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Chapter 5
Probabilistic Load-Flow Using Analysis
Using DPL Scripting Language

Francisco Gonzalez-Longatt, S. Alhejaj, A. Marano-Marcolini
and José Luis Rueda Torres

Abstract Load-flow analysis is an effective tool that is commonly used to capture
the power system operational performance and its state at a certain point in time.
Power grid operators use load-flow extensively on a daily basis to plan for
day-ahead and dispatch scheduling among many other purposes. Also, it used to
plan any grid expansion, alter or modernization. However, due to the deterministic
nature and its applicability for only one set of operational data at a certain period,
deterministic load-flow reduces the chances for predicting the uncertainty in power
system. Researchers usually create a data model using probabilistic analyses
techniques to produce a stochastic model that mimics the realistic system data.
Combining this model with Monte Carlo methodology leads to form a probabilistic
load-flow tool that is more powerful and potent to carry on many uncertainty tasks
and other aspects of power system assessment. This chapter presents the
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DIgSILENT PowerFactory script language (DPL) implementation of a DPL script
to perform probabilistic power flow (PLF) using Monte Carlo simulations
(MCS) to consider the variability of the stochastic variables in the power system
during the assessment of the steady-state performance. The developed PLF script
takes input data from an external Microsoft Excel file, and then, the DPL can carry
on a probabilistic load-flow and export the results using a Microsoft Excel file. The
suitability of the implemented DPL is illustrated using the classical IEEE 14 buses.

Keywords DPL script � Simulation � Stochastic model � Probabilistic load-flow
Distribution function � Distribution density function � Monte Carlo

5.1 Introduction

The modern power systems are characterized by the introduction of more and more
uncontrollable types of generation resources such as renewable generation (wind
power, solar power, etc.); it increases the uncertainties which lead the more com-
plex operation and control of the power system.

The increased level of uncertainties in the generation and demand side of the
power system requires more efficient tools to be able to capture the variability in the
system performance. A deterministic approach such as load-flow analysis is limited
to a snapshot of steady-state power system operational data. Therefore, the deter-
ministic load-flow (DLF) has an intrinsic limitation because it cannot have repre-
sented in a proper way the randomness in the power system.

Usually, a probabilistic approach is used when the deterministic approach is not
able to capture the intrinsic variability. The probabilistic approach is one of the
main three ways to capture and represent the intrinsic uncertainties in the power
system beside fuzzy arithmetic technique and interval mathematics. The advantage
and disadvantage of each of these approaches are discussed in [1].

The probabilistic approach of load-flow can be grouped into three approaches:
Monte Carlo Simulation (MCS), analytical methods and approximation approaches.
Monte Carlo simulation methodology is used widely and almost in all fields of
engineering and science to simulate a repetitive process with different input data to
produce different output results. In this chapter, a DIgSILENT PowerFactory script
language (DPL) implementation of a DPL script to perform probabilistic power
flow (PLF) using MCS is presented. This DPL is designed to consider the vari-
ability of the stochastic variables in the power system during the assessment of the
steady-state performance. The PLF implemented in this chapter offers several
advantages: (i) allow importing and exporting using structured database in the form
of Microsoft Excel file (.xlsx), (ii) internal matrixes (IntMatrix) are used for
communication between subscripts; it offers a fast communication and modular
programming, allowing the re-use of the code into other applications.

The chapter starts with an introduction to probabilistic load-flow and its fun-
damentals, and then, an explanation about the Monte Carlo simulation and the main
features of the DIgSILENT Simulation Language are presented. Then, the DPL
implementation of the PLF is, and an illustrative example is presented.
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5.2 Probabilistic Load-Flow: Fundamentals

The analysis of the steady-state conditions of a power system is one of the most
commonly used tools in planning and operation of power systems. The classical
load-flow is used to define the steady-state power balance in a power system: the
total generation should be equal to the total power demand plus the power losses. It
represents the so-called DLF; this tool is used to analyse and assess the planning
and to operate the power system on a daily routine.

The DLF uses the known values of electrical power generation and power load
demand of a selected network configuration to calculate the system states and
power flows [2]. The formulation of the load-flow problem assumes that the data
provided is absolutely precise and provides results totally compatible with the given
data apart from round-off errors.

The integration of renewable generation units creates several planning and
operation challenges. From the load-flow point of view, the random fluctuating
character of wind speed causes the wind power plant (WPP) power production to be
neither continuous nor slightly controllable.

The DPF analysis has the limitation of ignoring the grid uncertainties: outages,
network changes, load variation. As a consequence, the deterministic approach is
not sufficient for the analysis of modern power systems, the integration of renew-
able generation and other sources of randomness. The results of using DPF to
attempt the calculation in power system considering uncertainties may lead to very
different, even contradictory, or erroneous results, creating massive economic and
technical consequences.

As expressed before, in the deterministic load-flow, the output of the model is
fully determined by the parameter values and the initial conditions. An alternative
approach is the use of stochastic models to represent the load-flow conditions
considering uncertainties; this approach considers the inherent randomness; as a
consequence, the same set of parameter values and initial conditions will lead to an
ensemble of different outputs.

The typical probabilistic load-flow (PLF) analysis considers the power genera-
tion and grid configurations both to be discrete random variables, while load
demand is a continuous random variable [3, 4]. Borkowska and Allan [5] proposed
the stochastic load-flow (SLF) in 1974; it provides a full reflection of the influences
of many factors’ random variations in the power system. The PLF based on those
methods directly treats the uncertainty of electric load, generation (especially wind
power) and grid parameters. The term SLF is an alternatively used term for PLF and
is generally favourable for system operational study that deals with short-term
uncertainties [6].

The PLF methods can be included in three sets: (i) analytical approach,
(ii) numerical approach and (iii) approximate methods.

Apart from the above grouping, hybrid methods uniting more than one of the
above methods have attracted additional interest as they can overcome some of the
limitations of the individual constituting methods.
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The analytical approach analyses a system and its inputs using mathematical
expressions, i.e. using convolution techniques, with probabilistic density functions
(PDF) of stochastic variables of power inputs so that PDFs of stochastic variables of
system states and line flows can be obtained. Details of this approach can be found
on [5–8]. Analytical methods include techniques such as convolution method, cu-
mulant method (CM).

The numerical approach and sampling methods include techniques such as
MCS, Latin hypercube sampling, uniform design sampling.

5.3 Monte Carlo Simulation Applied to the Load-Flow
Problem

In general, the DLF problem consists in finding the zero of a set of nonlinear
equations starting defining the power system power balance from an adequate initial
guess.

The most general form of the load-flow equations is a set of differential-alge-
braic equations (DAE) in steady state [9]. Then, the formulation of the power flow
equations is reduced to the algebraic:

g xð Þ ¼ 0
gP xð Þ gQ xð Þ� �T¼ 0

ð5:1Þ

where g is the set of algebraic equations that define the power balance at network
buses and x the state vector. For classical formulation of AC DPF, the inputs or
known quantities are the injected active powers (Pi) at all busbars (where P and
Q or P and V are known) except the slack bus; the injected reactive powers (Qi) at
all load busbars (where P and Q are known); and the voltage magnitude at all
generator busbars (where P and V are outputs or known).

Pi ¼ gPi d1; d2; . . .; dn; V1;V2; . . .;Vnð Þ
Qi ¼ gQi d1; d2; . . .; dn; V1;V2; . . .;Vnð Þ ð5:2Þ

where i = 1, 2, …, n. n represents the number of power buses, nonlinear voltage
(V) and phase (d) relationships. A complete explanation for the classical AC power
flow can be found on [10–12].

PLF attempts to obtain PDFs of state vector and line flows of a statistically
varying electrical network [13]. Pi and Qi, are considered by their distributions,
usual with binomial repartition with pi and qi the probability of up, respectively
down state for each unit generation Pg,i and the PDF load PL,i is continuous and
normal with m (mean) and r (standard deviation) [14–16]. MCS is a method for
iteratively evaluating a deterministic model using sets of random numbers as inputs
[17]. Stochastic power flow (SPF) is solved using MSC, which involves repeating
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the DLF simulation process using in each simulation a particular set of values of the
random variables (loads, conventional and wind generation productions at each
node of the considered power system).

MSC is used to solve PLF; it involves repeating the DPF calculation process using
in each simulation a particular set of values of the random variables, called simulation
scenario. Depending upon the number of uncertainties and the ranges specified for
them, aMSC could involve a large number of scenarios and recalculations before it is
complete. Figure 5.1 shows details of the process of solving Probabilistic power flow
(PPF) using MTC.

This chapter adopts a Monte Carlo (MC) method for the SPF analysis. This
technique is used in [18] to solve the SPF problem including wind farms by
repeated simulations. The two main features of MCS are as follows: (a) it provides
considerably accurate results, but the computation time is consuming for large
systems with several uncertain parameters, (b) it can be easily combined with
pre-existent DPF programs to create and easy and fast implementation of SPF. In
this paper, the approach selected is an SPF based on MSC.

5.4 DIgSILENT Programming Language (DPL)

Before starting to delve into the program and coding,1 it is worth explaining how
DIgSILENT Programming Language (DPL) works in the context of the modern
programming world. DPL is a scripting language that enables the users to do many

Start

Stochastic Model for Randomness

i<N?

Deterministic System Model
Run Deterministic Load Flow

Record power flow calculation 
results for the ith Scenario

Perfom statistical analysis on power 
flow results and the ouput 

distribution

Stop

Deterministic 
Data

i = i +1Si
No

Preliminary 
Calculations

Post-
simulation 

Calculations

Generation of  N Scenarios

Deterministic 
Calculation

Fig. 5.1 Flowchart of MCS
applied to solve PPF

1In order to use DPL, users are required to have some programing experience and writing code in
some of the modern used programing languages such as C++, Java and/or Python with some good
understanding of the main concepts of object-oriented programing (OOP).
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automated tasks available in DIgSILENT PowerFactory [19]. Therefore, the users
will have full control over the power grid parameters, power system calculations
and pre/post processing the information coming from power system studies.
Additionally, the DPL is built with the object-orientated concept in mind so that
everything that the user can deal with can be considered as a set of classes that have
some parameters and functionalities too. The main and principal class is the DPL
command class2 [1].

The probabilistic power flow implemented in this chapter is implemented using
the previously mentioned MSC approach. The DPL implementation assumes the
simulation scenarios consist of a number of samples generated per each random
variable represented in the problem. For simplicity, the implementation assumed the
scenarios are provided to the DPL using a database with a well-defined data
structure, taking the opportunity of the DPL capability of managing Microsoft
Office files, the script imports the scenarios from a Microsoft Excel file and then the
results are exported using the same type of files.

5.5 DPL Implementation: Probabilistic Load-Flow

The implementation of the PLF using MSC consists of one main script which is
able to call four subscripts. DPL main script is named “ProbabilisticLF” and
contains the main logic behind the probabilistic load-flow; it involves: (i) importing
the simulation scenarios to be used in the MCS, (ii) calculating the deterministic
load-flow per each scenario and (iii) export the results of the deterministic
load-flow.

The input of the DPL implementation consists of a database containing
(Nsamples) simulation scenarios including the variables related to the system
stochasticity. The implementation of this chapter considers the variability on the
active (P) and reactive power (Q) on loads, generators, wind power plants, PV
plants and PHEV.

The implementation of the PLF is created using a modular approach where main
activities are directed from the main script, and the subroutines perform very
specific actions. A matrix approach is used for communication and data interchange
between the subroutines and main script. Matrices (IntMat) are considered as an
external object of the main script (StochData.xlsx), but also the subroutines are
considered internal objects; this approach allows the main script and subroutines
use the same matrices to exchange data and information.

The main DPL, “ProbabilisticLF”, includes four subscripts (see Fig. 5.2):

– “Read_MSExcel” is designed to open the MS Excel file and read the data
contained in the file considering the specific data structure (for more details see

2This component is well explained and documented in the DPL manual of the DIgSILENT
PowerFactory software.
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the file named “StochData.xlsx”). When this subscript is executed, twelve
matrices (IntMat) are loaded with the scenarios data: active power
(DATA_P_ESS, DATA_PG, DATA_PL, DATA_P_PHEV, DATA_P_PV,
DATA_P_WPP) and reactive power (DATA_Q_ESS, DATA_QG,
DATA_QL, DATA_Q_PHEV, DATA_Q_PV, DATA_Q_WPP).

– “Read_Matrix”: this subroutine is used to read the input matrix (matrixA) and
copies it into the output matrix (matrixB).

– “Adjust_Loads”: the subroutine is designed to adjust the values of active (plini)
and reactive power (qlini) at the load elements (ElmLod). The script made use of
a general selection (Set) to access the specific load where the variability is
considered.

– “Adjust_Gens”: this subroutine is designed to adjust the values of the active
(pgini) and reactive power (qgini) of all the power sources and storage devices
in the power network. The subroutine uses a general selection where all the
power sources and energy storage equipment are stored: synchronous machines,
wind turbines, electric vehicles, PV systems and energy storage. The power
network uses ElmSym to model the classical synchronous generators and
ElmGenstat, static generator element for modelling the power converter-based
technologies.

– “Write_Excel”: this subroutine is designed to write the data results of the
probabilistic load-flow into a Microsoft Excel file with a very specific data
structure.

– The next subsection of this chapter is dedicated to explaining in basic and
generic terms the programming aspects of each of the scripts above.

5.6 Main Script: ProbablisticLF

The script named “ProbabilisticLF” represents the main program of the PLF
implementation, and it is programmed in a very modular way where the subscripts
can be systematically called and using matrix (IntMatrix) to interchange data and
allow the flow of information inside the program.

For simplicity, the main variables involved in the probabilistic load-flow are
defined as input parameters of the “ProbablisticLF” DPL command. Figure 5.2

Fig. 5.2 Logical structure of
the PobabilisticLF.ComDpl
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shows the main input parameters of the probabilistic simulation including the
filename and path of the input and output data, a number of elements to be con-
sidered as statistically defined (elements where the active and reactive power will
change during the Monte Carlo simulation). Also, the authors have included few
configurations related to the load-flow analysis function (ComLdf). A flag (iopt_net)
is used to allow the probabilistic load-flow analysis considered the power flow:
(0) balanced, (1) unbalanced or (2) using the DC load-flow method.

The main script ProbabiliticLF.ComDPL uses external objects as a way to
create an artificial communication between the main script and subscripts (see
Fig. 5.3). Figure 5.4 shows the name, object and description of the twelve matrix
objects (IntMat) used by the probabilistic load-flow implementation main script and
its subscripts.

A key aspect of the modular programming approach used in this implementation is
the fact that all the objects are inside the main script: (i) subscripts in the form of DPL
commands and (ii) matrices (IntMat). Because all the objects and subscripts are
located inside, the same folder allows a horizontal communication with the matrixes
allowing a simple data interchange. All the objects inside the main command DPL,
“ProbabilisticLF”, can be observed suing the button Contents of the main command
DPL dialogue box. Figure 5.5 shows the contents of the ProbabilisticLF command
DPL, where the subscripts and matrix objects are shown.

Fig. 5.3 ProbabilisticLF.ComDpl: lists of the input parameters

Fig. 5.4 Interaction between ProbabilisticLF.ComDpl and the external object and its interaction
with network objects
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In the sequel to this section, a discussion of all tasks is carried through this main
script that is illustrated with the relative segment of code.

The DPL script language uses a syntax quite similar to the C++ programming
language. This type of language is intuitive, easy to read and easy to learn. The
starting point of the main script is the variable definition section; it allows to declare
the local variables and initialize them (if needed); see Fig. 5.6.

The next segment of code is used to quantify the type of network elements and
the number of them in the active project (see the snippet shown in Fig. 5.7). The
script capture for a particular network element, all the object and store them in
memory. For example, AllRelevent() method is called to get all the load elements ′*.
ElmLod′ in the grid and save them in a set of a variable called ′S_load′. The next
programming line, “n_load = S_load.Count();” determine the number of objects in
the set. Similarly, similar lines of code are written to get the set of all instants of all
other network elements and their number count in the active network.

The system information is shown on the output window using the snippet shown
in Fig. 5.8.

The main script starts calling the first subscript READ_EXCEL in order to import
the data from the Microsoft Excel file and save them to into the RAM memory
using matrixes. DPL is an object-oriented program, and it requires a precise defi-
nition of the variables. The imported data is stored inside ten matrices; five are used
for active power and five for reactive power; the size of each matrix is internally
initialized using the object method Init (see Fig. 5.9); it initializes the matrix with
given size and values, regardless of the previous size and data.

The database is imported from the Microsoft Excel file; the file name and path
are store in the string named INPUT_FILENAME_EXCEL, and it is declared as
input parameter of the main script. Then, the filename of the input date is assigned
to the FILENAME parameter and transferred to the READ_EXCEL subscript. Also,
the number of samples Nsample is also passed to that subscript (see Fig. 5.10). At
that point, the subscript READ_EXCEL is executed to import all the data records in
the excel worksheets to the internal matrices: DATA_P_ESS, DATA_PG,
DATA_PL, DATA_P_PHEV, DATA_P_PV, DATA_P_WPP) and reactive

Fig. 5.5 ProabilisticLF.ComDpl: list of the external objects
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Fig. 5.6 List the objects contained in the main command DPL: ProbabilisticLF.ComDpl

! Variable Definitions
! Variable Definitions
int     error, iter, ii, n_bus, n_line, n_load;
int     n_sym, n_genstat, n_vscmono, n_wind, n_PV, n_ESS, n_PHEV;
double  M, LO, u1;
double  Time_o, Time_f, Dpl_time;   
object  PF, O1, O2, O3, O4, O5, O6, O7, O8, O9, O10;   
set     Bus, SB, S_bus, S_line, S_load, S_Sym, S_Genstat, S_VSCmono;
set     sWind, sPV, sESS, sPHEV;

! Probabilistic Load Flow (PLF) using Monte Carlo Simulations
! Created by: Dr Francisco Gonzalez-Longatt, April 2015

Fig. 5.7 Snippet ProbabilisticLF.ComDpl: variable definitions
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power (DATA_Q_ESS, DATA_QG, DATA_QL, DATA_Q_PHEV,
DATA_Q_PV, DATA_Q_WPP). The internal structure and operation of the
subscript READ_EXCEL are explained in next subsections.

The main script communicates between subscripts using matrices; as a conse-
quence, the reader must recognize that the imported data from Microsoft Excel is

n_ESS =  sESS.Count();   ! Returns the first objects Storage.ElmGenstat. 
! PHEV –Electric Vehicle: : ElemGenstat
sPHEV = AllRelevant('PHEV.ElmGenstat');! Returns a set (PHEV.ElmGenstat) objects 
O10=sPHEV.Firstmatch('PHEV.ElmGenstat');! Returns the first object in this set
n_PHEV =  sPHEV.Count(); 

! --------- Get Network Elements--------
! Loads: ElmLod
S_load = AllRelevant('*.ElmLod');!Returns a set of all available loads in the grid
O1 = S_load.First(); ! Returns the first object in the set
n_load =  S_load.Count();      ! Returns the number of loads in the grid
! Buses: ElmTerm
S_bus = AllRelevant('*.ElmTerm');! Returns a set of (ElmTerm) objects (buses)
O2 = S_bus.First();              ! Returns the first object of set.      
n_bus = S_bus.Count();           ! Returns the number of buses
! Lines: ElmLne
S_line = AllRelevant('*.ElmLne');! Returns a set of all (ElmLne) objects (lines)
O3 = S_line.Firstmatch('ElmLne');! Returns the first object in the set
n_line = S_line.Count();         ! Returns the number of lines
! Synchronous Generators: ElmSym
S_Sym = AllRelevant('*.ElmSym'); ! Returns a set of (ElmSym) objects (Synch Mach.)
O4 = S_Sym.Firstmatch('ElmSym'); ! Returns the first objectin the set
n_sym = S_Sym.Count();           ! Returns the number of Synch. Mach. objects 
! Wind Power plants: ElemGenstat
sWind = AllRelevant('WF*.ElmGenstat');! Returns a set of all (ElmGenstat) objects
O7=sWind.Firstmatch('WF*.ElmGenstat');! Returns the first object in the set
n_wind =  sWind.Count();   ! Returns the number of objects (wind farms)
! PV Power plants: : ElemGenstat
sPV = AllRelevant('*.ElmPvsys'); ! Returns a set of all (ElmPvsys) objects (PV)
O8 = sPV.Firstmatch('ElmPvsys'); ! Returns the first objects of ElmPvsys.
n_PV =  sPV.Count();   ! Returns the number of PV objects 
! ESS –Energy Storage Systems: ElemGenstat
sESS = AllRelevant('Storage.ElmGenstat');! Returns a set of (ElmGenstat) objects 
O9 = sESS.First(); ! Returns the first objects Storage.ElmGenstat.
O9.ShowFullName();

Fig. 5.8 Snippet ProbabilisticLF.ComDpl: get the network elements

printf(' PROBABILISTIC LOAD FLOW \n');
printf(' RUNNING MONTE-CARLO SIMULATIONS ');
printf(' created by Prof. F Gonzalez-Longatt and Samir Alhejaj, Sep 2016'); 
printf(' ------------------------------------------------ ');
printf(' Number of Buses : %2.2f',n_bus); 
printf(' Number of Loads : %2.2f',n_load);
printf(' Number of Lines : %2.2f',n_line); 
printf(' Number of Synchronous Generators : %2.2f',n_sym);    
printf(' Number of Wind Turbines : %2.2f',n_wind);
printf(' Number of PV Plant : %2.2f',n_PV);  
printf(' Number of ESS : %2.2f',n_ESS);   
printf(' Number of PHEV : %2.2f',n_PHEV);

Fig. 5.9 Snippet ProbabilisticLF.ComDpl: show the power system and network elements
information
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transferred into specific matrices for the internal use inside the main script.
Figure 5.11 shows the command lines to copy the data in the “PG” matrix into the
“matrixA” matrix of “ReadMATRIX” subscript. By calling “ReadMATRIX”
subscript and execute it, the data are returned and saved into “DATA_PG” matrix.
Similarly, the same is executed for all other matrices. The internal structure and
operation of the subscript “ReadMATRIX” are explained in next subsections.

Now, the main script initiates the Monte Carlo simulation process. Initially, set
the start time of the simulation processing time (see Fig. 5.12). It also initializes the
“PF” object for load-flow class “ComLdf” by calling “GetCaseObject()”. This
object contents all the details that are necessary for running the load-flow analysis.

The Monte Carlo simulation process is a systematic process where the deter-
ministic load-flow is evaluated by each of the scenarios defined in the Nsamples. As
a consequence, a loop is used to counter “iter” the number of the scenarios; the loop
“for” will complete the calculation of “Nsample” defined in the input parameter of
the “ProbablisitcLF-Sim” DPL command. The simulation process is simple; inside
the loop, the value of the active and reactive power of the elements considered as
stochastically described is updated, and then, a deterministic load-flow is calculated
(see Fig. 5.13).

The subscripts “AdjustLOADS” and “AdjustGENS” are used to set the active
and reactive power of the passive and active network elements. The internal
structure and operation of the subscript “AdjustLOADS” and “AdjustGENS” are
explained in next subsections.

A health check is included in the Monte Carlo simulation process. The script
executes the load-flow analysis using the following sentence “error = PF.Execute
()”; if the load-flow is successful and there is coverage, the execution function will
return 0 and if not will return 1. The user can add error handling routine to display
an error message in case there is no convergence and load-flow does not complete.

DATA_PL.Init(Nsample,NLOAD);  ! Initialize an internal matrix for Load
DATA_QL.Init(Nsample,NLOAD);  
DATA_PG.Init(Nsample,NGEN);   ! Initialize an internal matrix for Syn Gen
DATA_QG.Init(Nsample,NGEN);   
DATA_P_WPP.Init(Nsample,NWPP);  ! Initialize an internal matrix for WPP
DATA_Q_WPP.Init(Nsample,NWPP);  
DATA_P_PV.Init(Nsample,NPV);   ! Initialize an internal matrix for PVP 
DATA_Q_PV.Init(Nsample,NPV);   
DATA_P_ESS.Init(Nsample,NESS);  ! Initialize an internal matrix for ESS
DATA_Q_ESS.Init(Nsample,NESS);  
DATA_P_PHEV.Init(Nsample,NPHEV); ! Initialize an internal matrix for PHEV
DATA_Q_PHEV.Init(Nsample,NPHEV);   

Fig. 5.10 Snippet ProbabilisticLF.ComDpl: initialize the values of the internal matrixes

! Importing Data From Microsft Excel File (INPUT_FILENAME_EXCEL.xls)
READ_EXCEL:FILENAME = INPUT_FILENAME_EXCEL;
READ_EXCEL:Nsamples = Itermax;
READ_EXCEL.Execute();

Fig. 5.11 Snippet ProbabilisticLF.ComDpl: importing data from Microsoft Excel
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In the end of the load-flow analysis, which will take few seconds, new results
values will be saved to each element result object by PowerFactory (see Fig. 5.14).

The deterministic load-flow results are obtained per each simulation scenario;
internal matrixes are used to collect the relevant results: bus voltages, lines loading,
current in each transmission line and power losses of the transmission lines (internal
matrices: VBUS, LOADING, IOl and Plosses; see Fig. 5.14).

ReadMATRIX:matrixA = PWPP;     ! Copy WPP active power data to matrixA
ReadMATRIX:matrixB = DATA_P_WPP;! Assign matrix DATA_P_WPP to matrixB
ReadMATRIX.Execute();       ! Swap data from PWPP into DATA_P_WPP
ReadMATRIX:matrixA = QWPP;     ! Copy QWPP reactive power data to matrixA
ReadMATRIX:matrixB = DATA_Q_WPP;! Assign matrix DATA_Q_WPP to matrixB
ReadMATRIX.Execute();          ! Swap data from QWPP into DATA_Q_WPP
ReadMATRIX:matrixA = PPV;      ! Copy PPV active power data to matrixA
ReadMATRIX:matrixB = DATA_P_PV; ! Assign matrix DATA_P_PV to matrixB
ReadMATRIX.Execute();          ! Swap data from PPV into DATA_P_PV
ReadMATRIX:matrixA = QPV;      ! Copy QPV reactive power data to matrixA
ReadMATRIX:matrixB = DATA_Q_PV; ! Assign matrix DATA_Q_PV to matrixB
ReadMATRIX.Execute();          ! Swap data from PG into DATA_Q_PV
ReadMATRIX:matrixA = PESS;     ! Copy PESS active power data to matrixA
ReadMATRIX:matrixB = DATA_P_ESS;! Assign matrix DATA_P_ESS to matrixB
ReadMATRIX.Execute();          ! Swap data from PESS into DATA_P_ESS 
ReadMATRIX:matrixA = QESS;     ! Copy QESS reactive power data to matrixA
ReadMATRIX:matrixB = DATA_Q_ESS;! Assign matrix DATA_Q_ESS to matrixB
ReadMATRIX.Execute();          ! Swap data from QESS into DATA_Q_ESS
ReadMATRIX:matrixA = PPHEV;    ! Copy PHEV active power data to matrixA
ReadMATRIX:matrixB = DATA_P_PHEV;! Assign matrix DATA_P_PHEV to matrixB
ReadMATRIX.Execute();          ! Swap data from PG into DATA_PG 
ReadMATRIX:matrixA = QPHEV;    ! Copy QPHEV reactive power data to matrixA
ReadMATRIX:matrixB = DATA_Q_PHEV;! Assign matrix DATA_Q_PHEV to matrixB
ReadMATRIX.Execute();

!   ---------- Populate the Inernal Matrices ------------
ReadMATRIX:matrixA = PG; ! Copy Synch. Gen. active power data into matrixA
ReadMATRIX:matrixB = DATA_PG; ! Assign matrix DATA_PG to matrixB
ReadMATRIX.Execute();          ! Swap data from PG into DATA_PG
ReadMATRIX:matrixA = QG;       ! Copy Synch. Gen. reactive power data to matrixA
ReadMATRIX:matrixB = DATA_QG;  ! Assign matrix DATA_QG to matrixB
ReadMATRIX.Execute();          ! Swap data from QG into DATA_QG
ReadMATRIX:matrixA = PL;       ! Copy Load active power data to matrixA
ReadMATRIX:matrixB = DATA_PL;  ! Assign matrix DATA_PL to matrixB
ReadMATRIX.Execute();          ! Swap data from PL into DATA_PL
ReadMATRIX:matrixA = QL;       ! Copy Load reactive power data to matrixA
ReadMATRIX:matrixB = DATA_QL;  ! Assign matrix DATA_QL to matrixB
ReadMATRIX.Execute();          ! Swap data from QL into DATA_QL

Fig. 5.12 Snippet ProbabilisticLF.ComDpl: populate internal matrices for the Monte Carlo
simulation process

!   MONTE CARLO SIMULATION PROCESS
! Initialiting variables for Monte-Carlo simulations
Time_o = GetTime(4); ! Get System Time 
PF = GetCaseObject('*.ComLdf');! Returns first found object of '*.ComLdf' class

! from the currently active study case
PF:iopt_net = PF_Mode;         ! PF_Mode = 1 force unbalanced

!  = 0 force balanced     

Fig. 5.13 Snippet ProbabilisticLF.ComDpl: adjustment and setting of the deterministic load-flow
inside the Monte Carlo simulation process
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The numerical results of the load-flow calculations are exported into Microsoft
Excel file; the output data is transferred by using the “Write_EXCEL” subscript.
The results exporting process start by saving the “Loading” percentage of the
transmission lines data to the first worksheet and giving it a name “Loading”.
Similarly, the buses voltages “Voltages”, lines currents “Currents”, lines active
power “Pij” and power losses “Plosses” are saved (see Fig. 5.15). After the sys-
tematic calling of the “Write_EXCEL” subscript, the whole set of data is exported
into a single Microsoft Excel file and the Monte Carlo simulation process ends.

117. !  ------------Start Monte Carlo Simulation -------------
118. for (iter = 1; iter <= Itermax; iter+= 1) { 
119. !  BEGIN iter     
120. printf(' ---------------------------------------------');
121. printf(' Scenario #%d',iter);   
122. ! 2.a. ADJUSTING THE STOCHASTIC ELEMENTS
123. ! Adjust Loads ElmLod
124. AdjustLOADS: iID = iter;
125. AdjustLOADS: oMatrixP = DATA_PL;
126. AdjustLOADS: oMatrixQ = DATA_QL;
127. AdjustLOADS.Execute();     
128. ! Adjust Synch Generators ElmSym
129. AdjustGENS: iID = iter;
130. AdjustGENS: sGenType= S_Sym;
131. AdjustGENS: oMatrixP = DATA_PG;
132. AdjustGENS: oMatrixQ = DATA_QG;
133. AdjustGENS.Execute();
134. ! Adjust Wind Power plants ElmGenstat
135. AdjustGENS: iID = iter; 
136. AdjustGENS: sGenType= sWind;
137. AdjustGENS: oMatrixP = DATA_P_WPP;
138. AdjustGENS: oMatrixQ = DATA_Q_WPP;
139. AdjustGENS.Execute();
140. ! Adjust PV power plants ElmGenstat
141. AdjustGENS: iID = iter;  
142. AdjustGENS: sGenType= sPV;
143. AdjustGENS: oMatrixP = DATA_P_PV;
144. AdjustGENS: oMatrixQ = DATA_Q_PV;
145. AdjustGENS.Execute();
146. ! Adjust ESS ElmGenstat
147. AdjustGENS: iID = iter;  
148. AdjustGENS: sGenType= sESS;
149. AdjustGENS: oMatrixP = DATA_P_ESS;
150. AdjustGENS: oMatrixQ = DATA_Q_ESS;
151. AdjustGENS.Execute();
152. ! Adjust PHEV ElmGenstat
153. AdjustGENS: iID = iter;    
154. AdjustGENS: sGenType= sPHEV;
155. AdjustGENS: oMatrixP = DATA_P_PHEV;
156. AdjustGENS: oMatrixQ = DATA_Q_PHEV;
157. AdjustGENS.Execute();

Fig. 5.14 Snippet ProbabilisticLF.ComDpl: adjustment in the active and reactive power of the
active and passive network elements
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! EXECUTE DETERMINIST LOAD FLOW (ComLdf)
error = PF.Execute();     ! Executes the command Load Flow     
!  COLLECT ALL RELEVANT DATA 
! I. Bus Voltages (per unit) -ElmTerm
O2 = S_bus.First();       ! Returns the first matching object ElmTerm
for(ii = 1; ii <= n_bus; ii+= 1) {
M = O2:m:u1;              ! u1: Magnitude of Terminal Voltages
VBUS.Set(iter,ii,M);      ! Set the value at position (i,ii) in the matrix 
O2 = S_bus.Next();   ! Returns the next matching object Elmterm
}                     
! II. Line Loading Conditions (%) _ElmTerm
O3 = S_line.First();     ! Returns the first matching object ElmTerm
for(ii=1; ii <= n_line; ii+=1) {
LO = O3:c:loading; ! loading: %
LOADING.Set(iter,ii,LO);  
O3 = S_line.Next(); } 

! III. Synchronous Generator -ElmSym
O4 = S_Sym.First();  
for(ii=1;ii<=n_sym;ii+=1) {
LO = O4:m:Q:bus1; ¡ Q: reactive power generation
Qgen.Set(iter,ii,LO);
O4 = S_Sym.Next(); } 

!  V. Wind Power Plant -ElmGenstat
O7 = sWind.First();   ! Returns the first objects ElmGenstat
for(ii=1;ii<=n_wind;ii+=1) {
LO = O7:m:Q:bus1; ¡ Q: reactive power generation
Qwind.Set(iter,ii,LO);
O7 = sWind.Next(); } 

!  VI. PV Power Plant - ElmGenstat
O8 = sPV.First();   ! Returns the first objects ElmGenstat
for(ii=1;ii<=n_PV;ii+=1) {
LO = O8:m:Q:bus1; ¡ Q: reactive power generation
Qwind.Set(iter,ii,LO);
O8 = sPV.Next(); }       

!  VII. ESS -ElmGenstat
O9 = sESS.First();   ! Returns the first objects ElmGenstat
O9.ShowFullName();
for(ii=1;ii<=n_ESS;ii+=1) {    
LO = O9:m:u:bus1; ¡ Q: reactive power generation
Qess.Set(iter,ii,LO);
O9 = sESS.Next(); } 

!  VIII. PHEV -ElmGenstat
O10 = sPHEV.First();   ! Returns the first objects ElmVSCmono
O10.ShowFullName();
for(ii=1;ii<=n_PHEV;ii+=1) {
LO = O10:m:u:bus1;
Qess.Set(iter,ii,LO);

O10 = sESS.Next(); }  
! IX. Line Current Iij -ElmLne
O3 = S_line.First();     ! Returns the first matching object ElmTerm
for(ii=1;ii<=n_line;ii+=1) {
LO = O3:m:i:bus1;
Iol.Set(iter,ii,LO);     ! Save the Loading value to LOADING Matrix

O3 = S_line.Next(); }   
! XI. Lines AC Power flow Pij -ElmLne
O3 = S_line.First();     ! Returns the first matching object ElmTerm
for(ii=1;ii<=n_line;ii+=1) {
M = O3:m:P:bus1;
LinePac.Set(iter,ii,M);     ! Save the Loading value to PinBus Matrix

O3 = S_line.Next(); }  
! XII. Active power losses -ElmLne
O3 = S_line.First();     ! Returns the first matching object ElmTerm
for(ii=1;ii<=n_line;ii+=1) {
M = O3:m:Ploss:bus1;
Plosses.Set(iter,ii,M);     ! Save the Loading value to PinBus Matrix
O3 = S_line.Next(); }        

} ! END Iter   
! 

Fig. 5.15 Snippet ProbabilisticLF.ComDpl: executing deterministic load-flow and collecting the
numerical results
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5.7 DPL Subroutines

The main script ProbabilisticLF.ComDpl includes four subscripts (see Fig. 5.1):

– “Read_Excel” is designed to open the MS Excel file and read the data contained
in the file considering the specific data structure (for more details, see the file
named “StochData.xlsx”).

– “Read_Matrix”: this subroutine is used to read the input matrix (matrixA) and
copies it into the output matrix (matrixB).

– “Adjust_Loads”: the subroutine is designed to adjust the values of active (plini)
and reactive power (qlini) at the load elements (ElmLod). The script made use of
a general selection (Set) to access the specific load where the variability is
considered.

– “Adjust_Gens”: this subroutine is designed to adjust the values of the active
(pgini) and reactive power (qgini) of all the power sources and storage devices
in the power network.

– “Write_Excel”: this subroutine is designed to write the data results of the
probabilistic load flow into a Microsoft Excel file with a very specific data
structure.

The next subsection of this chapter is dedicated to explain in basic and generic
terms the programming aspects of each of the aforementioned scripts.

5.7.1 Reading Stochastic Data from Excel File: Read_Excel

DIgSILENT PowerFactory allows the communication with Microsoft Office; as a
consequence, the basic features of all spreadsheets in Microsoft Excel can be used to
read and write data. The subscript named Read_EXCEL is used to load the sim-
ulation scenarios (Nsamples) used in the probabilistic load-flow; the data records of
active and reactive powers for active and passive network components are stored in a
structure MS Excel file. Then, the subroutine DPL script Read_EXCEL reads the
data from the file and stores the read data into internal matrices (IntMatrix).

The subscript uses as input parameter a string variable (FILENAME) receiving
the name and location of the MS Excel file that holds the stochastic data, and an
integer variable is also declared to be assigned the number of scenarios to be
simulated (Nsamples)—see Fig. 5.16. Moreover, numbers of global matrices are
defined to hold the data. Such variables can be added by clicking on the “Contents”
button from the “Basic Options” tab of the DPL command dialogue (Fig. 5.17).

When the subscript is called, it prints the file name “stochData.xlsx” and its path.
In the case of any problem with the excel software or the excel data file, an error
message will be displayed as part of the error handling functionality available in
DPL. The number of worksheets available in the excel file is read by
“xlGetWorksheetCount()” method and assigned to an integer variable “iCount”.
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A loop goes through each worksheet and reads the data from and saves them to the
right matrix. For example, the first worksheet data will be read and assigned to
“PG” matrix by “Set()” method and so on for the other matrices. Reading data from
excel worksheet is well documented and illustrated by some examples from the
knowledge base of the DIgSILENT software website. After the end of importing
data process, “xlTerminate()” method closes the current instant of excel file (see
Figs. 5.18 and 5.19).

! EXPORTING SIMULATION RESULTS TO MICROSOFT EXCEL SHEETS
! 1. Saving LOADING Results
Write_EXCEL: oResult = LOADING;  
Write_EXCEL: sResult = 'Loading'; 
Write_EXCEL:sheetIndex = 1;  
Write_EXCEL.Execute(); 

! 2. Saving Bus Voltages Results
Write_EXCEL: oResult = VBUS ;
Write_EXCEL: sResult = 'Voltages'; 
Write_EXCEL:sheetIndex = 2;  
Write_EXCEL.Execute();

! 3. Saving Line current Results
Write_EXCEL: oResult = Iol ;   
Write_EXCEL: sResult = 'Currents'; 
Write_EXCEL:sheetIndex = 3; 
Write_EXCEL.Execute(); 

! 4. Saving Lines Active Power (AC) Results
Write_EXCEL: oResult = LinePac ;
Write_EXCEL: sResult = 'Pij';  
Write_EXCEL:sheetIndex = 4; 
Write_EXCEL.Execute();  

! 5. Saving Power Losses Results
Write_EXCEL: oResult = Plosses ;
Write_EXCEL: sResult = 'Power losses'; 
Write_EXCEL:sheetIndex = 5; 
Write_EXCEL.Execute();

! END OF EXPORTING SIMULATION RESULTS TO MICROSOFT EXCEL SHEETS
Time_f=GetTime(4); ! GetSystemTime();    
Dpl_time = Time_f - Time_o;
printf('Processor Time: %g sec',Dpl_time);

Fig. 5.16 Snippet ProbabilisticLF.ComDpl: executing deterministic load-flow and collecting the
numerical results

Fig. 5.17 Details of the input parameters of the Read_EXCEL.ComDpl
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5.7.2 Coping Matrices Content Between Two Subscripts:
ReadMATRIX

The subscript Read_MATRIX is designed to copy the data records that are been
saved to READ_EXCEL subscript matrices into the main program script matrices.
The ReadMATRIX subscript transforms the local data read from the excel file into
a global dataset, and then, it can be used by other subscripts. Even this task seems
an additional and not required; the subscript is used here for illustration purposes.
Users can still use a different approach or using the passing arguments and getting
results through methods that are provided by DPL. The main task here is to swap
data from matrix “matrixA” to matrix “matrixB” and then return the last matrix into
the main script (Fig. 5.20).

5.7.3 Adjusting Loads: Adjust_LOADS

The subscript named Adjust_LOADS is called from the main script in order to set
the simulation scenario; it is done by adjusting the active and reactive power in each
passive element of the network for the iterations of Monte Carlo simulation process.
The network elements are selected by using “AllRelevant()” method. A counter “jj”
is set to the first object “oObj” of these elements, and a loop is iterating through
each object of this element and assign active power “plini” and reactive power
“qlini” (see Fig. 5.21).

Fig. 5.18 Internal matrices used to store the data read by the subscript Read_EXCEL
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5.7.4 Adjusting Generators Power: Adjust_GENS

The subscript named Adjust_GENS is called from the main script in order to set
the simulation scenario; it is done by adjusting the active and reactive power in each
active element of the network for the iterations of Monte Carlo simulation process
(see Fig. 5.22).

xlTerminate(); ! Closes currently active MS Excel instance
exit(); }  

iCount = xlGetWorksheetCount(); ! Get number of sheets
printf('    Number of Sheets : %i',iCount);        
for(i = 1; i<= iCount; i=i+1) {                 
xlActivateWorksheet(i); sString = xlGetWorksheetName(i);             
iRow = 1; iStop = 0;
while(iStop = 0) {
iCol = 1;
while(1) {
xlGetValue(iCol, iRow, sString1); xlGetValue(iCol, iRow, dValue);
iLstr = strlen(sString1); ! Returns the length of a string
if (iLstr = 0) { ! Stop at empty cell, continue with next row
if (iCol = 1) {

iStop = 1;   ! Completely stop if cell in first column is empty
} 
break; 

} 
if (i=1) {       PG.Set(iRow,iCol,dValue);      } 
if (i=2) {       QG.Set(iRow,iCol,dValue);      }
if (i=3) {       PL.Set(iRow,iCol,dValue);    }   
if (i=4) {       QL.Set(iRow,iCol,dValue);   } 

! Adding the power generation sources    
if (i=5) {        PWPP.Set(iRow,iCol,dValue);     }   
if (i=6) {        QWPP.Set(iRow,iCol,dValue);     } 
if (i=7) {       PPV.Set(iRow,iCol,dValue); }   
if (i=8) {      QPV.Set(iRow,iCol,dValue); }   
if (i=9) {       PESS.Set(iRow,iCol,dValue);     }   
if (i=10) {       QESS.Set(iRow,iCol,dValue);     }      
if (i=11) {       PPHEV.Set(iRow,iCol,dValue);    }   
if (i=12) { QPHEV.Set(iRow,iCol,dValue);    } 
iCol = iCol + 1; } 

iRow = iRow + 1; } 
} 
xlTerminate(); ! Closes currently active MS Excel instance

! DPL Subscript - Read Data From Excel File
! VARIABLE DEFINITION
int iError, iCount, i, iRow, iCol, iStop, iLstr;
double dValue; 
string sString, sString1;  
printf('    Loading MS Excel Filename : %s ',FILENAME);   
iError = xlStart(); ! Creates a new MS Excel instance 
if(iError) {
Error(' Unable to start MS Excel application '); exit(); }   

! Opens an existing workbook = opens xls file
iError = xlOpenWorkbook(FILENAME); 
if (iError) {
Error(' Unable to open Excel file ');

Fig. 5.19 Snippet Read_EXCEL.ComDpl
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5.7.5 Exporting Results Data into Excel File:
Write_EXCEL

The subscript named Write_EXCEL is called from the main script in order to export
the numerical results of the Monte Carlo simulation process into a single Microsoft
Excel file. This subscript creates a new excel file and gives it uses as a name the
input parameter OUTPUT_FILENAME_EXCEL entered in the main script. Then, it
iterates through each row and column value (using “mxValue()” method) in the
matrix and writes it (using “xlSetValue()” method) to the correspondence cell in the
excel worksheet (see details in Fig. 5.23).

double VALUE;
printf(' LOADING MATRIXES');
nrowsA = matrixA.NRow();  ncolsA = matrixA.NCol();  
nrowsB = matrixB.NRow();  ncolsB = matrixB.NCol();
VALUE = 1;
for(i1 = 1; i1 <= nrowsA; i1 = i1 + 1) {
for(j1 = 1; j1 <= ncolsA; j1 = j1 + 1) {  
VALUE = matrixA.Get(i1,j1); matrixB.Set(i1,j1,VALUE);

 } 
} 

! DPL Subscript – Swapping The Contents For Two Matrices
int nrowsA, ncolsA, nrowsB, ncolsB, i1, j1;

Fig. 5.20 Snippet Read_MATRIX.ComDpl

! DPL Subscript - Adjusting Loads
int iN, jj, ii; 
double a, b;
string sLname;             
object oObj;
set sLoads;
printf(' ADJUSTING LOADS'); printf(' Adjusting Iteration : %i',iID);
sLoads = AllRelevant('*.ElmLod');
iN = sLoads.Count(); 
printf(' Number of Elements in General Selecion : %i',iN);     
printf(' Full Name of the Objects');
oObj = sLoads.First(); 
jj = 0;
! Cycle through the objects in the set and print out the full name
while(oObj) {

jj = jj+1;
a = oMatrixP.Get(iID,jj);
oObj:plini = a;
b = oMatrixQ.Get(iID,jj);
oObj:qlini = b;      
sLname = oObj:loc_name;
printf(' %i. %s: Pl = %3.3f MW  Ql = %3.3f MVAR ', jj, sLname,a,b);
oObj = sLoads.Next();

 } 

Fig. 5.21 Snippet Adjust_LOADS.ComDpl
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5.8 Simulations and Results

The classical IEEE 14 bus test system is used in this chapter to illustrate the results
of the probabilistic load-flow. The IEEE 14 bus test system represents a portion of
the American electric power system (in the Midwestern US) as of February, 1962.
The test system consists of five synchronous machines; three of which are syn-
chronous compensators used only for reactive power support. There are 11 loads in
the system totalling 259 MW and 81.3 Mvar. The data of the IEEE 14 bus test
system is publically available at: https://www2.ee.washington.edu/research/pstca/
pf14/pg_tca14bus.htm.

The IEEE 14 bus test system is used in this section, and it has been modelled
using DIgSILENT PowerFactory. However, the model used here is customized
variation of the original system which is created to integrate new technologies
where the presence of uncertainties could be modelled using probabilistic data. New
generation technologies, energy storage system and electric vehicles are included.
Two wind power plants are added: onshore wind farm (WF1) and offshore wind
farm (WF2). A multi-terminal HVDC system (three terminals) is used to connect
the WF1 and WF2 into the IEEE 14 bus system. Two photovoltaic plants (PV1 and
PV2), electric vehicle (PHEV) and battery energy storage system BESS (battery
energy storage system) are added to the network. Table 5.1 lists all the generation
elements in the grid with their nominal ratings. Figure 5.23 shows the single line
diagram of the customized IEEE-14 test model, and Fig. 5.24 shows details of the
HVDC transmission network use to integrate the wind farm power plants. The
customized IEEE 14 bus test system is a representative network of the future power
system considering several new technologies.

! DPL Subscript – Adjusting Generation Values
int iN, jj, ii; 
double a,b;
string sGname;
object oObj;             
printf(' ADJUSTING GENS'); printf(' Row to be adjusted : %i', iID);
iN = sGenType.Count(); printf(' Number of Elements in General Selection : %i',iN);     
printf(' Full Name of the Objects');
oObj = sGenType.First(); 
jj = 0;
! Cycle through the objects in the set and print out the full name
while(oObj) {

jj = jj+1;
16. a = oMatrixP.Get(iID,jj);
17. oObj:pgini = a ;
18. b = oMatrixQ.Get(iID,jj);
19. oObj:qgini = b ;  
20. sGname = oObj:loc_name;    
21. printf(' %i. %s: Pg = %3.3f MW  Qg = %3.3f MVAR', jj, sGname, a, b);
22. oObj = sGenType.Next();
23. } 

Fig. 5.22 Snippet Adjust_GENS.ComDpl
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Seven load elements are connected to the test system, and Table 5.2 shows the
active and reactive power demand of the loads (Fig. 5.25).

5.9 Stochastic Data Modelling

The IEEE 14 bus test system has been customized to include new technologies of
generation, energy storage and also transportation (electric vehicles). Those new
technologies and the loads are used to include uncertainties in the system in order to
demonstrate the use of the probabilistic load-flow. The uncertainties are modelled in
this paper using probabilistic models described by a probability distribution.

if (results =0)      {
S_bus = AllRelevant('*.ElmTerm'); ! Returns a set with calculation relevant objects 
O2 = S_bus.First();               ! Returns the first objects ElmTerm.    
n_bus = S_bus.Count();            ! Returns the number of stored ElmTerm.     
for(ii = 1; ii <= n_bus; ii+= 1) {

sNAME = O2:loc_name; 
O2 = S_bus.Next();        ! Returns the next matching object Elmterm
xlSetValue(ii,1,sNAME);

} 
} 
if (results <>0) { 
S_line = AllRelevant('*.ElmLne'); ! Returns a set with calculation relevant objects 
O3 = S_line.Firstmatch('ElmLne'); ! Returns the first objects ElmLne. 
n_line = S_line.Count();  
for(ii = 1; ii <= n_line; ii+= 1) {

sNAME = O3:loc_name; 
O3 = S_line.Next();        ! Returns the next matching object Elmterm
xlSetValue(ii,1,sNAME);

} 
} 
printf('    Excel-Worksheet name: %s', sResult ); 
!  Reading Data from Matrix and write it to Excel  
noRows = oResult.NRow(); noCols = oResult.NCol(); 
mxValue = 0;
for (row = 1 ; row <= noRows ; row =row+1) { 
for (col = 1 ; col <= noCols ; col= col+1) {     
mxValue = oResult.Get(row,col);
xlSetValue(col,row+1,mxValue); } 

} 

! Write2ECEL: Subrutine deseigned to write the results of the probabilitic load flow
! into a Microsoft Excel file.
! VARIABLE DEFINITION  
int iError, savingErr, noRows, noCols, row, col, noOfXleWSs, xleWSno; 
double mxValue;
string sWsName, sNAME;    
int results, ii, n_bus, n_line;
object O2, O3;  
set S_bus, S_line;
printf('    Data Transfer to Excel File Started ...'); 
xlAddWorksheet(sResult); ! Create New Worksheet
! ADDING HEADERS
results = strcmp(sResult,'Voltages'); 

Fig. 5.23 Snippet Write_EXCEL.ComDpl
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Table 5.1 Details of the installed capacity of the active elements in the test system

Generator Type Bus Installed capacity (MVA)

G1 Synchronous generator 1 304.00

G2 Synchronous generator 2 304.00

G3 Synchronous generator 3 80.00

WF2 Offshore wind farm 4, 5 6.15

CS6 Synchronous capacitor 6 55.00

CS8 Synchronous capacitor 8 55.00

PHEV Power hybrid electric vehicle 9 1.00

Storage Energy storage (battery) 10 5.00

PV2 Photovoltaic plant 11 5.00

PV1 Photovoltaic plant 12 2.50

WF1 Onshore wind farm 14 6.52

Fig. 5.24 Customized IEEE 14 bus test system including new technologies
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Table 5.2 Details of the power consumption on the load connected in the test system

Load Bus Active power (MW) Reactive power (MVar)

L2 2 21.95 12.85

L3 3 102.22 20.62

L4 4 45.14 3.69

L5 5 5.80 1.22

L6 6 11.39 7.63

L9 9 27.34 15.38

L10 11 4.35 2.24

L11 11 4.35 2.24

L12 12 5.88 1.54

L13 13 12.46 5.35

L14 14 14.99 3.86

Fig. 5.25 Three-terminal HVDC transmission system used to integrate the wind power plants
(WF1 and WF2)
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A MATLAB program has been used to generate the simulation scenarios con-
sidered in this chapter; the program used the well-known inverse transform; it
produces samples of a desired probability distribution.

Figure 5.26 shows histograms and the discrete cumulative distribution function
(CDF) in percentage representative of the simulation scenarios for the active net-
work element. The histograms have been created using the 10,000 samples created
using the specific probability distribution describing the active power of the active
network elements (Fig. 5.27).

The variability of the power demands is simulated using a normal (or Gaussian)
distribution; the continuous distribution is characterized by two parameters, the
mean or expectation of the distribution (l) and the standard deviation (r). Details of
the Gaussian distribution parameters used for the active power demand in each load
are presented in Table 5.3.

5.10 Results

The 10,000 simulation scenarios are prepared and loaded into a Microsoft Excel file
named “StochData.xlsx” (4.83 MB). The script named “ProbabilisticLF”, the
main program of the PLF implementation, is called inside DIgSILENT
PowerFactory. The main DPL script runs for approximately 65.3 s, and a Microsoft
Excel file containing the simulations results of the 10,000 scenarios is produced.
The MS Excel file named “StochResults.xlsx” contents the simulation results of the
bus voltages, loading percentage of the transmission lines, active power losses in
each transmission line, transmission lines currents (Iij) and power flows (Pij). The
output Microsoft Excel file contents the raw data that should be post-processed in
order to create the appropriate probabilistic representation of the variables.

The packages pandas [20] and matplotlib [21] are used in the following to
process the generated results. The histogram and empirical cumulative distribution

Fig. 5.26 Histogram for
synthetic data of G1.
Three-state empirical
distribution: 25, 30 and
35 MW
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(a) Wind Farm Power Plants – Weibull distribution (λ,k): WF1 (λ =15 m/s, k =2) and WF2
 (λ = 14 m/s, k = 3)

(b) PV Power Plants – Beta distribution (α,β): PV1 (α = 2.3; β = 5.3), PV2 (α = 1.55, β = 4.25) 

(c) PHEV charging Station – Beta distribution: 
PHEV(α = 1.47, β = 5.09)

(d) ESS – Beta distribution:
ESS ((α = 0.70, β = 11)

Fig. 5.27 Histograms of synthetic data of all non-CG plants
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function are created for the main variables (bus voltages, active power flows,
currents and loading percentage of transmission lines and total system power los-
ses). Only the most relevant results are shown here because of space constraints.

Figure 5.28 shows for each bus, the maximum, mean and minimum voltages for
the total scenarios are covered in the study. It can be noticed that some buses have
an effective voltage control which made this magnitude insensitive to load and
generation variations (buses 1 and 15). Other voltages deeply vary depending on the
conditions of the considered scenario. The lowest voltage is reached at bus 3 with a
value of 0.924 pu, while the highest voltage for all scenarios happens at bus 14
being 1.061 pu.

Figure 5.29 illustrates statistical information concerning the voltage at two
loading buses. It is noticed that at bus 14, the range of variation is quite wide,
fluctuating from almost 0.93 to 1.06 pu. Instead, at bus 4, the range of voltage
variation is considerably narrower, going from 0.99 to 0.935 pu. This is also per-
ceived looking at the r values indicated for each bus. The wider variation for
voltage 14 can be explained by the presence of a wind generator on this bus with a
strong variable power injection.

It is worth to mention that the statistical distributions are not following a pure
normal (or Gaussian) curve, basically because the different probabilistic distribution
functions (three-states, beta, Weibull, normal) used to represent the variability of
the active and passive network components (Figs. 5.30 and 5.31).

In Fig. 5.32, the power flows through all the lines and cables, in MW, are
depicted providing the maximum, mean and minimum values for all the scenarios.
The lines with wider variation are more influenced by the variability of uncon-
trollable power injections (PV, PHEV, WF). This is noticeable in lines 9–14 and
13–14 which must transfer the variable generation of generator WF1. The his-
tograms, medians and standard deviations of power flows across those lines are
shown in Fig. 5.33. As expected, the distributions in both pictures are similar and
related to the active power injection by WF1. In fact, when the power injection on

Table 5.3 Details of the Gaussian distribution parameters used for modelling the load demand

Load Bus Mean active power (l in MW) Standard deviation (% of the l)

L2 2 21.95 1

L3 3 102.22 25

L4 4 45.14 20

L5 5 5.80 7

L6 6 11.39 15

L9 9 27.34 5

L10 11 4.35 10

L11 11 4.35 2

L12 12 5.88 8

L13 13 12.46 1

L14 14 14.99 4

5 Probabilistic Load-Flow Using Analysis … 119



bus 14 is low, the power flows from bus 9 to 14 and from 13 to 14 (positive values
in Fig. 5.33).

Figure 5.33 displays what happens in the DC part of the system. Here, there are
no loads, and the cables are designed to evacuate the power generated by the
offshore WF2. This is the reason why power flows are always positive across cable
1–3.

Figure 5.34 depicts the loading of the system branches in all the studied sce-
narios. It can be noticed that there are no overloads in any scenario and that the
most loaded lines are those connecting buses with synchronous generators (line 1–
2, line 1–5, line 2–3) (Fig. 5.35).

Finally, Fig. 5.36 shows the histograms of active power losses (MW) and
cumulative distribution for the whole system. The mean value is 12.6 MW, but in a
few scenarios, the power losses could rise to almost 18 MW, mainly influenced by
the generation variability and the path followed by the current to reach the loads.

Fig. 5.28 Illustration of voltage variations along the network. The maximum, mean and minimum
value at each bus for the 10,000 scenarios are represented

Fig. 5.29 Statistical data related to AC bus voltages. Left: histogram and cumulative distribution
of voltage at bus 14. Right: histogram and cumulative distribution at bus 4
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Fig. 5.30 Statistical data related to bus voltage at DC buses. Left: histogram and cumulative
distribution of voltage at bus 2DC. Right: histogram and cumulative distribution at bus 3DC

Fig. 5.31 Illustration of lines power flow variations. The maximum, mean and minimum value at
each line for the 10,000 scenarios are represented

Fig. 5.32 Statistical data related to AC power flows. Left: histogram and cumulative distribution
of active power flow through line 9–14 (9 is the sending terminal). Right: histogram and
cumulative distribution of active power flow through line 13–14 (13 is sending terminal)
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Fig. 5.33 Statistical data related to DC power flows. Left: histogram and cumulative distribution
of active power flow through cable 1–2. Right: histogram and cumulative distribution of active
power flow through cable 1–3

Fig. 5.34 Percentage of loading of system branches. Maximum, mean and minimum values for
the 10,000 studied cases are represented

Fig. 5.35 Maximum, mean and minimum losses values (MW) in all branches for the 10,000
studied scenarios
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5.11 Conclusions

Deterministic load-flow analysis is an effective tool that is commonly used to capture
the power system operational performance and its state at a certain point of time.
However, modern power systems are characterized by an increasing penetration of
new technologies adding uncertainties to the design and operation. This chapter
presents the DIgSILENT PowerFactory script language (DPL) implementation of a
DPL script to perform probabilistic power flow (PLF) usingMCS in order to consider
the variability of the stochastic variables in the power system during the assessment of
the steady-state performance. The proposed DPL uses as input data the stochastic data
coming from an external Microsoft Excel file, and then, the DPL is able to carry on a
probabilistic load-flow and exports the results using aMicrosoft Excel file. Amodular
programming approach has been used to provide flexibility and portability of the
script. Internal matrices (IntMatrix) are used to transfer data between the subscripts;
this approach allows to re-use the code in some other application. The suitability of the
implemented DPL is illustrated using the classical IEEE 14 buses.
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