build a cost model, which defines the costs associated with each
scenario. These costs are then used on a further stage to assess the feasibility and the performance
of each alternative.
To elaborate the retrieved data, a design methodology must be selected. Given the selected solution
approach, the model is verified and validated, to quantify the accuracy of the model calculation. Once
the model has been proved reliable, it is implemented using the input parameters specified for the case
study.
After the model output are retrieved, it is possible to define the KPIs that characterise the system and
hence perform a comparison analysis.

3.1. KPIs and design requirements for last-mile delivery
3.1.1 Key Performance Indicators

To conduct a comparative analysis between different scenarios, the first step is to define the parameters
according to which the analysis is carried out. These parameters are known as Key Performance
Indicators and are used by companies as measurable values to effectively track the achievement of
business objectives and performance measures. Based on these KPIs, several data are needed for
the comparison process. Key Performance Indicators that are usually used in last-mile delivery can be
found in Robinson (2017) and Chen (2019). Given the nature of the research, the most relevant ones
are summarised below:

1. Delivery cost per item: cost per item delivered, measured in euro/item.

2. Average service time: time needed to conclude the whole delivery service, starting from and
ending at the retail store. This is mostly based on distance to be travelled, speed of the vehicle
and possible hindrances along the way. It is calculated in hours, and an optimal feasible solution
should provide a minimised service time, to guarantee a fast and reliable delivery;
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3. Fuel and energy consumption: calculated averaging the total fuel cost per driver, and then sum-
ming that value for all the drivers, all vehicles and all routes and it is measured in litres. Minimising
this element brings consistent savings in the delivery process, being the fuel cost a significant
component in the delivery business;

4. CO2 emission: calculated by multiplying the total distance travelled by the delivery vehicles and
the average CO2 emission per distance travelled. This parameter is highly influenced by the type
of vehicle in the fleet, and reducing CO2 emission is one of the most important goals of new
transport technologies;

5. Vehicle capacity used versus available capacity: ratio that estimates the actual payload of the
vehicle compared to its maximum payload. Maximising this indicators means that more products
can be shipped within one tour, improving thus the operations.

Other Key Performance Indicators that can be found in Robinson (2017), are the planned versus actual
route length, the driver time spent in motion and stationary and the on-time delivery. Although these
are very important KPIs to define the performance of a delivery network, especially the on-time delivery,
they were not taken into account due to difficulties in retrieving proper. In fact, to analyse the extent to
which deliveries are carried out within the intended time schedule, real observation might be needed,
which goes beyond the scope of this research.

3.1.2 Design requirements for a combination of vans and drones in last-
mile delivery network

The system in which these KPIs will be assessed must comply with network requirements. Require-
ments are defined as the needs that a particular design, product or project aims to satisfy. Based on
their importance, requirements are divided into functional and not functional: the first term refers to
the things that the system has to do, as a mandatory attribute for it to function; the second term refers
to the qualities that the system has to have, preferably, in order for it to work properly (Verbraeck,
2016). Moreover, needs of different stakeholders are defined through user requirements, which de-
scribe how and the extent to which, each stakeholder wants to interact with the system. The definition
of user requirements is made based on the stakeholder analysis of subsection 2.3.3. Needs of key
and primary stakeholders will be taken into account, such as BENU Apotheek, BENU ‘t Slag and the
Municipality of Rotterdam. Although not being part of this category, the needs of the customers and
the delivery company are also considered, given their high interest.
Functional requirements:

• Medical products must be delivered to the intended customer;

• Medical products must be delivered within the intended arranged time;

• The model must assign a feasible vehicle to the trip, based on delivery characteristics;

• The chosen alternative must comply with existing regulations.

Non-functional requirements:

• The chosen alternative should lower the total cost of the delivery process;

• The chosen alternative should minimise the total time spent on the network;

• The sequence of chosen alternatives should provide a maximised vehicle utilisation.

Functional and non-functional requirements are used to define the boundaries of the design. By as-
sessing what the system must comply with and what it should address, it is indeed possible to define
the constraints that will make the network feasible.
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3.1.3 Data for network analysis and comparison
Data needed for the network analysis and comparison are derived from the list of Performance Indica-
tors, and are divided according to the indicator that they refer to. The following list provides the inputs
that are required for the model comparison and that are gathered through interviews, literature review
and experts consultations.
Delivery cost per item

• Average number of deliveries per day [products]: knowing the average number of deliveries per
day (Frijmersum, 2018), it is possible to attribute each cost component to a single item delivered;

• Cost of storage area [euro]: portion of the pharmacy area that is dedicated to the storage of the
products that must be delivered, retrieved from Numbeo (2019);

• Handling equipment [euro]: cost of the equipment needed to assist the drivers in the action
of moving the products from the storage area into the vehicle, retrieved from LiftingEquipment
(2019);

• Parking location [euro]: the pharmacy owns a communal parking spot for employees and for
delivery vans. This area serves as parking location for vehicles that are not in use, but also as
loading and unloading facility. Data on the squared metre needed are retrieved from Mercedes-
Benz (2018), and data on cost of purchase from Numbeo (2019);

• Purchase cost of vehicles [euro]: cost of buying vehicles for the delivery fleet. For the van
purchase cost refer to Mercedes-Benz (2018) whereas for the drone purchace cost to UAV (2019);

• License to operate [euro]: according to the FAA regulations, to operate a drone for home deliv-
eries it is mandatory for the pilot to have a valid license (UAVCoach, 2019);

• ATM purchase [euro]: cost of purchase and allocation of an ATM built-in/through the wall ma-
chine, used for outdoor sales (CostOwl, 2019);

• Fees for outdoor sale: regional fees that allows outdoor sales, to be paid for the use of an ATM
machine (CostOwl, 2019);

• Human labour [euro/hour]: cost per hour of a van driver (Glassdoor, 2019) and a drone pilot
Vliet and Zaman (2019);

• Operation management [euro/hour]: cost per hour of a transport planner (Payscale, 2019), that
organises and supervises the operation management;

• Insurance cost of vehicles: annual cost of insuring vehicles for the delivery fleet. For the van
fleet refer to Mercedes-Benz (2018) and for the drone fleet to UAVCoach (2019);

• Regional taxes on vehicles [euro]: annual taxes to be paid for the vehicles of the delivery fleet
(Belastingdienst, 2019);

• Operational costs of vans [euro/km]: costs associated with the use of a vehicle of the delivery
fleet. For what concerns vans, this cost relates to the fuel consumption rate and the fuel price in
the market (GlobalPetrolPrices, 2019);

• Operational costs of drones [euro/h]: costs associated with the use of a vehicle of the delivery
fleet. For what concerns drones, it concerns the energy consumption rate and the energy price
in the market MainEnergie (2019);

• Financial cost [euro]: cost related to the annual interests on loan (FitSmallBusiness, 2019).

Average service time

• Average speed of vehicle type [km/h]. Assumption of the model developer;

• Average loading and unloading time for vehicle type [minutes]. Assumption of the model devel-
oper;
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Fuel and energy consumption

• Fuel consumption of vans [litres/100km] (Mercedes-Benz, 2018);

• Energy consumption of drones [kWh] (Xu, 2017);

CO2 emission

• CO2 emission per distance travelled, [g/km] (Mercedes-Benz, 2018).

Vehicle capacity used versus available capacity

• Maximum allowed payload for vehicle type [products]. Assumption of the model developer;

• Average used payload for vehicle type [products]. Output of the model.

For what concerns the cost per item, a more in depth analysis is carried out in section 3.2 and Ap-
pendix G with the generation of cost models for each network alternative. In these cost models,
scenarios are assessed based on the cost of each component, in order to get an estimate of the cost
per item in the considered alternatives.

3.2. Cost model for different sale options
A cost model is a mathematical framework in which all the costs of a specific activity are recorded
(iSixSigma, 2019). For each system component, the corresponding cost is evaluated, in order to esti-
mate the final cost of each scenario. Inputs for the model are the number and types of vehicles, the
equipment needed, the technology used and potential human labour.
As explained in CIO (2018), the construction of a cost model starts with data gathering. Data on tech-
nologies used and economic indicators are used to develop a pricing scheme for each network design.
The next step is to organise the data by removing and replacing missing data or standardise the values.
In the case of missing data, assumptions can be made, based on historical data, averaging techniques
and/or relevant literature.
Based on the scenario assessment in section 2.3 and the description of the current situation in sec-
tion 2.2, the following alternatives will be analysed:

1. Deliveries are carried out using one vehicle type: vans. The alternatives for customers are either
purchase the product directly at the pharmacy or having it delivered at home;

2. Deliveries are carried out using one vehicle type: vans. Beside purchase the product directly at
the pharmacy or having it delivered at home, a third option for purchase is introduced: the ATM
outside the pharmacy, through which customers can buy or collect their medicine at any time of
the day;

3. Deliveries are carried out using two types of vehicles: vans and drones. The ATM is still available
for customers who want to collect their medicine directly at the pharmacy, without being bounded
by the opening hours. Drones are operated from the pharmacy and are forced to return there to
charge their batteries and to load new products.

The output of the cost model will provide the total annual cost of each alternative, together with the
fixed costs and the variable costs associated with the use of vans and the use of drones for last mile
delivery of medical products. These values will be used in the selected design methodology to analyse
the different network alternatives.

3.3. Model description for last-mile logistic problem
Last-mile delivery is a transport network problem in which products must be shipped from a depot to
a set of customers, using a fleet of vehicles. The logistics of these deliveries should be such that the
cheapest option is selected, providing thus an optimal tour that starts and ends at the depot and visits
all the scheduled customers. In order to do so, the output data of the cost model must be elaborated
through operation research, i.e. simulation techniques or optimisation modelling.
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3.3.1 Transport network analysis: simulation approaches
The simulation of a transport network concerns the assessment of several different alternatives, without
generating the best possible option. Simulation analyses scenarios by evaluating performances of
alternatives, and it is particularly effective when many parameters with a substantial level of uncertainty
define the problem, or in case that the analytical expression of the problem is difficult to formulate
(Lee, 2019). The most common simulation approach in literature is the Travelling Salesman Problem
(TSP), a non-deterministic problem used in operation research to find the shortest path that connects
a set of nodes, for which the order of visit is not important. It takes its name from the analogy of a
salesman who, given a set of destinations, must visit each one of them starting from a certain node
and ending at his starting location. The goal of the problem is to minimise the total length of the
tour. The mathematical formulation of the TSP, shown in Table 3.1, is found in Dantzig (2016). In
this formulation, the objective function is to minimise the total cost of a daily operation. The decision
variable 𝑥 refers to the binary integer value that returns 1 if the path goes from node 𝑖 to node 𝑗 and
zero otherwise. The combinatorial model involves 𝑛 cities and it only allows solutions that visit each
node once and only once and that define a tour, i.e. a return to the initial node (Jenses, 2004). The
model output is the shortest route that starts and ends at the depot, and visits all the defined nodes.
This classical formulation considers only one vehicle and defines one single route. Several adaptations
of the TSP, together with different solution approaches can be found in Appendix F.

OF 𝑚𝑖𝑛∑ ∑ 𝑐 ∗ 𝑥

ST 𝑚𝑖𝑛∑ 𝑥 = 1 1 ≤ 𝑗 ≤ 𝑛 (1)

𝑚𝑖𝑛∑ 𝑥 = 1 1 ≤ 𝑖 ≤ 𝑛 (2)
𝑥 ≥ 0 1 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑗 ≤ 𝑛 (3)

Table 3.1: Mathematical formulation of the TSP

3.3.2 Transport network analysis: optimisation approaches
Optimisation approaches are used to find the most efficient solution to a problem. It consists on the
translation of the problem description into a mathematical expression using decision variables, which
expression is minimised (or maximised) while complying with a set of constraints. When converting
the problem into a mathematical expression, several assumptions must be made. If poorly formulated,
these assumptions might lead to an oversimplification of the problem, and thus to a wrong solution.
Regarding the assessment of transport networks, the most used optimisation approach is the Vehicle
Routing Problem. The Vehicle Routing Problem (VRP) is a combinatorial optimisation and integer pro-
gramming problem, which generalises the TSP. The goal of the VRP is to define the optimal tour given
a set of nodes and a fleet of vehicles, such that each node is visited at least once and only once, and
the costs of operations are minimised. Another objective function that is commonly used in delivery
network optimisation is the minimisation of the total number of vehicles needed to serve all customers
(Toth and Vigo, 2002). The mathematical formulation of the VRP, shown in Table 3.2, refers to the
one provided by Fisher and Jaikumar (1978). The description of decision variables and parameters and
the explanation of each constraint is provided in Appendix F. The model output is a set of 𝑘 tours,
where 𝑘 corresponds to the number of vehicle available, which combination provides the most efficient
sequence of customer visits starting and ending at the depot. Several adaptations of the VRP, together
with different solution approaches are found in Appendix F.
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OF 𝑚𝑖𝑛∑ ∑ 𝑐 ∗ 𝑥

ST ∑ 𝑦 = 1 1 ≤ 𝑖 ≤ 𝑛 (1)
∑ 𝑦 = 𝑚 𝑖 = 0 (2)
∑ 𝑞 ∗ 𝑦 ≤ 𝑄 1 ≤ 𝑘 ≤ 𝑚 (3)
∑ 𝑥 = 𝑦 0 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (4)
∑ 𝑥 = 𝑦 0 ≤ 𝑗 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (5)
∑ ∑ 𝑥 ≤ |𝑆| − 1 𝑆 ⊆ 1, ..., 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (6)

Table 3.2: Mathematical formulation of the VRP

3.3.3 Selected approach for transport network analysis
The benefits and drawbacks of simulation techniques and optimisation modelling can be found in
Table 3.3, adapted from DublinSchoolOfMathematics (2019) and Lee (2019).
The main objective of the research is to assess the feasibility of introducing drones in the last-mile
logistic process and to compare this new network with current transportation means (i.e. home delivery
service with vans). Data on costs and efficiency of vans are gathered through interviews with BENU
‘t Slag. In order to establish validity and obtain a solution as optimal as possible, an optimisation
model will be created for the current situation and for the scenario with drones in the vehicle fleet.
The solution of the optimised model will provide a list of van routes and a list of drone routes, with
their respective travel times, defining thus the performance indicators for the network of the current
situation and for the one of the future scenario. The costs associated with these networks will then be
compared in order to perform the comparison analysis.
The output of the optimisation model will provide the data needed for the elaboration of the KPIs listed
in subsection 3.1.1. Together with the data retrieved through the pharmacy, a complete analysis of
the future scenario is made.

Pros Cons

SIM Easy to build; handle several scenarios with mini-
mal assumptions; handle time related issues such
as delivery time distribution

Hard to debug; difficulty to obtain high quality so-
lution; hard to establish validity; cannot produce
optimal solution

OPT Used in situations where strong constraints apply;
solve tactical and operational issues; high quality
analytical solution

Optimisation only for one variable; not for too
complex problems; problem of oversimplified dur-
ing modelling stage

Table 3.3: Pros and Cons of simulation and optimisation. Adapted from DublinSchoolOfMathematics (2019) and Lee (2019)

The choice on which optimisation model to use and specifically which adaptation, is made based on the
characteristics of the new transport network of combined vans and drones. As defined in the previous
sections, the classical model formulations for transport networks are the Travelling Salesman Problem
and the Vehicle Routing problem.
Based on the description of the models in Appendix F and the evaluation of Table F.3, the choice for
modelling the the different scenario alternatives is to use the Vehicle Routing Problem, adapted for
considering the heterogeneity of the fleet and the inability of certain vehicles to carry out specific
deliveries. The formulation of the Vehicle Routing Problem provided in Appendix F is then modified
as shown in Table 6.1, for which the same notation applies. The objective of the formulation is to
minimise the delivery costs, by providing the cheapest possible sequence of nodes to be visited and
a feasible vehicle combination. The main difference with the basic VRP formulation is that now the
cost is considered per each vehicle, by adding the subscript 𝑘 to the cost 𝑐 and including it into the
summation over 𝑘. Two constraints (constraints number 7, 8) are added, concerning the technical and
spatial limitations of drones.
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Model formulation
The objective of the formulation is to minimise the cost of the tour, by providing the cheapest possible
sequence of nodes to be visited. The decision variable 𝑥 assumes the value of 1 if customer 𝑗 is
visited immediately after customer 𝑖 by vehicle 𝑘, and 0 otherwise. The variable 𝑦 defines whether
customer 𝑖 is visited with vehicle 𝑘. Constraint 1 sets that each customer 𝑖 must be visited at least
once, and only once by just one vehicle 𝑘. Vehicle are bounded to return to the depot by constraint
2, 4 and 5. The capacity of the vehicles is limited by constraint 3, in which 𝑞 indicates the demand
at each node visited by vehicle 𝑘 and 𝑄 the capacity of vehicle 𝑘. Constraint 6 guarantees that not
sub tours are generated. Constraint 7 refers to the flight time constraint, indicating that the total time
from 𝑖 to 𝑗 using vehicle 𝑘 must not exceed the maximum utilisation time 𝑇 . Constraint 8 concerns
the distance limitation, imposing that the distance covered by a vehicle must not exceed the maximum
range 𝑅 .

OF 𝑚𝑖𝑛∑ ∑ ∑ 𝑐 ∗ 𝑥

ST ∑ 𝑦 = 1 1 ≤ 𝑖 ≤ 𝑛 (1)

∑ 𝑦 = 𝑚 𝑖 = 0 (2)

∑ 𝑞 ∗ 𝑦 ≤ 𝑄 1 ≤ 𝑘 ≤ 𝑚 (3)

∑ 𝑥 = 𝑦 0 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (4)

∑ 𝑥 = 𝑦 0 ≤ 𝑗 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (5)

∑ ∑ 𝑥 ≤ |𝑆| − 1 𝑆 ⊆ 1, ..., 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (6)

∑ ∑ 𝑡 ≤ 𝑇 1 ≤ 𝑘 ≤ 𝑚 (7)

∑ ∑ 𝑥 ∗ 𝑑 ≤ 𝑅 1 ≤ 𝑘 ≤ 𝑚 (8)

Table 3.4: Mathematical formulation adapted from the VRP

Model implementation
Many solution approaches are available for solving the Vehicle Routing Problem. For this case study it is
decided to use an open source spreadsheet solver specific for Vehicle Routing Problems, developed by
Erdoğan (2017). By using an easy and familiar Microsoft Excel interface, several problems of commercial
software packages are overcome. Besides the substantial cost of these packages, problems related to
the geographical data acquisition, such as travel distances and travel duration, are not easy to solve.
In the Excel solver of Erdoğan (2017), geographical locations, distances and travel times are easy to
retrieve thanks to a built-in function based on GIS web service. Other implementation approaches
that were considered for this model optimisation were the C-Plex solver and the Yalmip solver, both for
the Matlab software environment. The main problem that was encountered while implementing the
VRP with Matlab was the acquisition of the map of Rotterdam, and the distribution of exact location.
Although the code was easy to write, the map visualisation was difficult to achieve, hence it was decided
to avert this solution approach. Moreover, from an online research, several other VRP solver were found,
such as the Routific (Routific, 2019), which provides solutions to VRPs using routing optimisation API,
routing algorithms to solve NP-hard vehicle routing problems. The main drawbacks of these solvers is
that they are specifically designed for companies and thus require a subscription providing the company
name and a software purchase.
The VRP Spreadsheet Solver by Erdoğan (2017) uses the Large-scale Neighbourhood Search (LNS)
algorithm, belonging to the category of constructive heuristic algorithm. This approach tries to find
near optimal solutions by improving the current solution into a better solution in the neighbourhood
of the current one (Ahuja et al., 2000). With the term neighbourhood, it is intended the set of similar
solutions to the current one obtained, that is created applying simple modifications to the original
solution. To help understanding the concept of LNS algorithm, the following explanation is retrieved
from Pisinger and Ropke (2010). Given an instance 𝐼 of a combinatorial optimisation problem and a
finite large set 𝑋 of feasible solutions, a function 𝑐 ∶ 𝑋 → ℝ is defined, that maps from a solution
to its cost. Being this a minimisation problem, the aim of the algorithm is to find a solution 𝑥∗ such
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that 𝑐(𝑥∗) ≤ 𝑐(𝑥)∀𝑥 ∈ 𝑋. A neighbourhood of a solution 𝑥 ⊆ 𝑋 is defined as 𝑁(𝑥) ⊆ 𝑋, with 𝑁
being a function that maps a solution to a set of solutions. With this definition of neighbourhood, a
solution 𝑥 is locally optimal with respect of a neighbourhood 𝑁 if 𝑐(𝑥) ≤ 𝑐(𝑥 )∀𝑥 ∈ 𝑁(𝑥). Having
said that, a neighbourhood search algorithm starts from an initial solution 𝑥 as input and gradually
improves this solution computing 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∈ ( ) {𝑐(𝑥 )}, which finds the cheapest solution 𝑥 in
the neighbourhood of 𝑥. If an improved solution 𝑥 is found, for which 𝑐(𝑥 ) < 𝑐(𝑥), the algorithm
performs the update 𝑥 = 𝑥 . Then it continues searching for an improved solution in the neighbourhood
of the new solution 𝑥, stopping when a local optimum is reached.
Initial information such as the number of customers, the geographical location and the available fleet
are stored in the Solver Console. Details on each customer (locations, time window, service time and
demand) are then inserted in the Location sheet. Based on the address of each customer, geographical
coordinates are computed by the model. These coordinates will then be used in the Distances sheet,
where the distances between each customer (included the depot) are computed based on the GIS map
of the considered area. Data on the available fleet, such as cost parameters, capacity, time and range
limits, are inserted in the Vehicle worksheet. Costs associated with each vehicle are divided into fixed
costs and operational costs. Based on all the input inserted, the model provides the optimal number
of vehicles to be used, the sequence of visits, the cost associated with each vehicle, the distance and
the time travelled by each vehicle and the total cost of operation. Furthermore, locations and routes
can be visually inspected in the visualisation worksheet, where the tour for each vehicle is placed upon
the map from the GIS web service.

Model validation and verification
Once the solution approach for model implementation is defined, the next step in model building is the
model validation and verification. These two processes are important to quantify the credibility of the
model (Thacker et al., 2004). In the procedure of developing the model (right-hand side of Figure 3.1),
the role of validation and verification is to define the quantitative comparison between experimental
outcome and simulation outcome, providing thus an estimation of the model accuracy. In this graph,
the right-hand side shows the process of developing the model, whereas the left-hand side shows the
process of experimental data and physical testing.
Model verification is the assessment activity between the mathematical model and the computer model,
defined as the process of determining that a model implementation accurately represents the devel-
oper’s conceptual description of the model and the solution of the model (AIAA, 1998). In other words,
it ensure that the model does what it is intended to do. The process of model verification can be dis-
tinguish into two different phases: code verification and calculation verification (Thacker et al., 2004).

1. Code verification is usually carried out by both the code developer and the model developer. Code
developers assure the software quality, by checking the reliability and robustness of the software;
code modellers, on the other hand, verify the numerical algorithm, controlling the correctness of
the numerical algorithm implemented in the code.

2. Calculation verification is carried out by the model developer and aims to quantify the errors
introduced by the code implementation. By means of simplified models, it is possible to reduce
the model to its minimal possible behaviour and then compare the numerical results obtained
with the VRP model and the ones analytically obtained.

For what concerns model validation, Figure 3.1 shows that validate a model implies comparing the
simulation outcome and the experimental outcome on a quantitative level. According to the definition
of AIAA (1998), model validation is indeed the process of determining the degree to which a model is
an accurate representation of the real world from the perspective of the intended uses of the model.
Therefore, in this phase of the model building process, it is assessed whether the outputs of a model are
acceptable with respect to the real data-gathering process. Sargent (2010) proposes several validation
techniques that can be applied to simulation and optimisation models. For validate the model used in
this research, it is decided to use the extreme condition test method: setting all the input parameters to
zero, the solution of the model is checked whether it is plausible and in accordance with the expected
outcomes.
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Figure 3.1: Model development. Adapted from Thacker et al. (2004)

Sensitivity analysis
When the outputs of the model are obtained, it is important to evaluate the effect that changes in
one or more input parameters brings to the model behaviour and its outputs. The analysis can be
carried out by describing the direction of changes (qualitative analysis) and the magnitude of changes
(quantitative analysis). This testing method is valuable to define the parameters that cause significant
changes in model’s behaviour, so that the modeller can pay more attention to the their accuracy.

3.4. Methodology for transport network comparison
The comparison of alternatives is made based on the KPIs that are retrieved from the model outputs
of the current situation and future scenario. Network alternatives are assessed based on four different
criteria:

1. Cost associated with network alternative: comparison of cost components such as total annual
costs, delivery cost per item and cost of power supply;

2. Environmental benefit: comparison of environmental components such as CO2 emission, fuel
consumption and energy consumption;

3. Service time: comparing the total time needed to complete a sample day of operation indicates
how fast the alternative is, and which network configuration is the most suitable for minimising
the total time spent in the system;

4. Payload utilisation: this criteria will compare the vehicle load factor of each alternative, as a ratio
between the vehicle capacity used and the maximum vehicle capacity available.

Furthermore, alternatives will be compared based on the extent to which they comply to functional and
non functional requirements stated in subsection 3.1.2.

3.5. Conclusion
Last-mile logistics are assessed using models for transport network analysis. This chapter gave an
overview of the mathematical models that are currently in use, together with the data that are needed
to implement these models, the different solution approaches and the indicators that are generally
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used to assess the transport network performances. Based on this analysis, it is possible to answer
the third research question:

What are the main KPIs, data and design methodologies for a comparative analysis of last-mile
delivery transport networks?

The performance indicators to be used in the network comparison analysis concern costs, service time,
environmental parameters and vehicle capacity. After a literature study and a series of interviews with
relevant stakeholders, the following list of Key Performance Indicators is complied, together with the
related data that must be retrieved:

• Delivery cost per item: average number of deliveries per day; cost of storage area; cost of han-
dling equipment; cost of parking location; purchase cost of vehicles; license to operate a drone;
ATM purchase and fees for outdoor sale; human labour (van drivers and drone pilots); operation
management costs; insurance cost of vehicles; regional taxes per vehicle type; operational costs
of vehicles; financial costs.

• Average service time: average speed for vehicle type; average loading and unloading time for
vehicle type.

• Fuel and energy consumption: fuel consumption of vans; energy consumption of drones.

• CO2 emission: CO2 emission per distance travelled per vehicle type.

• Vehicle capacity used versus available capacity: maximum allowed payload for vehicle type;
average used payload for vehicle type.

For what concerns the mathematical description of transport network problems, two main formulations
are found in literature: the Travelling Salesman Problem and the Vehicle Routing Problem. For the
definition of the constraints and therefore the boundaries of the design, a list of functional and non
functional requirements was made.

• Functional requirements: medical products must be delivered to the intended customer; medical
products must be delivered within the intended arranged time; the model must assign a feasible
vehicle to the trip, based on delivery characteristics; the chosen alternative must comply with
existing regulations.

• Non-functional requirements: the chosen alternative should lower the total cost of the deliv-
ery process; the chosen alternative should minimise the total time spent on the network; the
sequence of chosen alternatives should provide a maximised vehicle utilisation.

Following this general description, the chapter contains the selection of the most proper approach,
based on the requirements of the case study and the main objective. This led to the answer of research
sub question four:

How to adapt the chosen design methodology for last-mile delivery networks to fit the case study
requirements?

The Vehicle Routing Problem, as defined in Fisher and Jaikumar (1978), was adapted considering the
needs and requirements for the current situation and future scenario. Constraints on flying time and
range limitations are added, and the cost of each vehicle type is included in the objective function.
A Large-scale Neighbourhood Search algorithm is chose as solution approach, having the benefit of
being easy to implement but the drawback of not being able to provide a general optimal solution.

The chapter was then concluded with the mathematical formulation, the solution approach and the
relevant testing methods that will be use to perform the comparison analysis. Further explanations on
model conceptualisation, specification and implementation will be provided in the next chapter.
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Model optimisation last-mile logistic

Following the model formulation and the solution approach defined in subsection 3.3.3, this chapter
contains the optimisation development.
The alternatives that are assessed are the current situation, in which home deliveries are carried out
using a vehicle fleet composed by three vans, and the future configuration, in which drones are in-
troduced in the fleet, in combination with the already existing vans. The procedure for the model
optimisation starts with the model conceptualisation, that simplifies the last-mile delivery process and
connects input and output parameters through the model formulation in use. Then the network alter-
natives are described as scenarios to be tested in the model, explaining how the model implementation
is performed. Finally, verification and validation tests of the model are run for the specific model im-
plementation, to find the extent to which it represents the initial model formulation and resembles real
world situations.

4.1. Model conceptualisation
The conceptual model contains the specifications according to which the scenarios are tested to find
optimised performances. Specifications are primarily based on theoretical considerations (Allen, 1997);
therefore, this process refers to the analysis conducted in chapter 3. Input and output parameters are
linked together through the model, following the black box concept, as defined in Sweeting (2015):
inputs and outputs have a causal relations; input and output are distinct; inputs and outputs are ob-
servable and relatable; the connection between inputs and outputs, i.e. the model, is non-openable
to the observer, who remains in the dark regarding its functioning. Figure 4.1 shows the black box
concept, including the inputs and outputs description.

MODEL

INPUTS

Vehicle characteristics
Fleet characteristics
Labour restriction
Delivery agreements
Demand

Fleet allocation
Visit sequence
Vehicle utilisation

MODEL

Decision variables x
ijk

 and y
jk

VRP formulation
LNS algorithm

PERFORMANCE

INDICATORSKPIS CALCULATION

Delivery cost per item
Service time
Fuel consumption
Energy consumption
CO2 emission
Cost of power supply
Vehicle capacity ratio

MODEL

OUTPUTS

Figure 4.1: Black box concept with inputs and outputs description

4.1.1 Input parameters
Referring to Figure 4.1, input parameters are divided into vehicle characteristics, fleet characteristics,
labour restriction, delivery agreements and product demand. More specifically, parameters that are
inserted in the model are:
Vehicle characteristics

• Average van speed [km/h]

29
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• Average drone speed [km/h]

• Fixed and distance costs of van [km]

• Fixed and distance costs of drone [km]

• Distance limitation for vans [km]

• Distance limitation for drones [km]

• Flight time limitation for drones [hours]

• Van capacity [number of products]

• Drone capacity [number of products]

Fleet characteristics

• Number of vehicle types [-]

• Number of vehicles per vehicle type [-]

Labour restriction

• Working time limit for van drivers [hours]

Delivery service characteristics

• Number of depots [-]

• Number of customers [-]

• Service time for products drop off [hours]

• Distance between customers [km]

Demand

• Product demand for each customer [number of products]

4.1.2 Model description
The description of the model aims to define the entities and the alternatives that are tested in order
to optimise the home delivery service and allow for the comparison analysis between current situation
and future scenario. An important part of the model are the decision variables, which link the input
parameters to the output values.
Entities - Entities refer to real-world system components for which attributes are described. Model
entities are listed according to the system description of chapter 2 and the model description of sub-
section 3.3.3: vehicles in the fleet (vans and drones); customers interested in the home delivery
service; drivers that carry out deliveries via van; drone pilots that remotely control the drones. Vehicle
characteristics are retrieved via interviews and literature study. For the cost components, two different
cost models are developed, one referring to the current situation and one to the future scenario. Cus-
tomers locations and total demand are retrieved conducting interviews with BENU ’t Slag, and refer to
the system description analysis of chapter 2.
Network alternatives - Network alternatives refer to the current situation and the future scenario as
described in subsection 2.3.1. Both alternatives have the same demand value, the same customers
locations and the same depot location. The differences concern the vehicle fleet composition (only
vans for the current situation and a combination of vans and drones for the future scenario) and the
cost characteristics (as result of the cost models).
Decision variables - Decision variables are the unknown information in an optimisation problem. In
the case of the VRP, two binary decision variables are included in the model, one pertaining both the
objective function and the constraint formulation and one used only for the constraint formulation.
Given the set of customers 𝑖 and 𝑗, and the set of vehicles 𝑘, the decision variables are 𝑥 and 𝑦 .
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The first one returns a positive value if customer 𝑗 is visited after customer 𝑖 using vehicle 𝑘 and zero
otherwise; the second one returns a positive value if customer 𝑖 is visited with vehicle 𝑘. Referring
to the model formulation of subsection 3.3.3, the decision variable 𝑦 is used for implementing the
constraint on vehicle capacity, and to make sure that each customer is visited once and only once by
one vehicle and each vehicle must start and finish its tour at the depot.
Cost model - The alternatives that are assessed in the following paragraph regard the current situation
and the future scenario. For the current situation, two states of the system are evaluated, which relate
to before and after the introduction of the ATM in February 2018 (Frijmersum, 2018). Demand is kept
equal in all network alternatives. The pharmacy operates deliveries only during working days, from
Monday to Friday (Frijmersum, 2019), leading to an average number of 21 working days per month.
From the monthly number of deliveries found in Figure 2.6, an average amount of 2,205 deliveries per
month is fixed, leading to a demand of 105 deliveries per day.
Starting from February 2018, customers that reach the pharmacy can either purchase the products
at the pharmacy or make use of the ATM positioned at the entrance. The trend of home deliveries
presented in Figure 2.6 shows a slight reduction of demand, combined with a reduction of delivery cost
payed by the pharmacy (from 10,218 euros to 9,705 euros per month, see subsection 2.2.4). For this
reason it is assumed that the number of kilometre travelled per year and the total working hour per
day are slightly reduced (for the full calculation refer to Appendix G).

For the future configuration, the introduction of drones is considered. Products are sold through three
different channels: directly at the pharmacy, through the ATM and via home deliveries. Now the fleet
is expanded, including drones as means of transport, with the initial number of vehicles set to two vans
and one drone. These values are a consequence of the demand analysis and the assumptions made
on vehicle capacity. Data on drones refer to the model X8 Long range cargo drone, later displayed
in Figure 4.3, having a total cost of 2,500.00 euros. Being a long-range cargo drone, it can fly up to
almost 4 km carrying a payload of up to 2 kg (although it can reach 32 km at the expenses of the
payload capacity). The maximum allowed flight time is set to 1 hour, and the vehicle speed is set to 70
km/h (Liu et al., 2018). These inputs are used to define the average flying hours per day and therefore
calculate the time related cost.
A comparison of the results for the three different cost models is provided in Table 4.1. In this table,
previous configuration refers to the situation in which home deliveries are carried out with three vans
and no ATM is installed, current configuration refers to the combination of ATM and home deliveries
with three vans, future configuration refers to the combination of ATM and home deliveries with two
vans and one drone.

Component Previous configuration Current configuration Future configuration
no ATM, 3 vans ATM, 3 vans ATM, 2 vans and 1 drone

Total investment [euro]
Depreciation [years]
Annual investment [euro/year]
Annual exploitation [euro/year]
Other [euro/year]
Annual cost [euro/year]

Table 4.1: Comparison of annual costs of previous, current and future configurations

Relevant for the model implementation are the fixed and operational costs. Fixed costs per trip are
found by adding the cost components that incur regardless of vehicle utilisation, and dividing their
value in such a way that the dimension is euro per trip. Furthermore, costs that are not related to one
specific vehicle (i.e. costs of storage area, handling equipment, parking spots, operation management
and loan) are also divided by the number of vehicles, to be consistently spread per trip. The calculation
for the fixed cost of vans is found in Equation 4.1, whereas for fixed cost of drones in Equation 4.3.
Operational costs are divided into distance cost and time related cost. For what concerns the van
fleet, distance cost is given by the fuel consumption cost, considering an average of 5 litre/100km
consumption (Mercedes-Benz, 2018) and 1.33 euro/litre diesel price (GlobalPetrolPrices, 2019). Time
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cost for the van fleet is given by the average wage of a delivery driver in Rotterdam, set to 15 euro/hour
(PayScale, 2019). For the drone fleet, only time related components add up to the variable costs. The
time cost of drones includes the cost of a drone operator (set to 21 euro/hour (Vliet and Zaman,
2019)) and the cost of the energy consumed. According to Xu (2017), the energy consumption of a
drone carrying one package is 0.26 kWh. The price of 1 kW is currently set to 0.1024 euro per kW
(MainEnergie, 2019). Multiplying these two values, a time cost of 0.03 euro/hour is found. Adding the
energy cost to the human labour cost, a total of 21.03 euro/h is set for the time related cost.
The spreadsheet solver used in this case study does not consider time related costs. To overcome this
drawback and still account for this cost component, the cost per hour of each driver is converted into
cost per kilometre, assuming an average van speed of 35 km/h. The average wage of 15 euro/hour
corresponds to 0.25 euro/minute. At a speed of 35 km/h, a vehicle covers 1 km in 1.7 minutes.
Therefore, the cost of 1 kilometre is found multiplying 0.25 euro/minute times 1.7 minutes, which is
equal to 0.43 euros. This value is added to the distance cost component related to fuel consumption, for
a total of 0.50 euros (Equation 4.2). The same concept is applied to the drone fleet. Time-dimensional
costs are translated into distance-dimensional cost, by considering an average speed of 70 km/h for
the drone (Equation 4.4). In this way, a total cost of 0.30 euro/km is found for the conversion of time
related components to distance related components.
One of the assumptions is that each vehicle performs one round trip per day, starting from the pharmacy,
visiting the assigned customers and returning back to the depot. Fixed costs are intended per trip;
therefore, to calculate the value of fix cost it is necessary to spread the value of fixed annual costs
over the 3 vehicles. Investment costs such as locations and vehicle purchase, have a depreciation of 5
years. Although this depreciation value is correct for the van fleet, it seems too high for the drone fleet,
for which a depreciation period of 1 or 2 years is more indicated. Nonetheless, given the small effect
of drone purchase on the total annual costs, it was decided to keep the same depreciation period of 5
years. The average number of working days per month is fixed to 21 and all 12 months are considered.

𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 =
∑ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝐴𝑇𝑀 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

3 ∗ 5 ∗ 12 ∗ 21 + 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡3 ∗ 12 ∗ 21
+ 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡5 ∗ 12 ∗ 21 + 𝑡𝑎𝑥𝑒𝑠

12 ∗ 21 +
𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

21
+ 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 𝑓𝑒𝑒𝑠3 ∗ 21 (4.1)

Equation 4.1 shows the components for the fixed cost of vans, expressed in euro/trip. Costs of locations
and cost of ATM are depreciated over a period of 5 years, divided per day of operation (over the 12
months, 21 days per month) and per vehicle. Purchase cost is also depreciated over a 5 year period
and divided per day of operation, but since it is already specific for each single vehicle, it is not spread
over the 3 vehicles. Operation management is measured in euro/year, therefore its cost is divided per
12 (months) and 21 (working days per month) and spread over the 3 vehicles. Taxes are also measured
in euro/year, so they are divided per 12 (months) and 21 (working days per month), but referring to
each single vehicle, they are not spread over the 3 vans. Insurance cost is calculated in euro/month,
so its value is only divided by 21 working days to obtain the daily value. Financial cost and outdoor
fees are expressed in euro/month, so their value are spread over the 21 working days and over the 3
vans.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 = 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒 + 𝑑𝑟𝑖𝑣𝑒𝑟 𝑠𝑎𝑙𝑎𝑟𝑦𝑣𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 (4.2)

Equation 4.2 shows the distance cost of the van fleet, expressed in euro/km. The first term refers to
the consumption cost, and it is based on how much fuel is consumed and its price. The second term
refers to the translation of time related cost into distance related cost, by means of the average vehicle



4.1. Model conceptualisation 33

speed.

𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 =
∑ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝐴𝑇𝑀 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

3 ∗ 5 ∗ 12 ∗ 21 + 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡3 ∗ 12 ∗ 21
+ 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 + 𝑝𝑖𝑙𝑜𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 + 𝑙𝑖𝑐𝑒𝑛𝑠𝑒5 ∗ 12 ∗ 21 + 𝑡𝑎𝑥𝑒𝑠 + 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒12 ∗ 21

+ 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 𝑓𝑒𝑒𝑠3 ∗ 21 (4.3)

Equation 4.3 shows the components for the fixed cost of drones, expressed in euro/trip. Costs of
locations and cost of ATM are depreciated over a period of 5 years, divided per day of operation (over
the 12 months, 21 days per month) and per vehicle. Purchase cost is also depreciated over a 5 year
period and divided per day of operation, but since it is already specific for each single vehicle, it is not
spread over the other 2 vehicles (vans). Operation management is measured in euro/year, therefore
its cost is divided per 12 (months) and 21 (working days per month) and spread over the 3 vehicles of
the fleet composition. Taxes and insurance costs are also measured in euro/year, so they are divided
per 12 (months) and 21 (working days per month), but referring to each single vehicle, they are not
spread over the 3 components. Financial cost and outdoor fees are expressed in euro/month, so their
value are spread over the 21 working days and over the vehicle in the fleet.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 = 𝑝𝑖𝑙𝑜𝑡 𝑠𝑎𝑙𝑎𝑟𝑦 + 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑑𝑟𝑜𝑛𝑒 𝑠𝑝𝑒𝑒𝑑 (4.4)

Equation 4.4 shows the distance cost of the drone fleet, expressed in euro/km. All components are
time related costs translated into distance related costs by means of the average vehicle speed. The
first term refers to the pilot salary and the second term to the cost of energy consumed.
Table 4.2 shows a comparison of fixed and variable costs for vans and drone, for each of the three
situation analysed. Fixed costs per trip are also completed with fixed costs per day and fixed costs per
product. For the previous and the current configuration, three vans are considered. A vehicle
utilisation is assumed for the fixed cost expressed in euro/trip (based on the total demand of
products and the total capacity of vehicles of products). Therefore, each vehicle is supposed to
be loaded with products. For the future configuration, two vans and one drone are considered. A

vehicle utilisation is assumed for the drone fleet and a vehicle utilisation for the van fleet
(found subtracting the products carried by the drone from the total of and divided by the total
vehicle capacity of products). Therefore, each van is supposed to be loaded with products and
the drone with products.

Cost component Previous configuration Current configuration Future configuration
no ATM, 3 vans ATM, 3 vans ATM, 2 vans and 1 drone

Fixed cost van

Distance cost van
Fixed cost drone

Distance cost drone

Table 4.2: Comparison of fixed and variable costs for previous, current and future configurations

4.1.3 Output parameters
The outputs that will come out of the model and that will be used for calculating the performance
indicators are the fleet allocation, the customer sequence and the vehicle allocation.
Fleet allocation and customer sequence

• Binary 𝑛 ∗ 𝑛 ∗ 𝑘 matrix with customer visit sequence and vehicle allocation
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Vehicle utilisation

• Distance travelled per vehicle 𝑑 [km]

• Driving time per vehicle 𝑡 [hour]

• Working time per vehicle 𝑤𝑡 [hour]

• Number of stops per vehicle 𝑛 , [-]

• Initial loading per vehicle 𝑄 , [products]

• Cost of operations per vehicle 𝑐 [euro]

4.2. Model specification
4.2.1 Input specification
Values of input parameters are retrieved conducting interviews with relevant stakeholders, literature
study and making general assumptions. Cost components are calculated with the cost model for the
current situation (1) and the future scenario (2).

Parameter Input value Unit Reference

Average van speed km/h (Mercedes-Benz, 2018)
Average drone speed km/h (UAV, 2019)
Fixed cost van (1) euro Cost model
Fixed cost van (2) euro Cost model
Distance cost van euro/km Cost model
Fixed cost drone euros Cost model
Distance cost drone euro/km Cost model
Distance limitation vans km Assumption
Distance limitation drone km (UAV, 2019)
Flight time limitation drone hour (UAV, 2019)
Van capacity products Assumption
Drone capacity products Assumption
Number of vehicle type (1) - (Frijmersum, 2018)
Number of vehicle type (2) - Assumption
Working time limit driver hours Assumption
Number of depots - (Frijmersum, 2018)
Service time for drop off hour Assumption

Table 4.3: Input parameters specification

Number of vehicles per vehicle type results from an analysis based on the total demand and on the
assumptions on vehicle capacity. Based on the total demand of products per day and the assump-
tion of a capacity of products per van and products per drone, it is assumed that the optimal
combination is to use for the current situation a fleet of 3 vans and for the future scenario a fleet
of 2 vans and 1 drone. This is also confirmed later on by the model implementation, which returns
unfeasible values for smaller fleet and unused vehicles for larger fleet.

4.2.2 Implementation specification
The model formulation is an adaptation of the Vehicle Routing problem, including range and time con-
straints, and including a heterogeneous fleet in the objective function. The mathematical formulation
of the model is found in Table 4.4, followed by a description of the model constraints.
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OF 𝑚𝑖𝑛∑ ∑ ∑ 𝑐 ∗ 𝑥

ST ∑ 𝑦 = 1 1 ≤ 𝑖 ≤ 𝑛 (1)

∑ 𝑦 = 𝑚 𝑖 = 0 (2)

∑ 𝑞 ∗ 𝑦 ≤ 𝑄 1 ≤ 𝑘 ≤ 𝑚 (3)

∑ 𝑥 = 𝑦 0 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (4)

∑ 𝑥 = 𝑦 0 ≤ 𝑗 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (5)

∑ ∑ 𝑥 ≤ |𝑆| − 1 𝑆 ⊆ 1, ..., 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (6)

∑ ∑ 𝑡 ≤ 𝑇 1 ≤ 𝑘 ≤ 𝑚 (7)

∑ ∑ 𝑥 ∗ 𝑑 ≤ 𝑅 1 ≤ 𝑘 ≤ 𝑚 (8)

Table 4.4: Mathematical formulation adapted from the VRP

1. Each customer 𝑖 is visited by only one vehicle 𝑘
2. Each vehicle 𝑘 must come back to the depot
3. The demand at each node 𝑖 should not exceed the vehicle capacity.
4. The number of vehicles leaving the pharmacy is the same as the number entering the pharmacy

5. Same for constraint number 4

6. Sub-tour prohibition, which forbid solutions consisting of several disconnected tours

7. The total time from 𝑖 to 𝑗 using vehicle 𝑘 must not exceed the maximum utilisation time 𝑇
8. The distance covered by a vehicle must not exceed the maximum range 𝑅

The decision variable 𝑥 assigns to each vehicle 𝑘 a routing sequence, being 𝑥 equal to 1 if cus-
tomer 𝑗 is visited after customer 𝑖 with vehicle 𝑘. The second decision variable 𝑦 assigns one vehicle 𝑘
to one customer 𝑖, guaranteeing that each customer is visited once and only once by only one vehicle.
The solver uses a Large-scale Neighbourhood Search (LNS) algorithm to implement the VRP. The LNS
algorithm tries to find an optimal or quasi-optimal solution by means of iterations, finding in each step
an improved solution in the neighbourhood of the current one, for which costs are minimised. The
algorithm stops when a local optimum is reached. As drawback of this algorithm is that it does not pro-
vide a global optimal solution, due to the fact that improvements are locally based on a neighbourhood
search.

4.2.3 Output specifications
Results are reported in terms of routing solutions, in which the routing sequence for each vehicle
is visualised on top of the map of Rotterdam, and by means of tables containing for each vehicle
the customer sequence, the distance and time travelled, the number of stops, the total load and the
associated operational cost. The model output are then used as input values for the KPI calculation,
for which the following equations are used:

• Delivery cost per item: total cost of operation divided by total number of daily deliveries

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 =∑𝑐 /𝑛 [𝑒𝑢𝑟𝑜/𝑖𝑡𝑒𝑚] (4.5)

• Service time: sum over all vehicles of the time spent in the system, from when the vehicle leaves
the pharmacy until when it comes back to the pharmacy

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 =∑𝑡 [ℎ𝑜𝑢𝑟𝑠] (4.6)
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• Fuel consumption (FC): sum over all vehicles of the distance travelled, multiplied by the fuel
consumption rate of the vehicle used. Consumption rate of vans is equal to 5 litre every 100 km;
drones do not use fuel, being a fully electric vehicle

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =∑𝑑 ∗ 5/100 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑣𝑎𝑛 𝑓𝑙𝑒𝑒𝑡 [𝑙𝑖𝑡𝑟𝑒𝑠] (4.7)

• CO2 emission: sum over all vehicles of the distance travelled, multiplied by the average CO2
emission per distance travelled, equal to 115 g per kilometre

𝐶𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =∑𝑑 ∗ 115 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑣𝑎𝑛 𝑓𝑙𝑒𝑒𝑡 [𝑔] (4.8)

• Energy consumption (EC): operating time of the drones (i.e. in flying motion) multiplied by the
the average energy consumption of drones, set to 0.26 kWh

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =∑𝑡 ∗ 0.26 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑑𝑟𝑜𝑛𝑒 𝑓𝑙𝑒𝑒𝑡 [𝑘𝑊] (4.9)

• Cost of power supply: sum of the total cost for the fuel consumed by the vans and the total cost
for the energy used by the drone; fuel cost is set equal to 1.33 euro/litre and energy cost to
0.1024 euro/kW

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 = 1.33 ∗ 𝐹𝐶 + 0.1024 ∗ 𝐸𝐶 [𝑒𝑢𝑟𝑜] (4.10)

• Vehicle capacity ratio: ratio between the vehicle capacity used and the total available capacity

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =∑(𝑄 , /𝑄 , )/𝑛 [%] (4.11)

4.3. Model implementation
The model is implemented using the Excel spreadsheet solver for VRP designed by Erdoğan (2017).
This implementation is run using a laptop computer with a processor Intel i7, CPU running at 2.5 GHz
with 8 GB of RAM.
Given the limited data available on the number of deliveries per day per customer, assumptions on the
demand are made and customers are clustered according to their geographical location. A first iteration
is run setting the number of nodes equal to the number of postcodes served; for each postcode a fixed
location is defined, in which all the deliveries are concentrated. The number of daily deliveries per each
postcode is retrieved from Table B.1, in which deliveries are distributed to each postcode according to
the size of the neighbourhood.

(a) 14 customers (b) 28 customers (c) 56 customers (d) 112 customers

Figure 4.2: Increase in customer density with 14, 28, 56 and 112 nodes
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For the next iterations, the number of nodes is increased to 28, 56 and 112. The demand is randomly
spread among the customers, based on the initial daily demand per postcode. The last iteration is set
to a number of nodes equal to 112 because with a higher number, the demand would be null for most of
the customers. It is expected that increasing the number of customer will increase the cost of operation,
given the higher number of stops and the longer route to be travelled. Figure 4.2 shows the increase in
node density going from 14 customers to 112 customers. These maps refer both to the network with
only vans and the network with vans and drones, since the customer location is considered to remain
fixed in the current situation and future scenario. Two different cases are considered: the first relates
to the current state, in which deliveries are optimised using a homogeneous VRP formulation with a
fleet composed by 3 vans. The second concerns the future scenario, in which drones are introduced
in the delivery operations, using a heterogeneous VRP formulation with a fleet composed by vans and
drones. The optimal amount of vans and drones will be one of the output solution of the model.
The following paragraphs report the implementation procedure for the current situation and the future
scenario, and refer to the tables displayed in Appendix H.

4.3.1 Model implementation of current situation

The current situation, described in section 2.2, involves the use of 3 vans and 3 corresponding drivers
to carry out deliveries on a daily basis. Vehicle characteristics are retrieved from subsection 2.2.4 and
cost components are defined in the cost model of section G.1. According to Goel and Gruhn (2006), a
limitation of 6 hours of work is set for the drivers; therefore, for the time constraint, an upper bound
of 4 hours in motion is set. For the vehicle speed, an average value of 35 km/h is used (Liu et al.,
2018). The following paragraphs contain the steps to be taken during the model implementation, with
respect to the first implementation with 14 nodes. When implementing the model with 28, 56 and 112
nodes, the only input that changes is the number of customers.

Problem setup
To implement the model, the first step is to set the VRP Solver Console, shown in Figure H.1. In this
initial phase, the Bing Map is uploaded and the model characteristics are defined: the number of de-
pots, number of customers, distance and time computation technique, average vehicle speed and fleet
composition. The constraint that bounds each vehicle to come back to the depot after the last visit is
also inserted in this phase, at sequence 4 of the Solver Control.

Customer location and demand distribution
Based on the number of customers, the model sets a list of locations (Figure H.2). In this case, 15
locations are defined (the depot and the 14 customers served). and for each of them, the address,
the time window, the service time and the demand is set. Based on their addresses, the Excel Solver
computes the latitude and the longitude of each location. Once latitude and longitude values are set,
distances and travel time are computed between each node. Distances are calculated using Bing Map
driving distances, which provides the real distances between nodes, based on the available physical
infrastructure. Travel times are obtained dividing the distance computation results by the average ve-
hicle speed. The route type is set to Fastest - Real time; in this way the estimates for distances and
travel time are specific for the time in which the model is run, based on the traffic conditions at that
specific time, conferring to the results a dynamic nature.

Vehicle characteristics
The next step is to set up vehicle characteristics. Capacity constraint, costs and time and distance lim-
itations are imported. According to the VRP formulation, the model is constructed so that each vehicle
has to start and return to the depot BENU ’t Slag. Figure H.3 shows the Excel interface with the inputs
inserted for the vehicle characteristics:

LNS iterations and solution visualisation
With these inputs, the model finds the optimal solution to carry out all the deliveries in the most ef-
ficient way, using the algorithm elaborated in Erdoğan (2017). For each vehicle, the number and the
sequence of customer visits is provided, together with the distance travelled, the travel time, the arrival
and departure time, the carried load and the total associated cost. Summing the cost of each vehicle
used, it is possible to find the total cost of one day of operation.
The same procedure is followed for the implementation with 28, 56 and 112 nodes. Within a postcode,
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the demand is distributed randomly using the function 𝑅𝐴𝑁𝐷𝐵𝐸𝑇𝑊𝐸𝐸𝑁(𝑛 , 𝑛 ) in the Excel spread-
sheet, where 𝑛 is the lower bound for the demand (set to 0) and 𝑛 is the upper bound (set equal to the
demand for that specific postcode). In this random distribution, the sum of demands within a postcode
is kept equal to the initial demand, in order to be consistent between different implementations.

4.3.2 Model implementation of future scenario
The proposed scenario, described in subsection 2.3.2, involves a heterogeneous fleet composition, with
vans and drones starting at and returning to the pharmacy in an independent way, each of them serving
a specific set of customers. For what concerns vans, vehicle characteristics and cost components remain
the same of the ones defined for the current situation. For the drone fleet, according to the analysis
carried out in Appendix C and subsection 2.3.2, a fixed wing hybrid drone is proposed. Data on vehicle
characteristics are retrieved with interviews, consultation with drone companies and online articles.
Among the fixed wing hybrid drones, experts from UAV (2019) proposed their model X8 Long range
cargo drone, displayed in Figure 4.3.

Figure 4.3: X8 Long Range Cargo Drone. (UAV, 2019)

Being a long-range cargo drone, it can fly up to 4 km carrying a payload of up to 2 kg (although it can
reach 32 km at the expenses of the payload capacity). The maximum allowed flight time is set to 1
hour, and the vehicle speed is set to 70 km/h (Liu et al., 2018). As for the current situation, in order to
adapt the model formulation to the Excel solver, the time related costs are included into the distance
costs, by considering the average vehicle speed. The following paragraphs provide the steps for the
implementation with 14 nodes.

Problem setup
Figure H.4 shows the initialisation of the model. The changes from the current situation are highlighted
in the red box: the model is now set to 2 vehicle type, hence to a heterogeneous fleet.

Customer location and demand distribution
Locations, distances and demand inputs remain the same as the one found for the current scenario;
therefore, Figure H.2 provides data on latitude, longitude and demand for the future scenario.

Vehicle characteristics
Vehicle characteristics are now expanded including the data for the drone. Data refers to the drone
model X8 Long range cargo drone from UAV (2019). Capacity is set to 7 boxes, which corresponds
to an estimated amount that could fit inside the prototype of Figure 2.7. Fixed costs and operational
costs are retrieved from the cost model of Table 4.2. An initial value of 2 vans and 1 drone is set.
Since the model does not return as an output the optimal number of vehicle for the fleet, different
implementations are performed, varying the number of vehicles per each type. A minimum amount
of 1 van and 1 drone is set, and the best combination is chosen according to the implementation that
returns the lowest cost solution.
When setting the values for the distance limit and the flying time limit for the drone fleet, an important
limitation must be addressed. For the van fleet and the drone fleet, distances should be calculated
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using two different computations: vans are bounded by the physical infrastructure, hence the travelled
distances should be computed using the Bing Maps driving distance. Drones, on the other hand, can
flight straight from point A to point B, therefore the distances should be computed using the Bird flight
distances option. Moreover, the average vehicle speed of vans is set to 35 km/h, whereas the average
speed of drones is 70 km/h. The consequence of these differences is reflected in the total distance
and time travelled. Running the model first with the Bing Maps computation and vehicle speed of 35
km/h and then with the Bird flight computation and vehicle speed of 70 km/h, the results for distance
and time travelled are on average respectively 37% and 65% higher in the first run. Therefore, the
inability of the solver to use two different distance computations in the same implementation might
bring biased results, assigning less customers to the drone route. For this reason, to calculate the total
cost for the drones implementation, the distance limit is increased by 37% (allowing thus a maximum
flight distance of 5 km) and the flight time is increased by 65% (hence up to 1 hour and 40 minutes).
In this way, even if the initial parameter of average speed and distance computation do not match the
real situation, the output values of time, cost and distance for the drone route can be post-processed
using the real Bird flight distance and the real speed.
All this considered, Figure H.5 shows the input used in the implementation of the future scenario for
the vehicle characteristics of the fleet of vans and drones.

LNS iterations and solution visualisation
With these inputs, the model finds the optimal solution to carry out all the deliveries in the most ef-
ficient way, using the algorithm elaborated in Erdoğan (2017). For each vehicle, the number and the
sequence of customer visits is provided, together with the distance travelled, the travel time, the arrival
and departure time, the carried load and the total associated cost. Summing the cost of each vehicle
used, it is possible to find the total cost of one day of operation.
The same procedure is followed for the implementation with 28, 56 and 112 nodes. Within a postcode,
the demand is distributed randomly using the function 𝑅𝐴𝑁𝐷𝐵𝐸𝑇𝑊𝐸𝐸𝑁(𝑛 , 𝑛 ) in the Excel spread-
sheet, where 𝑛 is the lower bound for the demand (set to 0) and 𝑛 is the upper bound (set equal to the
demand for that specific postcode). In this random distribution, the sum of demands within a postcode
is kept equal to the initial demand, in order to be consistent between different implementations.

4.4. Model verification
4.4.1 Test methods

According to what stated in Thacker et al. (2004), two different model verification techniques were
proposed in subsection 3.3.3: code verification and calculation verification. The following paragraphs
provide the procedure to carry out the verification of the model that used for the case study.

Code verification
Code verification is a two-step procedure that is carried out both by the code developer and the model
developer. It assesses whether the implementation code provides reliable results and aims to find the
gap with known existing solutions.
For what concerns the code developer part, in Erdoğan (2017) the author explains how this verification
is carried out. To test the solution algorithm, a known problem is run with the VRP Excel Solver and
the solutions obtained are then compared with the best know solutions. For this verification, a laptop
computer Intel i7 is used, with CPU running at 2.5 GHz with 8 GB of RAM. The CPU time limit is set to 15
minutes and the initial number of customer is equal to 50, and linearly increased for larger instances.
The benchmark data set used in his research is the data set provided by Christofides et al. (1981),
containing data about Capacitated VRP and Distance Constrained VRP. The best known solution values
are then compared to the solutions obtained with the VRP Excel spreadsheet solver.
For what concerns the model developer part, an example of a real world situation is run, with pickups
and deliveries, 1 depot and 10 customer locations spread in the United Kingdom, made available by
Erdoğan (2017) to verify the solution algorithm. The model is run using a laptop computer with similar
specifications as the previous one: Intel i7, CPU running at 2.5 GHz with 8 GB of RAM.

Problem setup
The VRP Solver Console for the code verification test is shown in Figure H.6, and contains the initial



40 4. Model optimisation last-mile logistic

inputs of the model. The Bing Map of the UK is uploaded and the model characteristics are defined.

Customer location and demand distribution
The 10 customers are located in the United Kingdom, in 10 different cities: London, Leicester, Notting-
ham, Bristol, Southampton, Portsmouth, Colchester, Reading, Coventry, Cambridge and Oxford. Being
a test run, delivery and pickup amounts are set to null, as well as the profit. Figure H.7 shows node
localisation and demand distribution.

Vehicle characteristics
Vehicle characteristics are shown in Figure H.8. Being a test run, the fixed costs are set to null, and the
capacity and distance cost have a unitary value. The distance limit depends on the size of the vehicle,
being set to 450 km for minibus, 500 km for midibus and 560 km for bus. Five vehicles are available
in the fleet (2 minibuses, 2 midibuses and 1 bus), with 5 drivers limited to 8 hours of driving time and
10 hours of total working time.

LNS iterations and solution visualisation
With these inputs, the model is run to find the optimal fleet utilisation and customer division, providing
the tours that visit each customer once and only once and end at the depot.

Calculation verification
In the calculation verification test, numerical outputs obtained through the implementation of the model
are compared to the ones obtained through analytical calculation. For the sake of simplicity, the model
is reduced to a small sub-problem with only 6 nodes. The chosen number of nodes reflects the lower
bound imposed by the Excel VRP spreadsheet: the software does not allow computations for less than
5 customers, hence the value of 6 nodes (5 customers plus 1 depot).
For the numerical solution, the Excel spreadsheet solver for the VRP is used.
For what concerns the analytical solution, the Farthest Insertion Heuristic (FIH) algorithm is utilised,
belonging to the category of constructive heuristic algorithm. Using constructive heuristic methods for
both the numerical and analytical solutions, it is believed that the verification test is more reliable. With
the Farthest Insertion Heuristic algorithm, it is intended to construct a tour containing all the nodes
by means of several iterations, starting with the smallest possible tour and adding nodes to it until all
nodes are inserted (Van Essen, 2017). The selection of the new node to insert is made according to the
farthest neighbour, meaning the node that maximises the length between the two initial nodes. The
selected node is then inserted between two existing nodes according to a cost minimisation criterion,
so that being 𝑖 and 𝑗 the initial nodes, the selected node 𝑘 is inserted such that 𝑑 +𝑑 −𝑑 is mini-
mal. The algorithm stops when each node is visited and the vehicle is back to the depot. Locations are
randomly selected from the 14 postcodes served by the pharmacy and their characteristics are shown
in Figure H.9. Demand is kept equal to the initial demand value, even though being this a verification
test, it could have also been set to 1. Figure 4.4 shows the visualisation of the node location on the
map of Rotterdam. Distances (in kilometre) between nodes are shown in Table 4.5 and are computed
using the real distances provided by Google Maps.

Figure 4.4: Map of node location for calculation verification test
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D 1 2 3 4 5

D 0.00 2.35 3.45 10.15 1.96 2.99
1 3.44 0.00 5.23 11.40 3.25 4.53
2 5.30 5.16 0.00 3.71 5.63 5.12
3 7.92 6.81 3.16 0.00 11.11 7.54
4 1.77 3.08 5.22 12.07 0.00 2.86
5 2.98 5.54 5.05 11.75 2.98 0.00

Table 4.5: Distances between nodes for calculation verification test

Vehicle characteristics are set equal to the ones in the main problem formulation. A single van in
included in the fleet, having a capacity of units and a distance limit of 560 km. Fixed cost and distance
cost are the one used for the situation with only vans for home deliveries and refer to Figure G.2. Drivers
have an upper bound of 4 hours of driving time and 6 hours of total working time.
The cost matrix that will be used in the FIH algorithm is created from the distance matrix of Table 4.5
using Equation 4.12, which is also used for computing the costs between each node in the numerical
solution. Table 4.6 shows the cost matrix between each node. Values are expressed in euro.

𝑐𝑜𝑠𝑡 = 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (4.12)

Table 4.6: Cost between nodes for calculation verification test

4.4.2 Results
Code verification
For what concerns the code developer part, in Erdoğan (2017) computational results on fourteen
benchmark instances are reported, seven of which refer to data on Capacitated VRP and the other seven
on Distance Constrained VRP. Number of customers, fleet size and vehicle capacity are altered in each
implementation. The best known solution values are then compared to the solutions obtained with the
VRP Excel spreadsheet solver. As can be seen from Figure 4.5, both the CVRP and the DCVRP perform
a 0% gap up to 100 customers. Increasing the number of customers, the gap between the best known
solution and the VRP Spreadsheet Solver solution increases proportionally, with a maximum value of
2.46% when reaching the maximum allowed number of customer (which for the VRP Spreadsheet
Solver is 200). Overall, the DCVRP performs better than the CVRP, with a maximum gap of 1.37% for
the first variant and 2.46% for the second.

Figure 4.5: Computational results on benchmark instances (Erdoğan, 2017)
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For the model developer part, a test is run for a fictitious case of deliveries in the UK. The same test is
run in Erdoğan (2017), and results obtained in both implementations are compared to check whether
the model outputs are reproducible. Figure 4.7 shows a comparison between the routing sequence
found in Erdoğan (2017) and the own solution found implementing the same model. Node visits and
fleet allocation are the same in both solutions. The total cost of operation slightly differs between
the two implementation, with a gap of 0.15%: the routing solution of Figure 4.7a has a total cost of
1,569.90 euros, whereas for the one in Figure 4.7b the total cost amounts to 1,572.24 euros.

(a) Routing solution (Erdoğan, 2017) (b) Routing solution

Figure 4.6: Comparison of routing solutions for code verification

Calculation verification
For the calculation verification, the sub-problem defined in subsection 4.4.1 is solved numerically using
the VRP Excel Spreadsheet Solver and analytically using Farthest Insertion Heuristic algorithm (for
which the complete procedure is described in subsection I.1.2). The same routing sequence is found
in both solutions (D - 2 - 3 - 1 - 4 - 5 - D) and the total cost of operation slightly differs between
the analytical and numerical solution: with the VRP Excel Spreadsheet Solver the total cost is equal to

euro, whereas with the FIH algorithm it amounts to euro ( euro for the variable
cost plus the fixed cost of euro per trip), with a very small gap of 0.016%. The numerical errors
induced by the use of the model is thus of the order of 0.016 percentage points, providing a marginally
lower cost than the one obtained by analytical calculations.

(a) VRP Excel Spreadsheet Solver (b) FIH algorithm

Figure 4.7: Comparison of routing solutions for calculation verification

4.5. Model validation
4.5.1 Test methods
The extreme condition test is carried out by setting all the input parameters to their extreme values;
therefore, two situations are run: one with parameters set to zero and one with parameters approach-
ing infinity. For this validation test, the future scenario with 56 customers is chosen, with a fleet
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combination of vans and drones.
For the first run, demand is set to zero, as well as fixed cost and operational cost. Network character-
istics, such as locations and relative distances, as well as vehicle characteristics are kept unchanged
from the model implementation run. The expected result is that by setting to zero demand and cost
values, the model will return a null cost for the entire operation.
The second run is characterised by input parameters set to a large amount, representing infinity val-
ues. Demand is set to 100 units per customer, fixed cost is set to 100 euro/trip and operational cost
to 100 euro/km. As for the previous case, network characteristics and vehicle characteristics are kept
unchanged. It is expected that given the high values of demand, the problem will result to be unfeasi-
ble due to the capacity constraint for each vehicle. Furthermore, it is expected that the cost will grow
exponentially.

4.5.2 Results
Parameters set to zero
Demand is set to zero for each customer, as well as fixed and operational costs of both vehicles in the
fleet. Network and vehicle characteristics are kept unchanged. Figure 4.8a shows the routing solution
for this validation test. The full tables with numerical results are shown in subsection I.2.1. Setting the
demand to zero implies that the capacity constraint is dropped. The only limitations for the customer
and fleet allocation are now the distance and time constraints. For this reason, more deliveries can be
carried out by one single van and the optimal solution provided by the Excel Solver allocates a fleet of
only two vans, without including the drone. As expected, the total cost of operations is equal to zero,
being the fixed cost and operational cost null.

Parameters set to high values
Demand is set to units per customer. Fixed and distance related costs are set to 100 euro/trip and
100 euro/km respectively. As for the previous implementation, network and vehicle characteristics are
kept unchanged. Figure 4.8b shows the routing solution for the extreme validation test with parameters
approaching infinity, and the full tables with numerical results can be found in Figure I.2.1. Setting the
demand to implies that no vehicle can fit any of the deliveries in the routing sequence, being the
vehicle capacity equal to units for the van and units for the drone. Therefore, as expected, the
solution provided by the Excel Spreadsheet turns out to be not feasible even after 20 LNS iterations.
The orange frame around the map shows that the routing solution is not feasible. The detected reason
of infeasibility is the the capacity of the given fleet is not enough to transport the mandatory delivery.
Moreover, cost of operation is very high, amounting to euros, more than 200 times higher
than the cost found in normal operative conditions.

(a) Parameters set to zero (b) Parameters set to infinite

Figure 4.8: Routing solution for model validation - extreme condition test

4.6. Conclusion
Following the introduction on the model formulation of chapter 3, this chapter explained the steps
to obtain the performance indicators according to the black box formulation. Input parameters were
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defined, together with the cost models associated with each alternative configuration. The model was
then formulated as a Vehicle Routing Problem, with the addition of two constraints related to time
limitation and distance limitation. The chosen solution approach was the VRP Excel Spreasheet Solver,
developed by Erdoğan (2017), which makes use of a Large-scale Neighbourhood Search algorithm.
It was shown how to implement the model, how the solution approach works and how from input
values it is possible to obtain output parameters and thus performance indicators. Results of model
implementation and KPIs analysis are provided in the next chapter.
The chapter is concluded with the test methods for model verification and validation. According to the
results obtained, the verification of the model shows that the code is properly written, with a 0.6%
average gap on best known VRP solutions and a 0.15% gap on model development. Model calculation
also performs well, with a very small gap of 0.016% between numerical and analytical calculations.
Moreover, the model proves to be valid, with the extreme condition test giving expected results both
in a qualitative and quantitative way.
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Results and analysis

5.1. Results and analysis of model implementation
This section contains the results of the model implementation described in chapter 4. For each network
configuration (14, 28, 56 and 112 customers) the solutions of the current situation are compared with
the ones for the future configuration, in which drones are added to the vehicle fleet. As explained
in subsection 4.3.2, the inability of the solver to use two different distance computations and two
different average vehicle speed in the same implementation might bring biased results, assigning less
customers to the drone route. The results that have been found running the model first with the Bing
Maps computation and vehicle speed of 35 km/h and then with the Bird flight computation and vehicle
speed of 70 km/h, show that distance and time travelled are on average respectively 37% and 65%
higher in the first run. For this reason, two implementations are run:

1. Inputs corresponding to the vehicle and network characteristics for the van fleet (average speed
of 35 km/h and Bing Map distance computation with fastest route). To account for the differences
in distance and travel time, drone distance limit is increased by 37% (hence 5 km) and the flight
time is increased by 65% (hence up to 1 hour and 40 minutes);

2. Inputs corresponding to the vehicle and network characteristics for the drone fleet (average speed
of 70 km/h, Bird flight distance computation with shortest route).

Results of the two implementations are then assembled to find the total cost of operation, in such a
way that the route sequence and fleet allocation are still feasible, checking that each customer is visited
once and only once by just one vehicle.
For each customer density (14, 28, 56 and 112 delivery locations), results are reported in terms of
routing solutions, in which the routing sequence for each vehicle is visualised on top of the map of
Rotterdam. Moreover, a KPI comparison is provided using bar charts. In these charts, values are
expressed in terms of day of operation, with the exception of delivery cost per item, which is specific
for each item delivered. For the KPI calculation, formulas to be used are found in subsection 4.2.3.
Table 5.1 shows an overview of the results obtained for 14, 28, 56 and 112 customers, with a com-
parison between the performance indicators for the current situation (three vans) and the future con-
figuration (two vans and one drone). Values are expressed per day of operation, hence they refer to
the sum of all the operating vehicles, except for the delivery cost per item which refers to each single
product delivered.

Customer Performance Current Future Percentage
density indicators situation configuration of change

Vehicle capacity ratio +41.4%
Cost of power supply -5.7%
Energy consumption +100%

14 customers Fuel consumption -5.5%
CO2 emission -5.62%
Total service time -1.8%
Cost per item -5.2%

45
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Customer Performance Current Future Percentage
density indicators situation configuration of change

Vehicle capacity ratio +41.4%
Cost of power supply -7.12%
Energy consumption +100%

28 customers Fuel consumption -7.11%
CO2 emission -6.97%
Total service time -10.99%
Cost per item -5.4%
Vehicle capacity ratio +35%
Cost of power supply -7.29%
Energy consumption +100%

56 customers Fuel consumption -7.5%
CO2 emission -7.24%
Total service time -11.5%
Cost per item -5.32%
Vehicle capacity ratio +28.57%
Cost of power supply -11.8%
Energy consumption +100%

112 customers Fuel consumption -11.78%
CO2 emission -12.78%
Total service time -15.3%
Cost per item -5.9%

Table 5.1: Overview of performances for different node densities, for current situation and future configuration

The following sections provide a thorough analysis of the results for each demand distribution.

5.1.1 14 customers

(a) Routing solution current situation (b) Routing solution future scenario

Figure 5.1: Routing solutions of current situation and future scenario 14 customers

The network with 15 nodes is the smallest customer distribution, assigning the entire demand of one
postcode in just one location. The network results to be fairly easy to visualise, with nodes widely
spread across the delivery area. Figure 5.1 shows the comparison between the routing solution of
the current situation with three vans and the future configuration with two vans and one drone. The
complete solution of the implementations can be found in subsection I.3.1.
For the current situation, having only vans in the delivery fleet, customers are assigned rather equally
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to each van. This happens because vehicles have the same fixed and operational costs, and nodes are
evenly spread among the delivery area. For what concerns the drone, the capacity limitation allows the
flying vehicle to serve only one customer, since the combination of two or more customers will always
lead to a demand of more than products.
For what concerns the KPIs comparison, analysing the complete solution in Figure I.9 and Figure I.10
and using the formulas found in subsection 4.2.3, it is possible to retrieve the KPIs of Figure 5.2.

Figure 5.2: Comparison of Key Performance Indicators for 14 customers

Overall, the introduction of drones in the fleet brings a performance improvement. Costs slightly
decrease, with a 5.2% decrease in cost per item and 5.7% decrease in power supply cost. Fuel
consumption decreases by 5.5% with a reduction in CO2 emission of 5.62%. Energy consumption
increases of 100%, due to the introduction of an electric vehicle. Service time slightly decreases from

to . Vehicle capacity ratio largely increases, with a jump
of 41.4%. The high difference that is observed in this KPI is due to the fact that, although demand
remains unchanged, the fleet available has an overall smaller capacity; therefore, the utilisation rate
must increase.

5.1.2 28 customers

(a) Routing solution current situation (b) Routing solution future scenario

Figure 5.3: Routing solutions of current situation and future scenario 28 customers

Increasing the number of customer per postcode provides a more realistic network description. De-
mand is now spread randomly within a postcode, making sure that the total amount of demand per
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postcode remains unvaried. Figure 5.3 shows the comparison between the routing solution of the
current situation and the future scenario. The complete solution of the implementations can be found
in subsection I.3.2. Key Performance Indicators are then evaluated based on the results reported in
Figure I.11 and Figure I.12.

Figure 5.4: Comparison of Key Performance Indicators for 28 customers

Increasing the number of customers up to 28, shows the same positive trend for KPI improvements.
Costs decrease of 5.4% per item and of 7.12% for the total power supply cost. Service time sees a
large decrease, with a reduction of 10.99% in the future scenario, going from
for the whole operation to . Fuel consumption decreases of 7.11%, with a
decrease in CO2 emission of 6.97%; energy consumption increases of 100%. The increase in vehicle
capacity ratio is the same as the solution with 14 nodes, and it amounts to 41.4%, reaching almost
the full utilisation.

5.1.3 56 customers

(a) Routing solution current situation (b) Routing solution future scenario

Figure 5.5: Routing solutions of current situation and future scenario 56 customers

The map in Figure 4.2c shows a denser distribution of nodes within the delivery area, with each postcode
divided into 4 destination points. Preserving the fixed demand per customer, the amount of products to
be shipped is spread randomly within a postcode. The results of the model implementation are shown
in Figure 5.5, where the routing sequence of the current situation is compared to the one of the future
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scenario. The complete output of the solver is found in subsection I.3.3. Now that the products to
be shipped for each postcode are spread across multiple delivery points, the drone can serve more
than one customer, being the demand per node consistently lower than the maximum allowed drone
capacity. The relevant KPIs are reported in the bar chart of Figure 5.6.

Figure 5.6: Comparison of Key Performance Indicators for 56 customers

In the future scenario, delivery cost per item decreases of 19 euro cent, 5.32% of the current cost.
Also the operating cost decreases from euro to euro, equal to a 7.29 percentage points. The
total time in the system decreases of 11.5% going from to less than . Fuel
consumption decreases of 7.5%, with a corresponding decrease in CO2 emission of 7.24%. Utilisation
rate sees a slightly less increase with respect to the previous implementation, with a 35% rise, from

to .

5.1.4 112 customers

(a) Routing solution current situation (b) Routing solution future scenario

Figure 5.7: Routing solutions of current situation and future scenario 112 customers

The last two implementations, with 112 customers, show a situation in which nodes are very dense,
being each postcode divided into 8 destination points. This distribution is believed to be the one
that most resembles reality, in which for each customer the associated demand is products.
Figure 5.7 shows the routing sequence of the current situation compared to the routing sequence of
the future scenario. Number of nodes have been erased in order to make the map as clear as possible.
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The complete calculation is found in subsection I.3.4. From the tables in subsection I.3.4 it is also
possible to derive the most important KPIs for the case study, related to the division of demand among
112 customers. Figure 5.8 shows a comparison of the KPIs values of the current situation and future
demand.

Figure 5.8: Comparison of Key Performance Indicators for 112 customers

With the increase of the number of customers, a greater improvement can be noticed. Costs of oper-
ations see a decrease of 5.9% for what concerns the cost per item and 11.8% for the cost of power
supply. Service time shows a great improvement, with a reduction of 15.3%, equal to

. Fuel consumption and CO2 emission also gain an interesting improvement, being 11.78% and
12.78% respectively lower in the future scenario compared to the current situation. Vehicle capacity
ratio is not as improved as the previous implementations, although the introduction of one drone and
the elimination of one van in the delivery fleet proves to bring 28.57% better vehicle load utilisation.

5.2. Sensitivity analysis
The aim of the sensitivity analysis is to study how changes in input parameters affect the values of per-
formance indicators. Several implementations are run, and in each run only one parameter is changed.
To obtain a trend of these input - output relationships, for each input parameter values are changed
several times, and the resulting outputs are analysed accordingly.
The following paragraphs show the trend in cost per item, capacity ratio, service time and fuel con-
sumption related to input parameters variations. To simplify the graphs and make them more readable,
distance related KPIs (i.e. fuel consumption, CO2 emissions and fuel cost) are represented by fuel con-
sumption values, given the fact that they are all dependent on distance travelled and therefore have
similar trends. Moreover, other potential future situations are assessed and compared with the future
scenario analysed in this research, one with the fleet entirely composed by electric vehicles (electric
vans and drones) and one with the fleet composed by only drones. In this way, the influence of
the power supply mode and the vehicle fleet composition on Key Performance Indicators is assessed.
Lastly, based on some ideas shared with the owner of the pharmacy BENU ’t Slag on future logistic de-
velopment, a scenario with multiple depots is briefly analysed. A KPI comparison between the situation
with only 1 depot and the one with 5 depots is provided.

Changes in vehicle speed
In the model formulation, time related costs are embedded in distance cost, by transforming the
time in the network into distance travelled using the average speed. Therefore, changing the vehicle
speed entails a change in operational cost, given the fact that less or more kilometre can be travelled.
Figure 5.9a shows the trend in cost per item, capacity ratio, service time and fuel consumption related to
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vehicle speed variations. The performance indicator that is mostly affected by vehicle speed variations
is the cost per item, which considerably decreases by increasing vehicle speed. Service times and fuel
consumption are slightly affected by vehicle speed variations, showing a small increase in the first one
and decrease in the second one. Vehicle capacity ratio remains unaffected by variations of vehicle
speed.

Changes in vehicle capacity
Given a total demand of products and 3 vehicles available, vehicle capacity is varied from unit
(the minimum value below which the problem results not feasible) to units per vehicle (a maximum
value after which KPIs remain constant, with the exception of vehicle capacity ratio). Figure 5.9b shows
the trend in cost per item, capacity ratio, service time and fuel consumption related to vehicle capacity
variations. All KPIs are somehow affected by these changes: the cost per item decreases after a
first increase in vehicle capacity, to remain constant higher values. As expected, capacity ratio values
fluctuate depending on the number of vehicle used for deliveries: increasing the capacity brings a
decrease in vehicle utilisation, to increase again once it is enough to eliminate one vehicle from the
fleet (corresponding to units per vehicle and then again to ).

Changes in distance limit
Variations in distance limits do not cause significant changes performance indicator values. With very
restrictive values (from the minimum allowable value of 19 km to 25 km), a small decrease in cost per
item, fuel consumption and service time is noticed, to settle to a constant value for bigger distances.
Vehicle capacity ratio remains constant for all the distance limitations considered.

Changes in working time limit
Variations in working time limits do not cause any change in cost per item, service time fuel consumption
and vehicle capacity ratio. The reason behind these results is that the time limit constraint for the van
fleet is not as restrictive as other constraints, for example the capacity constraint. Therefore, provided
that a minimum distance range is guaranteed, increasing this parameter does not bring any changes
in the performance indicators.

(a) Influence of vehicle speed (b) Influence of vehicle capacity

(c) Influence of distance limit (d) Influence of working time limit

Figure 5.9: Influence of input parameters on KPIs

5.2.1 Test scenarios on fleet composition and depot locations
This sub section shows the results of three test scenarios implemented in the context of the sensitivity
analysis. The first test scenario concerns the use of only electric vehicles (EVs) in the delivery fleet,
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composed by two e-vans and one drone. This situation is compared with the future configuration
of two vans and one drone, and the comparison is carried out with the demand distribution of 28
customers. The second test scenario considers a network entirely served by drones, compared with
the future configuration of two vans and one drone. The third test scenario considers the same fleet
composition of the second one, but with the introduction of 4 more depot locations cooperating with
BENU ’t Slag. Results for this multiple depot configuration are compared with the ones obtained with
the fully drone network (test scenario 2), to see the extent to which adding depot locations benefits
network performances. For both the second and the third test scenario, the comparison is carried out
with the demand distribution of 112 customers. Table 5.2, Table 5.3 and Table 5.4 show an overview
of the obtained results.

Performance Future configuration Test scenario 1 Percentage
indicators (2 vans, 1 drone) (2 e-vans, 1 drone) of change
Vehicle capacity ratio –
Cost of power supply -98.72%
Energy consumption +2823.08%
Fuel consumption -100%
CO2 emission -100%
Total service time +2.35%
Cost per item +53.6%

Table 5.2: Overview of performances for test scenario with only EVs in comparison with the future configuration

Performance Future configuration Test scenario 2 Percentage
indicators (2 vans, 1 drone) (35 drones) of change
Vehicle capacity ratio +11.1%
Cost of power supply -98.59%
Energy consumption +3284.61%
Fuel consumption -100%
CO2 emission -100%
Total service time -27.4%
Cost per item +1976.92%

Table 5.3: Overview of performances for test scenario with only drones in comparison with the future configuration

Performance Test scenario 2 Test scenario 3 Percentage
indicators (35 drones, 1 depot) (35 drones, 5 depots) of change
Vehicle capacity ratio –
Cost of power supply -33.3%
Energy consumption -25%
Fuel consumption –
CO2 emission –
Total service time -11.8%
Cost per item –

Table 5.4: Overview of performances for test scenario with multiple depot in comparison with one depot

Test scenario with only electric vehicles
In this test scenario, only electric vehicles (EVs) are used in the delivery fleet, which is now composed
by 2 electric vans and 1 drone. A new cost model is developed, with the same components as in the
one for the future scenario. The differences concern the cost related to the van fleet. The vehicle to
be used in the fleet is the Mercedes-Benz eVito, which will become available in the coming months
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(Mercedes-Benz, 2019a). The purchase cost is set to 70,000 euro, according to an estimation based
on the current cost of a Mercedes-Benz Vito. The maximum range is set to 150 km, which is the
distance that the vehicle will be able to perform with one charge (Mercedes-Benz, 2019a). Insurance
cost is set to 1,470 euro/year, which refers to the average insurance cost for EVs MyEV. According to
EVBox (2019), the incoming regulations might bring an incentive of zero annual taxes on EVs, hence
this value is set to null in the cost model. Operational costs depend on the cost of energy and the
energy consumption; knowing that a Mercedes-Benz eVito will be able to drive 90 km with 10kWh
(Mercedes-Benz, 2019a) and the cost of power supply is 0.25 euro/kWh, the variable cost related to
the power supply is set to 0.03 euro/km, which is summed to the 0.43 euro/km derived from the driver
salary per kilometre (also present in the previous cost model). Annual costs, fixed cost and variable
cost for this test scenario are reported in section 3.2.
The routing solution of a fleet composed only by EVs is shown in Figure 5.10, in comparison with the
one found for the future scenario envisioned for the case study. Figure 5.11 shows a comparison of
Key Performance Indicators for the envisioned future scenario with 2 vans and 1 drone and the testing
scenario with 2 e-vans and 1 drone in the vehicle fleet. The situations that are compared refer to the
one with 28 customers.

(a) Routing solution future scenario (b) Routing solution test future only EV

Figure 5.10: Routing solutions of future scenario and test scenario with only EV

The routing solution for the drone fleet remains the same in the two scenarios object of comparison.
Customers served by the fleet of e-vans are assigned according to a different sequence, although no
major changes can be noticed. Vehicle capacity of e-vans is assumed to remain the same as non electric
ones, hence the vehicle capacity ratio does not change between the two compared scenarios. For the
energy consumption it is assumed that the consumption of e-vans is equal to 0.11 kWh (EnergyGuide,
2019), and the consumption for drones is 0.26 kWh (UAV, 2019). The total energy consumed for a day
of operation is then of kW, almost 30 times higher than the scenario with non electric vehicles.
With a fleet entirely composed by electric vehicles, CO2 emissions and fuel consumption are reduces to
a null value, since no gasoline is needed to operate vehicles. Therefore, the total cost of power supply
refers only to the energy cost, and is dropped to only euro per day of operation. Cost per item
changes substantially, with an increase of 53.6%. Lastly, service time changes marginally, being only

higher in the test scenario with EV only.
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Figure 5.11: Comparison of KPIs for future scenario and test scenario with only EV

Test scenario with only drones in the fleet
The aim of this test is to define how many vehicles would be needed in case of a fleet composed entirely
by drones. For this purpose, the model is implemented with an unlimited amount of drones available.
Demand is kept equal to the initial values and fixed and variable costs refers to the one found in the
cost model for the future scenario (Table 4.2). After having found the total number of drones needed,
a new cost model can be developed, in order to properly evaluate the KPIs for this testing scenario.
After performing several LNS iterations, the model found a non-feasible solution due to range limitation:
with a maximum range of 4 km, postcode 3085 cannot be reached and has to be excluded from the
home delivery service. To avoid this loss, UAV (2019) states that it is possible to increase the drone
range up to 32 km at the expenses of payload capacity. With a range of 32 km and a drone capacity
of products, a new implementation is run. Time constraint remains unchanged. Results of this
implementation shows that the minimum number of drones needed to complete a daily operation is
35. With these information, a new cost model is developed. The following changes are applied:

1. All components related to the van fleet are set to zero.

2. 35 drones are purchased, therefore costs are multiplied by 35.

3. According to Vliet and Zaman (2019), one drone pilot can control up to 3 drones; therefore 12
drone pilots are needed. Consequently, the piloting area must be expanded to allow 12 people
to work in it. Also the parking location must be rearranged, in order to make room for 35 drones.
Labour cost in multiplied by 12, as well as the cost of drone license.

4. The expected yearly utilisation is set to 0 km and 0 hour for the van fleet. All the deliveries are
carried out by the drones, for which a yearly utilisation of km and hour per drone is
expected.

5. Distance related cost decreases to 0.1 euro/km due to the fact that each pilot can operate 3
drones, therefore the labour cost is 3 times smaller.

Referring to the cost model of section G.3 and to the changes mentioned above, a total annual cost
of 363,590 euro was found, which determines a fixed cost of euro/trip and a variable cost of
0.10 euro/km. The extremely high increase in annual cost is due to the fact that 35 drones must be
purchased and operated, with a consequent increase in number of drone pilots and piloting locations.
The routing solution of a fleet composed only by drones is shown in Figure 5.12, while Figure 5.13
shows a comparison of Key Performance Indicators for the envisioned future scenario with 2 vans
and 1 drone and the testing scenario with only drones in the vehicle fleet. The situations that are
compared refer to the one with 112 customers. In a situation in which only drones are considered, the
indicators show an overall better performance. Vehicle capacity reaches full utilisation, even though
the improvement is of only 10 percentage points. Environmentally speaking, the test scenario brings
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considerable improvements, dropping to 0 the CO2 emissions and the fuel consumption. Cost of power
supply drops from euro to only euros, due to the fact that the energy cost is lower that the
fuel cost and the consumption rate is less in electric vehicles. Service time also improves, going from

to , corresponding to a time reduction of As expected
the energy consumption largely increases, due to the introduction of a big number of electric vehicles.
The delivery cost per item also experiences a steep increase, which is related to the higher annual cost
associated with this test scenario.

(a) Routing solution future scenario (b) Routing solution test only drones

Figure 5.12: Routing solutions of future scenario and test scenario with only drones

Figure 5.13: KPI comparison for future scenario and test scenario with only drones

Test scenario with multiple depot locations
According to Frijmersum (2019), additional depot locations are likely to be included in the near future.
For this reason, it is decided to provide a brief analysis of the influence of depot location on performance
indicators. Two alternatives are assessed, both having a vehicle fleet composed by only drones (with
the optimal amount of drones previously found). The difference is that in the first test scenario, vehicles
start and end their trip just at the pharmacy Benu ’t Slag, while in the second test scenario starting
and ending locations are increased up to 5 depot locations (including the pharmacy). The cost model
is considered to be the same as the one for the test scenario with drones only, hence with a fixed
cost of euro per trip and a variable cost of 0.10 euro/km. Vehicle characteristics are also kept
unchanged from that test scenario. Figure 5.14 shows the location of the 5 depots and the routing
solution obtained from the model implementation.

Analysing the KPI comparison of Figure 5.15, it can be seen that some indicators do not change when
the number of depots is incremented. Vehicle capacity ratio remains the same, due to the fact that
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(a) Depots locations (b) Routing solution

Figure 5.14: Locations and routing solutions for test scenario with multiple depots

the same demand and the same vehicle capacity is considered for the two scenarios. Same line of
reasoning for the CO2 emission and fuel consumption: characterised by a fully electric drones fleet,
both alternatives have zero emissions and zero fuel consumption. When multiple depots are intro-
duced, vehicles can carry out their deliveries in a faster way, travelling a shorter distance. Therefore,
a decrease in service time and cost of operations is noticed: adding four more depots reduces the
service time by 11.8%, the energy consumption by 25% and the cost of power supply by 33.3%.

Figure 5.15: KPI comparison for test scenarios with only drones: 1 depot vs 5 depots

5.3. Comparison of alternatives
The comparison between the current situation and the future configuration is made according to the
performance indicators and the design requirements. For the KPI comparison, four important criteria
are assessed: costs associated with network alternatives, environmental benefits, service time and
payload utilisation. The values are averaged among the solutions obtained for the implementation with
14, 28, 56 and 112 customers. Each alternative is then analysed according to the functional and non
functional requirements of subsection 3.1.2, considering the extent to which they are satisfied.

5.3.1 Comparison based on Key Performance Indicators

Costs associated with network alternatives
To evaluate the cost savings brought by the introduction of drones in the vehicle fleet for home delivery
of medical products, comparing the cost model of the current situation and the future configuration is
not sufficient. It is indeed important to consider the different business models and the implications that
follow the adoption of drones in the last-mile delivery process. For this reason, two different analysis



5.3. Comparison of alternatives 57

can be made: one merely compares the costs associated with one day of operation in the current
situation with the costs of the same operation in the future configuration. A second analysis considers
the business model of adopting the future scenario alternative, characterised by the purchase of one
drone and the sale of one van and all the implications that follow, evaluating the monetary benefit in
terms of total annual cost.
The model output shows that the optimal fleet for the future situation is composed by two vans and
one drone. Therefore, the analysis of annual costs for the business model is done considering the
expenses associated with buying and operating a drone and the savings derived from selling a van.
Purchase costs, drone license cost and parking location costs are divided by the depreciation time of
5 years. The selling price of a second hand van Mercedes Citan 108 cti, year 2015 with 55,000 km is
retrieved from Mercedes-Benz (2019b). Table 5.5 shows the expenses and the savings associated with
the two different network configuration and refers to the cost model of section G.1.

Component Current situation Future configuration
Amount Annual cost Amount Annual cost

Vehicle purchase
Vehicle sale
Park location
Human labour
Drone license
Insurance
Taxes Operation costs

Table 5.5: Annual cost comparison between current situation and future configuration

The total annual cost used for the business model is found using Equation 5.1. For the current situation
a total of 63762.5 euro/year is found whereas for the future configuration the total amounts to 50,256.2
euro/year. This means that adopting the future configuration would bring a cost saving equal to 13,500
euro/year.

𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑎𝑙𝑒 + 𝑝𝑎𝑟𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + ℎ𝑢𝑚𝑎𝑛 𝑙𝑎𝑏𝑜𝑢𝑟
+ 𝑑𝑟𝑜𝑛𝑒 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 + 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 + 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑎𝑥𝑒𝑠 + 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 (5.1)

For what concerns the daily costs of operations, performance indicators show that with the introduction
of drones in the vehicle fleet, a reduction of euro/item is noticed for the delivery cost per item
and a reduction of euro/day for the cost of power supply.

Environmental benefits
Environmental benefits are compared evaluating the CO2 emission, the fuel consumption and the
energy consumption in each network configuration. With the removal of one van from the vehicle fleet
and the introduction of one electric vehicle, the total distance travelled by road vehicles decreases,
leading to a consequent decrease in CO2 emission and fuel consumption, but an increase in energy
consumption. As expected, CO2 emissions decrease on average of grams per day of operation,
fuel consumption is reduced of litres a day and energy consumption increases of Watt per
day.

Service time
Service time is the time that each vehicle spends to complete its tour, summed over all vehicles. It
indicates the total time spent in the system, to conclude the daily deliveries. Drones are faster than
vans, and most importantly are not bounded by the physical infrastructure. As expected, the adoption
of the future scenario alternative would reduce the total service time of minutes.
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Payload utilisation
Payload utilisation is calculated as the ratio between the used capacity and the available capacity. Total
demand is kept unchanged between the two network alternatives, being equal to products per day.
For what concerns the total vehicle capacity, van capacity is assumed to be units whereas drone
capacity only units, meaning that the current situation has a maximum available capacity of
products while in contrast the future scenario only products. As expected then, payload utilisation
reaches almost 100% in the future scenario, with an increase of 25.75 percentage points.

5.3.2 Comparison based on functional and non functional requirements
The functional and non functional requirements object of comparison are the one stated in subsec-
tion 3.1.2. For each requirement, a green v indicates that the requirement is satisfied whilst a red x
indicates that the network alternative does not comply with it.

Requirement Current situation Future configuration

Products are delivered to the intended customer v v
Products are delivered within the arranged time v v
Feasible vehicles are assigned to each customer v v
Vehicle utilisation complies with regulations v v
Solution lowers the total cost of operations x v
Solution decreases the total time spent in the system x v
Solution provides a maximised vehicle utilisation x v

Table 5.6: Comparison based on functional and non functional requirements

Functional requirements are all satisfied in each network alternatives. Being mandatory attributes for
the system to function, it is a sign that both alternatives are feasible in practice. Most of the non
functional requirements are satisfied by the future scenario, meaning that the introduction of drones
provides a better alternative, having the qualities that define an optimal system.

5.4. Conclusion
In this chapter the results of the optimisation model are analysed and discussed. The routing sequence
for each implementation is displayed using maps, and the current situation is compared with the future
scenario. Model outcomes are also used to calculate Key Performance Indicators, so that the compar-
ison analysis can be carried out under an economic perspective, but also under environmental, time
savings and payload utilisation perspectives. It is then possible to answer the fifth and last research
sub question:

What network alternative is the most promising in the case of last-mile logistic of medical products for
home deliveries?

The introduction of drones in the vehicle fleet brings an overall improvement in the cost performance
of the home delivery logistics. Costs are reduced of 5.45% for item delivered and 8% for the power
supply, with a saving of respectively euro per item and euro per day of operation. The
associated business model, characterised by the purchase of one drone and the sale of one van, shows
that on a yearly base the cost savings associated with the adoption of the future scenario are a little
bit more than euro, which is around 12.5% of the total annual cost of the two network config-
urations. This reduction is justified by the low purchase cost of a drone compared to the selling price
of one used van, and also by the low operational costs of vans compared to the operational savings
that terminating one van brings.
Environmentally speaking, the introduction of drones brings substantial changes in the emission of car-
bon dioxide and in fuel consumption. In fact, in the future scenario one diesel powered van is replaced
with a fully electric powered drone, meaning that the total distance travelled by van is reduced and
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consequently CO2 emission and fuel consumption are also reduced. Quantitatively, the environmental
benefits amount to grams of CO2 reduction and litres of diesel per day of operation, equal to
respectively 8.15% and 7.97% improvements.
The third performance indicator is the service time, i.e. the time needed by the whole vehicle fleet
to carry out all the scheduled deliveries. Drones can travel at a faster speed (assumed as double the
average speed of a van) and can reach any point by travelling at a bird flight distance (which is the dis-
tance that connects two points with the shortest straight line that a plane would cover). Consequently,
delivering products to a set of customers using a drone takes less time than serving the same amount
of customers using a van. On an average service time of , the average reduction
amounts to , equal to 11.8% of the initial time.
The last performance indicators refers to the payload utilisation, namely the ratio between the capacity
used and the total available capacity. This indicator shows great improvement, reaching almost a full
utilisation in the future scenario. This results from the fact that eliminating one van and introducing one
drone decreases the total available capacity from to products in total. Given the fact that the
demand amounts to 105 products per day, vehicles must be used in a more efficient way and loaded
almost to their full capacity.
The chapter is concluded with a sensitivity analysis, that shows the influence that changes in model
inputs have on the model outputs and thus on the performance indicators. Furthermore, other poten-
tial future scenarios are tested, referring to a situation in which only EVs are used (e-vans and drones)
and one in which the fleet is entirely composed by drones.
Results of the sensitivity analysis show that the inputs that mostly affect the performance indicators
are the vehicle speed and vehicle capacity. Changing the vehicle speed brings changes in the variable
costs of the fleet, since it affects the time that vehicles are in the system and consequently the salary
of the drivers/drone pilot. Vehicle capacity mostly influences the capacity ratio, which fluctuates until
it reaches the full utilisation once the vehicle capacity equals the total daily demand. These fluctua-
tions depend on the fact that increasing vehicle capacity decreases payload utilisation, until a certain
threshold is reached and one vehicle can be discarded. Same trend is followed a second time until full
utilisation is reached. Distance limit and working time limit provide slight or no changes in performance
indicators.
At last, three test scenarios are explained and compared with the future scenario of the case study.
Analysing the situation in which all vehicles are electric (fleet composed by 2 e-vans and 1 drone),
substantial differences in the cost components are found. The cost per item increases from euro
to euro, meaning that each item is 56.6% more expensive when transported with a fully electric
fleet. This results from the high investment costs of buying a complete new fleet of 2 e-vans and 1
drone. On the other hand, the cost of power supply decreases enormously, from euro to only
euro, due to the switch from fuel- to energy- powered vehicles. From an environmental perspective,
the benefits are extremely positive, reducing the CO2 emission and the fuel consumption to zero, while
keeping low the energy consumption. The second situation that is tested is the scenario in which only
drones are operated in the vehicle fleet. This test run provides the minimum amount of drones that
are needed in a fully-drone scenario, or at least the number of trips that are needed to operate a full
day of deliveries. Results show that 35 drones must be operated, which brings consequent high in-
vestment and exploitation costs, increasing the value of the cost per item (reaching almost euro per
item delivered). The last test involves again a scenario with a homogeneous drone fleet composition,
but the previous alternative with 35 drones and 1 depot is compared to the one with 35 drone and
5 depots randomly located in the delivery area. With the addition of four more depot location, the
distance travelled and the service time were both reduced, allowing for a time saving of
(equal to 11.8% of the total service time) and a cost saving of euro (equal to 33.3% of the total
cost of supply).
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Conclusions and further

recommendation

This research focused on the feasibility assessment of introducing drones in the last-mile logistic process
of medical product delivery, with an application to the case study of BENU Apotheek ’t Slag. After a
thorough description of the system and the current home delivery process, a future scenario alternative
was chosen among several proposed scenarios, to be used further on in the network comparison.
Theories on last-mile delivery and transport network optimisation were discussed and the most suitable
approach was chosen to carry out the feasibility assessment. A conceptual model was created, to create
an abstraction of the system and allow for a mathematical formulation of the problem. Alternatives
were then modelled using an adaptation of the well known Vehicle Routing Problem and the results were
compared. This chapter concludes the research, by answering the sub questions and the main research
question of chapter 1 and by providing a discussion of the results and some further recommendation
for future research studies.

6.1. Conclusions
The main objective of the research was to assess the feasibility of operating a home delivery service that
includes drones in the vehicle fleet, providing a comparison of performances with the current logistic
operations in use. Based on the hypothesis that drones provide a feasible fleet addition for the last-mile
logistic process when added to the conventional transportation means that are currently in use, a study
was conducted on the modelling techniques that can be implemented to optimise a transport system,
focusing specifically on the last-mile network. The Vehicle Routing Problem proved to be a valid model
formulation, with some adaptations complying with drone specifications and requirements. Results for
the current situation were compared to the one obtained for the future scenario. This section provides
the answer for the main research question, by first answering the five sub questions.

6.1.1 Main characteristics of B2C last-mile delivery process
The first sub question concerns the logistics of last-mile delivery and it is formulated as follows:

What are the main characteristics of a B2C last-mile delivery process?

Throughout a literature study, characteristics and challenges encountered by the last-mile delivery
service are assessed. Four logistics decisions define this process, from the starting point to the final
place of delivery. The first decision concerns the location from which products are shipped, which
might be warehouses, depots or retail shops. Then the second decision regards the identification of
delivery destination, i.e. the place where product are consigned. Common places are usually pick
up points, clustering points and customer’s home. Once the delivery destination is set, the means of
collecting product must be arranged. In case of clustering points, products can be collected through
reception boxes, collection points or post offices. For home deliveries, collection might be attended or
unattended. Lastly, the agreements on the final consignment of products must be arranged, e.g. pin
code security in reception boxes, or neighbours pick ups for unattended home deliveries.
For what concerns the challenges faced by the last-mile delivery sector, the main causes that hamper its
effectiveness and efficiency are high costs of operations, traffic congestion and environmental damage.
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Studies have shown that the last-mile leg is the most expensive part of the delivery process, counting up
to 75% of the total cost of the logistic process. Moreover, the most used vehicles for last-mile delivery
are vans and small trucks, which cause not only traffic congestion, especially in densely urbanised
areas, but also air pollution.

6.1.2 Main stakeholders involved in the case study
The second sub question refers to the actors involved in the research study of last-mile delivery and
introduction of drones in the delivery fleet. It is tailored to the case study associated with the research
and it is formulated as follows:

Who are the main stakeholders involved in the last-mile logistic process, in relation to the case study?

Stakeholders are defined as individuals or organisations that are actively involved in a project, can
express their interest and opinions and have a pre-arranged power on important decisions. For what
concerns this research and the case study of BENU ’t Slag, the following stakeholders are identified:

1. BENU ’t Slag: it is the retail store from which deliveries are operated. Their interest is to provide
a fast and reliable service, yet maintaining costs of operations as low as possible and avoid loss
in profit and customers’ expectations. Provided that regulations and laws in force allow for this
technology to take place, they have the final say on whether to adopt it.

2. BENU Apotheek franchising: being the company that administrates all the BENU pharmacies
across the Netherlands and provides the medicines, their interest and power is similar as the
ones for BENU ’t SLag.

3. Delivery companies: external companies, such as the current Farma Clean and Service, have the
interest in investing on new technology and fleet components for the near future. Their interest
is in cost savings and delivery contract stipulation.

4. Customers of BENU ’t Slag: people that usually buy and benefit from the home delivery service
want to have a fast, cheap and reliable delivery service, without additional expenses or product
damage. Their influence mainly concerns customer loyalty.

5. Population of Rotterdam: people that live in the nearby area might be annoyed by the congestion
and pollution caused by delivery vans, and at the same time worried for the introduction of flying
drones in their neighbourhoods.

6. Municipality of Rotterdam: legislators that give the green light on the use of drones for last-mile
delivery in the city of Rotterdam. Their interest is to operate according to the laws, guaranteeing
the best service to the population.

7. Other pharmacies in Rotterdam: their interest is on fair competition, and to maintain their loyal
customers. They do not have influence on the final realisation of the project, but might be interest
to adopt the same technology in order not to see a decrease in customers.

Each stakeholder is compared to the others based on their power and interests. The result is the
power-interest matrix of Figure 2.8.

6.1.3 Comparative analysis of last-mile delivery transport networks
The third sub question investigates the Key Performance Indicators and the data that need to be
retrieved for comparing transport network alternatives, followed by an analysis of the different design
methodologies for transport network assessment. The question is formulated as follows:

What are the main KPIs, data and design methodologies for a comparative analysis of last-mile
delivery transport networks?

The performance indicators to be used in the network comparison analysis concern costs, service time,
environmental parameters and vehicle capacity. After a literature study and a series of interviews with
relevant stakeholders, the following list of Key Performance Indicators is complied, together with the
related data that must be retrieved:
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• Delivery cost per item: average number of deliveries per day; cost of storage area; cost of han-
dling equipment; cost of parking location; purchase cost of vehicles; license to operate a drone;
ATM purchase and fees for outdoor sale; human labour (van drivers and drone pilots); operation
management costs; insurance cost of vehicles; regional taxes per vehicle type; operational costs
of vehicles; financial costs.

• Average service time: average speed for vehicle type; average loading and unloading time for
vehicle type.

• Fuel and energy consumption: fuel consumption of vans; energy consumption of drones.

• CO2 emission: CO2 emission per distance travelled per vehicle type.

• Vehicle capacity used versus available capacity: maximum allowed payload for vehicle type;
average used payload for vehicle type.

For what concerns the mathematical description of transport network problems, two main formulations
are found in literature: the Travelling Salesman Problem and the Vehicle Routing Problem. The first
one refers to a simulation approach that finds the shortest path that connects a set of nodes, for which
the order of visits is not important. The second one refers to an optimisation approach which defines
the optimal tour given a set of nodes to be visited and a fleet of vehicles, such that each node is visited
once and only once by just one vehicle and the costs of operations are minimised. The main substantial
differences between the TSP and the VRP are the fleet composition and the vehicle capacity restriction:
the VRP is proved to be most suitable when more vehicles are included in the fleet and each of them
has a maximum allowed capacity. For this reason, the feasibility assessment of drones as additional
vehicle for last-mile deliveries was carried out using the VRP formulation, with the required adaptations
for the considered case study. For the definition of the constraints and therefore the boundaries of the
design, a list of functional and non functional requirements was made.

• Functional requirements: medical products must be delivered to the intended customer; medical
products must be delivered within the intended arranged time; the model must assign a feasible
vehicle to the trip, based on delivery characteristics; the chosen alternative must comply with
existing regulations.

• Non-functional requirements: the chosen alternative should lower the total cost of the deliv-
ery process; the chosen alternative should minimise the total time spent on the network; the
sequence of chosen alternatives should provide a maximised vehicle utilisation.

6.1.4 Adaptation of model framework for home deliveries
Once the design methodology to formulate the transport network is chosen, the fourth sub question re-
lates to the adaptations that are needed in order to address specifically the case study. The formulation
of this sub question is as follows:

How to adapt the chosen design methodology for last-mile delivery networks to fit the case study
requirements?

Starting from the classical Vehicle Routing Problem formulation, to define which adaptations are needed
it is first important to understand what new constraints are added when including drones in the vehicle
fleet. When vans and drones are included, the VRP becomes a heterogeneous fleet problem, with
two vehicle types, each of them having their own cost components and vehicle specifications. For this
reason, in the objective function, costs must be divided per fleet component, by adding the subscript
𝑘 (related to vehicle type) to the total cost 𝑐 and including it into the summation over 𝑘. Moreover,
drones have a hard constraint on maximum range and maximum flight time; therefore, two constraints
(number 7 and 8 of the following list) are added from the basic VRP formulation, concerning the tech-
nical and spatial limitations of drones.
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OF 𝑚𝑖𝑛∑ ∑ ∑ 𝑐 ∗ 𝑥

ST ∑ 𝑦 = 1 1 ≤ 𝑖 ≤ 𝑛 (1)

∑ 𝑦 = 𝑚 𝑖 = 0 (2)

∑ 𝑞 ∗ 𝑦 ≤ 𝑄 1 ≤ 𝑘 ≤ 𝑚 (3)

∑ 𝑥 = 𝑦 0 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (4)

∑ 𝑥 = 𝑦 0 ≤ 𝑗 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (5)

∑ ∑ 𝑥 ≤ |𝑆| − 1 𝑆 ⊆ 1, ..., 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (6)

∑ ∑ 𝑡 ≤ 𝑇 1 ≤ 𝑘 ≤ 𝑚 (7)

∑ ∑ 𝑥 ∗ 𝑑 ≤ 𝑅 1 ≤ 𝑘 ≤ 𝑚 (8)

Table 6.1: Mathematical formulation adapted from the VRP

1. Each customer 𝑖 is visited by only one vehicle 𝑘

2. Each vehicle 𝑘 must come back to the depot

3. The demand at each node 𝑖 should not exceed the vehicle capacity.

4. The number of vehicles leaving the pharmacy is the same as the number entering the pharmacy

5. Same for constraint number 4

6. Sub-tour prohibition, which forbid solutions consisting of several disconnected tours

7. The total time from 𝑖 to 𝑗 using vehicle 𝑘 must not exceed the maximum utilisation time 𝑇

8. The distance covered by a vehicle must not exceed the maximum range 𝑅

The decision variable 𝑥 assigns to each vehicle 𝑘 a routing sequence, being 𝑥 equal to 1 if customer
𝑗 is visited after customer 𝑖 with vehicle 𝑘. The second decision variable 𝑦 assigns one vehicle 𝑘 to
one customer 𝑖, guaranteeing that each customer is visited once and only once by only one vehicle.
The solution approach that was used to implement the model is an open source spreadsheet solver
specific for the VRP, developed by Erdoğan (2017). It uses a Local search Neighbourhood algorithm,
which tries to find an optimal or quasi-optimal solution by means of iterations, finding in each step
an improved solution in the neighbourhood of the current one, for which costs are minimised. The
algorithm stops when a local optimum is reached.

6.1.5 Most promising network alternative for the lastmile logistics ofmed-
ical products

The final sub question relates to the comparison analysis between the current situation, in which
deliveries are carried out with a homogeneous vehicle fleet composed by 3 delivery vans, and the
future scenario, in which drones are added to the fleet. Its formulation is as follows:

What network alternative is the most promising in the case of last-mile logistic of medical products for
home deliveries?

Results of model implementation are the fleet allocation and customer sequence (matrix 𝑥 ), the
distance travelled per vehicle 𝑑 , the driving time per vehicle 𝑡 , the number of stops per vehicle, the
number of packages transported by each vehicle for each stop and the cost of operation per vehicle 𝑐 .
These outputs were then used as input parameters to calculate the KPIs for the network alternative
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comparison, using the following equations:

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 =∑𝑐 /𝑛 [𝑒𝑢𝑟𝑜/𝑖𝑡𝑒𝑚] (6.1)

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 =∑𝑡 [ℎ𝑜𝑢𝑟𝑠] (6.2)

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =∑𝑑 ∗ 5/100 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑣𝑎𝑛 𝑓𝑙𝑒𝑒𝑡 [𝑙𝑖𝑡𝑟𝑒𝑠] (6.3)

𝐶𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =∑𝑑 ∗ 115 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑣𝑎𝑛 𝑓𝑙𝑒𝑒𝑡 [𝑔] (6.4)

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =∑𝑡 ∗ 0.26 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝑑𝑟𝑜𝑛𝑒 𝑓𝑙𝑒𝑒𝑡 [𝑘𝑊] (6.5)

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 = 1.33 ∗ 𝐹𝐶 + 0.1024 ∗ 𝐸𝐶 [𝑒𝑢𝑟𝑜] (6.6)

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =∑(𝑄 , /𝑄 , )/𝑛 [%] (6.7)

Four different implementations were run, varying the number of customers from 14, to 28, 56 and then
112. Lower an upper bounds were chosen based on the geographical area served by the pharmacy
and the demand pattern: 14 postcodes are served, with a demand that varies from products per
postcode. Therefore, the first implementation considers only one customer per postcode, while the last
considers 8 customers per postcode. Increasing customer density would have led to several customers
with zero demand, hence it was decided to stop the implementations after 112 customers. Figure 6.1
shows a comparison of performance indicators for the current situation and the future scenario. Values
are averaged across the 4 different customer densities.

Figure 6.1: Comparison of KPIs for current situation and future scenario

Comparing the KPIs for a day of operation, the introduction of drones in the home delivery fleet
brings an overall improvement. Benefits can be noticed in the cost components, with a reduction of
5.60% in cost per item and 5.85% in cost of power supply. Environmentally speaking, the benefits
are even higher, with a reduction of 8.60% in fuel consumption and 9.00% in CO2 emissions. The
average service time is reduced by 12%, amounting to a total time saving of minutes. Reducing the
available capacity brings a substantial change in the vehicle capacity ratio, with an increase of 37.15%
in payload utilisation. The only performance that is drastically worsened is the energy consumption,
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which increases of Watt, equal to 100% more than in the current scenario. This result is totally
expected, since in the current fleet there are no EVs whereas in the future scenario a fully electric
drone is introduced.
Comparing the business model for the two alternatives, substantial cost savings were noticed. Adopting
the future scenario not only means that a new drone must be purchased, but also that a delivery van
can be sold. Combining the expenses of buying and operating a drone with the cost savings of selling
and quitting daily operations of a delivery van, it was found that including drones in the delivery fleet
allows for a reduction of

6.1.6 Benefits for the pharmaceutical sector
After having answered the 5 sub questions, it is possible to provide an answer to the main research
question, that was formulated as follows:

How can the pharmaceutical sector benefit from the introduction of drones for the
last-mile logistic process, in combination with the current means of transport?

Throughout the research, several problems of the current last-mile transportation means have been
addressed. The main challenges that were defined consisted in cost reduction and congestion and
pollution diminution. Two design alternatives were elaborated and tested to understand the extent to
which the pharmaceutical sector can benefit from the adoption of a heterogeneous fleet composed by
vans and drones, and hence answer the research question. Optimise these two situations provided
some interesting results in terms of cost ad time savings and environmental benefits. Referring to the
case study of BENU ’t Slag, it was estimated that with the adoption of the envisioned future scenario,
the pharmacy could potentially save euro a year (based on a 5 year depreciation period),
equal to 12.5% of the total annual costs. Based on the assumption of an average amount of
deliveries per day, the cost per item is reduced by euro, equal to 5.60% of the initial price per
package delivered. Routes were found to be faster, decreasing the total service time of
or by 12.05%, suggesting that more customers could potentially be served and the geographical area
expanded. The introduction of flying vehicles and the consequent reduction of road vehicles brings
indisputable improvements under an environment perspective: CO2 emissions are reduced by 9.00%
for a daily operation, and less vehicles are driving in the urban area, decreasing the amount of traffic
congestion. Besides the improvement in vehicle capacity ratios, the highest gains were found in the
service time indicator, meaning that the performance that most improve is the total time in the system.
Considering that the case study referred to the home delivery of medical products, improving the
service time is more beneficial than increasing cost savings, given the fact that it is more important to
provide a fast and reliable distribution rather than as cheap as possible.

6.2. Discussion of the results
Although the results of the research showed a clear predisposition towards the adoption of drones as
means of transport for home deliveries, some aspects are worth to mention.
First of all, the results obtained refer to the case study of BENU ’t Slag, and the performance indicators
refer to the cost model specifically developed for the pharmacy concerned. Cost components highly
depend on the average number of deliveries per day and on the distance between nodes. Input data
are either assumed or obtained from the pharmacy. Nonetheless, it is believed that results can be
extended for similar case studies, for which research could potentially produce similar or better results.
Speaking of data availability, it is important to mention that a lot of assumptions were made, especially
on cost components and demand distribution. Real data pertaining the case study were used for the
total demand and for the area in which BENU ’t Slag operates the home delivery service. The exact
number of costumers and their precise location was not made available by the pharmacy; therefore, the
node distribution was made randomly withing the 14 postcodes, trying to cover as much area as pos-
sible. The demand distribution was also spread across nodes in a random way. Changing the demand
allocation produces a different routing solution and a different associated cost. Although noticeable,
these variations were not substantial and similar results were produced.
For what concerns the solution approach for the implementation method, two important manipulation
were operated. For what concerns the variable costs, the Excel Spreadsheet Solver that was used to
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implement the Vehicle Routing Problem did not account for time related costs, but only distance related
costs. To overcome this drawback and still include the human labour cost (expressed in euro/hour) and
the energy cost (expressed in euro/hour as well), these two costs were converted into distance costs
(expressed in euro/km) using the average vehicle speed. Calculating how many hours are needed to
travel 1 kilometre, and multiplying this value by the hourly cost, it is indeed possible to obtain the time
related components expressed in euro/km. The second manipulation concerned the distance com-
putation method and the average vehicle speed used in the implementations. Vans and drones are
inherently different, especially in terms of average speed and path followed for going from origin A to
destination B. The assumptions made on vehicle speed assigned an average speed of 35 km/h for the
van fleet and 70 km/h for the drone fleet. The distance computation method for vans was the Bing
Map real distance, which calculate the real distance between two points, following the real existing
infrastructure and the road regulations that are applied. For the drone, the birdflight distance compu-
tation was used, that calculates the shortest straight line that a plane would cover. Unfortunately, the
Spreadsheet Solver allows for only one distance computation per implementation, and just one vehicle
speed can be inserted. For this reason, for the future scenario assessment, two implementations were
run, one with distance and speed characteristics of vans and one with distance and speed character-
istics of drones. Results were then assembled together so that the route is still feasible and capacity
and node constraints are still respected.
Lastly, it is worth to mention that results provide a routing solution that assigns one tour per vehicle
per day, meaning that each vehicle carries out only one round of deliveries every day. The service time
per van in the case of 112 customers (hence the case with the highest service time) spans from

to for the current situation and from to
for the future scenario. Given that the total working time window is 9 and a half hours (from

8AM to 5:30PM), it could be also possible to use the same van for carrying out two delivery rounds. In
any case, two different drivers must still be employed, due to labour restrictions that do not allowed
drivers to work more than 6 hours without interruptions.

6.3. Further recommendations
Due to the limited amount of time for this research, the comparison analysis was conducted only be-
tween two alternatives, with a brief analysis of other potential future scenarios. Moreover, as discussed
previously, some assumptions and modifications were applied to the model and the solution approach.
Therefore, this chapter contains some general recommendation regarding the different scenarios and
the potential different model implementations and solution approaches. Moreover, given the promis-
ing results, some recommendation specifically tailored for BENU ’t Slag and for the BENU Apotheek
franchising are provided.

General recommendation
Once results showed that the introduction of drones would bring substantial improvements in the lo-
gistic operations of last-mile delivery for the pharmacy Benu ’t Slag, several scenarios alternatives were
hypothesised, to check the extent to which different network configurations would provide different
performance indicators. A fully-drone scenario, a fully-EVs scenario and a multiple depot scenario were
suggested. First results showed that a homogeneous fleet of only drones brings a considerable increase
in cost per item amounting to euro per product delivered. Environmental benefits are undoubtedly
interesting, with a drop of CO2 emission and fuel consumption down to zero. Same environmental re-
sults can be obtained with a fully electric heterogeneous fleet composition, with 2 e-vans and 1 drone.
Moreover, with 2 e-vans and 1 drone, cost per item can be considerably reduced, as well as the cost
of power supply. Lastly, the test scenario with multiple depot showed that, in comparison with the
situation where only one depot is arranged, service time can be reduced by 12% and cost of power
supply by 33%. Therefore, the main recommendation for further research is the implementation of
the scenario with a fully electric homogeneous fleet composition, with multiple depots. The choice of
avoiding a fleet composed only by drones and keeping road based vehicles with drivers carrying out
deliveries is also justified by the delivery agreements of BENU ’t Slag. Twice a week, drivers consign
several packages that are meant to fit in the mail box, without the customer having to collect them in
person. If BENU wants to maintain this service, it is believed that a homogeneous fleet of drones is
not feasible.
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For what concerns the implementation method, further research can be extended including solution
approaches that can account for multiple distance computations and average vehicle speed in the same
implementation setup. Examples are the Simulated Annealing or the Genetic Algorithm implemented
using Matlab or Python. Comparing the results obtained with the one of this research, might provide
a better insight on the feasibility assessment of drones for last-mile logistics. Moreover, it is recom-
mended to undertake some practical test as soon as regulations will allow drones to fly.
Under a technical perspective, it might be interesting to further investigate on some technical charac-
teristics of the vehicle fleet. As an example, fuel consumption was assumed to be static, fixed at 5
litres/100km. In reality, this value changes dynamically based on vehicle speed and traffic congestion
(i.e. if the vehicle needs to stop and re start the engine several times). Another characteristic that
might be worth of investigation, is the effect of weather condition on drone flight performances, e.g.
how wind or rain might affect the possibility of drones to reach customers locations.

Recommendation for BENU ’t Slag and the BENU franchising
Based on the results obtained in this research, it is recommended for Benu ’t Slag to include drones in
their delivery fleet, as part of near future investments. This new technology cannot be adopted yet,
due to regulations that impose restrictions on flying vehicle. However, European regulations are about
to change in the coming months, and drones will be soon introduced in delivery logistics.
In the context of the multiple depot scenario, one practical recommendation for the pharmacy is to
implement a tracking system that registers customers locations and their corresponding demand. As it
is now, data on product demand are only available on a monthly basis, and are not divided per customer.
This tracking system not only keeps records of the amount of products that leaves the pharmacy, but
also of their final destination. By doing so, it is possible to define the demand pattern in a more precise
way. Although this system might encounter some privacy issues, it would be a valid tool to arrange
the multiple depots in an optimal way, so that starting locations can be positioned close to areas with
high concentration of customers or high demand.

6.4. Personal reflections
Now that my time as a student is almost concluded and I finished the research for my Master’s thesis,
it is time for some personal reflection.
Looking back on when I started this project, I can say that it was surprisingly easy to find a pharmacy
that was interested in a collaboration and willing to help me. Studying the feasibility of drones as de-
livery vehicles for medical products was my first idea, so I was really enthusiastic when the opportunity
of BENU ’t Slag came up. Although they provided me with some real data, they were not enough to
carry out a thorough research. Consequently, I had to formulate several of assumptions, especially on
customer distribution and cost associated with the delivery process. I tried to remain as much close to
reality as possible, yet of course some discrepancy might be found if a complete set of real data were
to be used.
Right after the mid-term meeting in January I struggled with some health issues which inevitably de-
layed my research. Fortunately my supervisors were really understanding, and let me fully recover
before starting again with my work. Regardless, I managed to finish with a very small delay on my
initial plan, working very hard in the following months.
The biggest step to overcome was the formulation of the mathematical problem and the choice of the
solution approach. After many consultations with my supervisors and some other professors at the TU
Delft, I chose for the VRP, but the solution approach was still unknown. I first tried to implement the
optimisation problem with Matlab, encountering some problems. I was able to run some simple VRP
problems, but I couldn’t visualise the results in the way I was imagining, with the routing sequence on
top of the map of Rotterdam. After many trials, I found the VRP Spreadsheet Solver that I used in this
research, and I could finally implement the model in the correct way. After having found the correct
approach, the analysis continued fast and smooth.
Almost at the end of my research I had a very interesting brainstorm with all my supervisors. A lot of
ideas came out of that meeting, such as using electric vehicles, adding mode depot locations and so
on. All of them were very interesting and I sort of regretted having so little time left and not being able
to implement and analyse all these engaging alternatives. I tried my best and I managed to include a
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small investigation on EVs and multiple depot configuration, which may be the starting point for further
research.
Overall, I can say that this whole experience was really formative and helped me understand that the
research career is what I want to pursue. I really enjoyed working on my own research, with all the
ups and downs of the process. I must also thank my supervisors for that, who always pushed me to
make my own choices and trust my decisions. I hope that the outcome of my research will see practical
applications, improving the quality of medical product home deliveries with a faster, more reliable and
cheaper service.
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A
Costs associated with last-mile

delivery

Costs associated with last-mile delivery depend mainly on the geographical location of delivery, the
market density, the physical transport infrastructure and the delivery agreements.

Geographical area and market density
The geographical area and the market density are two of the most important aspects of last-mile
delivery. The size of the area, its population and the delivery demand, jointly determine the shipment
method, the delivery feasibility and the most suited vehicle to be used. A clear distinction is made
between urban areas and rural areas. According to the definition provided by the National Geographic,
an urban area is the region surrounding a city, in which the density of human structures (e.g. houses,
commercial building, transport infrastructure) is relatively high (NationalGeographic, 2011). In the
same way, areas with different market density can be classified. Operational decisions and related costs
are then based on the area of shipment and on the market segment: travelling several kilometres for
delivering one package in a rural area far away from the depot centre might result in higher operational
costs compared to the shipment of several parcels in an urbanised space, given the same number of
kilometres travelled. Last-mile economy is indeed driven by route density and drop size. A high number
of deliveries over a short period of time or distance result in lower cost per delivery compared to one
single delivery over long distances. A study conducted on the differences in last-mile delivery costs in
urbanised area and in rural area (Gevaers et al., 2014), showed that shipping a product to a densely
populated area (i.e. more than 1500 inhabitants/km2) can be up to 65% less expensive than shipping
the same product to a rural area (i.e. less than 50 inhabitants/km2). In this way, efficiency is limited
when shipping into rural areas. Figure A.1, adapted from Gevaers et al. (2011), shows the relation
between the number of customers in the delivery area and the average mile travelled per costumer.

Figure A.1: Effect of consumer density on miles travelled

As can be seen from the figure, the number of miles is inversely proportional to the number of cus-
tomers. This is mainly given to the fact that when several customers are clustered together in the same
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shipment area, an optimised route is found, that do not necessarily impose a return to the warehouse
after every shipment, minimising thus the kilometres travelled. Customer density highly affects costs of
last-mile delivery due to the dichotomy between cost of delivery and cost of shipment. While the first is
unaltered for every type of service (i.e. most of the time is a free service provided by the company that
sells the product), the latter depends on infrastructure conditions, congestion, distance to be travelled
and service agreements (Gevaers et al., 2011).

Infrastructure limitation
Infrastructure limitation is one of the conditions that mostly curbs the last-mile delivery process, and
it concerns several aspects. When talking about infrastructure limitations, one can refer to different
categories of limitation, based on the geographical area of interest. Areas are commonly divided
into urban areas and rural areas, depending on population density and structural composition. The
main challenges that are faced in urban areas are related to congestion. High population density,
urbanised living and concentration of offices and shops create a large transport demand. The offer, i.e.
infrastructure capacity, rarely increase proportionally with demand. Consequently, roads are becoming
more and more crowded, causing congestion and long waiting times. This is particularly relevant in
the delivery sector, where congested roads lead to delayed shipment, cost inefficiency and customer
dissatisfaction. Some attempt to reduce the impact of congestion have been made introducing e-cargo
bikes for last-mile delivery in replace of the classical modes of transport (Schliwa et al., 2015). For
what concerns rural areas, the main issue connected to infrastructure limitation is the lack of adequate
connection between the depot and the delivery points (i.e. customers’ house). In this sense, the
efficiency and effectiveness of the last-mile logistic process is hindered by inaccessible areas and poor
infrastructure maintenance.

Delivery agreement: time of delivery
Time of delivery refers to the shipment agreement that defines in advance a time window in which the
delivery must take place (Gevaers et al., 2009). The main reason behind a predefined time window
is to avoid trips in which the delivery is not successful due to the customer not being at home. In
that case, the courier will have to return again, adding extra costs for the same shipment. On the
other hand, in the case that a delivery window is agreed upon, route efficiency might be hampered
by the fixed sequence of shipment. In that case, indeed, routes are not optimal and do not follow
the shortest possible path but are bound by the different pre-arranged time of delivery (Gevaers et al.,
2009). Consequently, allowing for a pre-determined time delivery window concerns a trade-off between
the minimisation of the number of trips and the optimisation of route efficiency. Figure A.2 shows the
effect of delivery window on the average miles per customer in urbanised areas. With the relaxation
of the time window, a decrease in average miles per customer is observed.

Figure A.2: Effect of delivery window on miles travelled

In some cases, a pre-arranged time of delivery might lead to the so-called “ping-pong effect”, implying
a significant raise in driven kilometres and associated costs. Figure A.3 shows a simulation of a delivery
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round without time windows (left-hand side) and with time windows (right-hand side), conducted by
Boyer et al. (2005).

Figure A.3: Simulation of a delivery round without TW and with TW

As a first comparison, the disparity between the efficiency of these two simulations is easily noticeable.
In the case of no time window provided, the optimal route is found through the shortest path as defined
in the Vehicle Routing Problem (VRP) by Fisher and Jaikumar (1978). When a time window is defined,
an extra synchronisation constraint must be added, which bound the nodes to be visited according to
the scheduled deliveries. In this case the optimal route is found using the Vehicle Routing Problem
with Time Window (VRPTW) as defined in Solomon (1987).





B
Network alternatives

B.1. Demand distribution
BENU ’t Slag operates home deliveries in 14 postcodes, with an average daily distribution of
products (Frijmersum, 2018). Demand is spread across postcodes according to their size and their
house units.

Table B.1: Weighted distribution of daily deliveries across postcodes

B.2. Scenario description
Referring to the description of subsection 2.3.1, this section provides arguments for and against each
proposed scenario, with potential improvements or deterioration compared to the current situation.
Each scenario is based on potential development of the delivery service provided by the pharmacy, and
it is strictly related to the case study of BENU ’t Slag.

Scenario 1 - no changes applied
In the future situation no changes are made compared to the current state. This first scenario suggests
to not apply any changes with respect to the current situation, keeping the 3 vehicles and the ATM,
not expand the current area of delivery and the available fleet.

Arguments for:

1. No initial investments on new vehicle or on new technologies;

2. No investments on information campaign for new technology and delivery changes.

Arguments against:

1. Deliveries might increase with the population growth (WorldPopulationReview, 2018).

Scenario 2 - drones only
All deliveries are carried out via drones, with a total elimination of the current fleet of vans. The area
of delivery is expanded due to the elimination of infrastructure limitation.

Arguments for:

1. Improvement in the emission, with a completely electric-powered fleet;

2. No need of organising two different categories of vehicles;

Arguments against:

1. All deliveries must be attended, for the drone to drop off correctly the products;

2. Interruption of the pre-packaged medications delivered twice a week;

3. Decrease in customer satisfaction;

4. High investment on new fleet
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Scenario 3 - speedy deliveries
A fleet of drone is purchased only to take care of the speedy deliveries. Whenever an urgent delivery
is requested, a drone is used instead of a van, which can in this way continue with the scheduled
deliveries and avoid any change of route.

Arguments for:

1. Speedy deliveries can be carried out without affecting the route of other vehicles, eliminating the
costs associated with these adjustments.

Arguments against:

1. It is expensive to buy a new fleet of vehicles only for one specific type of deliveries that might or
might not take place;

2. Most likely low return on investment.

Scenario 4 - hybrid van and drone deliveries
A drone is attached to the roof of the van and acts as a sidekick to the van, so that drone and van can
split the deliveries, while the drone can transport light weights and can recharge on the roof.

Arguments for:

1. Deliveries can potentially be completed in a shorter time.

Arguments against:

1. Very expensive investment, both on drones and on new vans to accommodate drones on;

2. Difficult to coordinate two different vehicles for the same shipments.

Scenario 5 - combination of vans and drones
Introduction of a new fleet of drones that cooperate with the existing vans. Deliveries are carried out
based on an optimised system that minimises costs and assigns the most suitable vehicle.

Arguments for:

1. Vehicle selection can be optimised based on the characteristics of the delivery;

2. Existing vehicles do not need to be replaced or renovated.

Arguments against:

1. Initial investment on a new vehicle category.



C
History and characteristics of drones

and use in last-mile delivery

C.1. History of drones
Drone applications started in the mid of the 19th century, for war fighting purposes, when Austrian
forces sent some incendiary balloons to attack the city of Venice in July 1849 (Buckley, 1998). The
fast pace of technology that characterised the last century, allowed for a continuous improvement
and maturing of available UAVs. The military field has remained the biggest market share, in which
autonomous or remote-controlled aerial vehicles are used as capable fighting machines that eliminate
the risk to aircrews. In recent years, UAVs have been used for other purposes, such as transport of
vital resources in emergency situations or parcel delivery. Several prototypes have been tested, with
great results in term of cost savings and safety. On the other hand, people acceptance of drones has
not increased in parallel with technology progress. The main issue is related to the fact that in the
past, drones have been exclusively used for military purposes, as defence and attack devices. For this
reason, drones are still seen as “killer robots” rather than potential delivery vehicles, hampering the
acceptance amongst most of the population (Franke, 2015). The following paragraphs contain a brief
overview of the main sectors in which drones have found potential applications, from the beginning of
their use to recent days.

Military use
The first use of UAVs for war fighting purposes dates to 1849, when the Austrian army used an un-
manned aerial vehicle as a balloon carrier to launch 200 incendiary balloons at the city of Venice (Buck-
ley, 1998). Since the early 20th century, innovations started to take place, allowing for improvements
in flight characteristics and performances. UAVs were used for training military personnel, gaining in-
creasing popularity especially during World War 1 (Shaw, 2013). The first description and attempt of
powered UAVs as made by A.M. Low in 1915, followed by Nikola Tesla in 1916 (Dempsey, 2010). With
the addition of electricity to these vehicles, different armies started to adopt them for their military
strategies. Germany used UAVs to train antiaircraft gunners and to fly attack missions starting from
1935. UAVs remained mainly remote-controlled aircraft for the following 20 years, since they started
to be automated, without requiring a remote pilot during the Vietnam War in 1955 (Kenneth, 1997).
Other examples of military use are found in the Yom Kippur War of 1973, when the Israeli government
sent anti-aircraft missiles (Saxena, 2013) and developed the first UAV with real time surveillance as
air defences against the Syrian army in the Lebanon war of 1982 (Azoulai, 2011), with the result of
no pilots downed (Levinson, 2010). The maturation and miniaturisation of applicable technologies in
the 1980’s and 1990’s captured the attention of the US military sector, interested in cheaper and more
capable fighting machines which do not require a pilot and hence cause no risk to aircrews. UAVs were
extensively used during the Gulf War in 1991, as surveillance vehicles and armaments carriers.

Emergency and medical purposes
The key factor in emergency situations is time. Being not bounded to physical transport infrastructure,
having a relatively high speed and the capability of flight in a straight line between two points, drones
have been proved to be useful when it comes to save lives. A study conducted by the European
Resuscitation Council in 2015 shows that a prompt intervention of less than 10 minutes in the case of
accidental drowning is crucial for having a successful outcome (Truhlář et al., 2015). In those situations,
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a drone that transmits live videos can be used to monitor beach environments and provide the accurate
location of a possible drowning victim. Moreover, delivery drones can be used to provide life-buoys,
cardiopulmonary resuscitation and automated external defibrillator (Claesson et al., 2017). Regarding
the restricted time window in which medical products should be delivered, researches were conducted
on several potential application of UAVs in the medical field. UAVs have been found efficient to deliver
medical products that are perishable or not easy to stock in big quantities, such as blood products,
(e.g. platelets, plasma and red cells), but also anti venom to hospitals and remote areas (Thiels et al.,
2015). Other potential applications of drones for medical purposes concern the transport of vaccines
in low- and middle-income countries (Haidari et al., 2016). Modelling the vaccine supply chain for the
Gaza province, in Mozambique, they found that implementing a drone system could increase vaccine
availability and decrease costs, once the high capital investments are overcome.

Transport
The state of research on drone delivery is still on its early stages. Practical trials have already been
carried out by leader companies in the delivery sector, such as Amazon, Alibaba and Google (Agatz
et al., 2018). Drones used for these trials were equipped with multi-propeller, being able to carry
parcels of 2 kilograms for more than 20 kilometres. In 2014, the American company AMP Electric
Vehicles together with the University of Cincinnati Department of Aerospace Engineering, developed a
combined mode of truck and drone for last-mile delivery (Wohlsen, 2014). The challenges faced under
a transportation planning perspective concerned both an assignment problem and a routing problem.
The first one relates to the allocation of one vehicle (drone or truck) to a specific customer; the latter
seeks for an optimal sequence of visits. The Aerospace Industries Association (AIA) forecasts that
within 20 years, a large amount of cargo drones will be introduced in the market. Investments in
research and development will rise from a few hundred millions USD to 4 billion USD by 2028 and 30
billion USD by 2036 (Warwick, 2018).

Civilian use
Civilian market refers to the use of drones for photography, surveillance, path recognition, racing and
advertising purposes. The biggest portion of this business is controlled by the Chinese company DJI,
which owns more that 75% of the entire market, with a 11 billion USD forecast for the year 2020,
followed by the French company Parrot, with a 110 million USD global sales (Chavers, 2018).

C.2. Classification of drones
Drones can be categorised by their performance characteristics, such as weight, wing span, range,
maximum altitude, speed, production costs and engine types, but also according to their purposes
(Hassanalian and Abdelkefi, 2017). The following tables provide an overview of three different classi-
fications, made according to different characteristics and purposes.

Purpose Description

Target and decoy Simulation of enemy aircraft or missile
Reconnaissance Battlefield intelligence
Combat Attack vehicle for high-risk missions
Logistics Cargo delivery
Research and development Improvements of UAV technologies
Civil and commercial Agriculture, aerial photography, data collection

Table C.1: UAVs classification according to their purpose

C.3. Drone characteristics
When defining the characteristics of an autonomous vehicle, one of the most important aspects to look
at are the vehicle system and the level of automation. The following paragraphs provide a description
of the components that form a UAV, followed by the communication modules that can be used between
the vehicle and the system and the level of automation.
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Category Altitude [m] Range [km]

Hand-held 600 2
Close 1500 10
NATO type 3000 50
Tactical 5500 160
MALE 9000 200
HALE 9100 Indefinite

Table C.2: UAVs classification according to their range and altitude

Category Weight [kg]

Micro air vehicles Less than 0.001
Miniature UAVs Less than 25
Heavy UAVs More than 25

Table C.3: UAVs classification according to their weight

Components
Unmanned Aerial Vehicles are part of a bigger system (the Unmanned Aerial System), which controls
a series of vehicles and provide data and communication with the ground service. The body of an
UAV is composed by sensors, actuators and a computing power, all powered by an energy supplier.
These components are in communication with each other, as well as with the entire system through a
communication module. Figure C.1 provides a visual explanation of these relations. Unmanned Aerial
Vehicles are usually part of an Unmanned Aerial System, with which they repeatedly communicate.
All the components are positioned in an aircraft body, which is essentially similar to an aircraft body
with no cockpit area and no windows (Fingas, 2016). The computing power was initially composed by
analogue controls, then replaced with micro controllers, systems on a chip or single-board computers
in more modern UAVs. System on a chip refers to a circuit that integrates all components of an elec-
tronic system, which can include destination- and application- specific routing. Single-board computers
on the other hand, refer to complete computers that are built on a single circuit board. The energy
supplier differs according to the dimension of the UAV. For big vehicles, conventional aircraft engines
are used. For smaller vehicles, lithium-polymer batteries are used, which require less maintenance, a
more environmentally friendly supply and a quieter flight (Brown, 2011). Sensor technology is impor-
tant in order to connect the vehicle to the physical system. This connection is made through sensors
and actuators. Sensors are devices that translate physical phenomena into electrical signals, whereas
in opposition, actuators are devices that convert electrical signals into physical phenomena (Wilson,
2005). Unmanned aerial vehicles are equipped with different sensors and actuators. Among the sen-
sor devices, position and movement sensors provide information about the vehicle state; exteroceptive
sensors provide external information (e.g. distance measurements); exproprioceptive sensors compare
internal and external states (Floreano and Wood, 2015). To avoid collisions and to assure the mini-
mum space separation with external objects, non-cooperative sensors are used (Fasano et al., 2015).
Non-cooperative sensors identify unknown targets without establish any communication with them,
by comparing the position of the observed object with a database of potentially dangerous targets,
determining the closest match (López-Rodríguez et al., 2015). Actuator devices are usually present in
the form of digital electronic speed controllers. The interaction of sensors and actuators might follow
an open loop or a closed loop control architectures. Open loop control systems do not provide any
feedback from the sensor data, furnishing only the control signal that is required (e.g. faster, slower,
left, right, up, down). In opposition, closed loop control systems incorporate to the control signal a
sensor feedback to adjust the movement of the vehicle in a more precise manner (Bristeau et al.,
2011).

Automation levels
The term automation refers to the ability to perform a sequence of tasks without human intercession,
only relying on current state and sensing (ISO, 2012). The level of autonomy depends on the type of
vehicle and on the intended use. As far as small UAVs are concerned, three possible levels of increasing
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Figure C.1: UAV components

autonomy have been defined in Floreano and Wood (2015):

1. Sensor – motor autonomy: this type of autonomy translates human commands into control sig-
nals. Instructions such as reach a certain altitude, perform circular trajectory or maintain position
are converted into control signals such as pitch, roll, yaw angle or speed.

2. Reactive autonomy: vehicles equipped with a reactive autonomy system can compare internal
and external states, being thus able to maintain the current position in the presence of external
perturbations or change the trajectory based on potential hazards, adverse weather conditions
and whatnot. They can also interact with other moving objects and perform autonomous take-off
and landing.

3. Cognitive autonomy: this last and highest level of autonomy characterises vehicles that can learn
from the surrounding environment, meaning that they can perform simultaneous localisation and
mapping, resolve conflicting information, plan for battery recharge and recognise objects.

According to the previous enumeration of the autonomy level, Table C.4 shows the features of UAVs
related to the three different level of automation. Per level of automation, it is defined whether exte-
roceptive sensors are present, the level of computational load, whether a supervision is required, the
level of readiness and which UAVs can be equipped with that autonomy (Floreano and Wood, 2015).

Sensors Computation Supervision Readiness Drone type

1 None or few Little Yes Deployed All types
2 Few Medium Little Partly deployed Fixed wing
3 Several High None Not yet deployed Rotorcraft

Table C.4: Features of UAVs related to their automation level

The basic principle of autonomy is that control is achieved through a hierarchy of the system. The
vehicle behaviour is decomposed into manageable states with known transitions. Different algorithms
are then used to compute these system states and define the motion of the vehicle. The most used al-
gorithms concern path planning, trajectory generation and trajectory regulation. Path planning defines
the optimal path according to the mission objectives and the system constraints. Trajectory generation
defines the control manoeuvre that must be adopted in order to follow the predefined path. Trajectory
regulation provides the constraints to the vehicle motion, allowing for some tolerance. Possible algo-
rithms that can be used for this hierarchical planning are tree search algorithm and genetic algorithm
(Çekmez et al., 2014).

C.4. Drones for last-mile delivery
The state of research on drone delivery is still on its early stages. Practical trials have already been car-
ried out by leader companies in the delivery sector, such as Amazon, Alibaba and Google (Agatz et al.,
2018). Drones used for these trials were equipped with multi-propeller, being able to carry parcels of
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2 kilograms for more than 20 kilometres.
In 2014, the American company AMP Electric Vehicles together with the University of Cincinnati Depart-
ment of Aerospace Engineering, developed a combined mode of truck and drone for last-mile delivery
(Wohlsen, 2014). The challenges faced under a transportation planning perspective concerned both
an assignment problem and a routing problem, relating to the allocation of one vehicle (drone or truck)
to a specific customer the first; and the optimal sequence of visits the latter.
The Aerospace Industries Association (AIA) forecasts that within 20 years, a large amount of cargo
drones will be introduced in the market. Investments in research and development will rise from a few
hundred millions USD to 4 billion USD by 2028 and 30 billion USD by 2036 (Warwick, 2018)).
Different drones can be used for package deliveries. So far, two categories may be distinguished for
drone delivery: fixed wing drones and rotorcraft drones (King, 2017). Among rotorcraft drones, multi
rotor and single rotor drones can be found (Chapman, 2016). According to Chapman (2016), a third
category of drones can be defined: fixed-wing hybrid drones.
Fixed-Wing drones have predetermined fixed aerofoil, which allows the drone to fly by means of for-
ward airspeed, generated by forward thrust. The thrust is achieved by an internal combustion engine
or, for electric drones, by an electric motor. Fixed wing drones have a simple structure, compared to
other types of drones, which allows for less complicated maintenance and more efficient aerodynam-
ics. These two factors ensure a lower cost for operational time and longer flight duration at higher
speed. Moreover, the payload that these drones can carry is higher than other drone configurations.
On the other hand, the disadvantages of fixed wing drones lie on the fact that they need a runway or a
launcher for take-off and landing, and, while flying, they constantly need air moving over their wings.
As a result, they might not be suitable for deliveries with dismal pick up and drop off areas, or in the
case that the drone needs to stay stationary for a long period of time.
Rotorcraft drones are characterised by the presence of a rotor composed by two or three rotor blades
that whirl around a fixed mast. The rotor provides the thrust needed to generate lift, making it un-
necessary for the drone to have constant air movement. This means that the drone can stay in a
standstill position for a certain period. The advantage brought by the rotor blades is the fact that they
allow for vertical take-off and landing, without the need of a designated runway. On the other hand,
they need a more complicated maintenance due to the greater mechanical and electronic complexity,
which is translated into higher operation costs. Moreover, the speed and the flight range are lower
than fixed wing drones. Multi-Rotor drones are characterised by the presence of more than one rotor
blades. They have a limited endurance and speed; therefore, they are not suited for long distances
(thus they might be not suitable for rural areas). Energy-wise they are considered to be inefficient, for
they require a lot of energy only for fighting gravity. The allowed payload depends highly on the time
range the drone must fly: with a max range of 20-30 minutes, the maximum payload is reduced to the
one of a small camera. For higher payload, the flight time is considerably reduced (Chapman, 2016).
Single-Rotor drones are characterised by only one rotor to hold them up, plus a tail rotor to control
their heading. Given the presence of only one rotor blade, single-rotor drones are more efficient than
multi-rotor drones. Moreover, compared to the other typology they can carry higher payloads. The
downside is their high costs and vibration when flying, making then not suitable for fragile packages
(Chapman, 2016).
Fixed-Wing Hybrid drones are fixed-wing drones that can land and take-off vertically. Their design
is similar to the one of existing fixed-wing drones, with the addition of vertical motors bolted on.
Their testing started during 1950’s, with disastrous results. Recent technologies like modern autopi-
lots, gyros and accelerometer are opening new possibilities for fixed-wing hybrid drones, making them
feasible for package deliveries (Chapman, 2016). An example of fixed-wing hybrid drone is the self-
flying delivery drone proposed by X Development in their X Wing Project for drone delivery of food,
medical supplies and home delivery (XDevelopment, 2018). The most important characteristics that
make this type of drone interesting from a last-mile delivery perspective, is the fuel efficiency, high
precision and increased safety. Being completely powered by an electric system, they can fly up to 120
km/h on a maximum height of 120 meters, safely delivering the package to the intended destination
(XDevelopment, 2018).

The following paragraph provides an overview of the advantages, disadvantages and applications of
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(a) Fixed-wing drone (b) Multi-rotor drone

(c) Single-rotor drone (d) Fixed-wing hybrid drone

Figure C.2: Types of drones for last-mile delivery

the different types of drones mentioned above.

Fixed-wing drones

• Advantages: long endurance, large coverage, fast flying speed.

• Disadvantages: launch needs quite some space, expensive to purchase, vertical take-off and
landing not possible.

• Applications: aerial photography, pipeline inspection.

Multi-rotor drones

• Advantages: accessibility, ease of use, vertical take-off and landing.

• Disadvantages: short flying times, small payload capacity.

• Applications: aerial photography, aerial inspection.

Single-rotor drones

• Advantages: long endurance, heavy payload capability, vertical take-off and landing.

• Disadvantages: dangerous because of the rotors, hard to pilot, expensive.

• Applications: aerial laser scanning.

Fixed-wing hybrid drones

• Advantages: vertical take-off and landing, long endurance flight.

• Disadvantages: still in development.

• Applications: deliveries



D
Flying with drones: insights on

Dutch regulations

Drones are classified as airborne objects, and as such they fall within aviation laws. Being a recent
innovation technology, regulations on drones are still on an early phase. New procedures will be
applied a year from now, which makes it important to state what is nowadays in force and what will
be implemented in the near future.Figure D.1 shows the map of The Netherlands with the outlines of
the areas in which flying a drone is allowed (Rijksoverheid, 2018).

Figure D.1: Outline map flying with drones

Heliports, microlight fields, hang-glider fields and glider fields are denoted with an H, M, S and G
respectively. Forbidden zones are highlighted in red, limited zones in orange and Natura 2000 zones in
green. Natura 2000 zones refer to protected areas in which rare and threatened species are bred and
kept safe (EuropeanCommission, 2018). It can be easily noticed that the amount of airspace in which
flying a drone is permitted is quite restricted. Most of the airspace area is indeed already claimed by
airports for passenger transport. In areas in which flying a drone is allowed, the current regulation
sets a limit of 500 meters as maximum distance that can be flown (which corresponds to the sight
distance).

Current regulations on drone use
As stated by the Ministry of Infrastructure, general rules regarding the authorisation to fly a drone are as
follows (Rijksoverheid, 2018): drones can be flown only in daylight and up to a maximum of 120 meters
high; drones cannot be flown above crowds, contiguous buildings, roads, railways, industrial and port
areas; drones must give priority to aeroplanes, helicopters, floats, free balloons and airships. When
using a drone for business purposes, the drone user must hold a flying permit, to ensure the safety
of the flight and to minimise the risk of accidents, both in the air and on the ground (Rijksoverheid,
2018). Companies flying drones need a RPAS Operator Certificate (ROC). Light ROCs refer to drones
up to 4 kilograms, whereas normal ROCs are intended for bigger drones, with a weight higher than 4
kilograms and a wider flying range.
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Future regulations on drone use
To get insights on future regulations of drone transportation, interviews have been conducted through-
out the research process. On the 7th of December an interview with Jeroen Bartelse, innovation
manager of Achmea, was conducted. On the 27th of March 2019, a collective interview with Arjan van
Vliet, innovation manager for the Ministry of Infrastructure and Water Management in Den Haag and
Patrique Zaman, founder of Avy.
Regulations regarding flying drones are about to change in the coming years. The space in which will
be allowed to fly a drone will increase, changing thus the aspect of the map in Figure D.1. Provided
that drones remain within a height of 150 meters, the restriction will be limited only to the vicinity
of airports. The range will also be extended, discarding thus the limitation of remaining within the
sight distance of 500 meters (Bartelse, 2018). To implement these changes, new regulations will be
created, both at a National and European level, involving the Dutch government and the European
Aviation Safety Agency. Referring to Figure D.1, with future regulations it will be possible to fly over
green zones (Natura 2000), provided that no take-off or landing procedures will be operated there,
and that the noise produced by the drones is not disturbing nearby areas. Moreover, drones will be
allowed to fly also on red zones, with special permissions based on risks and safety approaches, apart
from military zones, royal houses and in line with airport runways (Vliet and Zaman, 2019).

D.1. Economy and insurance policies for drone use
To insure a vehicle means to know the risks associated with the use of that specific vehicle. When it
comes to new technologies like drones, the risks are not known to the company that insures the object.
Therefore, the first step for the insurance company is to bear the economic risk. After a time period
of operation, the actual risks of flying a drone are known, allowing the company to define a specific
cost for a specific drone. One of the biggest risks that can be associated with flying a drone, is linked
to the possibility of the drone falling on the ground and injure a person. In that case, not only the
merchandise that was delivered need to be reimbursed, but also the costs related to the gravity of the
injure must be considered (e.g. in the case that the person injured is not able to work anymore, that
person must be paid for the rest of his life). One way of reducing costs of insure a vehicle, is to reduce
the risks associated to it and/or the severity of the injuries. An example that can be investigated when
insuring a drone, is the installation of parachutes in the vehicle to mitigate the damage caused by a
crash with the ground (Bartelse, 2018).
Different options are available when insure a fleet of drones for last-mile delivery: insure the whole
fleet of drones over a time period, insure only one single drone over a time period or insure one single
drone per single trip. According to Bartelse (2018), the third option is the preferred one, since it allows
the company to adapt the insurance cost based on the delivery characteristics. The insurance cost
depends indeed on several aspects and adapting this cost to each single trip may lead to substantial
savings. These aspects are:

• Size and weight of the drone;

• Weather conditions during flight operations, e.g. wind category in which the drone is allowed to
fly (in the case it can fly with very adverse conditions, the insurance cost might be higher);

• Value of the package to be transported and related content (i.e. if heavy drug is transported, the
risk is higher);

• Territory over which the drone is flying. Flying over the sea leads to lower costs than flying over
a densely populated area.

To properly consider each of the aforementioned aspects, it is necessary to insure one single drone per
single flight. Weather conditions, value and content of the package and flown area change in every
delivery, leading to potentially different insurance costs (Bartelse, 2018).



E
Stakeholder analysis

The most effective way of carrying out a stakeholder analysis is through the elaboration of a stakeholder
matrix. Based on the metric of comparison, several matrices can be found in literature. The following
paragraphs provide a brief description of the different elements of comparison that are related to each
stakeholder matrix.

Ability - View matrix
This matrix maps the stakeholders’ ability to impact the project and their view (positive or negative)
on it, and it is also called business process management matrix. First proposed by Jeston and Nehlis
(2014), it is used in project management to understand who is important for the engagement strategy
and who could be a helpful assistant, who will be the leader and sponsor of the project. Figure E.1a
shows an example of this matrix configuration.

Importance - Commitment matrix
This matrix, also called Stakeholder Influence grid, was proposed by Milosevic and Martinelli (2003)
and it maps the level of commitment of each stakeholder compared to the importance of their support.
Depending on their position on the grid, as portrayed in Figure E.1b, stakeholders are divided into
Cheerleader, Strong Believer, Conscientious Objector and Fully On-Board.

Power - Support matrix
This type of analysis relates the power of every stakeholder to their support on the project. It was first
introduced by Paul Roberts and its results are used to identify who is critical to a project’s success. De-
pending on their position on the grid (Figure E.1c), stakeholders are divided into Hecklers, Supporters,
Terrorists and Promoters. In the case that the top half of the grid is empty or with only few Members,
it might be a sign that the project does not have sufficient sponsorship authority.

Power - Interest matrix
This analysis technique was first introduced by Eden and Ackermann (1998) and it focuses on the
stakeholders who have an interest in a project and the power to strategically affect it. As can be seen
in Figure E.1d, actors with the highest interest and the highest decision power are the Leaders and
are the ones that play a significant role in the project management. Players are the stakeholders that
despite the low interest, they have a high decision power; they must be considered in the planning
phase and accordingly convinced.

Support - Importance matrix
Developed by Nutt (2002), this matrix arranges the actors in a grid according to their level of support
and importance to the project. On the x axis, stakeholder importance is rate from 1 to 10, whereas on
the y axis, the intensity of their expected opposition or support position is rated from 1 to 5. Figure E.1e
shows an example of this matrix configuration.

Influence - Interest matrix
The Influence – Interest matrix, developed by OGC (2007), measures stakeholders’ influence and
interest using a scale of high, medium or low, allocating thus each actor in one of the 9 possible square
(Figure E.1f). Based to their position, stakeholders are classified according to their role in the project
management: Key Players, Active Consultation, Maintain Interest and Keep Informed.
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Attitude - Knowledge matrix
Elaborated by Turner (2016), the Attitude – Knowledge matrix assesses stakeholders’ knowledge on a
project and their attitude. For each actor, it is stated if it is ignorant or aware of the importance of the
project, based on their knowledge, and whether it is in support or in opposition of it, based on their
attitude. This matrix helps to define the measures to inform and/or change the attitude of specific
stakeholders. An example is found in Figure E.1g.

(a) Ability - View (b) Importance - Commitment (c) Power - Support

(d) Power - Interest (e) Support - Important (f) Influence - Interest

(g) Attitude - Knowledge

Figure E.1: Stakeholder matrices

E.1. Construction of the Power – Interest matrix
To describe the stakeholders involved in the project, it is decided to use the Power - Interest matrix from
Eden and Ackermann (1998). The construction of the matrix begins with the definition of the people
involved in the project. The following paragraph provides a list of actors, followed by the analysis of
their tasks, interests, fears and influence. The actors involved in the process are:

1. BENU ’t Slag: pharmacy that will introduce the fleet of drones in their home delivery service.

• Task: provide the medicines;
• Interest: provide a fast and reliable service, maintaining costs low;
• Fear: loss in profit and customers’ expectations;
• Influence: if allowed, final decision whether to use drones or not.

2. BENU Apotheek franchising: the company that administrates all the BENU pharmacies across the
Netherlands.

• Task: provide the medicines;
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• Interest: provide a fast and reliable service, maintaining costs low;
• Fear: loss in profit and customers’ expectations;
• Influence: if allowed, final decision whether to use drones or not.

3. Delivery company Farma Clean and Service: the external company that provides the delivery
service. Being the provider of vans, the company might be interested in investing in a fleet of
drones for the near future.

• Task: deliver medicines, deliver operation management, provide the fleet;
• Interest: cost savings;
• Fear: loss of delivery contracts, increase in expenses, loss in revenue;
• Influence: can decide to rescind the contract.

4. Customers of BENU ’t Slag pharmacy: people that usually buy their medical products from BENU
’t Slag and that regularly have their products delivered at home.

• Task: buy and receive the products;
• Interest: have a fast, cheap and reliable delivery service;
• Fear: addition of delivery price, damage of the products;
• Influence: customer loyalty.

5. Population of Rotterdam: people that live in Rotterdam but currently buy their medical products
in another pharmacy (that might or might not be part of the BENU franchising).

• Task: -;
• Interest: -;
• Fear: nuisance and pollution caused by the delivery vehicles;
• Influence: -.

6. Municipality of Rotterdam: legislator that gives the green light on the use of drones for last-mile
delivery in the city of Rotterdam.

• Task: provide regulations and policies;
• Interest: operate according to the law, guarantee the best service to the population of
Rotterdam;

• Fear: loss in population trust;
• Influence: decide whether or not flying with drones is permitted.

7. Other pharmacies in Rotterdam: other pharmacies that might or might not be part of the BENU
franchising.

• Task: provide medicines to other customers;
• Interest: fair competition;
• Fear: decrease in customers number due to a better service of BENU ’t Slag;
• Influence: -.

The second step involves the creation of two comparative matrices, one comparing each stakeholder
based on their power, and one comparing them based on their interest. If a stakeholder has more
power or interest than another stakeholder, a value of 1 is assigned; for equal power or interest, a
value of 0.5 is assigned and, a value of 0 is assigned when the first stakeholder has less power or
interest than the second one. For each stakeholder, a total value of power and a total value of interest
is then assigned adding up their results. These total values will then be used to allocate the stakeholder
in the power – interest matrix. In both matrices, values are read column-wise, therefore the actor in
the column is compared with the actor in each row. The last row provides the total value of power and
interest for each stakeholder.

Comparative matrix for stakeholder’s power
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Power (1) (2) (3) (4) (5) (6) (7)

(1) - 1 0 0 0 1 0
(2) 0 - 0 0 0 1 0
(3) 1 1 - 0 0 1 0
(4) 1 1 1 - 0.5 1 1
(5) 1 1 1 0.5 - 1 0.5
(6) 0 0 0 0 0 - 0
(7) 1 1 1 0 0.5 1 -

Total 4 5 3 0.5 1 6 1.5

Table E.1: Comparative matrix for stakeholder’s power

Comparative matrix for stakeholder’s interest

Interest (1) (2) (3) (4) (5) (6) (7)

(1) - 0.5 0.5 0 0 0 0
(2) 0.5 - 0.5 0.5 0 0 0
(3) 0.5 0.5 - 0 0 0 0
(4) 1 0.5 1 - 0 0 0
(5) 1 1 1 1 - 1 0.5
(6) 1 1 1 1 0 - 0
(7) 1 1 1 1 0.5 1 -

Total 5 4.5 5 3.5 0.5 2 0.5

Table E.2: Comparative matrix for stakeholder’s interest

Combining the results obtained from the previous matrices, it is possible to obtain the power – Interest
matrix shown in Figure E.2.

Figure E.2: Power - Interest matrix
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Optimisation theories for last-mile

delivery networks

In literature, several research studies can be found that elaborate different approaches for transport
network optimisation. The starting point is to define a conceptual model that best represents an
abstraction of reality. Given a set of location to be visited, the most common model formulations in
operation research are the Travelling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP).
For what concerns model implementation, several techniques are currently used, mostly depending on
the size of the model. The following sections provide an overview of the mathematical models used in
transportation research and the computer models that are mostly used to implement them.

F.1. Mathematical models for transport network optimisation
F.1.1 The Travelling salesman problem
The TSP is a non-deterministic problem within combinatorial optimisation, used in operation research
to find the shortest path that connects a set of nodes, for which the order of visit is not important. It
takes its name from the analogy of a salesman who, given a set of destinations, must visit each one
of them starting from a certain node and ending at his starting location. The goal of the problem is to
minimise the total length of the tour. The mathematical formulation of the TSP, shown in Table F.1, is
found in Dantzig (2016). In this formulation, the objective function is to minimise the cost of visiting
each node. The decision variable 𝑥 refers to the binary integer value that returns 1 if the path goes
from node 𝑖 to node 𝑗 and zero otherwise. The combinatorial model involves 𝑛 cities and it only allows
path solutions that visit each node once and only once and that define a tour, i.e. a return to the initial
node (Jenses, 2004). This type of path is called Hamiltonian path, with the specific characteristic that
the start node is the same as the end node.

OF 𝑚𝑖𝑛∑ ∑ 𝑐 ∗ 𝑥

ST 𝑚𝑖𝑛∑ 𝑥 = 1 1 ≤ 𝑗 ≤ 𝑛 (1)

𝑚𝑖𝑛∑ 𝑥 = 1 1 ≤ 𝑖 ≤ 𝑛 (2)

𝑥 ≥ 0 1 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑗 ≤ 𝑛 (3)

Table F.1: Mathematical formulation of the TSP

Adaptations of the TSP
Adaptations of the TSP that include drones in the vehicle fleet are found in Murray and Chu (2015) and
Agatz et al. (2018). The following paragraphs provide a short description of these adaptations.
The Flying Sidekick TSP model adaptation considers a set of nodes that must be served at least once
and only once by either a truck or a drone. In this configuration, drone and truck depart together from
the depot and can either travel in tandem (with the drone transported by the truck) or independently,
carrying out their deliveries simultaneously. This configuration is particularly useful when the average
distance between the depot and the nodes to be served is higher than the drone’s range. Solutions
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are found using heuristic approaches. Referring to the study conducted by Murray and Chu (2015),
Figure F.1 provides a comparison between a truck-only network (left-hand side) and a tandem network
(right-hand side) as described in the Flying Sidekick TSP. The gains in travel time are displayed in
Figure F.2. The reduction is not very significant, with a return to the depot that is anticipated by only
few minutes.

Figure F.1: Conventional truck-only mode compared to FSTSP (Murray and Chu, 2015)

Figure F.2: Travel time gains using FSTSP. Adapted from Murray and Chu (2015)

In the case that the depot is in a convenient position with respect to the nodes to be served (i.e.
within the flight range of the fleet of drones), the TSP can be modified into the PDSTSP (Parallel
Drone Scheduling Travelling Salesman Problem). In the PDSTSP, a single delivery truck and a fleet of
drones depart and return, with the truck serving customers along a TSP route and the drones serving
customers directly from the depot. Being part of two different networks, no synchronisation is needed
between van and truck. As in the previous formulation, solutions are found using heuristic approaches.
Referring to the study conducted by Murray and Chu (2015), Figure F.3 provides a comparison between
a truck-only network (left-hand side) and an asynchronous truck-drone network (right-hand side) as
described in the Parallel Drone Scheduling TSP. In this formulation, the gain in travel time (Figure F.4)
is much more visible compared to the FSTSP previously described. When compared to the FSTSP, the
results of Murray and Chu (2015) show how the PDSTSP performs better compared to the FSTSP in
terms of travel time gains.

Figure F.3: Conventional truck-only mode compared to PDSTSP (Murray and Chu, 2015)
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Figure F.4: Travel time gains using PDSTSP. Adapted from Murray and Chu (2015)

An evolution of the previous modification was proposed by Agatz et al. (2018), who based their for-
mulation of the TSP Drone on the formulation of the Flying Sidekick TSP (FSTSP) of Murray and Chu
(2015). In their paper of 2016, they claim that the FSTSP did not bring optimal solutions due to the
mixed-integer formulation of the problem. Therefore, they proposed an integer formulation of the TSP
for drone network (TSP Drone, or simply TSP-D), solved both with a greedy partitioning heuristic and
with an exact partitioning algorithm.

F.1.2 The Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a combinatorial optimisation and integer programming problem,
which generalises the TSP. The goal of the VRP is to define the optimal tour given a set of nodes and a
fleet of vehicles, such that each node is visited at least once and only once, and the costs of operations
are minimised. Another objective function that is commonly used in delivery network optimisation is
the minimisation of the total number of vehicles needed to serve all customers (Toth and Vigo, 2002).
The mathematical formulation of the VRP, shown in Table F.2, refers to the one provided by Fisher and
Jaikumar (1978).

OF 𝑚𝑖𝑛∑ ∑ 𝑐 ∗ 𝑥

ST ∑ 𝑦 = 1 1 ≤ 𝑖 ≤ 𝑛 (1)

∑ 𝑦 = 𝑚 𝑖 = 0 (2)

∑ 𝑞 ∗ 𝑦 ≤ 𝑄 1 ≤ 𝑘 ≤ 𝑚 (3)

∑ 𝑥 = 𝑦 0 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (4)

∑ 𝑥 = 𝑦 0 ≤ 𝑗 ≤ 𝑛,1 ≤ 𝑘 ≤ 𝑚 (5)

∑ ∑ 𝑥 ≤ |𝑆| − 1 𝑆 ⊆ 1, ..., 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (6)

Table F.2: Mathematical formulation of the VRP

The objective function is to minimise the cost of the tour, by providing the cheapest possible sequence
of nodes to be visited. The decision variable 𝑥 can assume the value of 1 if customer 𝑗 is visited
immediately after customer 𝑖 by vehicle 𝑘, and 0 otherwise. The variable 𝑦 defines whether customer
𝑖 is visited with vehicle 𝑘. The capacity of the vehicles is limited by constraint 3, in which 𝑞 indicates
the demand at each node visited by vehicle 𝑘 and 𝑄 the capacity of vehicle 𝑘. Constraint 6 guarantees
that not sub tours are generated. A visualisation of the VRP is provided in Figure F.5.

Adaptations of the VRP
The VRP can be extended including more constraints to the model formulation. Examples of extensions
that can be found in literature are:

• VRP with pick-up and delivery (VRPPD): goods are first moved from the retail shop to pick-up
points and then to the delivery locations;
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Figure F.5: Division of nodes into different routes for the VRP

• VRP with last in first out (VRPLIFO): the VRPPD is extended with another restriction that the first
item to be delivered must be the last one that was picked up. This is usually used when the
loading and unloading time at the delivery location is limited;

• VRP with multiple trips (VRPMT): vehicles are allowed to do more than one route in their tour;

• Open VRP (OVRP), vehicles do not have to return to the initial node (depot or retail store);

• VRP with time windows (VRPTW): used when deliveries have pre-arranged times for the delivery
visit;

• Dynamic VRPTW (DVRPTW): extension of the VRPTW in which two types of customers are de-
fined, the known customers and the new customers. Known customers refers to the ones that
are already planned in the delivery schedule, while new customers refer to the one that call in
and must be inserted in the existing route (Block, 2016);

• Capacitated VRP (CVRP), used in the case that the vehicles have a limited capacity.

Interesting for this research are the DVRPTW and the CVRP. In the case of mixed drone and van
delivery, the decision of which vehicle to use depends also on the size of the package. Drones have
a limited capacity, and can mostly deliver one package at a time, going back to the pharmacy before
starting another delivery service. Furthermore, the fact that there can be situations in which an urgent
delivery must be carried out, a dynamic model should be considered. In this extension of the VRP, the
new node is added in the existing route and within a short time period a new route is computed (Block,
2016).
One other adaptation that can be found in literature is the VRP with heterogeneous fleet of vehicle
(HVRP), as defined by Baldacci et al. (2008). In this variant, different types of vehicles are available
for the deliveries, characterised by different capacities and different costs. In this sense, assignment
decisions and routing decisions are optimised; the assignment model determines which vehicle of the
available fleet will serve which customer; the routing model determines the sequence in which the
customers assigned to each vehicle are visited. The model output provides an optimised set of routes
with the most efficient vehicle to be used. The model description was first formulated in Li et al. (2007),
and the suggested solution method in Taillard (1999).

F.1.3 Comparison between TSP and VRP and selected model formulation
The choice on which optimisation model to use and, in specific, which adaptation, is made based
on the characteristics of the new transport network of combined vans and drones. Table F.3 shows a
comparison of the model adaptations previously described. For each characteristics of the new network,
it is assessed whether the model can account for it.
In the Vehicle Routing Problem, a set of nodes is given, each having a known service demand (which
on a general case might be pick-up demand or delivery demand) as well as a set of vehicle with fixed
capacity available to satisfy the service demand. The objective is to assign nodes to vehicles and
specify the route order for each vehicle, maintaining the total cost of operation at minimum (Nelson
et al., 1985). In case of unlimited vehicle capacity, given a set of m vehicles, the Vehicle Routing
Problem problem is referred to as the m-Travelling Salesman Problem. The main substantial difference
between the VRP and the TSP is then in the vehicle capacity restriction.
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TSP VRP

Characteristics FSTSP PDSTSP TSPD DVRPTW CVRP HVRP
New network v v v v v v
Restricted fleet v v v v v v
Non-sync fleet x v x x x v
Dynamic nature x x x v x x
Heterogeneity x v v x x v
Different veh costs v v v x x v
Different veh capacity x x x x v v
Vehicle restrictions x x x x x x

Table F.3: Comparison of the optimisation models and their adaptations

Selected model formulation
Given the network requirements for the case study of BENU ’t Slag, the model formulation of the VRP is
chosen, with the adaptation of heterogeneous vehicle fleet and capacity and working time restrictions.

The Vehicle Routing Problem can be described using graph theory, with a partition of the nodes of the
network into nodes set and arcs set, with the aim of finding the optimal sequence of nodes visit such
that each node is visited, demand does not exceed vehicle capacity, cost is minimised and each vehicle
starts and ends its tour at the depot (Pop et al., 2011).
Let 𝐺 = (𝑉 , 𝐴) be a directed graph, where 𝑉 = {0, 1, 2, ..., 𝑛} is the set of 𝑛 + 1 vertices and 𝐴 =
{(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of arcs. To each arc (𝑖, 𝑗) a non-negative cost 𝑐 and a non-negative
travel time 𝑡 is associated. Each customer 𝑖 requires a supply of 𝑞 units from the depot 0, which is
satisfied using a fleet of 𝑚 vehicles type 𝑘 of capacity 𝑄 . A route is defined as a least cost elementary
cycle 𝑅 = (0, 𝑖 , 𝑖 , ..., 0) of graph G, starting and ending at the depot, in such a way that the total
demand of visited customers does not exceed vehicle capacity. The total cost of route 𝑅 is equal to
the cost of the solution of the VRP having the set R of vertices.

F.2. Model implementation for the VRP
To implement the mathematical formulation of the Vehicle Routing Problem, several approaches can be
used. The VRP belongs to the category of NP-complete problems, a class of computational problems for
which no efficient solution algorithm has been found (EnciclopediaBritannica, 2019). For this reason,
exact algorithms can be used to obtain true optimal routes only up to 30 nodes. In case of more than
30 nodes, heuristic algorithms must be used (Nelson et al., 1985).

F.2.1 Exact algorithms for VRP implementation

An example of exact algorithm is the Branch-and-Bound algorithm. Being firstly introduced in 1960 by
Ailsa Land and Alison Doig, the BnB algorithm is used to solve discrete and combinatorial optimisation
problems, using a systematic enumeration of candidate solutions by means of state space search (Land
and Doig, 2010). The iterations are seen as forming a tree, which branches represent subsets of the
solution set. At each iteration, feasible sets are broken up into successively smaller subsets, for which
the upper and lower bounds of the objective function are calculated and used for discard certain subsets
from further consideration, in case they cannot produce a better solution than the best one already
found (Van Essen, 2017).

F.2.2 Heuristic algorithms for VRP implementation

Several types of heuristic algorithms are found in literature. Pop et al. (2011) define two types of
heuristic algorithms to solve the Vehicle Routing Problem: constructive heuristics and improvement
heuristics.
Constructive heuristics. Constructive heuristics gradually build a feasible solution, while minimising
the solution cost.The construction method is based either on the nearest, the farthest or the cheapest
neighbour, depending on the criteria used for the selection method. In all cases, constructive heuristics
can fail to provide the best optimal solution, given the greedy nature of their algorithms.
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Improvement heuristic. Improvement heuristics aim to obtain a feasible solution upgrading the previous
one obtained, by changing the sequence of edges within or between vehicle routes. Improvements
come from a neighbourhood search process, for which each route is associated with a neighbourhood,
and better solutions are sought within that specific neighbourhood. Examples of improvement heuristics
are the 2-opt, 3-opt, etc. In the first case, two connections are deleted in the network, to create other
two sub-tours. The different ways of reconnecting the edges are then analysed, and the optimum one
is chosen. The same process is repeated for an other pair of connections, until all possible combinations
have been analysed. For what concerns 3-opt algorithm, the same procedure is followed, analysing
three connections per time instead of two.

F.2.3 Metaheuristic algorithms for VRP implementation
Metaheuristic algorithms are a category of modern heuristics that are used for generate or select the
best heuristic method to solve an optimisation problem, providing a sufficiently good solution in case
of imperfect information or limited computation capabilities (Balamurugan et al., 2015). Global optimal
solution is not guaranteed, given the fact that this type of solution approach relies on assumptions
about the optimisation problem to be solved (Blum and Roli, 2003). Furthermore, to find a sufficiently
good solution in case of imperfect information, metaheuristics implement a stochastic optimisation,
generating a random set of variables and solving the problem for that specific set; in this way, the
solution is highly dependent on the chosen variables, which contributes to the reasons why global
optimal solution is not guaranteed (Bianchi et al., 2009).
According to Laporte et al. (2000), six types of metaheuristics can be used to solve the VRP: Simulated
Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Algorithm (GA), Ant System
(AS) and Neural Networks (NN). For what concerns SA, DA and TS, starting from the initial solution
𝑥 , each iteration 𝑡 is characterised by a starting solution 𝑥 and provides a new solution 𝑥 , which
belongs to the neighbour 𝑁(𝑥 ) of the starting solution 𝑥 . Cost improvements are not guaranteed, thus
the model developer must check for cycle solutions. Genetic algorithm takes its name from the genetic
evolution of species; it considers at each iteration a population of solutions derived from previous
iterations by combining their best elements and getting rid of the worst. Ant system is a probabilistic
constructive approach that finds the optimal path to be followed through graph theory, inspired by the
behaviour of real ants (Monmarché et al., 2010). In each iteration, several new solutions are created as
a result of information gathered at previous iterations. Lastly, neural networks are a learning mechanism
that base their solution on previous results, gradually adjusting the outcome values or implementation
mechanism until an acceptable solution is reached. Implementation mechanism are searching rules
are specific to the optimisation problem that is considered.



G
Cost model of different alternatives

In this research, the development of a cost model is carried out to define the costs associated with
each network alternative, to help analyse the feasibility of introducing drones in the last-mile logistics
of the pharmaceutical sector.
In this model, costs are divided into investment costs and exploitation costs and are assessed on a
yearly scale. Investment costs relate to the amount of money spent for the expenditure needed to
operate the network. To translate these amounts into yearly costs, a depreciation period of 5 years is
defined. Exploitation costs refer to all the components that contribute to the final expenses based on
the utilisation rate. A third element is added to the total annual costs, referred to as ”other costs”. In
this category are included all the components for which insufficient data are available as well as the
cost components which contribute is extremely low compared to the overall cost.

Investment costs
• Storage area: area of the pharmacy where products ready to be delivered are stored. Its cost
is calculated assuming that a tot% of the total pharmacy area is dedicated to the storage unit
(Numbeo, 2019);

• Handling equipment: machinery needed to assist the drivers during loading procedures. An
example of handling equipment is the two-wheeled trolley found in LiftingEquipment (2019);

• Drone piloting area: small office dedicated to the drone operations, where the drone pilot can
remotely fly the drone. Its cost is calculated assuming that a tot% of the total pharmacy area is
dedicated to the storage unit (Numbeo, 2019);

• Parking location: place where vans are parked when not in service and loaded before staring
the delivery visits. The cost is defined by assuming that each van occupies a total of 7.2 𝑚
(Mercedes-Benz, 2018), and needs the same amount for loading (Numbeo, 2019);

• Cost of purchasing a van: list price of the van currently used (Mercedes-Benz, 2018);

• Cost of purchasing a drone: list price of X8 Long Range Cargo Drone (UAV, 2019);

• License to operate: for certain categories of drones, a flying license is required from the remote
pilot. In this case, given the size and the permitted payload, the person responsible for drone
operations must hold a plying license (UAVCoach, 2019);

• ATM purchase: cost of purchase and installation of a built-in/ through the wall ATM machine
(CostOwl, 2019).

Exploitation costs
• Fees for outdoor sale: when an ATM machine is installed, companies have to pay a monthly fee
to be able to sell their product outdoor, directly to customers (CostOwl, 2019);

• Van driver: hourly salary of a delivery driver, retrieved from Glassdoor (2019);

• Drone pilot: hourly salary of a drone pilot, estimated after the interview with Vliet and Zaman
(2019);
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• Operation management: cost of a route and fleet planner. For this cost element, the average
yearly salary of a transportation planner is considered (Payscale, 2019);

• Insurance cost of vans: cost of insuring one van Mercedes Citan 108 cti (Mercedes-Benz, 2018);

• Insurance cost of drones: cost of insuring a drone. According to UAVCoach (2019), drones can be
either insured on an annual base or on-demand. For a 1 million in liability, prices range between
440 – 700 euro/year for a commercial insurance or 4.40 – 8.80 euro/hour for an on-demand
drone insurance. Given the expected utilisation of a drone (1 hour per day, see Table G.1), it is
believed that a commercial yearly insurance is less expensive;

• Tax on van purchase: each vehicle registered in the Netherlands is subjected to a taxation fee.
According to Belastingdienst (2019), for a vehicle with diesel engine this tax fee is equal to 37.7%
of the net list price plus 273 euro;

• Tax on drone purchase: given the lack of data on drone tax fees, it is assumed that the same
percentage of net list price that is applied for van’s taxation is also applied on drones. Therefore,
drone tax fee is considered to be equal to the 37.7% of the total purchase cost of the drone;

• Operational costs for vans: cost of fuel consumption. It is assumed an average value of 1.33
euro/litre for the diesel price (GlobalPetrolPrices, 2019) and a consumption rate of 5 litre/100km
(Mercedes-Benz, 2018);

• Operational costs for drones: cost of energy consumption. It is assumed an average value of
0.1024 euro/kW for the electricity price (MainEnergie, 2019) and a consumption rate of 0.26 kW/h
(UAV, 2019);

• Financial costs: costs pertaining the interests on the loan. For a financial loan of an amount
bigger than 50,000 euros, with a payment depreciation of less than 7 years, the current interests
are set to 7.75% (FitSmallBusiness, 2019).

To calculate the total value for the operational costs of drones and vans, some assumptions are made
regarding the vehicle utilisation. For the first situation, when only vans are used for delivery and no
ATM machine is provided, it is assumed a total of 6,300 km per van per year, and a corresponding total
of 630 hours per van per year. After the introduction of the ATM machine, the new value for the yearly
kilometre travelled is found using the monthly price paid by the pharmacy to the delivery company.
Before the introduction of the ATM, the pharmacy paid a fixed amount of 10,218 euro per month to
the company that provides the home deliveries; after the introduction of the ATM, this amount was
reduced to 9,705 euro per month. Therefore, it can be assumed that a 5% reduction on the distance
travelled occurred as a consequence of the ATM installation. A new value of 5,985 km per van per year
is assumed, with a corresponding value of 598 hours per van per year. For what concerns the drone
utilisation, the assumed values are retrieved from the drone space and time limitations (UAV, 2019);
consequently, a yearly amount of 1,008 km and 252 hours of flight time is considered. These values
are visually summarised in the table below.

Table G.1: Vehicle utilisation for the 3 analysed situations
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G.1. Cost models for different alternatives

Figure G.1: Cost model before the introduction ATM, fleet of vans

Figure G.2: Cost model after the introduction of ATM, fleet of vans

Figure G.3: Cost model after the introduction of ATM, fleet of vans and drones



106 G. Cost model of different alternatives

G.2. Cost model for scenario with only electric vehicles

Figure G.4: Cost model for test scenario with only EVs

Table G.2: Comparison of fixed and variable costs for test scenario with only EVs
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G.3. Cost model for scenario with only drones

Table G.3: Vehicle utilisation for the test scenario with only drones

Figure G.5: Cost model for the test scenario with only drones

Table G.4: Fixed and variable costs for test scenario with only drones





H
Solution approach with VRP Excel

spreadsheet solver

Current situation

Figure H.1: VRP spreadsheet Solver Control for 14 node implementation

Figure H.2: VRP spreadsheet locations for 14 node implementation

Figure H.3: VRP spreadsheet vehicle characteristics for 14 node implementation
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Future scenario

Figure H.4: VRP spreadsheet Solver Control for 14 node implementation with drones

Figure H.5: VRP spreadsheet vehicle characteristics for 14 node implementation with vans and drones
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Model verification

Figure H.6: VRP spreadsheet Solver Control for code verification test

Figure H.7: VRP spreadsheet location for code verification test

Figure H.8: VRP spreadsheet vehicle characteristics for code verification test
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Figure H.9: VRP spreadsheet node location for calculation verification test



I
Solutions of model verification,
validation and implementation

This chapter contains the solutions of the model verification, model validation and model implementa-
tion. Output values of the Excel Solver are copied directly from the spreadsheet, thus have the same
visualisation interface. Cells characterised with a black background are fixed and will not change vary-
ing the initial inputs. Cells with a light blue background show the routing sequence of customers. To
satisfy constraint 2 of the model formulation (see Table 6.1), each sequence must end with a visit back
to the depot (BENU ’t Slag). Cells with a yellow background refer to the output of the model, and
provide the values that are used for the KPIs evaluation. In case a non-feasible solution is found, the
visual feature of the model provides an orange frame for the routing sequence in the map and a red
background for the cells in the solution table.

I.1. Model verification
The following sections provide the results of the model verification. Verification tests consist in code
verification and calculation verification. For the first one, computational results on benchmark instances
provide the code developer test, to check whether the code of the model returns acceptable results,
whereas a sample implementation of a Vehicle Routing Problem for 10 cities in the United Kingdom
provides the model developer test, to check whether the implementation made by the modeller is
correct. For the calculation verification, numerical results obtained with the Excel Spreadsheet solver
are compared with analytical results obtained with the Farthest Insertion Heuristic algorithm.

I.1.1 Code verification

Code developer test
Figure I.1 shows the results on benchmark instances that can be found in Erdoğan (2017). Results for
seven implementations of the CVRP and seven implementation of the DCVRP using the Excel Spread-
sheet Solver are compared with best known solution values.

Figure I.1: Computational results on benchmark instances (Erdoğan, 2017)
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Model developer test
The results for the code verification of the test implemented with the 10 locations in the United Kingdom
are here displayed with the model output interface of the Excel Spreadsheet Solver. Solutions obtained
are compared with the ones provided in Erdoğan (2017), to check whether implementing the same
optimisation problem with the same input values provides similar, if not equal, results.

Figure I.2: Output of code verification for model development

I.1.2 Calculation verification
Customer locations that are used for the calculation verification are randomly chosen between the 14
ones served by the pharmacy. The chosen locations are postcodes number 3085, 3078, 3077, 3083
and 3072 with a demand of 8, 7, 8, 9 and 6 products respectively.
From Google Maps real distances, it is possible to compute the distance matrix between each node
in the network, shown in Table I.1, for which values are expressed in kilometre. Using the equation
𝑐𝑜𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 the cost matrix is computed using the distance matrix and the
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distance cost values (Table I.2). These inputs are used in both calculation techniques in the verification
test: numerical results are obtained with the VRP Excel Spreadsheet Solver, whereas analytical results
are obtained with the Farthest Insertion Heuristic algorithm.

D 1 2 3 4 5
D 0.00 2.35 3.45 10.15 1.96 2.99
1 3.44 0.00 5.23 11.40 3.25 4.53
2 5.30 5.16 0.00 3.71 5.63 5.12
3 7.92 6.81 3.16 0.00 11.11 7.54
4 1.77 3.08 5.22 12.07 0.00 2.86
5 2.98 5.54 5.05 11.75 2.98 0.00

Table I.1: Distances between nodes for calculation verification test

Table I.2: Cost between nodes for calculation verification test

VRP Excel Solver
The solution of nodes sequence and the associated cost are displayed in Figure I.3, showing the Excel
interface output of the numerical calculation verification. The outputs of the VRP Excel Spreadsheet
solver provide a total cost of operation equal to euro, with the node sequence to be visited
being D - 2 - 3 - 1 - 4 - 5 - D (visualised in Figure I.4. The total time spent on the network is equal to

, and the total distance covered is km.

Figure I.3: Output of calculation verification using the Excel Spreadsheet Solver

Figure I.4: Routing solution for calculation verification using the VRP Excel Solver

Farthest Insertion Heuristic algorithm
The first step to implement the FIH algorithm is define the cost matrix. The cost matrix is based on
the distance matrix, according to the equation for the total cost of operation 𝑐𝑜𝑠𝑡 = 𝑑𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 +
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . Distance matrix and cost matrix are found in Table I.1 and Table I.2
respectively. Using the cost matrix as input, it is possible to proceed with the algorithm iteration.
Table I.3 shows the steps for the iterations. Each cell contains the distance (in kilometre) between
the selected node of the iteration and each node in the network. The distance in the matrix is chosen
according to the minimum distance present in the column, in other words 𝑑 = 𝑚𝑖𝑛(𝑑 , ; 𝑑 , ).
The node corresponding to the highest distance is selected for the next iteration.
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Table I.3: Farthest Insertion Heuristic algorithm iterations

For iterations 3 to 6, the insertion of the node is based on the cost minimisation criterion. Being 𝑖 and
𝑗 the initial nodes, the selected node 𝑘 is inserted such that 𝑑 +𝑑 −𝑑 is minimal. Figure I.6 shows
a visual representation of the cost minimisation criterion, where the bottom vertices of the triangles
indicate the existing nodes and the top vertex indicates the node to be inserted.
The output of the Farthest Insertion Heuristic algorithm provides a total cost of operation equal to

euro, with the node sequence to be visited being: D - 2 - 3 - 1 - 4 - 5 - D.
The routing solution is visualised in Figure I.5.

Figure I.5: Routing solution for calculation verification using FIH algorithm

(a) Minimisation criterion iteration 3 (b) Minimisation criterion iteration 4

(c) Minimisation criterion iteration 5 (d) Minimisation criterion iteration 6

Figure I.6: Minimisation criterion for Farthest Insertion Heuristic algorithm

I.2. Model validation
I.2.1 Extreme condition test
The solution of node sequence, fleet allocation and associated costs for the extreme condition validation
test are displayed in Figure I.7 and Figure I.7. In case a feasibility issue is reported, a warning sign
with orange background is displayed, and the not feasible values are marked with a red background
cell. This is the case for the extreme condition test with parameters approaching to infinity, for which
the capacity of the given fleet is not enough to transport the mandatory delivery.

Parameters set to zero
As expected, total cost of operation is equal to zero, and the vehicle fleet is reduced to only 2 vans,
with most of the deliveries carried out by the first van.
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Figure I.7: Output of model validation - extreme condition test with parameters set to zero
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Parameters approaching infinity
Not feasible values are found due to capacity restriction, with a very high cost of operations.

Figure I.8: Output of model validation - extreme condition test with parameters approaching infinity

I.3. Model implementation
The following sections provide the results of the model implementation. Results are divided per cus-
tomers density, firstly with 14 delivery points, then 28, 56 to eventually finish with 112. For each
demand distribution, output values for the current situation are followed by the output values for the
future configuration.
The total cost of operations is found in the upper left corner of the table. For each vehicles, the number
of stops and the total cost is provided, together with the distance travelled, the driving time and the
total service time.

I.3.1 14 customers

Current situation

Figure I.9: Output of model implementation for current situation, 14 customers

Future configuration

Figure I.10: Output of model implementation for future configuration, 14 customers

I.3.2 28 customers

Current situation

Figure I.11: Output of model implementation for current situation, 28 customers

Future configuration

Figure I.12: Output of model implementation for future configuration, 28 customers
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I.3.3 56 customers

Current situation

Figure I.13: Output of model implementation for current situation, 56 customers

Future configuration

Figure I.14: Output of model implementation for future configuration, 56 customers

I.3.4 112 customers

Current situation

Figure I.15: Output of model implementation for current situation, 112 customers

Future configuration



120 I. Solutions of model verification, validation and implementation

Figure I.16: Output of model implementation for future configuration, 112 customers
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I.4. Sensitivity analysis
Sensitivity analysis aims to find the influence of input parameters on Key Performance Indicators. In
the following paragraphs the results of the analysis are explained, linking changes in vehicle speed,
vehicle capacity, distance limit and working time limit to the delivery cost per item, the average service
time, the fuel consumption and the vehicle utilisation.

I.4.1 Influence of vehicle speed
The first set of runs consists in varying the average vehicle speed. Table I.4 shows the output values
obtained after 6 implementations with 6 different values of average speed. Figure I.17 shows the trend
of each KPIs related to vehicle speed variations.

Veh. speed Cost per item Service time Fuel cons. Utilisation
10 km/h
20 km/h
35 km/h
45 km/h
55 km/h
70 km/h

Table I.4: Influence of vehicle speed on KPIs

Figure I.17: Influence of vehicle speed on KPIs

I.4.2 Influence of vehicle capacity
This second set of runs consists in varying the average vehicle capacity. Table I.5 shows the output
values obtained after 6 implementations with six different values of vehicle capacity. Figure I.18 shows
the trend of each KPIs related to vehicle capacity variations.

Veh. capacity Cost per item Service time Fuel cons. Utilisation
35 units
40 units
50 units
70 units
90 units
105 units

Table I.5: Influence of vehicle capacity on KPIs
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Figure I.18: Influence of vehicle capacity on KPIs

I.4.3 Influence of distance limit
The third set of runs consists in varying the distance limitation. Table I.6 shows the output values
obtained after 6 implementations with six different values of distance limit. Figure I.19 shows the
trend of each KPIs related to vehicle capacity variations.

Max distance Cost per item Service time Fuel cons. Utilisation
19 km
20 km
25 km
50 km
100 km
200 km

Table I.6: Influence of distance limit on KPIs

Figure I.19: Influence of distance limit on KPIs
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I.4.4 Influence of working time limit
The last set of runs consists in varying the working time limitation. Table I.7 shows the output values
obtained after 9 implementations with nine different values of time limit. Figure I.20 shows the trend
of each KPIs related to vehicle capacity variations.

Working time Cost per item Service time Fuel cons. Utilisation
90 minutes
120 minutes
150 minutes
180 minutes
210 minutes
260 minutes
340 minutes
400 minutes
480 minutes

Table I.7: Influence of working time limit on KPIs

Figure I.20: Influence of working time limit on KPIs
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Introduction of drones in the last-mile logistic process of
medical product delivery:
A feasibility assessment for the case study of Benu ’t Slag

Irene Zubin1, Bart van Arem2, Bart Wiegmans2, Ron van Duin3

Abstract
The term last-mile delivery refers to the final leg of a business-to-customer service, in which a product is shipped from
a depot to a final destination point by means of land transportation, such as vans and small trucks. Although they
provide a common and easy way to consign products, companies are striving for new transport technologies to reduce
congestion problems, infrastructure limitations and air pollution. Recently, a valid alternative to road-bounded vehicles
that is has gained attention is the adoption of drones in the delivery fleet. Drone applications range from military training,
surveillance, path recognition and shipment of perishable products in emergency situations. Research on drones as
delivery vehicles is still on its early stages, with some practical trials carried out by leader companies such as Google
and Amazon. However, the application of drones in the pharmaceutical sector, and specifically for home deliveries of
medical products, has not been investigated yet. To gain new insights into the feasibility of introducing drones in the
delivery fleet composition, drone applications were studied for the delivery operations of the pharmacy BENU t Slag, in
Rotterdam. Two scenario alternatives were tested using the Vehicle Routing Problem (VRP) formulation and a Large-
scale Neighbourhood Search (LNS) algorithm was implemented to estimate the performance indicators associated with
each scenario. Performances were then analysed through a comparative analysis. Conclusively, indicators were found
to improve the delivery performance when drones are included in the fleet composition, with gains in environmental
aspects, service time and delivery costs. Results provide important information for further research on the implications
of using drones in the pharmaceutical sector. Moreover, results are also useful for BENU t Slag, providing a valid
feasibility assessment of using drones for their home delivery operations.

Keywords
Drones, Large-scale Neighbourhood Search algorithm, last-mile delivery, medical products, network optimisation,
pharmaceutical sector, Vehicle Routing Problem.

Introduction

The term last-mile delivery refers to the final leg of a
business-to-customer service, in which a product is shipped
from a depot to a final destination point (Gaevers, et
al. 2014). Last-mile logistics are generally operated by
road transportation means, such as vans and small trucks.
The growing demand of home deliveries is increasing the
number of vans on the road, leading to traffic congestion
and air pollution (ITV 2018). Together with congestion
and environmental impact cutbacks, cost reduction is a big
challenge faced by the last-mile sector. Studies have shown
that the last-mile leg is the most expensive part of the delivery
process, accounting up to 75% of the total cost of the logistic
chain (Gaevers, et al. 2011).

To provide a faster and more cost-efficient home delivery
service, companies are now striving for new technologies.
With specific attention to urban areas and densely populated
neighbourhoods, the aim of recent studies was to find
feasible alternatives to vans, so that less or smaller vehicles
are introduced in the daily traffic, to reduce congestion, speed
up the delivery process and potentially save on operational
costs. According to Gruber, et al. (2014) a valid alternative
is represented by electric cargo bikes, which, in urban areas
and for small distances, can deliver packages to the end
user in a fast and reliable way, avoiding traffic congestion

and increasing accessibility. Another option introduced by
Agatz, et al. (2018) is the adoption of drones in the delivery
fleet, to provide consignments from a depot to customer’s
home, reducing congestion and pollution and overcoming the
problem of infrastructure limitation.

Although several studies have been conducted regarding
drones utilisation, especially in aerial photography, surveil-
lance and path recognition, their application in the phar-
maceutical sector, and specifically for home deliveries of
medical products, has not been investigated yet.

The research question that is intended to answer with this
study is:

How can the pharmaceutical sector benefit from the
introduction of drones for the last-mile logistic process, in

combination with the current means of transport?

To gain new insights into the feasibility of introducing drones
in the delivery fleet composition, this research utilises the
Vehicle Routing Problem (VRP) optimisation technique to
analyse and compare two different network alternatives.

1Delft University of Technology, The Netherlands
2Faculty of Civil Engineering and Geosciences, Delft University of
Technology, The Netherlands
3Faculty of Technology, Policy and Management, Delft University of
Technology, The Netherlands
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The first alternative refers to the current situation, in which
medical products are delivered using three vans with three
corresponding drivers, each of them loading the products at
the pharmacy and visiting a pre-defined set of customers. The
second alternative envisions the future scenario, in which
drones are introduced in the heterogeneous fleet composition
cooperating together with vans. Drones are piloted remotely
from the pharmacy and work in a non-synchronised way with
vans, meaning that each vehicle has its own set of customers
and its own delivery route. A Large-scale Neighbourhood
Search (LNS) algorithm was used to implement the VRP and
examine the performance indicators associated with the two
design alternatives. Conclusively, several indicators were
found to be improved after the introduction of drones in the
fleet composition, especially in terms of service time and
CO2 emission.

Literature review
The last-mile delivery sector. Last-mile delivery refers to
the final process of a business-to-customer (B2C) service,
and addresses the logistic operations from a depot to the end
user. According to Gavaers, et al. (2009), important logistic
decisions must be taken upon consignments, being the
identification of the starting point and delivery destinations,
the means through which customers can collect the products
and the delivery agreements on time of shipment and return
policies. Starting points of deliveries might be warehouses,
depots or retail shops. Commonly, delivery destinations are
pick up points, clustering points and customer’s home.

The main causes that hamper the effectiveness and
efficiency of the last-mile delivery sector are high costs of
operations, traffic congestion and environmental damage.
Studies have shown that the last-mile leg is the most
expensive part of the delivery process, counting up to 75%
of the total cost of the logistic process (Gaevers, et al. 2011).
Moreover, the most used vehicles for last-mile delivery
are vans and small trucks, which cause not only traffic
congestion, especially in densely urbanised areas, but also air
pollution. In light of these challenges, companies are striving
for new technologies, in order to provide a faster, more cost
efficient and greener delivery service (Agatz, et al. 2018).

In the context of urban areas, electric cargo bikes proved to
be an efficient alternative to trucks, addressing the problem
of congestion and limited-access areas (Gruber, et al. 2014).
Cargo bikes can use a much denser road network, being
able to run in both directions even on one-way roads.
For what concerns accessibility, delivering packages with
electric bikes will help the shipment of products in limited-
or no-access zones, such as pedestrian zones. Moreover, the
fact that less parking space is required, it becomes easier
to deliver in areas with narrow streets, without causing
congestion or excessive roadblock (Reiter, et al. 2014). A
very recent alternative that has been proposed to solve
congestion, pollution and infrastructure limitation, is the use
of Unmanned Aerial Vehicles (UAVs), or mostly referred as
drones (Agatz, et al. 2018). Drones are fast and can operate
without a human driver, saving thus time on congested road
and having a low cost per kilometre. On the other hand, given
the small size of a drone and the payload limitation, there
is an upper limit to the size of the package to be delivered.

Moreover, the battery-powered system, causes the drone to
have a limited range. Nonetheless, the Aerospace Industries
Association (AIA) forecasts that within 20 years, a large
amount of cargo drones will be introduced in the market.
Investments in research and development will rise from a
few hundred millions USD to 4 billion USD by 2028 and
30 billion USD by 2036 (Warwick 2018).

Drone applications. Drone applications started in the
nineteenth century, when the Austrian army used an
unmanned aerial vehicle as a balloon carrier to launch
200 incendiary balloons at the city of Venice (Buckley
1998). Later on, during World War 1, UAVs were used
for training personnel (Shaw 2013). The Vietnam war in
1955 (Kenneth 1997), the Lebanon war in 1982 (Azoulai
2011) and the Gulf war in 1991, adopted drones for
surveillance purposes and as armament carriers. Nowadays,
drones are mainly used for photography, surveillance, path
recognition, racing and advertisement purposes (Chavers
2018). Studies have also been conducted on the applicability
of drones in emergency situation. Being not bounded to
physical transport infrastructure, having a relatively high
speed and the capability of flight in a straight line between
two points, drones have been proved to be useful when
it comes to save lives. Truhlář, et al. (2015) proposed the
use of drones to monitor beach environments, to increase
the survival rate of drowning victims. Their research was
followed by a study from Claesson, et al. (2017) on how
to use drones to provide cardiopulmonary resuscitation
and automated external defibrillator in those drowning
emergency situations. Other potential applications of drones
for medical purposes concern the transport of vaccines in
low- and middle-income countries (Haidari, et al. 2016).
Modelling the vaccine supply chain for the Gaza province, in
Mozambique, they found that implementing a drone system
could increase vaccine availability and decrease costs, once
the high capital investments are overcome.

The state of research on drone delivery is still on its
early stages. Practical trials have already been carried
out by leader companies in the delivery sector, such as
Amazon, Alibaba and Google (Agatz, et al. 2018). In 2014,
the American company AMP Electric Vehicles together
with the University of Cincinnati Department of Aerospace
Engineering, developed a combined mode of truck and
drone for last-mile delivery (Wohlsen 2014). The concept
is that while the delivery truck visits a set of locations to
make delivery, a drone simultaneously visits another set of
locations, returning to the truck after each delivery, to pick
up another package. In this way, the benefits of trucks (long
range, high payload capacity) are combined with the benefits
of drones (high speed and high accessibility), to provide an
efficient and cost-effective delivery service.

Transport network assessment. Last-mile delivery is a
transport network problem in which products are shipped
from a depot to a set of customers, using a fleet of vehicles.
The logistics of these deliveries should be such that the
cheapest option is selected, providing thus an optimal tour
that starts and ends at the depot and visits all the scheduled
customers. Given a set of locations, the most common
model formulations in operation research are the Travelling
Salesman Problem (TSP) and the Vehicle Routing Problem
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(VRP). The TSP formulated by Dantzig (2016), aims to find
the shortest path that connects a set of nodes, for which the
order of visit is not important. The VRP, firstly formulated
by Fisher, et al. (1978), can be seen as a generalisation
of the TSP. The goal is to define the optimal tour given
a set of nodes and a vehicle fleet composition, such that
each node is visited at least once and only once and total
costs of operations are minimised. The main substantial
differences between the TSP and the VRP are in the vehicle
fleet composition and the vehicle capacity restriction, with
the latter being able to account for a heterogeneous fleet
composition, with each vehicle having a different capacity
(Nelson, et al. 1985).

Adaptations of the TSP that include drones in the vehicle
fleet are found in Murray, et al. (2015). The Flying Sidekick
TSP (FSTSP) model adaptation considers a set of nodes that
must be served at least once and only once by either a truck or
a drone. In this configuration, drone and truck depart together
from the depot and can either travel in tandem (with the
drone transported by the truck) or independently, carrying
out their deliveries simultaneously. This configuration is
particularly useful when the average distance between the
depot and the nodes to be served is higher than the drones
range. In the case that the depot is in a convenient position
with respect to the nodes to be served (i.e. within the flight
range of the fleet of drones), the TSP can be modified
into the Parallel Drone Scheduling Travelling Salesman
Problem (PDSTSP). In this adaptation, a single delivery
truck and a fleet of drones depart and return, with the truck
serving customers along a TSP route and the drones serving
customers directly from the depot. Being part of two different
networks, no synchronisation is needed between van and
truck. According to the results of Murray, et al. (2015), the
gain in travel time is much more consistent in the PDSTSP
compared to the FSTSP.

In summary, previous studies show that drones have
caught the attention of researchers. Investments in research
and development of drone use and capabilities will increase
in the near future, paving the way for the introduction of
drones in last-mile deliveries.

Methodology and data description

The objective of this study was to determine how can
the pharmaceutical sector benefit from the introduction of
drones for the last-mile logistic process, in combination with
the current means of transport. To do so, a comparative
analysis was carried out between two different scenarios, one
referring to the current situation and one to the future plan for
home delivery logistics.

1. Scenario 1: deliveries are operated with three delivery
vans and three corresponding drivers, that pick up the
products from the pharmacy storage area, carry out
their scheduled consignments and conclude their tour
back to the pharmacy.

2. Scenario 2: a heterogeneous vehicle fleet in operated,
composed by vans and drones which carry out home
deliveries in a parallel way, each vehicle visiting it own
set of customers, starting and ending at the pharmacy.

The choice to adopt a parallel utilisation of vans and drones
in a non-synchronised way was supported by the study of
Murray, et al. (2015), which proved the PDSTSP to be more
efficient than the FSTSP. Moreover, the area covered by
the delivery service was not such as to justify synchronised
operations.

Data on the current situation were obtained from
the pharmacy involved in the case study. Vehicle fleet
composition, delivery service characteristics and demand
distribution inputs correspond to the information regarding
the current home delivery operations of BENU ’t Slag, part of
BENU Apotheek franchising, located in Rotterdam. For what
concerns drone specifications, values were retrieved from
UAV System International (2019), and referred to the x8 long
range cargo drone, depicted in Figure 1b. Drone maximum
capacity was assumed based on the prototype showed in
Figure 1a. The box was developed by a team of students
from the faculty of Mathematics and Applied Science of the
University of Leiden and presented during the Drones in the
City Event organised by The Future Mobility Network that
took place in Katwijk on the 31st of January.

(a) Box prototype (b) Drone prototype

Figure 1. Drone delivery features

Input parameters are divided into vehicle characteristics,
fleet characteristics, labour restriction, delivery agreements
and product demand. More specifically, parameters that are
inserted in the model are as follows (sensitive data omitted):

Vehicle characteristics

• Average van speed = 35 km/h
• Average drone speed = 70 km/h
• Fixed and distance costs of van = –
• Fixed and distance costs of drone = –
• Distance limitation for vans = 560 km
• Distance limitation for drones = 3.2 km
• Flight time limitation for drones = 1 hour
• Van capacity = 50 products
• Drone capacity = 7 products

Fleet characteristics

• Number of vehicle types current situation = 1
• Number of vans current situation = 3
• Number of vehicle types future scenario = 2
• Number of vans future scenario = 2
• Number of drones future scenario = 1

Labour restriction

• Working time limit for van drivers = 6 hours

Delivery service characteristics

• Number of depots = 1
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• Number of customers = –
• Service time for products drop off = –
• Distance between customers = –

Demand

• Product demand for each customer = [–]

Alternatives were tested using the Vehicle Routing Problem
formulation. For what concerns the cost function (Equa-
tion 1), fixed and variable components were calculated devel-
oping two cost models, one for each scenario alternative.

cijk = fixed costk + distanceij ∗ distance costk (1)

Drones have strict limitations on distance range and time
of flight, which depend on the energy consumption rate
and the charging potentials (e.g. how many kilometres can
be flown with one charge). For this reason, the classical
formulation of the VRP as introduced by Fisher, et al. (1978)
was adapted to include the range and time constraints for the
drone fleet, but also to account for the heterogeneity of the
fleet in the objective function, adding the subscript k to the
cost component cijk, so that costs can be differentiated per
vehicle type. The VRP problem was formulated as follows:

OF min
∑n
i=1

∑n
j=1

∑m
k=1 cijk ∗ xijk

ST 1.
∑m
k=1 yik = 1, 1 ≤ i ≤ n

2.
∑m
k=1 yik = m, i = 0

3.
∑n
i=1 qi ∗ yik ≤ Qk, 1 ≤ k ≤ m

4.
∑n
j=0 xijk = yik, 0 ≤ i ≤ n

1 ≤ k ≤ m

5.
∑n
i=0 xijk = yjk, 0 ≤ j ≤ n

1 ≤ k ≤ m

6.
∑
iεS

∑
jεS xijk ≤ |S| − 1, S ⊆ 1, ..., n

1 ≤ k ≤ m

7.
∑n
i=0

∑n
j=0 tijk ≤ Tk, 1 ≤ k ≤ m

8.
∑n
i=0

∑n
j=0 xijk ∗ dij ≤ Rk, 1 ≤ k ≤ m

The objective is to minimise the cost of the tour, by
providing the cheapest possible sequence of nodes to be
visited. The decision variable xijk assumes the value of 1
if customer j is visited immediately after customer i by
vehicle k, and 0 otherwise. The variable yik defines whether
customer i is visited with vehicle k. Constraint 1 sets that
each customer i must be visited at least once, and only once
by just one vehicle k. Vehicle are bounded to return to the
depot by constraint 2, 4 and 5. The capacity of the vehicles is
limited by constraint 3, in which qi indicates the demand at
each node visited by vehicle k and Qk the capacity of vehicle
k. Constraint 6 guarantees that not sub tours are generated.
Constraint 7 refers to the flight time constraint, indicating
that the total time from i to j using vehicle k must not
exceed the maximum utilisation Tk. Constraint 8 concerns
the distance limitation, imposing that the distance covered
by a vehicle must not exceed the maximum range Rk.

The outputs that will come out of the model are the fleet
allocation, the customer sequence and the vehicle allocation.

Fleet allocation and customer sequence

• Binary n ∗ n ∗ k matrix with customer visit sequence
and vehicle allocation

Vehicle allocation

• Distance travelled per vehicle dk [km]
• Driving time per vehicle tk [hour]
• Working time per vehicle wtk [hour]
• Number of stops per vehicle nstops [-]
• Initial loading per vehicle Qused,k [products]
• Cost of operations per vehicle ck [euro]

After having implemented the model, output parameters
were used as inputs to calculate the Key Performance
Indicators for the current situation and the future scenario.
Alternatives are assessed based on the delivery cost per
item (DC), the service time (ST), the fuel consumption
(FC), the CO2 emissions, the energy consumption (EC), the
cost of power supply (PS) and the payload capacity (PC).
Based on the type of van used, CO2 emission rate for the
van fleet was assumed to be 115 g/km, whereas the fuel
consumption was averaged to 5 litres/100km (Mercedes-
Benz 2018). For the fuel price, the average amount for the
year 2018 was considered, equal to 1.33 euro/litre (Global
Petrol Prices 2019). Based on the drone characteristics,
energy consumption was fixed to 0.26kW/h (UAV System
International 2019) and the energy price was set to 0.1024
euro/kW (Main Energie 2019). Key Performance Indicators
were then found using the following equations:

DC =
∑
k

ck/ndel [euro/item] (2)

ST =
∑
k

tk [hours] (3)

FC =
∑
k

dk ∗ 5/100 with k ∈ van fleet [litres] (4)

CO2 =
∑
k

dk ∗ 115 with k ∈ van fleet [g] (5)

EC =
∑
k

tk ∗ 0.26 with k ∈ drone fleet [kW ] (6)

PS = 1.33 ∗ FC + 0.1024 ∗ EC [euro] (7)

PC = (
∑
k

Qused,k/Qavailable,k)/nvehicles [%] (8)

Solution approach
Many solution approaches are available for solving the
Vehicle Routing Problem. For this case study it was decided
to use an open source spreadsheet solver specific for
Vehicle Routing Problems, developed by Erdoğan (2017).
Alternatives were tested using a Large-scale Neighbourhood
(LNS) algorithm, a type of constructive heuristic algorithm
that tries to find a near optimal solution by means of
iterations, finding in each step an improved solution in
the neighbourhood of the current one, for which costs are
minimised (Ahuja, et al. 2002). Given an instance I of a
combinatorial optimisation problem and a finite large set X
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of feasible solutions, a function c : X → R is defined, that
maps from a solution to its cost. Being this a minimisation
problem, the aim of the algorithm is to find a solution
x∗ such that c(x∗) ≤ c(x)∀x ∈ X . A neighbourhood of a
solution x ⊆ X is defined as N(x) ⊆ X , with N being a
function that maps a solution to a set of solutions. With this
definition of neighbourhood, a solution x is locally optimal
with respect of a neighbourhood N if c(x) ≤ c(x′)∀x′ ∈
N(x). A neighbourhood search algorithm starts from an
initial solution x as input and gradually improves this
solution computing x′ = argminx′′∈N(x) {c(x′′)}, which
finds the cheapest solution x′ in the neighbourhood of x. If
an improved solution x′ is found, for which c(x′) < c(x),
the algorithm performs the update x = x′. The algorithm
then continues searching for an improved solution in the
neighbourhood of the new solution x and it stops when a
local optimum x is reached.

Initial information such as the number of customers,
the geographical location and the available fleet were
stored in the Solver Console. Details on each customer
(locations, time window, service time and demand) were
then inserted in the Location sheet. Based on the address
of each customer, the model computed automatically the
geographical coordinates. These coordinates were then used
in the Distances sheet, where the distances between each
customer (included the depot) were computed according the
GIS map of the considered area. Data on the available fleet,
such as cost parameters, capacity, time and range limits,
were inserted in the Vehicle worksheet. Costs associated
with each vehicle were retrieved from the cost model and
divided into fixed costs and operational costs. Based on all
the input inserted, the model provided the optimal number of
vehicles to be used, the sequence of visits, the cost associated
with each vehicle, the distance and the time travelled by
each vehicle and the total cost of operation. Furthermore,
locations and routes could be visually inspected in the
visualisation worksheet, where the tour for each vehicle was
placed upon the map from the GIS web service.

Two important manipulation were operated. For what
concerns the variable costs, the Excel Spreadsheet Solver
did not account for time related costs, but only distance
related costs. To overcome this drawback and still include the
human labour cost (expressed in euro/hour) and the energy
cost (expressed in euro/hour as well), these two costs were
converted into distance costs (expressed in euro/km) using
the average vehicle speed. Calculating how many hours are
needed to travel 1 kilometre, and multiplying this value
by the hourly cost, it was indeed possible to obtain the
time related components expressed in euro/km. The second
manipulation concerned the distance computation method
and the average vehicle speed used in the implementations.
Vans and drones are inherently different, especially in terms
of average speed and path followed for going from origin
A to destination B. The assumptions made on vehicle speed
assigned an average speed of 35 km/h for the van fleet and 70
km/h for the drone fleet. The distance computation method
for vans was the Bing Map real distance, which calculates the
real distance between two points, following the real existing
infrastructure and the road regulations that are applied. For
the drone, the Birdflight distance computation was used,
that calculates the shortest straight line that a plane would

cover between two points. Unfortunately, the Spreadsheet
Solver allowed for only one distance computation per
implementation, and just one vehicle speed could be inserted.
Running the model first with the Bing Maps computation
and vehicle speed of 35 km/h and then with the Bird
flight computation and vehicle speed of 70 km/h, results for
distance and time travelled were on average respectively 37%
and 65% higher in the first run. Therefore, the inability of the
solver to use two different distance computations in the same
implementation might have brought biased results, assigning
less customers to the drone route. For this reason, for the
future scenario assessment, two implementations were run,
one with distance and speed characteristics of vans and one
with distance and speed characteristics of drones. Results
were then assembled together so that the route is still feasible
and capacity and node constraints are still respected.

To quantify the credibility of the model, verification
and validation tests were performed. In the procedure of
developing the model, the role of verification and validation
is to define the comparison between experimental outcome
and simulation outcome, providing thus an estimation of the
model accuracy (Thacker, et al. 2004). For this reason, a code
verification and a calculation verification were performed, to
ensure that the computer model accurately implemented the
mathematical formulation. Moreover, an extreme condition
validation test was also executed, to compare the simulation
outcome and the experimental outcome on a quantitative
level and define the extent to which the model accurately
represents the real world.

Code verification is a two-step procedure that is carried
out both by the code developer and the model developer.
To test the solution algorithm, a known problem was run
with the VRP Excel Solver and the solutions obtained were
compared with the best know solutions. The benchmark
data set used in his research was the one provided in
Christofides (1981), containing data about Capacitated VRP
and Distance Constrained VRP. The best known solution
values are then compared to the solutions obtained with
the VRP Excel spreadsheet solver. For what concerns the
model developer part, an example of a real world situation
was run with pickups and deliveries with 1 depot and 10
customer locations spread in the United Kingdom, made
available by Erdoğan (2017). The calculation verification
test was performed considering a sub-problem of the initial
one, with just 5 customers and one van. Numerical results
obtained with the VRP Excel Spreadsheet Solver were
compared to analytical results using the Farthest Insertion
Heuristic algorithm, to find the numerical error induced by
the computer model. Lastly, the extreme condition test was
carried out by setting all the input parameters to their extreme
values. Two situations were run: one with parameters set to
zero and one with parameters approaching infinity.

Verification results showed that the code is properly
written, with a 0.6% average gap on best known VRP
solutions and a 0.15% gap on model development. Model
calculation also performed well, with a very small gap
of 0.016% between numerical and analytical calculations.
Moreover, the model proved to be valid, with the extreme
condition test giving expected results both in a qualitative
and quantitative way.
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Discussion of results
Results were reported in terms of routing solutions, in
which the routing sequence for each vehicle was visualised
on top of the map of Rotterdam. Tables containing the
routing sequence, total number of stops, distance travelled,
service time, vehicle loading and cost of operations for
each vehicle resulted from the model implementation. With
these model outputs, a KPI comparison was conducted and
results were provided using bar charts. Performance values
were expressed in terms of day of operation, with the
exception of delivery cost per item, which is specific for
each item delivered. In this way, the comparative analysis
could be carried out under an economic perspective, but also
under environmental, time savings and payload utilisation
perspectives.

For the fleet composition of the future scenario, the
optimal number of vehicles was found after the first model
run. Given a fleet composed by several vans and several
drones, the model assigned operations to one drone and two
vans. Cost models were then updated with the new fleet
composition, and a new implementation was run, with input
parameters complying with the optimal vehicle fleet.

Figure 2. Routing solution current situation

Figure 3. Routing solution future scenario

Figure 2 shows the routing solution for the current
situation, in which three vans carry out the daily
consignments. In comparison, Figure 3 shows the routing
solution for the future scenario, in which one van is

eliminated from the fleet composition, to insert one drone.
With the elimination of one van and the introduction of
one drone, the total available capacity is reduced from
150 products to 107. Consequently, vehicle utilisation is
higher in the future scenario: each van visits more customers
compared to the previous situation, due to the fact that the
drone can only visit a limited amount of customers, mostly
due to capacity restrictions. Figure 4 shows a comparison
of performance indicators between the two alternative
situations. Sensitive data have been omitted, providing just
the percentages of variations.

Figure 4. Comparison of Key Performance Indicators

Optimise these two situations provided some interesting
results in terms of performance indicators. To evaluate the
cost savings brought by the introduction of drones in the
vehicle fleet for home delivery of medical products, compare
the cost model of the current situation and the future scenario
is not sufficient. It is indeed important to consider the
different business models and the implications that follow
the adoption of drones in the last-mile delivery process. For
this reason, two different analysis were made: one compared
the costs associated with one day of operation in the current
situation with the costs of the same operation in the future
scenario. A second analysis considered the business model
of adopting the future scenario alternative, characterised by
the purchase of one drone and the sale of one van and
all the implications that followed, evaluating the monetary
benefit in terms of total annual cost. It was estimated that
with the adoption of the envisioned future scenario, the
pharmacy could potentially save 12.5% of the total annual
costs expenses, based on a 5 year depreciation period.
Based on their demand distribution, the cost per item is
reduced by 5.60% per package delivered. Routes were found
to be faster, decreasing the total service time by 12.05%,
suggesting that more customers could potentially be served
and the geographical area expanded. The introduction of
flying vehicles and the consequent reduction of road vehicles
brought indisputable improvements under an environment
perspective: CO2 emissions were reduced by 9.00% for a
daily operation, and less vehicles were driving in the urban
area, decreasing the amount of traffic congestion.

Sensitivity analysis
To evaluate the extent to which changes in model inputs
affect the model outputs, thus the performance indicators, a
sensitivity analysis was carried out. Several implementations
were run, and in each run only one parameter was changed.
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Changes in vehicle speed. In the model formulation,
time related costs were embedded in distance cost, by
transforming the time in the network into distance travelled
using the average speed. Therefore, changing the vehicle
speed entailed a change in operational cost, given the fact
that less or more kilometre can be travelled. Figure 5 shows
the trend in cost per item, capacity ratio, service time and
fuel consumption related to vehicle speed variations. The
performance indicator that was mostly affected by vehicle
speed variations was the cost per item, which considerably
decreased by increasing vehicle speed. Service times and
fuel consumption were slightly affected by vehicle speed
variations, showing a small increase in the first one and
decrease in the second one. Vehicle capacity ratio remained
unaffected by variations of vehicle speed.

Figure 5. Influence of vehicle speed

Changes in vehicle capacity. Figure 6 shows the trend
in cost per item, capacity ratio, service time and fuel
consumption related to vehicle capacity variations. All KPIs
were somehow affected by these changes: the cost per item
decreased after a first increase in vehicle capacity, to remain
constant higher values. As expected, capacity ratio values
fluctuates depending on the number of vehicle used for
deliveries: increase the capacity brought a decrease in vehicle
utilisation, to increase again once it is enough to eliminate
one vehicle from the fleet.

Figure 6. Influence of vehicle capacity

Changes in distance limitation. Variations in distance limits
did not cause significant changes performance indicator
values. With very restrictive values (from the minimum
allowable value of 19 km to 25 km), a small decrease
in cost per item, fuel consumption and service time was
noticed, to settle to a constant value for bigger distances.
Vehicle capacity ratio remained constant for all the distance
limitations considered.

Figure 7. Influence of distance limitation

Changes in time limitation. Variations in working time
limits did not cause any change in cost per item, service
time fuel consumption and vehicle capacity ratio. The reason
behind these results is that the time limit constraint for
the van fleet was not as restrictive as other constraints, for
example the capacity constraint. Therefore, provided that
a minimum distance range is guaranteed, increasing this
parameter did not bring any changes in the performance
indicators.

Figure 8. Influence of time limitation

To conclude the sensitivity analysis, other potential future
situations were assessed and compared with the future
scenario envisioned in this research. One situation referred
to a fleet entirely composed by electric vehicles (EVs), i.e.
electric vans and drones. One other situation concerned a
fleet composed by only drones. In this way, the influence of
the power supply mode and the vehicle fleet composition on
Key Performance Indicators was assessed. Lastly, based on
some ideas shared with the owner of the pharmacy BENU ’t
Slag on future logistic development, a scenario with multiple
depots was briefly analysed, to assess the influence of depot
location.

Test scenario with only EVs. In this test scenario, only
EVs were considered for the delivery fleet, composed by
2 e-vans and 1 drone. A new cost model was developed,
considering the cost related to the e-van fleet, which results
showed an increase of 13.9% in annual costs. Figure 9
shows a comparison of Key Performance Indicators for the
envisioned future scenario with 2 vans and 1 drone and the
testing scenario with 2 e-vans and 1 drone in the vehicle
fleet. Vehicle capacity of e-vans was assumed to remain the
same as non electric ones, hence the vehicle capacity ratio
did not change between the two compared scenarios. For the
energy consumption it was assumed that the consumption
of e-vans is equal to 0.11 kW/h (Energy Guide 2019). The
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total energy consumed for a day of operation was almost
30 times higher than the scenario with non EVs. With a
fleet entirely composed by EVs, CO2 emissions and fuel
consumption were reduced to a null value, since no gasoline
was needed to operate vehicles. Therefore, the total cost of
power supply referred only to the energy cost, and it was
dropped by 98.72% per day of operation. Cost per item
changed substantially, with an increase of 53.6%. Lastly,
service time changes marginally, being only 2.35% higher
in the test scenario with EVs only.

Figure 9. Test scenario EVs

Test scenario with only drones. The aim of this test was
to define how many vehicles would be needed in case of
a fleet composed entirely by drones. For this purpose, the
model was implemented with an unlimited amount of drones
available. Demand was kept equal to the initial values and
fixed and variable costs referred to the one found in the
cost model for the future scenario. After having found the
total number of drones needed, a new cost model was
developed, in order to properly evaluate the KPIs for this
testing scenario. After performing a first LNS iteration, the
model found a non-feasible solution due to range limitation:
with a maximum range of 4 km, some customers could not
be reached and had to be excluded from the home delivery
service. To avoid this loss, the drone range was increased
up to 32 km at the expenses of payload capacity (UAV
System International 2019). With a range of 32 km and a
drone capacity of 3 products, a new implementation was
run. Time constraint remained unchanged. Results of this
implementation showed that the minimum number of drones
needed to complete a daily operation was 35. With these
information, a new cost model was developed, which results
showed that annual costs increase of 243.8%.

Figure 10. Test scenario drones

Referring to the comparison with the original future
scenario of Figure 10, indicators showed an overall
improvement. Vehicle capacity improved by 10 percentage
points. Environmentally speaking, the test scenario brought

considerable benefits, dropping to 0 the CO2 emissions and
the fuel consumption. Cost of power supply dropped by
98.42%, due to the fact that the energy cost is lower that the
fuel cost and the consumption rate is less in electric vehicles.
Service time also improved, with a reduction of 27.4%. As
expected, the energy consumption largely increased, due to
the introduction of a big number of electric vehicles. The
delivery cost per item also experienced a steep increase,
which was related to the higher annual cost associated with
this test scenario.

Test scenario with 5 depots. According to the owner of
the pharmacy, additional depot locations are likely to be
included in the near future. For this reason, it was decided
to provide a brief analysis of the influence of depot location.
Two alternatives were assessed, both having a vehicle fleet
composed by only drones (with the optimal amount of 35
drones). The difference was that in the first test scenario,
vehicles started and ended their trip just at the pharmacy
BENU ’t Slag, while in the second test scenario starting
and ending locations were increased up to 5 depot locations
(including the pharmacy). The cost model was considered
to be the same as the one for the test scenario with drones
only, hence with an increase in annual costs of 243.8%.
Vehicle characteristics were also kept unchanged from that
test scenario. Analysing the KPI comparison of Figure 11,
it can be seen that some indicators did not change when the
number of depots was incremented. Vehicle capacity ratio
remained the same, due to the fact that the same demand
and the same vehicle capacity was considered for the two
scenarios. Same line of reasoning for the CO2 emission
and fuel consumption: characterised by a fully electric
drones fleet, both alternatives had zero emissions and zero
fuel consumption. When multiple depots were introduced,
vehicles could carry out their deliveries in a faster way,
travelling a shorter distance. Therefore, a decrease in service
time and cost of operations was noticed: adding four more
depots reduced the service time by 11.8% and the cost of
power supply by 33.3%.

Figure 11. Test scenario multiple depots

Conclusion
Throughout the research, several problems of the current
last-mile transportation means have been addressed. The
main challenges that were defined consisted in cost reduction
and congestion and pollution diminution. Two design
alternatives were elaborated and tested to understand the
extent to which the pharmaceutical sector can benefit from
the adoption of a heterogeneous fleet composed by vans and
drones.
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Cost benefits. To evaluate the cost savings brought by the
introduction of drones in the vehicle fleet for home delivery
of medical products, comparing the cost model of the current
situation and the future configuration was not sufficient.
For this reason, two different analysis were made. A first
analysis considered the business model of adopting the future
scenario alternative, characterised by the purchase of one
drone and the sale of one van and all the implications that
follow, evaluating the monetary benefit in terms of total
annual cost. Results showed that with the adoption of the
future fleet configuration, the pharmacy could save 12.5%
of the total annual expenses. The second analysis compared
the costs associated with one day of operation in the current
situation with the costs of the same operation in the future
configuration. Performance indicators showed that with the
introduction of drones in the vehicle fleet, delivery cost per
item is reduced by 5.60%.

Environmental benefits. Environmental benefits were com-
pared evaluating the CO2 emission, the fuel consumption
and the energy consumption in each network configuration.
With the removal of one van from the vehicle fleet and
the introduction of one electric vehicle, the total distance
travelled by road vehicles decreases, leading to a consequent
decrease in CO2 emission and fuel consumption, but an
increase in energy consumption. As expected, CO2 emis-
sions decreased on average by 9% per day of operation and
fuel consumption was reduced by 8.6% a day.

Service time. Service time is defined as the time that
each vehicle spends to complete its tour, summed over all
vehicles. It indicates the total time spent in the system,
to conclude the daily deliveries. Drones are faster than
vans, and most importantly are not bounded by the physical
infrastructure. As expected, the adoption of the future
scenario alternative reduced the total service time by 12&.

Payload utilisation. Payload utilisation was calculated as the
ratio between the used capacity and the available capacity.
Total demand was kept unchanged between the two network
alternatives. For what concerns the total vehicle capacity, van
capacity was assumed to be 50 units whereas drone capacity
only 7 units, meaning that scenario 1 had a maximum
available capacity of 150 products while scenario 2 only
107 products. As expected then, payload utilisation increased
drastically in the future scenario, with an improved capacity
ratio of 25.75 percentage points.

Further recommendations
Once results showed that the introduction of drones would
bring substantial improvements in the logistic operations
of last-mile delivery for the pharmacy BENU ’t Slag,
several scenarios alternatives were hypothesised, to check
the extent to which different network configurations
would provide different performance indicators. A fully-
drone configuration, a combination of EVs and drones
configuration and a multiple depot configuration were
suggested. First results showed that a homogeneous fleet
of only drones brought a considerable increase in cost per
item. Environmental benefits were undoubtedly interesting,
with a drop of CO2 emission and fuel consumption down
to zero. Same environmental results were obtained with a

fully electric heterogeneous fleet composition, with 2 e-vans
and 1 drone. Moreover, with 2 e-vans and 1 drone, cost per
item was considerably reduced, as well as the cost of power
supply. Lastly, the test scenario with multiple depot showed
that, in comparison with the situation where only one depot is
arranged, service time could be reduced by 12% and cost of
power supply by 33%. Therefore, the main recommendation
for further research is the implementation of the scenario
with a fully electric heterogeneous fleet, composed by e-
vans and drones, with multiple depot locations. The choice of
avoiding a fleet composed only by drones and keeping road
based vehicles with drivers carrying out deliveries is also
justified by the delivery agreements of BENU ’t Slag. Twice
a week, drivers consign several packages that are meant to
fit in the mail box, without the customer having to collect
them in person. If BENU wants to maintain this service, it is
believed that a homogeneous fleet of drones is not feasible.

For what concerns the implementation method, further
research can be extended including solution approaches that
account for multiple distance computations and average
vehicle speed in the same implementation setup. Examples
are the Simulated Annealing or the Genetic Algorithm
implemented using Matlab or Python. Compare the results
obtained with the one of this research might provide a better
insight on the feasibility assessment of drones for last-mile
logistics. Moreover, it is recommended to undertake some
practical test as soon as regulations will allow drones to fly.

Under a technical perspective, it might be interesting to
further investigate on some technical characteristics of the
vehicle fleet. As an example, fuel consumption was assumed
to be static, fixed at 5 litres/100km. In reality, this value
changes dynamically based on vehicle speed and traffic
congestion (i.e. if the vehicle needs to stop and re start the
engine several times). Another characteristic that might be
worth investigating, is the effect of weather condition on
drone flight performances, e.g. how wind or rain might affect
the possibility of drones to reach customers locations.
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